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Abstract: Model Predictive Control is an industry-standard technique used to drive systems
based on their internal dynamics. When not all states are available for feedback, a state
estimator, such as an Extended Kalman Filter, is employed to achieve control over the complete
system state. Nevertheless, when the system under control is nonlinear, these two combined
methods can result in a computationally heavy control strategy, raising significantly the cost of
implementing it online. In this paper, a data-driven strategy based on the Koopman Operator
theory is presented to identify and replicate the dynamics of the Kalman Filter plus Model
Predictive Controller pair in a resource-efficient scheme. First, a closed-loop operation data-set
is generated from a pre-calibrated reference controller; then, a finite-dimensional approximation
is derived for the Koopman Operator of the filter plus controller dynamics in the lifted space
of observables; finally, the stability of the identified controller is evaluated through closed-
loop simulations; in case the desired response has not been achieved, the identification process
is performed iteratively with a progressively increasing regularization coefficient. A simulated
example applied to the Van der Pol oscillator is presented to illustrate the effectiveness of the
approach.
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1. INTRODUCTION

The Koopman Operator (KO) theory provides a conve-
nient framework to represent finite dimensional nonlinear
systems through infinite dimensional linear models, by
transforming the state space into a infinite linear space of
observables (Budǐsić et al. (2012)). In contrast to conven-
tional linearization methods that depend on local deriva-
tives, it provides an exact description (at least in theory)
of the system’s dynamics and, more importantly from
an applied control point of view, it is easily adaptable
to a fully data-driven pipeline (gray-box framework; see
Huang (2020) for an in-depth exploration of data-driven
modeling through the KO). The original theory was first
developed in the 1930’s through the work of Koopman
(1931), but it was not until decades later when Korda and
Mézic(see Mezić (2005); Korda and Mezić (2018)) revived
this technique, first making use of it as a spectral analysis
method and later on as a data-driven system identification
framework for black and gray-box systems, which will be
the focus of this paper.

On the other hand, there is Model Predictive Control
(MPC): a mature framework which consists on an iter-
ative approach to dynamical systems control, solving an
optimization problem over a prediction horizon for the
explicit model of the controlled system and determining
the optimal driver signal that minimizes an adequate cost

function. In a situation where not all the states are mea-
sured, an observer or virtual sensor (e.g., Extended Kalman
Filter) is employed to recover the full state information.
This process is repeated at each sample time, with up to
date information about the state of the process (Camacho
and Alba (2013)). The main disadvantage of this approach
should be evident: for a nonlinear system, a complex,
nonlinear, and non-convex optimization problem has to
be solved at each step. Some machine-learning techniques
have been used to attenuate this problem with relative suc-
cess (Hertneck et al. (2018)), mainly using deep-learning
techniques such as Graph Neural-Networks (Gama et al.
(2022)) or Bayesian Neural-Networks (Chen et al. (2021)),
meaning that a data-driven approach for MPC replication
has already been tested and deemed a valid alternative to
address the complexity of the original controller, approx-
imating the static map from the optimal control problem
solved at each step (without considering the filtering step).

Until now, the KO has been used alongside MPC to
learn the dynamics of the plant in open-loop and use
the resulting lifted-model as an internal model to predict
future states (Korda and Mezić (2018); Zhang et al.
(2022)), to an accuracy level where the extension of the
model to continuous-time can be used in a Lyapunov-
based Model Predictive Control (LMPC) framework as a
virtual sensor in black-box scenarios (Narasingam et al.
(2022)). Nevertheless, if a full-state MPC is required,
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model to continuous-time can be used in a Lyapunov-
based Model Predictive Control (LMPC) framework as a
virtual sensor in black-box scenarios (Narasingam et al.
(2022)). Nevertheless, if a full-state MPC is required,
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1. INTRODUCTION

The Koopman Operator (KO) theory provides a conve-
nient framework to represent finite dimensional nonlinear
systems through infinite dimensional linear models, by
transforming the state space into a infinite linear space of
observables (Budǐsić et al. (2012)). In contrast to conven-
tional linearization methods that depend on local deriva-
tives, it provides an exact description (at least in theory)
of the system’s dynamics and, more importantly from
an applied control point of view, it is easily adaptable
to a fully data-driven pipeline (gray-box framework; see
Huang (2020) for an in-depth exploration of data-driven
modeling through the KO). The original theory was first
developed in the 1930’s through the work of Koopman
(1931), but it was not until decades later when Korda and
Mézic(see Mezić (2005); Korda and Mezić (2018)) revived
this technique, first making use of it as a spectral analysis
method and later on as a data-driven system identification
framework for black and gray-box systems, which will be
the focus of this paper.

