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dimensionalità: un approccio con regolarizzazione di tipo
group-lasso

Francesca Ieva, Andrea Cappozzo, and Giovanni Fiorito

Abstract Linear mixed modeling is a well-established technique widely employed
when observations possess a grouping structure. Nonetheless, this standard method-
ology is no longer applicable when the learning framework encompasses a multi-
variate response and high-dimensional predictors. To overcome these issues, in the
present paper a penalized estimation procedure for multivariate linear mixed-effects
models (MLMM) is introduced. In details, we propose to regularize the likelihood
via a group-lasso penalty, forcing only a subset of the estimated parameters to be
preserved across all components of the multivariate response. The methodology is
employed to develop novel surrogate biomarkers for cardiovascular risk factors,
such as lipids and blood pressure, from whole-genome DNA methylation data in
a multi-center study. The described methodology performs better than current state-
of-art alternatives in predicting a multivariate continuous outcome.
Abstract I modelli ad effetti misti sono ampiamente utilizzati nell’analisi di dati
che possiedono una struttura a gruppi. Tuttavia, tale metodologia non è appli-
cabile in contesti dove la variabile risposta è multidimensionale ed il numero di
regressori elevato. Nel proporre una soluzione ai sopracitati problemi, nel pre-
sente lavoro viene introdotta una procedura di stima penalizzata per modelli ad
effetti misti con risposta multivariata. In dettaglio, si propone di regolarizzare la
verosimiglianza tramite una penalità di tipo group-lasso, forzando solo un sottoin-
sieme dei parametri stimati ad essere diverso da 0 per ogni componente della vari-
abile risposta. La metodologia proposta viene poi utilizzata per creare nuovi sur-
rogati per fattori di rischio cardiovascolare, come lipidi e pressione sanguigna,
dai dati di metilazione del DNA dell’intero genoma in uno studio multicentrico.
L’analisi cosı̀ condotta dimostra risultati migliori rispetto alle attuali alternative
nella previsione di un outcome continuo multivariato.
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1 Introduction and motivation

Multivariate regression performs joint learning of a multidimensional response on
a common set of predictors. When samples possess a hierarchical/temporal struc-
ture, data independence cannot be assumed a-priori and thus a Multivariate Mixed-
Effects Model (MLMM) must be adopted [5]. An MLMM framework thus allows
for the inclusion of a grouping structure within the model specification, a situa-
tion that often arises in multi-centric and/or longitudinal studies. With the advent of
modern technologies, it is more and more common nowadays that in such studies
a huge number of features is recorded, often greatly exceeding the available sam-
ple size. To this extent, regularization methods based on penalized estimation have
been fruitfully adopted to overcome the resulting over-parameterization issue [7]. In
particular, for univariate mixed-effects models, `1- penalization schemes have been
devised to perform selection of fixed effects when dealing with high-dimensional
data [4, 3]. By suitably leveraging the methodology proposed in [3], we extend it to
the multivariate response framework including a group-lasso penalty in the model
specification.

The remainder of the paper proceeds as follows: in Section 2 we introduce our
new proposal and we discuss its main methodological aspects. Section 3 presents an
application of our model in creating surrogate scores based on blood DNA methy-
lation. Section 4 summarizes the novel contributions and highlights future research
directions.

2 Group-lasso regularized mixed-effects multivariate regression

In an MLMM framework, the data-generating process for the n j units in group j,
with ∑

J
j=1 n j = N and J the total number of groups, is assumed to be as follows:

YYY j = XXX jBBB+ZZZ jΛΛΛ j +EEE j, (1)

where YYY j, XXX j, ZZZ j respectively define the response, fixed and random effects de-
sign matrices. Further, BBB denotes the matrix of fixed coefficients, ΛΛΛ j the matrix
of random effects in group j and EEE j the group specific error term. The following
distributions are assumed for the random quantities in (1):

vec(ΛΛΛ j)∼N (000,ΨΨΨ), vec(EEE j)∼N (000,ΣΣΣ ⊗ IIIn j), j = 1, . . . ,J

with vec(·) denoting the vec operator, ΨΨΨ is a positive semidefinite matrix incorpo-
rating variations and covariations between the responses and the random effects and
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ΣΣΣ is a covariance matrix capturing column-wise dependence in the multivariate er-
ror term EEE j. Thereupon, the distribution of the vectorized response can be written
as follows:

vec(YYY j)∼ N
(
(IIIr⊗XXX j)vec(BBB) ,(IIIr⊗ZZZ j)ΨΨΨ (IIIr⊗ZZZ j)

′
+ΣΣΣ ⊗ IIIn j

)
, j = 1, . . . ,J.

