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Abstract
The importance of epistemic values in science is universally recognized, whereas 
the role of non-epistemic values is sometimes considered disputable. It has often 
been argued that non-epistemic values are more relevant in applied sciences, where 
the goals are often practical and not merely scientific. In this paper, we present a 
case study concerning earthquake engineering. So far, the philosophical literature 
has considered various branches of engineering, but very rarely earthquake engi-
neering. We claim that the assessment of seismic hazard models is sensitive to both 
epistemic and non-epistemic values. In particular, we argue that the selection and 
evaluation of these models are justified by epistemic values, even if they may be 
contingently influenced by non-epistemic values. By contrast, the aggregation of dif-
ferent models into an ensemble is justified by non-epistemic values, even if epis-
temic values may play an instrumental role in the attainment of these non-epistemic 
values. A careful consideration of the different epistemic and non-epistemic values 
at play in the choice of seismic hazard models is thus practically important when 
alternative models are available and there is uncertainty in the scientific community 
about which model should be used.
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Introduction

Earthquake engineering, unlike other types of engineering, has not received a proper 
philosophical analysis regarding its foundations, methods, and applications. The goal 
of this paper is to provide the first philosophical account (to our knowledge) of the 
current practice of ensemble modeling in earthquake engineering from a value-based 
perspective.

Competing seismic models are typically available. These models often provide 
largely different estimates of the frequency of certain events (for example, earthquakes 
with a specific magnitude) and therefore these models produce different estimates of 
seismic hazard. However, it is often impossible to determine which model is correct 
due to a shortage of historical data in conjunction with other factors such as modeling 
and epistemic uncertainties. Instead, ensembles of different models are often used to 
quantify seismic hazards.

Our main claim will be that ensemble modeling in earthquake engineering is guided 
both by epistemic values, which are related to knowledge, and by non-epistemic values, 
which are related to practical aims and goals. More specifically, we claim that the selec-
tion of the models that are included in the ensemble and the evaluation of those models 
by panels of experts are both justified by epistemic values. By contrast, the aggregation 
of those models into the ensemble itself is justified by its compliance with some non-
epistemic values. The explicit considerations of the different epistemic and non-epis-
temic values at play are practically important when different seismic hazard models and 
different methods to provide an assessment of those models are available and the ana-
lyst must determine which method is the most appropriate in a particular circumstance.

We will proceed as follows. We will first introduce the distinction between epis-
temic and non-epistemic values. The interplay between these values will be discussed 
by referring to the risk analysis that was conducted in the Fukushima region years 
before the well-known nuclear disaster. We will then present a general framework for 
the assessment of seismic hazard models (the Selection, Evaluation, and Aggregation 
framework - SEA) that accounts for how probabilistic seismic hazard analysis (PSHA) 
is currently practiced. We will claim that the selection and the evaluation of seismic 
hazard models is justified by epistemic values. We will also argue that the the aggrega-
tion of these models into ensembles is justified by non-epistemic values (in particular, 
model ensembles enable specific types of decisions that would not be available if only 
one model was considered). Finally, we will formulate some closing remarks.

Epistemic and Non‑epistemic Values in Science and Engineering

The distinction between epistemic and non-epistemic values is familiar from the 
philosophy of science (Kuhn, 1977; Douglas, 2000; Dorato, 2004; Lacey, 2005; 
Steel, 2010; Elliott & McKaughan, 2014; Ward, 2021; Elliott, 2022).

Epistemic values are related to the pursuit of knowledge. They include 
for instance truth and truth-likeness, objectivity, error reduction, simplicity, 
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effectiveness, elegance, fruitfulness, scope, accuracy, robustness, predictive 
power, novelty, applicability, ontological homogeneity, and explanatory power.

By contrast, non-epistemic values are related to practical aims and goals. They 
include for instance ethical values (safety, beneficence, non-maleficence, auton-
omy), political values (sustainability, equality, justice), and economic values (fea-
sibility, profit).

However, some values are neither clearly epistemic nor clearly non-epistemic 
(McMullin, 1982). Therefore, in some concrete cases, it may be better to say 
that values can have epistemic and non-epistemic facets that may sometimes be 
hard to disentangle. Even so, distinguishing epistemic and non-epistemic values 
may be still conceptually fruitful (Chiffi, 2021). An example of a value for which 
it can be difficult to be recognized as fully epistemic or fully non-epistemic in 
earthquake engineering is scientific responsibility. In the influential report of the 
US Senior Seismic Hazard Analysis Committee (SSHAC, 1997) scientific respon-
sibility is defined as “the responsibility not only for the accuracy and complete-
ness of the results but also for the process used to arrive at the results” (p. 25). 
According to the SSHAC report, scientific responsibility encompasses both integ-
rity, which requires the scientist to exercise their best professional judgment, and 
diligence, which requires that the scientists “learn about the most recent advances 
in the field, often by direct contact with other experts” (p. 28). Therefore, sci-
entific responsibility has both epistemic aspects (related to the accuracy of the 
model) and non-epistemic aspects (integrity and diligence) that are instrumental 
in the attainment of the epistemic goals of the scientist.

The importance of epistemic values to science is universally recognized, while 
the role of non-epistemic values is sometimes considered disputable. More pre-
cisely, it is hard to deny that scientific practice has been guided in the past, and 
sometimes still is guided, by non-epistemic values, for example, political and 
economic values. What is controversial is whether the scientific inquiry should 
be guided and justified by such values (Rooney 1992). Here we can distinguish 
between denialists and compatibilists. Denialists claim that science should be 
free from non-epistemic value. They often distinguish between the contextual 
role of values (contingently associated with scientific activity) and the consti-
tutive role of values (necessary to the scientific enterprise) and argue that even 
though non-epistemic values can have contextual importance, they are not consti-
tutive of scientific practice. By contrast, compatibilists claim that non-epistemic 
values play a role in science. They sometimes stress the difference between pure 
science and applied science. On the one hand, it is natural to think that in the case 
of pure sciences, the intrinsic values (i.e., the ultimate aims of scientific inquiry) 
are all epistemic, even if non-epistemic values, though not intrinsic to science, 
may have nonetheless an instrumental role in the attainment of some constitutive 
(scientific) goal. On the other hand, non-epistemic values are arguably more rel-
evant in the case of applied sciences, where the goals are often practical and not 
merely scientific.