On the other hand, there is Model Predictive Control
(MPC): a mature framework which consists on an iter-
ative approach to dynamical systems control, solving an
optimization problem over a prediction horizon for the
explicit model of the controlled system and determining
the optimal driver signal that minimizes an adequate cost

function. In a situation where not all the states are mea-
sured, an observer or virtual sensor (e.g., Extended Kalman
Filter) is employed to recover the full state information.
This process is repeated at each sample time, with up to
date information about the state of the process (Camacho
and Alba (2013)). The main disadvantage of this approach
should be evident: for a nonlinear system, a complex,
nonlinear, and non-convex optimization problem has to
be solved at each step. Some machine-learning techniques
have been used to attenuate this problem with relative suc-
cess (Hertneck et al. (2018)), mainly using deep-learning
techniques such as Graph Neural-Networks (Gama et al.
(2022)) or Bayesian Neural-Networks (Chen et al. (2021)),
meaning that a data-driven approach for MPC replication
has already been tested and deemed a valid alternative to
address the complexity of the original controller, approx-
imating the static map from the optimal control problem
solved at each step (without considering the filtering step).

Until now, the KO has been used alongside MPC to
learn the dynamics of the plant in open-loop and use
the resulting lifted-model as an internal model to predict
future states (Korda and Mezić (2018); Zhang et al.
(2022)), to an accuracy level where the extension of the
model to continuous-time can be used in a Lyapunov-
based Model Predictive Control (LMPC) framework as a
virtual sensor in black-box scenarios (Narasingam et al.
(2022)). Nevertheless, if a full-state MPC is required,
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whatever performance is gained through the substitution
of the nonlinear model with the semi-linear Koopman
dynamics is immediately overshadowed by the integration
of a virtual sensor into the control loop. Fortunately,
KO theory is applicable to any dynamical system, and
noticing that the entire controller topology (Virtual Sensor
+ MPC) is a single nonlinear system, its dynamics can
be represented as the linear combination of a library
of observables. This paper proposes to use the KO as
a technique to learn the internal dynamics of a pre-
existing MPC controller working in conjunction with a
state estimator by extending the available information
over a lifted space of observables of the estimated state
values. Since the coefficients required to evolve the output
of the controller are calculated offline, the Koopman
interpretation of the controller becomes significantly more
efficient, making it cheaper to implement on lower-end
hardware. The contributions of this paper are:

• A KO formulation of the MPC + Virtual Sensor
dynamics-learning algorithm

• An efficient real-time implementation of the
Koopman-identified Kalman Filter-informed MPC

The methodology was tested on a nonlinear second order
system, the forced Van der Pol oscillator, comparing its
accuracy and execution time against a reference nonlinear
MPC and a Koopman-informed linear MPC.

2. PROBLEM FORMULATION

Consider a discrete-time dynamical system with sampling
time Ts, representing the plant to be controlled, with state
x[l] ∈ X ⊆ Rnx and dynamics described by{

x[l + 1] = fx(x[l],w[l]) + ηx[l]

y[l] = fy(x[l]) + ηy[l]
, (1)

where l is time (i.e., sample number), x ∈ X are the
plant’s states, w ∈ Rnw are the input signals of the
plant, y ∈ Rny are the measured output signals, and
ηx ∈ Rnx , ηy ∈ Rny are random processes associated
to the process and measurement noise respectively. fx :
X × Rnw → X is (assumed to be) a nonlinear state
propagator corresponding to the smooth deterministic
motion that would be expected if the random disturbances
due to process noise (ηx) were absent. A state-aware MPC
strategy (Maiworm et al. (2021)) is integrated in closed-

loop as in Fig. 1 1 , where the Optimizer tries to minimize
the expression in

J(x,w;Hx, Hw, r)[l] =
Hx∑
j=1

nx∑
i=1

δj,i [x̂i[l + j|l]− ri[l + j]]
2

+

Hw∑
j=1

nw∑
i=1

λj,i [ŵi[l + j − 1]− ŵi[l + j − 2]]
2

(2)

s.t. ∀j ∈ 1, . . . , Hx :

x̂[l + j|l] = fx(x̂[l + j − 1|l], ŵ[l + j − 1|l])
x̂[l|l] = x[l]

