
BINO: Automatic Recognition of Inline Binary

Functions from Template Classes

Lorenzo Binosia,∗, Mario Polinoa, Michele Carminatia, Stefano Zaneroa

aPolitecnico di Milano - Department of Electronics, Information and Bioengineering, Via
Giuseppe Ponzio, 34, Milan, 20133, Italy, Italy

Abstract

In this paper, we propose BINO, a static analysis approach that relieves
reverse engineers from the challenging task of recognizing library functions
that have been inlined. BINO recognizes inline calls of methods of C++
template classes (even with unknown data types). We do this through a
binary fingerprinting and matching approach. Our fingerprint model cap-
tures syntactic and semantic features of an assembly function, along with
its Control-Flow Graph structure. Using these fingerprints and subgraph
isomorphism, it recognizes inline method calls in a target binary. BINO au-
tomates the fingerprints generation phase by parsing the source code of the
template classes and automatically building appropriate binaries with rep-
resentative inline calls of said methods. We evaluate BINO by performing
experiments on a dataset of 555 GitHub C++ projects containing 9146 in-
lined functions, exploring several optimization levels that allow the compiler
to inline function calls. We show that our approach can recognize inline func-
tion calls to the most used methods of well-known template classes with an
F1-Score up to nuovo valore % with the -O2, -O3 and -Ofast optimizations
levels.

Keywords: reverse engineering, function inlining, template classes, function
recognition, graph isomorphism

∗Corresponding author

Preprint submitted to Computer & Security June 6, 2023

1. Introduction

Reverse engineering of binaries plays a key role in several security research
areas, ranging from vulnerability discovery to malware analysis. Research on
reverse engineering tools and techniques is thus of paramount importance.
One of the most interesting open challenges is binary function recognition,
that is, attempting to recognize a function as either a clone or a variation
of another known function to ease the burden of the analyst and avoid rein-
venting the wheel. Unfortunately, this is not an easy task, as functions can
be rewritten in a binary in different forms without changing their semantics:
Instructions can be reordered, data types can be changed, and algorithms can
be rearranged. In addition, when compilers translate high-level source code
into machine code, there can be many possible outputs depending on opti-
mization levels and other parameters. All of this without even considering
voluntary obfuscation techniques, such as metamorphism in malware. Func-
tion inlining is a compiler optimization that replaces a call instruction with
the body of the called function. When this happens, two or more functions
effectively coexist in a single assembly function. This makes the recognition
harder since syntactic and semantic analysis would need to consider that only
a subgraph of the CFG is responsible for a function. Inlining happens with
all sorts of functions, but it is widespread within template classes from the
C++ standard library: Methods of such classes are the perfect candidates
for inlining optimizations.

With this work, we propose BINO, an approach based on binary func-
tion fingerprinting to recognize inline method calls of template classes from
the C++ standard library. Our fingerprints capture syntactic and seman-
tic aspects of an assembly function, as well as the structure of its CFG.
Fingerprints can be automatically generated (from the parsing of the C++
standard library to the creation of the fingerprint database). Using subgraph
algorithms, we can identify inline calls of fingerprinted functions in binary
applications. We implement the proposed approach in a framework com-
posed of several independent modules that we use to build a database of the
most relevant methods of library template classes (i.e., fingerprints). Such a
database can then be used to recognize the fingerprinted methods as inline
methods in a target binary application.

We test BINO on a dataset of 555 C++ GitHub projects, compiled with
different optimization levels. On the resulting binaries, we search for the
fingerprints of methods of classes std::map, std::vector, and std::deque,

2

since they are the most used library classes. We then verify each match
through DWARF debugging information [1]. BINO achieves F1-Scores of
65%, 64%, and 41%, with the optimization levels -O2, -O3/-Ofast, and -Os

respectively. In particular, when considering known template parameters
(i.e., data types used for building the fingerprints), BINO achieves an Hit-
Rate up to 77%. While, with unknown template parameters, our approach
accomplishes an Hit-Rate up to 51%. This demonstrates how the fingerprints
generated by BINO can generalize by capturing the most relevant features of
the inline methods. Moreover, we also show how BINO can attain a precision
of 100% when considering the operator[] of the std::map class, which is
the most complex method under analysis. This suggests how the precision
in the recognition scales with the complexity of the method under analysis.

In summary, the main contributions of this work are as follows:

• We propose BINO, an approach to recognize inline method calls of tem-
plate classes. To the best of our knowledge, this is the first approach to
inline function recognition. Indeed, other approaches aim to recognize
entire functions.

• We propose a fingerprint that captures syntactic and semantic aspects
of assembly functions for matching inline code.

• We develop a binary fingerprinting and matching framework able to
generate relevant fingerprints from the source code of a template class.
We make the source code of the framework publicly available1, both
for the reproducibility of our experiments and to encourage further
research.

• We evaluate BINO on a representative set of C++ projects2, compiled
with different optimization levels, against the template classes std::-
map, std::vector, and std::deque.

2. Background and Motivation

Function recognition is one of the core activities in modern static analysis.
It is very usefull in many applications ranging from control flow integrity to

1https://github.com/necst/BINO
2https://github.com/necst/BINO Dataset

3

binary similarity and vulnerability detection. Therefore, it is implemented
in many binary analysis tools (e.g, Angr [2], Ghidra, IDA, rev.ng [3], BAP,
Radare, Binary Ninja, Hopper, Objdump), since detecting a binary function
provides the core functionality to understand and analyze the high-level se-
mantic of a low-level binary [4]. While it is easy to understand the semantics
of a function when you have symbols or debugging information, it becomes
drastically challenging when the function is stripped or compiler optimiza-
tions are applied. This is particularly relevant for the task of vulnerability
detection where reverse engineers need to identify functions and their se-
mantics in the application code. However, code obfuscation techniques and
compiler optimizations, such as inlining, make state-of-the-art tools not up
to the challenge.

2.1. Inlining

Modern compilers use multiple methods to optimize emitted code toward
different metrics (e.g., the binary size or the runtime performance). Since
discussing this in-depth is beyond the scope of this paper, you can read [5]
for an overview of the subject.

One of the techniques used for optimization by compilers is function call
inlining, i.e., substituting a function call with the body of the function it-
self. There are several reasons why this can be beneficial. First, the call

instruction itself is expensive to execute. Also, if the function’s code is tiny,
the prologue and epilogue can significantly – and pointlessly – add to its size.
Finally, inlined code can be further optimized along with surrounding code,
something not possible otherwise. For these reasons alone, inlined code is
generally faster.

On the other hand, inlining has its drawbacks and may lead to worse
performance. For instance, the presence of multiple copies of the same func-
tion code across the binary can lead to instruction cache misses [6]. Indeed,
the duplicated code will be loaded several times into the cache, leading to
inefficient cache usage. In addition, inlining increase the overall binary size
and negatively impacts loading time, as well as potentially causing issues on
memory-constrained architectures.

For these reasons, during optimization, a set of heuristics evaluates whether
or not to inline a specific function call, taking into account parameters such
as the number of times the function is called, its size, and its execution time.

4

2.2. Problem Statement
Inlining makes the task of reverse engineering significantly more complex

and time-consuming. Indeed, as a reverse engineer, the only way of recog-
nizing inlined functions is to spend significant time understanding the code’s
semantics while reversing complex functions. Current approaches [7, 8, 9]
focus only on identifying assembly functions as clones of known ones, possi-
bly library functions. However, when inlining is in place, it can drastically
change the code of assembly functions. For this reason, their analysis also
considers the assembly code of the internal callees. Despite solving an impor-
tant problem, state-of-the-art approaches do not explore the more challenging
problem of detecting inlined library functions, which plays an essential role
in the reversing task.

Inlined library functions are widespread in modern C++ applications due
to the broad utilization of standard library template classes (a.k.a. contain-
ers) such as std::vector and std::map. Whenever C++ applications use
methods from template classes, the compiler emits ad-hoc assembly code to
deal with the chosen template parameter(s). Hence, the emitted assembly
code is part of the binary application since it is only relevant to the applica-
tion itself. In addition, methods from template classes are the best candidates
for inlining. Therefore, such methods are likely inlined in the final binary
application, especially if compiler optimizations are in place. Ultimately, the
resulting assembly code contains possibly complex inlined library code mixed
up with user-defined code.

To better understand the goal and challenges in recognizing such inline
binary functions, we refer to the example in Listing 1 for the rest of this sec-
tion. In the code, the function add to vector asks for an integer from the
command line, squares it, and appends the result to a std::vector through
the push back method. The Control-Flow Graphs (CFGs) of the function
compiled with optimization levels -O0 and -O3 are reported in Figure 1a and
Figure 1b respectively. The instructions in red highlight the main differ-
ences due to inlining: on the left, the compiler emits a function call to the
push back method, which we can see as the only instruction highlighted in
red, while on the right, the compiler inlines such a call and thus, the instruc-
tions highlighted in red are the ones of the push back method. Moreover,
we can observe the effect of inlining on the rightmost CFG due to the call
to the function std::vector:: M realloc insert, an internal and private
method called by the function push back. This example mainly describes the
ultimate goal of recognizing inline binary functions, i.e., highlighting the in-

5

1 void add_to_vector(std::vector<int> vec) {

2 int val;

3
4 std::cout << "New␣value:␣";

5 std::cin >> val;

6 val = val * val;

7 vec.push_back(val);

8 }

Listing 1: C++ template example.

structions that belong to an inline binary function. Moreover, it also gives an
intuition about the challenges of this task, which we discuss in the following.

Multilevel Inlining. Multilevel inlining is the process of inlining function
calls recursively. For instance, function foo may call function bar which in
turn may call function baz. In such a case, the compiler may decide, accord-
ing to some heuristics and considering several aspects of these functions (e.g.,
their size, execution time, etc.), to inline both the function calls to bar and
baz. This is called multilevel inlining, and this is an instance of 2-level inlin-
ing. In the example in Figure 1b, we have instances of multilevel inlining as
well, but it is not easy to spot since we only have the compiler output. More-
over, the example we propose is only an instance of the compiler output. In
another one, the compiler may inline the M realloc insert private method
call and, possibly, some of the functions called by this latter, increasing the
amount of inlined code. Thus, understanding the code semantics when the
amount of code changes across binaries, and possibly even across functions
of the same binary, is a challenging task.

