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Abstract—This work considers a Poisson noise channel with an
amplitude constraint. It is well-known that the capacity-achieving
input distribution for this channel is discrete with finitely many
points. We sharpen this result by introducing upper and lower
bounds on the number of mass points. In particular, the upper
bound of order AlogZ(A) and lower bound of order \/A are
established where A is the constraint on the input amplitude.
In addition, along the way, we show several other properties of
the capacity and capacity-achieving distribution. For example, it
is shown that the capacity is equal to — log Py~ (0) where Py«
is the optimal output distribution. Moreover, an upper bound
on the values of the probability masses of the capacity-achieving
distribution and a lower bound on the probability of the largest
mass point are established.

I. INTRODUCTION

We consider a discrete-time memoryless Poisson channel.
The output Y of this channel takes value on the set of
nonnegative integers, and the input X takes value on the set
of non-negative real numbers. The conditional probability mass
function (pmf) of the output random variable Y given the input
X that specifies the channel is given by

1
Py x(ylz) = nye_z, z >0,y e NU{0}. (1)

In (1), we use the standard convention that 0° = 1 and 0! = 1.
The capacity of this channel where the input X is subject to
the amplitude constraint 0 < X < A is given by

C(A) = I(X:Y), A>0. )

max
X:0<X<A
Finding the capacity of this channel remains to be an elusive
task. The goal of this work is to make progress on this problem
by studying the properties of the capacity achieving distribution
denoted by Px-.

Prior Work: The now classical approach developed by
Witsenhausen in [1] says that if the output alphabet has a
cardinality n, then the support of the optimal input distribution
cannot be more than n irrespective of the size of the input
alphabet. However, since the output alphabet of the Poisson
noise channel has a countably infinite alphabet, the Witsen-
hausen approach does not apply. Instead, the approach that has
been applied to the Poisson noise channel largely follows the
analyticity idea introduced by Smith in [2] in the context of
amplitude constrained Gaussian noise channel. The interested
reader is referred to [3] for a summary of these techniques. In
this work, we also follow the latter technique. However, we
considerably generalize and improve this approach. In what

follows, we summarize the known results on the Poisson noise
channel and highlight the elements of the new technique.

The discrete-time Poisson noise channel is suited to model
low intensity, direct detection optical communication channels
[4]; the interested reader is also referred to a survey on free
space optical communications in [5]. The Poisson channel
can be seen as a limiting case of the Binomial channel [6],
which can be used to model the number of particles absorbed
by a receiver unit in molecular communications [7]. A key
difference in the mathematical formulation between the Poisson
and the Binomial channel models is the infinite/finite nature
of the output alphabet. In this work, we are concerned with
the discrete-time channel; however, there also exists a large
literature on continuous-time channels, and the interested reader
is referred to a survey in [8].

The first major study of the capacity achieving distribution
for the Poisson channel was undertaken in [9], where the
authors consider the capacity of a Poisson channel in (1)
with and without the additional power constraint on the input
(.., E[X] < P.)! The authors of [9] derived the Karush-
Kuhn-Tucker (KKT) conditions that are necessary to study the
structure of the capacity achieving distribution. These KKT
conditions were then used to show that the support of an
optimal input distribution for any A can contain at most one
mass point in the open interval (0, 1). Moreover, for any A < 1,
it was shown that the optimal input distribution consists of two
mass points at 0 and A and the capacity is given by

1
Px+(A) = ———————— Px+(0) =1 —Px+(A), (3)
ehi-1 —e A1

C(A) = —log (Px+(0) + e *Py+(A)) . “)

The KKT conditions proposed in [9] were rigorously derived
in [10, Corollary 1] and extended to a more general case that
includes the possibility of a non-zero dark current parameter.
Moreover, using the analyticity idea of [2], in [10] for A < co
and any P > 0 it was shown that the optimizing input
distribution is unique and discrete with finitely many mass
points. Moreover, for the case of P > A (i.e., the power
constraint is not active) and dark current is zero, it was shown
that the distribution in (3) continues to be capacity achieving
if and only if A < A where A = 3.3679.

