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Chapter 2

On the dynamics of coupled oscillators and its
application to the stability of suspension bridges

Gianni Arioli

We describe and provide a computer assisted proof of the bifurcation graph for a system of
coupled nonlinear oscillator described in a model of a bridge. We also prove the linear stabil-
ity/instability of the branches of solutions.

1 Introduction and main results

The literature on the collapse of the Tacoma Narrows Bridge is vast, and numerous
explanations of the collapse have been presented in the last 81 years. One point on
which everybody agrees is that the collapse was caused by the unexpected appearance
of torsional oscillations of the deck. In [4], a new mathematical model for the study
of the dynamical behavior of suspension bridges was introduced, and a new expla-
nation for the appearance of torsional oscillations during the Tacoma collapse was
provided. The key point of such explanation is that, when the amplitude of the verti-
cal oscillation is below some threshold, such an oscillation is stable. At the threshold a
pitchfork bifurcation occurs. The main branch, with no torsional movement, becomes
unstable, while the secondary branches, with torsional oscillations, are stable. This
causes a transfer of energy from the vertical oscillation to the torsional oscillation.
This explanation has been further expanded in [5] and [6].

Here we provide a rigorous proof of the dynamics described above. More pre-
cisely, we provide a rigorous bifurcation graph for the system introduced in Section 4
of [4], and we also prove the linear stability/instability of the branches of solutions.
The full description and motivation of the model can be found in [4], see also [11];
here we provide a short outline.

In Figure 1 the rod represents a cross section of the deck of a bridge. We choose
the mass m = 1 and the half length £ = 1. The rod is subjected to a force exerted
by the hangers C; and C,, which is denoted, respectively, by f(y + £ sin 8) and
f(y — £sin 0); these terms take also into account gravity. The energy of the system is

€(0,5,0,y) = X(6,7) + U@®,y),
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Figure 1. Vertical (y) and torsional (8) displacements of the rod.

where K (6, y) = y2/2 4+ 62/6 is the kinetic energy, and U(H, y) = F(y + sin0) +
F(y —sin 0) is the potential energy, with F(s) = — fos f(t)dz. The Euler-Lagrange
equations corresponding to the Lagrangian £ = K — U are

g =cosO(f(y +sinf) — f(y —sinh)),
V= f(y—sinf) + f(y + sin6).

6]

For the nonlinear restoring force f, we follow the same choice as in [4], that is,

sz s st
f9)=—(s+s>+s’) = F(s) = St3 o
Note 2: 5o that equation (1) becomes
The order of appearance was 3
changed to match that of (1). 0 — _Z((6 + 8y + 12y2) sin(26) — sin(40)), o

= —Q2y +2y% +2y3 + (6y + 2)sin? 6).

We are interested in nontrivial periodic solutions of (2). Our results are displayed in
Figure 2; we first describe the results, and refer to Theorems 1.1 and 1.2 for a precise
statement.

The horizontal axis represents the period of the solution. The dotted line rep-
resents the trivial solution (y, #) = (0,0). At T = 7/~/2 = 2.221 ..., a pitchfork
bifurcation occurs, and two branches of periodic solutions bifurcate out of the trivial
solution, with increasing period (black line). The solutions on the secondary branches
satisfy & = 0. The two branches are related by the map y(¢) — y(—t). In fact, the
pitchfork bifurcation is a symmetry breaking bifurcation, therefore we only study one
of the secondary branches. At T'=2.223. .., a fold bifurcation occurs, and the branch
continues with decreasing period (green line). The black and green branches of solu-
tions are linearly stable. At T = 1.952. . ., another pitchfork bifurcation occurs. Note
that whenever we write a real number in truncated decimal notation followed by dots,
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Figure 2. Bifurcation graph with respect of the period T of the solution (not in scale). The
dotted line consists of trivial solutions, the black and green lines consist of stable solution with
6 = 0, the blue line consists of unstable solutions with & = 0, the red line consists of stable
solutions with 6 # 0.

e.g., 2.223 ..., what we mean is that the exact value of the number (in case it is
exactly representable by the IEEE standard) or a precise bound on such number (that
is, an interval which contains the number, and whose center and radius are exactly
representable by the IEEE standard) is available in the program or data files, and the
first decimal digits are shown. The two new branches of the solution (red lines) have a
torsional component, that is 6 # 0, they are linearly stable and they are related by the
map (y, 0) — (v, —0). The branch consisting of purely horizontal oscillations (blue)
becomes unstable.

