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Abstract

MQTT is one of the most popular communication protocols for Internet of
Things applications. Based on a publish/subscribe pattern, it relies on a sin-
gle broker to exchange messages among clients according to topics of interest.
However, such a centralized approach doesn’t scale well and is prone to single
point of failure risks, calling for solutions where multiple brokers cooperate
together in a distributed fashion. In this paper, we present a complete solu-
tion for a distributed MQTT broker systems. We target several functional
primitives which are key in such a scenario: broker discovery and failure re-
covery, overlay tree network creation and message routing. Moreover, we also
focus on the case where multiple topics are present in the system. In such a
scenario, a single tree-based overlay network connecting the different brokers
may not be the most efficient solution. To cope with this issue, we propose
a topic-based routing scheme for MQTT distributed brokers. The proposed
solution creates multiple overlay networks in the distributed system, each
one linking together only the brokers whose connected clients have interest
in the same topics. We implement the complete system as an extension of the
popular HiveMQ MQTT broker and perform several experiments to test its
performance in scenarios characterized by a different publishers/subscribers
configurations as well as number of topics existing in the system.

Keywords: MQTT, distributed pub/sub, topic-based routing

1. Introduction

The Internet of Things (IoT) ecosystem is growing quickly: according
to a recent Cisco report [1], IoT connections will be half of the global con-
nected devices and connections by 2023, growing from 33 percent in 2018.
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Consequently, communication technologies and protocols used for IoT ap-
plications will need to tackle new demands and requirements such as grow-
ing traffic volume, extreme low-latency, service complexity, higher quality of
user experience, and increasing number of heterogeneous devices. Most of
the nowadays IoT applications use the Message Queuing Telemetry Trans-
port (MQTT) protocol at the application layer. Developed by IBM in 1999,
MQTT follows a traditional publish/subscribe pattern: clients publish infor-
mation relative to a particular topic towards a central broker, which is in
charge of forwarding it to the interested subscribers. The broker ultimately
controls all aspects of the communication between publishers and subscribers,
furthermore decoupling them in both space and time. This reason, combined
with the great simplicity of the protocol client-side, has contributed to make
MQTT the gold standard application-layer protocols for IoT applications.
However, relying on a single broker has important drawbacks: indeed, such
a centralized design does not scale well considering the massive numbers of
IoT devices forecasted in the near future. In addition, it is prone to single
point of failure risks on the central broker. For these reasons, several recent
works have explored the possibility of creating systems of distributed MQTT
brokers, interconnected together and acting as a single entity, with the final
goal of ensuring high scalability, elasticity, resiliency to failures and possibly
message replication. Such a distributed system of MQTT brokers find use in
several application scenarios related to the IoT area, such as:

• 5G Multi-access Edge Computing (MEC): 5G cellular networks have
been designed with an inherent support for IoT applications, being able
to serve up to 106 low-power devices per square kilometre via massive
machine type communication (mMTC) technologies as well as using
MEC services. The latter will be located in close proximity to the users
(e.g., directly at the cellular base stations, as illustrated in Figure 1(a))
providing them with storage, computation and other services (including
MQTT broker functionalities), with the final goal of reducing latency
as much as possible [2, 3, 4].

• Satellite IoT: distributed MQTT solutions may play a leading role in
future IoT networks based on satellite links, which provide ubiquitous
coverage and reliability in places where no other terrestrial technology
could [5, 6, 7]. In such a scenario it is common to envision several
MQTT brokers communicating among them: as illustrated in Figure
1(b), MQTT brokers may be installed on terrestrial gateways between
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end devices and the satellites, as well as on the satellites themselves.
Recent works already envision an interplay between MEC services and
satellite networks based on the MQTT protocol [8]. Managing effi-
ciently such a distributed system of MQTT brokers becomes key, also
considering the large delays and unstable links generally involved in
satellite communications.

• Micro-clouds (MC): an emerging paradigm in IoT applications consist
in developing small data centers which are located very close to the
end devices (typically one hop away) and offer communication, sensing,
data storage and processing services. Implemented as virtual machines,
such miniature clouds may be run on general purpose hardware in close
proximity to the IoT devices: e.g., vehicles [9] or content islands of
things [10] (i.e., group of smart things connected to the same micro
cloud) among themselves or with other content islands. Also in such a
scenario, the use of the MQTT protocol is becoming predominant [11],
motivating the need for distributed broker systems (Figure 1(c)).