Further studies of the conditions under which the capacity
achieving distribution is binary have been undertaken by the

In the Poisson noise channel the power is measured in terms of the first
moment of X.



authors of [11] and [12]. For example, in [11], it was shown that
with both the amplitude and the power constraint, the optimal
input distribution always contains a mass point at 0. Moreover,
in the case of only an amplitude constraint, the optimal input
distribution contains mass points at both 0 and A. In [12], it
was shown that if P < % and the dark current is large enough,
the following binary distribution is optimal: Px«(0) = 1 —
8, Px+(A) = £. The capacity achieving distribution with only
an average power constraint was considered in [13] and was
shown to be discrete with infinitely many mass points.

The low power and the low amplitude asymptotics of the
capacity have been studied in [14]-[18]. A number of papers
have also focused on upper and lower bounds on the capacity.
The first upper and lower bounds on the capacity have been
derived in [9] for two situations: the case of the average power
constraint only, and the case of both the average power and
the amplitude constraint with A < 1. The authors of [19]
derived upper and lower bounds, in the case of the average
power constraint only, by focusing on the regime where both
P and the dark current tend to infinity with a fixed ratio. Firm
upper and lower bounds on the capacity in the case of only
the average power constraint and no dark current have been
derived in [14] and [15], and further improved in [13] and
[20]. The most general bounds on the capacity that consider
both the amplitude and the average power constraints on the
input and hold for an arbitrary value of the dark current have
been derived in [21]. The bounds in [21] have been shown to
be tight in the regime where both the average power and the
amplitude constraint approach infinity with a fixed ratio %.

In order to find an upper bound on the values of probability
masses and a lower bound on the number of mass points, we
will rely on the strong data-processing inequality for the relative
entropy. The study of the strong data-processing inequalities
has recently received some attention, and the interested reader
is referred to [22]-[24].

To find an upper bound on the number of points in the
support of Py, we will follow the proof technique developed
in [25] for the Gaussian noise channel. The key step that
we borrow from [25] is the use of the variation diminishing
property, which is captured by the oscillation theorem of Karlin
[26]. The oscillation theorem allows to upper bound the number
of points in the support of Px« with the number of sign changes
of a function that is related to the output distribution Py-+. In
the case of the Gaussian noise channel, in order to count the
number of sign changes, one needs to resort to complex analytic
techniques. In contrast, in the Poisson case, due to the discrete
nature of the channel, we no longer need to rely on the complex
analytic techniques, which simplifies this part of the analysis.

However, the analysis for the Poisson channel is not neces-
sarily simpler than that in the Gaussian case. One crucial step in
both proofs relies on finding a lower bound of the output pdf in
the Gaussian case and the output pmf in the Poisson case. In the
Gaussian case, this can be done by using Jensen’s inequality,
and the resulting bound is universal and is independent of Px«.
In the Poisson noise case, however, a distribution-independent
bound cannot be obtained, and the lower bound on the tail
depends on Px.. Specifically, the lower bound depends on
Px+(A). Therefore, to complete the proof, we need to also

find a lower bound on Px+(A).

Some of the key intermediate steps in our proofs will rely
on identities that connect information measures and estimation
measures. In particular, we will rely on the expression for the
conditional expectation derived in [27]. For further connections
between estimation and information theoretic measure the
interested reader is referred to [28] and [29] and references
therein.

Notation: Throughout the paper, the deterministic scalar
quantities are denoted by lower-case letters and random vari-
ables are denoted by uppercase letters.

We denote the distribution of a random variable X by Px.
The support set of Py is denoted and defined as

supp(Px) ={z : for every open set D > z
we have that Py (D) > 0}. 5)

Let g1 and go be non-negative functions, then

e g1(x) = O(g2(z)) means that there exists a constant ¢ > 0
and xo such that g;—(? < ¢ for all x > xq;

e g1(x) = Q(g2(x)) means that g2(z) = O(g1(x)); and

e g1(z) = 0o(g2(x)) means lim,_, o % =0

II. MAIN RESULTS

The main results of this paper are summarized in the follow-
ing theorem.