We briefly recall the relation between this result and the dynamics of a suspension
bridge, see [4—6] for a more detailed discussion. As long as the horizontal oscillation
has small amplitude (black and green solutions), it is stable. But at a certain threshold,
corresponding here to the bifurcation where the blue, the green and the red branches
meet, the horizontal oscillation becomes unstable, while at the same time, a stable
oscillation with a torsional component appears. Then, if the oscillation of the bridge
passes that threshold, the torsional oscillation starts and eventually leads to a collapse.

A secondary purpose of this paper is the introduction of a computer assisted
method for the study of the Poincaré map of a dynamical system. It is standard (and
obvious) practice to represent periodic functions with Fourier series, and this choice
would have made the study of the bifurcation graph easier. On the other hand, Fourier
series are not suitable for the study of the variational equation associated with the
system, that is, the linearisation around a solution, since one does not expect a peri-
odic solution for such equation. Here we choose to solve equation (2) together with
its variational equation, using a representation based on the Chebyshev expansion.
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In order to study the stability of periodic solutions of (2), it is convenient to con-
sider a Poincaré map. Since we are dealing with a system with a four-dimensional
phase space and with one conserved quantity (the energy), the dynamics take place
in a three-dimensional manifold. Then we can choose the subspace y = 0 crossed
with y > 0 as Poincaré section, so that the Poincaré map maps (a subset of) the plane
(0, 6) into itself.

After rescaling time, we look for solutions of

T2
V=/0.0.T):=-—0y+ 2y% +2y3 + (6y + 2) sin b)),
. 372 . )
0=g(0T):= _T((6 + 8y + 12y~) sin(26) — sin(46)), 3)

Y1) =y(1)=0, y(=1)=y()>0,
0(=1) =6(1), 6(=1)=6(),

where T is the period of the solution to be determined. Note that the condition
y(—=1) = y(1) follows from the other boundary conditions because of the conser-
vation of the energy. Clearly, solutions of (3) correspond to periodic solutions of (2)
of period T. To compute the derivative of the Poincaré map, we need to solve the
following initial value problem for the variation equations:

0, = h(y,0,6,,T) := —3—22((2(6 + 8y + 12y?) cos(26) — 4 cos(46))6,),
01(-=1) =1, 6 (=) =0, “)
Oy = h(y,0,0,,T), 6:(=1) =0, 6(=1)=1.
We look for solutions of (3) and (4) in a suitable space of analytic functions #,
see equation (5) for the definition. As described above, our first result is the exis-

tence branches of solutions connected with three pitchfork bifurcations and two fold
bifurcations.

Theorem 1.1. (1) There exists an analytic curve o:[—1, 1] = A% x R and a real
number Tr = 2.223 ... such that:

o forallt e[—1,1], (y,0) = (a1(1),22(7)) is a solution of (3) withaz(t) =0
and T = a3(7).

o (a1(=1)(=1),a3(—=7)) = (a1(7)(t),a3(7)) forallt € [0, 1] and all t €[—1, 1],
* a3(l) =TF,
e o4(r) >0 forallt € (0,1).

(2) There exists an analytic curve B:[—1, 1] — A% x R such that:
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Figure 3. Approximate graph of three solutions (y is red and 6 is black): branch g at T =
2.221... (left), branch B at T = 1.491 ... (center), branch y at T = 1.391 ... (right).

e forallt e[-1,1], (y,0) = (B1(x), B2(7)) is a solution of (3) with B2(t) =0
and T = B3(1),

e forallt € [-1,1), B5(x) > 0,
e B3(=1)=140....
(3) There exists an analytic curve y:[—1,1] = A2 x R such that:
o forallt e [-1,1], (y,0) = (y1(2), y2(v)) is a solution of 3) with T = y3(7),
e forallt € [-1,0)U (0, 1], 7y5(z) <O,
e y(t)=0ifandonlyif t = 0.
@) @(0) = (0,0,7/~2), (1) = (1), and y(0) = B(0).