ŵ[l + j|l] ∈ W , x̂[l + j|l] ∈ X

(3)

subjected to the following set of control signal and state
value/rate parameters:

• Prediction horizon (Hx ∈ N)
• State weights (δj,i ∈ R+)
• Control horizon (Hw < Hx ∈ N)
• Control-rate weights (λj,i ∈ R+)
• State constraints (X ⊆ X)
• Control constraints (W ⊆ Rnw)

The current internal states x[l] are in turn measured
through a virtual sensor, the Extended Kalman Filter
(EKF), which yields an estimate based on the measured
output y[l]. In its most standard form, given a nonlinear
system of the form in (1), the EKF is able to recover
the internal states of the system from the input and the
measured output; i.e.,

x̂[l] =FEKF(x̂[l − 1],y[l],w[l − 1], P [l]) (4)

P [l] =ΨEKF(P [l − 1],x[l − 1]), (5)

where x̂[l]is the state estimate at time l and P [l] is the
estimated covariance matrix of the state estimation error.

It is worth mentioning that the EKF must be fully in-
formed of the internal dynamics of the system (or, at least,
must be equipped with a good approximation). For further
details on the specifics of the EKF, see Crassidis and Junk-
ins (2004). The problem with this solution is its inherent
linearization: since the EKF extends the Kalman filtering
theory for linear systems through a local linearization,
it generates a trade-off situation between accuracy and
complexity.

3. THE KOOPMAN OPERATOR

We follow the infinite-dimensional formulation of the KO
from Arbabi and Mezic (2017) and Budǐsić et al. (2012).
Let g : X → C be an arbitrary (at least for now) complex-
valued function; g is called an observable of the system
(autonomous for now){

x[l + 1] = fx(x̄[l]) + ηx[l + 1]

y[l] = fy(x̄[l]) + ηy[l]
, (6)

with
x[l] = x̄[l] + ηx[l], (7)

1 In practice, past control actions are externally fed-back to the
MPC in case the applied control action is different from the optimal
one (e.g., because of measured non-modeled actuator effects).

where x̄ is the real value of the state, and whose value
observed over a single step starting from x̄[l] evolves in
time according to the map

g (x̄[l + 1]) = g ◦ fx (x̄[l]) . (8)

The space G of all observables g is a linear functional space,
and thus a linear operator K : G → G (hereinafter referred
to as the Koopman Operator) can be defined through

g (x[l + 1]) = K ◦ g (x[l]) , (9)

meaning that the dynamics of an arbitrary nonlinear
system can be linearly replicated when expanded over an
infinite-dimensional space.

Now that the theoretical framework has been laid, the next
step is describing the data-driven algorithm for the finite-
dimensional KO approximation (Mauroy and Goncalves
(2020)). Consider L snapshot pairs (x[l],x[l + 1]) obtained
from noisy measurements, and also

x[l + 1] = fx (x[l]− ηx[l]) + ηx[l + 1]

= x̄[l + 1] + ηx[l + 1],
(10)

which is associated to the dynamical system described in
Eq. (6). The controller-learning algorithm can be split into
two main stages as follows:

Dimensional lifting: At this stage, the snapshot pairs
(x[l],x[l + 1]) described in (10) are lifted to the space
of observables by constructing new pairs of the form
(g (x[l]) ,g (x[l + 1])) for some g = {gj}∞j=1 ⊂ G. The re-

lation
g (x[l + 1]) = g (fx (x[l]− ηx[l]) + ηx[l + 1])

≈ Kg (x[l]) +O (||ηx||)
(11)

follows from (7), (10), and the linearity of the KO.

The selection of the observable functions can be com-
pletely arbitrary or even physically-informed, granted an
infinite collection of linearly independent observables can
be generated from its structure. For the sake of generality,
the algorithm is presented using a collection of thin-plate
spline basis functions of the form

gj(x) = ||x− zj ||2 log (x− zj) , (12)

where zj ∈ Rn is a (randomly) pre-selected centroid. These
are not only generic enough so that they can be easily
applied to an arbitrary system, but also facilitate order
scalability and online implementation.