Theorem 1. The capacity and the capacity achieving distribu-
tion satisfy the following properties:
¢ A New Capacity Expression: For every A > 0, the capacity
is given by )
C(A) = log - (©)
where Py« is the capacity achieving output distribution.
« An Upper Bound on the Probabilities: For every A > 0,

Universal Bound:

__Cc»W
Px+(z) <e -7, x € supp(Px~), (7

Location Dependent Bound:

P () < I o e supp(Px-) \ {0}, (®)

In addition, if |supp(Px«)| = 2, then the bound in (8)
becomes equality.
« A Lower Bound on the Probability of the Largest Point: For
C(A)

(
all A such that e1—==* > 4, we have that

o CA)-

_ ol
1—-3e 1-7*
Px-(A) = 9A2Aclog(A)+2—2A+1" ©)
e On the Location of Support Points: Suppose that

supp(Px+)| > 3 and let a* € supp(Px+) \ {0,A}. Then,
e~ V200e(A)=1) <« x < A1, (10)

o A Lower Bound on the Size of the Support: For every A > 0,

C(A)

|supp(Px+)| = et=e7". (11)

« An Upper Bound on the Size of the Support: For every A >
0,

lsupp(Px-)| < [A — log (Px- (A)) — C(A)] + 2. (12)



c®
In addition, for all A such that e1-<=* > 4, we have that
|supp(Px+)| < 2eAlog?(A) 4 2log(A) — A

C(A)

1—3¢ 1A
2

—log —C(A)+4. (13)

A few comments are now in order.
A. Numerical Simulations

In order to aid our discussion, we have also numerically
computed the optimal input distributions for values of A up to
15. Fig. 1 depicts the output of this simulation.

We note that there are several numerical recipes for gener-
ating an optimal input distribution [30]-[32]. However, most
of these approaches ultimately optimize over the space of
distributions, which is an infinite-dimensional space. As was
already alluded to in [2] and [25], a firm upper bound on the
number of mass points, such as the one in Theorem 1, allows
us to move the optimization from the space of probability
distributions to the space R?™ where n is the number of points.
Working in R?" allows us to employ methods such as the
projected gradient ascent [33], which was used to generate the
plots in Fig. 1.

B. On the Order of the Bounds

First, note that almost all of our bounds depend on the value
of C(A), which is currently unknown for A > A ~ 3.4.
Howeyver, this is not a limitation of our result, as we do have
access to upper and lower bounds on C'(A) that are tight for
large A such as those in [21], which suggest that

e

C(A) = %log(A) - %log( 5 ) + oa(1).

Moreover, some of the bounds in Theorem 1, such as those
in (9) and (13), while are firm, are meant to be used for large
values of A. Therefore, combing the bounds in Theorem 1 with
the bound in (14), we arrive at the following:

e2A 1
Q<A2Alog(A)+2> < Px«(z) < O<\/K> , @ € supp(Px-+),
Q(VA) < [supp(Px-)| < O (Alog?(A)) .

Thus, the order of the lower bound on the number of points is
V/A, and the order of the upper bound on the number of points
is Alog?(A). It is interesting to speculate as to the reason why
the bounds do not match and have different orders.

First, note that Theorem 1 presents two upper bounds on the
number of points. The first and implicit bound in (12) depends
on the value of Px(A). The second bound in (13) is an explicit
bound in terms of A and is derived by plugging in the lower
bound on Px«(A) in (9) into the first bound in (12). We suspect
that one of the reason why the bounds do not match is due to
the lower bound on Px(A) in (9), which we think is not tight.
Hence, one interesting future direction is to improve the lower
bound on the value of Px«(A) which, in view of (12), would
lead to a better upper bound on |supp(Px+)|. However, to the
best of our knowledge, there are no other methods for finding
lower or upper bounds on the probabilities of the optimal input
distribution. Indeed, one of the contributions of this work is the
introduction of two such methods, one for finding the upper

(14)
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(a) Plot of the locations of the support points of Pxx vs. A.
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(b) Plot of the probability values of the support points vs. A
where points of the support satisfy 0 < 1 < 22 < A. The
curves show: Px~(0) (solid blue line); Px+ (A) (solid red

line); Px+(z1) (solid cyan line); Px~ (x2) (solid green line);

upper bound in (7) (dashed black line); upper bound on

Px+(A) in (8) (dashed red line); and upper bound in (7) with

no strong data-processing term (dotted black line).
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(c) Plot of C'(A) vs. A.

