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Abstract
This paper outlines the variational derivation of the Lagrangian equilibrium equations for the third-gradient materials,
stemming from the minimization of the total potential energy functional, and the selection of suitable dual variables to
represent the inner work in the Eulerian configuration. Volume, face, edge and wedge contributions were provided
through integration by parts of the inner virtual work and by repeated applications of the divergence theorem extended
to embedded submanifolds with codimension one and two. Detailed expressions were provided for the contact pres-
sures and the edge loading, revealing the complex dependence on the face normals and on the mean curvature.
Relationships were specified among the Lagrangian (hyper-)stress tensors of rank lower or equal to four, and their
Eulerian counterparts.
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1. Introduction

In a historical perspective, once that the expert of bridge construction Navier had provided rigorous for-
mulations for the equilibrium problem, continuum mechanics could grow up with the works of Gabrio
Piola [1,2] and of Augustin Cauchy [3,4]. These last authors became representatives of two diverse
approaches: Piola based the postulation of mechanics on the principle of virtual work, while Cauchy on
the balance law of forces and of moments of forces. The querelle concerning the most appropriate and
effective way to formulate new models in continuum mechanics began immediately after the publication
of Piola’s works [5–7]. Among the others, Ernst Hellinger in his famous article for the Encyklopädie der
mathematische dated 1913 (see [8–10]), established continuum mechanics on the basis of the principle of
virtual work: his list of open problems included the generalization of Piola’s approach to higher gradient
continua.

In recent studies [11–14], the equilibrium equations for the second-gradient materials were derived in
a fully variational approach. A viable strategy was drawn to transform such equations from the
Lagrangian configuration to the Eulerian configuration, based on remarkable transformation formulae
for the tangent and normal to the boundary edges and on a novel formulation for the divergence
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theorem applied to curved surfaces with border, relating material and spatial expressions, which gener-
alizes Piola’s bulk transformation. In this paper, the investigation was extended to the third-gradient
continua, governed by energy densities which depend on the derivatives of the placement map up to the
third order (see, e.g., [15–20]). The approach pursued herein stems from the minimization of the total
energy functional: as an alternative, recourse can be made to the postulation scheme for continuum
mechanics based on the principle of virtual work, leading to the same results, in which a representation
of adequate order can be selected for the inner virtual work regarded as a distribution over the set of
virtual displacements. For such a class of materials, the inner work depends on a new ingredient, the tri-
ple stress, a fourth rank tensor whose entries are dimensionally equivalent to a pressure multiplied by a
length squared (see, e.g., [21–23]). In this way, the deformable body becomes capable of bearing not
only double forces over the boundary faces and loading distributed along the border edges, but also
concentrated forces prescribed at the wedges. Such wedges or corner points are located at the intersec-
tion of at least three boundary edges, which represent discontinuity loci for the edge tangent. Moreover,
the third-gradient modelling allows one to represent several static quantities (or covectors) only appar-
ently exotic entering the equilibrium problem: such generalized loading can make work over the bound-
ary surface versus the first and second normal derivatives of the placement map, and, along the border
edges, versus the directional derivative of the placement map along its normals.

The third-gradient modelling represents a wide framework in which several problems of solid and
fluid mechanics have been suitably addressed, and many others, already known or still to appear, could
find an adequate location. We can mention, for instance, quasicrystals and their dynamic behaviour
[24], the dislocation mechanics, the surface instability of homogeneously strained bodies [25], the beha-
viour of fluid interfaces [26,27], and recently mechanics of bone tissue [28]. Moreover, important insights
are expected for multiscale phenomena rooted into the micro or nano structure of engineered materials,
implying the existence of a boundary layer and the dependence of the mechanical response on an inner
length scale (see, e.g., [29–35]), which are being favouring the development of non conventional numeri-
cal models [36–40] and of hybrid numerical experimental strategies [41–47]. Unfortunately, existence,
uniqueness and stability results for such a class of materials have not been achieved yet, differently from
second-gradient continua (see, e.g., [48–50]). However, several studies recognized common predictive
capabilities and formulation similarities among the higher gradient models and other generalized
approaches, such as the nonlocal elasticity and peridynamics (see, e.g., [51–53]).

In the recent literature, also the synthesis of metamaterials is attracting more and more interest (see,
e.g., [32,54–57]). In fact, once the desired mechanical behaviour at the macroscale is specified, the synth-
esis problem can be regarded as an inverse problem [58–60], seeking the architecture at the microscale
apt to generate after homogenization such a macroscopic behaviour [61–68]. For third-gradient conti-
nua, the synthesis problem has not yet been addressed. One of the aims of this paper consists of pre-
cisely stating the mathematical properties of the macroscopic behaviour assumed as a target, in order to
permit the inverse modelling of the microstructure originating such a behaviour. A huge comprehension
of the microstructural ingredients giving rise to the third-gradient behaviour can feed novel theories for
damage and plasticity, in which higher gradient dependence of deformation energy and Rayleigh func-
tionals [69–74] play a relevant role. Moreover, we expect that also the phase field theory, aiming to reg-
ularize the fracture propagation problems, will soon include second- and third-gradient modelling to
properly describe the elastic part of the deformation [75]. This opinion is motivated by the need to prop-
erly accommodate edge and point contact forces [76], in the presence of fracture processes with geo-
metric nonlinearity.

This paper was organized as follows. In sections 2 and 3, the Lagrangian equilibrium equations for
the third-gradient materials were derived through a variational approach, revealing a significant com-
plexity of the diverse contributions and the presence of nonstandard boundary conditions. Section 4
was devoted to alternative expressions for the equilibrium equations which turn out to be especially
meaningful, emphasizing the dependence on the normals and on the mean curvature. In section 5, novel
transformation formulae were specified, between Lagrangian and Eulerian work conjugate variables, in
particular among Piola and Cauchy hyperstress tensors up to the fourth rank. Section 6 outlines some
research perspectives for which the present results represent important, although intermediate, achieve-
ments. Appendix 1 gathers the basic properties of the surface and edge projectors.
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1.1. Notation

Recourse will be made to index, componentwise notation for the involved equations, although some-
times the relevant matrix or tensorial expressions will be reported (see [77]). Classical syntaxis of tensor
algebra will be adopted (see [78,79]), with the Einstein convention on the implicit sum of repeated
indices. In tensor calculus, to distinguish valences acting on Lagrangian vectors from those specifying
Eulerian spaces, e.g., as in Fa

A, the former will be indicated by uppercase letters, i.e., A,B, . . ., the latter
by lowercase ones, a, b, . . . . The Lagrangian gradient will be denoted by symbols r[ ∂=∂X A, with the
obvious extension to kth Fa

A order gradients as r(k) =rr(k�1); seldom recourse will be made to symbol
DIV to denote the divergence operator.

2. Third-gradient energy

In some works of Gabrio Piola (see, e.g., [80]), the equilibrium problem of a continuous medium was
investigated with reference to general expressions of the deformation energy density, depending not only
on the local deformation gradient F= ∂x=∂X but also on its higher order spatial derivatives r(k)F, with
k ø 1. In this paper, we considered energy densities in the form W(F,rF,r(2)F). Accordingly, the place-
ment map x(X), defined in the Lagrangian or material domain OH� R3 and valued in the Eulerian or
deformed domain O � R3 (both equipped with a basis of mutually orthogonal unit vectors), must be
sufficiently smooth with its derivatives up to the third order, and ensure a suitable trace regularity (see,
e.g., [81]). Assuming for the Jacobian determinant the condition J = det (F) . 0, the same regularity
must be guaranteed for the inverse placement map: hence, the deformation process establishes a diffeo-
morphism between the reference and the current domain, regarded as differential submanifolds with
boundary [12,82]. The objectivity of the energy can be ensured by prescribing a dependence on the right
Cauchy–Green tensor C=FTF and on its gradient rC and r(2)C (or on C�1, rC�1, and r(2)C�1), as
illustrated in Fortune and Vallee [83] and Auffray et al. [84]. To attain the equilibrium configuration of
a deformable body, the minimum of the following energy functional is sought:

