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ABSTRACT
In this position article, we motivate the necessity to introduce

three software methods in spacecraft computing platforms in order

to enable to use COTS components: SIHFT, mixed-criticality, and

probabilistic timing analysis. We investigate the benefits and the

drawbacks of these techniques, especially in terms of safety, by also

analyzing the standards to identify the current limitations that do

not allow such techniques to be used. Finally, we recap current and

future works, highlighting possible changes to standards.
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1 CHALLENGES IN COTS-BASED CRITICAL
SYSTEMS

The design and implementation expenses of nowadays unmanned

spacecraft and satellites are dominated by electronics, which is a

difficult-to-predict and, often, underestimated cost [17]. The in-

creasing demand for computational power by modern applications

requires complex computational platforms, such as multi-core and

heterogeneous architectures. Several Commercial-Off-The-Shelf

(COTS) solutions already exist that implement such advanced fea-

tures, and space agencies have shown great interest in integrating

them [18, 20]. However, COTS components do not often have the

necessary safety properties, in terms of reliability and timing. Thus,

their use in critical scenarios presents numerous challenges, es-

pecially for processors. Indeed, due to safety requirements, COTS

platforms must ensure system correctness, which can be split into
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logical correctness and temporal correctness. The former requires

the output to be correctly computed, while the latter requires the

output to be produced within given time constraints.

1.1 Logical correctness
Guaranteeing logical correctness starts with the software develop-

ment and testing phases. These human-based processes are prone

to errors, which may lead to software bugs and hardware design

defects. In this article, we, instead, focus on natural random faults –

particularly, Single Event Upsets (SEUs) – and we voluntarily ne-

glect the discussions related to human-caused faults, which are not

the subject of this work. Random hardware faults are unpredictable

and their sources are difficult to manage. Indeed, they are caused by

three main sources: cosmic rays, chip package impurities, and other

radiation sources exist. Cosmic rays generate heavy-ion particles

that hit the memory cell, material impurities in the chip package

may be composed of radioactive elements which decay and pro-

duce radiation, and other nuclear radiation sources. These events

cause SEUs, which are usually modeled as a bit-flip in a memory

component. In space, due to the lack of Earth’s atmosphere and

magnetic field, these problems are exacerbated. On unprotected

devices, several SEUs are experienced during one day [5, 28].

It is possible to reduce the frequency of these faults, but not to

eliminate them. Indeed, a mechanical shield against cosmic rays

can be implemented but the reduction has a positive correlation

with the weight of the shield, in contrast with the goal of reducing

weight in aerospace applications. The amount of package impurities

can be reduced by improving manufacturing processes, but it is

still impractical to eliminate all of them. Other radiation sources

are often difficult to control and have the same shielding problem.

Consequently, we can take (costly) countermeasures to reduce the

source of the faults but we still need to consider the probability of

them occurring and take actions to reduce the safety risk.

To increase the reliability of safety-critical systems to such ran-

dom faults, hardware solutions are traditionally employed. Redun-

dancy, at different levels, is the most common way to achieve re-

silience. The use of specialized hardware techniques is, however,

in contrast to the goal of introducing COTS in critical systems. On

the other hand, COTS components are general-purpose hardware

not usually designed to include fault tolerance elements [24].

1.2 Temporal correctness
Almost all safety-critical embedded systems are also real-time sys-
tems. Indeed, the output must be correct and also produced within

given time constraints. For instance, a fly-by-wire controller must
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Figure 1: Example of four SIHFT techniques.

obviously produce correct output, but it should do that also in a

timed way, otherwise, the flight safety can be compromised. Most

of the certification processes require to formally prove the satisfac-

tion of these constraints under any operational conditions. Such a

proof requires to perform a scheduling analysis to verify that all

software tasks are able to finish by their deadlines. Performing a

correct scheduling analysis requires knowledge of the hardware

architecture timing characteristics and a model of the software

behavior. The latter is for sure a challenging analysis, but many

techniques have been developed in the last decades. This is not

the case of the hardware model: the more the complexity of the

hardware architecture, the more difficult is to obtain a realistic esti-

mation of the hardware timing characteristics and apply them to

the software. In particular, the Worst-Case Execution Time (WCET)
is the software metric that represents the maximum execution time

that a software task needs to complete in the worst condition. Its

estimation depends on the software itself but also on the hardware

timing. Obtaining the exact value of the WCET with static (ana-

lytical) methods is not usually feasible in modern computational

platforms, due to the high computational complexity of the analysis.

