
Poster Abstract: Run-time Dynamic WCET Estimation
Lia Cagnizi

lia.cagnizi@mail.polimi.it
Politecnico di Milano, Milano, Italy

Federico Reghenzani
federico.reghenzani@polimi.it

Politecnico di Milano, Milano, Italy
European Space Agency, Noordwijk,

Netherlands

William Fornaciari
william.fornaciari@polimi.it

Politecnico di Milano, Milano, Italy

ABSTRACT
To guarantee the timing constraints of real-time IoT devices, en-
gineers need to estimate the Worst-Case Execution Time. Such
estimation is always very pessimistic and represents a condition
that almost never occurs in practice. In this poster, we present a
novel compiler-based approach that instruments the tasks to inform,
at run-time, the operating system when non-worst-case branches
are taken. The generated slack is then used to take better scheduling
decisions.

CCS CONCEPTS
• Computer systems organization → Real-time systems; •
Software and its engineering → Real-time systems software;
Compilers; • Hardware → Timing analysis.

KEYWORDS
real-time scheduling, dynamic WCET, compiler transformation
ACM Reference Format:
Lia Cagnizi, Federico Reghenzani, and William Fornaciari. 2023. Poster
Abstract: Run-time Dynamic WCET Estimation. In International Conference
on Internet-of-Things Design and Implementation (IoTDI ’23), May 9–12, 2023,
San Antonio, TX, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/
10.1145/3576842.3589168

1 INTRODUCTION
Many Internet-of-Things (IoT) devices must satisfy given timing
constraints, which are usually expressed with the concept of a
time deadline. Such IoT systems are then real-time systems. Mixed-
Criticality Systems (MCS) are a particular class of real-time systems
and have been a subject of research since the Vestal’s article [4].
These systems integrate components with different criticality onto
the same platform, where criticality is meant as the level of assur-
ance that a software component must guarantee. To guarantee that
timing constraints are met for real-time systems, the scheduling
analysis must consider the Worst-Case Execution Time (WCET)
of each task. This pessimistic assumption leads to a waste of sys-
tem resources, for two reasons: tasks rarely execute their longest
execution path, and the execution time analyses are usually very
pessimistic, substantially over-estimating the real WCET [3]. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0037-8/23/05. . . $15.00
https://doi.org/10.1145/3576842.3589168

10

5

30

60

J2

J1 J3

J4

B1

B2

B3

B4

Figure 1: An example of CFG with four basic blocks (B1–B4)
and four jump instructions (J1–J4). The number inside each
block represent the worst-case execution time of that block.

order to mitigate this problem, slack scheduling techniques have
been developed to exploit unused WCET budgets [2]. MCS also
targets this problem, with the aim to exploit over-provisioned re-
sources and take advantage of the criticality concept. For example,
the scheduler admits low criticality tasks during the slack time
generated by high criticality tasks that do not run for their entire
WCET [1]. However, the limitation of slack-reclaiming approaches
is that the actual execution time of a task is known to the scheduler
only after its completion. Instead, any info on the actual execution
time before completion may help in performing a more efficient
scheduling and allows more low criticality tasks to run.

In this article, we propose a compiler-based tool to automatically
instrument software tasks in order to provide run-time WCET
updates to the scheduler when non-worst-case paths are taken at
run-time. Thanks to these new information, the scheduler could
know, before the job completion, a more precise estimation of the
WCET and produce a more efficient schedule which increases the
total number of successfully completed tasks.

2 METHODOLOGY
A system is composed of 𝑛 tasks Γ = {𝜏1, 𝜏2, ...}, each task is iden-
tified by the tuple (𝐶𝑖 ,𝑇𝑖 , 𝐷𝑖 , 𝜒𝑖), where 𝐶𝑖 is the WCET, 𝑇𝑖 is the
period or inter-arrival time, 𝐷𝑖 is the relative deadline, 𝜒𝑖 the criti-
cality level. In this paper, we consider an implicit deadline system,
i.e., 𝐷𝑖 = 𝑇𝑖 . Regarding the criticality level, we consider a two-level
model: 𝜒𝑖 ∈ {LO, HI}. In the standard Vestal’s model with two criti-
cality levels, 𝐶𝑖 is composed of two elements. In the context of this
paper, we are not exploiting multiple values for the WCET, there-
fore, we consider 𝐶𝑖 a scalar value corresponding to the highest
criticality level WCET. Indeed, the criticality level, in this paper,
only defines the importance of the task in the system and it is not
used to provide different WCET estimations like the Vestal’s model.
A task generates a sequence of jobs, which represent the single
units of computation. The 𝑘-th job of 𝜏𝑖 is denoted by 𝜏𝑘

𝑖
and runs

for 𝑒𝑘
𝑖
< 𝐶𝑖 time units. When a job completes before its WCET, it

generates a slack time: 𝑆𝑘
𝑖
= 𝐶𝑖 − 𝑒𝑘

𝑖
.