Fig. 1: Examples of the optimal input distributions and
capacity vs. A. The probabilities for A > A ~ 3.4 were
computed numerically, and the probabilities for A < A are
given in (3).
bound on the values of probabilities and one for finding the

lower bound.

Finally, we would like to point out that numerical simulations
are not useful for predicting the order of the number of
points. For large A, the simulations become computationally
demanding, and it is difficult to calculate the optimal input
distribution and predict the order of the number of points.

C. On the Upper Bounds on the Probabilities in (7) and (8)

It is also interesting to ask how tight are the upper bounds
on the probabilities in (7) and (8).

Note that the bound in (7) is universal and does not depend
on the positions of the probability masses, while the bound in
(8) depends on the position of the points. The advantage of
the bound in (8) is that it can be tighter than the universal
bound in (7). For example, in the regime where A < A where



we only have two points in the support, the bound is achieved
with equality. The clear disadvantage of the bound in (8) is
that we do not know the location of the points (except 0 and
A). However, such a bound might become useful once better
estimates for the locations of the mass points are found. Some
preliminary estimates of the locations are provided in (10).

Fig. 1b plots the upper bounds in (7) and (8) and compares
them to the values of Px-. To create the plot, in the regime
A < A, we have used the exact expressions for Py« (A) and
Px.(0) in (3). To create the plot in the regime A > A, first
note that the upper bounds in (7) can be loosened to

I(X;Y)

PX*(I) S e 1-e7? , T € Supp(PX*)7

5)
7I(X;Y)7mﬁa T e Supp(PX*) \ {0}7
where we have used the fact that C(A) > 1 (X;Y) for any
random variable X € [0, A]. Therefore, since we can choose
any X € [0, A], we selected it to be the one that is the output of
the numerical simulation. The bound in (16) is only computed
for x = A as we do not know the locations of other points and
only have estimates for these. From the simulations in Fig. 1b,
the bounds in (7) and (8) appear to be relatively tight.

The bound in (7) relies on the strong data-processing in-
equality. Specifically, the factor # in the exponent comes
from using the strong data-processing inequality. The dotted
black curve in Fig. 1b plots the loosened version of the bound
in (7) that ignores the contribution of the strong data-processing
inequality, that is we plot

Py-(z) <e (16)

Py () < e ") 2 € supp(Px-). a7

From the comparison in Fig. 1b, we see that the contribution of
the strong data-processing inequality is non-trivial, especially
for small and medium values of A.

D. On the Bound in (10)

In addition to finding bounds on the number of points and
the values of the probabilities, we have also provided additional
information about the location of the points. Specifically, (10)
provides information about the location of support points other
than 0 and A.

From the bound in (10), we see that the second-largest point
can never be too close to A. Specifically, according to the
bound in (10), the gap between A (i.e., the largest point) and
the second-largest point is at least one. In fact, the numerical
simulations shown in Fig. la suggest that this gap is much
larger. In particular, the simulations suggest that the gap is
not constant but is an increasing function of A. Therefore, one
interesting future direction would be to verify this behavior and
produce a better bound in (10) than A — 1.

Similarly, from the lower bound in (10), we see that the
second smallest point cannot be too close to the zero point.
However, as A increases, the distance is allowed to get smaller.
Note that our limited simulation results suggest a better lower
bound, namely x* > 1. Therefore, one interesting future
direction would be to either demonstrate the existence of a
mass point in the range (0,1) or show that there is no such
mass point. Note that the work of [9] already showed that there
is at most one point in the range (0, 1).

Beyond theoretical interest, the existence of the estimates
for the mass points’ location might also be of interest from
the practical point of view. As the existence of such estimates
can also impact the design of practical constellations for the
Poisson noise channel.

