
Experimental Demonstration and Results of
Cross-layer Monitoring Using OpenNOP: an Open Source

Network Observability Platform
Nathan Ellsworth1, Sebastian Troia2, Tianliang Zhang1, Marco Tacca1,

Guido Maier2, Andrea Fumagalli1
1Open Networking Advanced Research (OpNeAR) Lab, UT Dallas, TX, USA

2Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
E-mail: nathan.ellsworth@utdallas.edu

ABSTRACT
Ensuring the smooth operation and optimal performance of communication networks requires continuous moni-
toring of key network elements. Network operators can detect and prevent potential issues by monitoring various
real-time network parameters. This paper proposes and presents results from the implementation of a cross-
layer monitoring system for OpenROADM-compliant optical transport networks using an open source network
observability platform called OpenNOP, and for the first time includes simultaneous optical layer and transport
layer metrics. It leverages open source tools as a cost-effective and efficient solution for network monitoring and
management. OpenNOP collects and analyzes data from various network layers, including physical, data link,
network, and transport layers. OpenNOP can also ingest status and log information. This data is all stored in
a common time-series database. The results show that OpenNOP can provide comprehensive network visibility
and effective cross-layer monitoring of OpenROADM-based networks.
Keywords: Optical transport networks, OpenROADM, network observability, eBPF, NETCONF
1. INTRODUCTION

The modern era is marked by a rapid emergence of new services and applications that demand unprecedented
levels of network data, low latency, high reliability, increased connection density, and improved energy efficiency.
Applications such as augmented reality, remote vehicle control, and disaggregated mobile phone networks are
paving the way for the next generation of services that require high data rates and ultra-low latency networks.
Cloud computing has enabled real-time, on-demand access to a wide range of applications, each with unique
network requirements. As such, all layers in the network need to be agile and dynamic, working in a coordinated
cross-layer fashion, including the optical transport network, to dynamically and efficiently allocate resources to
support the zero-touch provisioning architecture for distributed data centers [1].

However, providing consistent real-time information for effective and efficient quality of service (QoS) moni-
toring of cloud applications remains a significant challenge, particularly in the context of open optical transport
networks, and more specifically in the OpenROADM ecosystem [2]. In this paper, we propose an enhanced
cross-layer monitoring system called OpenNOP (or NOP), which is based on our prior Network Operation
Platform (NOP) [3]. OpenNOP is designed to collect cross-layer real-time network data from an OpenROADM-
compliant network consisting of ROADMs (Reconfigurable Add-Drop Multiplexer), optical transponders, and
other network elements from multiple vendors. This system is based entirely on open source software and is
being made available for public use [4].

We will then demonstrate the efficacy of the OpenNOP system in collecting these performance metrics on
a physical OpenROADM-based optical network testbed, illustrating the value of OpenNOP as a reliable and
cost-effective solution for cross-layer monitoring of optical transport networks.

2. OPEN SOURCE NETWORK OPERATIONS PLATFORM (OPENNOP)
It is crucial for network operators to have a clear view of fault, configuration, availability, performance, and
security (FCAPS) in order to meet the high service standards expected by customers and regulators. However,
most commercial Operations/Business Support Systems (OSS/BSS) rely on proprietary and closed-source tools.
To foster academic research and encourage innovation in this field, we have been progressively integrating
various monitoring capabilities into our entirely open-source network observability platform (OpenNOP), as
shown in Fig. 1.

Previously, we have referred to OpenNOP as the Network Operations Platform, where operations reflects the
usage of such tools in a typical business operations center1. However, now that OpenNOP has progressed into
the area of collecting various data for long-term storage and analysis, we feel it is also appropriate to refer to
OpenNOP as the Network Observability Platform. In recent years, observability has come to represent more
than just simple monitoring, but the collection and aggregation of enough data to fully characterize the behavior
of a system from both an internal and external perspective [5].

Acknowledgments This material is based in part upon work supported by the National Science Foundation under Grant No. CNS-1956357
and CNS-2211989.

1eNOP is a name we used earlier as well. OpenNOP is now the preferred name.