AUTHORS' VERSION

https://doi.org/10.1145/3576842.3589168
https://doi.org/10.1145/3576842.3589168
https://doi.org/10.1145/3576842.3589168

IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Cagnizi, et al.

50 100 t

(a) Without run-time WCET update

50 100

55

t

(b) With run-time WCET update

Figure 2: The illustration of one hyperperiod of Example 2.1.

2.1 A compiler-based run-time WCET update
We explain our approach by following the example depicted in Fig-
ure 1. The task WCET is computed by finding the worst-case execu-
tion path of the Control-Flow Graph (CFG), which is B1-J2-B2-J4-
B4 for a WCET of 100 time units. At run-time, whenever a taken
branch of the CFG is not on the worst-case execution path, we al-
ready know that 𝑆𝑘

𝑖
> 0 at the future job completion. In our example,

if at run-time the branch taken is J1, we can immediately calculate
that 𝑒𝑘

𝑖
cannot be the WCET anymore but is upper-bounded by 45.

Consequently, at the time that 𝐽1 is taken, we have the information
that 𝑆𝑘

𝑖
> 55. If this information is immediately communicated to

the scheduler, the scheduler can exploit it and potentially change
the previous scheduling decisions.

Example 2.1. Let us consider the CFG of Figure 1 of a HI-crit task
𝜏HI having period and WCET𝑇HI = 𝐶HI = 100. On the same system,
a LO-crit task 𝜏LO with period 𝑇LO = 50 and WCET 𝐶LO = 10 is also
present. Without the run-time information, 𝜏LO misses the deadline,
because the scheduler has no information that the active job of 𝜏HI
would finish before its WCET 100, and thus scheduling 𝜏LO before
𝜏HI would be speculative and non-safe. If the branch J1 is taken,
𝑒
𝑗

HI = 45: in traditional systems, this is only known at 𝑡 = 45 thus
𝜏LO has no time to complete its execution. In our approach, 𝑒1

HI = 45
and 𝑆1

HI = 55 information is known at 𝑡 = 10 thus 𝜏HI can be safely
preempted and 𝜏LO scheduled immediately, allowing both tasks to
meet the deadline. Figure 2 depicts the two situations.

We implemented this approach by developing a pass in the LLVM
compiler. A pass is a compiler transformation modifying the so-
called Intermediate Representation (IR). Modifying the IR has the
advantage of being independent from the source programming
language and the target machine architecture. The pass runs on the
CFG of a task and injects, in each basic block that is not on the worst-
case execution path, the calculation of the generated slack and a
call instruction to a user-defined function of the operating system.
The slack is passed to this function, which is in charge to inform
the scheduler about the slack. More specifically, let 𝐵𝑖 be a basic
block and𝑤𝑖 its WCET. The pass runs for each 𝐵𝑖 and calculates the
cumulative WCET of each block: �̄�𝑖 = 𝑤𝑖 + max𝐵 𝑗 :𝐵𝑖 ∈succ(𝐵 𝑗) �̄� 𝑗 ,
where succ(·) are all the blocks successors of the argument. Note
that the 𝑤𝑖 of the first basic block of the CFG corresponds to the

0.0 0.2 0.4 0.6 0.8
UHI

0

50

100

150

200

250

300

350

of

 m
iss

ed
 LO

 d
ea

dl
in

es

with runtime WCET update
without runtime WCET update

Figure 3: Results of the simulation.

task WCET 𝐶𝑖 . The pass creates a global variable 𝑝 in the target
code which keeps track, at run-time, of the remaining WCET at
the end of the current block. Then, in each block 𝐵𝑖 , which is not
part of the worst-case execution path, the pass injects: (1) The
calculation of the generated slack: 𝑆𝑖 = 𝑝 −𝑤𝑖 , which requires 2
IR instructions; (2) A call instruction to a function implemented
in the OS, passing the 𝑆𝑖 as parameter. To eliminate unnecessary
updates of the variable 𝑝 , the assignment instruction 𝑝 = �̄�𝑘 −𝑤𝑘 is
injected in a basic block 𝐵𝑘 only if 𝐵𝑘 has more than one successor.
In summary, the total overhead is composed of 3 IR instructions for
each modified basic block having only one successor, while in the
case of multiple successors it can be up to 4.