Template Parameters. Template classes are a metaprogramming feature
where C++ code is generated according to programmer-specified template
parameters: for instance, we can create a std::vector object containing
int elements; but the vector could also contain objects of a different stan-
dard class (e.g., std::string), or even objects created with a custom class.
Moreover, depending on the chosen template parameter, we have different
assembly codes. Indeed, template classes methods (e.g., std::vector::-
push back, std::map::operator[]) call methods of the template parameter
(e.g., the copy constructor or the destructor) to perform operations on the
objects inside the container. When multilevel inlining reaches these func-
tion calls from the method we want to recognize, the assembly code will

6

Function std::basic_istream::operator>> 0x001110

Function std::operator>> 0x001140

Function __stack_chk_fail 0x001170

Block 0x001289

0x00001289: endbr64

0x0000128d: push rbp

0x0000128e: mov rbp, rsp

0x00001291: sub rsp, 0x20

0x00001295: mov qword ptr [rbp - 0x18], rdi

0x00001299: mov dword ptr [rbp - 0x1c], esi

0x0000129c: mov rax, qword ptr fs:[0x28]

0x000012a5: mov qword ptr [rbp - 8], rax

0x000012a9: xor eax, eax

0x000012ab: lea rax, [rip + 0xd52]

0x000012b2: mov rsi, rax

0x000012b5: lea rax, [rip + 0x2d84]

0x000012bc: mov rdi, rax

0x000012bf: call 0x1140

Block 0x0012c4

0x000012c4: lea rax, [rbp - 0xc]

0x000012c8: mov rsi, rax

0x000012cb: lea rax, [rip + 0x2e8e]

0x000012d2: mov rdi, rax

0x000012d5: call 0x1110

Block 0x0012da

0x000012da: mov edx, dword ptr [rbp - 0xc]

0x000012dd: mov eax, dword ptr [rbp - 0xc]

0x000012e0: imul eax, edx

0x000012e3: mov dword ptr [rbp - 0xc], eax

0x000012e6: lea rdx, [rbp - 0xc]

0x000012ea: mov rax, qword ptr [rbp - 0x18]

0x000012ee: mov rsi, rdx

0x000012f1: mov rdi, rax

0x000012f4: call 0x13ac

Block 0x0012f9

0x000012f9: nop

0x000012fa: mov rax, qword ptr [rbp - 8]

0x000012fe: sub rax, qword ptr fs:[0x28]

0x00001307: je 0x130e

Function std::vector::push_back 0x0013ac

Block 0x001309

0x00001309: call 0x1170

Block 0x00130e

0x0000130e: leave

0x0000130f: ret

(a) Compiled with -O0.

Function std::basic_istream::operator>> 0x0010f0

Function __stack_chk_fail 0x001140

Function std::operator>> 0x001150

Block 0x0012b0

0x000012b0: endbr64

0x000012b4: push r12

0x000012b6: mov edx, 0xb

0x000012bb: lea rsi, [rip + 0xd5c]

0x000012c2: push rbp

0x000012c3: mov rbp, rdi

0x000012c6: lea rdi, [rip + 0x2d73]

0x000012cd: sub rsp, 0x18

0x000012d1: mov rax, qword ptr fs:[0x28]

0x000012da: mov qword ptr [rsp + 8], rax

0x000012df: xor eax, eax

0x000012e1: lea r12, [rsp + 4]

0x000012e6: call 0x1150

Block 0x0012eb

0x000012eb: mov rsi, r12

0x000012ee: lea rdi, [rip + 0x2e6b]

0x000012f5: call 0x10f0

Block 0x0012fa

0x000012fa: mov eax, dword ptr [rsp + 4]

0x000012fe: mov rsi, qword ptr [rbp + 8]

0x00001302: imul eax, eax

0x00001305: mov dword ptr [rsp + 4], eax

0x00001309: cmp rsi, qword ptr [rbp + 0x10]

0x0000130d: je 0x1338

Block 0x00130f

0x0000130f: mov dword ptr [rsi], eax

0x00001311: add rsi, 4

0x00001315: mov qword ptr [rbp + 8], rsi

Block 0x001338

0x00001338: mov rdx, r12

0x0000133b: mov rdi, rbp

0x0000133e: call 0x1350

Block 0x001319

0x00001319: mov rax, qword ptr [rsp + 8]

0x0000131e: sub rax, qword ptr fs:[0x28]

0x00001327: jne 0x1345

Block 0x001329

0x00001329: add rsp, 0x18

0x0000132d: pop rbp

0x0000132e: pop r12

0x00001330: ret

Block 0x001345

0x00001345: call 0x1140

Block 0x001343

0x00001343: jmp 0x1319
Function std::vector::_M_realloc_insert 0x001350

(b) Compiled with -O3.

Figure 1: CFGs of the add to vector function in Listing 1 compiled with -O3 (1b) and
-O0 (1a).

also include the template parameter(s) code. For instance, if we have a
std::vector of std::string, the inlined code emitted for the push_back

of such vector might include the inlined code of the copy constructor of the
std::string.

Constant Folding - Constant propagation - Dead Code Elimina-
tion. When the compiler decides to inline a function call, it replaces the
body of the callee with the function call. By doing this, it can consider the
code and the variables of the callee as code and variables of the caller. More-
over, it can apply further optimizations such as Constant folding, Constant
propagation, and Dead code elimination. Thanks to these optimizations, the
compiler makes the semantics of the inlined functions less generic whenever
constant values are in place at compile time. For instance, it can cut an entire
branch of an inlined function when it knows the result of an if statement:
something that could not be possible if the function is not inline, as it must
preserve the semantics of the original function.

7

Initial and Final Instructions. To make things even more challenging,
inline functions are often optimized along with the code of their (often com-
plex) caller functions. This produces basic blocks that can contain a mixture
of instructions from both the caller and the callee, located at both the begin-
ning and the end of the inlined code. Thus, to recognize inline functions, we
need to consider that the initial and final basic blocks may contain instruc-
tions unrelated to the function that we are trying to identify. We can see this
behavior once again in Figure 1b, where the initial basic block of the inlined
method contains some instructions of the caller, i.e., the ones that perform
the squaring, and some instructions of the callee, i.e., the initial instructions
of the push_back.

In summary, although the problems of binary similarity and function iden-
tification have been of interest for a long time in the research community,
identifying inline functions is an even harder and not fully explored research
challenge. The problem is of high practical relevance since inlining is very
common and, at the same time, challenging for reverse engineers. In partic-
ular, the inlining of library functions is needlessly time-consuming, making
reversers spend time analyzing well-known code. This often happens for
functions that are methods of template classes and, in particular, those from
the C++ standard library due to their inherent characteristics. Automatic
recognition of these functions is, thus, extremely challenging and of utmost
practical importance.

For these reasons, we develop a novel approach to perform such recogni-
tion and develop BINO to simplify this complex task.

3. Identification of Inline Functions

Our approach, named BINO, aims at recognizing inline methods from
C++ template classes in binaries. BINO can automatically extract relevant
features from the assembly methods we want to recognize as inline methods
in a target binary. Moreover, it automates the generation of the assembly
methods themselves, making the overall features extraction process com-
pletely automatic. The extracted features are combined in a fingerprint used
for the matching. In Figure 2, we show a high-level overview of the approach,
which is composed of six modules. The first five modules take care of the
generation of the fingerprint database, starting from the source code of the
class(es) we want to recognize. The final module performs the matching and
the identification of the inline methods.

8

Fingerprint Generation

Source
Code
C++

1 - Parser

AST

Public methods
- Name
- Parameters type
- RET value type

2 - Code Generator

C++
template

...

3 - Compiler

Optimization levels:
-O2,-O3,-Os, -Ofast.

5 - Reducer

...

Query Fingerprints
Database

Removing
Fingerprints
duplicates

4 - Fingerprinter

Disassembler

CFGsQuery Fingerprints

Basic Block #1
- Color: 0b00010001010
- Function Call Type:
Library
- Function Call Path: ""
- Function Call Name:
"memcpy"

......

Fingerprint Matching

Disassembler

Matching based
on subgraph
isomorphism

Query Fingerprints

...

Target FingerprintTarget CFG

Target
Binary

Query Fingerprints
Database

Figure 2: High-level overview of the BINO framework architecture.

3.1. Fingerprint Generation

Our fingerprints are based on the CFG of the assembly method. The
fingerprints are enriched with two features that capture their syntactic and
semantic aspects: ➊ The mnemonic groups (i.e., colors) of the assembly
instructions contained in each basic block of the method, and ➋ information
about the function calls in each basic block.

We divide the assembly instructions in mnemonic groups [10, 11, 12] of
closely related operations. For each basic block, we represent mnemonic
groups as a bit vector. When an instruction of a giving group is present
in the basic block, the bit associated with the group is set to one. We call
this bit vector color, in analogy with the RGB data representation (and
with [11, 12]). Within a fingerprint, we also annotate each basic block with
information about the function calls. They are the name of the function
called, and the type of function call. All the details about mnemonic groups
and function call information are reported in Appendix A.

In order to build our fingerprints, we first need to compile and disassemble
binaries in which these methods are called. The overall process of fingerprint
generation is described in the topmost part of Figure 2.

Parser. The first module parses the source code of the template class(es)
we want to fingerprint. In order to correctly parse the source code, we build
the Abstract Syntax Tree (AST) using clang-cindex python package, which
provides a tool able to parse C/C++ source code. By inspecting the AST,
we are then able to extract the information about the public methods of the

9

1 void wrapper($PARAMETER_LIST$) {

2 $OPTIONAL_VARIABLES$
3 asm volatile("or␣%rax,␣%rax;"

4 "or␣%rax,␣%rax;"

5 "or␣%rax,␣%rax;");

6 $FUNCTION_CALL$
7 asm volatile("or␣%rbx,␣%rbx;"

8 "or␣%rbx,␣%rbx;"

9 "or␣%rbx,␣%rbx;");

10 $OPTIONAL_RETURN_VALUE_UTILIZATION$
11 }

Listing 2: C++ tokenized source code.

class(es). In particular, we need the name of the methods, their parameters
data types, and their return value data types. The extracted information is
passed as input to the Code Generator.

Code Generator. The purpose of this module is to generate code samples of
inline methods that can be used as input by the compiler module to generate
binary samples for the fingerprint generation process. Besides calling the
method under analysis, this module takes care of three requirements: ➊

Ensure that the beginning and the end of our method are identifiable, ➋

avoid that optimization of the control flow eliminates part of the method, ➌

produce samples code for all the data types. To achieve such requirements,
this module uses C++ tokenized code similar to the one in Listing 2.

We insert a few marker assembly instructions in the code (using the asm
function) in order to understand where the inline method starts and ends
(Requirement ➊). Such instructions do not change the values in the registers
and cannot be optimized by the compiler because of the volatile keyword.
Requirement ➋ is the most challenging one. Indeed, if the compiler can infer
the state of the object at compile time, it can remove part of the code of
the inline method that will never be executed. To avoid this – and gener-
ate a complete fingerprint – we employ a few tricks in the generated code.
For example, we enforce the declaration of the object outside the wrapper
function, and we ensure that the return value of the inline method is used
by the wrapper function. For example, if we want to call the push_back

method of the std::vector class with an int template parameter, we need
a std::vector<int> object and an int variable. We define those outside the
wrapper function. Moreover, the module must build a source code instance
for each (combination of) data type(s) used as a template parameter of the

10

target and for each method (Requirement ➌). For example, in order to fin-
gerprint all of the public methods of std::vector with each of the following
data types: int, double, float, char, char* and std::string, the code
generator produce 6 different source code files for each public method of the
class. As we will discuss in Section 5, we cannot do this for each possible
data type. Our aim is thus to generate fingerprints that capture the most
common scenarios. Although, the framework is built to easily extend the
code generation with new data types. Finally, we repeat this procedure for
all the tokenized source codes. We built tokenized source code to capture
several CFG structures of the inline methods. For instance, we have a case in
which the function call to the method is performed multiple times and cases
in which the function call is within the body of an if or for statement.