For example, the goal of engineering is often to solve a particular problem 
based on the available science, methods, and techniques rather than just to increase 
knowledge. For this reason, we can expect that non-epistemic values will be more 
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important to engineering than to science. A general analysis of the role of non-epis-
temic values in engineering is provided by Diekmann and Peterson (2013). Diek-
mann and Peterson argue that the formulation of models in engineering is influenced 
by non-epistemic values. One of their examples is the calculation of parameters that 
are used as safety criteria. In this case, the model includes only those parameters 
that are considered relevant for safety. According to Diekmann and Peterson, “safety, 
which is a paradigmatic example of a non-epistemic value, influences the choice of 
represented parameters” (p. 212). Non-epistemic values may also counterbalance 
epistemic ones (for example, the usability of a model can outscore its accuracy in 
representing the target system) and influence the choice of models.

Diekmann and Peterson also argue that non-epistemic values are constitutive to 
the practice of engineering. They make a normative claim: engineering is not only 
influenced by but also ought to be influenced by non-epistemic values. Their argu-
ment is as follows. They claim that (i) engineering models ought to be developed 
with some specific goal in mind (i.e., solving a particular problem) and sometimes 
(ii) these goals ought to be non-epistemic (e.g., safety). They add that (iii) the influ-
ence of epistemic and non-epistemic values determines whether the model satisfies 
the relevant goals. From this, they conclude that (iv) some models ought to be influ-
enced by non-epistemic values.

So far, the philosophical literature has considered various types of engineering 
(see Donovan, 2012; Bokulich & Oreskes, 2017), but very rarely earthquake engi-
neering. In this paper, we show that earthquake engineering is an intriguing exam-
ple of interaction between epistemic values and non-epistemic values in virtue of 
their impact on different forms of uncertainty. Our claim will mainly be descriptive: 
earthquake engineering is in fact influenced both by epistemic values and by non-
epistemic values. We will also discuss whether acknowledgment of this point should 
change how earthquake engineering is practiced. In the next section, we will start by 
considering a motivating example.

Epistemic and Non‑epistemic Values in Earthquake Engineering

Decisions to reduce seismic risk imply a coherent methodology to assess the conse-
quences of future earthquakes (and their level of uncertainty) on people and struc-
tures (McGuire, 2004). This means that uncertainty and value-based considerations 
on the effects of earthquakes characterize this kind of risk. More specifically, non-
epistemic values (e.g., economic, ethical, or political ones) intended to reduce the 
impact of the earthquake on people and structures are intimately connected with the 
engineering methodology of seismic risk mitigation. Of course, also epistemic val-
ues regarding for instance the reliability of information about where earthquakes can 
originate, or what ground-motion intensity they can produce, are essential to deal 
with seismic risks. These two kinds of values are intimately connected and estab-
lishing some thresholds among them is usually required when taking engineering-
based decisions (Van de Poel, 2009).

A particularly clear example of the interplay between epistemic and non-
epistemic values in earthquake engineering is the hazard analysis of potential 
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earthquakes produced for the Fukushima power plant before the nuclear disaster in 
2011. On March 11, 2011, an earthquake of magnitude 9.0 occurring 130 km off-
shore of Japan produced a tsunami approximately 13  m high. When the tsunami 
hit the coast, the nuclear power plant in Fukushima was inundated. In the follow-
ing days, and after multiple engineering failures, two of the three reactors that were 
operational at the time of the incident exploded, causing another one to explode a 
day later. This last reactor contained spent fuel rods, whose exposure caused a large-
scale emission of radiation. The Fukushima incident was one of the major nuclear 
disasters that ever occurred.

When the nuclear plant was built between 1967 and 1971, a seismic risk analysis 
was performed to determine the maximum earthquake that could strike the region 
of Fukushima for the chosen return period (approx.  105 years). However, the risk 
analysis that preceded the construction of the Fukushima power plant was based on 
a limited historical catalog. In particular, the maximum earthquake considered was 
the Shioya-Oki earthquake in 1938, which had a magnitude of 7.8. It was therefore 
estimated that a tsunami caused by a seismic event in the region may be at most 
6.1 m high, underestimating the true value of more than a half.

Notably, a second power plant, in Onagawa, was also hit by the tsunami. But 
despite the Onagawa plant being closer to the epicenter than Fukushima, this second 
plant did not fail due to the tsunami. This was because of a different risk analysis 
that considered a wider timeframe which also included an earthquake that occurred 
in 869 with an estimated magnitude of 8.3, then concluding that an earthquake-gen-
erated tsunami may be up to 13.6 m high. So, the Onagawa power plant was substan-
tially safer than the Fukushima one. As stressed by Taebi (2020, p. 31), “the design 
of the Fukushima Daiichi plant seems to have taken too short a historical period into 
account”.