2

OpenNOP

Op�cal Domain

Transport PCE

RESTCONF

Vendor B
OpenROADM

Vendor F
Xponder

Vendor D
Xponder

NetConf

Vendor A
OpenROADM

Vendor C
Xponder
Vendor E
Xponder

NetConf

Datacenter A

Kubernetes Cluster #1

Worker
1Master Worker

2
Worker

3

Controller Node

Management

400G Switch
OpenFlow

100G Switch

OpenFlow

Datacenter B

Kubernetes Cluster #1

Worker
1Master Worker

2
Worker

3

Controller Node

400G Switch
OpenFlow

100G Switch

OpenFlow

Open vSwitch

RESTCONF RESTCONF

Pipelines

``

GUI

PROnet Orchestrator
Database

Packet
Domain

Op�cal
Domain

Resource Management (RM)

Fault Handler
(FH)

Service Provisioning (SP)

Service Catalog
(Protected, Unprotected)

PROnet UI / API

Quality of Transmission
Es�mator (QoT-E)

Data Center
Manager

Data
Center

Open vSwitch

Tenant Tenant

PM
Collection

PM
Collection

M
et

ric
s

M
et

ric
s

Management

Topology

Text
Text

Text

Events

Metrics

Figure 1: OpenNOP Architecture Diagram

OpenNOP is comprised of several standard open source software packages such as Grafana, InfluxDB,
Kafka, Elastisearch, Prometheus, and various Prometheus exporters, all organized into a Docker Compose
container stack. This provides a simple but robust platform on which to build collection mechanisms and
retain observability data for many current and future aspects of multi-layer networking systems. Source code,
installation instructions, and typical use-case examples for OpenNOP available for public use at https:
//github.com/utdal/OpenNOP [4].

The OpenNOP system can be regarded as a data lake constructed to contain monitoring data gathered from
three distinct layers: optical, network packet, and transport. A recent definition of a data lake is “a scalable
storage and analysis system for data of any type, retained in their native format and used mainly by data
specialists (statisticians, data scientists or analysts) for knowledge extraction.” [6] This data is readily accessible
for the purpose of conducting correlation analyses.

2.1 Optical Network Layer Performance Data
The OpenROADM standard requires that compliant optical network devices publish certain PMs using the RFC
6241 NETCONF standard. OpenNOP uses a Python NETCONF library to query these PMs, including optical
input and output power for ROADM and transponder links as well as transponder pre-FEC corrected error
counts. The latter is important as it is proportional to the bit error rate (BER) when signal rate and forward
error correction (FEC) overhead are taken into account. These PMs are stored in a Prometheus time-series
database for future analysis and can also be graphed live in the OpenNOP Grafana-based UI console.

Our previous work [3] reported some problems with NETCONF session locking when using the open-source
Transport PCE (TPCE) SDN controller [7] as a north/south RESTCONF-to-NETCONF translator to perform
network management functions. To circumvent this locking conflict, the OpenNOP system now can directly
query the OpenROADM devices using a new Prometheus exporter software package developed in our lab to
query NETCONF devices for PMs.

The NETCONF PM exporter has two input configurations: an XML sub-tree filter that specifies which PMs
should be gathered and list of IP addresses that should be queried. The exporter then gathers the PM XML
data, parses out the data elements, and posts the data OpenNOP using the standard Prometheus line exposition
format. This module will be shared with the broader community using the Github.com code repository for
Prometheus [8].

2.2 Network Layer Bandwidth Data
OpenNOP uses the Prometheus SNMP exporter module to efficiently perform SNMP queries against the network
layer 2 devices in the testbed. OpenNOP uses the ifHCInOctets and ifHCOutOctets 64-bit counters available on
standard enterprise-grade switches to calculate the input and output data rate of each port by subtracting the
previous counter value from the current sample and dividing by the sample interval. We have found that the
Juniper QFX5220 switches used in our testbed do not update their internal counters more frequently than every
7 seconds, so our sample interval is 7 seconds.