Compiler. This module compiles all the C++ source code files generated
by the previous module with three optimization levels: -O2, -O3, -Os and
-Ofast. These are all the optimization levels provided by the GCC compiler
that adopt inlining. Thus, the output of this step is one binary executable
for each optimization level (i.e., three) per each source code sample produced
by the code generator.

Fingerprinter. The task of this module is to extract the fingerprints of
the methods from the previously compiled binaries. In order to extract such
fingerprints, we first need to disassemble the binaries. For this task, we rely
on Angr [2], a binary analysis framework for both static and dynamic sym-
bolic analysis. We use it on each binary to extract, through static analysis,
the assembly instructions, the function call information, and the CFG of the
wrapper function. It is useful to note that the Angr disassembler splits a
basic block after a function call. Thus, in the basic blocks of a fingerprint,
we can have at most one function call in each block. Also, Angr produces all
of the function call information we need in our annotation of the blocks.

We remove all the assembly instructions that are not enclosed between
the marker instruction blocks we inserted in Code Generation (Section 3.1).
At the end of this process, we are left with the CFG of the inline function. To
build a fingerprint, we enrich the CFG with the features we have described at
the beginning of Section 3.1. These features are the colors and the function
call information. The color is stored as a bit vector for each basic block of
the CFG where each bit represents one mnemonic group of Table A.7.

Reducer. The process we have just described generates a large dataset of
fingerprints that often contain duplicates (e.g., often source code compiled

11

A

B

C

D

0

1

1

1

0 1 0

1 1 0

0 0 0

0 0 1 3

4

5

6

0

1

1

1

1 0 0

1 1 1

0 0 0

0 1 1

Query Fingerprint Target Fingerprint

Mapping M1:
 - f(A) = 3
 - f(B) = 4
 - f(C) = 5
 - f(D) = 6

Query Color:

Target Color:

1 0 0 1

1 0 1 1

1 0 0 0

1 0 0 0

0 0 1 0

0 1 0 0

1 1 1 0

1 1 1 1

Figure 3: Example of the creation of a color bit vector for a query and a target fingerprint
matching subgraphs.

with options -O2 and -O3 generates the same fingerprints). For this reason,
the Reducer module seeks and removes duplicates from the dataset. First,
we seek fingerprints with an isomorphic CFG structure [13, 14]. As a recall,
two graphs G and H are isomorphic, if there exists a bijection f : V G → V H

between vertices of the graphs such that if {a, b} is an edge in G, then
{f(a), f(b)} is an edge inH. To find an isomorphism, we rely on VF2 [15, 16],
a graph isomorphism algorithm provided by the NetworkX python package.
Once an isomorphism is found, we have one or more mappings between the
basic blocks of the first CFG and the basic blocks of the second CFG. For
each of these mappings, we finally check the color bit-vectors and the call
information of each pair of basic blocks in the mapping. If colors and call
information are equal for all the pairs of at least one of the mappings, we
have a perfect duplicate, and we can discard one of the two fingerprints.

3.2. Fingerprint Matching

The last module of the framework performs the inline function recognition
on an unseen binary (i.e., target binary). In particular, it finds the inline
functions in the target binary by matching the fingerprints in the database
built by the previous modules.

First, this module fingerprints all of the assembly functions in the binary,
using the same process described in Section 3.1. We will refer to these fin-

12

gerprints as “target fingerprints”, whereas the fingerprints from the query
database will be called “query fingerprints”.

Second, the framework searches for subgraph isomorphisms [17] between
the CFGs of each of the query fingerprints and each of the target fingerprints.
A graph G is subgraph isomorphic to a graph H, if there exists an injection
f : V G → V H between vertices of the graphs such that if {a, b} is an edge in
G, then {f(a), f(b)} is an edge in H. In other words, a graph G is subgraph
isomorphic to a graph H, if there exists a graph isomorphism between G and
a subgraph of H.

To avoid generating a large number of non-substantial matches, we set a
minimum number M of basic blocks of a query fingerprint as a sensitivity pa-
rameter. Moreover, depending on where the call to the method is performed
and due to optimizations applied by the compiler, the generated CFG can
change significantly. We handle these cases by changing the CFGs of our
query fingerprints before performing the subgraph isomorphism algorithm.
The details of this operation are reported in Appendix B.

For each subgraph isomorphism found, we can have more mappings be-
tween the basic blocks of a query fingerprint and the basic blocks of a target
fingerprint. This can happen when a method is called and inlined multiple
times in another function. Hence, for each of these mapping, we check if
the corresponding pairs of basic blocks have the same function call informa-
tion (i.e., function names and types). It is important to note that we may
not always be able to compare function names (e.g., if a function is part
of a stripped binary). In this case, we ignore the name of the functions,
comparing just the function call types. We will always be able to obtain
and compare the symbols of library functions since they are required by the
binary application for their correct functioning.

We finally compare the color information for each subgraph isomorphism
found where the function call information matches. To compare the colors,
we first deal with the extra instructions of the caller that can be present in
the initial and final(s) basic blocks of the target fingerprint. In fact, during
inlining, the first basic block of the callee is combined with the basic block
of the caller, and similarly, the last basic block of the callee is fused with
the landing basic block that follows the function call. In order to make these
instructions not affect our analysis, we simply remove the mnemonic groups
(i.e., colors) that are not active in the corresponding basic blocks of the query
fingerprint. For instance, if the initial basic block of the match (target) has
the bit relative to the floating-point operations set, while the corresponding

13

query basic block does not, we set the bit to zero in the target basic block.
Then, we compute the Jaccard coefficient: J(Q, T) = |Q∩T |/|Q∪T | between
all the basic blocks’ mnemonic groups (i.e., colors) and discard matches where
the coefficient is lower than a specified sensitivity parameter S. This process
is illustrated through an example in Figure 3. The final output is a list of
the inline methods recognized and the binary addresses of the basic blocks
that belong to the recognized method.

4. Evaluation

The main goals of this experimental evaluation are:

1. Prove that our approach can recognize inline methods from the C++
template classes.

2. Prove that our approach can generalize by recognizing inline functions
of unknown data types.

3. Study the influence of function size on the performance.
4. Analyze the impact of syntactic and semantic features used to enrich

the CFG.

We run all of the experiments in an Ubuntu 18.04 docker container with
g++ version 7.5.0. All compilations are performed with x86_64 as target
architecture and the C++14 language version.

4.1. Query Fingerprints Database

We choose to fingerprint the methods of the template classes std::-

map, std::vector and std::deque for our experiments. They are the most
known and used C++ template classes and they are available in many online
projects. They are also extremely generic and, therefore, particularly chal-
lenging to detect when inlined. Nevertheless, we show that our approach can
correctly identify those methods from template classes.

We configure the Code Generator (see Section 3.1) to use a set of standard
data types as template parameters. std::vector and std::deque need only
one data type as value parameter, whereas the std::map has two template
parameters (key type, value type). All the data types used are described in
Table 1. We generate fingerprints for all the combinations of those data types.
As described in Sectiong 3.1 all methods of these classes, for all combinations
of parameters, are compiled against each of the following optimization levels:
-O2, -O3, -Os, and -Ofast. With this configuration, we extract fingerprints
(details in Section 3.1) that are part of our test database as described.

14

Table 1: Data types used as parameters.

Template Parameter Data Type

std::map

Key Type int, long long, std::string

Value Type
int, double, float,

char, char*, std::string

std::vector Value Type
int, double, float,

char, char*, std::string

std::deque Value Type
int, double, float,

char, char*, std::string

4.2. Dataset Selection

To create a dataset for an automated validation phase, we consider all of
the GitHub projects tagged as C++ and Makefile. We find approximately
50,000 such projects. Then, we download all of them and discard the projects
that cannot be automatically compiled, as well as the ones with compilation
errors. We also discard the ones in which we cannot automatically change
the compilation options project-wide using the CXXFLAGS variable. At this
point, we are left with approximately 2,000 filtered projects.

To make our experiment meaningful, we extract from this set the projects
that use the template classes for which we have generated fingerprints. Our
final dataset includes 555 projects, 500 of them using the std::vector class,
217 using the std::map class, and 57 using the std::deque class (the three
sets, of course, are not disjoint). To ensure the reproducibility of our ex-
perimental results, we intend to make the dataset openly accessible to the
scientific community. This will allow other researchers to access the data and
conduct their own analyses, potentially leading to further advancements in
the field.

Furthermore, we split the dataset into two equal parts. We use the first
one to valide the parameters S and M , and the second one to test the per-
formance of our framework.

The projects in the final dataset are compiled in the same environment
described above and with the optimization levels -O2, -O3, -Os, and -Ofast.
Moreover, they are compiled with DWARF debugging information (-g op-
tion). DWARF [1] is a debugging file format used by many compilers and
debuggers to support source-level debugging. You may notice that this also
necessarily includes the symbols in the binary, which of course, we ignored
while performing our tests and used only in the validation.

15

We parse the DWARF debugging information looking for DW TAG in-

lined subroutine tags to build the ground truth. These tags tell us the
mangled names of the inline functions and their memory ranges. Each time
we have a match, we verify its correctness through this information. How-
ever, note that even if a method has generated fingerprints, and thus it has at
least M basic blocks in its CFG, there is no guarantee that the same method,
compiled within a target binary, will also be composed of M or more basic
blocks. This is mainly caused by internal functions that are not inlined. In
fact, internal calls can either be inlined or not. Hence, if an inline method in
a target binary is composed of less than M (in our case, 5) basic blocks, we
exclude its recognition from our experiment. To check if an inline method
in a target binary is at least of M basic blocks, we disassemble the target
binary with Angr. With the DWARF debugging information, we retrieve
the memory range(s) of the inline method, and we map such memory ad-
dresses into basic blocks disassembled by Angr. However, it should be noted
that DWARF debugging information may not always be entirely reliable.
There may be instances where instructions or basic blocks are not accurately
marked as part of an inline function, even when they are. Consequently, this
may introduce noise in the ground truth, which could potentially hinder the
recognition process. Nonetheless, it is important to note that such occur-
rences are sporadic and should have minimal negative impact on the overall
performance of BINO.

4.3. BINO Metrics

To evaluate the performance of BINO, we use the metrics that are com-
monly used in state-of-the-art assembly clone identification studies. These
metrics are Precision, Recall and F1-Score. We denote with N the number
of times the compiler has inlined each method. We denote with TPs (true
positives) the number of inline methods that we recognize correctly. Further-
more, we denote with FPs (false positives) the number of recognitions that
do not match our ground truth. Moreover, we compute three standard met-
rics, the Precision Prec = TPs

TPs+FPs
, the Recall Rec = TPs

N
, and the F1-Score

F1 = 2× Prec×Rec
Prec+Rec

.

4.4. Parameters Selection

Before testing the performance of our framework, we need to select proper
values for the parameters S and M . To do so, we use the first half of our
dataset to select them. Figure 4 shows the F1-Score of BINO depending on

16

0.75 0.80 0.85 0.90 0.95 1.00
S

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

F1
-S

co
re

M = 5 / N = 17936
M = 6 / N = 16407
M = 7 / N = 13143
M = 8 / N = 9779
M = 9 / N = 7928

Figure 4: BINO overall F1-Score depending on S and M .