Works in these areas that make use of the MQTT protocol generally rely
on the concept of bridging, an existing feature provided by some existing
MQTT broker implementations (e.g. Mosquitto, HiveMQ, CloudMQTT)
which allows a broker B to connect to another broker A as a standard client,
subscribing to all or a subset of the topics published by clients to A. Unfortu-
nately, such a procedure is extremely time consuming and prone to message
loops among brokers: indeed, the existence of a cycle where a message is
continuously republished by the participating brokers can quickly deplete a
broker’s resources, ultimately making it unable to deliver meaningful traf-
fic. Due to the enormous complexity of implementing duplicate detection
in distributed scenarios, which would require to keep track of the original
producer of every message received and forwarded by any broker, existing
solutions require to manually configure the connections between brokers in a
static tree-based topology, which lacks adaptivity and robustness.

This work presents and evaluates a complete solution for creating a flex-
ible and efficient distributed system of MQTT brokers. In details, the main
features implemented in the proposed solution are:

• Broker discovery: in contrast to other available solutions for intercon-
necting MQTT brokers (e.g., MQTT bridging), which require a static,

3



MEC MQTT broker

MEC MQTT broker

Cloud MQTT broker

(a) Multi-access edge computing

MQTT broker

MQTT broker

MQTT broker

MQTT broker

(b) Satellite-IoT

MC MQTT
broker

MC MQTT broker

(c) Micro-clouds

Figure 1: Application scenarios where distributed MQTT systems may be applied

a-priori knowledge of all brokers, we propose a mechanism to automat-
ically discover brokers, speeding up the creation and management of
the distributed architecture.

• Overlay creation: we make efficient use of our previous work named
MQTT-ST [12] to create a logical spanning tree among the brokers
joining the distributed architecture, thus avoiding the cumbersome task
of manually creating a loop-free topology. The spanning tree is created
automatically by the brokers, taking into account parameters such as
inter-broker latency and computational/memory resources. Further-
more, the tree is robust to broker failures and it is able to reconfigure
automatically upon malfunctions.

• Message routing: the proposed system allows for either full message
replication among the brokers or efficient and targeted delivery thanks
to a routing algorithm built on top of the overlay tree which greatly
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reduces the amount of traffic needed to interconnect clients associated
to different brokers.

• Topic-based optimization: we also propose mechanisms to cope with
the scale and dynamism of networks exchanging messages over a large
number of topics. In such a scenario, a single overlay tree determined
a-priori only by the capacity of the brokers and by the latency of the
links among them may not be the optimal choice. Indeed, a broker
has often to receive and forward messages about topics to which it is
not interested just because it is an intermediate node of the route to
reach the interested subscribers. Therefore, in this paper, we take a
further step and propose a distributed system of MQTT brokers which
supports multiple overlay networks, and consequently routing decisions,
one per each topic in the system.

A distinctive feature of our solution is to use in-band signalling as much as
possible: indeed, most of the control procedures required to set up and main-
tain the distributed system are implemented reusing MQTT native mecha-
nisms such as publication messages as well as ping request and response
messages. We design and implement the system as a plug-in of the popular
HiveMQ MQTT broker1 and test it in several network scenarios. We com-
pare our solution with a benchmark distributed system using a single overlay
network and shows its superior performance. The remainder of this paper
is structured as it follows: Section 2 reviews related works, Section 3 intro-
duce the design and implementation of the system, Section 4 describes the
overlay tree creation, also considering the topic-based optimization. Section
5 focuses on the brokers’ routing protocol, Section 6 provides experimental
results and Section 7 concludes the paper.

2. Related Works

Efficient message dissemination in distributed pub/sub systems has been
the subject of several research activities in the last 20 years [13, 14, 15, 16,
17, 18]. One common feature in such systems is the existence of a so called
overlay network, which allows nodes to reorganize in a virtual network on
top of the existing physical network infrastructure.

1https://www.hivemq.com/
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In these fully decentralized implementations of the topic-based pub/sub
systems, nodes (corresponding to brokers) forward their messages in a peer-
to-peer overlay network fashion.

Similarly to our system implementation, in PADRES [13], a special adver-
tisement is added to the common publications and subscriptions messages.
These advertisements avoid message flooding in the network, allowing the
creation of routing trees along which subscriptions are propagated. PADRES
also store routing data in Overlay Routing Tables (ORT) that are used to dis-
seminate advertisements. In addition, subscriptions and publications routing
work according to respectively Subscription Routing Tables (SRT) and Publi-
cation Routing Tables (PRT). Improvements in the routing paths are carried
by Minimum Topic-Connected Overlay (Min-TCO) [19] networks and further
developments [20, 21], where all the nodes with shared topics are connected
minimizing the possible number of edges. Therefore, a message published on
the topic t reaches all the nodes interested in t being forwarded only by nodes
interested in t. However, in these cases, the minimisation problem takes into
account only the number of hops and the delay on the link is not considered.

Teranishi et al.[22] introduce the concept of location awareness in topic
based pub sub for IoT applications. In this case, the messages are directly
forwarded if publishers and subscribers are in the same physical network,
instead of being flooded to every peer of other networks.

