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Abstract

Tropical cyclone genesis indices are valuable tools for studying the relationship between large-scale
environmental fields and the genesis of tropical cyclones, supporting the identification of future trends
of cyclone genesis. However, their formulation is generally derived from simple statistical models
(e.g., multiple linear regression) and are not optimised globally. In this paper, we present a simple
framework for optimising genesis indexes given a user-specified trade-off between two performance
metrics, which measure how well an index captures the spatial and interannual variability of tropical
cyclone genesis. We apply the proposed framework to the popular Emanuel and Nolan Genesis
Potential Index, yielding new, optimised formulas that correspond to different trade-offs between
spatial and interannual variability. Result show that our refined indexes can improve the performance
of the Emanuel and Nolan index up to 8% for spatial variability and 16%—22% for interannual
variability; this improvement was found to be statistically significant (p < 0.01). Lastly, by analysing
the formulas found, we give some insights into the role of the different inputs of the index in
maximising one metric or the other.

1. Introduction

Tropical cyclones (TCs) are among the deadliest and costliest natural disasters [1]. Over the last decades, the
accuracy of short-term forecasts of TC genesis has increased substantially [2]. Yet, predicting global TC activity
on longer time scales, from seasonal to multi-decadal, remains challenging [3]. This is due to the lack of a
complete understanding of the processes behind the genesis of tropical cyclones [4]. In this context, empirical
methods exploring the relationship between tropical cyclones and the large-scale environment are a suitable
alternative [5] to developing models for short- and long-term TC forecasting and tracking and understanding
how climate change will affect TC frequency and intensity globally and locally.

Two approaches exist for studying the TC-climate relationship. The first involves the use of general
circulation models (GCMs) [6-9]. Once regarded as unable to simulate TC-like vortices accurately [ 10], such
models have been improved considerably over the years thanks to increasing computational power. They are
now robust enough that realistic TCs can be found in their simulations [11-14]. Nevertheless, they are either
computationally expensive to run [15] or have relatively low spatial and temporal resolution [13]. Therefore,
obtaining robust predictions of future TC activity from GCMs is still challenging [16]. However, to overcome
the low resolution of such models, downscaling strategies can be applied which have been shown to be useful
tools for studying climate projections of TC genesis [17, 18]. The most confident GCM projections [19] estimate
thata 2 °Cincrease in global temperatures will lead to higher TC inundation levels [20], due to a combination of
sea level rise, projected slower TC translation speed [21, 22] and higher TC precipitation rates [23-25].
Furthermore, whereas the frequency of TCs is projected to decrease (though this estimate is less confident than
the ones above [20]), their average (and highest) intensity is projected to increase, and, as intensity is often linked
with damage, so is their cost [11, 26].
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Alternatively, the connection between environmental drivers and TCG can be empirically modelled [10, 16].
Typically, this connection takes the form of indices (namely Genesis Indices (Gls)) that combine a set of large-
scale dynamic and thermodynamic atmospheric and oceanic predictors into a single variable. The magnitude of
the index indicates how favourable environmental conditions are to the formation of cyclones. Under the
assumption that the input variables can be skilfully predicted, it is possible to estimate how cyclone generation
frequency and distribution will change under future climate conditions or predict if an upcoming hurricane
season is likely to be particularly severe. Using GIs has some key advantages over relying on GCM-
generated TCs:

(i) Indexes are easy to compute—they typically consist of the product of the predictors scaled by empirically
derived exponents and coefficients [27].

(if) They can be applied to data at different temporal and spatial resolutions, from regional to global scale. They
can even be applied to data produced by different models.

(iii)

Currently, climate models are more skilful at simulating large-scale environmental variables than TC-like

vortices, meaning the performance of GIs is hindered mainly by the chosen predictors and the way they are
combined together.

GIs have been applied in a variety of studies, such as linking changes in TC activity to patterns of climate
variability such as the Madden-Julian Oscillation [28] and the E1 Nifio /Southern Oscillation [27, 29], or
assessing the role of specific large-scale fields in TCG [5]. Yet, GIs suffer from some limitations. Although they
are generally robust at replicating TCG’s spatial distribution and seasonal cycle [16, 30, 31], they struggle to
capture its interannual variability. Yu et al [16] reported a correlation coefficient of -0.04 between a particular GI
and historical data for the interannual variability of TCG over the western North Pacific. Refined index versions
involving different combinations of variables have been shown to improve this specific aspect [32]. However, the
optimality of the chosen parameterisation and its effect on the index skill have not yet been explored.
Furthermore, most of the commonly used GIs cannot explain the decreasing trend of TCs occurrence detected
in climate projections [33]. Finally, though GIs work fairly well on different reanalysis datasets [34], they are
typically fitted to a specific dataset with a given bias and spatio-temporal resolution and are not universally
optimised [27]. Consequently, GIs need to be scaled by a factor when applied to datasets other than the one they
were originally fit, making it cumbersome to compare the performance of different GIs or their performance
across different datasets [30].