Our second result concerns the stability of the solutions.

Theorem 1.2. All the branches described in Theorem 1.1 consist of linearly sta-
ble solutions, with the exception of the solutions B(t) with T € [—1,0), which are
unstable.

The remaining part of the paper contains the proofs of Theorems 1.1 and 1.2. In
Section 2 we present the functional space where we look for solutions. In Section 3
we present the strategy we use for the proofs of the branches of solutions. In Section 4
we present the strategy we use for the proofs of the bifurcations. In Section 5 we link
together the lemmas and propositions proved in the previous sections to obtain the
proofs of the theorems. In Section 6 we discuss some details of the computer assisted
proof.

2 Functional setting
Let p = 5/4 and

ai= {11 = R x0) = Y5 T0. Ylyle! <+oof. )

J=0 Jj=0
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where {x;} C R and 7} is the j-th Chebyshev polynomial. The space +, equipped

with the norm
Il = "lxile
Jj=0
is a Banach algebra, consisting of functions which admit an analytic extension to the
interior of an ellipse in the complex plane with foci {—1, 1} and semiaxes %(p +p71
and 2(p — p~ '), see [10].
Note that, if x(¢) is represented as in (5), then

x(=1) =) =Dy x(1) =) .
J J

and a primitive of a function expanded in Chebyshev series can be found, e.g., by
using the following:

/To(t)dt =T, /Tl(z‘) dt = w (6)

, _ L@ T
/T’(t)d’ Tok+1) 20k—1) )

To solve the first equation in (3), we define DEZ as the inverse second derivative
with homogeneous Dirichlet boundary conditions. More precisely, given y € #4, with
y=> i=0YiTj y = DBZ y is the function in 4 obtained by applying twice (6)—(7)

and choosing
—Zyzj, y1=—Zyzj+1.
=1 Jj=1

Then the first equation in (3), together with the boundary conditions in y, is equivalent
to

y=F1(0.0.7) := Dp* f(y.0.7).

To solve the equation 6 = g(y, 8), where periodic boundary conditions are required,
we use the following lemma.

Lemma 2.1. Let Fy: A% x R — 4 be defined as follows. Given (y,0,T) € A? x R,
let

1
s = /_ gV (1), 0(0). T) di + 6.

where 0y is the Chebyshev coeﬁ?czent of order O of 8. Let 0 be the inverse second
derivative of g(y 0), where 6o = s and 6, is chosen so that f H(Z) dt = 0. Set
Fa(y,0,T) := 6. Then 0 is the solution of 6 = g(y. 0, T) with periodic boundary
conditions if and only if F2(y,0,T) = 6.
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Proof. Assume that F(y, 6, T) = 6. Clearly, § = g(y, 0, T). Since f_ll O(t)dt =0,
6(—1) = 8(1). Since 0 is a fixed point of F, s = 6, so that f_ll g(y(t),0())dt =
f_ll 6(r)dt = 0, and therefore §(—1) = (1). n

Consider now the equations in (4).

Lemma 2.2. Fori = 1,2, define G;: A3 x R — A as follows. Let
b = [ h@.60).6:00.60). 1)t
with (B1)o = 351 (=1 (6:); + (2 —i). Then let
b = [ dwa.
with (Bi)o = ;21 (=1)7 (8); +i — 1. Set G;(y.0.6:, T) = 6;. Then (61, 62) € A
is a solution of (4) if and only if
Gi(y,G,Gi):Gi, i=1,2.

