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Abstract: Within the concept of a smart grid, aggregators have the task of coordinating the
behavior of large sets of Distributed Energy Resources, each of them offering small power/energy
capacities, which help to balance the power grid and can serve as providers of services. Adequate
coordination strategies are required to optimally exploit these resources in the ancillary
services market. However, deriving model-based control policies for them is complex due to the
heterogeneity and uncertainty related to the large set of associated agents. Then, a data-driven
model is an adequate solution for this sort of situation. This paper presents the application of the
Youla–Kucera Data-Driven Control strategy for the development of an aggregator to regulate
the power consumption of a set of thermoelectric refrigerators, avoiding the modeling process
and directly designing a controller from data. A detailed simulation framework was executed
to verify the validity of the proposed methodology. It is shown that the derived aggregator is
able to offer frequency containment reserves service, achieving the required settling time of 30
seconds and with a tracking error below 4.7%.
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1. INTRODUCTION

Nowadays modern grids are composed of a large set of Dis-
tributed Energy Resources (DERs) such as photovoltaic
systems, electric vehicles, power plants, energy storage
systems, etc. Some of these resources consume and produce
energy in an uncontrollable way producing congestion and
imbalances, and increasing the uncertainty in the grid. In
order to maintain a dynamic power balance, some control
strategies have been proposed with the aim of reducing
variability on the demand side. For example, Gao et al.
(2019), tries to manage the flexibility of batteries, electro-
thermal heating units equipped with thermal storage,
electric vehicles, and deferrable loads.Wang et al. (2020)
has used an Alternating Direction Method of Multipliers
(ADMM) in order to manage the uncertainty in the grid.
Also, Model Predictive Control (MPC) methods have been
applied by Ojand and Dagdougui (2022), and Diekerhof
et al. (2018) to solve the load management problem.

Flexible Loads (FL) are resources that help to balance the
power grid and can serve as service providers. FL benefit
the power systems by increasing or regulating the energy
consumption. Although, the reduced capacity of every
single load and the distributed location of the resources
pose limitations in this approach. A large set of FL are
employed to offer services to the grid effectively.To do
this an agent called aggregator is required to coordinate
the set. However, it generates a complex system behavior
challenging their control and operation.

A challenge to achieve efficient management of these re-
sources is to develop adequate aggregation strategies, able

to coordinate and dispatch large sets of flexible loads.
The aggregated behavior of homogeneous loads, such as,
Thermostatically Controlled Loads (TCLs), Heating, ven-
tilation, and air conditioning (HVAC), electric vehicles
and smart water heating, and ice-based thermal storage
has been deeply studied in the literature, see e.g., Abbas
and Chowdhury (2021),Cui et al. (2020). Once the load
characterization is made, it is possible to get a controller
which allows to achieve the balance in the grid mitigating
supply-demand mismatch (Coffman et al., 2021), (Ju et al.,
2019).

In general a dynamic model which represents the behavior
of the FL is required for designing aggregation strategies,
see Diaz-Londono et al. (2019). Nevertheless, due to the
complex behavior of the flexible loads is not possible
to build analytic models which represent the system’s
dynamics.Therefore, a data-driven model is an adequate
solution for these applications.

When a set of input-output samples are available, there
are two main methods in the literature for designing a
controller, i) derive a model from the available informa-
tion and then design a controller for the found model;
ii) a controller can be obtained directly from the data
(Formentin et al., 2014). The direct methods are useful to
avoid the system identification step. Sakaki et al. (2018)
shows a method which uses a set of experimental data for
designing a Two Degrees Of Freedom (2DOF) controller
based on Virtual reference feedback tuning (VRFT) and
fictitious reference iterative tuning (FRIT) methods. The
controller is found through the desired reference model
conditioned with the stability margin quantified by the
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controller, i) derive a model from the available informa-
tion and then design a controller for the found model;
ii) a controller can be obtained directly from the data
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shows a method which uses a set of experimental data for
designing a Two Degrees Of Freedom (2DOF) controller
based on Virtual reference feedback tuning (VRFT) and
fictitious reference iterative tuning (FRIT) methods. The
controller is found through the desired reference model
conditioned with the stability margin quantified by the

