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Recent evidence highlights the usefulness of DNA methylation (DNAm)
biomarkers as surrogates for exposure to risk factors for noncommunicable
diseases in epidemiological studies and randomized trials. DNAm variability
has been demonstrated to be tightly related to lifestyle behavior and expo-
sure to environmental risk factors, ultimately providing an unbiased proxy of
an individual state of health. At present, the creation of DNAm surrogates
relies on univariate penalized regression models, with elastic-net regularizer
being the gold standard when accomplishing the task. Nonetheless, more ad-
vanced modeling procedures are required in the presence of multivariate out-
comes with a structured dependence pattern among the study samples. In this
work we propose a general framework for mixed-effects multitask learning
in presence of high-dimensional predictors to develop a multivariate DNAm
biomarker from a multicenter study. A penalized estimation scheme, based
on an expectation-maximization algorithm, is devised in which any penalty
criteria for fixed-effects models can be conveniently incorporated in the fit-
ting process. We apply the proposed methodology to create novel DNAm
surrogate biomarkers for multiple correlated risk factors for cardiovascular
diseases and comorbidities. We show that the proposed approach, modeling
multiple outcomes together, outperforms state-of-the-art alternatives both in
predictive power and biomolecular interpretation of the results.

1. Introduction. DNA methylation (DNAm) is an epigenetic process that regulates gene
expression, typically occurring in cytosine within CpG sites (CpGs) in the DNA sequence
(Singal and Ginder (1999)). DNAm regulates gene expression in different manners. Specifi-
cally, high DNAm has been observed in bodies of highly transcribed genes, whereas DNAm
in gene promoters and first introns typically have an inverse correlation with gene expression
(Anastasiadi, Esteve-Codina and Piferrer (2018), Rauluseviciute, Drabløs and Rye (2020)).
Also, recent studies suggest that the relationship between genetic variation, DNAm and gene
expression is complex and tissue-specific, highlighting that DNAm in non-CpG island re-
gions regulates the transcription of distal genes (van Eijk et al. (2012)). Advanced technol-
ogy allows measuring whole-genome DNAm for many samples at the same time. The most
common ways for DNAm measurements consist of whole-genome bisulphite sequencing
and DNAm microarray. The first commercial high-density microarray measuring genome-
wide methylation was the HumanMethylation27 (27K CpGs) released by Illumina in 2009,
followed by the HumanMethylation450 (450K CpGs) and, more recently, by the Illumi-
naMethylation850 (850K CpGs, Campagna et al. (2021)). Since then, a tremendous amount
of associations between DNAm at individual CpG sites and different exposures, traits and
diseases have been identified in the so-called epigenome-wide association studies (EWAS,
Battram et al. (2022)). Concurrently, the development of surrogate scores, based on blood
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DNA methylation, has also received thriving attention in recent years: impressive epidemi-
ological evidence has been established between DNAm and individual history of exposure
to lifestyle and environmental risk factors (Zhong, Agha and Baccarelli (2016), Guida et al.
(2015), Fiorito et al. (2018)). To this extent, multi-CpG DNAm biomarkers have been devised
to predict patient-specific state of health indicators; and relevant examples include epigenetic
clocks to measure “biological age” (Lu et al. (2019)), smoking habits (Guida et al. (2015))
and proxies for inflammatory proteins (Stevenson et al. (2020)). Remarkably, DNAm based
scores have been demonstrated to outperform surveyed exposure measurements when pre-
dicting diseases (Zhang et al. (2016), Conole et al. (2020)). A possible explanation for this
somewhat counter-intuitive behavior being that DNA methylation intrinsically accounts for
biases in self-reported exposure (e.g., underestimation of smoked cigarettes) as well as in-
dividual responses to risk factors (e.g., the same amount of tobacco may produce different
effects in dissimilar patients).

From a modeling perspective, state-of-the-art methods for DNAm biomarkers creation
generally rely on standard univariate penalized regression models, with elastic-net (Zou and
Hastie (2005)) being the routinely employed technique when accomplishing the task. Indeed,
the associated learning problem entirely falls within the “p bigger than N” framework: DNA
methylation levels are measured at approximately a half million CpG sites for each sam-
ple, with the dimension of the latter generally not exceeding the order of thousands in most
studies. The afore-described procedure is shown to be widely effective in building DNAm
biomarkers, with very recent contributions, including surrogate scores for short-term risk of
cardiovascular events (Cappozzo et al. (2022)), cumulative lead exposure (Colicino et al.
(2021)), DNAm surrogate for alcohol consumption, obesity indexes and blood measured in-
flammatory proteins (Hillary and Marioni (2020)), and the identification of CpG sites associ-
ated with clinical severity of COVID-19 disease (Castro de Moura et al. (2021)). Nonetheless,
elastic-net penalties may be too restrictive when dealing with complex learning problems in-
volving multivariate responses and distinctive dependence patterns across statistical units.

The afore-said first layer of complexity is encountered when a multidimensional DNAm
biomarker needs to be created to jointly model multiple risk factors and to coherently ac-
count for the correlation structure among the response variables. Such a multivariate prob-
lem, also known as multitask regression in the machine learning literature (Caruana (1997)),
can be fruitfully untangled only if dedicated care is devoted in choosing the most appropriate
penalty required for the analysis. For instance, one may opt for the incorporation of ℓ1/ℓ2
type of regularizers (Obozinski, Taskar and Jordan (2010), Obozinski, Wainwright and Jor-
dan (2009), Li, Nan and Zhu (2015)) that extend the lasso (Tibshirani (1996)), group-lasso
(Yuan and Lin (2006)) and sparse group-lasso (Laria, Carmen Aguilera-Morillo and Lillo
(2019), Simon et al. (2013)) to the multiple response framework. Another option could con-
template the inclusion, within the estimation procedure, of prior information related to the
association structure among CpG sites: this is effectively achieved by means of graph-based
penalties (Li and Li (2010), Kim, Pan and Shen (2013), Cheng et al. (2014), Dirmeier et al.
(2018)). Furthermore, tree-based regularization methods have also been recently introduced
in the literature to account for hierarchical structure over the responses in a single study (Kim
and Xing (2012)) as well as when multiple data sources are at our disposal (Zhao and Zuck-
nick (2020), Zhao et al. (2022)). For a thorough and up-to-date survey on the analysis of
high-dimensional omics data via structured regularization, we refer the interested reader to
Vinga (2021), while the monograph of Hastie, Tibshirani and Wainwright (2015) provides a
general introduction to statistical learning with sparsity.

A second layer of complexity is introduced when DNA samples and related blood mea-
sured biomarkers are collected in a study comprising multiple cohorts. In such a situation,
an unknown degree of heterogeneity may be included in the data, with patients coming from
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the same cohort sharing some degree of commonality. Observations in the dataset are thus no
longer independent, and the cohortwise covariance structure needs to be properly estimated.
Linear mixed-effects models (LMM) provide a convenient solution to this problem by adding
a random component to the model specification (see, e.g., Pinheiro and Bates (2006), Gałecki
and Burzykowski (2013), Demidenko (2013), for an introduction on the topic). While being
able to capture unobserved heterogeneity, standard mixed models, very much like their fixed
counterpart, cannot directly handle situations in which the number of predictors exceeds the
sample size. In order to overcome this issue Schelldorfer, Bühlmann and van de Geer (2011)
introduced a procedure for estimating high-dimensional LMM via an ℓ1-penalization. More
recently, Rohart, San Cristobal and Laurent (2014) devised a general-purpose ECM algorithm
(Meng and Rubin (1993)) for solving the same issue but achieving greater flexibility, as the
proposed framework can be combined with any penalty structure previously developed for
linear fixed-effects models.