In this paper, we introduce an optimisation-based framework to refine Gls for three main purposes:

(i) To improve the performance of GIs by finding the globally optimum combination of the chosen predictors.

(ii)To provide a systematic assessment of the sensitivity of the index performance in reproducing a set of
statistical properties of the observed TCs (e.g. spatial pattern and interannual variability) on the numerical
coefficients used to weight the large-scale variables in the index.

(iii)

To offer several versions of the optimised GI, each corresponding to a different trade-off (selected by the user)

between two performance metrics.

The rest of the paper will describe how the proposed framework is structured and present different
optimised versions of the Emanuel and Nolan Genesis Potential Index [35], widely regarded as one of the best
Gls available [30].

2. Datasets and methodologies

2.1. The ENGPI

The Emanuel and Nolan Genesis Potential Index (hereafter ENGPI) is a refinement of Gray’s seasonal genesis
parameter parameter [36], the first GI ever developed. We chose it because it is arguably the most studied GI in
theliterature [5, 15,31, 37, 38, 10, 27, 28, 30, 16, 32]. Yet, the same framework described here can be applied to
any other GI with minimal changes.
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The ENGPT’s formula is:

RHyo0\* ( MPI'Y
ENGPI = (1 4 0.1 Vipear,850—200) > (—700) (—) 110%7550*/2 (1
50 70
where Viear.850—200 i the magnitude of the vertical wind shear between 850 and 200 hPa (in ms™"); RHyq, is the
relative humidity at 700 hPa (in %); 7ss0 is the absolute vorticity at 850 hPa (in s~ '); and MPI is the Maximum
Potential Intensity (in ms '), which is the theoretical maximum intensity a TC is expected to reach. MPI was
originally formulated by Emanuel [39] and later modified by Bister and Emanuel [40], taking the form of the
following equation:
Gk L-T

MPI?2 = =
G T

(hy — %) (©))

where Crand Cp are the surface enthalpy and momentum exchange coefficients; T;is the sea surface
temperature (in K ); T, is the outflow temperature (in K ); and k. and h* are the saturation moist static energies
of the sea surface and of the free atmosphere, respectively. The MPI was arguably the most crucial addition in the
ENGI formula compared to Gray’s index, which instead uses the near-surface ocean thermal energy (integrated
over waters with temperature above 26.5°C) and the vertical gradient of the equivalent potential temperature
between the surface and 500 hPa.

2.2. Datasets

We used the best-track data from the International Best track Archive for Climate Stewardship (IBTrACS)
project (version v04r00, downloaded from:https: //www.ncdc.noaa.gov/ibtracs/; [41]), ata temporal
resolution of 3h, between 1980 and 2020 as a source for observed TCG. IBTrACS is a curated collection of TC
data compiled by multiple international organisations. In this study, we define TCG as the first time step in
IBTrACS when a TC reached an intensity (in terms of maximum sustained wind speed) of 35 kt. We excluded all
the events classified in IBTrACS as either spurious or extra-tropical [42] and counted all remaining TCG events
over aglobal 2.5° x 2.5° latitude/longitude grid.

We took the inputs to the ENGPI from two reanalysis datasets: ECMWF’s ERA5 dataset (https: //cds.
climate.copernicus.eu/#!/search?text=FERA5&type=dataset; [43]) and NASA’s MERRA?2 dataset (https://
disc.gsfc.nasa.gov/datasets?project=MERRA-2; [44]). Prior to their download, we interpolated both datasets to
a2.5° x 2.5%latitude/longitude grid over the 1980-2020 period, with a monthly temporal resolution.

2.3. Optimisation framework
To find optimal configurations of the ENGPI, we used the NSGA-II multi-objective genetic algorithm [45].
Genetic algorithms have properties that make them especially suitable for this task:

+ They efficiently explore an arbitrarily large space of solutions.

+ Unlike gradient-based optimisation algorithms, they do not require derivatives to be computed and therefore
can be applied to a wider range of functions.

+ They support the definition of multiple optimisation objectives and they output a Pareto front of solutions,
i.e., they generate a set of solutions that represent a spectrum of optimal trade-offs between maximizing one
objective or the other(s).

+ Theyare robust against local minima and maxima [46].