Matrix identification: At this stage, a truncated finite-
dimensional projection of the KO is obtained through
a regularized error minimization problem, similar to the
Extended DMD algorithm in Williams et al. (2015), but
blinded against measurement noise using the Frobenius-
norm of the identified operator.

Let GN ⊂ G be the linear subspace of observables
generated by the original states and the basis {gj}ng

j=1

of thin-plate spline functions. For each snapshot pair
(x[l],x[l + 1]) ∈ Rnx×2 , l ∈ {1, . . . , L}, a new pair

(g̃ (x[l]) , g̃ (x[l + 1])) ∈ RN×2 (13)

g̃ (x[l]) = [x[l] g (x[l])]
T ∈ RN (14)

is constructed, where g (x) = (g1 (x) , . . . gN (x))
T
denotes

the vector of basis functions following the definition in (12)
and N := nx + ng.

An identification of the KOK is now executed; specifically,
the finite-rank truncation KN : GN → GN is identified.
To this end, a regularized least-squares fit for the or-
thogonal projection of the identity observable dynamics
is performed as proposed in Zhang et al. (2022). The
definition of the optimization problem per observable is

(
KN

)
i
= arg mink∈RN

1

L

L∑
l=1

|kT g̃(x[l])− (x[l + 1])i |
2

+
α

N
||k||2F ,

(15)

where i ∈ {1, . . . , N} corresponds to each row from the
matrix representation of the truncated KO and α ≥ 0
defines the regularization coefficient of the Frobenius norm
term. Thus, the dynamics of the original states can now
be recovered through

x[l + 1] = Ag̃ (x[l]) , (16)

whereA =
(
KN

)
1:nx

. It is worth noting that this is not the

traditional definition of the Koopman snapshots since, for
control applications, approximating only the dynamics of
the original states as a linear combination of the elements
in the lifted space and then re-observing the predicted
states at each sample yields a more robust implementation
with relatively low overhead. More complex correction
strategies for plant-model mismatch caused by the trunca-
tion of the KO have been explored in the literature, such as
disturbance-estimator-based approaches for LMPC (Son
et al. (2020)); nevertheless, for the sake of simplicity, the
re-observation approach was preferred in this paper.

For a non-autonomous system, the definition of the objec-
tive function can be easily extended by concatenating the
observable library with the recorded exogenous input (see
Mauroy and Goncalves (2020)) and solving

([A B])i =

arg mina∈RN ,b∈Rnu

1

L

L∑
l=1

|aT g̃(x[l]) + bTu[l]− (x[l + 1])i |
2

+
α

N
(||a||2F + ||b||2F )

(17)

instead, where u ∈ Rnu are the input signals of the
system 2 , and then splitting the coefficients accordingly
to recover the dynamics just as in

x[l + 1] = Ag̃ (x[l]) +Bu[l], (18)

where B ∈ Rn×nu is the collection of newly obtained
columns.

4. LEARNING MPC CONTROL LAWS

The formulation is as follows:

• The Kalman filter estimate at sample l is taken as
state for the MPC control law, defining nx.

• The reference states at sample l, the measured plant
output at sample l, and the control signal sent to the
plant at sample l − 1 are taken as inputs, defining

u[l] = [r[l] y[l] w[l − 1]]
T ∈ Rnu , (19)

nu = nx + ny + nw (20)
2 A different notation for the input is used because the target system
to identify in this paper is not the plant, but the EKF-MPC pair
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where x̄ is the real value of the state, and whose value
observed over a single step starting from x̄[l] evolves in
time according to the map

g (x̄[l + 1]) = g ◦ fx (x̄[l]) . (8)

The space G of all observables g is a linear functional space,
and thus a linear operator K : G → G (hereinafter referred
to as the Koopman Operator) can be defined through

g (x[l + 1]) = K ◦ g (x[l]) , (9)

meaning that the dynamics of an arbitrary nonlinear
system can be linearly replicated when expanded over an
infinite-dimensional space.