A multivariate mixed-effects model (MLMM) is an LMM in which multiple characteris-
tics (response variables) are measured for the statistical units comprising the study. Despite
being quite a long-established methodology (Reinsel (1984), Shah, Laird and Schoenfeld
(1997)), its further development has not received much attention in the recent literature. Rel-
evant exceptions include the computational strategies for handling missing values, proposed
in Schafer and Yucel (2002), and the estimation theory based on hierarchical likelihood de-
veloped in Chipperfield and Steel (2012). On this account and to the best of our knowledge,
a unified approach for penalized MLMM estimation is still missing in the literature, and it
could thus be a relevant contribution to the statistics and machine learning fields.

Motivated by the problem of creating a DNAm biomarker for hypertension and hyper-
lipidemia from a multicenter study, we propose in this article a general framework for high-
dimensional multitask learning with random effects. Leveraging from the algorithm intro-
duced in Rohart, San Cristobal and Laurent (2014) for the univariate response case, the esti-
mation mechanism is effectively constructed to accommodate custom penalty types, building
upon existing routines developed for regression with fixed-effects only.

The remainder of the paper is structured as follows. Section 2 describes the EPIC Italy
dataset, which gave the motivation for the development of the methodology proposed in this
manuscript. In Section 3 we introduce the penalized mixed-effects model for multitask learn-
ing, covering its formulation, inference and model selection. Section 4 presents a simulation
study on synthetic data for three different scenarios. Section 5 outlines the results of the
novel method applied to the EPIC Italy data for creating DNAm surrogates for cardiovascu-
lar risk factors and comorbidities, comparing it with state-of-the-art alternatives. Section 6
concludes the paper with a discussion and directions for future research. The R package
emlmm implementing the proposed method accompanies the article, and it is freely available
at https://github.com/AndreaCappozzo/emlmm.

2. EPIC Italy data and study design. The considered dataset belongs to the Italian
branch of the European Prospective Investigation into Cancer and Nutrition (EPIC) study,
one of the largest cohort study in the world, with participants recruited across 10 European
countries and followed for almost 15 years (Riboli et al. (2002)). For each participant lifestyle
and personal history questionnaires were recorded, together with anthropomorphic measures
and blood samples for DNA extraction. The EPIC Italy dataset is comprised of geographical
subcohorts identified by the center of recruitment; particularly, we will consider the provinces
of Ragusa and Varese and the cities of Turin and Naples. The latter center became associated
with EPIC in later times through the Progetto ATENA study (Panico et al. (1992)). DNAm
was measured with the HumanMethylation450 array, following standard laboratory proce-
dures (see Fiorito et al. (2022), for a detailed description), while the preprocessing included
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removing CpG sites and samples with a call rate lower than 95%, BMIQ method for reducing
technical variability and bias introduced by type II probes and ComBat technique for batch
effect adjustment (Marabita et al. (2013)).

By profiting from the information recorded in the aforementioned subcohorts, we aim at
creating a multidimensional DNAm biomarker for cardiovascular risk factors and comor-
bidities. To this extent, we consider a multivariate response comprised of r = 5 measures,
namely, diastolic blood pressure (DBP), systolic blood pressure (SBP), high-density lipopro-
tein (HDL), low-density lipoprotein (LDL) and triglycerides (TG). These characteristics are
chosen as they represent the major risk factors for cardiovascular diseases (Wu et al. (2015)).
In building a DNAm biomarker, the response variables are regressed on DNA methylation
values for each CpG site, adjusted for sex and age. A total of N = 574 individuals in the
J = 4 cohorts showcase nonmissing values for every response variable: they comprise the
sample onto which all subsequent analyses will be performed. To reconstruct the process of
DNAm surrogates creation and validation, the EPIC Italy data is randomly split into two sets:
70% (Ntr = 401) of it is employed for preprocessing and model fitting, while the remaining
30% (Nte = 173) acts as test set for assessing prediction accuracy. In addition, we will con-
sider samples from the EXPOsOMICS project (Fiorito et al. (2018)) as an external validation
dataset to assess out of groups predictive performance. In details EXPOsOMICS is a case-
control study on cardiovascular diseases (CVDs) nested in the EPIC Italy cohort, composed
by 276 volunteers (not overlapping with the main dataset), whose center of recruitment is
unknown or different from the J = 4 observed in the learning phase.

Coming back to the data analysis pipeline, an epigenome-wide association study (EWAS,
Campagna et al. (2021)) is performed on the training set as a pre-screening procedure. In
details log-transformed DBP, SBP, HDL, LDL and TG are separately regressed on each
available CpG site, adjusting for sex and age. P-values are then collected and arranged in
increasing order. We then screen the set of predictors retaining, for each dimension of the
multivariate response, the CpG sites whose p-values are smaller than the fifth percentile of
the resulting empirical distributions. The final set of covariates for the multitask learning
problem is achieved by taking the union of the resulting CpG sites separately preserved for
DBP, SBP, HDL, LDL and TG. In so doing, out of the whole initial set of 295,614 CpG sites,
62,128 DNA methylation features are retained for subsequent modeling. Together with sex
and age, this amounts to a total of p = 62,130 predictors and a five-dimensional response
for a training sample size of Ntr = 401. While variable screening in ultra-high feature space
is itself an ongoing research field (see, e.g., Fan and Lv (2008), Zhong, Wang and Chen
(2021), Fan, Samworth and Wu (2009), and references therein), we decided to rely on the
EWAS technique, as it is the standard approach employed in epigenomics (Fazzari and Gre-
ally (2010)).

As previously mentioned, the considered training samples belong to four different centers
distributed across Italy, with data for 91, 234, 44 and 32 volunteers, respectively, collected
in Turin, Varese, Ragusa and Naples provinces. The boxplots in Figure 1 emphasize the dif-
ferences in the five response variables by center. To capture the centerwise variability and
to maintain generalizability of the devised DNAm biomarker outside the Italy EPIC cohorts,
a partial pooling random-intercept model shall be adopted. That is, a q = 1 random-effect
component is included in the model specification. Furthermore, the biomarkers comprising
the response vector showcase some degree of relations, as displayed by the sample corre-
lation matrix of Figure 2, so much so that it is sensible to regress them jointly to take ad-
vantage of their association structure in the model formulation. This challenging learning
task requires an ad hoc specification for a multivariate mixed-effects framework applicable
to high-dimensional predictors.
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FIG. 1. Boxplots of logtransformed diastolic blood pressure (DBP), highdensity lipoprotein (HDL), lowden

sity lipoprotein (LDL), systolic blood pressure (SBP) and triglycerides (TG) for different Center, Italy EPIC train

ing dataset.

3. Penalized mixed-effects model for multitask learning. In this section a novel ap-
proach for multivariate mixed-effects modeling based on penalized estimation is proposed.

3.1. Model definition. The multivariate linear mixed-effects model (Shah, Laird and
Schoenfeld (1997)) expresses the nj × r response matrix Y j for the j th group as

(1) Y j = XjB + Zj3j + Ej ,

where, for each of the nj samples in group j and
∑J

j=1 nj = N , r response variables have
been measured. The remainder terms define the following quantities:

• B is the p × r matrix of fixed-effects (including the intercept).
• 3j is the q × r matrix of random-effects.