E. On the Equivocation, Symbol Error Probability, and Entropy

It is well-known that the capacity-achieving distribution
should be ‘difficult’ to detect or estimate on the per sym-
bol basis. To make this statement explicit, we consider the
equivocation H (X™*|Y™) and the probability of error under the
maximum a posteriori (MAP) rule (i.e., P, = P[X* # X(Y*)]
where X (Y*) is the MAP decoder). The plots of Fig. 2a and
Fig. 2b show that the equivocation and P, for the capacity
achieving input have relatively high values. With Theorem 1 at
our disposal, we can now show the following result regarding
the asymptotic behavior of the error probability.

Proposition 1. Ler P, = P[X* # X(Y*)] where X(y) =
arg MaXgesupp(Px ) PX*|Y* (:C‘y) Then,

2
liminf P, > 1 — \/>,
A— o0 ™
liminf H(X*|Y™) > 2 (1\/) .
A—o0 ™

The entropy of the optimal input distribution vs. A is plotted
in Fig. 2c. We observe a particular behavior of the entropy
in the simulated range of A: the rate of increase has finite
jumps approximately at the levels log(k) of entropy, where the
cardinality of the optimal input distribution increases from & to
k41 points. These levels correspond to an approximate uniform
input distribution on the k£ amplitude levels: this behavior is
also confirmed by the mass probabilities plotted in Fig. 1b.
When the rate of increase of the entropy is not compensated
by a sufficiently large rate of decrease of the equivocation (see
Fig. 2a), the rate of increase of capacity must be sustained by
boosting the entropy: This is done by increasing the cardinality
of the input distribution. It is interesting to understand how
the rate of increase of capacity is split between entropy and
equivocation: If one could prove that the equivocation is
upper-bounded by a constant, then this would show that the
equivocation does not provide degrees of freedom to channel
capacity for large A, and thus the whole rate should be sustained
by entropy by increasing the cardinality of supp(Px~). This
hypothesis would imply |supp(Px-)| ~ /A for large A.

(18)

19)

III. SELECTED PROOFS

The starting point for most of our proofs are the following
KKT conditions shown in [10].

Lemma 1. Px« maximizes (2) if and only if

D(PY\X('|x)||PY*) < C(A)7 MRS [OvA}
D(PY‘X(~|x)||Py*) =C(A), z € supp(Px~).

(20a)
(20b)

Due to space constraints, we only show a proof of the upper
bound on the probabilities and the lower bound on the number
of points, which rely on the data-processing argument.



H(X*|Y™*)

(a) Equivocation H(X™|Y™) vs. A.
0.3 T T T

0.1

(c) Entropy vs. A.
Fig. 2: Entropy (i.e., H (X)), equivocation (i.e, H(X*|Y™)),
and the probability of error of the optimal input distribution.

A. Proof of the Bound in (7) and of the Bound in (11)

We show two methods for finding bounds on the proba-
bilities. The first method relies on the strong data-processing
inequality and the second method relies on the exact expression
for the values of the probability distribution. An interesting
feature of both methods is that they work for all channels for
which a capacity achieving distribution is discrete. Due to space
constrains we only demonstrated the first technique.

Theorem 2. For a channel Py x and the optimization problem

C(A) = max I(X;Y), @21)

suppose that a maximizing distribution Px~ is discrete. Then,

C(A)

SN
Py (z) <e "OYOTT o€ supp(Px)  (22)

where 0 < nk(A; Py|x) < 1 is known as a contraction
coefficient and is given by
nkL(A; Py x)
_ D(Qy|[|Py+)
= sup —_—

Qx: 0SX <A, D(Qx || Px+) <00, @x — Py x »Qy D(@x|[Px+)’
(23)

Proof. LetY, be the output of the channel Py-|x when the input
is Px = d,, where d,, is the Dirac delta function centered in
x. Next, suppose that « € supp(Px+). Then, by using (20), we
have that

C(A) = D(Pyx (|z)|| Py~) (24)
= D(Py, || Py~) (25)
< nkL(A; Py x)D(d.|| Px~) (26)
1
= nkL(A; Py|x) log 5—— (27)

Px* (J,')’

where in (26) we have used the strong data-processing inequal-
ity for the relative entropy [23] and where 7k (A; Py|x) is
defined in (23). This concludes the proof. O

The next result provides an upper bound on the contraction
coefficient for the Poisson channel.

