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Abstract In a robust approach to model fitting for the cluster weighted model, many
choices are to be made by the statistician: specifying the shape of the clusters in
the explanatory variables, assuming (or not) equal variance for the errors in the re-
gression lines, and setting hyper-parameter values for the robust estimation to be
protected from outliers and contamination. The most delicate hyper-parameter to
specify is perhaps the percentage of trimming, or the amount of data to be excluded
from the estimate, to ensure reliable inference. In this work we introduce diagnos-
tic tools to help the professional, or the scientist who needs to group the data, to
make an educated choice about this hyper-parameter, after a first exploration of the
resulting model space.
Abstract Nella stima robusta di un cluster weighted model, lo statistico deve fare
molte scelte: specificare la forma dei cluster nelle variabili esplicative, assumere
(o meno) varianza uguale per gli errori nelle linee di regressione e impostare i va-
lori degli iper-parametri per la stima robusta, per evitare la distorsione generata
da valori anomali e contaminazione. L’iper-parametro più delicato da specificare
è la percentuale di trimming, ovvero la quantità di dati da escludere nella stima
per garantirne l’affidabilità. In questo lavoro introduciamo specifici strumenti dia-
gnostici per aiutare il professionista, o lo scienziato che ha bisogno di classificare
i dati, a compiere una scelta ragionata a riguardo di tale iper-parametro, anche in
base ad una prima esplorazione dello spazio delle soluzioni.
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1 Introduction

Clustering is a well known ill-posed problem, where the number of groups, their
shape, and their parameters depend, in general, on a multiplicity of subjective
choices [4]. Generally, selecting the unknown number of groups G defines the most
challenging task. The most popular method adopted in model-based clustering for
tackling the problem is based on penalized likelihoods, but the presence of data
contamination and outliers could severely undermine such powerful criteria. In ad-
dition, when it comes to cluster weighted modeling, many other choices need to be
performed: whether to constrain the cluster shapes in the explanatory variables, to
impose or not equal variances in the regression errors, how to set hyper-parameters
for discarding spurious solutions and how to protect against outliers.

We introduce here a semiautomatic procedure for selecting a reduced set of solu-
tions, extending to the cluster weighted model the methodology developed in [1] for
the Gaussian mixture models. Such an extension is far from being straightforward.
A new penalized likelihood criterion will be devised to account for the constraint
imposed on the regression term and on the covariates, varying trimming levels and
number of cluster. The remainder of the article proceeds as follows. Section 2 pro-
vides a brief overview of the Cluster Weighted Model (CWM) and its robust es-
timation. Section 3 reports the two-stage monitoring strategy, based on (i) a first
exploration of the model space with a dedicated information criterion and (ii) usage
of new “trimming-based” tools, tailored for CWM. Section 4 concludes the paper
by showcasing the validity of our proposal within a controlled experiment.

2 The cluster weighted model

Let X be a vector of explanatory variables with values in Rd , and let Y be a response
or outcome variable, with values in R. Suppose that the regression of Y on X varies
across the G levels (group or clusters) of a categorical latent variable. The CWM,
introduced in [3], decomposes the joint p.d.f. of (X,Y ) in each component of the
mixture as the product of the marginal and the conditional distributions as follows

p(x,y;θ) =
G

∑
g=1

πg p(y|x;ξ g)p(x;ψg). (1)

In the cluster-weighted approach the marginal distribution of X and the conditional
distribution of Y |X = x may have different scatter structures in each group. In this
work, we focus on the linear Gaussian CWM:

p(x,y;θ) =
G

∑
g=1

πgφ(y;b′
gx+b0

g,σg)φd(x; µg,Σ g), (2)

where φd(·; µg,Σ g) denotes the density of the d-variate Gaussian distribution with
mean vector µg and covariance matrix Σ g, and Y is related to X by a linear model,
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that is, Y = b′
gx+b0

g+εg with εg ∼ N(0,σ2
g ), bg ∈Rd , b0

g ∈R, ∀g = 1, . . . ,G. Given
a sample of n i.i.d. pairs drawn from (Y,X), the ML estimation of the linear Gaussian
CWM is based on the maximization of the following log-likelihood function