FIG. 2. Sample correlation matrix of logtransformed diastolic blood pressure (DBP), highdensity lipoprotein

(HDL), lowdensity lipoprotein (LDL), systolic blood pressure (SBP) and triglycerides (TG), Italy EPIC training

dataset.
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• Xj is the nj × p fixed-effects design matrix.
• Zj is the nj × q random-effects design matrix.
• Ej is the nj × r within-group error matrix.
• j = 1, . . . , J , with J total number of groups.

By employing the vec operator, we assume that

vec(3j ) ∼ N (0,9),

where 9 is a qr × qr positive semidefinite matrix, incorporating variations and covariations
between the r responses and the q random-effects. We further assume that the error term is
distributed as follows:

(2) vec(Ej ) ∼ N (0,6 ⊗ Inj
),

where 6 is a r × r covariance matrix, capturing dependence among responses, and Inj
is

the identity matrix of dimension nj ×nj . Formulation in (2) explicitly induces independence
between the row vectors of Ej . Therefore, the entire model can be rewritten in vec form,

vec(Y j ) ∼ N
(

(I r ⊗ Xj )vec(B), (I r ⊗ Zj )9(I r ⊗ Zj )
′ + 6 ⊗ Inj

)

.

Given a sample of N =
∑J

j=1 nj , the log-likelihood of model (1) reads

ℓ(θ) =

J
∑

j=1

−
nj

2
log 2π −

1

2
log

∣

∣(I r ⊗ Zj )9(I r ⊗ Zj )
′ + 6 ⊗ Inj

∣

∣

−
1

2

(

vec(Y j ) − (I r ⊗ Xj )vec(B)
)′(

(I r ⊗ Zj )9(I r ⊗ Zj )
′ + 6 ⊗ Inj

)−1

×
(

vec(Y j ) − (I r ⊗ Xj )vec(B)
)

,

(3)

where θ = {B,6,9} is the set of parameters to be estimated. When the framework outlined
in (1) is employed for DNAm biomarker creation, the number of regressors p is, most cer-
tainly, much larger than the sample size N . We are thus not directly interested in maximizing
(3) but rather a penalized version of it, generically defined as follows:

(4) ℓpen(θ) = ℓ(θ) − p(B;λ),

with p(B;λ) being a penalty term employed to regularize the fixed-effects B as a function
of the complexity parameter λ ≥ 0. Notice that, depending on the chosen penalty, more than
one complexity parameter could be involved in the definition of p(B;λ) (see Section 3.3 for
further details).

A general-purpose algorithm for maximizing (4) can be devised, as described in the next
subsection.

3.2. Model estimation. Direct maximization of (4) is unfeasible, as the terms vec(3j ),
j = 1, . . . , J are unknown. We, therefore, devise an EM algorithm (Dempster, Laird and
Rubin (1977)) in which the E-step computes the conditional expectations for the unobserved
quantities, while a complete penalized log-likelihood is maximized in the M-step.

3.2.1. Estep. The E-step requires the computation of E(vec(3j )|Y j ; θ) and
E(vec(3j )vec(3j )

′|Y j ; θ). This is achieved by noticing that the conditional density
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p(vec(3j )|Y j ; θ) is Normal. Updating formulae for the quantities of interest are thus de-
rived as follows:

Ŵ̂j = V
(

vec(3i)|Y j ; θ
)

=
[

(I r ⊗ Zj )
′(6 ⊗ Inj

)−1(I r ⊗ Zj ) + 9
−1]−1

,(5)

̂vec(3j ) = E
(

vec(3j )|Y j ; θ
)

= Ŵ̂j (I r ⊗ Zj )
′(6 ⊗ Inj

)−1(

vec(Y j ) − (I r ⊗ Xj )vec(B)
)

.
(6)

Consequently, the second moment R̂j = E(vec(3j )vec(3j )
′|Y j ; θ) reads

(7) R̂j = Ŵ̂j + ̂vec(3j ) ̂vec(3j )
′
.

At the t th iteration of the EM algorithm, the E-step requires the computation of (5)–(7),
conditioning on the parameter values, estimated at iteration t − 1. Notice that we can directly
define the conditional density of Y j |3j by means of the matrix normal distribution

(8) Y j |3j ∼ mN (XjB + Zj3j , Inj
,6),

where XjB + Zj3j is the nj × r mean matrix, and Inj
, 6, respectively, identify the row

and column covariance matrices (Dawid (1981)). Such a representation will be useful in
specifying the update for B in the devised M-step: details are provided in the next subsection.

3.2.2. Mstep. In the M-step we maximize the complete penalized log-likelihood,

ℓCpen(θ) =

J
∑

j=1

log
(

p
(

vec(Y j )|vec(3j );B,6
))

+ log
(

p
(

vec(3j );9
))

− p(B;λ)

=

J
∑

j=1

−
nj

2
log(2π) −

1

2
log |6 ⊗ Inj

| −
1

2
E

(

e
′
j (6 ⊗ Inj

)−1
ej |Y j , θ

)

(9)

−
nj

2
log(2π) −

1

2
log |9| −

1

2
E

(

vec(3j )
′
9

−1 vec(3j )|Y j , θ
)

− p(B;λ),

where ej = vec(Y j ) − (I r ⊗ Xj )vec(B) − (I r ⊗ Zj )vec(3j ) and the maximization is per-
formed with respect to θ = {B,6,9}.

The updating formula for B clearly depends on the considered p(B;λ) penalty. All the
same, it is convenient to work with the matrix-variate representation defined in (8). In so
doing, the objective function to be maximized wrt B reads

(10) QB(B) = −
1

2

J
∑

j=1

tr
(

6
−1(Ỹ j − XjB)′(Ỹ j − XjB)

)

− p(B;λ),

where Ỹ j = Y j −Zj 3̂j . 3̂j is recovered by applying the inverse of the vectorization operator

to ̂vec(3j ), previously computed in the E-step. Simply put, the ̂vec(3j ) vector of length qr

is rearranged in a q × r matrix, obtaining 3̂j . Start by noticing that, when no penalty is
considered, maximization of (10) agrees with the generalized least squares (GLS) estimator
assuming 6 and 9 known (Shah, Laird and Schoenfeld (1997)). By exploiting properties of
the trace operator, we can rewrite (10) defining the following minimization problem:

(11) minimizeB∈Rp×r

1

2

J
∑

j=1

∥

∥6
−1/2(Ỹ j − XjB)′

∥

∥

2
F + p(B;λ),
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where ‖ · ‖2
F denotes the squared Frobenius norm and 6

−1/2 is the symmetric positive def-
inite square root of 6

−1 such that 6
−1 = 6

−1/2
6

−1/2. The representation in (11) allows to
employ standard routines for multivariate penalized fixed-effects models for estimating B . In
details for solving (11), a two-step updating scheme is devised. First, we compute

(12) B̃ = arg min
B

1

2

J
∑

j=1

∥

∥6
−1/2

Ỹ j − XjB
∥

∥

2
F + p(B;λ),

that is, a fixed-effects penalized regression problem in which the response variable is
6

−1/2
Ỹ j , j = 1, . . . , J ; B̃ is thus easily retrieved via fixed-effects routines for penalized

estimation. Second, the solution to (11) is obtained postmultiplying B̃ by 6
1/2. Therefore, at

each iteration of the EM-algorithm we first compute B̃ , and then we set

(13) B̂ = B̃6
1/2,

where B̂ maximizes (10). This procedure stems from the rationale outlined, in Rohart, San
Cristobal and Laurent (2014), where, contrarily to their original solution, in our context the
updating steps are made more complex by the multidimensional nature of Y . The devised
updating scheme allows to easily incorporate any p(B;λ) that has been previously defined
for the fixed-effects framework and whose estimating routines are available. A list of possible
penalties is proposed in Section 3.3.