Lemma 2. Let Py|x be a Poisson channel as in (1). Then, for
all A>0

k(A Pyjx) <1 —e . (28)
This concludes the proof of the upper bounds on the values
of the probabilities. The lower bound on the number of points

in (13) is now a consequence of the upper bound on the values
of PX*:
1
Z Px(z) < |supp(Px~)le 1_C7AC(A)7
zEsupp(Px«)

1= (29)

1
which simplifies to e1-<=* M < |[supp(Px+)].

IV. CONCLUSION

This work has focused on studying properties of the capacity-
achieving distribution for the Poisson noise channel with an
amplitude constraint. It was previously known that the capacity-
achieving distribution for this channel is discrete with finitely
many points. In this work, we sharpened this result in several
ways.

First, by using a strong data-processing inequality, an upper
bound on the values of the mass points has been shown. This
upper bound on the probability values has been shown to lead to
the lower bound on the number of support point of the optimal
input distribution. Specifically, a lower bound of order v/A has
been established on the number of support points where A is
the constraint on the amplitude.

Second, by using the variation-diminishing property of the
Poisson kernel, the work has also established an upper bound
on the number of the support points of the optimal input
distribution. Specifically, an order Alog?(A) bound has been
established.

Finally, along the way, several other results have been shown.
For example, a new compact expression for the capacity has
been shown. In addition, a lower bound on the probability of
the largest points of the optimal input distribution has been
established. Furthermore, an estimate on the locations of the
support other than 0 and A has been established.



[1]

[2]

[4

=

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

REFERENCES

H. Witsenhausen, “Some aspects of convexity useful in information
theory,” IEEE Transactions on Information Theory, vol. 26, no. 3, pp.
265-271, 1980.

J. G. Smith, “The information capacity of amplitude-and variance-
constrained scalar Gaussian channels,” Information and Control, vol. 18,
no. 3, pp. 203-219, 1971.

A. Dytso, M. Goldenbaum, H. V. Poor, and S. Shamai (Shitz), “When are
discrete channel inputs optimal? — Optimization techniques and some new
results,” in Proc. IEEE 52nd Annu.Conf. Info. Sci. Syst. (CISS). 1EEE,
2018, pp. 1-6.

J. P. Gordon, “Quantum effects in communications systems,” Proceedings
of the IRE, vol. 50, no. 9, pp. 1898-1908, 1962.

M. A. Khalighi and M. Uysal, “Survey on free space optical commu-
nication: A communication theory perspective,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, pp. 2231-2258, 2014.

C. Komninakis, L. Vandenberghe, and R. Wesel, “Capacity of the
binomial channel, or minimax redundancy for memoryless sources,” in
Proceedings. 2001 IEEE International Symposium on Information Theory
(IEEE Cat. No. 01CH37252). 1EEE, 2001, p. 127.

N. Farsad, W. Chuang, A. Goldsmith, C. Komninakis, M. Médard,
C. Rose, L. Vandenberghe, E. E. Wesel, and R. D. Wesel, “Capacities
and optimal input distributions for particle-intensity channels,” IEEE
Transactions on Molecular, Biological and Multi-Scale Communications,
vol. 6, no. 3, pp. 220-232, 2020.

S. Verdd, “Poisson communication theory,” International Technion Com-
munication Day in Honor of Israel Bar-David, vol. 66, 1999.

R. McEliece, E. Rodemich, and A. Rubin, “The practical limits of
photon communication,” Jet Propulsion Laboratory Deep Space Network
Progress Reports, vol. 42, pp. 63-67, 1979.

S. S. Shamai, “Capacity of a pulse amplitude modulated direct detec-
tion photon channel,” IEE Proceedings 1 (Communications, Speech and
Vision), vol. 137, no. 6, pp. 424-430, 1990.

J. Cao, S. Hranilovic, and J. Chen, “Capacity-achieving distributions for
the discrete-time Poisson channel Part i: General properties and numerical
techniques,” IEEE Transactions on Communications, vol. 62, no. 1, pp.
194-202, 2014.

