
A Sequential Decision Problem Formulation and Deep 

Reinforcement Learning Solution of the Optimization of O&M 

of Cyber-Physical Energy Systems (CPESs) for Reliable and 

Safe Power Production and Supply  

Zhaojun Hao1, Francesco Di Maio1*, Enrico Zio1,2 

1Energy Department, Politecnico di Milano, Milan, Italy 

2Mines Paris, PSL Research University, CRC, Sophia Antipolis, France 

e-mail: zhaojun.hao@polimi.it, francesco.dimaio@polimi.it, enrico.zio@polimi.it,  

enrico.zio@mines-paristech.fr 

 

Abstract: The Operation & Maintenance (O&M) of Cyber-Physical 

Energy Systems (CPESs) is driven by reliable and safe production and 

supply, that need to account for flexibility to respond to the uncertainty in 

energy demand and also supply due to the stochasticity of Renewable 

Energy Sources (RESs); at the same time, accidents of severe 

consequences must be avoided for safety reasons. In this paper, we 

consider O&M strategies for CPES reliable and safe production and supply, 

and develop a Deep Reinforcement Learning (DRL) approach to search for 

the best strategy, considering the system components health conditions, 

their Remaining Useful Life (RUL), and possible accident scenarios. The 

approach integrates Proximal Policy Optimization (PPO) and Imitation 

Learning (IL) for training RL agent, with a CPES model that embeds the 

components RUL estimator and their failure process model. The novelty of 

the work lies in i) taking production plan into O&M decisions to implement 



maintenance and operate flexibly; ii) embedding the reliability model into 

CPES model to recognize safety related components and set proper 

maintenance RUL thresholds. An application, the Advanced Lead-cooled 

Fast Reactor European Demonstrator (ALFRED), is provided. The optimal 

solution found by DRL is shown to outperform those provided by state-of-

the-art O&M policies. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

𝐶𝑡 
Component state vector at time 𝑡 

𝑀𝑇⃑⃑⃑⃑ ⃑⃑
𝑡⃑ 

Times needed to complete the current 

maintenance vector at time 𝑡 

𝑃⃑⃑𝑡  
Production plan vector at time 𝑡 

𝑅⃑⃑𝑡 
RUL estimations vector at time 𝑡 

𝑎⃑𝑡 Action vector at time 𝑡 

Π𝐶𝑀 CM downtime 

Π𝑃𝑀 PM downtime 

𝐺𝑡 Revenue at time 𝑡 

𝐺𝑤𝑎𝑡𝑒𝑟 Water pump that regulates the feedwater 

mass flow rate 

𝐾𝑏𝑎𝑠𝑒 Base-load operation revenue 

𝐾𝑙𝑜𝑎𝑑 Load-following operation revenue 

𝑃𝑇ℎ Thermal power 

𝑄𝜋(𝑠, 𝑎) Estimation of the expected future reward 

obtained by performing policy 𝜋, 

choosing action 𝑎 in state 𝑠 

𝑅𝑙 Ground truth RUL of the 𝑙-th 

component  

𝑅𝑙
∗ RUL estimation by PHM tools 

𝑇𝐿,𝑐𝑜𝑙𝑑 Cold leg lead temperature 

𝑇𝑀 Mission time 

𝑇𝑙 Ground truth failure time of the 𝑙-th 

component 

𝑇𝑠𝑡𝑒𝑎𝑚 Steam temperature 

𝑈𝐶𝑀 Cost for each downtime of CM 

𝑈𝑃𝑀 Cost for each downtime of PM 

𝑈𝑠𝑎𝑓𝑒 Cost of safe shutdown per unit of time 

𝑈𝑠𝑒𝑣𝑒𝑟𝑒 Cost of severe shutdown per unit of time 

𝑊𝑡 Shutdown cost at time 𝑡 

𝑋𝑡 Maintenance cost at time 𝑡 

𝑝𝑆𝐺  Steam Generator (SG) pressure 

𝑟𝑡 Reward at time 𝑡 

𝑦𝑟𝑒𝑓 Controlled variable 𝑦 reference value 

𝜃⃑ 
Policy search methods parameters 



𝜋∗(𝑎|𝑠) Optimal policy choosing action 𝑎 in 

state 𝑠 

𝜖𝑅 RUL estimation error 

AGAN As Good As New 

ALFRED Advanced Lead-cooled Fast Reactor 

European Demonstrator 

CM Corrective Maintenance 

CPES Cyber-Physical Energy System 

CVaR Conditional Value at Risk 

DNN Deep Neural Network 

DRL Deep Reinforcement Learning 

GTST-MLD Goal Tree Success Tree-Master Logic 

Diagram 

IL Imitation Learning 

ML Machine Learning 

NPP Nuclear Power Plant 

O&M Operation & Maintenance 

PdM Predictive Maintenance 

PHM Prognostic and Health Management 

PI Proportional Integral 

PM Preventive Maintenance 

PPO Proximal Policy Optimization 

ℛ The SDP reward function 

RES Renewable Energy Source 

RL Reinforcement Learning 

RUL Remaining Useful Life 

SDP Sequential Decision Problem 

SM Scheduled Maintenance 

VaR Value at Risk 

𝐶𝑅 The control rods 

𝐿 Number of components 

𝑃 Power production plan 

𝑆𝑦𝑠𝑡 System state at time 𝑡 

𝑘𝑣 Turbine admission valve that regulates 

the steam inlet mass flow rate 

𝒜 SDP action space 

𝒫 SDP transition probability 

𝒮 SDP state space 

𝛾 SDP discount factor 

𝜆 Component failure rate 

 

  



1. Introduction 

Cyber-Physical Energy Systems (CPESs) are highly connected systems 

for energy production, transmission and distribution [1,2], for which high 

reliability and availability must be guaranteed by proper Operation & 

Maintenance (O&M) procedures [3,4]. 

Scheduled Maintenance (SM), e.g., on a time basis, is widely applied 

in industrial production [5,6]. On the other hand, the development of 

sensing and data analysis, and the advent of Prognostic and Health 

Management (PHM) techniques, have made it possible to collect and use 

condition monitoring data to estimate the components health states, and 

predict their Remaining Useful Life (RUL) [7–10], so as to enable the 

Predictive Maintenance (PdM) paradigm for just-in-time maintenance 

interventions that maximize system availability and minimize O&M costs 

[11,12]. 