Updating formulae for the covariance matrices 9 and 6 agree with those of the unpenal-
ized setting, namely,

(14) 9̂ =
1

J

J
∑

j=1

R̂j ,

and for the (h, k)th element of matrix 6

6̂(h,k) =
1

N

J
∑

j=1

[

E(Ejh|Y j )
′
E(Ejk|Y j )

]

+ tr
[

cov(Ejh,Ejk|Y j )
]

, h, k = 1, . . . , r,

(15)

where Ejh denotes the hth column of matrix Ej = Y j − Zj 3̂j − XjB , h = 1, . . . , r .

3.3. Definition of p(B;λ). The EM algorithm devised in the previous section defines a
general-purpose optimization strategy for penalized mixed-effects multitask learning. While
any penalty type can, in principle, be defined, three notable examples, commonly used in
this context, are the elastic net penalty (Zou and Hastie (2005)), the multivariate group-lasso
penalty (Obozinski, Wainwright and Jordan (2011b)) and the netReg routines for Network-
regularized linear models (Dirmeier et al. (2018)). Each of them is briefly described in the
next subsections.

3.3.1. Elasticnet penalty. The first penalty type we consider is the renowned convex
combination of lasso and ridge regularizers, whose magnitude of the former over the latter is
controlled by the mixing parameter α, 0 ≤ α ≤ 1. In details the penalty expression reads

(16) p(B;λ,α) = λ

[

(1 − α)

r
∑

c=1

p
∑

l=2

b2
lc + α

r
∑

c=1

p
∑

l=2

|blc|

]

,

where blc denotes the element in the lth row and cth column of matrix B . Notice that the
first row of B contains the r intercepts, and it is thus not penalized. Algorithmically, penalty
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(16) can be enforced employing standard and widely available routines for univariate penal-
ized estimation, like the glmnet software (Tay, Narasimhan and Hastie (2021)). The only
computational detail that shall be examined is how to prevent the default shrinkage of the r

intercepts: the penalty.factor argument of the glmnet function effectively serves the
purpose. The latter can also be employed in our framework to force coefficients that need not
be penalized to enter the model specification.

3.3.2. Multivariate grouplasso penalty. This type of penalty imposes a group structure
on the coefficients, forcing the same subset of predictors to be preserved across all r compo-
nents of the response matrix. This feature is particularly desirable when building multivariate
DNAm biomarkers, since it automatically identifies the CpG sites that are jointly related to
the considered risk factors. Such a penalty is defined as follows:

(17) p(B;λ,α) = λ

[

(1 − α)

r
∑

c=1

p
∑

l=2

b2
lc + α

p
∑

l=2

‖bl.‖2

]

,

where bl. identifies the lth row of the matrix B such that each bl., l = 2, . . . , p is an r-
dimensional vector. Likewise, Section 3.3.1 summations over rows in (17) start at 2 since
we do not penalize the vector of intercepts. This penalty behaves like the lasso but on the
whole group of predictors for each of the r variables: they are either all zero, or else none are
zero, but are shrunk by an amount depending on λ. Similarly to (16), the mixing parameter α

controls the weight associated to ridge and group-lasso regularizers. The glmnet software,
with family = “mgaussian” is again at our disposal for efficiently incorporating (17)
in the framework outlined in the present paper.

3.3.3. Networkregularized penalty. The last penalty we consider allows for the inclusion
of biological graph-prior knowledge in the estimation by accounting for the contribution
of two nonnegative adjacency matrices, GX ∈ R

(p−1)×(p−1)
+ and GY ∈ R

r×r
+ , respectively,

related to X and Y . In this case, p(B;λ) assumes the following functional form:

p(B;λ,λX, λY ) = λ‖B0‖1 + λX tr
(

B
′
0(DGX

− GX)B0
)

+ λY tr
(

B0(DGY
− GY )B ′

0
)

,
(18)

where B0 is the (p − 1) × r matrix of coefficients without the intercepts and DGX
, DGY

indicate the degree matrices of GX and GY , respectively (Chung and Graham (1997)). GX

and GY encode a biological similarity, forcing rows and columns of B0 to be similar. The
netReg R package (Dirmeier et al. (2018)) provides a convenient implementation of (18).

3.3.4. On the choice of p(B;λ). Leaving the flexibility attained by the methodology
proposed in Section 3.1 aside, in practice, a functional form for p(B;λ) must be chosen when
performing the analysis. Hereafter, we highlight pros and cons of the proposed approaches
with respect to a mixed-effects multitask learning setting.

The elastic-net penalty in (16) does not take into account the multivariate nature of the
problem in (4), as the shrinkage is applied directly to vec(B). This behavior allows for cap-
turing a wide variety of sparsity patterns that may be present in B but does not impose any
specific structure that could be desirable in a multivariate context. Differently, the multi-
variate group-lasso of Section 3.3.2 defines a shrinkage term that forces the same subset
of predictors to be preserved across all r components of the response Y . This can be seen
as the generalization of the variable selection problem to the multivariate response setting,
which is also known as support union problem or row selection problem in the literature
(Obozinski, Wainwright and Jordan (2011b)). Lastly, the network-Regularized penalty in
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3.3.3 is particularly useful when the interaction among features and/or responses is, at least
partially, known such that it can be profited from within the learning mechanism (Cheng et al.
(2014)).

In relation to the DNAm surrogate creation task motivating our methodological proposal,
the multivariate group-lasso is definitely the most appropriate penalty, as it not only show-
cases better prediction performances but it is also supported by biological reasons: a thorough
analysis for the EPIC dataset is reported in Section 5.

3.4. Further aspects. Hereafter, we discuss some practical considerations related to the
presented methodology:

• Initialization: We start the algorithm with an M-step, setting θ̂
(0)

= {B̂
(0)

, 6̂
(0)

, 9̂
(0)

}. In

details, both 6̂
(0)

and 9̂
(0)

are initialized with identity matrices of dimension r × r and

qr × qr , respectively, while B̂
(0)

is estimated from a penalized linear model (without the
random-effects) employing the chosen penalty function with the associated hyperparame-
ters.

• Convergence: The EM algorithm is considered to have converged once the relative differ-
ence in the objective function for two subsequent iterations is smaller than ε, for a given
ε > 0,

|ℓpen(θ̂
(t+1)

) − ℓpen(θ̂
(t)

)|

|ℓpen(θ̂
(t)

)|
< ε,

where θ̂
(t)

= {B̂
(t)

, 6̂
(t)

, 9̂
(t)

} is the set of estimated values at the end of the t th iteration.
In our analyses ε is set equal to 10−6. The procedure described in Section 3.2 falls within
the class of expectation conditional maximization (ECM) algorithms, whose convergence
properties have been proved in Meng and Rubin (1993) and in Section 5.2.3 of McLachlan
and Krishnan (2008).

• Model selection: A standard 10-fold cross validation (CV) strategy is employed for select-
ing the tuning factors. Alternatively, as suggested in Rohart, San Cristobal and Laurent
(2014), one could employ a modified version of the Bayesian Information Criterion (BIC,
Schwarz (1978)),

(19) BIC = 2ℓ(θ̂) − d0 log(N),

where ℓ(θ̂) is the log-likelihood evaluated at θ̂ , obtained maximizing (4), and d0 is the
number of nonzero parameters resulting from the penalized estimation. Another option
would be to rely on an interval search algorithm, like the efficient parameter selection via
global optimization (Frohlich and Zell (2005)): an implementation is available in the c060
R package (Sill et al. (2014)).