x̂ = argmin
K

ETOT xð Þ=
ð
OH

W F, rF,r(2)F
� �

dOH� EEXT x,rx,r(2)x
� �� �

, ð1Þ

where symbol EEXT denotes the external work, and the feasible functional subset K must ensure the suf-
ficient regularity incorporating the essential boundary conditions on the placement map and on its first-
and second-order normal derivatives. The volume integral of the stored energy density in equation (1)
will be denoted by symbol EDEF. It is worth emphasizing that the stored energy density is expressed in
terms of F instead of C (and relevant gradients) to make the formulation simpler and permit the analyti-
cal manipulation. When prescribing the stationarity condition, the first variation of the above func-
tional, discussed in Fedele [12], can be evaluated herein with reference to such a more general energy
density, as follows

d

ð
OH

W F, rF,r(2)F
� �

dOH=

=

ð
OH

∂W

∂F
: dF+

∂W

∂rF
..
.
d rFð Þ+ ∂W

∂r(2)F
:: d r(2)F
� �� �

dOH=

=

ð
OH

∂W

∂Fi
A

dFi
A dOH|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= dEDEF
I

+

ð
OH

∂W

∂Fi
A,B

dFi
A,B dOH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= dEDEF
II

+

ð
OH

∂W

∂Fi
A,BC

dFi
A,B C dOH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= dEDEF
III

ð2Þ

where symbols : , ..
.
, and :: denote the usual double dot product, the triple, and quadruple contraction,

respectively (see, e.g., [77]). The contributions of the external virtual work dEEXT will be specified else-
where. The first two addends dEDEF

I and dEDEF
II were integrated in Fedele [12,13]. Now let us focus on

the term involving the third gradient of the placement map, above specified as dEDEF
III . Considering that

dFi
A,BC = ∂3dxi=∂X A∂X B∂X C, the above equation can be further reduced. Moreover, due to the Schwarz
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theorem, one has Fi
A,BC = Fi

A,CB = Fi
C,AB = Fi

C,BA = Fi
B,CA = Fi

B,AC (3! permutations) for each i, this tensor
is totally symmetric in the Lagrangian valences, and the comma can be omitted without ambiguity. By
commuting the partial derivative and the first variation, integrating by parts one has

dEDEF
III =

ð
OH

∂W

∂Fi
ABC

dFi
ABC dOH=

ð
OH

∂W

∂Fi
ABC

∂

∂X C
dFi

AB

� �
dOH=

=

ð
OH

∂

∂X C

∂W

∂Fi
ABC

dFi
AB

� �
� ∂

∂X C

∂W

∂Fi
ABC

� �
dFi

AB

	 

dOH

ð3Þ

Applying the Gauss–Ostrogradsky divergence theorem to the first addend, and denoting the bound-
ary surface as SH[ ∂OH, one obtains

dEDEF
III =

ð
SH

∂W

∂Fi
ABC

dFi
AB NC dSH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

eð Þ

�
ð
OH

∂

∂X C

∂W

∂Fi
ABC

� �
dFi

AB dOH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
zð Þ

ð4Þ

while in the volume integral the test function dFi
AB can be further reduced as follows

zð Þ=�
ð
OH

∂

∂X C

∂W

∂Fi
ABC

� �
∂

∂X B

∂

∂X A
dxi dOH=

=�
ð

SH

∂

∂X C

∂W

∂Fi
ABC

� �
∂

∂X A
dxi NB dSH+

+

ð
OH

∂

∂X B

∂

∂X C

∂W

∂Fi
ABC

� �
∂

∂X A
dxi dOH=

ð5Þ

In equation (5), the last contribution can easily be integrated by parts with respect to the partial deri-
vative left, obtaining, through the divergence theorem, another term referred to the boundary surface
plus a not reducible volume integral, namely

=�
ð

SH

∂

∂X C

∂W

∂Fi
ABC

� �
dFi

A NB dSH+

+

ð
OH

∂

∂X A

∂

∂X B

∂

∂X C

∂W

∂Fi
ABC

� �
dxi

	 

dOH+

�
ð
OH

∂

∂X A

∂

∂X B

∂

∂X C

∂W

∂Fi
ABC

� �	 

dxi dOH

= �
ð

SH

∂

∂X C

∂W

∂Fi
ABC

� �
∂

∂X A
dxi NB dSH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= (D)

+

+

ð
SH

∂

∂X B

∂

∂X C

∂W

∂Fi
ABC

� �
dxi NA dSH+

�
ð
OH

∂

∂X A

∂

∂X B

∂

∂X C

∂W

∂Fi
ABC

� �
dxi dOH

ð6Þ

To reduce the boundary term (D) of equation (6), a specific strategy was proposed by Paul Germain
(see, e.g., [22,85]). In fact, by utilizing the relationship dC

A = ½Mk�CA + ½M?�CA involving complementary sur-
face projectors [12] (see Appendix 1), the gradient of the virtual placement map in Lagrangian form can
be additively decomposed into a normal and and a tangential contribution, namely
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Dð Þ=�
ð

SH

∂

∂X C

∂W

∂Fi
ABC

� �
NB dD

A

∂

∂X D
dxi

	 

dSH=

=�
ð

SH

∂

∂X C

∂W

∂Fi
ABC

� �
NB ½Mk�DA + ½M?�DA
� � ∂

∂X A
dxi

	 

dSH=

= �
ð

SH

∂

∂X C

∂W

∂Fi
ABC

� �
NB ½M?�DA

∂

∂X D
dxi

	 

dSH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

?ð Þ

�
ð

SH

∂

∂X C

∂W

∂Fi
ABC

� �
NB ½Mk�DA

∂

∂X D
dxi

	 

dSH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kð Þ

ð7Þ

The addend (?) with the normal projector includes the normal derivative of the virtual placement and
cannot be further reduced. In fact, recalling that ½M?�DA = NDNA, from equation (7) one can write

?ð Þ=�
ð

SH

∂

∂X C

∂W

∂Fi
ABC

� �
NB NA ND ∂

∂X D
dxi

	 

dSH=

=�
ð

SH

∂

∂X C

∂W

∂Fi
ABC

� �
NB NA ND ∂

∂X D
dxi

	 

dSH=

=�
ð

SH

∂

∂X C

∂W

∂Fi
ABC

� �
NB NA

∂

∂N
dxi

	 

dSH

ð8Þ

On the contrary, surface term kð Þ in equation (7) including the tangential projector Mk can be further
reduced. Exploiting the idempotence of the projector (see Appendix 1), namely, by the property

½Mk�DA = ½Mk�EA½Mk�
D
E , we can duplicate it and utilize the ambient variables for both the divergence opera-

tor and the virtual placement map, thus avoiding the intrinsic representation of the surface. Through
integration by parts one obtains

kð Þ=�
ð

SH

∂

∂X C

∂W

∂Fi
ABC

� �
NB ½Mk�EA

∂

∂X D
dxi ½Mk�DE dSH=

=�
ð

SH

∂

∂X D

∂

∂X C

∂W

∂Fi
ABC

� �
NB ½Mk�EA dxi

	 

+

�

� ∂

∂X D

∂

∂X C

∂W

∂Fi
ABC

� �
NB ½Mk�EA

	 

dxi

�
½Mk�DE dSH

ð9Þ

The first addend in equation (9), once attained the format suitable for the surface divergence theorem
(see e.g. [84,86]), can be transported to the border edge LH[ ∂SH= ∂∂OH as follows

=�
ð

LH

∂

∂X C

∂W

∂Fi
ABC

� �
NB BA dxi dLH+

+

ð
SH

½Mk�DE
∂

∂X D

∂

∂X C

∂W

∂Fi
ABC

� �
NB ½Mk�EA

� �
dxi dSH:

ð10Þ

In the first addend, we have set ½Mk�EA BE = BA, since the edge normal vector is tangent to the bound-
ary face. The second addend, to be discussed later, must be interpreted as the surface divergence of a
tangential vector field DIVkSH

(vk), where v herein is the triple stress with two indices already contracted
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and one (Lagrangian) valence left free for the projector. The expressions within the volume and over
the boundary surface derived above must be added to their counterparts provided by the first- and the
second-gradient contributions of the energy variation (see [11–13]).