On the other hand, the penetration of large shares of Renewable Energy 

Sources (RESs) onto the power grid, with their high degree of variability 

in power generation, challenges O&M to provide flexibility of operation 

(e.g., load-following [13]) for dealing with sudden imbalances between 

demand and production [14]. Then, O&M strategies should account for the 

components health state and Remaining Useful Life (RUL) [12,15–17], 

together with the variability of the power demand and generation over 

long-time horizons, ensuring flexible operation. 



Recently, many researches have focused on O&M decision making: to 

name few, in [18] an artificial neural network is proposed to estimate the 

maintenance cost and, then used within a multi-agent Deep Reinforcement 

Learning (DRL) model to optimize decisions on large-scale systems; in [19] 

a Petri Net is applied to optimize offshore wind turbines O&M; in [20], a 

Bayesian Network maximizes a system supply capacity and gas supply 

reliability within a DRL scheme for maintenance planning. In all cases, 

however the fluctuations of the energy production and demands, their 

uncertainty, especially under increasing scenarios of penetration of RES 

specific production plans, have been overlooked. Also, the severity of the 

consequences of the CPES components failures is commonly neglected for 

simplicity. 

In this paper, we formalize an optimization problem for such O&M 

strategies as a Sequential Decision Problem (SDP) to maximize 

productivity and safety, and provide flexible supply (load-following) to 

overcome the above mentioned limitations, i.e., we optimize the 

maintenance activities in light of the RUL of the CPES components, the 

severity of the consequences of their failures and the compliance with the 

operation plan (base-load or load-following) to satisfy the flexible 

operation needs while avoiding system shutdown caused by components 

failures. In a SDP, the goodness of the selected O&M action does not 

depend exclusively on the actual decision, but, rather, on the whole 



sequence of future decisions. To solve the SDP for the optimal O&M 

sequence of actions, we rely, as in [18–20], on Deep Reinforcement 

Learning (DRL), which is an extension of Reinforcement Learning (RL) 

and provides feasible application to complex systems [21,22]. RL has been 

applied to complex decision-making problems in many fields, including 

energy-related ones [23–32]. Indeed, tabular RL algorithms [33] allow 

finding the exact solution of SDPs in which the state and action spaces are 

small enough for the value function to be represented as tables. However, 

in most practical cases the computational cost of these algorithms is not 

compatible with the application to complex systems, whose state and 

action spaces are normally large due to the numerous components [33,34]. 

For this reason, we resort to DRL, which makes use of Deep Neural 

Networks (DNNs) to find approximate solutions [33]. In particular, we 

integrate the Proximal Policy Optimization (PPO) algorithm [35], which is 

one of the state-of-the-art approaches for DRL implementation, Imitation 

Learning (IL), which is a supervised learning approach [36] to pre-train the 

RL agent with a heuristic policy, and a CPES model that embeds the 

components RULs estimator and the components failure process model 

(i.e., the reliability model). A case study is provided concerning the 

Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED) 

[37]. This advanced Nuclear Power Plant (NPP) is designed precisely to 

offer flexible operation by providing the possibility of daily changing the 



power output between full (100%) power and 20% power levels. The main 

components of ALFRED, i.e., sensors, turbine admission valve, water 

pump and control rods, are considered equipped with RUL estimation 

capabilities. For the failure process, a Goal Tree Success Tree-Master 

Logic Diagram (GTST-MLD) reliability model is available [38,39]. In a 

nutshell, the novelty of the proposed approach lies in accounting for both 

the energy production plan and the CPES reliability model to inform O&M 

decisions that jointly consider production uncertainties and wear/tear of the 

CPES. 

The remainder of the paper is organized as follows: Section 2 states the 

problem and formulates it as a SDP; in Section 3, details about the RL 

algorithm developed in this work are provided; Section 4 describes the case 

study; in Section 5, the results are discussed; conclusions are drawn in 

Section 6. 

 

2. Problem Formulation 

Let us consider a CPES whose load-following power production plan 

𝑃(𝑡)  to accommodate the RES fluctuations at each time 𝑡 =

1,2, … , 𝑇𝑀 (the mission time), can span from full (100%) power (typically 

produced in base-load regime) to 20% (i.e., the minimum assumed in the 

daily cycles of load-following). For example, a load-following 100-60-100 

cycle entails that in one day the load is 100% of the nominal power, then 



the load decreases by 40% to the 60% of the nominal power, then a power 

ramp is needed to re-establish the 100% full nominal power. Revenues are 

generated in both base-load and load-following operations, and are here 

indicated as 𝐾𝑏𝑎𝑠𝑒 and 𝐾𝑙𝑜𝑎𝑑, respectively. 

The CPES is made of 𝐿 components: the generic 𝑙-th component, 𝑙 ∈

Λ = {1, … , 𝐿}, is assumed to be equipped with PHM capabilities, which 

allow estimating its RUL. In [40–42], several advanced machine learning 

methods have been recently proposed to estimate the RUL, given the 

ground truth failure time 𝑇𝑙
∗ of the 𝑙-th component, is equal to: 

𝑅𝑙
∗ = 𝑇𝑙

∗ − 𝑡 (1) 

And whose estimation provided by the PHM tool is: 

𝑅𝑙 = 𝑅𝑙
∗ + 𝜖𝑅 (2) 

where 𝜖𝑅 ∼ 𝑁(0, 𝜎𝑅)  is a Gaussian noise representing the error of the 

RUL estimation [4,43]. 

Maintenance of the components is considered perfect, i.e., the 

component is restored as good as new (AGAN), and performed by a 

number of maintenance crews equal to the number of components in need 

of maintenance at the same time. The type of maintenance that is performed 

on the generic 𝑙-th component is: i) Preventive Maintenance (PM), if the 

component is not failed, i.e., 𝑅𝑙
∗ > 0, or ii) Corrective Maintenance (CM), 

if the component is failed, i.e., 𝑅𝑙
∗ = 0. The downtimes due to PM and CM, 

Π𝑃𝑀 and Π𝐶𝑀 (typically Π𝑃𝑀 < Π𝐶𝑀) are considered as a deterministic 



time period [44,45], and the costs for each downtime of maintenance are 

𝑈𝑃𝑀  and 𝑈𝐶𝑀 , respectively. When a component fails, the system may 

undergo a safe shutdown or severe (damaged) shutdown, whose costs per 

unit of time are 𝑈𝑠𝑎𝑓𝑒 and 𝑈𝑠𝑒𝑣𝑒𝑟𝑒, respectively. 