Now that the theoretical framework has been laid, the next
step is describing the data-driven algorithm for the finite-
dimensional KO approximation (Mauroy and Goncalves
(2020)). Consider L snapshot pairs (x[l],x[l + 1]) obtained
from noisy measurements, and also

x[l + 1] = fx (x[l]− ηx[l]) + ηx[l + 1]

= x̄[l + 1] + ηx[l + 1],
(10)

which is associated to the dynamical system described in
Eq. (6). The controller-learning algorithm can be split into
two main stages as follows:

Dimensional lifting: At this stage, the snapshot pairs
(x[l],x[l + 1]) described in (10) are lifted to the space
of observables by constructing new pairs of the form
(g (x[l]) ,g (x[l + 1])) for some g = {gj}∞j=1 ⊂ G. The re-

lation
g (x[l + 1]) = g (fx (x[l]− ηx[l]) + ηx[l + 1])

≈ Kg (x[l]) +O (||ηx||)
(11)

follows from (7), (10), and the linearity of the KO.

The selection of the observable functions can be com-
pletely arbitrary or even physically-informed, granted an
infinite collection of linearly independent observables can
be generated from its structure. For the sake of generality,
the algorithm is presented using a collection of thin-plate
spline basis functions of the form

gj(x) = ||x− zj ||2 log (x− zj) , (12)

where zj ∈ Rn is a (randomly) pre-selected centroid. These
are not only generic enough so that they can be easily
applied to an arbitrary system, but also facilitate order
scalability and online implementation.

Matrix identification: At this stage, a truncated finite-
dimensional projection of the KO is obtained through
a regularized error minimization problem, similar to the
Extended DMD algorithm in Williams et al. (2015), but
blinded against measurement noise using the Frobenius-
norm of the identified operator.

Let GN ⊂ G be the linear subspace of observables
generated by the original states and the basis {gj}ng

j=1

of thin-plate spline functions. For each snapshot pair
(x[l],x[l + 1]) ∈ Rnx×2 , l ∈ {1, . . . , L}, a new pair

(g̃ (x[l]) , g̃ (x[l + 1])) ∈ RN×2 (13)

g̃ (x[l]) = [x[l] g (x[l])]
T ∈ RN (14)

is constructed, where g (x) = (g1 (x) , . . . gN (x))
T
denotes

the vector of basis functions following the definition in (12)
and N := nx + ng.

An identification of the KOK is now executed; specifically,
the finite-rank truncation KN : GN → GN is identified.
To this end, a regularized least-squares fit for the or-
thogonal projection of the identity observable dynamics
is performed as proposed in Zhang et al. (2022). The
definition of the optimization problem per observable is

(
KN

)
i
= arg mink∈RN

1

L

L∑
l=1

|kT g̃(x[l])− (x[l + 1])i |
2

+
α

N
||k||2F ,

(15)

where i ∈ {1, . . . , N} corresponds to each row from the
matrix representation of the truncated KO and α ≥ 0
defines the regularization coefficient of the Frobenius norm
term. Thus, the dynamics of the original states can now
be recovered through

x[l + 1] = Ag̃ (x[l]) , (16)

whereA =
(
KN

)
1:nx

. It is worth noting that this is not the

traditional definition of the Koopman snapshots since, for
control applications, approximating only the dynamics of
the original states as a linear combination of the elements
in the lifted space and then re-observing the predicted
states at each sample yields a more robust implementation
with relatively low overhead. More complex correction
strategies for plant-model mismatch caused by the trunca-
tion of the KO have been explored in the literature, such as
disturbance-estimator-based approaches for LMPC (Son
et al. (2020)); nevertheless, for the sake of simplicity, the
re-observation approach was preferred in this paper.

For a non-autonomous system, the definition of the objec-
tive function can be easily extended by concatenating the
observable library with the recorded exogenous input (see
Mauroy and Goncalves (2020)) and solving

([A B])i =

arg mina∈RN ,b∈Rnu

1

L

L∑
l=1

|aT g̃(x[l]) + bTu[l]− (x[l + 1])i |
2

+
α

N
(||a||2F + ||b||2F )

(17)

instead, where u ∈ Rnu are the input signals of the
system 2 , and then splitting the coefficients accordingly
to recover the dynamics just as in

x[l + 1] = Ag̃ (x[l]) +Bu[l], (18)

where B ∈ Rn×nu is the collection of newly obtained
columns.

4. LEARNING MPC CONTROL LAWS

The formulation is as follows:

• The Kalman filter estimate at sample l is taken as
state for the MPC control law, defining nx.