3. Nonstandard boundary conditions

Let us consider the surface integral in equation (4) marked by (e). Through the same strategy utilized
above, resting on an additive decomposition by complementary projectors (see Appendix 1), we can
manage the partial derivatives of the virtual placement one at a time, obtaining

eð Þ=+

ð
SH

∂W

∂Fi
ABC

NC

∂

∂X B

∂

∂X A
dxi

	 

dSH=

=+

ð
SH

∂W

∂Fi
ABC

NC dE
B

∂

∂X E

∂

∂X A
dxi

	 

dSH=

=+

ð
SH

∂W

∂Fi
ABC

NC ½M?�EB + ½Mk�EB
� � ∂

∂X E

∂

∂X A
dxi

	 

dSH=

ð11Þ

Recalling the expression of the normal projector (see [12,84] and Appendix 1), one finds

= +

ð
SH

∂W

∂Fi
ABC

NCNENB

∂

∂X E

∂

∂X A
dxi

	 

dSH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= (.)

+

+

ð
SH

∂W

∂Fi
ABC

NC ½Mk�EB
∂

∂X E

∂

∂X A
dxi

	 

dSH=

ð12Þ

Considering the Schwarz theorem on the permutation of the mixed derivatives, we can further manip-
ulate the first addend in equation (12) obtaining

.ð Þ=+

ð
SH

∂W

∂Fi
ABC

NBNCNE ½M?�RA + ½Mk�RA
� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

= dR
A

∂

∂X R

∂

∂X E
dxi

	 

dSH=

=+

ð
SH

∂W

∂Fi
ABC

NBNCNE NR NA

∂

∂X R

∂

∂X E
dxi

	 

dSH+

�
ð

SH

∂W

∂Fi
ABC

NBNCNE ½Mk�RA
∂

∂X R

∂

∂X E
dxi

	 

dSH=

=+

ð
SH

∂W

∂Fi
ABC

NBNCNA

∂

∂N

∂

∂N
dxi

	 

dSH+

+

ð
SH

∂W

∂Fi
ABC

NBNCNE ½Mk�RA
∂

∂X R

∂

∂X E
dxi

	 

dSH=

ð13Þ

We can recognize the second order directional derivative along the normal of the virtual placement
map, namely (∂2=∂N2)dxi , which was not included among the second-gradient equations (see [14]). The
dual covector represents a triple inner force acting over the boundary face. Grouping the residual con-
tributions, namely the last addends in equations (12) and (13) which include the tangential projectors,
exploiting idempotence and integrating by parts one has
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+

ð
SH

∂

∂X R

∂W

∂Fi
ABC

NBNCNE ½Mk�A
0

A

∂

∂X E
dxi

� �
½Mk�RA0 dSH+

2

ð
SH

∂

∂X R

∂W

∂Fi
ABC

NBNCNE ½Mk�A
0

A

� �
∂

∂X E
dxi ½Mk�RA0 dSH+

+

ð
SH

½Mk�EE0
∂

∂X E

∂W

∂Fi
ABC

NC½Mk�E
0

B

∂

∂X A
dxi

� �
dSH+

2

ð
SH

½Mk�EE0
∂

∂X E

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �
∂

∂X A
dxi dSH=

ð14Þ

At this point, the surface divergence theorem can be applied to the first and third term in equation

(14). Resulting ½Mk�RA0 ½Mk�
A
0

A BR = BA, one finds for the first two addends

+

ð
LH

∂W

∂Fi
ABC

NBNCBANE ∂

∂X E
dxi

	 

dLH+

2

ð
SH

½Mk�RA0
∂

∂X R

∂W

∂Fi
ABC

NBNCNE½Mk�A
0

A

� �
∂

∂X E
dxi

	 

dSH=

ð15Þ

Moreover, further decomposing the Lagrangian gradient of the virtual placement into a normal and a
tangential component, we can write

=+

ð
LH

∂W

∂Fi
ABC

NBNCBANE ∂

∂X E
dxi

	 

dLH+

2

ð
SH

½Mk�RA0
∂

∂X R

∂W

∂Fi
ABC

NBNCNE½Mk�A
0

A

� �
½M?�SE

∂

∂X S
dxi

	 

dSH+

2

ð
SH

½Mk�RA0
∂

∂X R

∂W

∂Fi
ABC

NBNCNE½Mk�A
0

A

� �
½Mk�SE

∂

∂X S
dxi

	 

dSH=

=+

ð
LH

∂W

∂Fi
ABC

NBNCBA

∂

∂N
dxi

	 

dLH+

2

ð
SH

½Mk�RA0
∂

∂X R

∂W

∂Fi
ABC

NBNCNE½Mk�A
0

A

� �
NE

∂

∂N
dxi

	 

dSH+

2

ð
SH

½Mk�RA0
∂

∂X R

∂W

∂Fi
ABC

NBNCNE½Mk�A
0

A

� �
½Mk�SE

∂

∂X S
dxi

� �
dSH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= (�)

ð16Þ

The first two contributions in the last equality of equation (16) cannot be further reduced including
the first normal derivative of the placement map. For the last addend one has

�ð Þ= 2

ð
SH

½Mk�SE0
∂

∂X S
½Mk�RA0

∂

∂X R

∂W

∂Fi
ABC

NBNCNE½Mk�A
0

A

� ��
½Mk�E

0

E dxi
o

dSH+

+

ð
SH

½Mk�SE0
∂

∂X S
½Mk�RA0

∂

∂X R

∂W

∂Fi
ABC

NBNCNE½Mk�A
0

A

� ��
½Mk�E

0

E

o
dxi dSH=

= 2

ð
LH

½Mk�RA0
∂

∂X R

∂W

∂Fi
ABC

NBNCNE½Mk�A
0

A

� �
BE dxi dLH+

+

ð
SH

½Mk�SE0
∂

∂X S
½Mk�RA0

∂

∂X R

∂W

∂Fi
ABC

NBNCNE½Mk�A
0

A

� ��
½Mk�E

0

E

�
dxi dSH

ð17Þ
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Analogously, being ½Mk�EE0 ½Mk�
E
0

B BE = BB, for the last two addends in equation (14) one has

+

ð
LH

∂W

∂Fi
ABC

NCBB

∂

∂X A
dxi dLH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= (�)

+

2

ð
SH

½Mk�EE0
∂

∂X E

∂W

∂Fi
ABC

NC½Mk�E
0

B

	 

∂

∂X A
dxi dSH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= (8)

=

ð18Þ

To reduce the terms in equation (18), let us observe that a pair of linear operators can be defined also
along the edge LH projecting vectors of the ambient space onto complementary subspaces: we will refer

to them as tangential and normal edge projectors (marked by the subscript L), namely, ½MLk�EA = T E TA

and ½ML?�EA = BE BA + N E NA, being dE
A = ½MLk�EA + ½ML?�EA (see Appendix 1). Hence, one can write

�ð Þ+ 8ð Þ=+

ð
LH

∂W

∂Fi
ABC

NCBB ½MLk�EA + ½ML?�EA
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= dE
A

∂

∂X E
dxi dLH+

2

ð
SH

½Mk�SE0
∂

∂X S

∂W

∂Fi
ABC

NC½Mk�E
0

B

	 

½Mk�EA + ½M?�EA
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= dE
A

∂

∂X E
dxi dSH=

ð19Þ

Paying attention to the simultaneous presence of surface and edge projectors (the latter marked by
subscript L, see Appendix 1), we find

=+

ð
LH

∂W

∂Fi
ABC

NCBB½MLk�EA
∂

∂X E
dxi dLH+

+

ð
LH

∂W

∂Fi
ABC

NCBB½ML?�EA
∂

∂X E
dxi dLH+

2

ð
SH

½Mk�SE0
∂

∂X S

∂W

∂Fi
ABC

NC½Mk�E
0

B

	 

½Mk�EA

∂

∂X E
dxi dSH+

2

ð
SH

½Mk�SE0
∂

∂X S

∂W

∂Fi
ABC

NC½Mk�E
0

B

	 

½M?�EA

∂

∂X E
dxi dSH=

ð20Þ

By representing as usual the normal face projector through the face normals, namely ½M?�EA = N E NA,
and expressing the projectors along the border edges (with subscript L) in terms of the mutually orthogo-
nal unit vectors B,T,N, one can write