• Scalability: The devised methodology provides a framework for incorporating any penalty
in a high-dimensional mixed-effects multitask learning framework. To this extent, the data
dimensionality with which our procedure can cope as well as the overall computing time
very much depends on the scalability and efficiency associated to the chosen shrinkage
term. Typically nevertheless, penalized likelihood approaches fail to be directly applied
to ultrahigh-dimensional problems (Fan, Samworth and Wu (2009)), and preprocessing
procedures, such as variable screening, are thus required prior to modeling. The epigenetic
application that motivated our work naturally called for an EWAS prescreening strategy
(see Section 2), but clearly other dimensionality reduction techniques could be considered
when dealing with massive datasets. The interested reader is referred to Jordan (2013) for
a thought-provoking investigation on the topic.

AOAS imspdf v.2023/03/28 F:aoas1760.tex; (Ingrida) p. 10



PENALIZED MIXED-EFFECTS MULTITASK LEARNING 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

• Implementation: Routines for fitting the penalized mixed-effects multitask learning method
have been implemented in R (R Core Team (2022)), and the source code is freely avail-
able in the Supplementary Material and at https://github.com/AndreaCappozzo/emlmm
in the form of an R package. The three penalties, described in Section 3.3, are in-
cluded in the software and can be selected via the penalty_type argument of the
ecm_mlmm_penalized function. As described in Section 3.3, the M-step heavily re-
lies on previously developed fast and stable subroutines, while the E-step and the objective
function evaluation have been implemented in c++ to reduce the overall computing time.

• Response-specific random-effects: Model in (1) assumes that each and every response re-
quires a random-effects component. While in principle reasonable, it may happen in spe-
cific applications that only a subset of the r characteristics in Y enjoys group-dependent
heterogeneity. The occurrence of such a scenario can be unveiled by looking at the r diago-
nal elements of dimension q in 9̂: a response may be considered group-independent when
the magnitude of the associated elements in diag(9̂) is significantly lower than the remain-
ing ones. Doing this way, the impact random-effects have on the different characteristics
is retrieved as a by-product of the modeling procedure.

4. Simulation study. In this section we evaluate the model introduced in Section 3 on
synthetic data. The aim of the analyses reported hereafter is twofold. On the one hand, we
would like to validate the predictive power of the proposed procedure against its fixed-effects
counterpart when the random-effects vary across dimensions in the multivariate response. On
the other hand, we assess the estimated model parameters and the recovery of the underlying
sparsity structure for different values of the shrinkage factor λ.

4.1. Experimental setup. We generate N = 600 data points according to model (1) with
the following parameters:

9 =















50.00 −1.59 −0.60 −0.22 2.38
−1.59 40.00 −0.96 −0.91 0.37
−0.60 −0.96 30.00 −0.43 0.50
−0.22 −0.91 −0.43 20.00 0.80
2.38 0.37 0.50 0.80 0.16















,

6 =















2.16 0.09 −0.80 0.91 −0.26
0.09 2.16 −0.33 0.55 −0.10

−0.80 −0.33 2.16 −0.03 −0.13
0.91 0.55 −0.03 2.16 0.02

−0.26 −0.10 −0.13 0.02 2.16















,

implying that r = 5 and q = 1. Notice that 9 is purposely constructed for the random-effects
to differently affect the five dimensional response: while the first component showcases high
variance (first entry in the main diagonal), the last one is very small and close to 0. Further,
the error variances (diagonal elements of 6) are held constant across dimensions to better
highlight the impact the variability of the random-effects has on the models performance. The
data-generating process assumes 10 equally-sized subpopulations, resulting in J = 10. The
matrix of fixed-effects B is of dimension 10,001 × 5, with distinct sparsity pattern according
to three scenarios:

• B rowwise sparse: B has entries equal to 0.5 for the first 100 rows, while all the other
entries are equal to 0.

• B sparse at random: B is equal to 0.5 for approximately 70% of its entries, while all the
others are equal to 0.
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• B with dependence structure: B has entries whose magnitude agrees with the correlation
structure between the covariates, inducing coefficients to be similar when the absolute
correlation between two predictors is high.

Lastly, Zj is an all-one column vector ∀j = 1, . . . ,10, while Xj has the first column equal
to 1, meaning that the intercept is included in Xj in our model specification. The remain-
ing 10,000 dimensions are generated according to a normal random vector with independent
marginals for the B rowwise sparse and B sparse at random scenarios, while the cor-

mat_from_triangle function from the faux package (DeBruine (2021)) has been used
to simulate correlated predictors in the B with dependence structure experiment.

Taking a cue from the Monte Carlo simulations of Li and Li (2010), for each replication
of our experiment the learning framework is structured as follows: we equally divide the
N = 600 units in a training set, an independent validation set and an independent test set,
retrieving a sample size of 200 for each. Notice that, as to mimic the process of DNAm
surrogates creation, the total number of variables (p = 10,001) is much larger than the sample
size. Seven different models, varying λ within a grid, are fitted on the training data:

• Univariate elastic-net fixed-effects: Univariate elastic-net regression, obtained fitting inde-
pendent models to each dimension of the multivariate response.

• Elastic-net fixed-effects: A penalized multitask learning model with elastic-net regulariza-
tion. The considered penalty is described in Section 3.3.1.

• Group-lasso fixed-effects: A penalized multitask learning model with multivariate group-
lasso regularization. The considered penalty is described in Section 3.3.2

• Network-regularized fixed-effects: Graph-regularized multitask learning model with edge-
based regularization. The considered penalty is described in Section 3.3.3.

• Elastic-net random-effects: The penalized MLMM methodology introduced in the paper
with elastic-net regularization (Section 3.3.1).

• Group-lasso random-effects: The penalized MLMM methodology introduced in the paper
with group-lasso regularization (Section 3.3.2).

• Network-regularized random-effects: The penalized MLMM methodology introduced in
the paper with edge-based regularization (Section 3.3.3).

Such an extensive comparison can be regarded as performing a within-scenario ablation study
in which we start from a complex method, and we subsequently remove the random-effects
component and, finally, the borrow strength property of multivariate regression to be left with
univariate elastic-net fixed-effects models. In this way we investigate the contribution of our
proposal to the overall system. The mixing parameter α was set equal to 0.5 for methods
with elastic-net and group-lasso regularizers, while for the network-regularized penalty we
employ five-fold CV to tune λX and λY on the training set. For the latter penalty, the adja-
cency matrices GX and GY are computed via a thresholding procedure on the correlation
matrices of X and Y , respectively, with a threshold equal to 0.1 (Langfelder and Horvath
(2008)). Subsequently, the validation dataset is used to select the best shrinkage parameter λ

minimizing the RMSE for every model. The predictive performance is then evaluated on the
test set. Lastly, to assess out of groups prediction, models are further validated on 100 exter-
nal samples, generated according to (1), coming from five extra subpopulations not observed
in the training set. The devised simulated experiment is replicated MC = 100 times: results
are reported in the next subsection.