OpenNOP monitors the ports used by each of the network clients and most importantly, the 400G uplink port
connecting to the optical transport network via the optical transponders, enabling it to characterize the amount
of network packets traversing the optical network.

https://github.com/utdal/OpenNOP
https://github.com/utdal/OpenNOP


3

2.3 Transport Layer Performance Data
A new addition to OpenNOP is use of the extended Berkeley Packet Filter (eBPF) technology to collect metrics
pertaining to the TCP network transport layer. To gather this data, we developed a custom eBPF-based program
capture the congestion window, receive window, round trip time (RTT), and number of re-transmitted segments.
Normally, when user space software makes a kernel system call to make a network request, the OS context
switch required to move from user space to kernel space is very “expensive” operation in CPU cycles. eBPF
is a technology that resides in the kernel, allowing for very fast access to certain internal data structures, while
at the same time providing an API to user space programs to access that data, without incurring the context
switch overhead. A user space program can issue very simple eBPF scripts that the kernel eBPF components
will execute. The data collected by the eBPF program allows us to analyze the behavior of TCP traffic flows
and identify potential issues, such as an increase in RTT or re-transmissions caused by transmission impairment
factors at the physical layer.

3. EXPERIMENTAL RESULTS

This section describes the experimental setup and collected results used to showcase the capabilities of the
proposed OpenNOP as a cross-layer monitoring framework. The structure of the testbed is much like that
shown in Fig. 1 with hardware compute nodes communicating across a multi-vendor OpenROADM-based optical
transport network.

3.1 Testbed Setup
The multi-layer and multi-vendor testbed is shown in Fig. 2. The switch (Juniper QFX5220) aggregates the iperf
network traffic of 7 compute nodes (Dell PowerEdge C8220 with dual 40G NICs) in each DC (data center) and
directs it to the OpenROADM optical network. The optical transponder (400G TPDR) modulates the data onto
a coherent lightwave at central frequency 196.08125 THz (DP-16QAM 63.1 Gbaud 400G signal) and sends it to
the ROADM for multiplexing and routing (with channel spacing 87.5 GHz), ultimately reaching the other TPDR.
This bidirectional transmission, known as a lightpath, is established using the open source TPCE controller.

Figure 2: Multi-layer Multi-vendor Testbed Setup with Noise Injection Mechanism

To replicate typical interference affecting the optical transport network transmission, a noise injection mech-
anism is applied to one transmission direction of the fiber span between ROADMs. A C-band Erbium-Doped
Fiber Amplifier (EDFA) is turned to its maximum drive current to generate sufficient Amplified Spontaneous
Emission (ASE) noise to carry out a meaningful experiment. The ASE noise is attenuated by a Variable Optical
Attenuator (VOA) setting at the cut-off point (∞ attenuation) as the initial state. As the attenuation decreases
gradually, more noise is injected into the transmission line using a 90-10 coupler. 5% of the signal power in
the transmission line is sent to an OSA for monitoring, while the rest goes to the destination.

The OpenROADM-compliant transponder detects the incoming coherent signal and corrects errors using
oFEC. The lower attenuation is, the higher noise and BER is. As long as the received Optical Signal to
Noise Ratio (OSNR) is above its critical threshold (and BER below its critical threshold), end-to-end zero-
error communication is maintained. If the OSNR falls below its threshold, uncorrectable errors occur at the
optical layer, leading to packet loss and re-transmission at the higher network layers.

3.2 Cross-layer Network Observations
To exercise OpenNOP in conjunction with this testbed, we designed an initial experiment to monitor the impact
to a continuous 400G iperf packet stream over the ROADM link while ramping the noise up and down by
decreasing and increasing the VOA attenuation. The attenuation began at 10 dB, ramped down 0.1 dB every
10s to 7.2 dB, held for 6 minutes, then ramped back up to 10 dB. The purpose is not to perform any in-depth
analysis, but to highlight the current OpenNOP capabilities.