=+

ð
LH

∂W

∂Fi
ABC

NCBB½MLk�EA
∂

∂X E
dxi dLH+

+

ð
LH

∂W

∂Fi
ABC

NCBBBE BA

∂

∂X E
dxi dLH+

+

ð
LH

∂W

∂Fi
ABC

NCBBNE NA

∂

∂X E
dxi dLH+

2

ð
SH

½Mk�SE0
∂

∂X S

∂W

∂Fi
ABC

NC½Mk�E
0

B

	 

½Mk�EA

∂

∂X E
dxi dSH+

2

ð
SH

½Mk�SE0
∂

∂X S

∂W

∂Fi
ABC

NC½Mk�E
0

B

	 

NA

∂

∂N
dxi

	 

dSH=

ð21Þ
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where the edge contribution with the normal edge projector was split into two since
½ML?�=B� B+N�N. Hence, exploiting idempotence of the projectors in the first and fourth row of
equation (21), rearranging terms one finds

=+

ð
LH

∂W

∂Fi
ABC

BABBNC

∂

∂B
dxi

	 

dLH+

+

ð
LH

∂W

∂Fi
ABC

NABBNC

∂

∂N
dxi

	 

dLH+

2

ð
SH

½Mk�SE0
∂

∂X S

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �
NA

∂

∂N
dxi

	 

dSH+

+

ð
LH

∂W

∂Fi
ABC

BBNC ½MLk�A
0

A

∂dxi

∂X E
½MLk�EA0 dLH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= (./)

+

2

ð
SH

½Mk�SE0
∂

∂X S

∂W

∂Fi
ABC

NC½Mk�E
0

B

	 

½Mk�A

0

A

∂dxi

∂X E
½Mk�EA0 dSH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= (})

ð22Þ

In the last equality of equation (22), the first three addends, namely edge and surface integrals includ-
ing the directional derivatives of the virtual placement along the relevant normals, cannot be further
reduced. The last two integrals, including tangential projectors (along the edge and over the face), must
be integrated by parts to achieve the format suitable for the divergence theorem. For these last two
addends one can write

( ./) + (}) =+

ð
LH

∂

∂X E

∂W

∂Fi
ABC

BBNC ½MLk�A
0

A dxi

� �
½MLk�EA0 dLH+

2

ð
LH

½MLk�EA0
∂

∂X E

∂W

∂Fi
ABC

BBNC½MLk�A
0

A

� �
dxi dLH+

2

ð
SH

∂

∂X E
½Mk�SE0

∂

∂X S

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �
½Mk�A

0

A dxi

� �
½Mk�EA0 dSH+

+

ð
SH

∂

∂X E
½Mk�SE0

∂

∂X S

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �
½Mk�A

0

A

� �
dxi ½Mk�EA0 dSH=

ð23Þ

At this stage, we can apply the divergence theorem to the first and third addends of equation (23).
Differently from the first-gradient theory, in which only the volume boundary is considered, and from the
second-gradient approach, in which contributions relevant to the border edges are included, here the dif-
ferential ‘‘border’’ of a curved edge LH is involved, i.e., ∂LH= ∂∂∂OH. Such a discrete set is constituted of
the end wedges, separating from each other the contiguous regular edges: the tangential space is spanned
by the edge tangent (MLk=T� T, see Appendix 1), and the divergence theorem for the first addend
along the border edge LH is reduced to the fundamental theorem of calculus. Hence, one can write

=+
X

r

∂W

∂Fi
ABC

NCBBTA

� �
dxi

	 
PHr

PH(r�1)

+

2

ð
LH

TE TA
0

∂

∂X E

∂W

∂Fi
ABC

NCBBTA
0
TA

� �
dxi dLH+

2

ð
LH

½Mk�EE0
∂

∂X E

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �
BA dxi dLH+

+

ð
SH

½Mk�EA0
∂

∂X E
½Mk�SE0

∂

∂X S

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �
½Mk�A

0

A

� �
dxi dSH

ð24Þ
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where PHr and PH(r�1) denote the wedges located at the ends of the same regular part of the edge LH (pos-

sibly numbered as rth), and the square brackets denote as usual the expression ½ f �ba = f (b)� f (a).
Let us notice that, if we differentiate the squared norms TAT A = 1 and NANA = 1, we obtain

∂TA

∂XE

TA = 0 ;
∂NA

∂XE

NA = 0 ;

Hence, by the product rule, for equation (24) one finds

2

ð
LH

TE ∂

∂X E

∂W

∂Fi
ABC

NCBBTA TA
0

� �
TA

0dxi dLH=

= 2

ð
LH

TE ∂

∂X E

∂W

∂Fi
ABC

NCBBTA

� �
dxi dLH

ð25Þ

Equivalent expressions can be written also for the contributions in equation (16)

2

ð
SH

½Mk�RA0
∂

∂X R

∂W

∂Fi
ABC

NBNCNE½Mk�A
0

A

� �
NE

∂

∂N
dxi

	 

dSH=

= 2

ð
SH

½Mk�RA0
∂

∂X R

∂W

∂Fi
ABC

NBNC½Mk�A
0

A

� �
∂

∂N
dxi

	 

dSH

ð26Þ

and in equation (17)

2

ð
LH

½Mk�RA0
∂

∂X R

∂W

∂Fi
ABC

NBNCNE½Mk�A
0

A

� �
BE dxi dLH+

+

ð
SH

½Mk�SE0
∂

∂X S
½Mk�RA0

∂

∂X R

∂W

∂Fi
ABC

NBNCNE½Mk�A
0

A

� ��
½Mk�E

0

E
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dxi dSH =

= 2
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LH

∂W

∂Fi
ABC

NBNC

∂NE

∂X A
BE dxi dLH+

+
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SH

½Mk�SE0
∂

∂X S

∂W

∂Fi
ABC

NBNC

∂NE
0

∂X A

( )
dxi dSH

ð27Þ

resulting

½Mk�SA0
∂NE

∂X S
½Mk�A

0

A =
∂NE

∂X A

The contributions to the Lagrangian inner virtual work provided so far, related exclusively to the
third gradient, are listed in what follows for the reader convenience. In the volume OH we found (equa-
tion (6))

�
ð
OH

∂

∂X A

∂

∂X B

∂

∂X C

∂W

∂Fi
ABC

� �
dxi dOH ð28Þ

Over the boundary surface SH, from equations (6) and (17) through (27), (10), (23), (8), (21), (15)
through (26) and (13), one has
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+
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SH

∂

∂X B

∂
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∂W

∂Fi
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� �
NA dxi dSH+
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SH

½Mk�SE0
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∂X S

∂W

∂Fi
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NBNC

∂NE
0

∂X A

( )
dxi dSH+

+
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∂
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� �
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� �
dxi dSH+

+

ð
SH

½Mk�EA0
∂

∂X E
½Mk�SE0

∂

∂X S

∂W

∂Fi
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NC½Mk�E
0

B

� �
½Mk�A

0

A

� �
dxi dSH+

�
ð

SH

∂

∂X C

∂W

∂Fi
ABC

� �
NB NA

∂dxi

∂N
dSH+

2

ð
SH

½Mk�EE0
∂

∂X E

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �
NA

∂dxi

∂N
dSH+

2

ð
SH

½Mk�RA0
∂

∂X R

∂W

∂Fi
ABC

NBNC½Mk�A
0

A

� �
∂dxi

∂N
dSH+

+

ð
SH
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NANBNC

∂2dxi

∂N2
dSH

ð29Þ

Along the border edge LH, from equations (17) through (27), (10), (24) through (25), (22) and (16), we
have

�
ð

LH

∂W

∂Fi
ABC

NBNC

∂NE

∂X A
BE dxi dLH+

�
ð

LH

∂

∂X C

∂W

∂Fi
ABC

� �
BANB dxi dLH+

2

ð
LH

½Mk�EE0
∂

∂X E

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �
BA dxi dLH+

2

ð
LH

TE ∂

∂X E

∂W

∂Fi
ABC

TABBNC

� �
dxi dLH+

+

ð
LH

∂W

∂Fi
ABC

BABBNC

∂dxi

∂B
dLH+

+

ð
LH

∂W

∂Fi
ABC

BANB + BBNAð ÞNC

∂dxi

∂N
dLH

ð30Þ

At the wedges PH, through equation (24) one has

+
X

r

∂W

∂Fi
ABC

TABBNC

� �
dxi

	 
PH, r

PH, r�1

ð31Þ

Due to the complexity of the above scenario, some remarks are provided as follows.