When dealing with high-dimensional data, the number of regressors (i.e., the rows
of matrix BBB) is generally much larger than the sample size N. Therefore, in order
to still be able to make sensible inference on the parameters θθθ = {BBB,ΣΣΣ ,ΨΨΨ}, we
propose to maximize the following penalized log-likelihood:

`pen(θθθ) =
J

∑
j=1

logφ

(
vec(YYY j) ,(IIIr⊗XXX j)vec(BBB) ,(IIIr⊗ZZZ j)ΨΨΨ (IIIr⊗ZZZ j)

′
+ΣΣΣ ⊗ IIIn j

)
+

−λ

[
(1−α)

r

∑
c=1

p

∑
l=2

b2
lc +α

p

∑
l=2
||bbbl.||2

]
,

(2)

where blc and bbbl. denote the element in position (l,c) and the l-th row of matrix
BBB, respectively. The penalty in (2) behaves like the lasso but on a whole group of
coefficients. In details, for each covariate, the estimated parameters are either all
zero or none are zero, and this behavior is preserved across all components of the
response variable. This characteristic is particularly desirable when it comes to vari-
able selection in multivariate regression, since features that are jointly related to
the multidimensional response are automatically identified. The amount of shrink-
age is determined by the penalty factor λ , whilst the mixing parameter α controls
the weight associated to ridge and group-lasso regularizers. Maximization of (2)
is performed via a tailored EM-type algorithm [1], in which standard fixed-effects
routines are conveniently exploited within the M-step.

The devised framework is employed to build a multidimensional predictor of
systolic and diastolic blood pressure, LDL and HDL cholesterol based on blood
DNA methylation (DNAm): results are reported in the next section.

3 Application to DNAm biomarkers creation

DNAm biomarkers are obtained by regressing blood measured quantities (response
variables) on methylation levels within CpG sites in the DNA sequence (dependent
variables) [6]. The aim of this section is to build a multivariate DNAm biomarker for
cardiovascular risk factors and comorbidities, considering Diastolic Blood Pressure
(DBP), Systolic Blood Pressure (SBP), High Density Lipoprotein (HDL) and Low
Density Lipoprotein (LDL) as responses, regressing them onto 13449 CpG sites
(top 1% p-value based ranking) adjusting for sex and age. The employed dataset
comes from the Italian component of the European Prospective Investigation into
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Fig. 1 Observed vs fitted scatterplots for the estimated biomarkers, namely log-transformed Di-
astolic Blood Pressure (DBP), High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL)
and Systolic Blood Pressure (SBP), EPIC Italy test set. Linearly smoothed conditional means and
associated standard deviations are superimposed in each facet.

Cancer and Nutrition (EPIC) study [2], comprised of J = 4 geographical sub-cohorts
identified by the centre of recruitment. We employ Ntr = 401 training samples to fit
the model in (2) including a random intercept component, validating its performance
on Nte = 173 test units. The root mean squared error (RMSE), computed on the
test set for the four-dimensional response, is reported in Table 1. Together with our
proposal (denoted as MLMM Group-lasso in the table), results for two competing
methods are reported, namely fixed-effect group lasso and univariate elastic-net [8].
For each method, the penalty factor λ was tuned via 10-fold CV on the training set,
while the the mixing parameter α was kept fixed and equal to 0.5.

As it clearly stands out from Table 1, our proposal achieves better predictive per-
formances for all components in the response variable with respect to the competing
models. The reason behind this result is two-fold. On one hand MLMM Group-
lasso performs better than its fixed-effects counterpart as the heterogeneity induced
by the centre of recruitment is properly taken into account by means of a random
intercept. On the other hand, solving the four regression problems jointly and im-
posing a group structure on the coefficients leads to better prediction performance
than fitting four univariate models separately as done for the elastic-net procedure.
The good predictive performance of the proposed model is highlighted in Figure
1, where we report for each biomarker the observed vs fitted scatterplots. All com-
ponents of the response exhibits positive linear correlation between measured and
predicted values in the test set, with Pearson’s correlation coefficients always higher
than 0.5.

The employment of the MLMM Group-lasso not only produces moderate im-
provements in terms of prediction accuracy, but it is also supported by biological
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Table 1 Root Mean Squared Error (RMSE) for different penalized regression models, EPIC Italy
test set. Bold numbers indicate lowest RMSE for each component of the four dimensional response.

Model DBP HDL LDL SBP
MLMM Group-lasso 0.102 0.2139 0.278 0.1172
Group-lasso 0.112 0.2238 0.286 0.1229
Univariate elastic-net 0.1064 0.2292 0.2884 0.1271

reasons. In fact, the pleiotropic effect suggests that multiple correlated phenotypes
will likely affect the same set of CpG sites, motivating the adoption of a group-lasso
penalty. Furthermore, DNAm biomarkers creation stands on the rationale that the
resulting surrogate should be study-invariant: by incorporating a random intercept
in the model specification the center effect can still be captured, while maintaining
generalizability of the method to external cohorts.

4 Conclusion

The present work has introduced a novel penalized mixed-effects multivariate re-
gression framework, able to model a multidimensional response with high-dimensional
covariates and grouped data structure. By means of a group-lasso regularizer, we
have achieved excellent predictive accuracy when creating a DNAm surrogate of
cardiovascular risk factors, outperforming state-of-the-art alternatives. Such surro-
gates possess some advantages over their blood-measured counterparts, as they can
directly take into account genetic susceptibility and subject specific response to risk
factors.

In the devised framework we have implicitly assumed low-dimensionality in the
response variable. A direction for future research may concern the inclusion of cus-
tom penalties to cope with situations in which both the response and the design
matrix are high-dimensional. Feasible solutions are currently being investigated and
they will be the object of future work.
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