Let us call𝐶𝑖 the estimation of the real WCET𝐶𝑖 of a task 𝜏𝑖 . Then,

the estimation is said to be safe if 𝐶𝑖 ≥ 𝐶 . The estimation is said to

be tight if 𝐶𝑖 −𝐶 is not too large. The term is voluntarily vague be-

cause it depends on the specific scenario. Having a non-tight WCET

is not a safety issue but it makes the system inefficient, wasting

computing resources that cannot be allocated to other tasks.

2 ENABLING TECHNOLOGIES
To introduce COTS systems in safety-critical applications, it is

necessary to guarantee logical and temporal correctness, which is

challenging due to the nature of the COTS itself. The next sections

provide an overview of three technologies that can enable the use

of COTS for safety-critical systems, particularly space systems.

2.1 SIHFT
Approaches that implement fault tolerance to hardware faults in

software are called Software-Implemented Hardware Fault Tolerance
(SIHFT) and include:

• Fault detection techniques, such as range checks of the in-

put/output values, plausibility checks of the output values,

error detection codes, an external monitoring device, control

flow monitoring, and watchdogs. The goal of the detection

mechanisms is to identify, as soon as possible, the occurrence

of a fault by looking at the temporal and logical properties

of the running software tasks. In some cases, fault detection

can also be provided by the hardware. For instance, when a

SEU in a pointer variable causes a memory violation access.

• Fault recovery techniques, which are categorized in space
redundancy and time redundancy. The former includes task

replicas and standby tasks strategies: each task runs repli-

cated multiple times (possibly on different processing units);

then, a voting procedure decides which is the correct re-

sult among the task replicas. Fault detection techniques

can also be used to determine which one is the correct

output. The standby strategy consists in performing the

full execution of the replicated tasks only if it is necessary.

The time redundancy category, instead, includes approaches

that react to a fault detected by the fault detection. In this

case, the most common approaches are: re-execution (some-

times called retry mechanism), checkpoint/restore (some-

times called checkpoint/restart), recovery blocks, code cor-

recting codes, and forward and backward error recovery.

Figure 1 shows four examples of fault recovery approaches imple-

mented as SIHFT: (a) a triple modular redundancy scenario, where

the three replica tasks run on different processors and a voting

procedure is performed; (c) a stand-by strategy, where the replica

task performs the computation but not the output phase, unless a

fault occurs; (b) a time redundancy mechanism, where tasks are

re-executed if a fault is detected; and (d) the checkpoint/restore.

Impact. SIHFT approaches are attractive to implement fault tol-

erance against hardware faults. Indeed, the idea of SIHFT is to avoid

the use of specialized hardware designs to implement fault toler-

ance. Moving the hardware fault tolerance to the software layer

has many advantages: the reduction of the design and implementa-

tion costs of the hardware and more flexibility in the development

process, because any modification requires a software (and not

hardware) change. Consequently, SIHFT enables the use of COTS

computing platforms in critical scenarios. The main disadvantage

of SIHFT is the increased computational workload. This overhead

often consists of more than 100% of the original workload utiliza-

tion, for each replica or re-executed portion. This disadvantage is

also shared by hardware fault tolerance, which may have a > 100%

overhead in terms of power, performance, and area [6]. Therefore,

SIHFT remains very attractive even considering this overhead.