We can see that purely epistemic considerations had a role in the quantification 
of seismic and tsunami hazards for the Fukushima power plant. The risk analysis 
was based on available data and took into consideration, different models. However, 
non-epistemic considerations played an even more important role. In particular, the 
risk assessment produced by the company that runs the Fukushima power plant had 
only “a vague reference to investigation reports by research institutes”, but ignored 
models that suggested higher estimates (Synolakis & Kânoğlu, 2015, p. 9). As we 
saw, a very different analysis was considered for the Onagawa power plant which 
suggested that the risk may have been much higher than what was originally con-
sidered when the Fukushima power plant was built. Some have suggested that this 
difference is explained also by non-scientific factors. In particular, “one official sug-
gested that because decision-making for the Ongawa nuclear plant project at Tohoku 
Electric Power Company involved local personnel, top management there may have 
been more receptive to making costly siting changes” (Acton & Hibbs, 2012, p. 30), 
even though the company’s failure to take into considerations new scientific insights 
may have also been due to inefficient decision-making (Acton & Hibbs, 2012; Syn-
olakis & Kânoğlu, 2015).

The Fukushima accident suggests that earthquake engineering may be sensitive 
to both epistemic values, such as accuracy and fit with historical data, and to non-
epistemic values, such as safety and economic factors. But how are these values 
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related in practice? We will now discuss a concrete example concerning the assess-
ment of hazards. We will first briefly introduce probabilistic seismic hazard analysis 
and distinguish between different phases in the assessment of seismic hazard mod-
els. Our discussion will show clearly that different phases are justified by different 
types of values.

Selection and Evaluation in Probabilistic Seismic Hazard Analysis 
(PSHA)

Probabilistic Seismic Hazard Analysis (PSHA) has become common practice in 
earthquake engineering.1 PSHA (cf. Baker et  al., 2021 for an overview) estimates 
the seismic hazard at a site as the probability that a specific ground-motion intensity 
level is exceeded at that site in a specified period of time (for example, a frequency 
of 10% in 50 years, corresponding to a return period of 475 years).2

A probabilistic seismic hazard model consists of three main parts. The first one is 
the earthquake rate model (ERM). An ERM of the area in which the site of interest 
is located consists of a set of events that may affect the site characterized by their 
position in the area, their magnitude, and their frequency. The position is usually 
represented as a point on a plane. The second component is a ground-motion model 
(GMM), or ground-motion attenuation relation. A GMM expresses the ground 
motion determined by an event at a given source as a function of the magnitude of 
that event at its source and the distance between the source and the site. The third 
and final part consists in the integration over all relevant distances and magnitudes 
that determines the probability that each specific ground-motion intensity level a is 
exceeded. If the site can be affected by n sources, the overall seismic hazard corre-
sponds to the combination of the effects of all possible seismic events weighted by 
their frequency.

The quantification of seismic hazards is subject however to two types of uncer-
tainty (Zanetti et al., 2023). First, there are aleatoric uncertainties, that are due to the 
stochastic—rather than deterministic—character of seismogenic events. For exam-
ple, it is uncertain where future earthquakes will occur (spatial uncertainty), when 
they will occur (temporal uncertainty), and which level of ground motion they will 
produce (ground-motion uncertainty). Second, there are epistemic uncertainties, that 
are due to insufficient data and/or incomplete knowledge of the phenomena. We can 
further distinguish within epistemic uncertainties between model uncertainty and 
parametric uncertainty. Model uncertainty concerns the general form of the equa-
tion. For example, it can be uncertain whether the magnitude distribution follows 

1 Risk can be characterised as a function of hazard (the probability that an unwanted event occurs), vul-
nerability (the probability of suffering a loss if the adverse event occurs) and exposure (the magnitude of 
the eventual loss) (UNISDR, 2015). This paper focuses on seismic hazards; however, similar considera-
tions may apply to the estimation of vulnerability in earthquake engineering.
2 The return period is the converse of the frequency.
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the Gutenberg-Richter equation.3 Parametric uncertainty, by contrast, concerns the 
value of the parameters of the models. For example, one can be uncertain about the 
a-value and the b-value in that same equation for the zone of interest.

Epistemic uncertainties are usually included in the calculation of seismic hazards 
using logic trees (Kulkarni et al., 1984). Setting up a logic tree involves two steps. 
First, different seismic models are selected together with alternative estimates of the 
values of their parameters. Second, a weight is assigned to each branch that departs 
from a node in the tree.

The nodes of the tree correspond to a choice between alternative models or alter-
native evaluations of the parameters. A complete branch of the tree corresponds to 
a complete seismic hazard model that estimates the frequency of exceedance corre-
sponding to each ground-motion intensity and, therefore, computes a hazard curve.4

The weights assigned to the models are expressed as probabilities. Informally, the 
weight assigned to a branch departing from a node is the probability that the choice 
of values corresponding to that node is correct given that everything proceeding that 
node is correct. The overall epistemic uncertainty corresponds to a bundle or family 
of hazard curves, whose spread corresponds to the variance in the estimates of the 
frequency of an event with a specific return period produced by the models included 
in the logic tree.

We shall now propose a general framework that describes the current practice of 
PSHA. We call it the Selection, Evaluation and Aggregation Framework (SEA).5 
This framework is divided into three phases.

The selection of the models that are included in the logic trees is usually based on 
a literature review. The selection aims to collect all the models that have been pub-
lished in the literature and that can be applied to the site of interest. More recently, 
some PSHA studies have also included models that have been solicited directly by 
the responsible for the study through a call for contributions (Meletti et al., 2021).