Data-Driven Aggregation Control for
Thermoelectric Loads in Demand Response

Andres Cordoba-Pacheco, Cesar Diaz-Londono, Fredy Ruiz

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico
di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy;
(e-mail: {andrefelipe.cordoba, cesar.diaz, fredy.ruiz}@polimi.it)

Abstract: Within the concept of a smart grid, aggregators have the task of coordinating the
behavior of large sets of Distributed Energy Resources, each of them offering small power/energy
capacities, which help to balance the power grid and can serve as providers of services. Adequate
coordination strategies are required to optimally exploit these resources in the ancillary
services market. However, deriving model-based control policies for them is complex due to the
heterogeneity and uncertainty related to the large set of associated agents. Then, a data-driven
model is an adequate solution for this sort of situation. This paper presents the application of the
Youla–Kucera Data-Driven Control strategy for the development of an aggregator to regulate
the power consumption of a set of thermoelectric refrigerators, avoiding the modeling process
and directly designing a controller from data. A detailed simulation framework was executed
to verify the validity of the proposed methodology. It is shown that the derived aggregator is
able to offer frequency containment reserves service, achieving the required settling time of 30
seconds and with a tracking error below 4.7%.

Keywords: Data-driven control, Learning based control, Youla Kucera parametrization,
Aggregator, Thermometric refrigeration, Flexible loads

1. INTRODUCTION

Nowadays modern grids are composed of a large set of Dis-
tributed Energy Resources (DERs) such as photovoltaic
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challenging their control and operation.
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The aggregated behavior of homogeneous loads, such as,
Thermostatically Controlled Loads (TCLs), Heating, ven-
tilation, and air conditioning (HVAC), electric vehicles
and smart water heating, and ice-based thermal storage
has been deeply studied in the literature, see e.g., Abbas
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sensitivity function. Also, some methods such as VRFT
are modified in order to afford better approaches in a
continuous time and deterministic set-up(Formentin et al.,
2019). Also, Valderrama and Ruiz (2022) proposed a direct
design methodology of controllers, assuming that the data
sets are generated by a stable, linear, time-invariant, SISO
system. The Youla–Kucera Data-Driven Control (YK-
DDC) strategy relies on errors in variable identification
for estimating a Finite Impulse Response filter through
Youla Kucera parametrization that avoids the selection
of a fixed controller structure.The YK-DDC strategy is
an adequate solution tool for designing data-driven ag-
gregation controllers for FL, because the method is able
to avoid the modeling process of the aggregate behavior
of the FL and directly design a controller to regulate the
power consumption of the set, also it offers a large number
of degrees of freedom during the tunning process.

This paper proposed a simplified controller design method-
ology in energy services with the goal of obtaining a
dynamic power balance and reduce grid congestion. The
method is an innovative application work that involves the
Data-Driven technique presented by Valderrama and Ruiz
(2022) and the aggregation problem of Thermoelectric
Refrigerators studied in Diaz-Londono et al. (2020). It is
shown that the YK-DDCmethod is able to tune controllers
for different performance requirements.

The framework of the paper is as follows. In Section 2, the
description of the Thermoelectric Refrigerator (TER) as a
flexible load is presented. In Section 3, the Youla–Kucera
parametrization for controller tunning is briefly described.
Section 4 describes the data-driven aggregator strategy for
TERs followed by section 5 where is presented the analysis
of results and the conclusions end the paper in Section 6.

2. TERS AS FLEXIBLE LOADS

Thermoelectric Refrigerators are solid-state devices that
convert electrical energy into thermal energy. TERs can
operate in temperatures between 2°C and 8°C and they
are becoming popular due to their high reliability, temper-
ature stability, operation in severe environment and good
controllability within ±0,1◦C (Zhao and Tan, 2014).