0.75 0.80 0.85 0.90 0.95 1.00
S

0.3

0.4

0.5

0.6

0.7

F1
-S

co
re

M = 5 / N = 11465
M = 6 / N = 10505
M = 7 / N = 8372
M = 8 / N = 5837
M = 9 / N = 4407

(a) std::vector

0.75 0.80 0.85 0.90 0.95 1.00
S

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

F1
-S

co
re

M = 5 / N = 4504
M = 6 / N = 4306
M = 7 / N = 3785
M = 8 / N = 3346
M = 9 / N = 3065

(b) std::map

0.75 0.80 0.85 0.90 0.95 1.00
S

0.1

0.2

0.3

0.4

0.5

0.6
F1

-S
co

re

M = 5 / N = 1967
M = 6 / N = 1596
M = 7 / N = 986
M = 8 / N = 596
M = 9 / N = 456

(c) std::deque

Figure 5: BINO F1-Score depending on S, M and the class under test.

the value of S and M . As you can see, the number of samples, i.e. inlined
functions in our dataset, decreases as M increases. This is expected since
we do not consider all the samples that are composed by less than M basic
blocks. However, as you can see, choosing M becomes a trade-off between
BINO performance and usability (i.e., number of inlined functions we can
identify). For this reason, we pick M = 6 to keep a broad number of samples
and we pick S = 0.78 since it maximizes the F1-Score.

Given that our dataset is unbalanced, we want to provide the values of S
and M depending on the class we want to recognize. Figure 5 shows the F1-
Score of BINO depending on the value of S and M for each class of the test

17

0.
30

0.
40

0.
50

0.
60

0.
70

0.
59

0.
53

Recall

0.60

0.70

0.80

0.71

0.77
Pr

ec
isi

on

F1-Score: 0.642, S: 0.78
F1-Score: 0.628, S: 0.84

Figure 6: Precision-recall curve

set. As you can see the value of S and M slighty differs for each class under
test. For the class std::vector (Figure 5a), the best values are M = 6 and
S = 0.78. Instead, for the class std::map (Figure 5b), the best values are
M = 5 and S = 0.84. Finally, for the class std::deque (Figure 5c), the best
values are M = 6 and S = 0.81.

Finally, in Figure 6, we provide an overview of the precision-recall curve,
which demonstrates the performance tradeoff considering the parameter S.
We compute the precision-recall using the value of M found previously, i.e.,
M = 6. We can identify two main operating points: ➊ identified by the
elbow point (black mark), and ➋ identified by the maximum value of the
F1-Score (red mark). It is important to note that ➋ is the same operating
point identified above.

4.5. BINO Matching Performance

In this experiment, we evaluate the performance of BINO in recognizing
inlined functions from the C++ standard library using the second half of
our dataset. As mentioned in Section 4.4, we set M = 6 and S = 0.78. The
results of our experiment are reported per method and per optimization level
in Table 2.

As shown in Table 2, BINO achieves a precision of 72% and a recall of

18

Table 2: Overall results per method.

F
u
n
ctio

n
N
a
m
e

s
t
d
:
:
m
a
p
:
:
o
p
e
r
a
t
o
r
[
]

s
t
d
:
:
m
a
p
:
:
l
o
w
e
r
b
o
u
n
d

s
t
d
:
:
m
a
p
:
:
u
p
p
e
r
b
o
u
n
d

s
t
d
:
:
m
a
p
:
:
f
i
n
d

s
t
d
:
:
m
a
p
:
:
e
r
a
s
e

s
t
d
:
:
m
a
p
:
:
a
t

s
t
d
:
:
v
e
c
t
o
r
:
:
p
u
s
h
b
a
c
k

s
t
d
:
:
v
e
c
t
o
r
:
:
r
e
s
i
z
e

s
t
d
:
:
v
e
c
t
o
r
:
:
c
l
e
a
r

s
t
d
:
:
v
e
c
t
o
r
:
:
r
e
s
e
r
v
e

s
t
d
:
:
v
e
c
t
o
r
:
:
e
r
a
s
e

s
t
d
:
:
v
e
c
t
o
r
:
:
i
n
s
e
r
t

s
t
d
:
:
v
e
c
t
o
r
:
:
e
m
p
l
a
c
e
b
a
c
k

s
t
d
:
:
d
e
q
u
e
:
:
p
u
s
h
b
a
c
k

s
t
d
:
:
d
e
q
u
e
:
:
p
o
p
b
a
c
k

s
t
d
:
:
d
e
q
u
e
:
:
p
u
s
h
f
r
o
n
t

s
t
d
:
:
d
e
q
u
e
:
:
p
o
p
f
r
o
n
t

s
t
d
:
:
d
e
q
u
e
:
:
o
p
e
r
a
t
o
r
[
]

O
v
e
ra

ll

–O2

N 641 756 43 201 6 27 1671 183 131 36 51 13 330 101 3 6 25 102 4326
TPs 274 416 14 17 4 11 1122 158 58 1 5 4 163 80 2 5 24 81 2439
FPs 41 89 53 2 29 0 213 107 32 0 6 0 137 127 0 4 11 92 943
Prec 0.87 0.82 0.21 0.89 0.12 1.00 0.84 0.6 0.64 1 0.45 1.00 0.54 0.39 1.00 0.56 0.69 0.47 0.72
Rec 0.43 0.55 0.33 0.08 0.67 0.41 0.67 0.86 0.44 0.03 0.1 0.31 0.49 0.79 0.67 0.83 0.96 0.79 0.56
F1 0.57 0.66 0.25 0.66 0.21 0.58 0.75 0.71 0.52 0.05 0.16 0.47 0.52 0.52 0.80 0.67 0.80 0.59 0.63

–O3

N 544 654 36 274 15 30 1972 196 122 64 38 24 727 124 3 17 26 78 4944
TPs 200 371 16 28 13 10 1359 154 57 1 6 6 372 70 0 8 23 63 2757
FPs 0 115 74 86 91 0 241 131 19 0 6 0 165 95 14 6 5 43 1091
Prec 1 0.76 0.18 0.25 0.12 1.00 0.85 0.54 0.75 1 0.50 1.00 0.69 0.42 0.00 0.57 0.82 0.59 0.72
Rec 0.37 0.57 0.44 0.10 0.87 0.33 0.69 0.79 0.47 0.02 0.16 0.25 0.51 0.56 0.00 0.47 0.88 0.81 0.56
F1 0.54 0.65 0.25 0.14 0.22 0.50 0.76 0.64 0.58 0.03 0.24 0.40 0.59 0.48 0.00 0.52 0.85 0.68 0.63

–Os

N 68 92 21 80 6 3 340 75 1 37 22 13 160 28 – 1 2 2 951
TPs 14 19 7 11 5 0 211 22 1 1 5 5 104 19 – 0 1 0 425
FPs 0 56 56 149 15 0 10 138 1 0 1 0 7 15 – 3 0 10 461
Prec 0.21 0.21 0.33 0.14 0.25 0.00 0.62 0.29 1.00 0.03 0.23 1.00 0.94 0.68 0.00 0.00 0.50 0.00 0.48
Rec 1.00 0.25 0.11 0.07 0.83 0.00 0.95 0.14 0.50 1.00 0.83 0.38 0.65 0.56 0.00 0.00 1.00 0.00 0.45
F1 0.34 0.23 0.17 0.09 0.38 0.00 0.75 0.19 0.67 0.05 0.36 0.56 0.77 0.61 0.00 0.00 0.67 0.00 0.46

–Ofast

N 544 654 36 274 15 30 1955 201 122 63 38 24 716 124 3 17 26 78 4920
TPs 200 371 16 28 13 10 1344 160 57 1 6 6 368 70 0 8 23 63 2744
FPs 0 115 74 90 91 0 241 132 19 0 6 0 165 95 14 6 5 43 1096
Prec 1 0.76 0.18 0.24 0.12 1.00 0.85 0.55 0.75 1 0.50 1.00 0.69 0.42 0.00 0.57 0.82 0.59 0.71
Rec 0.37 0.57 0.44 0.10 0.87 0.33 0.69 0.80 0.47 0.02 0.16 0.25 0.51 0.56 0.00 0.47 0.88 0.81 0.56
F1 0.54 0.65 0.25 0.14 0.22 0.50 0.76 0.65 0.58 0.03 0.24 0.40 0.59 0.48 0.00 0.52 0.85 0.68 0.63

56% overall, with the most used optimization levels, i.e., -O2-O3, and -Ofast.
These values are 47% and 45% respectively for the optimization level -Os.

Since BINO is, to the best of our knowledge, the first tool performing
inline function recognition, we do not have a direct comparison with pre-
vious works. However, we can consider the results of cited state-of-the-art
works [8, 10] performing the easier task of function recognition without inlin-
ing. Although these tools achieve slightly higher overall performance in the
generic task of function recognition, with a recall of around 90%, our tool is
capable of performing a much more challenging task with a comparable (if
slightly lower) precision and recall.

If we consider the methods under analysis individually, we mostly obtain
the best performance with the -O2 optimization level and slightly lower ones
with -O3 and -Ofast optimization levels. This is caused by the additional
optimizations performed by -O3 and -Ofast that we cannot always capture.
In fact, our way of generating code samples is relatively simple and some-
times cannot produce all the relevant cases the compiler may emit. Instead,

19

we obtain the worst performance with the -Os optimization level. This is
again caused by our code generator, which is relatively simple and does not
consider cases in which multiple methods of the same template class are used
within the same source code. Most of the time, such methods share calls to
private and template parameters methods that are not inlined when compiled
with -Os. Indeed, when -Os is enabled, the compiler rarely inlines a method
that is called twice. On the contrary, they are inlined in our fingerprints
since we call the method we want to fingerprint only once. We achieve good
performance with the most known and used methods of the template classes
under analysis, namely std::map::operator[], std::map::lower bound,
std::deque::operator[], std::deque::pop front, std::deque::push back,
std::vector::resize, and std::vector::push back. These results high-
light the value of the tool in supporting the reverse engineering process when
considering real-world binary applications. The worst performance is ob-
tained instead for the std::vector::reserve method. Such a method is
used to reserve a certain amount of memory area (provided as a parameter)
for the std::vector object. Most of the time, this method is called imme-
diately after instantiating the vector class through the constructor. Thus, as
discussed in Section 2, the assembly code of the std::vector::reserve is
merged with the code of the constructor and simplified, leading to a few basic
blocks that we are not able to recognize. However, we have a high precision
because when the case we just described does not happen, the method is
complex enough to generate a characteristic sequence of basic blocks.

4.6. Model Transferability

You could wonder what happens if the parameter(s) of the template
classes whose methods are used and inlined in the target binary are not the
same data types or classes that we have used and fingerprinted in building
our query fingerprint database.

The goal of our framework is to capture the structure of methods and find
the same structure even when there are modifications. Indeed, we can show
that our framework can generalize and find correct matches against methods
generated with different template parameters than the ones we used to build
the query database.