The evaluation of the models is performed by a panel of experts and consists 
of the assignment of a weight to each model. According to the procedure detailed 
in the influential report of the US Senior Seismic Hazard Analysis Committee 
(SSHAC), each expert provides an “individual judgment” on the credibility of the 
models (SSHAC, 1997). Experts may also agree on a “community distribution” that 
represents the overall judgment of the members of the panel (NCR, 1997; Budnitz 
et  al., 1998). In this case, the goal of the evaluation is also to reach a consensus 
among experts. In particular, all experts should agree that a particular composite 

3 The Gutenberg-Richter equation, which states that the number of events with magnitude m is  10a – bm, 
where a and b are values that characterise the seismic zone in which the site is located and expresses the 
ratio between low-intensity and high-intensity seismic events.
4 A hazard curve plots ground-motion intensities (on the x-axis) and their frequencies of exceedance (on 
the y-axis). The characteristic shape of the hazard curve displays the fact that earthquakes that produce 
strong intensities have longer return periods (bottom right of the curve) while earthquakes that produce 
small intensities have shorter return periods (top left of the curve).
5  Our framework is different from the two-stage (elicitation and integration) framework described in 
SSHAC (1997) since it distinguishes more clearly between selection and evaluation of the models and 
can be applied to methods of model evaluation that are not based on the elicitation of judgments from the 
experts.
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probability distribution represents them as a group, or, more weakly, that all experts 
agree that distribution represents the overall scientific community, rather than, more 
strongly, agreeing that a specific value or model is correct.

This weak type of consensus can be achieved in five different ways. First and 
foremost, (1) experts might explicitly agree on a particular probability distribu-
tion. If not, then their judgments can be integrated either (2) by assigning the same 
weight to each judgment, or (3) by assigning unequal weights. In this last case, one 
can either (4) assign a quantitative weight or (5) perform a qualitative evaluation 
without assigning a numerical value to the judgments. This last option is considered 
the less desirable possibility (SSHAC, 1997; NCR, 1997; Budnitz et al., 1998).

Finally, the aggregation of models into an ensemble consists in producing a logic 
tree with the selected models and with the weights based on the judgments provided 
by the experts. This aggregation is performed either by a “Technical Integrator” (TI) 
or by a “Technical Facilitator/Integrator” (TFI). The TI proposes a probability distri-
bution that represents the judgments expressed by the experts. The TFI encourages 
the interaction between the experts to reach a consensus and assembles the logic tree 
with the weights given by the panel. In this last case, the responsibility for the result 
is shared between the experts and the TFI (SSHAC, 1997, p. 31). In this section, we 
discuss the selection and evaluation of seismic hazard models. We will consider the 
aggregation in "Aggregation in PSHA and non-epistemic values" section below.

In the philosophy of science, it is common to distinguish the context of discovery, 
which comprises the actual circumstances in which a scientific result is achieved, 
from the context of justification, which consists of how that result is established 
by an experiment and in relation to the body of scientific evidence and knowledge. 
A specific value is constitutive of scientific practice if it provides the justification 
(based on methods and reasons) and not merely the discovery of new results. It has 
often been claimed that, at least in pure sciences, non-epistemic values may play 
a role in the discovery but have no constitutive role. We will now show that in the 
assessment of seismic hazard models, epistemic values only justify the first two of 
those phases (selection and evaluation), even if they may be contingently influenced 
by non-epistemic values, whereas the third and last phase (aggregation) is mainly 
justified by non-epistemic, even if epistemic values may also play an instrumental 
role. This distinguishes earthquake engineering, and engineering in general, from 
pure science since non-epistemic values seem to play a constitutive role not only in 
the discovery but also in the justification.

The selection of the models seems clearly to be justified by epistemic values. The 
goal of the selection is indeed to include in the logic tree all the published models 
that can be applied to the site of interest and to prevent the analyst from considering 
only the models with which he or she is more familiar with. The inclusion of the 
models in the logic tree is often motivated by the comparability between the site for 
which the model was originally developed and the site of interest in terms of their 
geophysical properties. The similarity between the two sites makes it likely that the 
model describes the ground motion at the site (Bommer et al., 2010; Cotton et al., 
2006).

The evaluation of seismic models is mainly justified by epistemic values as well. 
The starting point of the evaluation is usually a dataset of ground-motion recordings 
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from the area in which the models should be applied. The experts should be able to 
justify their judgments based on those data (Klügel, 2011), together with consid-
erations about the assumptions and the logic of the models. Indeed, as stressed for 
instance by Bommer et al. (2010), “a model may also be rejected by the analyst if it 
does not include the influence of a factor known to exert a marked influence on the 
ground motion, for which a range of values or classes is present in the underlying 
strong-motion dataset, [for example] faulting” (p. 788). Vice versa, a model may 
receive a higher weight rather than another model if it contains fewer independent 
parameters. Explanatory power is, in general, an epistemic value.

For example, Scherbaum and Kuen (2011) describe a toy model for the evaluation 
of different ground-motion equations. Models are evaluated concerning three quality 
criteria, namely data coverage, belonging to the specific geophysical environment, 
and type of processing. Each model receives a grade based on their performances, 
and the grades for each criterion are then normalized to one to obtain the weights. 
As Scherbaum and Kuen emphasize, “these absolute grades express how well each 
of the models performs with respect to the sum of all quality criteria applied. Re-
normalizing these absolute grades, to sum up to 1 over all models results in values 
which might seem to be applicable as logic tree weights”. The weights are there-
fore measures of the representational accuracy of the model, which is an epistemic 
value.

Models can be evaluated also on their forecasting performances with respect to a 
set of independent data (for example, Backer & Gupta, 2016; Marzocchi & Jordan, 
2018; Secanell et  al., 2018). These data consist either in historical data that were 
not considered in the formulation of the models or in new data that have been col-
lected. In the last case, the data consist of yearly recordings of seismic activity, and 
the models are ranked according to the accuracy of their forecasts. The same model 
can rank higher than another with respect to historical data, but lower with respect 
to new data. This may be because historical catalogs contain both small and strong 
earthquakes, whereas early recordings will likely contain small earthquakes that are 
more frequent, rather than strong ones that are rarer. Forecasting accuracy is indeed 
another epistemic value.