Diaz-Londono et al. (2020) proposed an aggregation strat-
egy for TERs as Flexible loads. When a temperature set-
point of a TER is modified, it changes its power con-
sumption and this demand variation is exploited to offer
balancing services.To do this, three states are established
for each TER where the temperature set-point (Tsp) is
defined as:

• 0: Nominal operating set-point, which is defined from
the set {3, 4, 5, 6, 7}°C;

• 1: High set-point = 8°C;
• 1: Low set-point = 2°C;

When the system operator (SO) requests a power devi-
ation, an aggregator decides how many and which TERs
should activate their flexibility to achieve the requested
service within the established times, see Fig. 1. First, the
controller specifies the number of TERs to be activated
through the signal u(k). Then, the selector decides which
TERs must change the temperature set point through the
vector β, both of them operate with a sampling time (Ts)

Fig. 1. TER aggregator scheme.

Fig. 2. Standard structure of balancing services provision.

of 1s.A PI controller was tuned based on a linear model of
the aggregated loads estimated from a step response.

In this work, it is considered a set of n = 100 TERs that
offer flexibility to the power grid. It is assumed that an
aggregation framework as the one shown in Fig. 1 already
exists and a controller is required to coordinate the FL in
order to provide balancing services to the electrical grid.

An energy balance service is divided into four stages,
preparation period, ramp-up period, delivery period and
ramp-down period as shown in Fig. 2. One of the most
critical parameters in this application is the settling
time of the ramp-up period. The European Commis-
sion (European-Commission, 2017) defines three services,
Frequency Containment Reserves (FCR) with a max-
imum settling time ST = 30 s and the delivery of 50%
of the reserve fulfilled within 15s, Frequency Restoration
Reserves (FRR) with a settling time up to 12 min and
finally Replacement Reserves (RR) with a settling time
up to 30 min. This work is focused on FCR services which
is more challenging than the others.

3. YOULA-KUCERA PARAMETRIZATION FOR
CONTROLLER TUNING DESCRIPTION

The Youla-Kucera framework allows parametrizing con-
trollers for a given linear time-invariant plant. However,
it has been extended to solve the controller design from
data problems when the plant is unknown, avoiding the
plant identification step and directly designing controllers
in Valderrama and Ruiz (2022).

In order to define the framework of the tuning problem,
the control system is shown in Fig. 3, where P (z) is
a stable single-input single-output (SISO) plant, C(z, θ)
is the controller, parameterized by the vector θ, r(k) is
the reference, u(k) the manipulated variable, y(k) the
controlled variable, v(k) is output noise/disturbances and

Fig. 3. Assumed feedback control structure.

M(z) is the reference model that represents the desired
behavior of the closed-loop.

Given a reference model M(z), the aim of the controller
tuning procedure is to find a set of parameters θ, usually
solving an optimization problem and guaranteeing the
internal stability of the loop by minimizing the cost
function

JRM (θ) =

∥∥∥∥M(z)− P (z)C(z, θ)

1 + P (z)C(z, θ)

∥∥∥∥
2

2

. (1)

When P (z) is unknown but there is a data set of in-
put/output samples, which contains information about the
behavior of the plant, it is possible to tune a data-driven
controller taking into account that all the information
is produced in open-loop, i.e, u(k) is applied directly to
P (z) and y(k) is the output information composed by the
response of the plant to the input u(k) plus an additive
noise v(k).

From Youla-Kucera parametrization if a plant is stable any
C(z, θ) that achieves internal stability can be parametrized
as,

C(z, θ) = Q(z, θ) ∗ (1− P (z) ∗Q(z, θ))−1

Q(z, θ) ∈ H∞,
(2)

Q(z, θ) is chosen as a Finite Impulse Response (FIR) filter
with impulse response length mq as

Q(z, θ) =

mq∑
i=1

θiz
−(i−1). (3)

Consequently, the model matching error for a given pa-
rameter θ can be defined as

∆M (z, θ) = M(z)−Q(z, θ)P (z) (4)

From Valderrama and Ruiz (2022), it can be inferred
that the cost function (1) is equal to the norm of the
correlation between the model matching error and x(k)
a set of instrumental variables which satisfy

JRM (θ) = ||Rex(τ, θ)||22 =

∞∑
τ=−∞

R2
ex(τ, θ) (5)

where

Rex(z, θ) = E[e(k, θ)x(k − τ)],

e(k, θ) =M(z)u(k)−Q(z, θ)y(k),

x(k) =W (z)u(k)

and
|W (ejw)| = |Φu(jw)|−1

being W (z) a Bounded-Input Bounded-Output (BIBO)
stable system.