Proof. If 6; is a fixed point of G;, then 6; = h(y, 0,06;, T). Furthermore, 91 = 6;, and
w1thourch01ceof(9 )o,wehave9 (=1) = 6;(=1) = (2 —i). Finally, 6; (=1) =i — 1
because of our choice of (0 )o. [

To find a solution of both (3) and (4), we equip #* with the norm
(. 0.61. 0 := Iyl + 161l + 1611 + 162,
and set F7: A% — A% as follows:
Fr(y,0.601.602) = (F1(y.0.7).F2(y.0.7).G1(y.6.6,.T).G2(y.6.6,.T)).
The proof of the following lemma is straightforward.

Lemma 2.3. The map Fr is compact, and (y, 0, 01, 02) € A* is a solution of (3)
and (4) if and only if it is a fixed point of F .

3 Branches of solutions

Consider the subset of the bifurcation graph displayed in Figure 4, and let I4 =
[1.34...,1.952...],1p =[1.40...,1.952...], Ic =[1.954...,2.22...]. We want to
prove the existence of three branches of solutions of (3) and (4) when T varies in the
intervals 14, Ig, Ic. Note that the exact values of the endpoints of these intervals are
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Figure 4. Three branches of solutions. 7 varies in /4 (branch A, red), Ip (branch B, green),
Ic (branch C, blue).

provided in the program, see below for details, and in the next section, we will show
that the branches are joint by a bifurcation. To prove the existence of the branches we
use a technique introduced in [7].

We write all the coefficients in the Chebyshev expansion of (y, €, 61, 8,) as Taylor
polynomials in 7":

(3,0,61,62) = Y (v (T), 6;(T), 61;(T), 62, (T))T; (1), ®)
Jj=0
= T —Ty\!
(i (T), 6;(T), 61, (T), 02;(T)) = Y _(yju, 9]‘1791]'1,92]'1)( T, ) )
=0

where Ty, T; and L are defined below. We call (8)—(9) a Taylor—Chebyshev expan-
sion, and its truncation a Taylor—Chebyshev polynomial. We choose some Taylor—
Chebyshev polynomial X =@, 0,6y, 52) € A%, that is, an approximate fixed point
of F 7, and some finite rank operator M 7: A* — A% such that I — M is an approx-
imate inverse of I — DF 7(X). Then for i1 € A*, we define

Mr(h) =F7r(X +Arh)—X + Mrh, Ap=1—Mry. (10)

Clearly, if & is a fixed point of M7, then X = X 4+ Arh is a fixed point of Fr
and, hence, X solves (3) and (4). Given r > 0 and w € A*, let B.(w) = {v € A* :
|lv — w| < r}. We partition the interval /4 in 13 subintervals, the interval /g in 8
subintervals and the interval /¢ in 10 subintervals. These subintervals have various
widths, depending on the distance from the bifurcation points. The squares of the
exact values of the center Ty and width T} of each subinterval, together with the
degree L of the Taylor expansion used for each subinterval, are available in the file
params.ads, and they are denoted by T2C and T2W. Then we prove the following
lemma with the aid of a computer, see Section 6.

“ Lemma 3.1. The following holds for each value of Ty, T1 and L listed in the file
params . ads. There exist a Taylor—Chebyshev polynomial X (T') of degree L, as des-
cribed in (9), a bounded linear operator Mt on A, and positive real numbers e, r, K,
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satisfying ¢ + Kr < r, such that
IMr O <& [DMr(Y)| <K forallY € B(0),

and all T € C, with |T — Ty| < Ty. Furthermore, for each adjacent pair of subinter-
vals, either
B (X(T3 +T1) C B2 (X (T3~ TP)

or
B2 (X(T§ +T7)) C Ba(X(T} — T},

where the superscripts 1,2 refer to the values of Ty, T1, r relative to each subinterval,
and the 0 component of each solution is identically 0.

This lemma, together with the contraction mapping theorem and the implicit func-
tion theorem, implies the following.

Proposition 3.2. Equations (3) and (4) admit a solution for all T € 14, all T € Ip,
and all T € Ic. The solutions depend analytically on T.