For simplicity sake, but without loss of generality, we i) neglect backup 

components or safety-related protection systems (i.e., a component failure 

drives the system into failure, and CM is implemented), ii) assume that 

load-following operation can be implemented only when there are no 

components failed or under maintenance. It is important to point out that 

assumption i) neglects the fact that NPPs components are typically highly 

redundant for safety reasons, and so it allows providing conservative 

results, e.g., the upper boundary of the unreliability of the ALFRED control 

system; considering backup components can be done within a reliability 

analysis of the system, e.g., by Fault Trees or Reliability Block Diagram. 

In this setting, the O&M problem can be formulated as a SDP defined 

by the set 𝒮, 𝒜, 𝒫, ℛ, 𝛾, where: 

• 𝒮 is the state space, i.e., the set of variables describing the state 

of the system; 

• 𝒜 is the action space, i.e., the set of possible actions; 

• 𝒫  represents the transition probability, i.e., 𝒫(𝑠′|𝑠, 𝑎)  is the 

probability of making a transition from state 𝑠  to state 𝑠′  by 

performing action 𝑎; 



• ℛ is the reward function, i.e., ℛ(𝑠′|𝑠, 𝑎) is the reward received 

as a result of making a transition from state 𝑠  to state 𝑠′  by 

performing action 𝑎, and is used to update the O&M policy; 

• 𝛾 ∈ [0,1] is the discount factor, i.e., the factor used to evaluate 

the present value of future rewards. 

The objective of solving the SDP is to define the optimal O&M policy 

𝜋∗(𝑎|𝑠), i.e., the actions sequence 𝑎 to be adopted at each decision time 

𝑡, with regards to environment state 𝑠, in order to maximize the system 

profit over the mission time 𝑇𝑀. The state space 𝒮, the action state 𝒜, 

and the reward function ℛ , are defined in Sections 2.1, 2.2, and 2.3, 

respectively. In Section 2.4, the model of the CPES environment is 

described. Notice that, since in RL the learning agent directly interacts with 

the model of the environment, the explicit definition of the transition 

function 𝒫 is not required. 

 

2.1 State space 𝒮 

At each decision time 𝑡, the state space 𝒮 is defined by the vector 

𝑠𝑡 = [𝑅⃑⃑𝑡 , 𝐶𝑡 𝑀𝑇⃑⃑⃑⃑⃑⃑
𝑡⃑ , 𝑃⃑⃑𝑡 , 𝑆𝑦𝑠𝑡 , 𝑡] ∈ ℝ3𝐿+𝐽+2 , obtained appending the vectors 

of RUL estimations 𝑅⃑⃑𝑡 = [𝑅1, 𝑅2, … , 𝑅𝐿] , the component state vector 

(operating, failed, CM and PM) 𝐶𝑡 = [𝐶1, 𝐶2, … , 𝐶𝐿] , the vector of the 

times needed to complete the current maintenance 𝑀𝑇⃑⃑⃑⃑⃑⃑
𝑡⃑ =

[𝑀𝑇1, 𝑀𝑇2, … , 𝑀𝑇𝐿] , the production plan vector for consecutive 𝐽  days 



from day 𝑡  to day 𝑡 + 𝐽 − 1 (𝐽 = 1,2, … , 𝑇𝑀 − 𝑡 + 1)   𝑃⃑⃑𝑡 = [𝑃0, 𝑃1, … ,

𝑃𝐽−1], and the system state (operating, PM, shutdown and failure). 

 

2.2 Action space 𝒜 

At each decision time 𝑡, the maintenance actions space 𝒜 is defined 

by the vector 𝑎⃑𝑡 = [𝑎1, … , 𝑎𝑙 , … , 𝑎𝐿]: if a decision is taken to maintain the 

𝑙 -th component, the corresponding 𝑎𝑙  is set to 1, resulting in 𝑎⃑𝑡 =

[0, … ,0, 𝑎𝑙 = 1,0, … ,0], or 𝑎⃑𝑡 = [0, … ,0] otherwise. 

 

2.3 Reward function 

At each decision time 𝑡, a reward 𝑟𝑡 is calculated on the basis of 𝑠𝑡 

and 𝑎⃑𝑡 as follows: 

𝑟𝑡 = 𝐺𝑡 − 𝑊𝑡 − 𝑋𝑡 (3) 

where 𝐺𝑡  is the revenue (see Eq. (4) below), 𝑊𝑡  is the cost when the 

system is under safe shutdown or severe shutdown (see Eq. (5) below) and 

𝑋𝑡 is the maintenance intervention cost (see Eq. (6) below). 

𝐺𝑡 can be calculated as follows: 

𝐺𝑡 = 𝐼𝑏𝑎𝑠𝑒 ∙ 𝐾𝑏𝑎𝑠𝑒 + 𝐼𝑙𝑜𝑎𝑑 ∙ 𝐾𝑙𝑜𝑎𝑑 (4) 

where 𝐼𝑏𝑎𝑠𝑒  and 𝐼𝑙𝑜𝑎𝑑   are Boolean variables equal to 1 and 0, 

respectively, when the system operates in base-load regime, 𝑃(𝑡) = 0, or 

0 and 1, respectively, when the system operates in load-following regime, 

𝑃(𝑡) = 1.  



𝑊𝑡 can be calculated as follows: 

𝑊𝑡 = 𝐼𝑠𝑎𝑓𝑒 ∙ 𝑈𝑠𝑎𝑓𝑒 + 𝐼𝑠𝑒𝑣𝑒𝑟𝑒 ∙ 𝑈𝑠𝑒𝑣𝑒𝑟𝑒 (5) 

where 𝐼𝑠𝑎𝑓𝑒  and 𝐼𝑠𝑒𝑣𝑒𝑟𝑒   are Boolean variables equal to 1  when the 

system, at time 𝑡, is unavailable due to safe shutdown or severe shutdown. 

𝑋𝑡 can be calculated as follows: 

𝑋𝑡 = ∑ 𝐼𝑙
𝑅𝑈𝐿>0 ∙ 𝑈𝑃𝑀 + 𝐼𝑙

𝑅𝑈𝐿=0 ∙ 𝑈𝐶𝑀

𝐿

𝑙=1

(6) 

where 𝐼𝑙
𝑅𝑈𝐿=0  and 𝐼𝑙

𝑅𝑈𝐿>0  are Boolean variables that indicate whether 

the component has (not) failed at time 𝑡 and, therefore, should undergo 

corrective (preventive) maintenance. 