• The reference states at sample l, the measured plant
output at sample l, and the control signal sent to the
plant at sample l − 1 are taken as inputs, defining

u[l] = [r[l] y[l] w[l − 1]]
T ∈ Rnu , (19)

nu = nx + ny + nw (20)
2 A different notation for the input is used because the target system
to identify in this paper is not the plant, but the EKF-MPC pair
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Fig. 2. Koopman-identified EKF-informed MPC

• The minimization problem

([C D])i =

arg minc∈RN ,d∈Rnu

1

L

L
l=1

|cT g̃(x[l]) + dTu[l]− (w[l])i |
2

+
α

N
(||c||2F + ||d||2F )

(21)

yields the coefficients defining the control law at
sample l, which in turn becomes the output of our
identified controller.

The newly defined matrices C ∈ Rnw×N and D ∈ Rnw×nu ,
with i ∈ {1, ..., nw} can be used to recover the control
signal, resulting in the proposed KO controller topology

x[l] = Ag̃ (x[l − 1]) +Bu[l]

w[l] = Cg̃ (x[l]) +Du[l]
(22)

At this point, the similarity between the proposed schemes
and a traditional State-Space representation is more than
evident; the only differences being the nonlinear observa-
tion performed over each predicted state and the fact that
the state values are being calculated for sample l instead
of l + 1, as shown in Fig. 2.

In order to generate the training data-set for the KO, an
informative reference signal for the controlled states has to
be given to the optimization based MPC; this signal must
be rich enough to avoid identification bias. The proposed
methodology is as follows:

(1) Generate a series of steps covering the entirety of the
possible equilibrium states where the system could
be found while online; make sure that the duration of
each step will be enough for the system to stabilize
while under the control of the EKF-informed MPC.

(2) Use the step signals as reference to simulate (or
measure) the operation of the EKF-MPC control
scheme.

(3) Record the optimal control signals and
EKF-predicted states in sync with the above refer-
ence.

5. NUMERICAL EXAMPLE: THE VAN DER POL
OSCILLATOR

A staple benchmark nonlinear system, the forced Van
der Pol oscillator, taken from Korda and Mezić (2018),

was used in order to evaluate the performance of this
methodology 3 . Its dynamics are given by


ẋ1 = 2x2

ẋ2 = −0.8x1 + 2x2 − 10x2
1x2 + w

y = x1

, (23)

from which we can extract the model parameters

(nx, ny, nw) = (2, 1, 1) (24)

The EKF was provided with a fractional-step forward-
Euler discrete-time approximation of the Van der Pol
oscillator. The process-noise and measurement-noise were
assumed to be both equal in parameters and mutually
independent: η ∼ N (0, 0.001). The MPC was configured
with the following parameters:

• Prediction horizon (Hx): 25 samples
• Control horizon (Hw): 5 samples
• State weights: δj = [1 0]T ∀j = 1, . . . , Ny

• Control weights: λj = 0 ∀j = 1, . . . , Nu

• Control bounds: [−2, 2]
• Second state bounds: [−1, 1]
• Prediction internal model: same as the EKF

Additionally, an equally configured linear MPC informed
with a KO approximation (ng = 100) of the Van der
Pol oscillator (identified from open-loop simulations with
a random input signal within the above control bounds)
was designed in order to evaluate the performance of the
technique proposed in this paper when compared to the
literature’s approach to MPC using KO. This implemen-
tation also involved lifting both the states estimated by
the EKF and the reference, and then feeding these to the
linear MPC.

The aforementioned nonlinear MPC was then tasked with
making the plant’s first state follow a series of steps,
first going in ascending order through the interval [−1, 1]
with steps of amplitude 0.1 lasting for 5 s each, then
repeating the sequence in descending order, and finally
going through the same list of values in random order. The
whole trajectory sums up to a total of 3.15×102 s, or 3.15×
104 snapshots. Since the output weight corresponding to
the second-state is equal to 0, the value of the second-
state reference should not matter; nevertheless, it was
approximated through a backwards finite difference as

x2[l] =
x1[l]− x1[l − 1]

2Ts
(25)

(following the system’s definition). The entire training
data-set can be observed in Fig. 3.