The view that the evaluation of the model is justified by epistemic values is fur-
ther supported by considering different interpretations of the weights assigned to the 
branches of a logic tree.6

Logic trees have become almost universally diffused in PSHA, to the point that 
today it is “very rare to see a published hazard study or a site-specific PSHA that 
does not include a logic tree” (Bommer & Scherbaumb, 2008, p. 997). Despite this, 
there seems to be little consensus on what those weights represent.

It is natural to think that the weights correspond to the probability that the model 
is true or correct. This interpretation is in fact suggested by some scholars in engi-
neering (cp. for example Musson, 2005, Abrahamson and Boomer, 2005). However, 
this interpretation faces two problems.

6 Recall that each branch of a logic tree corresponds to a model, and that the evaluation of the models is 
performed by assigning a weight to them.
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First, scientific models are not strictly speaking true or false in the same sense 
in which scientific statements are (Frigg & Nguyen, 2020). A model may represent 
some features of the target system, in this case, seismic events, accurately or inac-
curately. Second, it is often said hastily that “all models are false” in the sense that 
each model involves some degree of idealization with respect to the target system. 
Two models can moreover be compatible with each other, if they represent different 
features of the target system (for example, area-source models, data models, geo-
physical models, etc.) but they also be conflicting with each other, for example, if 
they generate different estimates of the frequency of the same event of interest.

Finally, historical catalogs of seismic events, which often comprise only a few 
centuries, are often not sufficient for complete validation of seismic hazard models, 
which would require thousands of years of data. The frequency of seismic events 
might therefore be confirmed in principle, but often not in practice. In particular, the 
experts’ judgments can diverge widely from each other even though they consider 
the same set of historical data provided as input of the study (SSHAC, 1997). There-
fore, weights cannot be interpreted as the probability that the model is correct, and 
must be understood in some other ways, for instance as follows.

Musson (2012) claims that the weights in a logic tree should be interpreted as the 
analyst’s “estimate that [the model] is the best model available” (p. 1295). However, 
the phrase “best model” used by Musson can be interpreted in (at least) two differ-
ent ways. First, one may say that a model is the best one available because it is the 
one that is closest to the “true” process of occurrence of the seismic events in the 
area under consideration. In this case, this second interpretation will be equivalent 
to the first one, which we have already discussed. Alternatively, a model can be the 
best one available with respect to some specific goal of the analyst. This makes this 
second interpretation closer to the one that we will now consider.

Scherbaum and Kuehn (2011) claim the correct interpretation of the weights is that 
they are “subjective estimates for the degree-of-certainty or degree-of-belief … that the 
corresponding model is the one that should be used” (p. 1238). This interpretation has 
practical consequences for how the weights are assigned to the models. In particular, 
as Scherbaum and Kuehn point out, this interpretation does not imply that the weights 
assigned to the available models sum up to one. Indeed, the analyst may think that none of 
those models is the model that should be used and decide to develop other models instead.

Scherbaum’s and Kuehn’s interpretation can be usefully compared with the Ade-
quacy-for-purpose View of models that has recently been proposed in the philoso-
phy of science (cf. Bokulich & Parker, 2021; Parker, 2020).

According to this view, scientific models are assessed with respect to their ade-
quacy of fitness to a particular purpose, and not merely on whether those models 
are confirmed by available data. A purpose is a specific goal or aim that one wants 
to achieve by formulating the model. According to Parker, a model is adequate-for-
purpose if, in the relevant contexts in which that model is used, the relevant purpose 
is likely to be achieved.7

7 Parker (2020) also distinguishes between different senses of adequacy-for-purpose, namely, as success 
in a particular instance of use or as reliability of a type of use of the model. Parker’s distinction is not 
relevant in this context.
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As emphasized by Bokulich and Parker (2021, p. 31),

Scientific modeling is an activity undertaken by agents with specific goals 
and purposes in mind, such as the prediction or explanation of a phenomenon. 
[…] models are not just representations, they are tools that are controlled and 
selected, and manipulated, with an eye on achieving specific epistemic or prac-
tical purposes.

As we have seen based on the analysis of how weights are understood in PSHA, 
the evaluation of the seismic hazard models is usually based on epistemic values. 
However, in practice, it may contingently happen that the selection and evaluation 
of seismic hazard models are influenced by non-epistemic values, for example, per-
sonal connections between the experts, belonging to particular research groups or 
traditions, and professional prestige. This notwithstanding, the selection of the mod-
els that are included in the study should be determined only by their fit with histori-
cal data and similarity with the geophysical properties of the site, and the individual 
judgments expressed by the experts should be grounded on the available historical 
data and the state-of-art knowledge of the area of interest, rather than on social and 
pragmatic considerations (Klügel, 2011). In the next section, we will claim that non-
epistemic values have the crucial role of justifying the aggregation of the models 
into ensembles in the third phase of PSHA.8

Aggregation in PSHA and Non‑epistemic Values

In this section, we claim that the aggregation of seismic models is in fact moti-
vated by non-epistemic values. The declared aim of the logic tree is to “repre-
sent the center, the body, and the range of technical interpretations that the larger 
informed technical community would have if they were to conduct the study” 
(SSHAC, 1997, p. 21). The fact that ensemble modeling in PSHA aims to “rep-
resent” the judgments of the experts indicates that epistemic values may also be 
involved: an ensemble of models may be praised because it accurately represents 
the uncertainty in the scientific community. However, the final goal of the aggre-
gation is not to provide a faithful representation of the judgments of the experts, 
but to provide an assessment of seismic hazard that incorporates the judgments of 
different experts and that is appropriate for a specific situation or a specific goal. 
The epistemic value of representing the overall epistemic uncertainty is therefore 

8 It is not surprising that risk analysis in general can be influenced by non-epistemic values, since risk 
also involves vulnerability and exposure (fn. 1). Therefore, it may be reasonable to require that mod-
els are more sensitive to catastrophic risks than to ordinary risks. By contrast, hazard analysis aims at 
estimating an objective quantity, namely the frequency of an adverse natural event, and the role of non-
epistemic values is less evident.