Given a set of input-output samples of the plant, the
optimal impulse response coefficients of the filter Q(z, θ)
are obtained by least-squares estimation as

θ̂ = (XTX)−1XTZ (6)

where the correlation matrices are

X =
1

N

N∑
t=1

ζ(k)ϕT (k) (7)

Z =
1

N

N∑
t=1

ζ(k)M(z)u(k) (8)

for the regressors

ϕ(k) = [y(k), y(k − 1), . . . , y(k −mq + 1)]

ζ(k) = [x(k + l), · · ·x(k), · · · , x(k − l)]T

and l is the length of the correlation which is an tuning
parameter, sufficiently long to get a good approximation.

Then, the controller is derived as

CDD(z, θ̂) = Q(z, θ̂)(1−M(z))−1. (9)

Finally, to assess the stability of the loop, based on
the Small Gain theorem, the sufficient but not necessary
condition ||∆M(ejω)||∞ ≤ 1 can be verified employing
only the data-set.

4. DATA-DRIVEN AGGREGATOR DESIGN FOR
TER

This section shows the methodology employed for ob-
taining the desired Controller for the TER aggregation
strategy formulated in Section 2 through the data-driven
procedure presented in the previous section.

Using MATLAB/Simulink with the Simscape toolbox a
simulation environment with a pool of n = 100 TERs was
developed taking into account that every TER has its own
dynamics, thermal capacity, and it is subject to different
perturbations.

To apply the methodology of YK-DDC, a set of in-
put/output data was generated. A Pseudorandom Multi-
level Sequence (PRMS) is assembled as input u(k), using
a clock period of 30 seconds. u(k) belong to the interval
[-100,100], so u(k) is equal to the number of TERs with
activated flexibility at time k, that is, with a modified set-
point. When u(k) is positive the set point is reduced to 2◦C
and vice versa, as described in Section 2. The amplitude
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parameter, sufficiently long to get a good approximation.

Then, the controller is derived as

CDD(z, θ̂) = Q(z, θ̂)(1−M(z))−1. (9)

Finally, to assess the stability of the loop, based on
the Small Gain theorem, the sufficient but not necessary
condition ||∆M(ejω)||∞ ≤ 1 can be verified employing
only the data-set.
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This section shows the methodology employed for ob-
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Fig. 4. Data set for controller design. (a) Input u(k):
number of TERS with activated flexibility. (b) Output
y(k): Aggregated power deviation of the TERs.

of the signal is produced as samples of a discrete uniform
distribution function. Fig. 4 shows a segment of the signal’s
behavior where the aggregated i the reduced power. From
the system simulation a data set D = {u(k), y(k), k =
1, 2, ..., N} is built with Ts = 1s, N = 30000 samples
which are used for tunning the controller.

One of the main characteristics of providing flexibility by
shifting the power consumption is to avoid overshoots and
rebounds in the power demand, which not only reduces the
waste of energy but also prevents fatigue and damage to
the grid. Therefore,based on the characteristics mentioned,
the following first-order system

M(z) =
1− e(

−Ts
τ )

z − e(
−Ts
τ )

(10)

is chosen as reference model M(z) to parametrize the
desired performance of the control loop to fulfill the
requirements of an energy balance services provider.
Based on the service requirements presented in Sec-
tion 2, reference model time constant τ with the values
{0.4, 2, 3, 4, 6, 8, 10, 12}s are considered to design the con-
trollers.

The FIR filter length mq is selected following the guide-
lines given by Valderrama and Ruiz (2022). It is found
that mq needs to be adapted to the time constant τ . The
filter parameters are found by solving equation (6) and the
derived controller with the equation (9). The filter W (z)
was estimated through the available data set using the
MATLAB system Identification Toolbox.

Fig. 5. Reference signal r(k) for controllers validation.