2.2 Mixed-Criticality Systems
Mixed-Criticality (MC) is a concept born in academia at the begin-

ning of the 2000s, that has been interpreted with different mean-

ings throughout the years. Vestal’s paper in 2003 [29] proposed the

most common MC model. The idea is the following: because the

static estimation of a safe WCET value 𝐶𝑖 usually leads to over-

pessimistic estimations, we estimate several values for the WCET –

i.e., 𝐶1

𝑖
,𝐶2

𝑖
, ...,𝐶

𝜒𝑖
𝑖

– at different levels of assurances depending on

the criticality level of the task 𝜒𝑖 . For instance, in a two-criticality
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Figure 2: An example of execution of a MC workload com-
posed of two tasks.

level system, we have HI and LO-criticality tasks. Let us assume

that the system is composed of only two periodic tasks, 𝜏𝐻𝐼 and

𝜏𝐿𝑂 , having period 50, LO-criticality WCET 𝐶𝐿𝑂
𝐿𝑂

= 𝐶𝐿𝑂
𝐻𝐼

= 20, and

HI-criticality WCET𝐶𝐻𝐼
𝐻𝐼

= 40. Two cases, depicted in Figure 2, may

happen at run-time: 𝜏𝐻𝐼 completes before 𝐶𝐿𝑂
𝐻𝐼

(the first period in

the figure), or 𝜏𝐻𝐼 completes after 𝐶𝐿𝑂
𝐻𝐼

and before 𝐶𝐻𝐼
𝐻𝐼

(the second

period in the figure). In the former case, we can admit also 𝜏𝐿𝑂
in the schedule, while in the latter we have to drop 𝜏𝐿𝑂 to allow

𝜏𝐻𝐼 to run. This example is only a trivial case: several scientific

works were inspired by Vestal’s article and they are surveyed in a

constantly-updated survey by Burns et al. [3, 4].

While these approaches showed effectiveness in improving the

system utilization and reducing the resource waste caused by the

WCET overestimation, they have never been widely used in in-

dustry. Besides the applicability problems in common to many

academic real-time scheduling algorithms, the MC concept used

in academia diverged compared to the MC used in industry and

approved by standards [8]. The main objection is related to the de-

pendence created between the tasks of different criticality. Indeed,

in the example of Figure 2, a task of HI-criticality WCET caused

the failure of a task of LO-criticality. This sort of dependence is not
usually allowed by standards.

Impact. Consolidating the computing units is a key goal to re-

duce the cost of avionics in aerospace applications. The cost has

to be intended not only as the monetary cost of the system itself,

but also as a series of non-functional metrics that impact the fea-

sibility of the whole system. In many scenarios, the actual system

utilization of computing devices is very low in practice and for

most of the operational time, because the WCET of tasks is often

overestimated and almost never occurs in practice. This has the

effect of observing the system to be idle for most of the time, wast-

ing computing resources and related metrics (power consumption,

number of systems needed, etc.). MC can partially solve this issue,

thanks to the multiple estimations of the WCET values.

2.3 Probabilistic timing analysis
The necessity to reduce the WCET pessimism led the researcher

to study, since 2001 [7, 2], the possibility to estimate the WCET

with probabilistic methods. In particular, the measurement-based

methods attracted significant interest in both academia and industry

thanks to the easiness of the implemented approach. They are

usually based on the statistical theory named Extreme Value Theory

(EVT). The estimation process is the following: a large set of time

measurements of the task is collected and a statistical estimator

provides the probability distribution of the following expression:

𝑝 = 𝑃 (E > 𝐶) where 𝑝 is the violation probability, 𝐶 is a WCET

threshold and E is the random variable representing the execution
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Figure 3: An example of a pWCET distribution curve com-
pared to real and statically-estimated WCETs.

time. The key concept of EVT is that the tail of the distribution

of an observed phenomenon is always distributed according to a

well-known distribution, named Generalized-Extreme Value (GEV)

distribution, independently from the original distribution of the

input samples. This mathematical result can be mapped to the

concept of execution time: independently from the execution time

distribution, the WCET is always distributed according to the GEV.