To better analyze this phenomenon, we split the results depending on the
template parameters used to create the objects of the classes. If an object
is created using as a parameter a data type that we also used to create our
fingerprints database, we call it a known template parameter. Otherwise, we

20

Table 3: Results per method with known template parameters.

Function Name
Known template parameters

–O2 –O3 –Os –Ofast
Found Hit Rate Found Hit Rate Found Hit Rate Found Hit Rate

std::map::operator[] 171 69 0.4 78 29 0.37 15 6 0.4 78 29 0.37
std::map::lower bound 176 84 0.48 87 49 0.56 19 3 0.16 87 49 0.56
std::map::upper bound – – – – – – – – – – – –
std::map::find 11 3 0.27 21 3 0.14 5 4 0.8 21 3 0.14
std::map::erase 4 4 1 4 4 1 4 4 1 4 4 1
std::map::at 4 3 0.75 4 3 0.75 1 0 0 4 3 0.75
std::vector::push back 502 453 0.9 592 526 0.89 125 97 0.78 585 519 0.89
std::vector::resize 72 68 0.94 79 67 0.85 22 13 0.59 79 67 0.85
std::vector::clear 70 44 0.63 69 43 0.62 1 1 1 69 43 0.62
std::vector::reserve 3 0 0 10 0 0 2 0 0 10 0 0
std::vector::erase 11 5 0.45 11 5 0.45 6 1 0.17 11 5 0.45
std::vector::insert 5 4 0.80 6 4 0.67 5 4 0.80 6 4 0.67
std::vector::emplace back 63 38 0.60 115 71 0.62 38 35 0.92 114 69 0.61
std::deque::push back 43 39 0.91 48 39 0.81 6 5 0.83 48 39 0.81
std::deque::pop back 3 2 0.67 3 0 0 – – – 3 0 0
std::deque::push front – – – – – – – – – – – –
std::deque::pop front 17 17 1 17 17 1 1 1 1 17 17 1
std::deque::operator[] 6 4 0.67 6 4 0.67 – – – 6 4 0.67

Overall 1161 837 0.72 1150 864 0.75 250 174 0.7 1142 855 0.75

Table 4: Results per method with unknown template parameters.

Function Name
Unknown template parameters

–O2 –O3 –Os –Ofast
Found Hit Rate Found Hit Rate Found Hit Rate Found Hit Rate

std::map::operator[] 470 205 0.44 466 171 0.37 53 8 0.15 466 171 0.37
std::map::lower bound 580 332 0.57 567 322 0.57 73 16 0.22 567 322 0.57
std::map::upper bound 43 14 0.33 36 16 0.44 21 7 0.33 36 16 0.44
std::map::find 190 14 0.07 253 25 0.10 75 7 0.09 253 25 0.10
std::map::erase 2 0 0 11 9 0.82 2 1 0.50 11 9 0.82
std::map::at 23 8 0.35 26 7 0.27 2 0 0 26 7 0.27
std::vector::push back 1169 669 0.57 1380 833 0.60 215 114 0.53 1370 825 0.60
std::vector::resize 111 90 0.81 117 87 0.74 53 9 0.17 122 93 0.76
std::vector::clear 61 14 0.23 53 14 0.26 0 0 0 53 14 0.26
std::vector::reserve 33 1 0.03 54 1 0.02 35 1 0.03 53 1 0.02
std::vector::erase 40 0 0 27 1 0.04 16 4 0.25 27 1 0.04
std::vector::insert 8 0 0 18 2 0.11 8 1 0.12 18 2 0.11
std::vector::emplace back 267 125 0.47 612 301 0.49 122 69 0.57 602 299 0.50
std::deque::push back 58 41 0.71 76 31 0.41 22 14 0.64 76 31 0.41
std::deque::pop back – – – – – – – – – – – –
std::deque::push front 6 5 0.83 17 8 0.47 1 0 0 17 8 0.47
std::deque::pop front 8 7 0.88 9 6 0.67 1 0 0 9 6 0.67
std::deque::operator[] 96 77 0.80 72 59 0.82 2 0 0 72 59 0.82

Overall 3165 1602 0.51 3794 1893 0.5 701 251 0.6 3778 1889 0.5

call it an unknown template parameter. To check whether an inline method
is a known/unknown template parameter case, we extract the mangled name
from the debugging information and look for the same mangled name in our
query fingerprint database. In Table 3 and Table 4 we report the results
for known and unknown template parameters respectively. We denote with
Found the number of methods inlined by the compiler, with Hit the number

21

of methods that BINO successfully recognizes and with Rate the hit rate,
i.e., Rate = Hit

Found
.

Most of the time, performance on known template parameters is higher:
this is expected since we have fingerprints tailored for these specific cases.
However, it is interesting that our method works even for unknown template
parameters. This demonstrates how the fingerprints generated by BINO can
generalize by capturing the most relevant features of the inline methods.

For basic built-in types, it is easy to see how they are likely to have
similar CFGs and assembly instructions. More complex data types, and in
particular user-defined classes, may behave differently. The methods of these
classes could play an important role in the methods of the template classes
we want to recognize. For instance, if we use a user-defined class as the
template parameter of the std::vector class, the copy constructor of the
user-defined class will be used by several methods of std::vector since any
new object in the vector will come from a copy. In this case, the inline code
of the vector methods includes the code of the user-defined class. Thus, our
fingerprints may differ significantly from those with such a user-defined class
as a template parameter.

On the other hand, the methods of the user-defined classes may not be
inlined inside the method of the template class we want to recognize. This
depends on the characteristics of the method: For methods that do not
call the methods of the template parameters directly but instead rely on
internal functions to call them, there is the chance that the assembly code
of the methods of the template classes is not mixed up with the methods
of the template parameters, especially if these internal functions are large
enough (the compiler, as we mentioned, tends not to inline functions that
are particularly large). In these cases, our method will work.

4.7. Fine Parameters Selection

As demonstrated in Section 4.4, appropriate values for the parameters
S and M can be selected based on the specific class under consideration.
For instance, when matching inline methods from the std::map class, we
have achieved better results by selecting values for M and S as 5 and 0.84,
respectively. However, it is noteworthy that individual methods may benefit
from the use of more tailored values of M and S. To this end, for each
method, we have determined the optimal values for M and S that maximize
the F1-Score across all four optimization levels. The results obtained when
employing the best parameter values for BINO are reported in Table 5. The

22

Table 5: Overall results with specific S and M per method.

F
u
n
ctio

n
N
a
m
e

s
t
d
:
:
m
a
p
:
:
o
p
e
r
a
t
o
r
[
]

s
t
d
:
:
m
a
p
:
:
l
o
w
e
r
b
o
u
n
d

s
t
d
:
:
m
a
p
:
:
u
p
p
e
r
b
o
u
n
d

s
t
d
:
:
m
a
p
:
:
f
i
n
d

s
t
d
:
:
m
a
p
:
:
e
r
a
s
e

s
t
d
:
:
m
a
p
:
:
a
t

s
t
d
:
:
v
e
c
t
o
r
:
:
p
u
s
h
b
a
c
k

s
t
d
:
:
v
e
c
t
o
r
:
:
r
e
s
i
z
e

s
t
d
:
:
v
e
c
t
o
r
:
:
c
l
e
a
r

s
t
d
:
:
v
e
c
t
o
r
:
:
r
e
s
e
r
v
e

s
t
d
:
:
v
e
c
t
o
r
:
:
e
r
a
s
e

s
t
d
:
:
v
e
c
t
o
r
:
:
i
n
s
e
r
t

s
t
d
:
:
v
e
c
t
o
r
:
:
e
m
p
l
a
c
e
b
a
c
k

s
t
d
:
:
d
e
q
u
e
:
:
p
u
s
h
b
a
c
k

s
t
d
:
:
d
e
q
u
e
:
:
p
o
p
b
a
c
k

s
t
d
:
:
d
e
q
u
e
:
:
p
u
s
h
f
r
o
n
t

s
t
d
:
:
d
e
q
u
e
:
:
p
o
p
f
r
o
n
t

s
t
d
:
:
d
e
q
u
e
:
:
o
p
e
r
a
t
o
r
[
]

O
v
e
ra

ll

S 0.75 0.86 0.88 0.84 0.9 0.75 0.75 0.89 0.82 0.75 0.82 0.75 0.77 0.82 0.94 0.75 0.81 0.75
M 9 5 5 6 7 6 6 5 5 5 5 6 6 5 5 5 6 6

–O2

N 1199 1431 65 371 7 27 3814 527 293 94 137 21 725 355 23 82 18 389 9578
TPs 553 884 20 37 4 11 2963 366 123 6 15 8 354 279 12 71 13 300 6019
FPs 83 125 17 2 28 0 526 348 38 0 37 0 277 192 0 16 2 263 1954
Prec 0.87 0.88 0.54 0.95 0.12 1 0.85 0.51 0.76 1 0.29 1 0.56 0.59 1 0.82 0.87 0.53 0.75
Rec 0.46 0.62 0.31 0.1 0.57 0.41 0.78 0.69 0.42 0.06 0.11 0.38 0.49 0.79 0.52 0.87 0.72 0.77 0.63
F1 0.6 0.72 0.39 0.18 0.21 0.58 0.81 0.59 0.54 0.12 0.16 0.55 0.52 0.68 0.69 0.84 0.79 0.63 0.69

–O3

N 1054 1237 55 504 26 30 4311 540 287 137 129 40 1384 438 20 99 41 268 10600
TPs 378 733 22 58 20 10 3300 340 115 7 19 10 754 272 5 86 8 211 6348
FPs 0 121 27 71 107 0 570 392 23 0 29 0 305 188 0 15 8 135 1991
Prec 1 0.86 0.45 0.45 0.16 1 0.85 0.46 0.83 1 0.4 1 0.71 0.59 1 0.85 0.5 0.61 0.76
Rec 0.36 0.59 0.4 0.12 0.77 0.33 0.77 0.63 0.4 0.05 0.15 0.25 0.54 0.62 0.25 0.87 0.2 0.79 0.6
F1 0.53 0.7 0.42 0.18 0.26 0.5 0.81 0.53 0.54 0.1 0.21 0.4 0.62 0.61 0.4 0.86 0.28 0.69 0.67

–Os

N 127 368 31 169 15 3 713 182 24 84 66 22 331 48 4 28 5 4 2224
TPs 34 213 10 33 4 0 410 73 5 1 14 7 224 30 4 24 3 1 1090
FPs 0 77 77 168 33 0 51 115 388 0 23 0 36 5 0 0 5 24 1002
Prec 1 0.73 0.11 0.16 0.11 0 0.89 0.39 0.01 1 0.38 1 0.86 0.86 1 1 0.38 0.04 0.52
Rec 0.27 0.58 0.32 0.2 0.27 0 0.58 0.4 0.21 0.01 0.21 0.32 0.68 0.62 1 0.86 0.6 0.25 0.49
F1 0.42 0.65 0.17 0.18 0.15 0 0.7 0.39 0.02 0.02 0.27 0.48 0.76 0.72 1 0.92 0.46 0.07 0.51

–Ofast

N 1049 1231 55 504 26 30 4279 538 287 134 130 40 1373 438 20 99 41 268 10542
TPs 376 731 22 58 20 10 3276 338 115 7 19 10 751 273 5 86 8 211 6316
FPs 0 121 27 71 107 0 571 388 23 0 29 0 305 188 0 16 7 135 1988
Prec 1 0.86 0.45 0.45 0.16 1 0.85 0.47 0.83 1 0.4 1 0.71 0.59 1 0.84 0.53 0.61 0.76
Rec 0.36 0.59 0.4 0.12 0.77 0.33 0.77 0.63 0.4 0.05 0.15 0.25 0.55 0.62 0.25 0.87 0.2 0.79 0.6
F1 0.53 0.7 0.42 0.18 0.26 0.5 0.81 0.53 0.54 0.1 0.21 0.4 0.62 0.61 0.4 0.86 0.29 0.69 0.67

results also highlights the performance improvements achieved by employing
the optimal values of M and S for each method, as compared to using generic
values for the entire class, or for the entire matching process.