 

2.4 The environment model 

Despite the agent may in principle find the optimal O&M policy by 

means of direct interactions with the real-world system, this turns out to be 

unfeasible in the case of CPES for economic, safety and time issues: the 

trial-and-error nature of the learning process consists in performing several 

times the actions suggested by the algorithm to explore the solution space, 

leading to economically inconvenient and unsafe system management in 

the early stage of the learning process (when they are not yet optimal); thus, 

the learning agent is typically trained using a white-box environment 

model of the system of interest [4].  

The model here developed that reflects the complex response of the 



CPES to failure scenarios depending on the large variety of system 

information (e.g., components RUL, components state, load-following 

operation plan), consists in a model of the system which can simulate its 

response in the scenarios by the components failures, and in the estimator 

of the components RUL, which provides the estimate of the RUL in the 

form of 𝑅𝑙 of Eq.(2).  

 

3. Reinforcement Learning algorithms 

A schematic view of the RL procedure used in this paper is shown in 

Fig. 1. The decision maker is indicated as the agent and the system it 

interacts with is called environment: they interact continuously, the agent 

selecting actions and the environment responding to those actions with a 

reward that the agent tries to maximize over time [33]. Specifically, at each 

decision time 𝑡 , the agent receives a representation of the environment 

state 𝑠𝑡 (here including the components RULs 𝑅⃑⃑𝑡, the components state 

𝐶𝑡, the maintenance remaining times 𝑀𝑇⃑⃑⃑⃑⃑⃑
𝑡⃑, the production plan 𝑃⃑⃑𝑡 and the 

system state 𝑆𝑦𝑠𝑡), and based on this, it selects an action 𝑎⃑𝑡 to provide 

the optimal order of maintenance actions for the current situations. The 

environment system model simulates the system response to the selected 

action 𝑎⃑𝑡 , moves to the new state 𝑠𝑡+1  resulting from such action and 

returns the corresponding numerical reward 𝑟𝑡 to the agent. By iteratively 

repeating this procedure several times in a trial-and-error manner, the agent 



reaches the optimal policy 𝜋∗(𝑎|𝑠), which maps the possible environment 

states 𝑠 into the optimal actions 𝑎 maximizing the expected cumulative 

sum of rewards over the time horizon 𝐸[∑ 𝛾𝑡 ∙ 𝑟𝑡(𝑎⃑𝑡 , 𝑠𝑡 , 𝑠𝑡+1)
𝑇𝑀
𝑡=0 ], where 

𝛾 is the discount parameter of future rewards. 

 

Fig. 1. Schematic representation of RL procedure. 

In general, RL algorithms can be classified into three groups: policy 

search, value function and actor-critic methods [22]. Policy search 

methods directly look for the optimal policy, 𝜋∗(𝑎|𝑠) , by updating the 

parameters, 𝜃 , of a parameterized policy, 𝜋(𝑎|𝑠; 𝜃) , through which 

optimal actions are selected. These methods typically converge to a local 

optimum rather than to the global optimum [21]. 

Differently, value function methods learn the value of selecting a 

particular action when being in a particular state, 𝑄𝜋(𝑠, 𝑎), which is an 

estimation of the expected future reward obtained by performing action 𝑎 
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in state 𝑠, and, then following the policy 𝜋(𝑎|𝑠). In this way, the optimal 

policy, 𝜋∗(𝑎|𝑠) , is the one that maximizes the action-value function 

𝑄𝜋∗
(𝑠, 𝑎): 

𝜋∗(𝑎|𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄𝜋(𝑎|𝑠)(𝑠, 𝑎) (7) 

Actor-Critic methods learn both the value function and the policy in an 

attempt to combine the strong points of value function and policy search 

methods [22]. Actor-Critic methods consist of two models: the critic, which 

learns the value function, and the actor, which learns the policy by updating 

the parameters in the direction suggested by the critic.  

In the simplest cases, i.e., those in which the state and action spaces are 

small, tabular RL can be implemented. In tabular RL the learning agent is 

represented as a table which stores the state-value (goodness of policy) or 

action-value (goodness of action in the state). Although tabular RL leads 

to find the exact optimal solution, its computational cost makes the 

applications unfeasible to complex systems characterized by large or 

continuous state and/or action spaces [34]. Then, function approximation 

has been introduced to approximate the state-value function or the action-

value function [46]. In principle, linear approximation can be implemented 

for function approximation using different basis functions, e.g., polynomial 

basis or Fourier basis [23]. Deep Neural Networks (DNNs) have recently 

been successfully used for non-linear function approximation, within a 



DRL framework. Indeed, the use of DNNs in continuous and high-

dimensional state spaces makes it possible to extract hidden features, 

which enable the DRL agent to overcome the uncertainty and partial 

observability of the environment. 

In this work, we adopt the state-of-the-art RL algorithm, Proximal 

Policy Optimization (PPO) [35] to optimize the O&M strategy of a CPES. 

PPO is an actor-critic algorithm, which aims at stabilizing the policy 

optimization by constraining the gradient updates, in the attempt to 

monotonically improve the policy. The main idea is to avoid too large 

policy updates, which can increase the probability of accidental 

performance collapses. PPO is considered relatively easy to implement and 

tune, and despite its simplicity, it has been shown able to outperform many 

state-of-the-art approaches on discrete and continuous benchmarks [35] 

and on several applications in different research fields, such as supply 

chains [47], autonomous vehicles [48] and power production plants [4,30–

32]. 

Since in complex system applications the state space is very large, it 

can be hard for the agent to discover the optimal policy 𝜋∗(𝑎|𝑠) in an 

efficient way starting from a random initialization of the neural network. 

This problem has been tackled by including domain knowledge in the 

learning process, using methods such as reward shaping [49] and state-

action similarity solutions [50]. In this work, we resort to Imitation 



Learning (IL) [36], in particular, Behavioral Cloning [51], to generate 

trajectories with a heuristic policy, for pre-training the agent to reproduce 

the heuristic policy in a supervised learning framework. In other words, the 

heuristically generated trajectories are used as training data for the policy 

neural network to learn to pair the state 𝑠𝑡 and the chosen action 𝑎⃑𝑡. Then, 

the agent is fine-tuned using RL to explore new policies and discover the 

optimal one. The interested reader may refer to [36,52–54] for a detailed 

description of the DRL framework here adopted. 

 

4. Case Study: The Advanced Lead-cooled Fast Reactor European 

Demonstrator (ALFRED) 

As a promising technology capable of meeting the Generation IV goals 

of Nuclear Power Plants (NPPs), ALFRED [55,56], a conceptual reactor 

design within the European nuclear community, has been the subject of 

various studies of reactor design [37,57–59], control design [60,61], and 

reliability and risk analysis [62,63]. ALFRED is designed to operate in a 

flexible way [64–66] and is expected to reach operational conditions of an 

industrially deployable small modular lead fast reactor around the year 

2035-2040 [55], making it a perfect candidate of NPPs to be considered for 

coping with the variability of RESs, within a load-following schedule. 