Hence, the use of EVT allows the estimation of very small values

for p (e.g., 10
−9

or even lower) without the need to observe billions

of samples to build the cumulative distribution function.

The output of this WCET estimation process is therefore the

pWCET, which is no more a scalar value like the WCET, but a

statistical distribution from which it is possible to derive the WCET

𝐶 given a required violation probability 𝑝 or, vice versa, the violation

probability 𝑝 given a desiredWCET𝐶 . An example of the probability

density function of this distribution is depicted in Figure 3.

Impact. The availability of a measurement-based method to esti-

mate the WCET enables the use of COTS-based systems. Indeed,

manufacturers of COTS-based systems usually do not provide ac-

curate timing models for the WCET of the hardware architecture.

For example, many DRAM memory controllers do not have an

upper bound for the latency in accessing a memory cell, but only

an average value. In such a case, static WCET timing analyses are

not usable. Additionally, the probabilistic method reduces the pes-

simism in the WCET estimations introduced by the simplification

needed by the current hardware abstraction. This, in turn, enables

the exploitation of the computational power of complex computing

platforms, also for safety-critical workload.

3 ANALYSIS OF THE CURRENT STANDARDS
Introducing SIHFT, mixed-criticality, and probabilistic real-time in

critical systems is a challenging activity that needs modifications

of the standards, which requires, in turn, changes in established

best practices. This process is not only long but also difficult, and,

sometimes, academic and industry concepts diverge so much that

years of academic products are inapplicable in practice. Mixed-

criticality is, among the three technologies, the most iconic example:

in academia, the concept of criticality has taken a different path for

a long time with respect to the criticality used in safety standards.

This distinction has been highlighted by Ernst et al. in 2016 [8] and

many papers published nowadays are still based on the academic
version of criticality. We will detail this issue later in Section 4.

In this section, we survey relevant standards and handbooks

used by the European Space Agency (ESA), understanding which
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Table 1: Relevant standards analyzed in this article.

ID Title Ref.
ECSS-E-ST-40C Space Engineering Software [11]

ECSS-E-HB-40A Space engineering - Software Engineering Handbook [13]

ECSS-Q-HB-80-03A Space product assurance - Software dependability and safety [12]

ECSS-Q-ST-60-13C Space product assurance - Commercial electrical, electronic and electromechanical (EEE) components [9]

ECSS-Q-HB-60-02A Space product assurance - Techniques for radiation effects mitigation in ASICs and FPGAs handbook [15]

ECSS-Q-ST-80C Software product assurance [14]

DO-178B/C Software Considerations in Airborne Systems and Equipment Certification [27]

are the imposed limits and the best practices related to the three

technologies. The standards are part of the European Cooperation

for Space Standardization (ECSS) and are summarized in Table 1.

Additionally, we analyzed the aviation DO-178B/C standard.

3.1 ECSS-E-ST-40C
The ECSS-E-ST-40C standard is the main standard for space soft-

ware engineering. The following sections of the standard are di-

rectly relevant:

• [11, §5.5.2.5] Detailed design of real–time software

• [11, §5.8.3.5] Verification of code

• [11, §5.8.3.11] Schedulability analysis for real-time software

• [11, §Annex F] Software Design Document (particularly the

real-time model)

• [11, §Annex R] Tailoring of this Standard based on software

criticality

We do not provide further details in this section, because the inter-

pretation of the exact sentences of the standard is integrated into

the following descriptions of the handbooks.

3.2 ECSS-E-HB-40A
The ECSS-E-HB-40A handbook [13] provides interpretations and

best practices for the implementation of the requirements specified

in ECSS-E-ST-40C. The relevant parts of this handbook for this

paper’s discussion are summarized in the next paragraphs.