 L. Zanetti et al.

1 3

   18  Page 12 of 16

instrumental to attaining a different, non-epistemic goal. We will illustrate this 
point by discussing an example from the practice of PSHA.

Seismic hazard is typically estimated in either of two ways. First, the seismic 
hazard can be calculated as the mean value produced by the logic tree. Alterna-
tively, the seismic hazard can also be estimated using percentiles from the family 
of hazard curves produced by the logic tree (for example, the 85th percentile or 
the 90th percentile).

The mean hazard is calculated by the total probability theorem as the aver-
age of all the frequencies of exceedance estimated by each curve weighted by the 
probability assigned to that curve. The use of mean values in the estimation of 
seismic hazard has mostly been defended by appealing to a probabilistic approach 
that treats aleatoric and epistemic uncertainties in the same way (McGuire et al., 
2005; Musson, 2005). The choice of mean hazard instead of percentiles may be 
guided by practical considerations as well. McGuire et  al. (2005) mention the 
example of the US Nuclear Regulatory Commission (USNRS) which in 2001 
released the Reactor Safety Goal Policy Statement. In their document, the USNRS 
estimates safety criteria for nuclear power reactors using mean frequencies of the 
occurrence of a meltdown. The decision of the USNRS to use mean frequencies 
rather than percentiles was motivated by two pragmatic considerations. The first 
one is that mean values are usually easier to compute than percentiles. The sec-
ond reason is that these values can be incorporated more easily into a cost–benefit 
analysis that compares mean economic losses of different options.

In the case of percentiles, one considers as a reference the curve that represents 
the values that are exceeded according to a specified percentage of the models 
that are included in the logic tree. As emphasized by Abrahamson and Bommer 
(2005), “the hazard curve taken as the basis for design should be chosen on the 
basis of the fractile that reflects the desired degree of confidence that the safety 
level implied by the selected annual frequency of exceedance (or return period) 
is being achieved” (p. 607). It is a contextual matter which percentile is the one 
that should be considered in a given situation because it depends on the level of 
confidence of the estimate that one wants to achieve with respect to the avail-
able models. Decisions based on percentiles take into account the majority of the 
experts. Therefore, the preference for percentiles in the estimation of seismic haz-
ard seems to be justified by non-epistemic values as well.9

The choice of a specific value for seismic hazard (for example, the mean haz-
ard or the 90th percentile) can depend on which non-epistemic goal is pursued. For 
example, there can be political reasons to choose the mean value of the logic trees. 
As stated for instance by Marzocchi and Zechar (2011), “one of the main goals of 
decision-makers is to minimize possible a posteriori critiques if a forecast model 
fails” (p. 446). Avoiding criticisms is easier if the decision-maker has considered all 
the available models. The mean hazard calculated by the logic tree is not the predic-
tion of the best model, that is, the prediction of the model with the highest weight, 

9 The choice of a specific percentile is a case in which an epistemic decision is determined by non-
epistemic considerations, and it is similar to the case of ‘inductive risk’ concerning Type I/Type II errors 
in hypothesis testing; see e.g., Brigandt (2015) and Chiffi (2021).
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but rather the average of all the predicted values weighted by the probabilities 
assigned to the experts. Therefore, no single expert may believe that the final esti-
mate is “the one that should be used”, even if the ensemble of models represents the 
judgments of the scientific community as a whole. So decisions made based on the 
mean value produced by the ensemble take into account the totality of the scientists.

In some situations, the decision-makers could aim to make decisions that are 
robust in the sense that the estimate is correct according to a broad range of mod-
els but not according to all models. This may be justified because the stakes are 
particularly low, for example, the construction of a structure with low exposure 
(e.g. a deposit) in a region with limited seismic activity (that is, very long return 
periods of critical events) where no human lives would be lost in case of collapse. 
In low-stakes situations, the decision-makers may ignore extreme models that pre-
dict stronger seismic events with higher frequencies. By contrast, if the stakes are 
extremely high (for example, the construction of a power plant), the decision-maker 
may consider the highest frequency estimated by the ensemble of models for the 
event of interest, or even the ‘maximum credible earthquake’ at the site (Krinitzsky, 
2002). This strategy can be justified especially if the decision-maker has reasons to 
think that the scientists are particularly conservative in their projections or that they 
have a bias toward less alarmistic forecasting (Brysse et al., 2013).

A final point that is worth mentioning is that the way in which uncertainties are 
represented mathematically can also be influenced by non-epistemic values. The 
judgments of the experts are often elicited as qualitative judgments about the mod-
els (which model should be used) and these judgments are then turned into prob-
abilities (Scherbaum and Kuhen, 2011). The integrators usually have some choice 
on how they represent the judgments of the experts (Marzocchi & Jordan, 2018). As 
remarked for example by Parker and Winsberg (2018), “real-world agents, including 
scientists, decide how to represent these probabilities, often using distributions that 
are uniform, binomial, Poisson, normal, etc. These decisions, like other methodo-
logical decisions in science, can be subject to inductive risk considerations” (p. 127; 
see also Steel, 2015).