Thanks to the enormous success of such a protocol in IoT applications,
recently some attention has been given to the problem of building and oper-
ating a distributed system of MQTT brokers. Some works focused primarily
on vertical clustering, where the single broker is replaced by many virtu-
alised broker instances running behind a single endpoint, typically a load
balancer [23][24]. These approaches introduce the concept of multiple bro-
kers cooperating with each other, although the broker cluster is seen as a
single centralised entity from the perspective of clients.

Pure MQTT broker distribution is introduced in Banno et al. in [25]: the
work in [25] proposes ILDM (Internetworking Layer for distributed MQTT
brokers), in which heterogeneous brokers are connected to each other through
specific nodes, placed between client and broker, and messages are exchanged
through flooding. However, the manual configuration of MQTT bridges has
two main disadvantages: firstly, similar to the wiring of switches in small and
medium-sized companies, it can become a very confusing task with a high
possibility of accidentally creating duplicate connections, especially in large
topology. Second, by imposing a loop-free static topology between brokers,
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adaptivity and robustness to failures are completely lost.
A different approach is given in [26], where authors propose the use of

a Software Defined Networking (SDN) controller to collect information on
clients and their relative pub/sub topics, in order to create per-topic multicast
groups to minimise data transfer delay. In [27] and [28] authors propose to
interconnect MQTT brokers dynamically, making it possible to change the
configuration of the topology at run-time through specific MQTT messages
transmitted by a trusted centralised entity. Similarly, the work in [29] creates
a distributed broker network by utilising an external agent to control the
status of each broker. Upon any change in the broker network configuration
(broker failure, increase in latency, etc.) the clients reconnect to a new
broker, based on information retrieved by the monitoring agent. Such an
approach enables client mobility, dynamic broker provisioning, and broker
load balancing.

A new technique that allows the MQTT protocol to cope with distributed
brokers for the new IoT challenges was to apply the spanning tree protocol
over a network of brokers in order to create a loop-free topology between
more brokers [12]. A second example of such application is D-MQTT [30]:
this work proposes a distributed version of MQTT, based on the mosquitto
broker, where multiple brokers connect with each other through a spanning
tree topology, allowing clients to communicate even if originally associated
to different brokers.

To the best of our knowledge, this work is the first distributed MQTT
system that uses topic-based overlay networks for efficient message dissemi-
nation.

3. System Overview

The main goal of this work is to design an effective solution to support
distributed MQTT brokers, practically applying it in a realistic scenario.
Although the solution reported in this paper could be applied to any MQTT
broker implementation, here we take the popular HiveMQ MQTT broker as
a starting point and we modify it to support a distributed scenario. The
motivation of this choice lies in the very simple management of HiveMQ,
which offers a free and open source Java SDK to modify the broker behaviour
via plugins. The plugin SDK provides to the developer several callbacks,
which can be linked to user-defined logic easily. Conversely, other popular
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broker implementations such as Mosquitto, require to directly work on the
broker source code and are consequently much more complex to modify.

We therefore develop a plugin for turning a single centralized broker into
an entity that could easily work in a distributed scenario. The plugin works
according to the finite state machine illustrated in Figure 2:

1. Discovery phase: Upon startup, the broker is in the DISCOVERY state,
in order to become aware of other brokers ready to join the distributed
system. In details, first each broker joins an IP multicast group. Then,
it periodically transmits to the multicast group a specific UDP discov-
ery message, containing its own IP address as well as the port over
which the MQTT broker process is listening. At the same time, each
broker listens for incoming discovery message from other brokers for a
pre-defined period of time Td. At the end of Td, a broker knows the
addresses and ports of all active brokers in the group. It stops transmit-
ting discovery messages, keeping the receiver process active for other
brokers willing to join the distributed system in a subsequent phase.
The broker moves then to the OTC state. Note that, regardless of the
current state, the reception of a discovery message from a new broker
causes the system to restart from the DISCOVERY state. This allows
a broker to join the distributed system at any time. This is the only
step of our system which requires an out-of-band (non MQTT specific)
message exchange.

2. Overlay tree creation: When the discovery phase ends, each broker has
knowledge of all other brokers in the distribution system. Then, the
plugin enters in the OTC state, which takes care of executing a version of
the Spanning Tree Protocol (STP) adapted for the particular scenario,
so that all brokers agree on a loop-free topology that serves as an overlay
network. More details on such a process are given in Section 4.

3. Message routing: When the overlay network is created, the plugin
moves to the RUNTIME state, that takes care of processing events (pub-
lications and subscriptions) arriving at the broker and routing them to
other brokers connected. Section 5 details this process.