4.8. Fingeprint Complexity Analysis

The performance of our approach varies depending on the complexity of
the fingerprints of the method we are seeking. In Figure 7, we show how
the precision depends on complexity, expressed in terms of the number of
basic blocks that constitute the CFG within the fingerprint being analyzed.
In most cases, the precision in recognition is positively correlated with the
complexity: the higher the number of basic blocks, the higher the precision
achieved. This is clear by looking at overall and std::vector::push_back

precisions in Figure 7. This means that BINO is particularly reliable when
considering complex methods. However, you can notice three significant sinks
in the graph of overall precision. We can correlate those values with the

23

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 526 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 526 8 10 12 14 16 18 206 8 106 8 10 12 14 16 18 20 22

0

1
overall

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 526 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 526 8 10 12 14 16 18 206 8 106 8 10 12 14 16 18 20 22

0

1
std::vector::push_back

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 526 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 526 8 10 12 14 16 18 206 8 106 8 10 12 14 16 18 20 22

0

1
std::vector::erase

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 526 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 526 8 10 12 14 16 18 206 8 106 8 10 12 14 16 18 20 22

0

1
std::map::upper_bound

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 526 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 526 8 10 12 14 16 18 206 8 106 8 10 12 14 16 18 20 22

Basic Blocks

0

1
std::map::find

Precision

Figure 7: Precision per number of basic blocks

three methods std::vector::erase, std::map::upper bound, and std::

map::find. In fact, for those methods, the previous consideration seems
not valid since the precision is zeroed as the number of basic blocks in-
creases. This is caused by a high amount of false positives. We manually
analyzed the false positives of these methods. The std::vector::erase and
std::map::find methods are wrappers for internal functions (i.e., std::-
vector:: M erase and std::rb tree::find|). The matches classified as
false positives are actually matching of the internal functions when not in-
lined. Similarly, the std::map::upper boundmethod is a wrapper of std::-
rb tree:: M upper bound, which is widely used in other template classes.

24

The false positives of the std::map::upper bound method are matching the
inline std::rb tree:: M upper bound method of other classes. Although
someone can argue that those should not be considered false positives, we
choose the conservative approach and count them as false positives in all our
experiments.

4.9. Impact of Syntactic and Semantic Features

In this experiment, we want to evaluate the impact of the semantic and
syntactic features used by BINO. Indeed, we want to understand how each
part of the fingerprint that we create contributes to the problem’s solution.
We have two features on top of the CFG: ➊ Function calls information, and
➋ Colors (i.e., mnemonic groups of assembly instructions). To understand
their impact, we run three tests. One without any feature (the match is done
considering only the CFG), one with only function calls, and one with only
colors. It is important to note that the basic CFG matching is also present
in the experiment for function calls and colors.

These tests are likely to generate many false positives that need to be
confirmed through the debug information. Parsing DWARF debug informa-
tion is particularly time-consuming. For this reason, we perform our test on
a subset of the original dataset, made of 200 random projects that use the
std::vector class. The choice of these projects is motivated by the high
availability of projects that use such a class. For the same reason, we do not
perform the tests with the -Ofast optimization level due to the fact that
it has similar optimizations and performance compared to -O3. Instead, we
consider the -O2, -O3, and -Os optimization levels for each test.

The F1-Scores of the three tests are shown in Table 6. For the test with
only colors, we selected the S values that maximize the F1-Scores in the three
optimization levels. Figure 8 shows the F1-Scores per optimization level with
S ranging from 0.75 to 1. It is worth noting that the values of parameter S
are higher compared to the value computed in Section 4.4. The reason for this
is mainly attributed to the absence of function call information, leading to a
higher number of false positives. Consequently, a higher similarity threshold
is necessary to mitigate the effect of false positives.

You can immediately notice that the CFG alone cannot be used as an
identification system and that the impact of colors is greater than the one
of function calls information. This is mainly caused by the fact that the
information of function calls is present only in the basic blocks with function
calls, which are usually few across the basic blocks of the match. Moreover,

25

0.75 0.80 0.85 0.90 0.95 1.00
S

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

-O2
-O3
-Os

Figure 8: Similarity threshold (S) selection for only colors experiment. × refers to maxi-
mum points of the curves.

because of the multi-level inlining, some fingerprints, and their corresponding
matches, do not have any function call. Instead, colors capture semantic
information for each basic block, which is why colors have more impact with
respect to function calls information. However, as demonstrated, they are
both relevant for our analysis.

The impact of the features w.r.t. the number of basic blocks in a method
is even more interesting. In Figure 9, we can observe the precision of BINO
with different basic blocks amount. We notice that features have a significant
impact when the amount of basic blocks is less than ten, whereas, with a
high number of basic blocks, the CFG is enough to identify the functions
univocally.

Table 6: BINO F1-Score per feature.

Optimization
F1-Score

CFG Function calls Colors
-O2 <0.01 0.12 0.61
-O3 <0.01 0.1 0.57
-Os <0.01 0.04 0.32

26

6 8 10 12 14 16 18 20 22 24 26 28 306 8 10 12 14 16 18 20 22 24 26 28 30

0

1
std::vector::push_back

6 8 10 12 14 16 18 20 22 24 26 28 306 8 10 12 14 16 18 20 22 24 26 28 30

Basic Blocks

0

1
std::vector::resize

Precision
CFG Colors Calls All

Figure 9: Impact of features w.r.t. the number of basic blocks

4.10. Scalability

Scalability is a significant challenge in our approach, as memory and com-
putational requirements increase with the number of query fingerprints. Fig-
ure 10a illustrates the relationship between matching time and function size,
measured in the number of basic blocks. Notably, most functions are small
(blue line in Figure 10a), resulting in an average fingerprint matching time
of 1.33 ms. Additionally, Figure 10b demonstrates the relationship between
matching time and the number of fingerprints in our database. As shown,
the average matching time increases linearly with the number of employed
fingerprints.

We remind the reader that we need to generate a set of fingerprints for
each target combination of template class and datatype(s) in a template
parameter. For template classes with multiple template parameters (e.g.,
std::map), this results in a combinatorial explosion. The impact in our
experiments has been limited because we considered only the most intuitive
and common types used by these classes, but making our approach scale to
a complete coverage will be challenging.

27

100 200 300 400 500
Basic Blocks

0

10

20

30

40

50

60

70

Av
er

ag
e

Ti
m

e(
se

co
nd

s)

0

500

1000

1500

2000

2500

3000

Fu
nc

tio
ns

(a) Average matching time and functions amount
w.r.t. the number of basic blocks.

200 400 600 800 1000 1200 1400 1600
Tested Fingerprints

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Ti
m

e(
se

co
nd

s)

(b) Average matching time w.r.t. the number of
fingerprints in the fingerprints database.

Figure 10: Scalability

5. Limitations and future works

Our approach has lower performance with methods composed of few
(M < 5) basic blocks (e.g., getter or setter methods in objects). When
such methods are inlined, they translate into a few assembly instructions
that generate a high level of irrelevant matches, i.e., false positives. This
phenomenon is clear from Figure 7 and Figure 9. Although this limitation
impacts the number of methods that we are to handle, it affects only small
methods that are easier to reverse. Nevertheless, our approach performs well
on medium and big methods that are cumbersome to reverse engineers.

Moreover, when inlining, a compiler, which runs aggressive optimization
passes and infers the status of objects and the value of variables, can drasti-
cally simplify the execution flow of the inlined assembly code (e.g., by short-
ing out irrelevant branches). This can modify the CFG enough to thwart
recognition by the subgraph isomorphism algorithm.

While not exactly a limitation, it is important to note that the detection
of the boundaries of inlined methods is necessarily imprecise since it has the
granularity level of basic blocks. Since, when inlining, the callee function
body is melded within the caller and then further optimized by the compiler,
the “boundary” basic blocks are a mix of instructions from both the callee
and the caller. Further work and research would be needed to further improve
the granularity of the boundary detection of the inlined method.

A potential extension of the work would be to automate the extraction
of further information relevant to reverse engineering once a match is found.

28

For instance, BINO could automatically derive the memory address of the
object, and which register(s) hold a reference to it. This information could be
further used to track inline methods (such as the small ones described before)
that we have otherwise missed by detecting memory access to locations at a
certain offset from the detected base memory address. We could also track
its creation and destruction, as well as inter-procedural sources and sinks
involving it.

Moreover, we foresee the application of BINO to a multi architecture
dataset. This can be achieved by defining mnemonic groups (colors) for
each new architecture. It would be interesting to verify if fingerprints are
transferable across different architectures.

6. Related works

Reverse engineering is a complex process. The multiple steps that lead
from a sequence of bytes to the understanding of a program’s underlying
semantics and logic are complex, sometimes based on heuristic or human
intuition, and rely on a series of assumptions. Relaxing such assumptions,
improving automation, and helping analysts is a challenging and complex
research field.

For instance, a basic assumption in reversing is that the architecture
the code is designed for is known. While this is often true (e.g., because
the binary file’s header offers clues about it), this is not necessarily a given
when analyzing embedded firmware. For this reason, multiple works [18, 19]
showed that it is possible to correctly guess the architecture from the byte
sequence of the binary.

The second step in the reverse engineering process is disassembling the
byte sequence into instructions. Disassembling has its challenges, but there
are several works [20, 21, 2] that show how this is usually doable.

The third step is the identification of the boundaries of a function. This
is a complex challenge because the concept of “function” is an abstraction
that is lost during compilation, as boundaries are not necessary for binaries
to work, and this information is usually sacrificed to performance. Recent
works [22] showed how it is possible to identify such boundaries with a rea-
sonable level of precision. There is, however, a prominent case where this
approach systematically fails: inline functions, which is the focus of our work.

A commonly adopted approach to assist and speed up reverse engineering
is identifying known functions. Several research works [8, 23, 10, 24] and tools

29

(such as IDA FLIRT [25]) try to detect the usage of library functions. You
should read [26] for a complete overview of binary similarity approaches, and
[27] for an overview of Machine Learning approaches.