Summing up, the assessment of seismic hazard models is neither a purely scien-
tific nor a purely practical enterprise, but it is sensitive to both epistemic and non-
epistemic values. Of the three phases of the assessment, namely selection, evalua-
tion and aggregation, the first two phases are justified by epistemic values, even if 
non-epistemic values may contingently influence them, whereas the third phase is 
justified primarily by non-epistemic values, even though epistemic values may play 
an instrumental role.10

10 In this paper we have not addressed the normative question whether earthquake engineering ought 
to be influenced also by non-epistemic values or not. At any rate, nothing excludes that there might be 
purely epistemic reasons for using ensemble models; for example, an anonymous reviewer suggested that 
ensemble modelling may be justified by a suitable variant of Condorcet’s Jury Theorem.
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Conclusion

We have discussed some normative elements of earthquake engineering. Starting 
from the classical distinction between epistemic and non-epistemic values in sci-
ence and engineering, we critically analysed the role of values in the formulation 
and validation of models for hazard evaluation in earthquake engineering and we 
discuss a concrete example. Then, we focused on those models that are probabilistic. 
We argue that probabilistic seismic hazard analysis (PSHA) is sensitive to a mixture 
of both epistemic and non-epistemic values. More specifically, on the one hand, the 
selection and the evaluation of seismic hazard models are both justified by epistemic 
values such as the accuracy of the model and the fit with historical data. On the 
other hand, the aggregation of models into an ensemble using logic trees is justified 
by non-epistemic considerations, and in particular, ensemble models allow potential 
stakeholders and decision-makers to rely on a hazard assessment that incorporates 
the judgments of different experts. Finally, being aware of the specific aim to attain 
and thinking about the epistemic and non-epistemic values consequently involved is 
important when different models are available and there is uncertainty in the scien-
tific community about which model should be used.

Acknowledgements We are grateful to the anonymous reviewers at Science and Engineering Ethics for 
their comments and suggestions that have greatly improved our paper. This research was partially funded 
by Next Generation EU, Piano Nazionale di Ripresa e Resilienza (PNRR), Ministry of University and 
Research: “RETURN. Multi-Risk Science for Resilient Communities Under a Changing Climate”. The 
authors have no relevant financial or non-financial interests to disclose. All authors contributed equally to 
this work and read and approved the final manuscript.

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

Abrahamson, N. A., & Bommer, J. J. (2005). Probability and uncertainty in seismic hazard analysis. 
Earthquake Spectra, 21(2), 603–607.

Acton, J. M., Hibbs, M. (2012). Why Fukushima was preventable. Nuclear Policy. Carnegie Endowment 
for International Peace.

Baker, J., & Gupta, A. (2016). Bayesian treatment of induced seismicity in probabilistic seismic-hazard 
analysis. Bulletin of the Seismological Society of America, 106, 1–11.

Baker, J., Bradley, B., & Stafford, P. (2021). Seismic hazard and risk analysis. Cambridge University 
Press.

Bokulich, A., & Oreskes, N. (2017). Models in the geosciences. In L. Magnani & T. Bertolotti (Eds.), 
Handbook of model-based science (pp. 891–911). Springer.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 3

Epistemic and Non-epistemic Values… Page 15 of 16    18 

Bokulich, A., & Parker, W. (2021). Data models, representation and adequacy-for-purpose. European 
Journal for Philosophy of Science, 11(1), 1–26.

Bommer, J., & Scherbaumb, F. (2008). The use and misuse of logic trees in probabilistic seismic hazard 
analysis. Earthquake Spectra, 4(24), 997–1009.

Bommer, J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., & Fäh, D. (2010). On the selection 
of ground-motion prediction equations for seismic hazard analysis. Seismological Research Letters, 
81(5), 783–793.

Brigandt, I. (2015). Social values influence the adequacy conditions of scientific theories: Beyond induc-
tive risk. Canadian Journal of Philosophy, 45(3), 326–356.

Brysse, K., Oreskes, N., O’Reilly, J., & Oppenheimer, M. (2013). Climate change prediction: Erring on 
the side of least drama? Global Environmental Change, 23(1), 327–337.

Budnitz, R. J., Apostolakis, G., Boore, D. M., Cluff, L. S., Coppersmith, K. J., Cornell, C. A., & Morris, 
P. A. (1998). Use of technical expert panels: Applications to probabilistic seismic hazard analysis. 
Risk Analysis, 18(4), 463–469.

Chiffi, D. (2021). Clinical reasoning: Knowledge, uncertainty, and values in health care. Springer.
Cotton, F., Scherbaum, F., Bommer, J. J., & Bungum, H. (2006). Criteria for selecting and adjusting 

ground-motion models for specific target applications. Journal of Seismology, 10(2), 137–156.
Diekmann, S., & Peterson, M. (2013). The role of non-epistemic values in engineering models. Science 

and Engineering Ethics, 19, 207–218.
Donovan, A. (2012). Earthquakes and volcanoes: Risk from geophysical hazards. In Roeser, S.; Hiller-

brand, R.; Sandin, P. and Peterson, M. (2012). Handbook of risk theory: Epistemology, decision 
theory, ethics, and social implications of risk: 341–71. Springer.

Dorato, M. (2004). Epistemic and nonepistemic values in science. In Machamer, P., Wolters, G. (eds.). 
Science, values, and objectivity, (pp. 52–77). University of Pittsburgh Press.

Douglas, H. (2000). Inductive risk and values in science. Philosophy of Science, 67(4), 559–579.
Ebert, P., & Milne, P. (2022). Methodological and conceptual challenges in rare and severe event forecast 

verification. Natural Hazards and Earth Systems Sciences, 22(2), 539–557.
Elliott, K. (2022). Values in science. Cambridge University Press.
Elliott, K., & McKaughan, D. (2014). Nonepistemic values and the multiple goals of science. Philosophy 

of Science, 81(1), 1–21.
Frigg, R., Nguyen, N. (2020). Modelling nature: An opinionated introduction to scientific representation. 