4. Failure recovery: Upon a broker failure, the plugin handles the situa-
tion by to re-establish the routing tree. In details, the broker detecting
a socket error transmit to all other brokers in the tree a specific MQTT
message used to restart the tree construction from scratch. The mes-
sage is published over the special MQTT topic $TC (Topology Change),
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Figure 2: System State Machine

and has the same goal of a topology change message in the STP pro-
tocol. Any broker receiving such a message restart the root selection
procedure, which eventually will converge to a new tree.

As we shall explain in the following, the overlay tree creation and the routing
process may also be specialized on a per-topic basis.

4. Overlay tree creation

After the discovery step ends, all brokers in the distributed system know
each other’s broker IP address and MQTT listening port. This allows to
establish an underlying fully connected topology of brokers, which serves as
the basis for the distribution system. In details, each connection between
two brokers is implemented as an MQTT bridge, which can be specified in a
configuration file of the broker process. Each bridge connection requires to
specify the IP address and port of the remote broker, which result from the
discovery phase.

To avoid harmful message loops in the distributed system, the creation
of an overlay tree network over the fully connected topology specified in the
configuration file is needed. For the task at hand, we adapt our previous
work [12] (originally developed for Mosquitto brokers) to HiveMQ. The pro-
cess, known as MQTT-ST, takes inspiration from the well known Spanning
Tree Protocol used for layer 2 switches, according to a three-steps process
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detailed in the following. To further specialize the creation of the overlay to
the topics that are used in the system, we also propose a topic-based over-
lay creation process. In such a way the system supports multiple overlays,
and consequently routing paths, according to the number of topics that are
active in the system. This helps in avoiding routing messages belonging to
specific topics through brokers which are not interested in such topics, with
a twofold benefit: minimizing both the end to end latency as well as the
number of messages forwarded among brokers. For the sake of clarity we
use the term Single overlay to refer to the mechanisms put in place to setup
a tree topology connecting all brokers, regardless of the topics used in the
system. Conversely, we use the term Topic-based overlay to refer to the case
where multiple overlays are present in the system, one connecting only the
brokers interested to a specific topic.

4.1. Signalling phase
In order to maintain a connection towards a broker, MQTT requires each

client to periodically transmit specific messages, known as PINGREQ mes-
sages. The periodicity of such transmission is regulated by the Keep Alive
parameter, specified upon the first connection. In case a broker does not
receive any message from a client within the keep alive interval (or the client
does not receive the corresponding PINGRESP) answer, the connection is
closed from one or the other side.

4.1.1. Single overlay

The proposed system reuses the concept of the PINGREQ message, which
plays the role of Bridge Protocol Data Unit (BPDU) messages used in the
STP protocol. In that case, BPDUs are broadcasted periodically by every
switch and contain information used to compute the root node of the span-
ning tree and the best path to the root. In our case, PINGREQ messages are
enriched with additional information, including the IP address of the current
selected root broker, a root path cost P (in terms of latency) and the broker
capability value C. The latter two fields are used for path computation and
root selection, respectively and will be detailed later. Upon reception of a
PINGREQ message, a broker replies with a PINGRESP message. Such ex-
change allows the originating broker to estimate the RTT to the destination.

4.1.2. Topic-based overlay

In this case, we take inspiration from PVST+ (Per VLAN Spanning Tree
Plus), a protocol developed from Cisco to enable multiple VLANs on the
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same network of layer 2 switches. This is obtained by broadcasting multiple
BPDUs, one per VLAN, where each BPDU is tagged with the information
on the corresponding VLAN. In our case, the main goal is for one broker
to broadcast to others its topics of interest, corresponding to either local
publications or subscriptions. Therefore, upon receiving the first subscrip-
tion or publication from a client on a new topic t, the broker periodically
broadcasts a topic-specific PINGREQ message to notify other brokers about
its interest in the topic. The message contains the topic name t, the broker
capability value C as well as the path cost Pt for reaching the current root of
the overlay for topic t. Furthermore, the topic-specific PINGREQ message
contains two additional fields: (i) the number of topic-specific overlay trees
for which the broker is currently root node, R and (ii) the total number of
clients connected C. Such additional metrics will be used to compute in the
root selection phase to better balance the load among brokers. Differently
from the single overlay case, upon reception of a topic-specific PINGREQ,
a broker replies with a PINGRESP only if it has at least one client inter-
ested in the same topic (either as publisher or subscriber). In this case, the
PINGRESP message contains just the name of the topic t and it is used by
the requesting broker to keep track of other brokers interested in that topic.
After Tt seconds from the transmission of the topic-specific PINGREQ, a
broker stores in memory the IP addresses of the replying brokers. This infor-
mation is used to perform a specialized root selection and path computation
process only on the subset of brokers interested in the advertised topic.