Fig. 3 (a) is the attenuation curve and the time scale for the other data elements in (b) through (e). Fig. 3 (b)
shows the layer 2 switch utilization across the network, which drops off sharply once the injected noise is at its



4

Figure 3: Cross-layer Data Capture showing (a) the gating of EDFA noise, (b) layer 2 utilization, (c) TCP RTT
values, (d) pre-FEC corrected errors - accumulated and reset every 15 mins and (e) error rate

peak. Fig. 3 (c) shows the extreme variability of RTT while the noise was present. Fig. 3 (d) shows the cumulative
number of pre-FEC corrected errors. This is normally a straight saw tooth wave since the OpenROADM PMs
counters continually increase with a reset every 15 minutes. However, as the noise was being increased, the
normally straight slope of the saw tooth is curved, meaning the rate of errors is increasing. Indeed, Fig. 3 (e),
which is the delta increase (or first derivative) of the error counter, shows the error rate is increasing.

Despite the high level of noise presence, the 400G end-to-end data transfer resumes after a brief drop. During
this time interval the charts report high error counts and significant fluctuations in the TCP RTT graph. This is
an area requiring further investigation to determine what parts of the multi-layer network testbed allowed the
data rate to recover despite the aggressive noise interference. We anticipate performing additional experiments
with other types of signal perturbation over the optical transport network.

4. FINAL REMARKS

This work described the latest enhanced features of the cross-layer monitoring system called OpenNOP. The
OpenNOP system is designed to collect cross-layer real-time network data from an OpenROADM-compliant
transport network consisting of network elements from multiple vendors. It will allow researchers to capture
and perform data analysis on the resulting datasets to guide further exploration and lead to the development of
enhanced algorithms for controlling multi-layer and multi-vendor end-to-end networks in the future. It leverages
open source tools and the source code, configuration examples, and documentation will be shared with the
community. We demonstrated the efficacy of the OpenNOP system in collecting various real-time performance
metric datasets in on a non-emulated OpenROADM-based optical network testbed. We will continue to expand
the OpenNOP capabilities and to organize and share datasets collected for various other test scenarios like
that demonstrated here. We believe that the OpenNOP framework is a useful and cost-effective solution for
cross-layer monitoring of optical transport networks and has the potential further insights into the operation of
multi-layer networks.

REFERENCES
[1] IOWN Global Forum, “IOWN Global Forum,” https://iowngf.org/white-papers/, 2022, last retrieved

4/28/2023.
[2] OpenROADM MSA, “OpenROADM MSA,” http://OpenROADM.org, 2021, last retrieved 11/14/2021.
[3] N. Ellsworth, T. Zhang, S. Troia, G. Maier, and A. Fumagalli, “Enhancing cross layer monitoring on open

optical transport networks,” in Optical Fiber Communication Conference 2023, 2023, pp. 1–3.
[4] UT Dallas, “OpenNOP,” https://github.com/utdal/OpenNOP, 2023.
[5] S. Almog, Observability and Monitoring. Berkeley, CA: Apress, 2023, pp. 175–187. [Online]. Available:

https://doi.org/10.1007/978-1-4842-9042-2 9
[6] P. N. Sawadogo and J. Darmont, “On data lake architectures and metadata management,” Journal of

Intelligent Information Systems, vol. 56, pp. 97–120, 2020.
[7] OpenDaylight Project, “Transport PCE,” https://wiki.opendaylight.org/display/ODL/TransportPCE, 2022, last

retrieved 4/28/2023.
[8] “Prometheus Community,” https://github.com/prometheus-community, 2022, last retrieved 4/28/2023.

https://iowngf.org/white-papers/
http://OpenROADM.org
https://github.com/utdal/OpenNOP
https://doi.org/10.1007/978-1-4842-9042-2_9
https://wiki.opendaylight.org/display/ODL/TransportPCE
https://github.com/prometheus-community

	Introduction
	Open Source Network Operations Platform (OpenNOP)
	Optical Network Layer Performance Data
	Network Layer Bandwidth Data
	Transport Layer Performance Data

	Experimental Results
	Testbed Setup
	Cross-layer Network Observations

	Final Remarks
	REFERENCES