These were then used to train the proposed topology of
the Koopman-identified EKF-informed MPC using a col-
lection of 10, 20, 50 and 100 observable functions. The cen-
troids for each of these functions were randomly selected
by fitting a Gaussian distribution to the values recorded
for each state and then extracting the necessary samples
according to the chosen library size. The regularization co-
efficient for each Koopman-identified controller was tuned
(using the same magnitude for both (15) and (21)) in
order to get the best possible step response (determined
qualitatively at this stage), while keeping the system’s

3 All of the source code for the described implementation can be
found in https: // github. com/ sergiovaneg/ Koopman .
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Fig. 3. Identification set

eigenvalues within unitary magnitude 4 . All minimization
problems were solved using the default options for CVX
Research (Grant and Boyd (2014)) in MATLABTM.

Finally, the controllers’ accuracy was numerically com-
pared based on the Time-averaged Root Mean Square
(TRMS) of the error between the reference and the internal
states of the plant over the span of 1×102 s, while following
a positive unitary step on the first state and an oscillating
trajectory, generated by simulating the plant in open-loop
with a random signal within the MPC’s control bounds.
The reference signals of the second state for both step
references were calculated using (25).

Even though the reference MPC was designed to follow
only the first-state reference, the error for both states, as
well as the execution time for each topology and observable
library size is reported in tables 1 and 2, split by the type
of reference passed to the controller. In Figs. 4 and 5, the
response of the system w.r.t. the reference is shown for the
original MPC and the highest-observable-count Koopman-
identified controllers.

Table 1. Positive step reference results

Controller x1 error x2 error Exec. time [s]

nlMPC 5.927× 10−2 5.043× 10−1 5.391× 102

lMPC 1.187× 10−1 5.130× 10−1 8.669

Koopman controller

10 obs. 8.060× 10−2 5.014× 10−1 4.278× 10−1

20 obs. 6.803× 10−2 5.046× 10−1 4.312× 10−1

50 obs. 6.327× 10−2 5.038× 10−1 4.357× 10−1

100 obs. 6.299× 10−2 5.039× 10−1 4.603× 10−1

The first thing that can be noticed is the performance
increase in the execution time, decreasing by 3 orders of
magnitude w.r.t. the nonlinear MPC and by one order of
magnitude w.r.t. the Koopman-informed MPC. Moreover,
the average norm of the error stays within the same order
of magnitude, albeit with a noticeably slower step response
(around 5 seconds as shown in Fig.4 in contrast with the

4 In practice, the control bounds were found to be more effectively
implemented as an external saturation. It is important to consider
this external effect when performing the feedback of the control
signal.d
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nonlinear MPC’s transition time of under a second). It
is this very property that allows the Koopman-identified
controller to have a higher measurement noise robustness,
but it is also the responsible for the delayed response to the
oscillating references in Fig.5. Nevertheless, the Koopman-
identified controller succeeds in providing a step response
that is far more stable than the Koopman-informed MPC,
although suffering from the same difference in accuracy for
oscillating references, as shown in Table 2.

Table 2. Oscillating reference results

Controller x1 error x2 error Exec. time [s]

nlMPC 1.532× 10−1 1.840× 10−1 5.101× 102

lMPC 1.937× 10−1 2.399× 10−1 8.292

Koopman controller

10 obs. 4.798× 10−1 3.854× 10−1 4.626× 10−1

20 obs. 6.254× 10−1 5.541× 10−1 4.621× 10−1

50 obs. 6.318× 10−1 5.565× 10−1 4.659× 10−1

100 obs. 6.201× 10−1 5.273× 10−1 6.020× 10−1
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eigenvalues within unitary magnitude 4 . All minimization
problems were solved using the default options for CVX
Research (Grant and Boyd (2014)) in MATLABTM.

Finally, the controllers’ accuracy was numerically com-
pared based on the Time-averaged Root Mean Square
(TRMS) of the error between the reference and the internal
states of the plant over the span of 1×102 s, while following
a positive unitary step on the first state and an oscillating
trajectory, generated by simulating the plant in open-loop
with a random signal within the MPC’s control bounds.
The reference signals of the second state for both step
references were calculated using (25).

Even though the reference MPC was designed to follow
only the first-state reference, the error for both states, as
well as the execution time for each topology and observable
library size is reported in tables 1 and 2, split by the type
of reference passed to the controller. In Figs. 4 and 5, the
response of the system w.r.t. the reference is shown for the
original MPC and the highest-observable-count Koopman-
identified controllers.