4.2. Root selection

The root broker plays a crucial role in the broker tree, as it is the relay
node for all traffic and it is, therefore, subject to an increased computational
load. Indeed, selecting a broker with poor or overloaded resources may result
in poor overall performance.

4.2.1. Single Overlay

In STP, the root is selected based only on its identifier, which does not
suit well the scenario under consideration. In this case, each broker transmits
to all other brokers a PINGREQ message containing (i) the IP address of the
currently selected root node, (ii) the current path cost to the root P and (iii)
the current broker available resources, in terms of memory M and CPU L.
Upon startup, each broker sets itself as the root: therefore the path cost P is
equal to 0. Once each broker receives the PINGREQ from all other brokers,
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the root of the tree can be elected in a unique way: in particular, the root
broker is selected according to the capability value C, defined as:

C = αL+ βM (1)

where α and β are tuneable conversion parameters. In case of a tie, the
broker with the lowest IP address is selected as root.

4.2.2. Topic-Based Overlay

In this case, one overlay per topic is created. Therefore, a broker may be
participating in multiple overlays, with different roles (e.g., root/intermediate
node/leaf). Taking this into account, we developed two different techniques,
each one following a different policy to select the root of each topic tree:

• Capacity Based : The first algorithm follows the same root selection
policy of the single overlay case: the root is selected based on the
capacity of the brokers involved in the formation of the tree; for every
tree, the broker with the highest capacity is always selected as root.
Similarly as before, the capacity is calculated as in Equation 1.

• Root Balance based : The purpose is to balance the roots of the trees
among the available brokers. Considering only brokers’ capacities, the
most powerful node may be the root of multiple spanning tree, leading
to bad load balancing. In order to balance the selection of roots among
the available brokers, for each tree we selected as a root the broker
having the lowest Root Balancing (RB) value that is computed in the
following way:

RB = γR + δC

where R is the number of trees in which each broker is the root, and C
is the number of clients connected to each broker; γ and δ define the
weight assigned to the two parameters.

4.3. Path computation

Regardless of the scenario under consideration (single overlay or topic-
based overlay), brokers keep on transmitting periodically PINGREQ mes-
sages. Each broker receiving a PINGREQ replies with a PINGRESP mes-
sage: this allows to estimate the round trip time (RTT) between two brokers.
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Figure 3: Overlay Routing Table (ORT) creation

At each new PINGREQ message, the current path cost P is set equal to the
RTT to the currently selected root. Each broker can therefore select what is
the best neighboring node for every overlay it is involved in, in terms of total
latency, to reach the specific root and therefore creating the overlays. Con-
currently, each broker also maintains a global Overlay Routing Table (ORT)
and one topic-specific ORT (t-ORT) for each topic it is interested into. Such
tables contain the IP addresses and ports of the broker process on neighbor-
ing brokers, as illustrated in Figure 3 and 4. The PINGREQ/PINGRESP
exchange is also used to identify potential broker disconnection from the sys-
tem. In particular, if the PINGRESP message from a bridged broker is not
received within To seconds from the transmission of hte PINGREQ, a broker
marks the target broker as disconnected and transmits a discovery message
to restart the tree computation process.

5. Routing Protocol

Other proposals for MQTT distributed systems [12, 25, 31, 32] rely on
the use of flooding for disseminating messages among brokers. Flooding is
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indeed an important mechanism also in our proposal as it find use in both
the single-overlay and topic-based overlay scenarios.

5.1. Single overlay

The single overlay tree specified in the ORT tables connects all broker in
the distribution system. Upon a publication on a specific broker, flooding
may be used to deliver such message to all other brokers without creating
harmful message loops. This feature is convenient in some cases, e.g., full
message replication among the brokers. However, when full replication is not
required, the single overlay tree has the drawback of forwarding messages
also to brokers which may not be interested in the publication topic. To
improve on such aspect, we implement in our system a routing protocol to
route messages only towards interested brokers. The protocol is an adapta-
tion of the one proposed in PADRES [13]: There, subscriptions are routed
according to a Subscription Routing Table (SRT), which is created according
to the advertisements sent by the brokers. Such an advertisement, typical of
content-based pub/sub protocols, is flooded to all brokers to populate routing
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tables and ensure that there is a path from any publisher to any subscriber
with a potentially matching subscription. We adapt such a mechanism to
our system: in particular, when a broker receives a publication message on
a new topic for the first time in its life cycle, it floods it to all its neigh-
bouring brokers (i.e., the ones in its ORT) on the topic $PUBADV/<topic>