——, “Capacity-achieving distributions for the discrete-time Poisson
channel Part ii: Binary inputs,” IEEE Transactions on Communications,
vol. 62, no. 1, pp. 203-213, 2014.

M. Cheraghchi and J. Ribeiro, “Improved capacity upper bounds for the
discrete-time Poisson channel,” arXiv preprint arXiv:1801.02745, 2018.
A. Martinez, “Spectral efficiency of optical direct detection,” JOSA B,
vol. 24, no. 4, pp. 739-749, 2007.

——, “Achievability of the rate 1 log(1+e€5) in the discrete-time Poisson
channel,” arXiv preprint arXiv:0809.3370, 2008.

A. Lapidoth, J. H. Shapiro, V. Venkatesan, and L. Wang, “The discrete-
time Poisson channel at low input powers,” IEEE Transactions on
Information Theory, vol. 57, no. 6, pp. 3260-3272, 2011.

L. Wang and G. W. Wornell, “A refined analysis of the Poisson channel
in the high-photon-efficiency regime,” IEEE Transactions on Information
Theory, vol. 60, no. 7, pp. 4299—4311, 2014.

——, “The impact of dark current on the wideband Poisson channel,”
in 2014 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2014, pp. 2924-2928.

D. Brady and S. Verdd, “The asymptotic capacity of the direct detection
photon channel with a bandwidth constraint,” in 28th Allerton Conf.
Commun., Control and Comp., Oct. 1990, pp. 691-700.

M. Cheraghchi and J. Ribeiro, “Non-asymptotic capacity upper bounds
for the discrete-time Poisson channel with positive dark current,” arXiv
preprint arXiv:2010.14858, 2020.

A. Lapidoth and S. M. Moser, “On the capacity of the discrete-time
Poisson channel,” IEEE Transactions on Information Theory, vol. 55,
no. 1, pp. 303-322, 2009.

M. Raginsky, “Strong data processing inequalities and ¢ -sobolev inequal-
ities for discrete channels,” IEEE Transactions on Information Theory,
vol. 62, no. 6, pp. 3355-3389, 2016.

Y. Polyanskiy and Y. Wu, “Strong data-processing inequalities for chan-
nels and Bayesian networks,” in Convexity and Concentration. Springer,
2017, pp. 211-249.

F. du Pin Calmon, Y. Polyanskiy, and Y. Wu, “Strong data processing
inequalities for input constrained additive noise channels,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1879-1892, 2017.

A. Dytso, S. Yagli, H. V. Poor, and S. Shamai (Shitz), “The capacity
achieving distribution for the amplitude constrained additive Gaussian

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

channel: An upper bound on the number of mass points,” IEEE Trans-
actions on Information Theory, vol. 66, no. 4, pp. 20062022, 2020.

S. Karlin, “Pélya type distributions, ii,” The Ann. Math. Stat., vol. 28,
no. 2, pp. 281-308, 1957.

A. Dytso and H. V. Poor, “Estimation in Poisson noise: Properties of the
conditional mean estimator,” IEEE Transactions on Information Theory,
vol. 66, no. 7, pp. 4304-4323, 2020.

D. Guo, S. Shamai, and S. Verdd, “Mutual information and conditional
mean estimation in Poisson channels,” IEEE Transactions on Information
Theory, vol. 54, no. 5, pp. 1837-1849, 2008.

R. Atar and T. Weissman, “Mutual information, relative entropy, and
estimation in the Poisson channel,” IEEE Transactions on Information
Theory, vol. 58, no. 3, pp. 1302-1318, 2012.

R. Blahut, “Computation of channel capacity and rate-distortion func-
tions,” IEEE transactions on Information Theory, vol. 18, no. 4, pp. 460—
473, 1972.

C.-I. Chang and L. D. Davisson, “On calculating the capacity of an
infinite-input finite (infinite)-output channel,” IEEE Transactions on In-
formation Theory, vol. 34, no. 5, pp. 1004-1010, 1988.

J. Huang and S. P. Meyn, “Characterization and computation of optimal
distributions for channel coding,” IEEE Transactions on Information
Theory, vol. 51, no. 7, pp. 2336-2351, 2005.

S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge university press, 2014.