τ [s] mq ||∆̂M(jω)||∞ Erms [W] Erms %

0.4 10 0.718 17.88 4.36
2 15 0.717 15.69 3.83
3 20 0.717 16.56 4.04
4 30 0.715 17.50 4.27
6 35 0.715 19.24 4.70
8 50 0.713 20.95 5.11
10 60 0.712 22.46 5.48
12 65 0.713 24.05 5.87

Table 1. Filter length, stability margin and tracking
error of controllers designed for different time con-

stants.

5. RESULTS

This section shows the outcome of the methodology ap-
plied to the set of TERs. Table 1 shows the results obtained
for controllers with diverse values of τ evaluated in closed-
loop for the reference signal shown in Fig. 5. It is reported
the FIR filter length mq, the model matching error norm

||∆̂M(jω)||∞, the root mean squared error Erms, as well as
the percentage root mean squared error Erms% between
the power reference and the total power reduced by the
TERs aggregation.

From the simulated results, it can be concluded that when
τ decreases, the system is faster, the tracking error is lower
but it losses stability margin, reflected in the increment of
||∆̂M(jω)||∞. Also, the controllers with τ < 8 have an
Erms lower than 5% which fulfils with the requirements of
the balancing services. Controllers with higher τ present
a higher error due to the bandwidth limitation. Conse-
quently, the method is suitable for designing controllers
with different time constants.

Fig. 6 shows the step response of the closed-loop system
and Fig. 7 the manipulated variable, for controllers greater
than τ = 0.4 s. It is appreciated that u(k) does not oscillate
and the system is stable. Fig. 8 shows the controlled
variable (Fig. 8a) and manipulated variable (Fig. 8b), for
a step response with the controller designed for τ = 0.4 s.
The overshoot is around 91%, which implies power losses
and risks for the grid operation. Also, analyzing the manip-
ulated variable, the amount of TERs whose flexibility is ac-
tivated, exceeds by 113% the actual requirement of flexible
loads, affecting directly the performance of the system and
reducing the capacity for future services. Accordingly, all
the values of the requested time constant can be achieved,
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Fig. 6. Closed-loop step responses of controllers designed
for different time constants.
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Fig. 8. (a) Closed-loop step response, and (b) manipulated
variable, of the controller designed for a time constant
of 0.4 s.

except by τ = 2 s and τ = 0.4 s which present overshoot
on both controlled and manipulated variable.

In view of the guidelines on electricity balancing, a con-
troller with τ = 6s is defined in Diaz-Londono et al.
(2020) for providing all the services requirements. Fig. 9
and Fig. 10 show the responses of the YK-DDC controller
with τ = 6 s for the reference in Fig. 5.

The aggregator designed with the YK-DDC methodology
follows the power requests without overshooting or re-
bounds at the end of the service. It also fulfills the critical
settling time of 30 seconds as required by the service. The
flexibility of the set of FL that is called to modify the
temperature set-point responds properly to the SO request
without exceeding the number of available TERs, for both
power increments and reductions.

Diaz-Londono et al. (2020) show that the aggregated TERs
system can be represented approximately as a linear trans-
fer function (TF). Considering the TF proposed there and
using a loop shaping method, two model based controllers

Fig. 9. Closed-loop response for the input shown in Fig. 5
of the controller designed for a time constant of 6 s.

Fig. 10. Manipulated variable of the closed-loop response
shown in Fig. 9
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Fig. 11. (a) Closed-loop step response, and (b) manipu-
lated variable, of the controller designed for a time
constant of 6 s.

Controller Erms [W] Erms %

2SMBC - τ = 6 20.45 4.99
Y K −DDC - τ = 6 19.24 4.7
2SMBC - τ = 3 17.66 4.31

Y K −DDC - τ = 3 16.56 4.04

Table 2. Tracking error comparison between YK-
DDC and 2SMBC

(2SMBC) have been designed to achieve first-order closed-
loop responses with τ = {3, 6}s, following the approach
presented in section 2. Then, they are evaluated in closed-
loop on the detail simulation framework for the reference
signal shown in Fig. 5. Table 2 shows a comparison be-
tween the 2SMBC and the YK-DDC. Fig. 11 and Fig. 12
show the step responses for the two controllers.