4.2. Simulation results. Figure 3 displays boxplots of the Root Mean Squared Error
(RMSE) computed for each component of the five-dimensional response on the test set. For
all scenarios we observe that the componentwise predictive performance is heavily affected
by the magnitude of the related diagonal entry in the 9 matrix. When the grouping effect
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FIG. 3. Boxplots of the Root Mean Squared Error (RMSE) for MC = 100 repetitions of the simulated exper

iment. RMSE is computed on 200 test points for different methods and three scenarios varying sparsity pattern

for B .

is negligible (fifth dimension Y5), all methods showcase comparable predictive performance.
Contrarily, the RMSE deteriorates for fixed-effects models in those response components for
which the grouping impact is more relevant. The same does not happen for the mixed-effects
counterparts, as the random intercept effectively captures baseline differences across groups.
Interestingly, the penalty type does not seem to influence the RMSE metric, with our proposal
displaying excellent results irrespective of the chosen shrinkage functional for all scenarios.
On the other hand, when it comes to perform out of groups prediction, the gain achieved by
including random-effects decreases, and the outcome of models with fixed and mixed-effects
are fairly similar. In details for the latter class of methods, the unconditional (population level)
intercepts are employed when making predictions for unobserved groups. Notwithstanding,
we recognize that results are no worse than those obtained with fixed-effects procedures,
corroborating the generalizability of our proposals in external cohorts.

Figure 4 displays the analogue of the percentage of variation due to random effects (PVRE)
metric, computed taking the ratio between the diagonal elements of 9̂ and the sum of the
diagonals of 9̂ and 6̂. From the plot, it clearly emerges how the grouping impact differently
affects the variability in the five components of the response.

Figure 5 reports boxplots of the Frobenius distance between true and estimated matrices
of fixed-effects B . When looking at ‖B − B̂‖F under the three scenarios, we observe some
interesting facts. First off, it is immediately noticed that the univariate elastic-net fixed-effects

model showcases the poorest performance, in particular, for the B with dependence structure

experiment. This is due to the fact that the different components of the response vector are
related in our simulated specification, and, therefore, fitting separate regression models re-
sults in a loss of quality for the estimator. Second, we observe that for the B rowwise sparse

scenario the group-lasso random-effects model is the best performing one among all the com-
petitors, displaying the lowest median distance to B . This may be expected, as such method
is precisely constructed to identify a matrix of fixed-effects with a rowwise sparsity pattern.
Furthermore, notice that the performance of the group-lasso random-effects is slightly better
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FIG. 4. Boxplots of the Percentage of Variation due to Random Effects (PVRE) for MC = 100 repetitions of the

simulated experiment.

than its fixed-effects counterpart. For the remaining scenarios, the superiority of the mixed-
effects procedures is not so apparent, and both fixed and random-effects models demonstrate
a comparable performance. An only modest gain is showcased by the network-regularized

random-effects method for which the inclusion of the adjacency matrices GX and GY in the
penalty specification helps in better recovering the B structure.

We now look at the ability of the competing procedures in identifying the true underlying
sparsity patterns in the matrix of fixed-effects B under the different scenarios. In so doing we
compute, for each replication of the simulated experiment, the F1 score defined as follows:

(20) F1 =
tp

tp+ 0.5(fp+ fn)
,

FIG. 5. Boxplots of the Frobenius distance between true and estimated matrices of fixedeffects B for MC = 100
repetitions of the simulated experiment.

AOAS imspdf v.2023/03/28 F:aoas1760.tex; (Ingrida) p. 14



PENALIZED MIXED-EFFECTS MULTITASK LEARNING 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

FIG. 6. Boxplots of the F1 score for MC = 100 repetitions of the simulated experiment for different methods

and three scenarios varying sparsity pattern for B .

where with tp we denote the number of zero entries in B correctly estimated as such, while
fp and fn represent the number of nonzero entries wrongly shrunk to 0 and the number of
zero entries not shrunk to 0, respectively. Figure 6 displays boxplots of such metric for differ-
ent methods and scenarios. We notice that B rowwise sparse structure displays much higher
F1 score, irrespective of the considered method, than the other two cases. Intuitively, the for-
mer scenario is less challenging since, while all penalty types can potentially accommodate
a rowwise sparse B , group-lasso regularizers only force entire rows of B to be shrunk to 0.
We further observe that the F1 score is higher for the group-lasso random-effects than for
its fixed-effects counterpart, highlighting that a penalized mixed-effects modeling strategy,
in presence of grouped data and a rowwise sparse B , not only increases the predictive ac-
curacy but also improves the recovery of the sparsity pattern in the fixed-effects matrix. The
same does not happen in the remaining two scenarios for which all methods display a com-
parable empirical distribution of the F1 metric across simulations. The same behavior was
already observed in high-dimensional linear mixed-effects modeling for univariate responses
(Schelldorfer, Bühlmann and van de Geer (2011)).

As a last worthy note, we acknowledge that, as rightly underlined by an anonymous re-
viewer, the present simulation study does not consider any violation in the distributional
assumptions of the involved quantities. In this regard we replicated the experiment using
both a multivariate skew-normal and multivariate skew-t distributions (Azzalini and Capi-
tanio (2013)) as generative models for the error term, but we did not report the results in
the paper since no dramatic changes were observed in model performances. While clearly
more extreme scenarios could be considered, results in the literature have previously vali-
dated the robustness of linear mixed-effects models to violations of distributional assump-
tions (McCulloch and Neuhaus (2011)). For further details about the simulation study, the
Supplementary Material (Cappozzo, Ieva and Fiorito (2023)) provides additional figures and
a note on the overall computing times.

All in all, the good performances displayed by our proposal, particularly when coupled
with a multivariate group-lasso penalty, encourage its usage in multivariate DNAm surrogates
creation: promising results are reported in the next section.

5. DNAm biomarkers analysis for EPIC and EXPOsOMICS datasets. The method-
ology described in Section 3 is employed to build a five-dimensional DNAm biomarker of
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hypertension and hyperlipidemia. As mentioned in the Introduction, DNAm surrogates pos-
sess extensive advantages over their blood-measured counterparts since:

1. DNAm biomarkers directly account for genetic susceptibility and subject specific response
to risk factors.

2. DNAm biomarkers can immediately be computed whenever DNAm values are accessible.
This is particularly useful when the risk factors of interest have not been directly measured.

3. Further understanding of the biomolecular mechanisms associated with complex pheno-
types can be acquired through a pathway enrichment analysis (Reimand et al. (2019)), al-
lowing to identify molecular pathways overrepresented among the regressors involved in
the surrogate construction (i.e., the CpG sites whose associated parameters are not shrunk
to 0).

We subsequently assess how well the so-devised surrogates perform, for both internal and
external cohorts, in reconstructing the blood measured biomarkers (Section 5.1) and in pre-
dicting the clinical endpoint of interest, namely, the future presence/absence of CVD events
(Section 5.2). Lastly, we study from a biological perspective the CpG sites selection operated
by the multivariate group-lasso penalty, comparing it with previous findings available in the
literature (Section 5.3).