Springer.
Hansson, S. O. (2010). Risk: Objective or subjective, facts or values. Journal of Risk Research, 13, 

231–238.
Klügel, J. (2011). Uncertainty analysis and expert judgment in seismic hazard analysis. Pure and Applied 

Geophysics, 168, 27–53.
Krinitzsky, E. (2002). Epistematic and aleatory uncertainty: A new shtick for probabilistic seismic hazard 

analysis. Engineering Geology, 66, 157–159.
Kuhn, T. S. (1977). Objectivity, value judgment, and theory choice. In The essential tension: Selected 

studies in scientific tradition and change (pp. 320–39). University of Chicago Press.
Kulkarni, R., Youngs, R., & Coppersmith, K. (1984). Assessment of confidence intervals for results of 

seismic hazard analysis. Proceedings, Eighth World Conference on Earthquake Engineering, 1, 
263–270.

Lacey, H. (2005). Values and objectivity in science. Lexington Books.
Marzocchi, W., & Jordan, T. H. (2018). Experimental concepts for testing probabilistic earthquake fore-

casting and seismic hazard models. Geophysical Journal International, 215, 780–798.
Marzocchi, W., & Zechar, J. (2011). Earthquake forecasting and earthquake prediction: Different 

approaches for obtaining the best model. Seismological Research Letter, 82(3), 442–448.
McGuire, R., Cornell, C., & Toro, G. (2005). The case for using mean seismic hazard. Earthquake Spec-

tra, 21(3), 879–886.
McGuire, R. (2004). Seismic hazard and risk analysis. Earthquake Engineering Research Institute.
McMullin, E. (1982). Values in science. In Machamer, P., Wolters, G. (eds.). Proceedings of the biennial 

meeting of the philosophy of science association (PSA), Vol 2., (pp. 3–28). University of Chicago 
Press.

Meletti, C., Marzocchi, W., D’Amico, V., Lanzano, G., Luzi, L., Martinelli, F., Pace, B., Rovida, A., 
Taroni, M., Visini, F. and the MPS19 Working Group (2021). The new Italian seismic hazard model 
(MPS19). Annals of Geophysics, 64(1). https:// doi. org/ 10. 4401/ ag- 8579.

Musson, R. (2005). Against fractiles. Earthquake Spectra, 21(3), 887–891.

https://doi.org/10.4401/ag-8579


 L. Zanetti et al.

1 3

   18  Page 16 of 16

Musson, R. (2012). On the nature of logic trees in probabilistic seismic hazard assessment. Earthquake 
Spectra, 28, 1291–1296.

NCR–National Research Council Panel on Seismic Hazard Evaluation (1997). Review of recommen-
dations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts. 
National Academy of Science.

Parker, W. (2020). Model evaluation: An adequacy-for-purpose view. Philosophy of Science, 87(3), 
457–477.

Parker, W., & Winsberg, E. (2018). Values and evidence: How models make a difference. European Jour-
nal for Philosophy of Science, 8(1), 125–142.

Rudner, R. (1953). The scientist Qua scientist makes value judgments. Philosophy of Science, 20(1), 1–6.
Scherbaum, F., & Kuehn, N. (2011). Logic tree branch weights and probabilities: Summing up to one is 

not enough. Earthquake Spectra, 27, 1237–1251.
Secanell, R., Martin, C., Viallet, E., & Senfaute, G. (2018). A Bayesian methodology to update the proba-

bilistic seismic hazard assessment. Bulletin Earthquake Engineering, 16, 2513–2527.
SSHAC–Senior Seismic Hazard Analysis Committee (1997). Recommendations for probabilistic seis-

mic hazard analysis: Guidance on uncertainty and use of experts. Report NUREG-CR-6372, U.S. 
Nuclear Regulatory Commission.

Steel, D. (2010). Epistemic values and the argument from inductive risk. Philosophy of Science, 77(1), 
14–34.

Steel, D. (2015). Acceptance, values, and probability. Studies in History and Philosophy of Science Part 
A, 53, 81–88.

Synolakis, C., & Kânoğlu, U. (2015). The Fukushima accident was preventable. Philosophical Transac-
tions of the Royal Society A, 373(2053), 1–23.

Taebi, B. (2020). Ethics and engineering: An introduction. Cambridge University Press.
United Nations Office for Disaster Risk Reduction (UNISDR) (2015). UNISDR Annual Report 2015: 

2014–15 Biennium Work Programme Final Report, Geneva. https:// www. unisdr. org/ files/ 48588_ 
unisd rannu alrep ort20 15evs. pdf

van de Poel, I. (2009). Values in engineering design. Philosophy of technology and engineering sciences. 
In A. Meijers (Ed.), Handbook of the philosophy of science, Vol. 9, (pp. 973–1006). Elsevier.

Ward, Z. (2021). On value-laden science. Studies in History and Philosophy of Science Part A, 85, 54–62.
Zanetti, L., Chiffi, D., & Petrini, L. (2023). Philosophical aspects of probabilistic seismic hazard analysis 

(PSHA): A critical review. Natural Hazards. https:// doi. org/ 10. 1007/ s11069- 023- 05901-6.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://www.unisdr.org/files/48588_unisdrannualreport2015evs.pdf
https://www.unisdr.org/files/48588_unisdrannualreport2015evs.pdf
https://doi.org/10.1007/s11069-023-05901-6

	Epistemic and Non-epistemic Values in Earthquake Engineering
	Abstract
	Introduction
	Epistemic and Non-epistemic Values in Science and Engineering
	Epistemic and Non-epistemic Values in Earthquake Engineering
	Selection and Evaluation in Probabilistic Seismic Hazard Analysis (PSHA)
	Aggregation in PSHA and Non-epistemic Values
	Conclusion
	Acknowledgements 
	References