Since Lemma 3.1 provides also rigorous bounds on the solution of the variation
equation, the proof of the linear stability or instability of the solutions follows easily,
see also Appendix A for the computation of the derivative of the Poincaré map.

Lemma 3.3. Let A{(T, /\fT be the eigenvalues of the derivative of the Poincaré map
corresponding to solutions belonging to the branches X = A, B, C and period T.
For all values of T € 14, the eigenvalues )V{’T, )V;T are real, and |)L‘14T| <1< |)tzCT .
For all values of T € Ig (resp. T € I¢), )LfT = izBT (resp. )LfT = )_tch), and, since
the determinant of the derivative of the Poincaré map is equal to 1, |)L{3T = |/\fT =
MICT = MzCT =1

4 Bifurcations

To prove Theorem 1.1, we need to prove the existence of pitchfork and fold bifurca-
tions, and show that the branches of solutions proved in Section 3 are connected to
such bifurcations. Let u = (y, ), define F: R x 42 — A2 by

IF(T9 u) = (Fl(u’ T)v FZ(u’ T)) —Uu,

and note that u is a solution of (3) if and only if F(T,u) = 0. A simple computa-
tion shows that DIF(7,-) has a (simple) eigenvalue zero at T = 7/+/2. Also, we
found numerical evidence that, along the branch of solutions, DIF (T, -) has two other
(simple) eigenvalues zero at 7 = 1.953 ... and T = 2.222.... This suggests the
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i To T, A M

1 1.953... 278 1/32 9
2 2222... 21-2712 9/32 35

Table 1. Parameters for the bifurcation.

possibility of bifurcations which take place in a two-dimensional submanifold. We
parametrize this surface by using the parameter 7 and a coordinate A for the range of
a suitable one-dimensional projection £. Then we define a two-parameter family of
functions u (7, 1) by solving

T =OF(T,u(T, 1)) =0, Lu(T,A) =24, an
where # is a fixed nonzero function in the range of £. For 1, we choose a pair of

Chebyshev polynomials that approximate the eigenvector of DIF (T, -) corresponding
to the eigenvalue closest to zero. The projection £ is defined by

N
tu = Loy, Lo(u) = Y Y uyily;,

i=1,2j=0

where u;; and 1i;; are the Chebyshev coefficients of u and i, respectively. Our goal
is to show that for a rectangle / x J in the parameter space, equation (11) has a
smooth and locally unique solution u: I x J — 2. Then, locally, the solutions of
F(T,u) = 0 are determined by the zeros of the function g, defined by

g(T, X)) = Lo (T, u(T, 1)).

We write all the coefficients in the Chebyshev expansion of u as Taylor polyno-
mialsin T, A:

w(TLA) =Y (uijouz )Ty, uyj= Y uijlm(¥>l(%>m’ (12)
j 0<l+m<M ! !

where Ty, T1, A1, M are given in Table 1.
Equation (11) for u = u(T, A) is equivalent to the fixed point equation for the
map [F 7, defined by

Fra(u)=0—-0OFr )+ Au.

As in the last subsection, we use the contraction mapping principle to solve this fixed
point problem. In place of the map defined in (10), we use the map M 7 defined by

Mra(h) =Fr(u+ Arph)—u+ Mrph, Arp=1-Mrg;.
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Figure 5. Approximate zeros of the functions g(7, A) fori = 1 (left) and i = 2 (right).

Here, 1 is an approximate fixed point of IF 1, o, and M 7, is a finite rank operator such
that A7, =1 — M7, is an approximate inverse of I — DF 7, o(i). By the implicit
function theorem, the solution depends analytically on the two parameters 7" and A.
Denote by D, (z) a disk in the complex plane of radius r and center z. The following
lemma is proved with the aid of a computer, see Section 6.

Lemma4.1. Fori = 1,2, let Ty, T1, A1, M beasinTable 1, I = D1,(Ty) and J =
D, (0). There exists a Taylor—Chebyshev polynomial 1i, a Chebyshev polynomial
u(T, L) as in (12), and positive constants &, r, K satisfying ¢ + Kr < r, such that

[M7A(0)] <& [[DMra(v)] = K.
forallv € B,(0) andforallT € I andall A € J.