One of the most promising approach for function clone identification is
kam1n0 [28]. kam1n0 has some similarity w.r.t. BINO; both approaches
relies on subgraph isomorphism algorithms to identify assembly clones. BINO
relies on VF2 [15, 16] to identify subgraph isomorphic CFGs, while kam1n0
leaverages on Local Sensitive Hashing (LSH) and MapReduce to identify
isomorphic subgraphs with similar semantic and syntactic instructions. The
LSH algorithm clusters the basic blocks of the binary, while MapReduce
constructs isomorphic subgraphs by iteratively aggregating basic blocks that
are in the same cluster. Despite the similarities in approach, the two methods
address different problems. Kam1n0 identifies subgraph isomorphic CFGs
between two functions, while BINO identifies all the inline method calls in
binary functions. Hence, kam1n0 fails by design when one or more method
calls are inlined within a single function. Moreover, the LSH algorithm fails
when clustering the initial and final basic blocks of inline methods since they
contains extra instructions of the caller.

Some works [29, 30] can identify special-purpose functions such as Cus-
tom Memory Allocators. However, all these techniques critically depend on
correctly identifying function boundaries and, thus, fail when dealing with
inlined functions. Our approach is unique not just in not needing function
boundaries but also in being able to identify library functions blended with
other code.

To achieve such a detection system, we create a fingerprinting system
to capture structural and semantic information of functions (as seen in Sec-
tion 3). A similar concept of fingerprinting in binaries was developed in [11],
where the resilience of such fingerprints was shown to be robust against poly-
morphism in worms. In [31] the same concept was paired with user-defined
behaviors of malware (i.e., with dynamically displayed functionalities). This
led to the use of fingerprinting on malicious binaries to recognize malware
development efforts in [32], and to the automatic analysis and extraction
of both dynamic behaviors of interest and related binary code fingerprints
in [12].

30

7. Conclusions

Recognition of inline functions is a very complex and challenging topic,
but it would be extremely helpful for reverse engineers, particularly if appli-
cable to methods of well-known template classes.

With this work, we proposed an approach to this problem based on the
concept of a fingerprint. Around this concept, we developed a framework
to generate and compare our fingerprints to recognize inline library func-
tions. In addition, we provided a methodology to automate the generation
of fingerprints starting from the parsing of the library source code. During
the development of BINO, we studied in-depth the process of inlining, and
we analyzed the common aspects and features to be used in our fingerprint
model.

Our results on a dataset of C++ GitHub projects, compiled with different
optimization levels, show that BINO can match methods from classes such as
std::map and std::vector with an F1-Score of 65%, with -O2 optimization
level. This value is similar for the -O3/-Ofast optimization levels and it is
lower for the -Os optimization level.

Our approach, although promising, has a few known limitations. Some
of them depend purely on the implementation; others are more structural.
Detecting small functions is challenging. Scalability can become an issue.
The current granularity is at the basic block level and cannot determine the
specific point within a basic block where the inline function starts or ends.

This work could be extended to automatically gather more information
about the inline function (some of which may be used to overcome some of
the aforementioned limitations). We believe that full implementation of this
approach would be exceptionally helpful to reverse engineers.

References

[1] Dwarf debugging information format version 5, published standard
(2017) [cited August 16th, 2021].
URL http://dwarfstd.org/doc/DWARF5.pdf

[2] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Krügel, G. Vigna, SOK:
(state of) the art of war: Offensive techniques in binary analysis, in:
IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA,
USA, May 22-26, 2016, IEEE Computer Society, 2016, pp. 138–157.

31

http://dwarfstd.org/doc/DWARF5.pdf
http://dwarfstd.org/doc/DWARF5.pdf
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17

doi:10.1109/SP.2016.17.
URL https://doi.org/10.1109/SP.2016.17

[3] A. D. Federico, M. Payer, G. Agosta, rev.ng: a unified binary analysis
framework to recover cfgs and function boundaries, in: P. Wu, S. Hack
(Eds.), Proceedings of the 26th International Conference on Compiler
Construction, Austin, TX, USA, February 5-6, 2017, ACM, 2017, pp.
131–141.
URL http://dl.acm.org/citation.cfm?id=3033028

[4] H. Koo, S. Park, T. Kim, Revisiting function identification with ma-
chine learning, in: Machine Learning for Program Aanalysis (MLPA)
Workshop, 2021.

[5] K. Kennedy, J. R. Allen, Optimizing compilers for modern architectures:
a dependence-based approach, Morgan Kaufmann Publishers Inc., 2001.

[6] Y. Ben-Asher, O. Boehm, D. Citron, G. Haber, M. Klausner, R. Levin,
Y. Shajrawi, Aggressive function inlining: Preventing loop blockings
in the instruction cache, in: P. Stenström, M. Dubois, M. Kateve-
nis, R. Gupta, T. Ungerer (Eds.), High Performance Embedded Ar-
chitectures and Compilers, Third International Conference, HiPEAC
2008, Göteborg, Sweden, January 27-29, 2008, Proceedings, Vol. 4917
of Lecture Notes in Computer Science, Springer, 2008, pp. 384–397.
doi:10.1007/978-3-540-77560-7_26.
URL https://doi.org/10.1007/978-3-540-77560-7_26

[7] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, H. B. K. Tan,
Bingo: cross-architecture cross-os binary search, in: T. Zimmermann,
J. Cleland-Huang, Z. Su (Eds.), Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, ACM, 2016, pp. 678–
689. doi:10.1145/2950290.2950350.
URL https://doi.org/10.1145/2950290.2950350

[8] S. H. H. Ding, B. C. M. Fung, P. Charland, Asm2vec: Boosting static
representation robustness for binary clone search against code obfusca-
tion and compiler optimization, in: 2019 IEEE Symposium on Security
and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, IEEE,

32

https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
http://dl.acm.org/citation.cfm?id=3033028
http://dl.acm.org/citation.cfm?id=3033028
http://dl.acm.org/citation.cfm?id=3033028
https://doi.org/10.1007/978-3-540-77560-7_26
https://doi.org/10.1007/978-3-540-77560-7_26
https://doi.org/10.1007/978-3-540-77560-7_26
https://doi.org/10.1007/978-3-540-77560-7_26
https://doi.org/10.1145/2950290.2950350
https://doi.org/10.1145/2950290.2950350
https://doi.org/10.1145/2950290.2950350
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1109/SP.2019.00003

2019, pp. 472–489. doi:10.1109/SP.2019.00003.
URL https://doi.org/10.1109/SP.2019.00003

[9] Y. Duan, X. Li, J. Wang, H. Yin, Deepbindiff: Learning program-wide
code representations for binary diffing, in: 27th Annual Network and
Distributed System Security Symposium, NDSS 2020, San Diego, Cali-
fornia, USA, February 23-26, 2020, The Internet Society, 2020.

[10] L. Nouh, A. Rahimian, D. Mouheb, M. Debbabi, A. Hanna, Binsign:
Fingerprinting binary functions to support automated analysis of code
executables, in: S. D. C. di Vimercati, F. Martinelli (Eds.), ICT Sys-
tems Security and Privacy Protection - 32nd IFIP TC 11 International
Conference, SEC 2017, Rome, Italy, May 29-31, 2017, Proceedings, Vol.
502 of IFIP Advances in Information and Communication Technology,
Springer, 2017, pp. 341–355. doi:10.1007/978-3-319-58469-0_23.
URL https://doi.org/10.1007/978-3-319-58469-0_23

[11] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, G. Vigna, Polymorphic
worm detection using structural information of executables, in: RAID,
Springer-Verlag, Berlin, Heidelberg, 2006, pp. 207–226.

[12] M. Polino, A. Scorti, F. Maggi, S. Zanero, Jackdaw: Towards auto-
matic reverse engineering of large datasets of binaries, in: M. Alm-
gren, V. Gulisano, F. Maggi (Eds.), Detection of Intrusions and Mal-
ware, and Vulnerability Assessment - 12th International Conference,
DIMVA 2015, Milan, Italy, July 9-10, 2015, Proceedings, Vol. 9148
of Lecture Notes in Computer Science, Springer, 2015, pp. 121–143.
doi:10.1007/978-3-319-20550-2_7.
URL https://doi.org/10.1007/978-3-319-20550-2_7

[13] M. Grohe, P. Schweitzer, The graph isomorphism problem, Commun.
ACM 63 (11) (2020) 128–134. doi:10.1145/3372123.
URL https://doi.org/10.1145/3372123

[14] S. Fortin, The graph isomorphism problem, Tech. Rep. TR96-20, Uni-
versity of Alberta (1996).

[15] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub) graph iso-
morphism algorithm for matching large graphs, IEEE transactions on
pattern analysis and machine intelligence 26 (10) (2004) 1367–1372.

33

https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1007/978-3-319-58469-0_23
https://doi.org/10.1007/978-3-319-58469-0_23
https://doi.org/10.1007/978-3-319-58469-0_23
https://doi.org/10.1007/978-3-319-58469-0_23
https://doi.org/10.1007/978-3-319-58469-0_23
https://doi.org/10.1007/978-3-319-20550-2_7
https://doi.org/10.1007/978-3-319-20550-2_7
https://doi.org/10.1007/978-3-319-20550-2_7
https://doi.org/10.1007/978-3-319-20550-2_7
https://doi.org/10.1145/3372123
https://doi.org/10.1145/3372123
https://doi.org/10.1145/3372123
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1109/TPAMI.2004.75

doi:10.1109/TPAMI.2004.75.
URL https://doi.org/10.1109/TPAMI.2004.75

[16] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, An improved algorithm
for matching large graphs, in: 3rd IAPR-TC15 workshop on graph-based
representations in pattern recognition, 2001, pp. 149–159.

[17] J. Lee, W. Han, R. Kasperovics, J. Lee, An in-depth comparison of sub-
graph isomorphism algorithms in graph databases, Proc. VLDB Endow.
6 (2) (2012) 133–144. doi:10.14778/2535568.2448946.
URL http://www.vldb.org/pvldb/vol6/p133-han.pdf

[18] P. D. Nicolao, M. Pogliani, M. Polino, M. Carminati, D. Quarta,
S. Zanero, ELISA: eliciting ISA of raw binaries for fine-grained code and
data separation, in: C. Giuffrida, S. Bardin, G. Blanc (Eds.), Detection
of Intrusions and Malware, and Vulnerability Assessment - 15th Interna-
tional Conference, DIMVA 2018, Saclay, France, June 28-29, 2018, Pro-
ceedings, Vol. 10885 of Lecture Notes in Computer Science, Springer,
2018, pp. 351–371. doi:10.1007/978-3-319-93411-2_16.
URL https://doi.org/10.1007/978-3-319-93411-2_16

[19] S. Kairajärvi, A. Costin, T. Hämäläinen, Isadetect: Usable automated
detection of cpu architecture and endianness for executable binary files
and object code, in: Proceedings of the Tenth ACM Conference on
Data and Application Security and Privacy, Association for Computing
Machinery, New York, NY, USA, 2020, p. 376–380.
URL https://doi.org/10.1145/3374664.3375742

[20] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, G. Vigna, Ramblr: Making reassembly great
again, in: 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA, February 26 -
March 1, 2017, The Internet Society, 2017.
URL https://www.ndss-symposium.org/ndss2017/

ndss-2017-programme/ramblr-making-reassembly-great-again/

[21] D. Brumley, I. Jager, T. Avgerinos, E. J. Schwartz, BAP: A binary
analysis platform, in: G. Gopalakrishnan, S. Qadeer (Eds.), Com-
puter Aided Verification - 23rd International Conference, CAV 2011,