The control of ALFRED is implemented by means of four feedforward 

and Proportional Integral (PI)-based feedback control loops (see Fig. 2) 



[37], that keep four variables 𝑦⃑  (steam temperature 𝑇𝑠𝑡𝑒𝑎𝑚 , Steam 

Generator (SG) pressure 𝑝𝑆𝐺  , cold leg lead temperature 𝑇𝐿,𝑐𝑜𝑙𝑑  and 

thermal power 𝑃𝑇ℎ ) controlled at reference values 𝑦⃑𝑟𝑒𝑓  in full power 

nominal condition, and within the safety thresholds (𝐿⃑⃑𝑦 and 𝑈⃑⃑⃑𝑦) in any 

other operational condition (see Table I). The control system is here 

simplified as composed of 𝐿 = 7 hardware components (4 sensors for the 

variables 𝑇𝑠𝑡𝑒𝑎𝑚 , 𝑝𝑆𝐺  , 𝑇𝐿,𝑐𝑜𝑙𝑑  and 𝑃𝑇ℎ , and 3 actuators for the turbine 

admission valve (𝑘𝑣), the water pump (𝐺𝑤𝑎𝑡𝑒𝑟) and the control rods (𝐶𝑅)). 

Such control system is not only exposed to components stochastic failures, 

but also to cyber failures that can contribute to the ALFRED unreliability 

[63,67,68]; however in this work, the components are considered subjected 

only to stochastic failures over a mission time 𝑇𝑀 of 5 years (1825 days) 

and are equipped with PHM capabilities for estimating their RULs, with a 

zero-mean Gaussian error whose standard deviation is 𝜎𝑅 = 10 days (see 

Eqs. (1) and (2)). The failure time 𝑇𝑙
∗ of each component is sampled from 

an exponential distribution; the failure rates for the components are listed 

in Table II. 

 



 

Fig. 2. ALFRED reactor control system [63]. 

 

TABLE I.  Reference value and safety thresholds of the controlled 

variables [57] 

Controlled 

variable, 𝑦 

Reference value at full 

power nominal 

condition, 𝒚𝒓𝒆𝒇 

Lower safety 

threshold, 𝑳𝒚 

Upper safety 

Threshold, 𝑼𝒚 

𝑇𝑠𝑡𝑒𝑎𝑚 (℃ ) 450 / 550 

𝑝𝑆𝐺  (Pa) 180E5 170E5 190E5 

𝑇𝐿,𝑐𝑜𝑙𝑑 (℃) 400 350 / 

𝑃𝑇ℎ (W) 300E6 270E6 330E6 

 

 

 



TABLE II.  Components failure rates [69]. 

Failure rate/occurrence probability Value 

Sensor failure rate 𝜆𝑠𝑒𝑛𝑠𝑜𝑟 6.20E-3/Year 

Turbine admission valve (𝑘𝑣) failure rate 𝜆𝑘𝑣 6.57E-4/Year 

Water pump (𝐺𝑤𝑎𝑡𝑒𝑟) failure rate 𝜆𝑤𝑎𝑡𝑒𝑟 1.14E-2/Year 

Control rods (𝐶𝑅) failure rate 𝜆𝐶𝑅 5.30E-3/Year 

 

We assume that i) the production plan 𝑃⃑⃑𝑡 (base-load or load-following 

with respect to the probabilities listed in Table III (the load-following cycle 

ranges from 100% to 40% of the normal power for normal operation 

conditions, whereas it can drop to 20% of the normal power, as explained 

in [70])) for 𝐽 = 2 successive days is known, i.e., 𝑃⃑⃑𝑡 = [𝑃0, 𝑃1, 𝑃2], ii) the 

maintenance durations Π𝑃𝑀  and Π𝐶𝑀  are considered as deterministic 

time periods Π𝑃𝑀 = 1.25  days  [71] and Π𝐶𝑀 = 3 .37 days [72], 

respectively, iii) the daily revenues and maintenance costs of PM and CM 

are as listed in Table IV. 

TABLE III.  NPP load-following capability [68,73]. 

Load Cycle 

Number of Load Cycles 

in 70 years lifetime 

Probability per day 

100-90-100 100,000 0.163 

100-80-100 100,000 0.163 



Load Cycle 

Number of Load Cycles 

in 70 years lifetime 

Probability per day 

100-60-100 15,000 0.0245 

100-40-100 12,000 0.0196 

100-20-100 100 1.65E-4 

Load-following - 0.3703 

Base-load - 0.6297 

TABLE IV.  Daily revenues and maintenance costs [71,74,75]. 

Revenue/Cost Value [KEuros per day] 

Normal operation revenue 𝐾𝑏𝑎𝑠𝑒 720  

Flexible operation revenue 𝐾𝑙𝑜𝑎𝑑 900  

Shutdown cost 𝑈𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛 720 

Failure cost 𝑈𝑓𝑎𝑖𝑙𝑢𝑟𝑒 1200 

PM cost 𝑈𝑃𝑀 1.5 

CM cost 𝑈𝐶𝑀 6.2 

 

The ALFRED system model we use in the RL environment is a goal-

oriented logical model, based on the Goal Tree Success Tree-Master Logic 

Diagram (GTST-MLD) (see Appendix B). Once a component is failed, the 

ALFRED system is considered being in safe shutdown and not able to 

continue operating. After initializing the components state and propagating 



the component failure through the GTST-MLD (the interested reader may 

refer to [69,76] for implementation details), the GTST-MLD reliability 

model can evaluate the system response with respect to whether the 

component failure leads the four controlled variables (𝑇𝑠𝑡𝑒𝑎𝑚, 𝑝𝑆𝐺 , 𝑇𝐿,𝑐𝑜𝑙𝑑 

and 𝑃𝑇ℎ) out of the safety thresholds, which is considered to be a system 

failure leading to severe consequences. In other words, the system structure 

and functionality are described by the hierarchical framework GTST and 

the system response to the components failure are simulated by the MLD 

in a transparent way [38,39]. Thus, the GTST-MLD system model can be 

considered as a white-box model which can be applied as the RL 

environment model and used to simulate the interactions with the agent. 