1. Over the volume OH, equation (28), the differential operator derived herein,
�DIV(DIV(DIV(�))), is in agreement with the +DIV(DIV(�))) operator found for the second-
gradient materials, which in turn generalizes the �DIV(�) equilibrium operator utilized for
Cauchy’s continua. Let us notice the alternating sign endowing such operators at increasing the
gradient order.
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2. Over the boundary surface SH, equation (29), we can recognize a contribution depending linearly
on the face normal NA after double contraction of the Lagrangian triple stress with the differen-
tial operator DIV(DIV(�)): such a term must be added to the Cauchy traction, analogously to
the term provided by the second-gradient contribution (with alternating signs). It represents a
force per unit surface, generating work versus the virtual placement dxi. Moreover, this force is
endowed by other two addends, a surface divergence and a double surface divergence: the argu-
ment of the former is the tensor (∂=∂X C)(∂W=∂Fi

ABC)NB (one Lagrangian valence left free), for
the latter tensor (∂W=∂Fi

ABC)NC, with two free (Lagrangian) valences. In addition, another term
can be noticed, which originally was expressed as a double divergence, but then resulted drasti-
cally simplified due to the contraction with a valence of the outer projector. All these contribu-
tions generate work versus the virtual placement map.

3. Over the surface SH, equation (29), it can easily be recognized a triple force, namely, the Eulerian
covector (∂W=∂Fi

ABC)NANBNC, dimensionally a force per unit surface multiplied by a squared
length, working versus the second normal derivative of the placement map ∂2dxi=∂N2 (with
dimension one over a length).

4. Over the surface SH, equation (29), we can recognize also three contributions working versus the
first normal derivative of the virtual placement map ∂dxi=∂N (non-dimensional), which must be
added to the double force of the second-gradient materials. Such contributions, which are dimen-
sionally equivalent to a pressure multiplied by a length (to a work per unit surface), include the
Eulerian covectors (at varying i) ∂=∂X C(∂W=∂Fi

ABC)NB NA, and other two tensors resulting from a
surface divergence, which differ from each other in one (Lagrangian) valence, namely,
(∂W=∂Fi

ABC)NCNB and (∂W=∂Fi
ABC)NC.

5. Along the border edge LH, equation (30), having codimension two w.r.t. the ambient space R3,
the tangent space is generated by the edge tangent, while its orthogonal complement is spanned
by the linear combination of the face normal N and the edge normal B. The corresponding edge
integrals include contributions work conjugate to ∂dxi=∂B and ∂dxi=∂N , which are analogous to
the edge (inner) contributions of the second-gradient materials, dimensionally equivalent to a
force (i.e. a work per unit length): those are the Eulerian covectors (∂W=∂Fi

ABC)BABBNC and
2(∂W=∂Fi

ABC)B(ANB) NC, respectively.
6. Along the edge LH, equation (30), other four contributions can be recognized, dimensionally equal

to a force per unit length, working versus dxi: the second addend is a covector analogous to the
edge force of the second-gradient materials (one Lagrangian valence of the triple stress is con-
tracted by the divergence operator), while the remaining terms originate from surface divergence
operators.

7. Finally, the difference of concentrated forces can be recognized, evaluated at the wedge points PHr

and PH(r�1), equation (31), which correspond to the ends of the rth regular part of the edge, work-
ing versus the virtual placement map at the same locations. Since the sum of all the contributions
at varying r must be computed, at each wedge PHr the difference of terms belonging to contiguous
regular edges is evaluated.

Equations (28)–(31) were expressed in the same form they were derived through integration by parts
and repeated applications of the divergence theorem, and correspond to a perspective ‘‘surface-driven’’.
If we intend to list such contributions edge by edge as done in Eugster et al. [11] and Fedele [13] for the
second-gradient continua, or wedge by wedge, we must consider that along each edge two contributions
must be summed, provided from contiguous surfaces with their borders differently oriented, and the
same occurs at each wedge with reference to the edges (at least three) having in common that point.
Such a discussion and relevant calculations are beyond the scopes of this paper and will be adequately
addressed elsewhere.

4. Dancing with the normals

For several surface and edge integrals listed above, it is possible to provide alternative expressions which
are particularly meaningful’ revealing in detail how the projectors and the surface divergence operators
act onto the Lagrangian triple stress. Preliminarily, let us consider the surface divergence of the (surface)
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tangential projector (see also [12,13]). By expressing the surface tangential projector as
½Mk�EE0 = dE

E
0 � N E NE

0 , we obtain
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∂X E
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0
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� �
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� � ∂
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∂
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� � ∂dE
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+ �NE NE
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� � ∂
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∂X E
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= 0

NB +

+ NE
0 NE ∂

∂X E
NBð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

= 0

NE
0
= +

2

Rm

NB

ð32Þ

where symbol (1=Rm) denotes the mean curvature of the boundary face (see [12,86]). The relationship
provided by equation (32) may be useful to simplify a few contributions to the inner work.

(i) With reference to equation (30), let us consider the edge term

+

ð
LH

½Mk�EE0
∂

∂X E

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �
BA dxi dLH=
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ð
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� �
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0
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� �
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∂

∂X E
½Mk�E

0

B

� �
dxi dLH=

ð33Þ

Utilizing the above relationship equation (32) and exploiting the projector idempotence one obtains

= +

ð
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½Mk�EB|fflffl{zfflffl}
= dE

B�NE NB

∂
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� �
BA dxi dLH+

+

ð
LH

2

Rm

∂W

∂Fi
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dxi dLH=

= +

ð
LH

∂

∂X B
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BA dxi dLH+
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ð

LH

∂

∂N
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+
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2
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∂Fi
ABC

NCBANB dxi dLH=

ð34Þ

Due to the fact that the normal derivative of the normal vanishes [12], i.e.

NE ∂NC

∂X E
=

∂NC

∂N
= 0
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applying the product rule to the first addend one obtains

= +

ð
LH

∂

∂X B

∂W

∂Fi
ABC

� �
NCBA +

∂W

∂Fi
ABC

∂NC

∂X B
BA +

�

� ∂

∂N

∂W

∂Fi
ABC

� �
NCBANB +

2

Rm

∂W

∂Fi
ABC

NCBANB

�
dxi dLH

ð35Þ

(ii) Let us consider over the boundary face SH, equation (29), the expressions

+

ð
SH

½Mk�RA0
∂

∂X R

∂W

∂Fi
ABC

NBNC½Mk�A
0

A

� �
∂dxi

∂N
dSH+

+

ð
SH

½Mk�EE0
∂

∂X E

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �
NA

∂dxi

∂N
dSH=

ð36Þ

Exploiting equation (32) one finds

= +

ð
SH

½Mk�RA
∂

∂X R

∂W

∂Fi
ABC

NBNC

� �
∂dxi

∂N
dSH+

+

ð
SH

2

Rm

∂W

∂Fi
ABC

NANBNC

	 

∂dxi

∂N
dSH+

+

ð
SH

½Mk�EB
∂

∂X E

∂W

∂Fi
ABC

NC

� �
NA

∂dxi

∂N
dSH+

+

ð
SH

2

Rm

∂W

∂Fi
ABC

NCNBNA

	 

∂dxi

∂N
dSH=

ð37Þ

Differentiating by the product rule the functional groups within parentheses in the first and third
addends and summing all the contributions, we obtain

= +

ð
SH

∂dxi

∂N
dSH

�
½Mk�RA

∂

∂X R

∂W

∂Fi
ABC

� �
NBNC + :

+ ½Mk�EB
∂

∂X E

∂W

∂Fi
ABC

� �
NCNA +

+
∂W

∂Fi
ABC

∂NB

∂X A
NC +

∂NC

∂X A
NB +

∂NC

∂X B
NA

	 

+

+
4

Rm

∂W

∂Fi
ABC

NCNBNA

�
=

ð38Þ

where we exploited the relationship

½Mk�RA
∂NC

∂X R
= dR

A � NR NA

� � ∂NC

∂X R
=

∂NC

∂X A
ð39Þ

Hence, by expressing the tangential projectors in terms of normals one finds
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= +

