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Abstract. This work analyzes the dynamic behavior of structural elements that can be modelled 
as taut cables with a discrete array of punctual attached and hanging masses. The propagation of 
mechanical waves is strongly influenced by the presence of such scatter elements. We found that 
the problem is governed by a discrete equation, whose solutions depend on the behavior of an 
equivalent mass density, that varies with frequency. The spectrum of the problem is characterized 
by the presence of band gaps. This behavior is generally exploited for the design of metastructures. 
A parametric study of the equivalent mass is finally given. 
Introduction 
Long and flexible slender elements are typically modelled as cables, i.e. as structures with no 
flexural rigidity. The dynamics of such systems has been widely studied due to the possible 
activation of several peculiar mechanisms mainly connected to the intrinsic non-linearities of the 
problem [1–3].  

In most applications, cabling systems present hanging elements that are often periodically 
repeated. This is the case for instance for the main cables in suspension bridges [4], for cableways 
[5] and for overhead lines with ball markers or vibrational dissipators [6]. These elements largely 
influence and modify the dynamic response of the system, acting as scatterers for propagating 
waves. To show this, we here analyze a simplified problem by studying the propagation of 
mechanical waves in taut cables with a periodic array of masses, directly attached to the cable 
or/and hanging to it by means of elastic springs. We focus on the linear dynamics of the system. 
Specifically, we verified that there exist some intervals of frequencies at which waves cannot 
propagate through the cable, i.e. band gaps in the spectrum. We thus found that the system can 
behave as a metastructure.  

In this work, we initially derive an equivalent equation governing the linear dynamics of our 
system and we show that band gaps can indeed appear. We then analyze how these band gaps are 
modified by a variation of the parameters involved in the problem: this analysis gives useful 
information for the design phase. 
Problem formulation 
Let us analyze the propagation of transverse mechanical waves in taut cables. This model can be 
used to study the behavior of long and slender structural elements, characterized by a low flexural 
rigidity, that are stretched between two supports positioned at the same height. The cable is here 
characterized by the presence of a periodic arrangement of pointwise hanging elements, composed 
of masses 𝑚𝑚1 directly attached to the cable and connected to hanging masses 𝑚𝑚2 by means of 
elastic springs k (cf. Fig. 1). 
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Figure 1: Cable in tension under a force 𝑯𝑯, with a periodic distribution of scatter elements 
composed of masses 𝒎𝒎𝟏𝟏 directly attached to the cable and/or masses 𝒎𝒎𝟐𝟐 hanging through 
springs 𝒌𝒌. The following limiting cases are shown: in scheme (a) masses are hanging to the 

cable by means of elastic springs, in scheme (b) masses are directly attached to the cable, and in 
scheme (c), masses are constrained to the ground by means of elastic springs. Direction 𝒆𝒆𝟑𝟑 is 

out-of-plane. 

By calling 𝐻𝐻 the pretension applied to the cable, the equilibrium configuration can be 
approximated to be horizontal when H is much larger than the total weight of cable and attached 
elements. Specifically, a material point 𝑠𝑠0 will be moved to a different position s, during this 
pretensioning phase, along direction 𝒆𝒆1 (see Fig. 1). By calling 𝑁𝑁𝑒𝑒𝑒𝑒(𝑠𝑠0) the axial force and 
𝜖𝜖𝑒𝑒𝑒𝑒(𝑠𝑠0) the static axial strain of the point originally at position 𝑠𝑠0, from equilibrium and linear 
elasticity one has 

𝑁𝑁𝑒𝑒𝑒𝑒(𝑠𝑠0) = 𝐻𝐻    and    ϵ𝑒𝑒𝑒𝑒(𝑠𝑠0) = 𝐻𝐻/𝐸𝐸𝐸𝐸, (1) 

where EA is the axial stiffness of the cable.  
Note that, with the current assumptions, the presence of the punctual elements does not 

influence the static equilibrium of the system. This is not the case when the cable is moving. To 
show this, let us now take the static equilibrium configuration to be the new reference configuration 
for the dynamic problem. We call L the distance between the two supports and n the total number 
of hanging elements. Accordingly, 𝑑𝑑 = 𝐿𝐿/(𝑛𝑛 + 1) is the distance between two subsequent 
elements. As we are dealing with a wave propagation problem, we do not consider the boundary 
conditions. 