As RL agent, based on the settings in [4,13], we use a DNN with two 

hidden layers of 64 neurons. The IL step is performed by generating 500 

PdM trajectories, which list the state-action-reward triplets following the 

PdM policy that are used to pre-train the agent for 50 epochs to reproduce 

the PdM behavior. Finally the PPO RL is implemented. The discount factor 

𝛾 is set equal to 0.99 by grid searching around the empirical value [4]. 

 

5. Results 

For a fair comparison of the PPO (GTST-MLD) RL, with state-of-

practice strategies, we have considered (in increasing order of complexity) 

i) a CM strategy, ii) a SM strategy, iii) a PdM strategy (i.e., the same policy 



of the IL step used to pre-train the agent in Section 4), iv) a PPO RL (same 

RL without GTST-MLD, as the one shown in [77]). All strategies are tested 

on a set of 100 test sequences of O&M and the corresponding profits and 

losses within the mission time 𝑇𝑀 of 5 years are compared. The SM and 

PdM are performed with 173 days of SM interval and 35 days of PdM RUL 

threshold (found by grid search), respectively.  

In this paper, we use Conditional Value at Risk (CVaR) to evaluate the 

strategies performance, while Value at Risk (VaR) quantifies the extent of 

possible financial losses. (e.g., if the CPES operation profit within the 

mission time has a 95% VaR of 7 million euros, the CPES profit has a 5% 

probability of losing its value by 7 million euros after the operation of the 

mission time). CVaR estimates the expected loss if the losses go beyond 

the VaR cut-off (e.g., the CPES operation profit having a 95% CVaR of 5 

million euros means that the average of losses that are larger than the 95% 

VaR cut-off threshold (e.g., 3 million euros losses) is 5 million euros within 

the mission time). In other words, CVaR provides a measure of the extent 

of the losses that might be suffered beyond the VaR cut-off threshold [78].  

We rely on a Monte Carlo simulation approach to calculate the 95% 

CVaR with respect to 100 different test sequences (for each strategy), in 

which we simulate the sequence of O&M decisions, collect the losses 

(including maintenance cost, safe shutdown cost, severe shutdown cost and 

load-following operation unfulfillment cost (i.e., the difference between 



load-following and base-load profits)): the lower the CVaR estimate, the 

lower the losses and the less the number of safe/severe shutdowns. The 

obtained comparison results are listed in Table V, with the ranking of the 

alternative strategies with respect to average profit, 95% CVaR and average 

number of CM and PM actions needed in the sequence mission time. 

 

TABLE V.  Performance of the tested strategies in terms of average 

profit, 95% CVaR, average number of CM and PM actions over 100 test 

sequences. 

Maintenance 

strategy 

Average profit  

[109euro] 

(Ranking) 

95% CVaR 

[109euro] 

(Ranking) 

Average number 

of CM 

(Ranking) 

Average number 

of PM 

(Ranking) 

Corrective 0.09 ± 0.13 (5) 1.41 ± 0.88 (5) 38.12 ± 5.64 (5) - 

Scheduled 0.53 ± 0.12 (4)  0.93 ± 0.53 (4) 24.32 ± 1.98 (4) 60.47 ± 6.55 (4) 

Predictive 1.18 ± 0.07 (3) 0.30 ± 0.17 (3) 𝟎. 𝟎𝟑 ± 𝟎. 𝟎𝟏 (1) 44.13 ± 5.86 (3) 

PPO 1.39 ± 0.02 (2) 0.04 ± 0.03 (2) 0.05 ± 0.03 (3) 42.03 ± 3.98 (2) 

PPO (GTST-

MLD) 

𝟏. 𝟒𝟒 ± 𝟎. 𝟎𝟐 (1) 𝟎. 𝟎𝟏 ± 𝟎. 𝟎𝟏 (1) 0.04 ± 0.02 (2) 𝟒𝟏. 𝟗𝟕 ± 𝟒. 𝟎𝟔 (1) 

* In bold the best performance 

From Table V, it can be noticed that the CM and SM policies, which are 

commonly used [79,80], cause a large number of components failures, 

leading to an average of 38.12 and 24.32 times of NPP system dysfunction 

(safe shutdown and severe shutdown) during the 5 years mission time, 

respectively (which is equal to the number of CM actions consequently 

performed). The PdM, PPO and PPO (GTST-MLD) policies perform better 

than CM and SM (PPO (GTST-MLD) has the highest profit), due to the 



exploitation of the information on the health state of the components: these 

three policies allocate just-in-time PM actions (44.13, 42.03 and 41.97 on 

average, respectively) to avoid system dysfunction (0.03, 0.05 and 0.04 on 

average, respectively) and, therefore, the consequent CM. The number of 

PM actions of PPO (42.03) and PPO (GTST-MLD) (41.97) are slightly 

smaller than PdM (44.13), due to the smaller average RUL thresholds (35 

days for PdM policy, 31.2 days and 31.4 days on average for PPO and PPO 

(GTST-MLD) policies, respectively) shown in Table VI (in fact, smaller 

average RUL threshold means larger average maintenance interval and less 

interventions). From Table VI, it can be noticed that even if the PPO and 

PPO (GTST-MLD) agents are pre-trained with the same PdM policy, the 

optimized RL agent founds different RUL thresholds setting: the thresholds 

of PPO policy are close to the average value (31.2 days), whereas the 

thresholds of PPO (GTST-MLD) (31.4 days) follow the weights of MLD 

listed in Table VI, which shows the relationship between components and 

system goal function (e.g., the MLD weight linking sensor 𝑝𝑆𝐺  and goal 

function 𝑝𝑆𝐺  control (0.69) means that when the sensor 𝑝𝑆𝐺  fails, there 

is 0.69 probability that the controlled variable 𝑝𝑆𝐺  will be out of the safety 

boundary, causing system severe shutdown) (for further details see 

Appendix A). The PPO (GTST-MLD) recognizes the safety-related 

components with larger MLD weights (sensor 𝑝𝑆𝐺   (0.69), sensor 

𝑃𝑇ℎ (0.98) and control rods (0.58)) and sets higher RUL thresholds (sensor 



𝑝𝑆𝐺  (46.2 days), sensor 𝑃𝑇ℎ (52.6 days), and control rods (43.3 days)) to 

maintain these components in advance for preventing these safety-related 

components from failure, since they have high probability of leading to 

system severe shutdown. The average number of safe shutdowns and 

severe shutdowns over 100 test sequences are listed in Table VII. With the 

components safety importance information (the GTST-MLD weights) and 

reasonable setting of the component RUL (higher RUL threshold for larger 

weights components), the PPO (GTST-MLD) efficiently avoids system 

severe shutdown (0.00 ± 0.01, leading to the lowest 95% CVaR 0.01 ±

0.01 , shown in Table V), whereas PdM and PPO policies suffer severe 

shutdown times (0.03 ± 0.01 and 0.03 ± 0.02, respectively).  