34

https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1109/TPAMI.2004.75
http://www.vldb.org/pvldb/vol6/p133-han.pdf
http://www.vldb.org/pvldb/vol6/p133-han.pdf
https://doi.org/10.14778/2535568.2448946
http://www.vldb.org/pvldb/vol6/p133-han.pdf
https://doi.org/10.1007/978-3-319-93411-2_16
https://doi.org/10.1007/978-3-319-93411-2_16
https://doi.org/10.1007/978-3-319-93411-2_16
https://doi.org/10.1007/978-3-319-93411-2_16
https://doi.org/10.1145/3374664.3375742
https://doi.org/10.1145/3374664.3375742
https://doi.org/10.1145/3374664.3375742
https://doi.org/10.1145/3374664.3375742
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/ramblr-making-reassembly-great-again/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/ramblr-making-reassembly-great-again/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/ramblr-making-reassembly-great-again/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/ramblr-making-reassembly-great-again/
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37

Snowbird, UT, USA, July 14-20, 2011. Proceedings, Vol. 6806 of Lec-
ture Notes in Computer Science, Springer, 2011, pp. 463–469. doi:

10.1007/978-3-642-22110-1_37.
URL https://doi.org/10.1007/978-3-642-22110-1_37

[22] T. Bao, J. Burket, M. Woo, R. Turner, D. Brumley, BYTEWEIGHT:
learning to recognize functions in binary code, in: K. Fu, J. Jung (Eds.),
Proceedings of the 23rd USENIX Security Symposium, San Diego, CA,
USA, August 20-22, 2014, USENIX Association, 2014, pp. 845–860.
URL https://www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/bao

[23] P. Shirani, L. Wang, M. Debbabi, Binshape: Scalable and robust binary
library function identification using function shape, in: M. Polychron-
akis, M. Meier (Eds.), Detection of Intrusions and Malware, and Vul-
nerability Assessment - 14th International Conference, DIMVA 2017,
Bonn, Germany, July 6-7, 2017, Proceedings, Vol. 10327 of Lecture
Notes in Computer Science, Springer, 2017, pp. 301–324. doi:10.1007/
978-3-319-60876-1_14.
URL https://doi.org/10.1007/978-3-319-60876-1_14

[24] S. H. H. Ding, B. C. M. Fung, P. Charland, Kam1n0: Mapreduce-based
assembly clone search for reverse engineering, in: B. Krishnapuram,
M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen, R. Rastogi (Eds.), Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, San Francisco, CA, USA, August 13-
17, 2016, ACM, 2016, pp. 461–470. doi:10.1145/2939672.2939719.
URL https://doi.org/10.1145/2939672.2939719

[25] IDA F.L.I.R.T. technology: In-depth.
URL https://hex-rays.com/products/ida/tech/flirt/in_depth/

[26] I. U. Haq, J. Caballero, A survey of binary code similarity, ACM Com-
put. Surv. 54 (3) (apr 2021). doi:10.1145/3446371.
URL https://doi.org/10.1145/3446371

[27] A. Marcelli, M. Graziano, X. Ugarte-Pedrero, Y. Fratantonio, M. Man-
souri, D. Balzarotti, How machine learning is solving the binary
function similarity problem, in: 31st USENIX Security Symposium
(USENIX Security 22), USENIX Association, Boston, MA, 2022.

35

https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/bao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/bao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/bao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/bao
https://doi.org/10.1007/978-3-319-60876-1_14
https://doi.org/10.1007/978-3-319-60876-1_14
https://doi.org/10.1007/978-3-319-60876-1_14
https://doi.org/10.1007/978-3-319-60876-1_14
https://doi.org/10.1007/978-3-319-60876-1_14
https://doi.org/10.1145/2939672.2939719
https://doi.org/10.1145/2939672.2939719
https://doi.org/10.1145/2939672.2939719
https://doi.org/10.1145/2939672.2939719
https://hex-rays.com/products/ida/tech/flirt/in_depth/
https://hex-rays.com/products/ida/tech/flirt/in_depth/
https://doi.org/10.1145/3446371
https://doi.org/10.1145/3446371
https://doi.org/10.1145/3446371
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli

URL https://www.usenix.org/conference/usenixsecurity22/

presentation/marcelli

[28] S. H. Ding, B. C. Fung, P. Charland, Kam1n0: Mapreduce-based as-
sembly clone search for reverse engineering, in: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, Association for Computing Machinery, New
York, NY, USA, 2016, p. 461–470. doi:10.1145/2939672.2939719.
URL https://doi.org/10.1145/2939672.2939719

[29] X. Chen, A. Slowinska, H. Bos, Who allocated my memory? detecting
custom memory allocators in C binaries, in: R. Lämmel, R. Oliveto,
R. Robbes (Eds.), 20th Working Conference on Reverse Engineering,
WCRE 2013, Koblenz, Germany, October 14-17, 2013, IEEE Computer
Society, 2013, pp. 22–31. doi:10.1109/WCRE.2013.6671277.
URL https://doi.org/10.1109/WCRE.2013.6671277

[30] X. Chen, A. Slowinska, H. Bos, On the detection of custom memory
allocators in C binaries, Empir. Softw. Eng. 21 (3) (2016) 753–777. doi:
10.1007/s10664-015-9362-z.
URL https://doi.org/10.1007/s10664-015-9362-z

[31] P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C. Kruegel,
S. Zanero, Identifying dormant functionality in malware programs, in:
SP, IEEE Computer Society, Washington, DC, USA, 2010, pp. 61–76.

[32] M. Lindorfer, A. D. Federico, F. Maggi, P. M. Comparetti, S. Zanero,
Lines of malicious code: Insights into the malicious software industry,
in: ACSAC, ACM, New York, NY, USA, 2012, pp. 349–358.

Appendix A. Fingerprint Features

This appendix provides additional information on the mnemonic groups
and the function call information used by BINO.

The mnemonic groups used are listed in Table A.7. We purposely omitted
data transfer instructions for two reasons: first, they are present in almost any
given basic block; second, since the compiler can rearrange mov operations
easily even to a different basic block, they are a very brittle indicator.

We distinguish four different types of calls, described in Table A.8. More-
over, for standard and library calls, we also annote the name and the path

36

https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli
https://doi.org/10.1145/2939672.2939719
https://doi.org/10.1145/2939672.2939719
https://doi.org/10.1145/2939672.2939719
https://doi.org/10.1145/2939672.2939719
https://doi.org/10.1109/WCRE.2013.6671277
https://doi.org/10.1109/WCRE.2013.6671277
https://doi.org/10.1109/WCRE.2013.6671277
https://doi.org/10.1109/WCRE.2013.6671277
https://doi.org/10.1007/s10664-015-9362-z
https://doi.org/10.1007/s10664-015-9362-z
https://doi.org/10.1007/s10664-015-9362-z
https://doi.org/10.1007/s10664-015-9362-z
https://doi.org/10.1007/s10664-015-9362-z

Table A.7: Mnemonic groups of assembly instructions used in the color bit vector of
fingerprints.

Mnemonic Group Description
Arithmetic Instructions like add, sub, mul, and so on.
Branch Instructions like jnz, jne, jae, and so on.
Call Instructions like jnz, jne, jae, and so on.
Cond Move Instructions like cmova, cmovb, cmovc, and so on.
Flags Instructions like btc, clc, cld, and so on.
Float Instructions like fadd, fsub, fmul, and so on.
Halt The hlt instruction.
Interleaving Instructions that apply masks to the register or reorder the

bits in the registers, such as shufps and pshufd.
Jump The jmp instruction.
Lea The lea instruction.
Logic Instructions like xor, and, or, and so on.
Misc Instructions like in, out, leave, and so on.
Sign Instructions like cbw, cdq, cwd, and so on. Mainly used for

sign extensions.
Stack Instructions like pop and push.
Syscall The syscall instruction.
String Instructions like cmpsd, repmovsb, stosq, and so on.

Mainly used for strings management.
Test Instructions like cmp and test.

of the called functions. As a recall, the path of a function or method in
C++ specifies its location within a namespace, a class, or both. For in-
stance, the std::vector::push_back method has push_back as name and
std::vector as path. Instead, the std::copy utility function has copy as
name and std as path. Finally, C library functions, such as printf and
scanf, do not have a path.

Appendix B. CFG Variations

This appendix describes how the BINO recognizes inline methods even
their corresponding query fingerprints have not the same structure. Depend-
ing on where the call to the method is performed and due to optimizations
applied by the compiler, the generated CFG can change significantly. We au-
tomatically handle the three common cases shown in Figure B.11. We denote
with I the initial basic block and with F the final basic block. The CFG on
the top left is our query fingerprint. The first case of the behavior described

37

Table A.8: Jump types used for function calls feature.

Jump Type Description

Standard A call to another function of the binary.

Library A call to a plt stub. Thus, a call that will execute
a function located in a shared library.

Indirect A call to an address which is stored in a register
at runtime. For instance call rax.

Syscall A call to request a service from the kernel. In x86

it is either syscall or int 0x80.

above happens when a function call is placed inside a loop. In such a case, the
last basic block of the method, once inlined, contains a few additional assem-
bly instructions: an increment of a value in a register, a comparison with a
constant or another register, but most importantly for our matching process,
a conditional jump to the first basic block of the inlined method. This adds
an edge between the last and the first basic block, as shown in variation 2 in
Figure B.11. To handle this, we add the edge from the last basic block to the
first basic block before performing the subgraph isomorphism algorithm. A
second common case happens when the next to last basic block(s) performs
an unconditional jump to the final basic block. In this case, the compiler
may move (depending on the size of F) the assembly instructions belonging
to the final block into the previous one(s) to get rid of the jump, as shown
in variation 3 in Figure B.11. To handle this, we remove the last basic block
from the query CFG when the next-to-last basic block has an unconditional
jump before performing the subgraph isomorphism algorithm. The two cases
can also be combined (i.e., the next to last basic block may be performing
a conditional jump to the first, as shown in variation 4 in Figure B.11). We
handle this by combining the two procedures outlined above: we remove the
final basic block and add an edge from the next-to-last basic block (which
now is the final one) to the initial basic block.

38

1

I

1 2

4

F

3

2

I

1 2

4

F

3

3

I

1+F 2

4+F

3

4

I

1+F 2

4+F

3

Figure B.11: A query CFG (number 1, top left), and three common variations we specifi-
cally handle.

39

	Introduction
	Background and Motivation
	Inlining
	Problem Statement

	Identification of Inline Functions
	Fingerprint Generation
	Fingerprint Matching

	Evaluation
	Query Fingerprints Database
	Dataset Selection
	BINO Metrics
	Parameters Selection
	BINO Matching Performance
	Model Transferability
	Fine Parameters Selection
	Fingeprint Complexity Analysis
	Impact of Syntactic and Semantic Features
	Scalability

	Limitations and future works
	Related works
	Conclusions
	Fingerprint Features
	CFG Variations