5.1. DNAm surrogates creation and validation. To construct multivariate DNAm surro-
gates, several penalized models are fitted to the EPIC Italy training set, varying shrinkage
factors and considering both fixed and random-effects components. As mentioned in Sec-
tion 2, the design matrix comprises of p = 62,130 variables. Thus, redundancies are likely
to occur as the feature space is constituted by the union of CpG sites prescreened by univari-
ate epigenome-wide analyses. After having standardized the covariates, for each model the
penalty term λ is tuned via 10-fold CV, while the mixing parameter α is kept fixed and equal
to 0.5. Results on the internal cohort are summarized in Table 1, where the RMSE computed
on the EPIC Italy test set, the number of active CpG sites and the overall elapsed time are
reported. The first two rows are related to the novel penalized MLMM methodology with a
random-effects design matrix that includes a q = 1 random intercept, coupled with multi-
variate group-lasso (Section 3.3.2) and elastic-net (Section 3.3.1) penalties, respectively. The
corresponding fixed-effects counterparts are reported in the third and fourth rows, while uni-
variate elastic-net metrics, obtained fitting r = 5 separate models, one for each response, are
detailed in the last row of Table 1. Notice that our proposal outperforms the state-of-the-art
approach (univariate elastic-net) for four out of five dimensions of the response variable. The
reason being that our method takes advantage of the borrowing information asset typical of
multivariate models (the correlation between SBP and DBP is equal to 0.77 in the training
set), while allowing for centerwise difference to be captured by the random intercept. Fur-
thermore, thanks to the multivariate group-lasso penalty, our penalized MLMM approach
directly identifies the CpG sites that are jointly related to hypertension and hyperlipidemia,
with a total number of features that is lower with respect to univariate elastic-nets. By tak-
ing the ratio between the diagonal elements of 9̂ and the sum of the diagonals of 9̂ and
6̂, it is possible to compute, for each component of the response matrix Y , the analogue of
the percentage of variation due to random effects (PVRE) index. For the EPIC Italy dataset,
the estimated PVRE amounts to 7.97%, 16.05%, 5.56%, 14.26% and 6.01% for DBP, HDL,
LDL, SBP and TG, respectively, giving reason for the performance improvement showcased
by the random-effects models.

The employment of the multivariate group-lasso penalty within a mixed-effects multitask
learning framework is also supported by biological reasons. In fact, it is more likely that
multiple correlated phenotypes affect (or are affected by, depending on the causal relationship
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TABLE 2
Root Mean Squared Error (RMSE) for different penalized regression models, EXPOsOMICS validation set. Bold

numbers indicate lowest RMSE for each of the r = 5 dimension of the response matrix

Model Penalty type Response DBP HDL LDL SBP TG

Random-effects Group-lasso Multivariate 0.1314 0.2384 0.2707 0.1412 0.4735

Random-effects Elastic-net Multivariate 0.1335 0.2504 0.2821 0.1450 0.4890
Fixed-effects Group-lasso Multivariate 0.1409 0.2750 0.2969 0.1574 0.5142
Fixed-effects Elastic-net Multivariate 0.1286 0.2479 0.2859 0.1359 0.5002
Fixed-effects Elastic-net Univariate 0.1331 0.2733 0.3136 0.1368 0.5251

between DNAm and the exposure variable) the same set of CpG sites (Tyler, Crawford and
Pendergrass (2013), Richard et al. (2017)).

Internal validation results, obtained for the EPIC Italy test set, highlight the benefits of
mixed-effects modeling while constructing DNAm surrogates for data possessing a grouping-
structure. The random intercept allows to account for centerwise variability that is induced
by geographic genetical variation as well as by samples collection and storage that are likely
to differ across centers. Notice that, in general, if not properly modeled, the unexplained
heterogeneity in multicenter studies could be taken care of with dedicated batch-effect re-
moval procedures (see, e.g., Johnson, Li and Rabinovic (2007)). Nonetheless, when devel-
oping DNAm biomarkers, it is of interest to devise study-invariant surrogates to be readily
computed also for samples not belonging to the learning cohort. To this aim, we validate
the performance of the models estimated on the EPIC training set in constructing surrogates
for the external EXPOsOMICS cohort (see Section 2). In this context the grouping informa-
tion (i.e., the center of recruitment) cannot be considered when performing predictions with
mixed-effects models, and the unconditional (population-level) intercepts are thus utilized.
RMSE between estimated and blood-measured biomarkers for the EXPOsOMICS valida-
tion cohort are reported in Table 2. Likewise for the EPIC Italy test set, the lowest RMSEs
for all but SBP biomarker are retained employing a penalized random-intercept model with
multivariate group-lasso penalty. Interestingly, the predictive outcomes, obtained in the EX-
POsOMICS validation dataset, are comparable with the ones reported in Table 1 with slightly
worse performances, as it may be expected for those dimensions of the response displaying
higher PVRE indexes. All in all, the proposed approach exhibits promising results when it
comes to multivariate DNAm biomarker creation, outperforming the current employed pro-
cedure in both internal and external validation cohorts.

5.2. Association of DNAm surrogates with CVD risk. DNAm surrogates creation is not
a stand-alone regression problem, as its primary aim is to provide reliable covariates for dis-
eases prediction models (Fernández-Sanlés et al. (2021), Odintsova et al. (2021), Hidalgo
et al. (2021)). We, therefore, validate whether employing the estimated DNAm surrogates
acts as a superior proxy of blood measured biomarkers in association analyses. In details
within the cohort of patients in the EPIC Italy test set, we build logistic regression models to
predict the probability of cardiovascular risk, using as regressors either the blood measured
biomarkers or the two best performing DNAm surrogates devised in the previous section, ad-
justing for sex and age. The receiver operating characteristic (ROC) curves and the associated
area under the curve (AUC) metrics for the considered methods are displayed in Figure 7. As
expected, in light of the RMSE results reported in Table 1, we notice that classification perfor-
mances are similar among the competing models. Nonetheless, the logistic curves regressed
on the DNAm based surrogates seem to outperform the blood measured counterparts. Inter-
estingly, all surrogates in Table 1 define logistic regression models whose AUCs are higher
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FIG. 7. Receiver operating characteristic curves and area under the curve metrics for the association analyses

of DNAm surrogates with CVD risk, Italy EPIC test set.

than those retrieved by the blood-measured biomarkers, with the best performance attained
by the penalized random-intercept model with multivariate group-lasso penalty.

We further assess the association of DNAm surrogates with CVD risk in the external EX-
POsOMICS study. For this dataset values of the blood-based biomarkers are available only
for a subset of volunteers; we thus construct the logistic regression models by means of the
surrogates only. Such a situation is quite common in validation data and in line with the prin-
ciple DNAm surrogates that were devised in the first place. Also, in this context the predictive
performance of our novel proposal, coupled with a multivariate group lasso penalty, is higher
with respect to state-of-the-art surrogates created via elastic-net fixed-effects models. The
associated receiver operating characteristic curves as well as additional figures related to the
DNAm biomarkers analysis are reported in the Supplementary Material (Cappozzo, Ieva and
Fiorito (2023)).

The association analyses described in this section cast light on the applicability of the
devised DNAm surrogates as an enriched and patient-specific proxy of their blood measured
counterparts, in both internal and external cohorts. These favorable outcomes indicate that
using models based on DNAm surrogates could be more appropriate for prediction tasks,
such as CVD prevention, since they can possibly incorporate individual characteristics not
directly recorded in the blood-measured biomarkers.

5.3. CpG sites selection and gene set enrichment analyses of inflammatory pathways. In
the previous sections the newly devised random-intercept model for multitask learning has
demonstrated superior predictive performance when it comes to DNAm surrogates creation
and CVD prediction. Hereafter, we examine the epidemiological rationale of the multivariate
group-lasso penalty, compared to univariate elastic-nets, investigating the biological reliabil-
ity of the selected features (CpG sites). The univariate elastic-nets extract 178, 504, 518, 79,
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497 CpG sites for diastolic blood pressure, HDL cholesterol, LDL cholesterol, systolic blood
pressure and triglycerides, respectively. As reported in Table 1, the total number of unique
CpGs is 1712. However, despite the high degree of correlation among the multivariate out-
comes, no CpGs were in common in the five sets, and only a minor percentage of CpGs was
shared among two or more responses. Instead, as previously described, our MLMM proce-
dure regularized with a multivariate group-lasso penalty extracts 417 features that are asso-
ciated with the five outcomes at the same time, a biological mechanism known as pleiotropy
(Atchley and Hall (1991a, 1991b)).