TABLE VI.  Components RUL thresholds of maintenance interventions 

and corresponding GTST-MLD weights. 

Components 

RUL threshold 

of PPO policy 

[days] 

RUL threshold of PPO 

(GTST-MLD) policy 

[days] 

GTST-MLD weights 

𝑻𝒔𝒕𝒆𝒂𝒎 

control 

𝒑𝑺𝑮 

control 

𝑻𝑳,𝒄𝒐𝒍𝒅 

control 

𝑷𝑻𝒉 

control 

Sensor 𝑇𝑠𝑡𝑒𝑎𝑚 33.5 27.9 0 0 0 0 

Sensor 𝑝𝑆𝐺  32.1 46.2 0.35 0.69 1.54E-5 0.12 

Sensor 𝑇𝐿,𝑐𝑜𝑙𝑑  29.7 27.7 0 0.09 0 0 

Sensor 𝑃𝑇h 28.8 52.6 0.11 0.72 0 0.98 



Components 

RUL threshold 

of PPO policy 

[days] 

RUL threshold of PPO 

(GTST-MLD) policy 

[days] 

GTST-MLD weights 

𝑻𝒔𝒕𝒆𝒂𝒎 

control 

𝒑𝑺𝑮 

control 

𝑻𝑳,𝒄𝒐𝒍𝒅 

control 

𝑷𝑻𝒉 

control 

Turbine 

admission valve 

(𝑘𝑣) 

30.4 28.1 0 0 0 0 

Water pump 

(𝐺𝑤𝑎𝑡𝑒𝑟) 

32.7 28.5 0 0 0 2.50E-3 

Control rods 

(𝐶𝑅) 

29.9 43.3 0.06 0.58 0 0.05 

Average RUL 

threshold 

31.2 31.4 

-- 

 

TABLE VII.  Performance of the tested strategies in terms of average 

number of safe/severe shutdowns in 100 test sequences. 

Maintenance 

strategy 

Average number of safe 

shutdowns 

(Ranking) 

Average number of 

severe shutdowns 

(Ranking) 

Predictive 𝟎. 𝟎𝟏 ± 𝟎. 𝟎𝟏 (1) 0.03 ± 0.01 (2) 

PPO 0.02 ± 0.02 (2) 0.03 ± 0.02 (3) 

PPO (GTST-MLD) 0.04 ± 0.02 (3) 𝟎. 𝟎𝟏 ± 𝟎. 𝟎𝟏 (1) 

In Fig. 3, the number of actions performed during specific power 

production plans are plotted for PPO (GTST-MLD), PPO and PdM policies 

(slash, dotted and star bars, respectively). Specifically, on the x-axis, the 



power production plans for 𝐽 = 3  consecutive days are plotted (e.g., 

policy 110, standing for load-following operations on the first two days 

and, then, base-load operation on the third day), together with the 

frequency of occurrence of the production plan (continuous line, whose 

exact value can be calculated from the combination of load-

following/base-load probabilities listed in Table II. It can be seen that the 

number of maintenance actions that the PdM policy chooses on the first 

day of the production plan follows the frequency of occurrence of the load-

following sequences, which means that the PdM policy randomly chooses 

maintenance timing, neglecting the production plan, leading to a low 

performance in following the load. On the contrary, the RL policy (PPO 

(GTST-MLD) and PPO, slash and dotted bars, respectively) mostly 

arranges maintenance activities on base-load days and prefers 000 and 001 

sequences than 010 and 011 sequences, to keep load-following operation 

as much as possible. This means that the RL agent chooses to postpone the 

PM interventions from a load-following day to a base-load day, to 

accommodate the frequency of occurrence of the preferred production 

plans. In other words, the RL agent chooses the actions in light of the 

desired operation plan (i.e., flexible operation) by optimizing the timing of 

maintenance activities. 



 

Fig. 3. Maintenance timing and power production demand sequence 

occurrence over 100 test sequences. 

In addition, it must be noted that, even if the RL policy can preserve 

the load-following operations with a more aggressive O&M policy, that 

requires a smaller average RUL threshold, the resulting ALFRED 

unreliability and unavailability estimation are larger for PPO (GTST-MLD) 

(dotted line) and PPO (dashed-dotted line) than for PdM O&M (dashed 

line) (see Fig. 4 and Fig. 5): as expected, compared with the no- 

maintenance policy (continuous line), all three policies significantly 

decrease the unreliability, with PdM the lowest unreliability and PPO 

(GTST-MLD) and PPO slightly larger unreliability value. The reason is 

that the smaller average RUL thresholds of the PPO (GTST-MLD) and 

PPO may lead to a larger number of unexpected safe/severe shutdowns 



than PdM. But due to the larger RUL thresholds setting for safety-related 

components, PPO (GTST-MLD) can avoid part of the unexpected 

safe/severe shutdowns, leading to a lower unreliability than the PPO policy. 

The same occurs for the unavailability. 

 

Fig. 4. System unreliability. 



 

Fig. 5. System unavailability. 

 

6. Conclusions 

In this paper, we have illustrated the SDP formalization of the O&M 

optimization in CPESs that must operate flexibly to accommodate the 

fluctuations in production coming from the penetration of RESs into the 

power grid and the uncertainty in power demand, for providing reliable and 

safe power production and supply. A novel DRL-based approach has been 

developed to solve the SDP, in which an agent-neural network is trained by 

interacting with the CPES model that embeds the system failure process 

model to search for the optimal policy, i.e., choose the best O&M action to 

be performed on the basis of the available information (e.g., production 



plan, component RUL, component state, maintenance remaining time, 

system state) and learning from the set of previous maintenance activities 

performed.  

The proposed approach has been applied to an advanced NPP design, 

ALFRED, and shown to be capable of providing an optimized O&M policy 

that tends to dynamically arrange the maintenance interventions on the 

base-load days, to preserve flexible operation as much as possible, i.e., the 

proposed approach optimizes the maintenance activities in light of the RUL 

of the CPES components, the severity of the consequences of their failures 

and the compliance with the operation plan (base-load or load-following) 

to satisfy the flexible operation needs while avoiding system shutdown 

caused by components failures. With the system reliability model by 

GTST-MLD, the DRL-based approach can recognize the safety-related 

components and set higher RUL thresholds to prevent system severe 

shutdown due to their critical failures. The DRL-based policy proposed 

here can outperform the state-of-practice policies (CM, SM, PdM and PPO 

without GTST-MLD) and keep the production availability and profitability 

high (and the costs low). 