2.2 Scheduling algorithm
We developed a single-core scheduling algorithm that is able to
exploit the run-time WCET update. The scheduling policy is based
on a hierarchical strategy: the tasks are split in two fixed-priority
classes, LO and HI. Then, a traditional Earliest Deadline First (EDF)
is applied in each class. The HI-crit tasks, having higher priority,
always run and preempt LO-crit tasks. When no LO-crit workload is
ready to run, LO-crit tasks are scheduled according to EDF. When
the task is instrumented by the LLVM pass, the update function
receiving the slack value 𝑆 performs the following actions: (1) Check
whether a task 𝜏𝑥 with 𝜒𝑥 = LO and 𝐶𝑖 < 𝑆 exists; (2) If such a
task exists, it is promoted to HI for one job execution; (3) The EDF
scheduling policy is then reapplied by considering the new HI task.

3 EXPERIMENTAL RESULTS
We evaluated the performance of our approach via simulation. We
simulated the behavior of an operating system that uses our pro-
posed scheduling algorithm and implements the WCET updating
strategy, comparing it to the normal scheduling. In particular, we
implemented the standard EDF scheduler prioritized with criticali-
ties and, then, our version with the WCET updater, evaluating the
performance difference, in terms of scheduled jobs, between them.

The simulations are parameterized by the utilizations𝑈HI and
𝑈LO defined in the usual way as 𝑈𝑥 =

∑
𝜏𝑖 :𝜒𝑖=𝑥

𝐶𝑖

𝑇𝑖
. The number

Poster Abstract: Run-time Dynamic WCET Estimation IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA

of tasks is fixed at 5 LO-crit and 5 HI-crit. We perform a small
experiment, not reported here for lack of space, that shows that the
number of tasks has substantially no impact. We keep𝑈LO = 1 so
that there is always a LO-crit task ready to run, while we varied𝑈HI

from 0 to 1. The averaged results of 20 000 simulations are depicted
in Figure 3, that shows the number of jobs not able to complete
their execution. The benefits of our approach are clearly visible as
the utilization increases, and the number of jobs unable to complete
the execution is reduced of 20% when𝑈HI approaches 1.

4 CONCLUSIONS AND FUTUREWORKS
We addressed the problem of WCET over-estimation of real-time
systems by providing a compiler-based tool that instruments the
code to update at run-time the scheduler with the new WCET for
the current job execution. We have tested our methodology on a
simple scheduling algorithm obtaining a reduction up to 20% of the
deadline misses. This tool opens several possible future research
lines, including the study of other scheduling algorithms and the
evaluation on a real board.

ACKNOWLEDGMENTS
This work has received funding from the EU High-Performance
Computing Joint Undertaking (JU) under grant agreement No.
101033975 (EUPEX), European Space Agency (OSIP no. 4000133770
/ 21 / NL / MH / hm), and ICSC National Research Center in High-
Performance Computing.

REFERENCES
[1] Taeju Park and Soontae Kim. 2011. Dynamic scheduling algorithm and its schedu-

lability analysis for certifiable dual-criticality systems. In ACM International Con-
ference on Embedded Software (EMSOFT). IEEE, Taipei, Taiwan, 253–262.

[2] Behnaz Ranjbar, Tuan D. A. Nguyen, Alireza Ejlali, and Akash Kumar. 2021. Power-
Aware Runtime Scheduler for Mixed-Criticality Systems on Multicore Platform.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 40,
10 (2021), 2009–2023.

[3] Federico Reghenzani, Luca Santinelli, and William Fornaciari. 2020. Dealing with
Uncertainty in PWCET Estimations. ACM Trans. Embed. Comput. Syst. 19, 5,
Article 33 (sep 2020), 23 pages. https://doi.org/10.1145/3396234

[4] Steve Vestal. 2007. Preemptive Scheduling of Multi-criticality Systems with Vary-
ing Degrees of Execution Time Assurance. In 28th IEEE International Real-Time
Systems Symposium (RTSS 2007). IEEE, Tucson, AZ, USA, 239–243.

https://doi.org/10.1145/3396234

	Abstract
	1 Introduction
	2 Methodology
	2.1 A compiler-based run-time WCET update
	2.2 Scheduling algorithm

	3 Experimental results
	4 Conclusions and future works
	Acknowledgments
	References