We chose the NSGA-II genetic algorithm because it is one of the most well known and studied multi-
objective genetic algorithms and it has been found to perform well on a variety of tasks. Furthermore, it has been
shown to outperform other genetic algorithms, particularly when few objectives are used [47-49]. An in-depth
description of NSGA-II is beyond the scope of this paper”, but a simple, high-level overview of how it works is
given in figure 1. In brief, given a series of parameters to optimise, the algorithm generates an initial set
(population) of random candidates, then selects the ones that perform best according to some specified objective
function(s), and finally introduces randomness in the selected solutions by randomly mixing them together
(crossover) and mutating some of their parameters; a new population is then created (retaining the offspring of
the previous generation and the best-performing (elite) individuals of all previous generations), and the process
continues until either a set number of generations has been created or the objectives have reached a desired value.

In our proposed framework, the NSGA-II algorithm searches the space of the parameters in the ENGPI
formula and optimises them so that the resulting ENGPI maximises two objective functions:

2 . . . o . . .. -
Readers interested in the details of its implementation should refer to its original paper: [45]
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Figure 1. High-level flowchart of how genetic algorithms work.
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Figure 2. Spatial distributions of TCG as observed in IBTTACS (panel A) and in the original ENGP], calculated using data from ERA5
(panel B) and MERRAZ2 (panel C). All maps are averaged over the entire time period. Spatial correlation is computed from these maps
by taking the average cell-by-cell correlation between two maps. The unit of measure is the number of TCs per year.

« spatial correlation, defined as the cell-by-cell correlation between the ENGPI and the observed TCG data from
IBTrACS (averaged over the entire period) (e.g., figure 2).

« temporal correlation, defined as the correlation between the curves of yearly TCG of the ENGPI and the

observed TCG data (e.g. figure 4).
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We ran NSGA II for 10,000 iterations searching the exponent’s space in the range of [-3, 3] and coefficient’s
in the range of [0.01, 100]; we chose the extremes of the ranges so that the search space would be as large as
possible while preventing the computed indices from incurring into numerical over/underflow (i.e. due to too
large/small exponents). The algorithm was also allowed to choose at which pressure level to select each variable.
The pressure levels from which we allowed the algorithm to choose were 1000, 850, 700, 600, 500, 250, 200, 100,
50, 10, and 1 hPa; we selected these levels to give the algorithm the largest possible search space while avoiding
taking all pressure levels present in ERA5 and MERRA2, due to computational constraints. Furthermore,
following the improvement over the ENGPI proposed by Wang and Murakami [32], we added an additional
parameter (a power of the exponential function) to the ENGPI formula, transforming it into:

RHyo0\ ( MPI'Y?
ENGPI = (1 4 0.1 Viear,850—200) (5—0700) (7) 1109775/ * €* (3

where x, the exponent of the exponential, is optimised along with all other exponents and coefficients. The
purpose of this parameter is merely to scale the ENGPI and should not impact the index’s physical properties.

We re-evaluated the optimal solutions on both datasets using three metrics: spatial correlation, temporal
correlation, and seasonal correlation, defined as the correlation between the curves of monthly total TCG in
ENGPI and IBTTrACS (e.g., figure 3). Here, two of the objectives correspond to two of the metrics, but this is not
necessarily always the case, as the optimisation and evaluation phases are disentangled.

Following Emanuel and Nolan [35] we use the seasonal correlation as an evaluation metric and therefore it
was included here for comparison.

3. Results and discussion

3.1.Baseline
The evaluation metrics reported in table 1 constitute the baseline against which to compare the solutions found
by the optimisation algorithm. The plots from which the correlations in table 1 were calculated are shown in
figures 2, 3, and 4 for spatial, seasonal, and temporal correlation, respectively. As per Menkes et al [30], the values
shown in figure 1 are scaled by a factor that brings the total average yearly number of TCs to equal that of data
from IBTrACS.

As previously reported, these results shown how the original ENGPI captures well the spatial and seasonal
distribution of TCG (and it does so equally well across different datasets), but fails to capture the interannual
variability of TCG.

3.2. Optimised solutions

The optimisation runs for the ERA5 and MERRA2 datasets generated two Pareto fronts (figures 5 and 6,
respectively). To illustrate the differences between the solutions found, we sampled three solutions from each
front (see table 2 and figures 5 and 6): one for either extreme of the front, and a balanced trade-off between
spatial and temporal correlation.