By studying small oscillations around the equilibrium configuration, the motion problem is 
governed by three uncoupled equations along the in-plane horizontal and transverse directions and 
the out-of-plane direction (respectively, directions 𝒆𝒆1, 𝒆𝒆2 and 𝒆𝒆3 in Fig. 1). Specifically, along the 
transverse direction 𝒆𝒆2, one has: 

𝑢̈𝑢(𝑠𝑠, 𝑡𝑡) − 𝑐𝑐𝑡𝑡2𝑢𝑢′′(𝑠𝑠, 𝑡𝑡) = 0    ∀𝑠𝑠 ∖ 𝑃𝑃  (2) 

where we use (∎̈) and (∎′′) to denote respectively the time and spatial derivatives. In Eq. 2, 𝑐𝑐𝑡𝑡2 =
𝐸𝐸𝐸𝐸�1 + ϵ𝑒𝑒𝑒𝑒�

2
/ρ is the speed of transverse waves, and we have used P to define the collection of 

positions 𝑠𝑠 = 𝑠𝑠𝑖𝑖  of the i-th hanging elements. The motion problem is then completed by a set of jump 
conditions, such that: 

�𝐸𝐸𝐸𝐸𝜖𝜖𝑒𝑒𝑒𝑒𝑢𝑢′�(𝑠𝑠𝑖𝑖, 𝑡𝑡) = 𝑚𝑚1𝑢̈𝑢(𝑠𝑠𝑖𝑖, 𝑡𝑡) − 𝑘𝑘�𝑣𝑣𝑖𝑖(𝑡𝑡) − 𝑢𝑢(𝑠𝑠𝑖𝑖, 𝑡𝑡)�    𝑤𝑤𝑤𝑤𝑤𝑤ℎ 1 < 𝑖𝑖 < 𝑛𝑛,  (3) 

where ⟦∎⟧ = (∎)+ − (∎)−, with (∎)+ (resp. (∎)−) denoting the right (resp. left) limit of (∎) at 
s. In the above Eq. 3, we used 𝑣𝑣𝑖𝑖 to denote the vertical displacement of the end point of the spring 
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where the mass 𝑚𝑚2 of the i-th element is attached, by making the assumption that these masses can 
only move in the vertical direction 𝒆𝒆2. Accordingly, the equation of the vertical motion of the i-th 
mass 𝑚𝑚2 reads as: 

𝑚𝑚2𝑣̈𝑣𝑖𝑖 + 𝑘𝑘�𝑣𝑣𝑖𝑖(𝑡𝑡) − 𝑢𝑢(𝑠𝑠𝑖𝑖, 𝑡𝑡)� = 0. (4) 

Note that Eq. 3 can be also used to model the case when masses 𝑚𝑚1 + 𝑚𝑚2 are directly attached 
to the cable and the case when the elastic springs are constrained to the ground. For this, one has 
to consider, respectively, an infinite stiffness k and an infinite mass 𝑚𝑚2. Specifically, from Eq. 4, 
one has for the former case 𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝑢𝑢(𝑠𝑠𝑖𝑖, 𝑡𝑡), meaning that the system behaves as if masses 𝑚𝑚2 
were directly attached to the cable and summed to masses 𝑚𝑚1. For the latter case, instead, one has 
𝑣̈𝑣𝑖𝑖 = 0, meaning that masses 𝑚𝑚2 cannot move. These cases are shown in Fig. 1 (schemes (b) and 
(c)), together with the case corresponding to 𝑚𝑚1 = 0 (scheme (a)). 

By considering that both fields u and 𝑣𝑣𝑖𝑖 are small and harmonically varying in time, such that 

𝑢𝑢(𝑠𝑠, 𝑡𝑡) = 𝑢𝑢�  𝐿𝐿 𝑒𝑒𝑒𝑒𝑒𝑒 iω𝑡𝑡    and    𝑣𝑣𝑖𝑖(𝑠𝑠, 𝑡𝑡) = 𝑣𝑣�𝑖𝑖 𝐿𝐿 𝑒𝑒𝑒𝑒𝑒𝑒 iω𝑡𝑡,  (5) 

Eq. 2 can be solved within each interval i-th. The term i is used in relations 5 and in the followings 
to denote the imaginary unit. By calling 𝑢𝑢�𝑖𝑖 the transverse displacement of the i-th mass 𝑚𝑚1, one 
obtains 

𝑢𝑢�(𝑠̂𝑠) = 𝑢𝑢�𝑖𝑖−1 𝑐𝑐𝑐𝑐𝑐𝑐(Ω(n + 1)s� − 𝑖𝑖 + 1) +
𝑢𝑢�𝑖𝑖 − 𝑢𝑢�𝑖𝑖−1 𝑐𝑐𝑐𝑐𝑐𝑐 Ω

𝑠𝑠𝑠𝑠𝑠𝑠 Ω
𝑠𝑠𝑠𝑠𝑠𝑠(Ω(𝑛𝑛 + 1)𝑠̂𝑠 − 𝑖𝑖 + 1) (6) 

where Ω = ω𝑑𝑑/𝑐𝑐𝑡𝑡 and 𝑠̂𝑠 = 𝑠𝑠/𝐿𝐿 are respectively dimensionless frequency and coordinate. Using 
Eq. 6, together with Eq. 3 and 4, one finally finds the following equivalent equation of motion for 
the points 𝑠𝑠𝑖𝑖 ∈ 𝑃𝑃: 