L =
n

∑
i=1

log

[
G

∑
g=1

πgφ(yi;b′
gxi +b0

g,σ2
g )φd(xi; µg,Σ g)

]
. (3)

Unfortunately, ML inference on models based on normal assumptions suffers from
lack of robustness. Another important concern is the unboundedness of the likeli-
hood function to be maximized. To overcome these issues, a robust version of the
CWM has been presented in the literature by considering impartial trimming and
constrained estimation of the scatter variances [2]. The robust approach to CWM
(CWRM) is based on the maximization of the trimmed log-likelihood function [6]

Ltrimmed =
n

∑
i=1

z(xi,yi) log

[
G

∑
g=1

πgφ(yi;b′
gxi +b0

g,σ2
g )φd(xi; µg,Σ g)

]
, (4)

where z(·, ·) is a 0-1 trimming indicator function that tells us whether observation
(xi,yi) is trimmed off (z(xi,yi)=0), or not (z(xi,yi)=1). A fixed fraction α of obser-
vations is unassigned by setting ∑n

i=1 z(xi,yi) = %n(1−α)', and the parameter α
denotes the trimming level.

We introduce two constraints on the maximization in (4). The first one concerns
the set of eigenvalues {λl(Σ g)}l=1,...,d of the scatter matrices Σ g by imposing

λl1(Σ g1)≤ cX λl2(Σ g2) for every 1 ≤ l1 )= l2 ≤ d and 1 ≤ g1 )= g2 ≤ G. (5)

The second constraint refers to the variances σ2
g of the regression error terms, by

requiring
σ2

g1
≤ cε σ2

g2
for every 1 ≤ g1 )= g2 ≤ G. (6)

The constants cX and cε , in (5) and (6) are finite (not necessarily equal) real num-
bers, such that cX ≥ 1 and cε ≥ 1. They automatically guarantee that we are avoiding
the |Σ g|→ 0 and σ2

g → 0 degenerate cases.

3 Monitoring the setting of CWM hyper-parameters

We propose a semi-automatic approach to provide adaptive values for the hyper-
parameter α involved in the robust fitting of CWMs. By building upon previous
work developed for robust clustering [7], a two-stage monitoring procedure is de-
vised. First off, for each trimming level α ∈ {0, . . . ,αMAX} (αMAX = 0.15 in the
analysis of Section 3) the most appropriate model, varying G, cX and cε , is deter-
mined. Secondly, exploratory tools are employed to compare solutions for different
levels of α , providing aid in assessing the true contamination level present in a
dataset.
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In details, in the first phase a constrained estimation criterion is devised for com-
paring models when α is kept fixed. As in the well known Bayesian Information
Criterion (BIC =−2L +νG) and along the lines of [1], the dedicated penalty term
νG depends on the number of free parameters in the model:

νG ={(G−1)+Gp+G(p+1)+ (7)
1+((Gp−1)+Gp(p−1)/2)(1−1/cX )+

1+(G−1)(1−1/cε)} log(,n(1−α)-) .

The first three terms in (7) respectively refer to the (G−1) mixture weights, the Gp
cluster means of the covariates, and the G(p+1) beta coefficients for the regression
bg + b0

g, g = 1, . . . ,G. The second group of terms is related to the modelling of X,
where we have 1 free eigenvalue, Gp−1 constrained eigenvalues and Gp(p−1)/2
rotation matrices for Σ g. Except the first one, all terms are multiplied by (1−1/cX )
to take into account the enforced constrained estimation. Lastly, in the third line of
(7), the part relative to modelling Y |X induces one free σ2

g and G− 1 constrained
σ2

g . Notice that, while in [1] the authors distinguish between rotation and eigenvalue
parameters multiplying only the latter by the factor (1−1/cX ), we opt here for
penalizing all the variance parameters, as rotation looses its meaning for cX → 1.