Let us first consider solutions (b) and (e), which are arguably the most well-balanced solutions found for
ERA5 and MERRA2, respectively. For the dataset on which they were optimised, both solutions performed
better than the baseline by about 8% for spatial correlation and 16%—22% for temporal correlation. The
statistical significance (p < 0.01) of these results was confirmed using a Monte Carlo approach: 50,000 versions
of the ENGPI were created with random exponents, and their performance (in terms of spatial and temporal
correlation) was tested against the baseline ENGPI, creating a statistical distribution of the improvement of the
randomised indices over the baseline ENGPI; Solutions (b) and (e) were found to be within the 99th percentile of
this distribution. By comparing these solutions with neighbouring ones in the Pareto front, we found that the
main similarity between them was that they all selected absolute vorticity at 600 hPa instead of at 850 hPa.
Although most numerical models use vorticity at 850 hPa, some evidence of the physical importance of vorticity
at 600 hPa exists. Specifically, Wang [50] and Murthy et al [51] show that in the vertical structure of TCs the peak
of vorticity occurs at 600 hPa, not at 850 hPa. Therefore, the algorithm chooses to take vorticity at the height at
which the maximum occurs as a way to assign more importance to this variable.

As for the temporal correlation improvements, in the majority of solutions found they are related mostly to
lowered exponents for the thermodynamic variables (relative humidity and MPI). Indeed, by inspecting
solutions (a) and (d), which are the ones with the highest temporal correlation for ERA5 and MERRA2,
respectively, it appears that the algorithm is trying to remove these two variables from the equation by setting
very low exponents for them and even taking relative humidity at 1 hPa. As at such a height, we expect there not
to be any relative humidity, this indicates that, once the exponents are set to low enough values, this variable has
little to no influence on the performance of the equation. This finding is in agreement with the work by Wang

5
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Figure 3. Month-by-month number of total TCG events in the time period, as counted in IBTrACS and in the original ENGP]I, using
data from ERA5 (panel A) and MERRA?2 (panel B). The plots show separate curves for the Northern Hemisphere (NH) and for the
Souther Hemisphere (SH). Seasonal correlation is computed from these curves by summing the values for the two hemispheres and
then computing the correlation between the ENGPI and IBTrACS curves.

Table 1. Performance of the original ENGPL

Evaluation metric ERA5 MERRA2

Ropatial 0.616 0.635
Rseasomzl 0.967 0.977
Riemporal 0.269 0.170

and Murakami [32], who use an input variable selection algorithm to find the best variables to construct a novel
Gl and found that no thermodynamic variables were selected. Furthermore, as indicated by Sharmila and Walsh.
[52], relative humidity and MPI are not relevant predictors of the annual TCG variability in the western and
eastern Pacific oceans. As these two basins contain more than 50% of all TCG events, it is plausible that a globally
optimised index would attempt to ignore those two thermodynamic variables, as, on average, they help little to
improve the temporal correlation as calculated here.

However, caution should be employed when interpreting solutions from either extreme of the Pareto fronts,
as one objective may have been maximised at the expense of the physical meaning of the other. Indeed, the
spatial distribution maps for solution (a) are considerably less realistic than the baseline (see figure 7), with a
non-trivial likelihood of TCG being detected as far south as 40°S and as far north as in the Mediterranean Sea.

6
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Figure 4. Year-by-year number of yearly TCG events in the time period, as counted in IBTrACS and in the original ENGPI, using data
from ERA5 (panel A) and MERRA2 (panel B). Temporal correlation is calculated by taking the correlation between two curves in the
same plot.

This indicates that the solutions at the tails of the Pareto fronts may have achieved high values in one objective
function just by virtue of chance, but do not represent a physically realistic model of TCG. Furthermore, even
though the temporal correlation in solution (a) is more than twice as higher than in the baseline, it still does not
capture the true interannual variability of TCG (figure 8), potentially because the variables that truly explain the
interannual variability of TCG are not present in the ENGPI. Furthermore, one would expect that a formulation
of the ENGPI that captured the true underlying mechanisms of TCG would not need to optimise one objective
at the expense of the other. Therefore, it is possible that the solutions in the middle of the Pareto front, where
both objectives are optimised simultaneously, are closer to the true physical model of TCG.

Another observation we derive from table 2 is that solutions found by optimising on one dataset are almost
equivalently valid when evaluated on the other. For example, figures 9 and 10 show how the spatial distribution
maps and interannual variability curves of solution (b) (optimised on ERA5) are similar when evaluated on
ERA5 and MERRA2. Also, the main difference between solutions found in the two datasets seems to be that
solutions in MERRAZ2 tend to select variables at higher altitudes than solutions in ERA5. Two striking similarities
are that exponents for vertical wind shear are almost always selected to be in the range [—3, —2.4], and those for
absolute vorticity in the vicinity of 2.