As we had in the previous subsection, this lemma, together with the Contraction
Mapping Theorem and the Implicit Function Theorem, implies the following:

Proposition4.2. Fori =1,2, let Ty, T1,A1, M be as inTable 1, and let I = D 1, (Tp)
and J = D;,(0). For every (T, ) in I x J, equation (11) has a unique solution
u(T,A) in B, (u(T, L)), and the map (T, L) — u = u(T, A) is analytic. For any given
real T € I, a function u in B N L~Y(J1) is a fixed point of Fr if and only if u =
u(T, A) for some real A € J, and g(T, L) = Lou(T, 1) = 0.

This leaves the problem of verifying that the zeros of g correspond to a bifur-
cation. Figure 5 represents the approximate zeros of the functions g obtained in
Proposition 4.2. Figure 5 clearly suggests the existence of a pitchfork bifurcation
(left), and a pitchfork bifurcation together with two fold bifurcations (right). Note
that the straight line in the graph on the right represents the trivial solution (y, §) = 0,
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and since we know from a direct computation that the DIF (T, -) is not invertible at
T = n/+/2, the apparent pitchfork bifurcation occurs exactly at that particular value
of T'. A sufficient set of conditions for the existence of a fold or a pitchfork bifurcation
is the following, see [8] for the proofs.

Let g be a differentiable function of two variables, and denote by ¢ and g’ the
partial derivatives of g with respect to the first and second argument. Let I = [T}, T3]
and J = [-b, b].

Lemma 4.3 (Fold bifurcation). Let g be a real-valued C* function on an open neigh-
borhood of I x J such that g(T,0) =0 forall T € I, and

(1) g">00nlxJ,

2)g<0onlxJ,

(3) g(T1.0) & 3bg'(T1.0) > 0,

4) g(T5,£b) > 0,

(5) g(T2,0) <.

Then the solution set of g(T,1) = 0in I x J is the graph of a C? function T = a(}),
defined on a proper subinterval Jy of J. This function takes the value T, at the

endpoints of Jy, and satisfies Ty < a(z) < T, at all interior points of Jo, which
includes the origin.

Lemma 4.4 (Pitchfork bifurcation). Let g be a real-valued C3 function on an open
neighborhood of I x J such that g(T,0) =0 forall T € I, and

(1) g”">00nlIxJ,

2Q) g <0onl xJ,

(3) &(T1.0) + 508" (T1.0) > 0,

4) £g(T», £b) > 0,

(5) g'(T»,0) < 0.

Then g(T, L) = AG(T, X) for some C? function G, and the solution set of G(T, 1) =0
in I x J is the graph of a C? function T = a(}), defined on a proper subinterval J,

of J. This function takes the value T, at the endpoints of Jy, and satisfies T1 <
a(zz) < Ty at all interior points of Jo, which includes the origin.

We also need the following lemma, whose proof is straightforward, in order to
prove that the pitchfork and the fold bifurcation are connected with a continuous
branch of solutions.

Lemma 4.5. Let g be a real-valued C3 function on an open neighborhood of 1 x J,
and

(1) g>00nlxJ,
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2) g <0onlxJ,
(3) £¢/(T1,+b) <0,
(4) £g(T2, £b) > 0,

Then the solution set of g(T,A) = 0in I x J is the graph of a C? function A = a(T),
defined on J, witha'(T) > O forall T.

The following lemmas are proved with the aid of a computer. Essentially, they
imply that the zeros of the functions £ou (7, A) look as they are represented in Fig-
ure 5. The first lemma concerns the pitchfork bifurcation at 7 = 1.953 ..., which
connects the three branches of the solution mentioned in Proposition 3.2.

Lemma 4.6. Consider the solution u(T, ) obtained in Proposition 4.2 in the case
i =1,andlet I =[—1.95367...,—1.95233...] (the exact values are available in
the program files) and J = [—27>,27>]. For any u(T, A) € B, (i (T, 1)), the function
g(T, A) = Lou(—T, M) satisfies the assumptions of Lemma 4.4.