In the second phase, we extend the monitoring introduced in [7], where a plot of
the Adjusted Rand Index (ARI) between consecutive cluster allocations for a grid
of α values is proposed, to determine an optimum trimming level. This tool can
be effective in detecting noise in the form of bridges, where only a correct level of
trimming uncovers the true underlying structure. In the case of scattered noise, how-
ever, the clustering structure could evolve very smoothly from an initial partition,
obtained without trimming, and a pretty different final partition, yielding an ARI
pattern between consecutive solutions with no apparent abrupt change. Motivated
by this argument, we widen the monitoring tools accompanying the ARI plot with
regression coefficients and mixture weights paths, to highlight specific CWM fea-
tures. Further, we are interested in monitoring the CWM validation measure based
on the decomposition of the total sum of squares T SS = BSS+RWSS+EWSS [5].
BSS is the (soft) between-group sum of squares, while EWSS is the portion of the
(soft) within-group sum of squares WSS explained by the model, thanks to the co-
variate, and RWSS is the residual portion of WSS. In terms of cluster validation,
therefore, BSS can be seen as a separation measure on the Y -axis, and WSS can be
seen as a cluster compactness measure. To overcome the non-identifiability issue
due to invariance of mixture components, a relabeling strategy based on data depth
[8] is adopted. In this way, component-dependent metrics, estimated varying trim-
ming levels, are directly comparable: an application is provided in the next section.

4 Illustrative experiment

A dataset with 180 genuine samples is generated according to (2) with the following
parameters:
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π = (0.5,0.5)′, µ1 = (2,2)′, µ2 = (5,5)′, Σ 1 = Σ 2 = I2

b0
1 = 30, b0

2 = 50, b1 = (−1,−1)′ b2 = (10,10)′ σ2
1 = σ2

2 = 1, (8)

in addition, 20 uniformly distributed outliers are appended to the uncontaminated
observations, resulting in a total of n= 200 data units with a true contamination level
equal to 0.1. In the first phase, models with cX ,cε ∈ {1,4,16,64} and G = {2,3,4}
are fitted to the considered dataset: Table 1 reports the best model, selected by min-
imizing the information criterion introduced in the previous section (denoted with
TBIC in the table), conditioning on the trimming value α . Notice that, whenever α
is set below the true contamination rate, some erroneous solutions are preferred: G is
selected to be greater than 2, with spurious groups fitting the portion of untrimmed
noise. The second phase of our procedure encompasses the plots reported in Figure

Table 1 Best models, as a function of G, cX and cε , selected via TBIC minimization conditioning
on the trimming value α (only a subset of the entire α grid considered in the experiment is reported)
for the first phase of the monitoring procedure.

α 0.00 0.03 0.06 0.09 0.10 0.11 0.12 0.13 0.14 0.15
G 4 4 4 3 2 2 2 2 2 2

cX 4 4 64 4 4 4 4 4 4 4
cε 64 64 64 64 1 1 1 1 1 1

T BIC 2801.82 2363.97 2157.08 1998.03 1940.30 1885.77 1848.96 1812.12 1776.44 1741.11

1: by monitoring the changes in mixing proportions, regression parameters, total
sum of squares and ARI between consecutive cluster allocations the analyst may
reasonably observe how the solutions stabilize as soon as α is higher than the true
contamination level 0.1. Particularly, given the ARI almost constant high value (bot-
tom right plot), this metric alone would not have been sufficient to properly address
the complexity of the problem.

5 Conclusions

The present article provides a two-stage monitoring procedure for aiding in the
hyper-parameters selection when fitting robust CWM to contaminated datasets. We
opted for providing the user with sensible information to make the required tun-
ing decisions: ultimately an optimal tuning of model parameters should also depend
on knowledge about the subject matter background and the aim of clustering. The
procedure takes over and extends the state-of-the-art methods proposed for robust
clustering by including a wider range and component-dependent metrics, essential
for thoroughly understanding the true data generating mechanism.
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Fig. 1 Monitoring the mixing proportions (top left plot), regression parameters (top right plots),
total sum of squares decomposition (bottom left plot) and ARI between consecutive cluster al-
locations (bottom right plot, please be aware of the Y axis range) as a function of the trimming
proportion α .
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