Δ𝑖𝑖𝑢𝑢� + μ(Ω)𝑢𝑢�𝑖𝑖 = 0,    with    Δ𝑖𝑖𝑢𝑢� = 𝑢𝑢�𝑖𝑖+1 + 𝑢𝑢�𝑖𝑖−1 − 2 𝑢𝑢�𝑖𝑖. (7) 

In the above equation, μ(Ω) can be interpreted as a frequency dependent equivalent mass density 
and it reads  

𝜇𝜇(Ω) = 2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐 Ω) + �Θ1 +
𝑘𝑘�Θ2

𝑘𝑘� − Θ2Ω2
�Ω 𝑠𝑠𝑠𝑠𝑠𝑠Ω (8) 

where Θ1 and Θ2 are two mass ratios and 𝑘𝑘� is a normalized stiffness of the springs: 

Θ1 = 𝑚𝑚1
ρ𝑑𝑑

,    Θ2 = 𝑚𝑚2
ρ𝑑𝑑

,   and   𝑘𝑘� = 𝑘𝑘𝑘𝑘
𝑁𝑁𝑒𝑒𝑒𝑒

.  (9) 

Spectral band gaps 
From the derivation in [7], one has the following solutions of Eq. 7: 

 
𝑢𝑢�𝑖𝑖 = 𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒(−i K∗𝑖𝑖) + 𝐵𝐵 𝑒𝑒𝑒𝑒𝑒𝑒(i K∗𝑖𝑖)                     for 0 ≤ μ(Ω) ≤ 4, 

𝑢𝑢�𝑖𝑖 = 𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒(−K∗𝑖𝑖) + 𝐵𝐵 𝑒𝑒𝑒𝑒𝑒𝑒(K∗𝑖𝑖)                         for μ(Ω) < 0, 

𝑢𝑢�𝑖𝑖 = 𝐴𝐴 (−1)𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒(−K∗𝑖𝑖) + 𝐵𝐵 (−1)𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒(K∗𝑖𝑖)    for μ(Ω) > 4, 

(10) 

 
where K∗ ∈ [0,π] is a dimensionless wavenumber obtained as: 

 

1 − μ(Ω)
2

= �
𝑐𝑐𝑐𝑐𝑐𝑐 𝐾𝐾∗           for 0 ≤ μ(Ω) ≤ 4,
𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝐾𝐾∗           for μ(Ω) < 0,           
−𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝐾𝐾∗       for μ(Ω) > 4.           

  (11) 
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Accordingly, waves propagate freely along the cable when 0 ≤ μ(Ω) ≤ 4. For either μ(Ω) < 0 or 
μ(Ω) > 4, waves are instead attenuated, as the displacement field is given by a superimposition of 
exponentials.  
The spectrum of the problem governed by Eq. 7 is thus characterized by band gaps, i.e. by intervals 
of frequencies at which wave solutions does not exist. 
Parametric study of band gaps 
As discussed in the previous section, band gaps are given by those frequencies at which either 
𝛍𝛍(𝛀𝛀) < 𝟎𝟎 or 𝛍𝛍(𝛀𝛀) > 𝟒𝟒. Considering for example the case with 𝚯𝚯𝟏𝟏 = 𝟎𝟎, 𝚯𝚯𝟐𝟐 = 𝟏𝟏.𝟏𝟏𝟏𝟏 and 𝒌𝒌� =4 
(hanging masses), we report in Fig. 2 the behavior of 𝛍𝛍 in function of the frequency 𝛀𝛀. Band gaps 
are denoted by the green (𝛍𝛍(𝛀𝛀) < 𝟎𝟎) and red (𝛍𝛍(𝛀𝛀) > 𝟒𝟒) intervals. Blue intervals correspond to 
pass bands. 

 
Figure 2: Equivalent mass vs frequency for the system studied in Fig. 5, with 𝒌𝒌� = 𝟒𝟒. Colors must 

be interpreted as in Figures 3 to 6: blue is used for pass bands, red and green for band gaps. 
 