ð
SH

∂dxi

∂N
dSH

∂

∂X A

∂W

∂Fi
ABC

� �
NBNC �

∂

∂N

∂W

∂Fi
ABC

� �
NBNCNA +

�

+
∂

∂X B

∂W

∂Fi
ABC

� �
NCNA �

∂

∂N

∂W

∂Fi
ABC

� �
NCNANB +

+
∂W

∂Fi
ABC

∂NB

∂X A
NC +

∂NC

∂X A
NB +

∂NC

∂X B
NA

	 

+

4

Rm

∂W

∂Fi
ABC

NCNBNA

�
=

ð40Þ

Rearranging terms and taking into account the total symmetry of the triple stress, finally one obtains

= +

ð
SH

∂dxi

∂N
dSH

∂

∂X A

∂W

∂Fi
ABC

� �
NBNC +

∂

∂X B

∂W

∂Fi
ABC

� �
NCNA

�

� 2
∂

∂N

∂W

∂Fi
ABC

� �
NANBNC +

+
∂W

∂Fi
ABC

∂NB

∂X A
NC +

∂NC

∂X A
NB +

∂NC

∂X B
NA

	 

+

4

Rm

∂W

∂Fi
ABC

NCNBNA

�
=

= +

ð
SH

∂dxi

∂N
dSH 2

∂

∂X A

∂W

∂Fi
ABC

� �
NBNC � 2

∂

∂N

∂W

∂Fi
ABC

� �
NANBNC +

�

+ 3
∂W

∂Fi
ABC

∂NB

∂X A
NC +

4

Rm

∂W

∂Fi
ABC

NCNBNA

�

ð41Þ

(iii) We can operate in analogous way on other two surface contributions, equation (29), in which
the work is generated versus the virtual placement map. The covectors correspond in turn to a
surface divergence and to a double surface divergence, namely

+

ð
SH

½Mk�DE
∂

∂X D

∂

∂X C

∂W

∂Fi
ABC

� �
NB ½Mk�EA

� �
dxi dSH+

�
ð

SH

½Mk�SA0
∂

∂X S
½Mk�EE0

∂

∂X E

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �
½Mk�A

0

A

� �
dxi dSH=

ð42Þ

Differentiating by the product rule the expressions within parentheses, we obtain

= +

ð
SH

½Mk�DA
∂

∂X D

∂

∂X C

∂W

∂Fi
ABC

� �
NB

� �
dxi dSH+

+

ð
SH

2

Rm

∂

∂X C

∂W

∂Fi
ABC

� �
NBNA dxi dSH+

�
ð

SH

½Mk�SA
∂

∂X S
½Mk�EE0

∂

∂X E

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �� �
dxi dSH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= (e)

+

�
ð

SH

2

Rm

½Mk�EE0
∂

∂X E

∂W

∂Fi
ABC

NC½Mk�E
0

B

� �
NA dxi dSH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= (�)

ð43Þ

For the sake of clarity, let us develop the last two addends separately. Recalling that ∂NC=∂N = 0, one
finds
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eð Þ=�
ð

SH

dxi dSH½Mk�SA
∂

∂X S

�
½Mk�EB|fflffl{zfflffl}

= dE
B�NE N B

∂

∂X E

∂W

∂Fi
ABC

NC

� �
+

+
∂W

∂Fi
ABC

NCNB

2

Rm

�
=

=�
ð

SH

dxi dSH½Mk�SA
∂

∂X S

∂

∂X B

∂W

∂Fi
ABC

� �
NC +

�
+

∂W

∂Fi
ABC

∂NC

∂X B
� NBNC

∂

∂N

∂W

∂Fi
ABC

� �
+

∂W

∂Fi
ABC

NCNB

2

Rm

�
=

ð44Þ

Utilizing the relationship ½Mk�SA = dS
A � NS NA, the above surface integral can be split into two, namely

the contribution multiplying dS
A

=�
ð

SH

dxi dSH

∂

∂X A

∂

∂X B

∂W

∂Fi
ABC

� �
NC +

∂

∂X B

∂W

∂Fi
ABC

� �
∂NC

∂X A
+

�
+

∂

∂X A

∂W

∂Fi
ABC

� �
∂NC

∂X B
+

∂W

∂Fi
ABC

∂

∂X A

∂NC

∂X B

� �
+

� ∂

∂X A
NBNCð Þ ∂

∂N

∂W

∂Fi
ABC

� �
� NBNC

∂

∂X A

∂

∂N

∂W

∂Fi
ABC

� �
+

+
∂

∂X A

∂W

∂Fi
ABC

� �
NCNB

2

Rm

+
∂W

∂Fi
ABC

∂

∂X A
NCNB

2

Rm

� ��
+

ð45Þ

and that multiplying N S NA

+

ð
SH

dxi dSH

(
NA

∂

∂N

∂

∂X B

∂W

∂Fi
ABC

� �
NC +

∂

∂X B

∂W

∂Fi
ABC

� �
NA

∂NC

∂N|{z}
= 0

+ :

+ NA

∂

∂N

∂W

∂Fi
ABC

� �
∂NC

∂X B
+

∂W

∂Fi
ABC

NANS ∂2NC

∂X SX B
+

� NA

∂

∂N
NBNCð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
= 0

∂

∂N

∂W

∂Fi
ABC

� �
� NBNCNA

∂

∂N

∂

∂N

∂W

∂Fi
ABC

� �
+

+ NA

∂

∂N

∂W

∂Fi
ABC

� �
NCNB

2

Rm

+
∂W

∂Fi
ABC

NA

∂

∂N
NCNB

2

Rm

� �)
=

ð46Þ

where the vanishing terms include the normal derivatives of the normal, namely ∂NC=∂N = 0, explicitly
or after permuting the mixed derivatives. For the readers’ convenience, only equation (46) is reported
herein in a more compact form, namely

+

ð
SH

dxi dSH NANC

∂

∂X B

∂

∂N

∂W

∂Fi
ABC

� �
+

�

+ NA

∂

∂N

∂W

∂Fi
ABC

� �
∂NC

∂X B
� NBNCNA

∂

∂N

∂

∂N

∂W

∂Fi
ABC

� �
+

+ NANCNB

∂

∂N

∂W

∂Fi
ABC

� �
2

Rm

� ∂W

∂Fi
ABC

NANCNB

∂

∂N

2

Rm

� �� ð47Þ

being 2=Rm =� ∂N E=∂X E. The remaining term of equation (43) can be modified analogously, namely
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�ð Þ=�
ð

SH

dxi dSH

2

Rm

NA ½Mk�EB
∂

∂X E

∂W

∂Fi
ABC

NC

� �
+

�
∂W

∂Fi
ABC

NCNB

2

Rm

�
=

=�
ð

SH

dxi dSH

2

Rm

NA

∂

∂X B

∂W

∂Fi
ABC

NC

� �
+

�

�NB

∂

∂N

∂W

∂Fi
ABC

NC

� �
+

∂W

∂Fi
ABC

NCNB

2

Rm

�
=

=�
ð

SH

dxi dSH

2

Rm

NANC

∂

∂X B

∂W

∂Fi
ABC

� �
+

2

Rm

NA

∂W

∂Fi
ABC

∂NC

∂X B
+

�

� 2

Rm

NANBNC

∂

∂N

∂W

∂Fi
ABC

� �
+

∂W

∂Fi
ABC

NANBNC

4

R2
m

�

ð48Þ

Especially for the last contributions to the inner work over the boundary surface SH at point (iii),
including as covectors the surface divergence and the double surface divergence, the use of such detailed
expressions, useful for a better understanding or possibly for a cross validation, becomes prohibitive in
the practice and the initial compact form seems preferable.