We are further interested in assessing whether the selected CpG sites are associated with
specific biological pathways. To do so, gene set enrichment analyses (Subramanian et al.
(2005)) are performed on the features retained by penalized MLMM and univariate elastic-
net models. Specifically, given that the number of CpGs extracted for each method is small
(hundreds of CpGs selected from an initial set of 295,614 features), an analysis based on all
of the biomolecular pathways described in the canonical datasets, that is, KEGG (Yi et al.
(2020)), GO (Gene Ontology Consortium (2004)) and Reactome (Fabregat et al. (2018)),
would be underpowered. Therefore, to overcome this limitation and with inflammation being
the main mechanism involved in the onset of the majority of chronic diseases, we focus our
analyses on the 17 inflammatory pathways described in Loza et al. (2007). Enrichment analy-
ses results are summarized in Table 3. For each list of CpGs, we test for overrepresentation of
features in inflammatory pathways using the method implemented in the missMethyl R

package (Phipson, Maksimovic and Oshlack (2016)). Considering the CpGs extracted by our
multivariate approach, we find significant enrichment for CpGs in four inflammatory path-
ways. These results agree with previous literature suggesting that hypertension and hyperlip-
idaemia are associated with the dysregulation of molecular pathways regulating apoptosis,
oxidative stress and the immune system (Senoner and Dichtl (2019), Dong et al. (2020)). In-
stead, modeling the outcomes one by one, using univariate models, leads to a less consistent

TABLE 3
Empirical pvalues of the enrichment analyses computed using a permutation procedure via the gometh

function in the missMethyl R package. Empirical pvalues lower than 0.05, highlighted in bold, indicate

significant overrepresentation

Univariate Elastic-net Fixed-effects

Inflammatory pathway Group-lasso Random-effects DBP HDL LDL SBP TG

Leukocyte signaling 0.006 0.14 0.35 0.01 1 1
ROS/Glutathione/Cytotoxic granules 0.009 0.06 0.15 1 0.03 0.15
Apoptosis Signaling 0.01 1 1 0.17 1 0.07
Natural Killer Cell Signaling 0.01 0.36 0.10 1 1 1
PI3K/AKT Signaling 0.18 1 0.26 0.03 1 0.22
Innate pathogen detection 0.26 0.12 0.30 0.31 1 1
Cytokine signaling 0.36 1 1 0.0003 1 0.10
Adhesion-Extravasation-Migration 1 0.18 0.003 0.02 0.09 0.10
Calcium Signaling 1 1 1 0.08 1 1
Complement Cascase 1 1 1 1 1 0.16
Glucocorticoid/PPAR signaling 1 1 0.10 1 0.17 0.10
G-Protein Coupled Receptor Signaling 1 1 1 1 0.05 0.27
MAPK signaling 1 1 0.14 0.49 1 0.005

NF-kB signaling 1 1 0.16 0.16 1 0.15
Phagocytosis-Ag presentation 1 1 1 0.26 1 1
Eicosanoid Signaling 1 1 1 1 1 1
TNF Superfamily Signaling 1 1 0.01 0.14 1 1
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pattern of associations. In fact, we find only one (and always different) significant pathway
per analysis.

All in all, the results reported in this section support the advantages of modeling mul-
tiple correlated outcomes not only from a prediction perspective, for both blood measured
biomarkers and endpoint of interest but also considering the biological reliability of the ex-
tracted features.

6. Discussion and further work. In the present paper, we have proposed a novel frame-
work for mixed-effects multitask learning suitable for high-dimensional data. The ubiquitous
presence in modern applications of “p bigger than N” problems asks for the development of
ad hoc statistical tools able to cope with such scenarios. By resorting to penalized likelihood
estimation, we have devised a general purpose EM algorithm capable of accommodating any
penalty type that has been previously defined for fixed-effects models. We have examined
three functional forms for the penalty term, discussing pros and cons of each and providing
convenient routines for model fitting. The proposal has been accompanied by some consider-
ations on distinguishing features, like how to quantify response specific random-effects, and
other more general issues concerning initialization, convergence and model selection.

The work has been motivated by the problem of developing a multivariate DNAm
biomarker of cardiovascular and high blood pressure comorbidities from a multicenter study.
The EPIC Italy dataset has been analyzed using diastolic blood pressure, systolic blood
pressure, high-density lipoprotein, low-density lipoprotein and triglycerides as response vari-
ables, regressing them on 62,128 CpG sites and accounting for between-center heterogeneity.
Our modeling framework, coupled with a multivariate group-lasso penalty, has demonstrated
to outperform the state-of-the-art alternative, both in terms of predictive power and biomed-
ical interpretation. Remarkably, the number of CpG sites deemed as relevant in the multidi-
mensional surrogate creation was found to be lower than those identified by separately fitting
penalized models for each risk factor. Decreasing the amount of relevant CpG sites is crucial
to reduce sequencing costs for future studies, with the final aim of querying only a limited
number of targeted genomic regions. Such a result may thereupon favor the adoption of our
methodological approach for building DNAm surrogates.

The devised pipeline also possesses some limitations. The EWAS results are adjusted for
clinical covariates external to the analysis, and this may thus affect the preprocessing out-
come. Moreover, the level of strictness in the screening process is influenced by the chosen
threshold on the p-values. On this wise two different, yet both sensible, strategies can be
adopted. On the one hand, one may rely on the “Occam’s razor” principle, preferring to use
a stricter threshold being it the simplest and fastest option. On the other hand, one can pos-
itively include many redundant variables in the design matrix, relying on the model ability
to shrink coefficients of irrelevant features to zero. Concurrently, further insights about the
associations between DNA methylation and blood-measured biomarkers may be unraveled
by means of sparse multiple canonical correlation analysis (Rodosthenous, Shahrezaei and
Evangelou (2020), Witten, Tibshirani and Hastie (2009), Witten and Tibshirani (2009)), while
other modeling approaches, such as deep-learning (Nguyen et al. (2022), Yuan et al. (2022)),
Bayesian methods (Zhao et al. (2021a, 2021b)) and boosting machines (Sigrist (2022)), could
be profitably adapted to build DNAm multidimensional surrogates.

A direction for future research concerns promoting the application of the proposed pro-
cedure in creating additional multidimensional DNAm biomarkers, conveniently embedding
mixed-effects and customized penalty types. In this regard and of particular interest may
be the definition of a shrinkage term for which the grouping in B is introduced from both
responses and predictors: the former is induced by the multivariate nature of Y (i.e., the r re-
sponses), while the latter can stem from any structure present in X (e.g., CpG islands). Such
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a problem could be solved by extending the multivariate sparse group lasso, proposed by Li,
Nan and Zhu (2015), to the mixed-effects framework.

In addition, having assumed random intercepts for each and every component in a low-
dimensional response framework was only motivated by the application at hand, and it may
not be valid in general. Thus, a two-fold methodological development naturally arises: a first
one concerning the definition of response-specific random-effects in multitask learning and
another accounting for the inclusion of custom penalties when dealing with high-dimensional
response variables. Furthermore, the latter may also possess a mixed-type structure, with
components simultaneously being nominal, ordinal, discrete and/or continuous. Some pro-
posals are currently under study, and they will be the object of future work.
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ures for both the simulation study and the real data analysis reported in Sections 4 and 5.

Code (DOI: 10.1214/23-AOAS1760SUPPB; .zip). It contains the R package emlmm im-
plementing the method proposed in the manuscript.
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