Considering the results presented in Table 2, the per-
formance is similar in terms of Erms, however, the YK-
DDC method achieves slightly lower tracking errors. From
Fig. 12 the 2SMBC with τ = 3s presents an overshoot
in both the controlled and manipulated variables. While,
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Fig. 8. (a) Closed-loop step response, and (b) manipulated
variable, of the controller designed for a time constant
of 0.4 s.

except by τ = 2 s and τ = 0.4 s which present overshoot
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In view of the guidelines on electricity balancing, a con-
troller with τ = 6s is defined in Diaz-Londono et al.
(2020) for providing all the services requirements. Fig. 9
and Fig. 10 show the responses of the YK-DDC controller
with τ = 6 s for the reference in Fig. 5.

The aggregator designed with the YK-DDC methodology
follows the power requests without overshooting or re-
bounds at the end of the service. It also fulfills the critical
settling time of 30 seconds as required by the service. The
flexibility of the set of FL that is called to modify the
temperature set-point responds properly to the SO request
without exceeding the number of available TERs, for both
power increments and reductions.

Diaz-Londono et al. (2020) show that the aggregated TERs
system can be represented approximately as a linear trans-
fer function (TF). Considering the TF proposed there and
using a loop shaping method, two model based controllers

Fig. 9. Closed-loop response for the input shown in Fig. 5
of the controller designed for a time constant of 6 s.

Fig. 10. Manipulated variable of the closed-loop response
shown in Fig. 9
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Fig. 11. (a) Closed-loop step response, and (b) manipu-
lated variable, of the controller designed for a time
constant of 6 s.

Controller Erms [W] Erms %

2SMBC - τ = 6 20.45 4.99
Y K −DDC - τ = 6 19.24 4.7
2SMBC - τ = 3 17.66 4.31

Y K −DDC - τ = 3 16.56 4.04

Table 2. Tracking error comparison between YK-
DDC and 2SMBC

(2SMBC) have been designed to achieve first-order closed-
loop responses with τ = {3, 6}s, following the approach
presented in section 2. Then, they are evaluated in closed-
loop on the detail simulation framework for the reference
signal shown in Fig. 5. Table 2 shows a comparison be-
tween the 2SMBC and the YK-DDC. Fig. 11 and Fig. 12
show the step responses for the two controllers.

Considering the results presented in Table 2, the per-
formance is similar in terms of Erms, however, the YK-
DDC method achieves slightly lower tracking errors. From
Fig. 12 the 2SMBC with τ = 3s presents an overshoot
in both the controlled and manipulated variables. While,
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Fig. 12. (a) Closed-loop step response, and (b) manipu-
lated variable, of the controller designed for a time
constant of 3 s.

Fig. 11 shows a comparable response between both meth-
ods for τ = 6s. Therefore, if a slow system response is
requested the behavior is similar for both methods, while,
if a higher bandwidth is required the YK-DDC method is
more efficient in using the experimental data.

6. CONCLUSIONS

In this work, it has been presented the development of a
data-driven controller for an aggregation problem of flexi-
ble loads in modern grids. The capacity of thermoelectric
refrigerators to behave as flexible loads is exploited to offer
frequency containment reserve services to the grid by prop-
erly manipulating the temperature set-point. However, the
dynamics of the aggregated system have complex behavior
that increases with the number of elements. Therefore, it is
not possible to build analytical models which represent the
system’s dynamics. Then, the Youla–Kucera Data-Driven
Control strategy is proposed as a solution tool for aggre-
gation issues, avoiding the modeling process and directly
designing a controller to regulate the power consumption.

A simulation environment with a pool of n = 100 TERs,
developed using MATLAB/Simulink and the Simscape
toolbox, is employed to approximate the behavior of the
aggregated set of flexible loads, taking into account that
each TER has different dynamics, thermal capacities, and
internal control with random perturbations.

It was illustrated that the method is suitable for designing
controllers to achieve a first-order behaviour, with different
time constants, from .4 s until 12 s with the same data sets.
The aggregator complies with the requirements imposed
by the European Commission, with a settling time of 30
seconds, a percentage tracking error of 4.7%, no overshoots
or rebounds and verified stability margins.

In future works, it is expected to expand the method
to larger systems, with multiple-variables and stronger
nonlinearities, as well as different kinds of flexible loads.
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