Future works will regard: 

• Train the RL agent to obtain the proper maintenance activity 

considering not only the components stochastic failures, but also 

cyber aging and cyber failures  



• Due to the variability of the dynamic energy market and RES, the 

fluctuation of energy price and power generation will affect the 

profit, with clear effects on the selection of the O&M strategy. Thus, 

the integral analysis and joint prediction of energy price, power 

generation and demands should be taken into consideration.  

• Besides the failure of physical and cyber parts of CPESs, the effects 

of the external environment should also be accounted for in the 

O&M strategy, for example, the unavailability of cooling water due 

to climate change and abnormal weather conditions [81]. 

  



Appendix A. Imitation Learning and Reinforcement Learning 

Imitation learning (IL) is a type of supervised machine learning 

technique which is used for various tasks, including control, decision 

making and manipulation, and has shown promising results in several 

fields such as robotics, autonomous driving, and gaming [51].  

In this work, IL is applied to pre-train the O&M decision making agent 

before the Reinforcement Learning (RL) step [4]. After IL, the agent model 

learns to perform the O&M decision task by observing and imitating the 

behavior of the given heuristic Predictive Maintenance (PdM) strategy. 

This is typically done by training the agent (neural network) to predict the 

actions 𝑎⃑𝑡 that the heuristic PdM strategy would take in a given CPES 

state 𝑠𝑡 and get the reward 𝑟𝑡. The implementation of Imitation learning 

can be summarized as: 

1. Collect heuristic trajectories: this involves obtaining the heuristic 

PdM strategy state-action-reward triplets (𝑠𝑡 , 𝑎⃑𝑡 , 𝑟𝑡) through each 

step of 𝑁𝐼𝐿 times of CPES environment model simulation within 

the mission time (in this work, 𝑁𝐼𝐿 = 500), which are fed to the 

agent model as the supervised training dataset. 

2. Define the agent model: this involves defining and initializing the 

agent neural network. In this work, the neural network has two 

hidden layers of 64 neurons.  

3. Train the model: this involves feeding the training data (state-



action-reward triplets) into the model and training it using a 

supervised learning algorithm. 

The pseudocode of IL is shown in Fig. A1. 

 

Fig. A1. Pseudocode for IL. 

After pre-training the agent by IL, the RL can be implemented as 

follows: at each decision time 𝑡, the agent receives a representation of the 

environment state 𝑠𝑡, and the agent will select an action 𝑎⃑𝑡 based on the 

action selection policy (e.g., epsilon-greedy [33]). The environment system 

model simulates the system response 𝑠𝑡+1 to the selected action 𝑎⃑𝑡, and 

returns the corresponding numerical reward 𝑟𝑡  to the agent. Then, the 

agent policy is updated with RL algorithm (in this work, PPO is 

implemented [35]) and the current state is set to 𝑠𝑡+1 . By iteratively 



repeating this procedure several times, the agent reaches the optimal policy. 

The pseudocode of implementing training of RL is shown in Fig. A2. 

 

Fig. A2. Pseudocode for RL training. 

 

  



Appendix B. The Goal Tree Success Tree-Master Logic Diagram (GTST-

MLD) Model 

The Goal Tree Success Tree-Master Logic Diagram (GTST-MLD) 

method has been proposed to analyze the scenarios generated by the 

combination of stochastic failures of the hardware components and 

malicious, intentional attacks to the cyber elements of a CPES [69,76]. The 

GTST-MLD provides a comprehensive modeling of the system response. 

It does so by decomposing the system logic from the point of view of goal 

functions in the Goal Tree (GT), down to the components and functions 

that they provide, represented in the Success Tree (ST) and MLD [82]. The 

GTST-MLD for ALFRED is shown in Fig. B1. 

The MLD weights [38] represent the strength of the relationship 

between components and functions. To overcome the subjectivity of expert 

judgment in assigning the weights 𝐶𝐹𝑐,𝑓  (relationship between main 

components and subfunctions), a simulation-based inference method is 

proposed in [38] based on Bracketing Order Statistics [83] to estimate the 

weights probabilistically. The estimated weights are listed in Table B1 [38]. 

As commonly done when using GTST-MLD, after initialization and 

propagation step, the top goal function fulfillment can be simulated 

considering the AND/OR logic gates that define the relationships among 

subfunctions and the top goal function [38,69,76]. 

 



 

Fig. B1. GTST-MLD for ALFRED 

 
  
 
  

 
  
  
  
  

  
  
  

  
  
  

 
  
  
  
   
  
 

  
  
  

 
  
  
  

  
 
  
  
  
  
 

  
  

  
 

  
 
 

  
  
  

  
 

  

  
  
  
  

  
  
  
   
  
 

  
  
  
  

  
  
  

  
 

  
  
 

 
  
  
 

  
 
 

  
  
  
  
  
  

  
  

  
  

  
  
  

  
 

  
  
  
  

  
  

  
  
  

  
  
  
  

  
  
  
  
  
 

  
  
  
  
  
  
  
 

  
  
  
  
  
 

 
  
 
  

 
  
  
 
  
  
  
 

  

  

  

  

  

  

  

  

  

  
 

  
 

  
  

  
  

 
 
  

   
  
 

  
  
  
  
  
  



TABLE B1. Weights between main components and subfunctions 

 𝑻𝒔𝒕𝒆𝒂𝒎 control 𝒑𝑺𝑮 control 𝑻𝑳,𝒄𝒐𝒍𝒅 control 𝑷𝑻𝒉 control 

Sensor for 

𝑇𝑠𝑡𝑒𝑎𝑚 

0 0 0 0 

Sensor for 

𝑝𝑆𝐺  

0.35 0.69 1.54E-5 0.12 

Sensor for 

𝑇𝐿,𝑐𝑜𝑙𝑑 

0 0.09 0 0 

Sensor for 

𝑃𝑇ℎ 

0.11 0.72 0 

0.98 

Turbine 

admission 

valve (𝑘𝑣) 

0 0 0 0 

Water pump 

(𝐺𝑤𝑎𝑡𝑒𝑟) 

0 0 0 2.50E-3 

Control 

rods (𝐶𝑅) 

0.06 0.58 0 0.05 
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