Table 1. Positive step reference results

Controller x1 error x2 error Exec. time [s]

nlMPC 5.927× 10−2 5.043× 10−1 5.391× 102

lMPC 1.187× 10−1 5.130× 10−1 8.669

Koopman controller

10 obs. 8.060× 10−2 5.014× 10−1 4.278× 10−1

20 obs. 6.803× 10−2 5.046× 10−1 4.312× 10−1

50 obs. 6.327× 10−2 5.038× 10−1 4.357× 10−1

100 obs. 6.299× 10−2 5.039× 10−1 4.603× 10−1

The first thing that can be noticed is the performance
increase in the execution time, decreasing by 3 orders of
magnitude w.r.t. the nonlinear MPC and by one order of
magnitude w.r.t. the Koopman-informed MPC. Moreover,
the average norm of the error stays within the same order
of magnitude, albeit with a noticeably slower step response
(around 5 seconds as shown in Fig.4 in contrast with the

4 In practice, the control bounds were found to be more effectively
implemented as an external saturation. It is important to consider
this external effect when performing the feedback of the control
signal.d
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nonlinear MPC’s transition time of under a second). It
is this very property that allows the Koopman-identified
controller to have a higher measurement noise robustness,
but it is also the responsible for the delayed response to the
oscillating references in Fig.5. Nevertheless, the Koopman-
identified controller succeeds in providing a step response
that is far more stable than the Koopman-informed MPC,
although suffering from the same difference in accuracy for
oscillating references, as shown in Table 2.

Table 2. Oscillating reference results

Controller x1 error x2 error Exec. time [s]

nlMPC 1.532× 10−1 1.840× 10−1 5.101× 102

lMPC 1.937× 10−1 2.399× 10−1 8.292

Koopman controller

10 obs. 4.798× 10−1 3.854× 10−1 4.626× 10−1

20 obs. 6.254× 10−1 5.541× 10−1 4.621× 10−1

50 obs. 6.318× 10−1 5.565× 10−1 4.659× 10−1

100 obs. 6.201× 10−1 5.273× 10−1 6.020× 10−1
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Regarding the amount of observables, even though the
higher-observable-count as-state controllers require some
degree of regularization, the consistently increasing accu-
racy when augmenting the observable count is coherent
with the Koopman theory of the exact dynamics’ replica-
tion when approaching infinite observables. Nevertheless,
the increase in performance is nonlinear, yielding a nearly
identical response between the ng = 50 and ng = 100 as
opposed to the jump in performance between ng = 10 and
ng = 50. Notice also that the accuracy of the controller
reduces when using ng = 20, meaning that a library-size
independence study should be performed before settling
on a value for ng.

6. CONCLUSIONS

As originally stated, the proposed scheme is able to suc-
cessfully identify and replicate the dynamics of both an
Extended Kalman Filter and a nonlinear MPC exclusively
from simulation data. Furthermore, considering that the
proposed observable structure does not depend on the
internal model of the reference control scheme, but instead
on statistical data extracted from the snapshots them-
selves, the technique described in this paper is proven
to be model-agnostic and can be used to control any
other nonlinear system, provided a pre-existing correctly
calibrated EKF-MPC controller is available offline.

The main benefit from the Koopman-identified controller
is, as stated from the beginning, the relatively low de-
mand for resources of its online implementation, since
the operations being performed per sample are limited
to linear algebra and the observation procedure. As per
memory, only a single sample has to be stored in order to
apply the aforementioned operations. All of this makes it
significantly cheaper to implement when compared to the
original controller it is replicating.

It was observed that the control law is not perfectly repli-
cated, yielding a slower response which can be explained
through the limitations imposed for the eigenvalues. Also
the generality of the observable library becomes a weak
point as a large amount of functions (when compared to
the original 2-state system) has to be used in order to
approximate the controller dynamics. Moreover, since the
proposed technique is fully data-driven, the entire pipeline
depends on a correctly implemented reference controller
(with sufficient knowledge of the internal dynamics of the
plant). Lastly, in its current state the controller cannot
be re-calibrated without having to perform another set of
measurements on a new reference control loop. This lack
of re-calibration capabilities also implies that there is no
direct way of modifying the response time or over-shoot
margin of the controller, so we are limited to modify-
ing its properties during the training phase through the
regularization parameter and library size. Nevertheless,
some of these problems could be solved by using spectral
analysis techniques, which further motivates the study of
this approach.
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