5. Dual variables

We derived the inner virtual work equations through the first variation of the Lagrangian energy func-
tional EDEF in the reference configuration OH: integrating by parts, through the divergence theorem we
provided volume, surface, edge and wedge contributions. So far, we utilized the partial derivatives of the
energy density with respect to the first, second and third Lagrangian gradients of the placement map,
namely, Fi

A, Fi
AB, Fi

ABC, without making more explicit their role. At this stage, we can analyse in depth
these terms by setting

PA
1 i =

∂W

∂Fi
A

; PAB
2 i =

∂W

∂Fi
AB

; PABC
3 i =

∂W

∂Fi
ABC

: ð49Þ

where symbol PA
1 i(X) represents a stress-like tensor, referred to as first Piola–Kirchhoff stress, with a leg

in the Eulerian configuration and another one in the Lagrangian configuration. PAB
2 i (X) and PABC

2 i (X)
represent the third and fourth rank tensors, one time covariant (Eulerian index) and two and three times
contravariant (Lagrangian indices), respectively. We will refer to them in turn as Piola double and triple
stress. Subscripts 1, 2, and 3 remark that the relevant tensors were provided by differentiation of the
energy density w.r.t. the first, the second, and third placement gradients, respectively. At this point, we
can everywhere substitute the symbols PA

1 i, PAB
2 i , and PABC

3 i , without any ambiguity. For instance, the
Lagrangian inner virtual work in equation (2) can now be expressed as follows (see e.g. [11,12])

dEDEF =

ð
OH

PA
1 i dFi

A dOH+

ð
OH

PAB
2 i dFi

AB dOH+

ð
OH

PABC
3 i dFi

ABC dOH;

dFi
A =

∂dxi

∂X A
; dFi

AB =
∂2 dxi

∂X A∂X B
; dFi

ABC =
∂3 dxi

∂X A∂X B∂X C
;

ð50Þ

It must be underlined that the analytical developments through the integration by parts were made
possible by the above representation of the internal work, including dFi

A, dFi
AB, and dFi

ABC. By a trivial
change of variables, the same functional equation (50) can be referred to the Eulerian configuration O:
however, while the Lagrangian virtual work represents the first variation of an energy functional, the
Eulerian form does not, since the integration volume changes along the deformation process.

The Eulerian counterpart of the virtual placement map can be defined through the composition with
the inverse mapping, namely dc(x) = dx s x�1(x). Accordingly, we can express the first and, in a
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sequence, the second (spatial) gradients of the Eulerian test function through their Lagrangian counter-
parts [12,14] namely

dDi
j =

∂

∂xj
dxi xð Þ= ∂dxi

∂X A

∂X A

∂xj
= dFi

A F�1
� �A

j
;

dFi
A = F

j
AdDi

j

� � ð51Þ

and

dDi
j k =

∂2

∂xkxj
dxi xð Þ= ∂

∂xk

∂

∂xj
dxi xð Þ

� �
=

=
∂

∂xk
F�1
� �A

j
dFi

A

� �
=

∂

∂xk
F�1
� �A

j
dFi

A + F�1
� �A

j

∂

∂xk
dFi

A =

=
∂

∂xk
F�1
� �A

j
dFi

A + F�1
� �A

j
dFi

AB F�1
� �B

k

ð52Þ

Rearranging equations (51) and (52), first one can write

F�1
� �A

j
F�1
� �B

k
dFi

AB = dDi
k j �

∂

∂xk
F�1
� �L

j
dFi

L ð53Þ

Recalling that, by differentiating the relationship F
j
A(F�1)L

j = dL
A, one obtains (see e.g. [84])

F
j
A

∂

∂xk
F�1
� �L

j
=� ∂

∂xk
F

j
A

� �
F�1
� �L

j
(y)

Equation (52) can be written as follows, after multiplying both sides by F
j
AFk

B

dFi
AB = F

j
AFk

B dDi
k j � Fk

B F
j
A

∂

∂xk
F�1
� �L

j|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
via (y)

dFi
L =

= F
j
AFk

BdDi
k j + Fk

B

∂

∂xk
F

j
A

� �
F�1
� �L

j
dFi

L =

= F
j
AFk

B dDi
k j + F

j
AC Fk

B F�1
� �C

k|fflfflfflfflfflffl{zfflfflfflfflfflffl}
= dC

B

F�1
� �L

j
dFi

L =

= F
j
AFk

B dDi
k j + F

j
AB F�1
� �L

j
dFi

L = F
j
AFk

B dDi
k j + F

j
ABdDi

j

ð54Þ

Thereafter, let us compute the Eulerian third gradient of the placement map. Differentiating equation
(52) by the product rule, one obtains

dDi
j k l =

∂3

∂xlxkxj
dxi xð Þ= ∂

∂xl

∂

∂xk

∂

∂xj
dxi xð Þ

� �
=

=
∂

∂xl

∂

∂xk
F�1
� �A

j
dFi

A + F�1
� �A

j
dFi

AB F�1
� �B

k

� �
=

=
∂

∂xl

∂

∂xk
F�1
� �A

j
dFi

A +
∂

∂xk
F�1
� �A

j

∂

∂xl
dFi

A +
∂

∂xl
F�1
� �A

j
dFi

AB F�1
� �B

k
+

+ F�1
� �A

j

∂

∂xl
dFi

AB F�1
� �B

k
+ F�1
� �A

j
dFi

AB

∂

∂xl
F�1
� �B

k
=

=
∂2

∂xl∂xk
F�1
� �A

j
dFi

A +
∂

∂xk
F�1
� �A

j
dFi

AB F�1
� �B

l
+

+
∂

∂xl
F�1
� �A

j
dFi

AB F�1
� �B

k
+ F�1
� �A

j
dFi

ABC F�1
� �C

l
F�1
� �B

k
+

+ F�1
� �A

j
dFi

AB

∂

∂xl
F�1
� �B

k

ð55Þ
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Grouping the contributions including dFi
AB, one finds

dDi
j k l =

∂2

∂xl∂xk
F�1
� �A

j
dFi

A + dFi
AB

∂

∂xk
F�1
� �A

j
F�1
� �B

l
+

�

+
∂

∂xl
F�1
� �A

j
F�1
� �B

k
+ F�1
� �A

j

∂

∂xl
F�1
� �B

k

�
+

+ dFi
ABC F�1
� �A

j
F�1
� �B

k
F�1
� �C

l

ð56Þ

We intend to express the Lagrangian third gradient of virtual placement map as a function of the
Eulerian gradients. To this purpose, let us multiply both the sides of the above equation by the product
F

j

A
0F

k
B
0Fl

C
0 , so that one has (F�1)A

j F
j

A
0 = dA

A
0 , etc. Hence, one can write

dFi
A
0
B
0
C
0 = + dDi

j k lF
j

A
0F

k
B
0Fl

C
0 +

� ∂2

∂xl∂xk
F�1
� �A

j
F

p
AdDi

p F
j

A
0F

k
B
0Fl

C
0 +

� dFi
AB

∂

∂xk
F�1
� �A

j
F�1
� �B

l
F

j

A
0F

k
B
0Fl

C
0 +

�
+

∂
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F�1
� �A

j
F�1
� �B

k
F

j

A
0F

k
B
0Fl

C
0 +

+ F�1
� �A

j

∂

∂xl
F�1
� �B

k
F

j

A
0F

k
B
0Fl

C
0

�
=

ð57Þ

Preliminarily, we observe that the terms within curly brackets in equation (57) can be developed by
utilizing equation (y) and simplifying the products

� dFi
AB �

∂

∂xk
F

j

A
0 F
�1

� �A

j
F�1
� �B

l
Fk

B
0Fl
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�
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A
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� �A
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� �B
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B
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C
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� �A
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∂
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B
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� �B

k
F

j

A
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l
C
0

�
=
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AB �F

j

A
0
N
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� �N
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� �A

j
dB

C
0Fk

B
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n
�F

j

A
0
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� �N
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dB

B
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A
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B
0
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0
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Recalling that, from equation (y), the following expression for the Eulerian derivative becomes avail-
able (see [84])
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for the term with the second derivatives in equation (57) one finds by the product rule