The second lemma concerns both a pitchfork and a fold bifurcation, both at T
close to 2.222 . ... The main branch of the pitchfork bifurcation is the trivial solution.
The secondary branches reach a fold. Let 77 = 2.22133..., 7T, =2.22185..., T3 =
2.22239...,T4=2.22303...,T5 =2.22343..., A1 = —0.070...,A, = 0.0615. ..,
A3 =0.1889...,14 =0.0834..., A5 =0.149..., ¢ = 0.228.. .., (the exact values
are available in the program files).

Lemma 4.7. Consider the solution u(T, ) obtained in Proposition 4.2 in the case

i =2

o Pitchfork: Let I = [Ty, T3] and J = [—A1, A1). For any u(T, L) € B, (u(T, 1)),
the function g(T, A) = Lou(T, A) satisfies the assumptions of Lemma 4.4.

¢ Connecting branch: For any u(T,A)e€ B, (u(T, 1)), the function g(T,A)=Lou(T, 1)
satisfies the assumptions of Lemma 4.5 both in I x J = [T,, T5] X [A2, A3] and
inl xJ = [T3, T4] X [14,/\3].

e Fold: Let I = [-T5,—T4] and J = [As, Ag|. For any u(T, L) € B,(u(T, L)), the
function g(T, L) = Lou(—T, X) satisfies the assumptions of Lemma 4.3.

To conclude the proof, we need to check that the branches of solutions obtained
in Section 3 are connected to the bifurcation points. This is the result of the following
lemmas, also proved with computer assistance.

Lemma 4.8. Call ug,up the (y,0) components of the solutions obtained in Lem-
ma3.1 at Ty p = 1.952... for the branches A and B, call uc the (y, 0) components
of the solution at Tc = 1.954 ... for the branch C. Let B, (u(T, 1)) the enclosure
of the solution obtained in the case i = 1 in Lemma 4.1. Then uyg € B, (u(T4, 1)),
ug € Br(u(Tg. 1)), uc € Br(u(Tc,A)).
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Lemma 4.9. Call uc the (y,0) components of the solution at Tc = 2.22... for the
branch C. Let B, (u(T, L)) be the enclosure of the solution obtained in the case i =2
in Lemma 4.1. Then uc € B, (u(T¢, A)).

5 Proofs of Theorems 1.1 and 1.2

By Lemma 4.7, there exists a pitchfork bifurcation from the trivial solution at T =
71/+/2, and the secondary branch is defined for T € [/~/2, T], with T = 2.223 ...,
andat T = f, a fold bifurcation occurs, so that the branch continues for decreasing
values of T. Because of Lemmas 3.1 and 4.9, this branch exists for T € [1.954.. . ., T]
By Lemma 4.8, the branch is connected to the pitchfork bifurcation proved in Lem-
ma 4.6. The remaining branches A and B, whose existence is proved in Lemma 3.1,
are also connected to the primary and secondary branches of the pitchfork bifurcation
because of Lemma 4.8. The remaining branches shown in Figure 2 are obtained by

symmetry, (y, 0) > (y, —0).

6 The computer assisted part of the proof

The methods used here can be considered in perturbation theory: given an approx-
imate solution, prove bounds that guarantee the existence of a true solution nearby.
But the approximate solutions needed here are too complex to be described without
the aid of a computer, and the number of estimates involved is far too large. The first
part (finding approximate solutions) is a strictly numerical computation. The rigorous
part is still numerical, but instead of truncating series and ignoring rounding errors, it
produces guaranteed enclosures at every step along the computation. This part of the
proof is written in the programming language Ada.' The following is meant to be a
rough guide for the reader who wishes to check the correctness of the programs. The
complete details can be found in [1].