where topic is the original subscription topic. Each broker receiving such
an advertisement updates its Subscription Routing Table (SRT), storing the
next hop a subscription should take in order to be forwarded to the bro-
ker having publishing clients matching such a topic. As an example, Figure
5(a)) shows (i) the SRTs of all brokers after the flooding of the advertisement
message from broker A. Every broker also has a Publication Routing Table
(PRT), which keeps track of clients subscribed and the corresponding topics.
PRTs are used to forward publications matching topics to subscribers, and
are a fundamental component of topic-based pub/sub system. Here, PRT
can also be used to track subscriptions coming from different brokers. As
an example, Figure 5(b) shows a client connected to broker C with IP ad-
dress X which subscribes on topic1. Broker C has therefore an updated
entry in its PRT. Since the subscription topic is also existing in the SRT,
the subscription is routed following the SRT to brokers B and A, which can
update their own PRTs accordingly. Finally, Figure 5(c) shows a new publish
message on topic1 from a client connected to broker A can be routed to the
client subscribed on broker C in an efficient way following the PRTs, avoiding
unnecessary message flooding to all brokers in the tree. Note that, in case
a subscription is received by a broker before the corresponding advertise-
ment is created, the broker stores the subscription locally in the PRT as per
the legacy MQTT logic. At each new advertisement message received and
SRT update, each broker checks again its PRT and forwards any matching
subscription following the SRT.

5.2. Topic-based overlay

The single overly routing, although providing improvements compared
to flooding over the ORT, still suffers from an important drawback. As an
example in Figure 5(c) the publication from broker A needs to pass from
broker B in order to reach broker C, although B is not interested in such a
topic. The topic-based overlay proposed here solves this problem by design,
since each topic corresponds to an overlay tree formed by only those brokers
interested in it. Therefore, upon a publication, a broker uses the t-ORT

15



C

B

D

E

A

$PUBADV/topic1

$PUBADV/topic1

$PUBADV/topic1

$PUBADV/topic1

[IP:port]3

MQTT Publish Message
on topic: “topic1”

SRT

topic1 [IP:port]A

[IP:port]3

SRT

topic1 [IP:port]B

[IP:port]3

SRT

topic1 [IP:port]A
[IP:port]3

SRT

topic1 [IP:port]A

(a) SRT

C

B

D

E

A

MQTT subscription to
 topic: “topic1”

MQTT su
bscr

iptio
n 

to to
pic: 

“to
pic1

”

MQTT subscription to

 topic: “to
pic1”

[IP:port]3

PRT

topic1 [IP:port]X

X[IP:port]3

PRT

topic1 [IP:port]C

[IP:port]3

PRT

topic1 [IP:port]B

(b) PRT

C

B

D

E

A

[IP:port]3

PRT

topic1 [IP:port]X

[IP:port]3

PRT

topic1 [IP:port]C

[IP:port]3

PRT

topic1 [IP:port]B
MQTT Publish

 M
ess

ag
e

on to
pic: 

“to
pic1

”

X

MQTT Publish Message
on topic: “topic1”

MQTT Publish Message
on topic: “topic1”

MQTT Publish Message
on topic: “topic1”

(c) Publish with SRT/PRT

C

B

D

E

A

t-ORT (topic1)

1 [IP:port]D
MQTT Publish

 M
ess

ag
e

on to
pic: 

“to
pic1

”

X

MQTT Publish Message
on topic: “topic1”

t-ORT (topic1)

1 [IP:port]A

t-ORT (topic1)

1 [IP:port]D

2 [IP:port]C

(d) Publish with t-ORT

Figure 5: (a) SRT population after advertisement flooding, (b) PRT update upon client
subscription, (c) Message routing on the single overlay via SRT and PRT tables, (d)
message routing using flooding over different topic-based overlays

corresponding to the topic to flood the publication message to all brokers
belonging to the t-ORT. This is illustrated in Figure 5(d).

6. Experimental results

We implemented the algorithms explained in Section 4 and 5 in the form
of plug-ins of the widely-known HiveMQ broker. We use the HiveMQ CE
version2, a Java-based open-source broker that supports up to MQTT version
5. It also provides an extension framework3 allowing developers to create
custom extensions to add and/or modify the HiveMQ broker functionalities

2https://www.hivemq.com/developers/community/
3https://www.hivemq.com/docs/hivemq/4.5/extensions-javadoc/index.html.
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Table 1: Most relevant experiment parameters

Parameter Value
Number of brokers 5
Propagation delay broker-broker random
Bandwidth broker-broker 10Mbps
Broker RAM upper limit 2 GB
Number of CPU per broker 1
Number of published messages 500
Number of publishers 5
Number of subscribers 20
Message publishing rate 1 msg/s
Message publishing rate (stress) 10 msg/s
Number of topics 3, 30, 60
Topics name topic-tree/<random>/
Message payload size 103, 104, 105 B

for their specific infrastructure.
For the test scenario, we deployed five brokers in the system in a full-

meshed physical topology. The network is created using the BORDER frame-
work [33], an extension of Mininet4 specifically built to interconnect MQTT
brokers. Each broker runs inside a Docker container built on top of the
HiveMQ CE image5. Subsequently, the brokers are connected through a
Timing Compensated High-Speed Optical Link (TCLink), with adjustable
link delay and link bandwidth parameters. Thanks to the BORDER frame-
work, the brokers run isolated as in a sandbox, without any interference on
the access of the resources. For each broker, we allocated a core of the host
machine 6 and 2GB RAM.