2064 Mathematics and Mechanics of Solids 27(10)



∂

∂xl

∂

∂xk
F�1
� �A

j
F

j

A
0F

k
B
0Fl

C
0F

p
AdDi

p =

=� ∂

∂xl
F�1
� �R

j
Fm

RS F�1
� �S

k
F�1
� �A

m
F

j

A
0F

k
B
0Fl

C
0F

p
AdDi

p +

� F�1
� �R

j

∂

∂xl
Fm

RS F�1
� �S

k
F�1
� �A

m
F

j

A
0F

k
B
0Fl

C
0F

p
AdDi

p +

� F�1
� �R

j
Fm

RS

∂

∂xl
F�1
� �S

k
F�1
� �A

m
F

j

A
0F

k
B
0Fl

C
0F

p
AdDi

p +

� F�1
� �R

j
Fm

RS F�1
� �S

k

∂

∂xl
F�1
� �A

m
F

j

A
0F

k
B
0Fl

C
0F

p
AdDi

p =

ð60Þ

The multiple products of deformation gradients and their inverses can easily be simplified obtaining
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where recourse was made to equation (y). Thereafter, one can write
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Let us notice that the last term in equation (62), after inserting the expression for the Eulerian deriva-
tive of the inverse matrix components (from equation 59), can be simplified as follows (note that sign
minus disappeared)
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At the light of the above developments, the contribution with the second derivatives in equation (60)
becomes

Fedele 2065



∂

∂xl

∂

∂xk
F�1
� �A

j
F

j

A
0F

k
B
0Fl

C
0F

p
AdDi

p =

= + F
j

A
0
C
0 F
�1

� �R

j
F

p

RB
0dDi

p � F
p

A
0
B
0
C
0dDi

p + Fk
B
0
C
0 F
�1

� �S

k
F

p

A
0
S
dDi

p +

+ Fm
A
0
B
0 F
�1

� �T

m
F

p

TC
0 dDi

p =

= dDi
p + F

j

A
0
C
0 F
�1

� �R

j
F

p

RB
0 � F

p

A
0
B
0
C
0 +

n
+ Fk

B
0
C
0 F
�1

� �S

k
F

p

A
0
S
+ Fm

A
0
B
0 F
�1

� �T

m
F

p

TC
0

o
=

= dDi
p �F

p

A
0
B
0
C
0 + F�1
� �R

j
F

j

A
0
C
0F

p

RB
0 + F

j

B
0
C
0F

p

A
0
R
+ F

j

A
0
B
0F

p

RC
0

h in o

ð63Þ

On the basis of equations (58) and (63), the Lagrangian third gradient of the placement map in equa-
tion (57) can now be expressed as
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but the Eulerian second-gradient Di
k l still does not appear explicitly. Recalling from equation (54) that
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Grouping the coefficients of the Eulerian gradients, we find
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and then
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In the above equation, the contributions within the square brackets turn out to be equal opposite and
cancel out. Despite the cumbersome calculations, finally a compact form is attained
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The Lagrangian inner virtual work of equation (50), once referred to the spatial configuration, must
equal its Eulerian counterpart, expressed through properly selected dual variables.

Through equations (51), (54), and (68), one finds
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It is worth emphasizing that the Eulerian test functions appearing in the last row, namely dDi
j, dDi

jk,
and dDi

jkl, result from the transformation of the Lagrangian test functions dFi
A, dFi

AB, and dFi
ABC, respec-

tively, when referred to the current configuration O. On the basis of equation (69), it is now possible to
specify relationships between the Eulerian and the Lagrangian dual quantities, distinguishing first-, sec-
ond-, and third-gradient contributions, namely
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It is worth underlying that the Lagrangian triple stress tensor PABC
3 i affects all the Eulerian stress ten-

sor of order lower or equal, namely T
j
1 i, T

jk
2 i, and T

jkl
3 i . The same occurs for PAB

2 i , affecting T
j
1 i, T

jk
2 i, and

for PA
1 i, related exclusively to T

j
1 i. This circumstance is a consequence of the mutual relationships among

the Lagrangian gradient of the virtual placement map, namely dFi
A, dFi

AB, and dFi
ABC, and their Eulerian

counterparts, i.e. dDi
j, dDi

jk, and dDi
jkl. Such a pyramidal, top-down architecture is typical of Nth gradi-

ent formulations, and gives rise to a peculiar structure of the equilibrium equations at increasing the
gradient order. Once selected the above work conjugate pairs, the mathematical structure of the govern-
ing equations remains the same in the Eulerian and in the Lagrangian configuration, and the integration
by parts can be carried out once in an abstract setting, without duplicating the procedure.
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6. Closing remarks and future prospects

In this paper, the equilibrium equations for the third-gradient materials were derived by a fully varia-
tional approach, stemming from the minimization of the total potential energy functional. As expected,
the cumbersome analytical calculations and the complexity of the nonstandard equilibrium conditions
turned out to be significantly increased with respect to those relevant to the second-gradient continua.
The adopted strategy, resting on the integration by parts, on the use of complementary projectors for
the boundary faces and for their border edges, and on the divergence theorem for embedded submani-
folds, has allowed us to specify volume, surface, edge, and wedge conditions in a very elegant and clear
fashion. The inner virtual work turned out to depend not only on the stress tensor but also on double
and triple (hyper-)stress tensors, of third and fourth rank, respectively, dimensionally equivalent to a
pressure multiplied in turn by a length and by a length squared. It is worth pointing out that, in the
present third-gradient approach, the stored energy W depends on Fi

A, Fi
AB, and Fi

ABC, and the number of
parameters entering such an energy and affecting Piola stresses PA

1i, PAB
2i , and PABC

3i is very large: this cir-
cumstance makes it urgent to develop ad hoc homogenization procedures.

The different contributions to the inner virtual work over the boundary face included not only the
virtual placement map, but also its first and second normal derivatives: along the edges, with codimen-
sion two, virtual work was generated versus the placement derivatives along both the face and the edge
normals. Detailed expressions were provided for the contact pressure and the edge force, revealing the
complex dependence on the face normals and on the mean curvature of the boundary surface. In addi-
tion, the inner virtual work was expressed in the Eulerian form by pairs of work conjugate variables:
remarkable transformations among Piola (material) and Cauchy (spatial) hyperstresses with rank lower
or equal to four were specified, revealing coupling among the Lagrangian and the Eulerian tensors of
different orders. These results represent an important step to develop the transformation of the third-
gradient equilibrium equations from the Lagrangian configuration to the Eulerian configuration.
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Appendix 1

Properties of surface and edge projectors

In this appendix the basic properties of the surface and edge projectors are briefly recalled (see also
[12]). As well known, at each point of the same curved surface SH[ ∂OH, a pair of complementary linear
operators can be defined, apt to project any vector of the ambient space onto the tangential and normal
spaces, referred to as the (Lagrangian) tangential and normal projectors and denoted by symbols ½Mk�AB
and ½M?�AB, respectively. Such projectors possess the following noteworthy properties (in both index and
matrix notation):

½Mk�AB + ½M?�AB = dA
B ; Mk+M?= 1 ;

½M?�CA = NC NA ; ½M?�=N�N ;

½Mk�CA = dC
A � NC NA ; ½Mk�= 1�N�N ;

½Mk�AB½Mk�
B
C = ½Mk�AC ; M2

k=Mk ;

½M?�AB½M?�
B
C = ½M?�AC ; M2

?=M? ;

ð71Þ

where the Kronecker symbol dA
B = 1= gA

B represents the unit operator, coincident with the mixed form of
the metric tensor. The last two properties are usually referred to as idempotence of the projector.
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Analogously, at each point of a border edge LH[ ∂SH[ ∂∂OH, which is a unidimensional manifold
with codimension two, a pair of complementary linear operators can be defined, apt to project any vec-
tor of the ambient space onto the space spanned by the tangent vector T, and onto its orthogonal com-
plement, spanned by any linear combination of the face normal N and of the edge normal B. Such
projectors will be denoted by symbols ½MLk�AB and ½ML?�AB, respectively, marked by subscript L. One has:

½MLk�EA = TE TA ; MLk=T� T ;

½ML?�EA = BE BA + NE NA ; ML?=B� B+N�N ;

dE
A = ½MLk�EA + ½ML?�EA = TE TA + BE BA + NE NA ;

1=MLk+ML?=T� T+B� B+N�N

ð72Þ

It is worth noting that, along a border edge, the edge tangent vector and the edge normal lie over the
plane tangent to the boundary face at that point. By formulae:

½Mk�EATA = T E ; ½Mk�EABA = BE; ð73Þ
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