Finally, especially in the neighbourhood of solutions (b) and (e), there exist many formulations of the ENGPI
that lead to almost equivalent performance (figures 5 and 6). The fact that no single solution sticks out as the
clear global optimum for both objective functions indicates that the formula may be over-parameterised.
Therefore, it may be beneficial to extend the proposed framework to GIs composed of different input variables

7
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from the one in the ENGPI, potentially even letting an input variable selection algorithm choose which variables
to include.

4. Conclusions

In this paper, we presented a framework to optimise the parameters of tropical cyclone genesis indices with
respect to different evaluation metrics. Rather than resulting in a single expression of the index, which is
arbitrarily selected according to a chosen evaluation metric and whose optimisation is sensitive to the training
data, this framework provides as an output a family of equally optimal solutions, together with an assessment of
the skill of each of the family members on the different evaluation metrics. Therefore, the users of the index can
select their preferred trade-off between the spatial and temporal correlation metrics.

As an application of this framework, the reported results show that the framework can substantially improve
the performance of the Emanual and Nolan Genesis Potential Index (ENGPI) performance in terms of both
spatial and temporal correlation. Selecting a solution with a balanced improvement of the two considered
performance metrics, we show that one of the most notable improvements over the baseline ENGPI is due to the
selection of absolute vorticity at 600 instead of 850 hPa, which leads to improvements in spatial correlation of

8
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Figure 7. Spatial distribution of IBTrACS (panel A) compared to solution (a) (panel B). The unit of measure is the number of TCs per
year.

Table 2. Performance of the solutions selected from figures 5 and 6. Each horizontal block of
the table reports a solution, with the corresponding equation at the bottom of the block. The
second column indicates on which dataset the solution was optimised, whereas columns four
and five indicate on which dataset the reported evaluation metrics were calculated.

Evaluated on
Solution Optimised on Evaluation metric ERA5 MERRA2
@ ERA5 Ropaial 0.493 0.500
Reeasonal 0.978 0.978
Ricnmporal 0.570 0.310
3.0 RH)* MPI03
0GPI(a) = (91.0 + 20.0 Vs g50-250) === Injgq 10°2e?*
() ERAS Repatial 0.696 0.700
Rseasunul 0.990 0.985
Riemporal 0.430 0.260
_ 5.9 RHz00>> MPI'8
0GPI(b) = (98.9 + 23.5 Vs gs0-250) > 22— IMggp 107700
() ERA5 Roparial 0.727 0.741
Rseasunal 0.988 0.985
Reemporal 0.219 0.055
_ RH; 3.0 MPIZ'6
oGPI(c) = (91.2 + 44.3 V5600-250) 2'9—7?2 1o 500 105129
(d) MERRA2 Rypatial 0.046 —0.005
Rseasonal 0.483 0.05
thn%oml 06 0.391 0.617
RHig00™" MPI*-6 5
oGPI(d) = (14.7 + 99.2 \@,250750)0'6%W|U1000 1052121
(e) MERRA2 Ropatial 0.688 0.718
Reeasona 0.961 0.966
Riemporal 0.279 0.393
5.5 RHio0! MPI0©
oGPI (e) = (15.9 + 28.4 Vs s500_200) "> 7‘5"‘5’ wie Moo 10°]%0¢19
(f) MERRA2 Rspatiul 0.713 0.752
Rseasunal 0.989 0.984
Riemparal 0.168 0.165

oGPI(f) = (20.3 + 18.3 Vs 500_250) >

RHe00>" MPP7
758 948

|T/600 105|2'161'7

about 8%. Also, the results suggest that the two thermodynamic variables (relative humidity and MPI) hinder
the ability of the index to capture the interannual variability of TCG, and that lowering their weight in the
equation by assigning small exponents to them may lead to values of TC interannual variability closer to the

observations.
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Figure 8. Interannual variability curves for solution (a). Although the correlation between the two curves is reasonably high, the two
still appear to be quite different, especially in the distance between peaks.
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Figure 9. Spatial distribution of IBTrACS (panel A) compared to solution (a) evaluated on ERA5 (panel B) and on MERRA2 (panel C).
The unit of measure is the number of TCs per year.

The flexibility of the framework allows for tests similar to the one carried here to be repeated under different
conditions: using different data, different input variables, different baseline indices, and different optimisation
algorithms altogether. Future work should aim to extend the proposed framework to these different settings.
Furthermore, future work should explore the option of selecting new inputs for the ENGPI by using an input
variable selection algorithm.
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Figure 10. Interannual variability curves for solution (b), as evaluated on ERA5 (panel A) and MERRA2 (panel B).
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