The following details the parameters used for the tests, also summarised
in Table 1:

• Brokers : we create 5 brokers in the system, in a full-meshed physical
topology. The capacity of each link is fixed to 10 Mbps and the prop-
agation delays are chosen randomly from a normal distribution with

4http://mininet.org
5https://hub.docker.com/r/hivemq/hivemq-ce
6Intel(R) Xeon(R) CPU E5-1660 with 16 CPU @ 3.00GHz
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µ = 10ms and σ = 2.5 ms.

• Publishers : we connect 20 MQTT publishers to the system, each one
publishing to one topic chosen randomly among a variable number top-
ics. Each publisher publishes a total of 500 messages, 10 message per
second, each containing a timestamp and a random string of 1024 bytes.

• Subscribers : we connect 5 MQTT subscribers to the system, each one
subscribing to one of the publishing topics.

• Topics : According to the experiment, we create respectively 3, 30 or
60 topics of interest. Each subscriber in the system chooses randomly
among a set of available topics; similarly, each publisher publishes ran-
domly on one of them.

To evaluate different traffic scenarios, we consider three different locality
cases:

• Locality 100%: this is the maximum degree of locality, meaning that
all publishers and all subscribers are connected to the same broker.

• Locality 0%: conversely, this case represents the scenario with the mini-
mum degree of locality, where all publishers are connected to one broker
and all subscribers are connected to a single, different broker.

• Locality 50%: we also test an intermediate case, where publishers and
subscribers are randomly distributed among the 5 brokers. In this
case, we repeat the test 10 times changing each time the distribution
of publishers and subscribers and we compute the average result.

For every experiment we compare the proposed single overlay and topic-
based overlay extensions to a benchmark solution obtained by flooding all
publications over the single overlay.

6.1. Average end-to-end delay

First, we analyse the average end-to-end delay, i.e., the average amount
of time elapsed between the publication of a message and its reception by a
subscriber. As one can see in Figure 6, we can observe that the proposed
topic-based overlay extensions lead to a consistent decrease in the end-to-end
delay compared to both the benchmark case as well as the single overlay tree,
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Figure 6: Average message End-to-End delay varying the number of topics, for 100, 50
and 0% locality

especially in cases where publishers and subscribers are distributed among
the cluster, e.g. 50% locality. In this case, the topic-based overlay extension
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tree allows to reduce the message delay by more than a half compared to the
other two cases; this is also true for the case of 0% locality, when using the
topic-based optimization allows to connect the two brokers hosting publishers
and subscribers directly. As regards the two topic-based overlay extensions
(capacity and root-balance), they perform similarly, with the capacity-based
version showing a slightly better delay response. We can also see how in
those cases where the benefits of specific overlay routing tree are less evident
(e.g. 100% locality), the end-to-end delay of the of topic-tree based versions
stays in line with the benchmark, without performance degradation.

6.2. Traffic overhead

In a distributed scenario is important to take into account the additional
traffic exchanged by the brokers. This traffic is composed by two main parts:
(i) signalling overhead, which is the traffic created by the protocol mecha-
nisms, and (ii) intra-broker publishing communication, which corresponds to
the publications forwarding inside the cluster of brokers.

We start by analyzing the signalling overhead, illustrated in Figure 7. For
the benchmark case, the traffic comprises standard MQTT control messages
among brokers (mainly connect messages and MQTT ping requests/responses).
For the single overlay case, the traffic overhead includes also discovery mes-
sages, ping requests/responses used as BPDU, publication advertisements
forwarding and subscriptions forwarding. Finally, for the topic-based overlay
network, the overhead traffic includes all aforementioned components and
the per-topic overlay network control messages (again, implemented as PIN-
GREQ/PINGRESP exchange). Clearly, since in this latter case a broker
transmit one PINGREQ per every topic it is interested into, the overhead
traffic increases as the number of topics in the system grows.

As one can see, in the benchmark and single overlay cases the signalling
traffic is negligible compared to the intra-broker traffic. Moreover, it does
not depend on the number of topics existing in the system. Conversely, for
the topic-based overlay scenario, the overhead traffic is mainly influenced by
the messages needed to create the t-ORT tables and thus very susceptible
by the number of topic, increasing linearly with them. With only 3 topics,
the topic-based overlay version has only a 30% increase compared to the
benchmark; with 60 topics the increase is of the 1500%.