In the present context, a “bound” on amap f: X — ¥ is a function F that assigns
toaset X C X of a given type (Xtype) aset Y C ¥ of a given type (Ytype), in such
a way that y = f(x) belongs to Y for all x € X. In Ada, such a bound F can be
implemented by defining a procedure F(X: in Xtype; Y:out Ytype).

To represent balls in a real Banach algebra X with unit 1, we use the pair S =
(5.C,S.R), where S.C is a representable number (Rep) and S.R a nonnegative rep-
resentable number (Radius). The corresponding ball in X is (S, X) = {x € X :
[x —(S.C)1]| <S.R}.

ISee the Ada reference manual, ISO/IEC 8652:2012 (E).
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In the case X = R, the data type described above is called Ball. Our bounds
on some standard functions involving the type Ball are defined in the packages
Flts_Std_Balls. Other basic functions are covered in the packages Vectors and
Matrices. Bounds of this type have been used in many computer-assisted proofs; so
we focus here on the more problem-specific aspects of our programs.

The computation and validation of branches involves Taylor series in one variable,
which are represented by the type Taylorl with coefficients of type Ball. The defi-
nition of the type and its basic procedures are in the package Taylors1. A description
of the type and its implementation can be found in [2]. The computation and valida-
tion of the bifurcations involves Taylor series in two variables, which are represented
by the type Taylor2 with coefficients of type Ball. The definition of the type and its
basic procedures are in the package Taylors2. The structure of Taylors2 is similar
to Taylors2.

Consider now the space +. Functions in 4 are represented by the type Cheb
defined in the package Chebs, which accepts coefficients in some Banach algebra
with unit X. In our application the coefficients of Cheb are Taylor1 or Taylor2. The
type Cheb consists of a triple F = (F.C,F.E,F.R), where F.C is an array (0. .K)
of Ball, F.Eis an array(0..2*K) of Radius, and F.R is type Radius, which
represents the domain of analyticity of functions in #, that is, F.R = 5/4. The corre-
sponding set (F, ) is the set of all function u = p + h € A, where

K

2K
p) = (F.CQ.X)T; (1), h=Y h'. W)=Y h}Tu)
j=0

j=0 m>j

with |47 || < F.E(J), for all J. For the operations that we need in our proof, this
type of enclosure allows for simple and efficient bounds. A bound on the map F 7 is
implemented by the procedure GMap in the package Taylorsl.Cheb.Fix. Defining
and estimating a contraction like M 7 is a common task in many of our computer-
assisted proofs. An implementation is done via two generic packages, Linear and
Linear.Contr. For a description of this process we refer to [9].

A The Poincaré map and its derivative

Consider the n-dimensional system

x:f(x)’ x:(xl"'-vxn)7 f:(fl?"'ifn)’ (13)

and let x (¢) be a periodic solution such that x(0) = x(7") = 0. Let y(¢) be a solution
of the variational equation

dafi
F=viey. vi=(35) yo=mu
J
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Let ¢(¢, x) be the flow of (13), so that V,¢(¢, x) = y(¢). Consider the Poincaré section
x1 =0, and let x_y = {x3, ..., x,}. The time of first return to the Poincaré section
t(x_y) satisfies

@1(t(x=1),(0,x-1)) = 0.

Then, forall j = 2,...,n, we have

0= 8]'(01([()(—1)’ (va—l))
= 3,01(t(x=1), (0,x_1)) 3;1(x—1) + ;01 (t(x=1), (0, x_1)),

where 0; = d/0x;, so that

_9¢(0.7) _  yi(T)
9:¢1(T,0) f10)

9t (x-1)|x_y=0 =

The Poincaré map is defined as

P(x-1) = (@2(¢(x=1), (0, x-1)), . .., @ (1 (x=1), (0, X-1))),

therefore

i (0)
J1(0)
Funding. The author is partially supported by the PRIN project Equazioni alle deri-

vate parziali di tipo ellittico e parabolico: aspetti geometrici, disuguaglianze colle-
gate, e applicazioni.

0 Pi(x—1)|x_y=0 = 0: @i (T,0)0; 1 (x—1) + yi; (T) = yi;(T) — y1,;(T)
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