Let us now study how the equivalent mass density 𝛍𝛍(𝛀𝛀) is influenced by the parameters given 

by relations 9. Specifically, we here analyze how band gaps vary in function of them. For this, we 
show some contour plots (Figures 3 to 6) of the equivalent mass 𝛍𝛍(𝛀𝛀) for the following cases: 

Fig. 3. Cable with masses 𝑚𝑚1 and no hanging mass (𝑚𝑚2 = 0). 
Fig. 4. Cable with 𝑚𝑚1 = 0 and 𝑚𝑚2 → ∞ (cable lying on a discrete array of elastic constraints). 
Fig. 5. Cable with 𝑚𝑚1 = 𝑚𝑚2 = 𝑚𝑚 (Θ1 = Θ2 = Θ) and fixed dimensionless spring stiffness 𝑘𝑘�. 
Fig. 6. Cable with hanging masses 𝑚𝑚2 (𝑚𝑚1 = 0) and varying dimensionless spring stiffness 𝑘𝑘�. 

As before, in the contour plots the conditions 𝛍𝛍(𝛀𝛀) < 𝟎𝟎 and 𝛍𝛍(𝛀𝛀) > 𝟒𝟒 are verified respectively 
in the green and red regions. The blue areas, instead, correspond to pass bands. 
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Figure 3: Masses directly attached to the 

cable for varying mass m1 (m2=0). 

 
Figure 4: Cable lying on a discrete set of 

elastic springs for varying stiffness (m1=0). 

  
Figure 5: Cable with equal attached and 

hanging masses for varying mass m1=m2=m. 
For this plot we used 𝒌𝒌� = 𝟒𝟒.𝟕𝟕𝟕𝟕. 

 
Figure 6: Cable with hanging masses for 

varying stiffness k (m1=0). For this plot we 
used 𝜣𝜣𝟐𝟐 = 𝟏𝟏.𝟏𝟏𝟏𝟏. 

 
Note that the system studied in Fig. 2 corresponds to that used in Fig. 6, by fixing 𝑘𝑘� =4. Colors 

have the same meaning in both Figures.  
From Fig. 3, the width of band gaps increases with the mass. For the system analyzed in Fig. 4, 

their width increases with the stiffness. Most importantly, this latter case is characterized by a cut-
off frequency with a band gap opening at zero frequency. Note that the closing frequencies in Fig. 
3 and the opening frequencies in Fig. 4 are independent respectively from a variation of attached 
mass and stiffness. This can be explained by studying the behavior of the equivalent mass μ. For 
this, let us first rewrite here relation 8 for these two cases 

 

μ(Ω) = �
2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐 Ω) + Θ1Ω 𝑠𝑠𝑠𝑠𝑠𝑠Ω
2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐 Ω) + 𝑘𝑘� 𝑠𝑠𝑠𝑠𝑠𝑠Ω

Ω
        .  (12) 

 
From relations 12 one can recognize that at points 𝑗𝑗π, with 𝑗𝑗 ∈ ℕ∗, the first and second terms 

in the definition of the equivalent mass are both zero independently of Θ1 and 𝑘𝑘�.    
Let us now comment on Figures 5 and 6. In both cases, the systems used are characterized by 

the presence of resonant elements (springs and masses 𝑚𝑚2) that can locally resonate causing the 
opening of band gaps. The dotted black curves in these contour plots show how the resonance 
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frequency varies with respect to the varying parameters. Specifically, the equivalent mass is 
indefinite at resonance and tends to +∞ or −∞ from below or from above (cf. Fig. 2), depending 
on the case under consideration. Accordingly, band gaps will always appear around the frequency 
of resonance, as one can check from the contour plots. From Fig. 6, band gaps width clearly 
increases with the stiffness. The presence of opening and closing frequencies that result to be 
independent from a variation of mass (Fig. 5) and stiffness (Fig. 6) can be explained by looking at 
the equivalent mass μ with a reasoning similar to that followed for Figures 3 and 4. 

Note that, for the parameters fixed by the black continuous horizontal lines in Figures 5 and 6, 
the two systems are characterized by a spectrum where the closing frequency of the first band gap 
is superimposed with the opening frequency of the second band gap: the final band gap becomes 
thus very wide, resulting in an optimal attenuating behavior. This feature is also valid for the 
second and third band gaps in the spectrum shown in Fig. 5, as indicated by the black dashed 
horizontal line.    
Conclusions 
In this paper we have considered the linear dynamic behavior of a cable with hanging elements. 
We found that this system behaves as a metastructure, offering the peculiar property that waves 
cannot freely propagate for some intervals of frequencies, generally known as band gaps. For this, 
we have derived an equivalent mass density from which we were able to obtain information 
regarding the influence of the parameters involved in the problem. The result can be of interest as 
a starting point for more realistic models where the initial sag of the cable is taken into account. 
This would better idealize the structural applications listed in the introduction of the current work. 
Moreover, the attenuating capabilities of the system could be exploited for the localization and 
focusing of mechanical waves, as shown in [8,9].  
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