At the same time, the intra-broker traffic (green background bars in Fig-
ure 7) greatly benefits from the use of topic-based overlay networks, because
messages are routed only to the interested brokers. In particular, it becomes
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null for the 100% locality case. Indeed, in this case no messages are ex-
changed among brokers, since subscribers and publishers are connected to
the very same broker.

Note that, considering the total traffic exchanged (intra-broker publi-
cations and signalling traffic), both the single overlay and the topic-based
overlay extensions always greatly outperform the benchmark case. It can be
seen that the topic-based overlay is not always the best options: for exam-
ple, with a low number of messages (500) and low payload (1000 bytes), the
topic-based overlay version is penalized compared to the single overlay one.
The performance reduction is only due to the signalling traffic overhead: the
impact of such overhead can be amortized over an higher number of messages
exchanged and considering longer system lifetimes.

In Figure 8, we keep the number of messages published and the active
topics constant (60 topics and 500 messages) but we increase the size of the
publication messages from 103 to 105 bytes. As we can see, here the sig-
nalling overhead impact is almost negligible, having the intra-broker traffic
the biggest weight in the system. In this case, the topic-based overlay pro-
tocol shows the expected improvements compared to the version that uses
only a single overlay network.

6.3. Resource usage

We also evaluate the amount of resources (i.e., CPU and RAM) con-
sumed by the brokers running the extensions7. From the results, it can be
observed that all the extensions have a similar behaviour under the CPU
and RAM point of view since no relevant differences have been found with
the configuration used above. In order to have an all-around vision for re-
sources consumption, we tested the extensions in stressful conditions. For
this reason, we increase the publish rate from 1 to 10 messages per second.

As one can see in Figure 9, in the stress test, as expected, the topic-
based overlay algorithms had higher consumption of CPU with respect to
the benchmark. Particularly, as the number of the topics grows, and the
number of trees does as well, brokers need more CPU to handle all the
message routing to the topic trees. The CPU results in an average increase
of 22%; this consistent growth, however, is shown only in an upper limit

7For this case we consider only the 50% locality configuration, however, no significant
difference were noted with the other configurations.
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Figure 7: Traffic overhead: average bandwidth used by the overlay networks based brokers
against the benchmark for 100, 50 and 0% locality
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Figure 9: Average CPU usage by the ensemble of brokers in the test scenario and in stress
conditions.

case for an IoT application (usually low-rate based). Note also that only one
CPU core was allocated for each broker, which results to be highly stressed.
Regarding RAM consumption, we do not find significant increases in the
stress test, showing that the additional data structures used for storing the
ORT, PRT, SRT and t-ORT tables perform efficiently.

6.4. Convergence and repair time

We also report the results obtained for what concerns two specific time
measurements:
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Table 2: Convergence and repair times

Avg. value Std. deviation
Convergence Time [sec.] 19.5 0.02

Repair Time [sec.] 59.1 0.01

• Convergence time: from the system start-up instant to the time where
the last broker compute the spanning tree.

• Repair time: the time elapsing from the hard disconnection of one
randomly selected broker from the system to the the instant when a
new spanning tree is computed.

We run each experiment 5 times and we average results, reported in Table 2.
As one can see, we obtained good and robust setup and recovery performance,
as the standard deviation of the time measurements obtained is very low.
Clearly, the average values obtained are tightly coupled to the timer Td used
in the discovery process as well as the timeout To used for identifying a
broker disconnection, which can be optimized in future work for even shorter
convergence and repair times.

7. Conclusion

Novel application scenarios for IoT applications will require well-known
and centralized protocols such as MQTT to move towards distributed ar-
chitecture able to support efficient and timely message delivery. This paper
presents a step in such a direction, with the proposal of several extensions
to turn a legacy MQTT broker into an entity able to cooperate with other
brokers in a distribution system. We tackle the problem of automatic bro-
ker discovery and failure recovery, overlay network construction in order to
avoid message loops among brokers and propose different routing services to
optimize the message delivery. Two main approaches are considered: the
construction of a single overlay network coupled with a per-topic routing
optimization or, conversely, the construction of multiple topic-based overlay
networks where messages can be flooded efficiently among brokers sharing
the same interests. We explain in details the construction of such extensions
and implement them on the popular HiveMQ MQTT broker. We show the
performance obtained by our proposal in several scenarios, highlighting a
trade-off between the two approaches in terms of average end-to-end delay
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obtained and overhead control traffic produces to maintain the overlay net-
works. Future research directions will target further system optimization,
such as, e.g., the aggregation of different topic-based overlay trees in a single
one if the participating brokers are the same.
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