3.2.1 Criticality definition. In the flight software characterization

section [13, §4.2.3], the term criticality is defined as “The criticality of
a software product is determined at system level, based on the severity
of the consequences of the system failures that the software can cause”.
Moreover, it is specified that “no failure propagation is possible from
lower-criticality components to higher-criticality components”. This
requirement matches the real-time criticality uses, where the over-

run of lower-criticality tasks cannot make the higher-criticality task

to miss their deadline. The handbook defines 4 levels of criticality:

A, B, C, and D (the latter refers to non-critical software).

3.2.2 Design of real-time software. Section [13, §5.5.2.5] describes

which aspects compose the timing properties of the software sys-

tem (scheduling algorithm, inter-task communication), their con-

straints (e.g., max jitter, max CPU usage, max response time), and

the dynamically allocated resources. Then, the handbook states that

the “analysis of these real-time elements should permit to determine
whether the timing constraints on the system can be satisfied.”.

3.2.3 Software testing - Timing properties and fault injection. Sec-
tion [13, §6.4.4.3] describes Performance testing (which also includes
CPU usage and timing). Section [13, §6.4.6] discusses how to verify

that real-time software is able to meet the performance criteria.

Three possible methods are described: logging (the software itself

logs any time constraints violation), monitoring outputs (with ex-

ternal components such as logic analyzers), and emulation. The

handbook recommends using a combination of these three meth-

ods. It also recognizes the difficulties in finding realistic worst-case

scenarios and the WCET: “Real time testing cannot be exhaustive.
It needs to be complemented with schedulability analysis based on
WCET. Real time software testing is necessary to increase the confi-
dence and provide real individual loads figures (to feed the real time
analysis). It should provide the evidence of comfortable margins w.r.t.
schedulability analysis which is too much theoretical/pessimistic.”

3.2.4 Schedulability and WCET. Two different WCET definitions

are provided in section [13, §7.2.2.2]: theoretical WCET (measured,

estimated, or derived from the code analysis technique) and opera-
tional WCET (refinement of the theoretical one – i.e., smaller – by

considering only realistic operational scenarios, such as nominal,

degraded, per-mission, per-phase, etc.).

3.2.5 Computational model for real-time software. In section [13,

§7.4.3], the handbook defines (and describes) the following single-

core computational models for real-time tasks: cyclic executive,

preemptive, preemptive without cyclic preemption, Ravenscar Com-

putational Model (RCM), and partitioned systems. Cyclic executive

and preemptive scheduling algorithms are the usual well-known

techniques matching the academic literature. The preemptive with-
out cyclic preemption algorithm forces all the tasks to have the same

period in order to avoid the preemption due to task activation,

with the exception of asynchronous event routines (e.g., interrupt

handlers). RCM is a scheduling model which is linked with the

Ravenscar ADA profile, thus specific to the ADA programming

language. It is similar to preemptive techniques but with tighter

constraints. Finally, the partitioning strategy allows the logical sep-

aration of software building blocks with different integrity levels.

The handbook states that there are "on-going investigations" on the

execution environment that provides the partition strategy. Further

investigations on the current status and on the relations/differences

with mixed-criticality are needed.

3.3 ECSS-Q-HB-80-03A
The ECSS-Q-HB-80-03A handbook is the document of major in-

terest for fault-tolerance aspects. Section [12, §4] defines the ter-

minology (with the usual fault/error/failure nomenclatures) and

section [12, §5] the general workflow and safety framework. All

the processes are clearly distinct between two levels: software-level

and system-level.
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Section [12, §5.2.3.2] describes how software criticality is defined

at system-level and the cases when it is possible to reduce the soft-

ware criticality, i.e., when compensating provisions are available

(e.g., electromechanical backups, software monitors, etc.). It also

discusses the criticality inheritance mechanism: the criticality cat-

egory to be assigned is directly linked to the function criticality

and if a compensating provision mechanism is implemented, then

it inherits the original criticality of the component.

Section [12, §5.2.3.3] defines the software-level criticality def-

inition. It discusses how software-level choices may impact on

criticality. For instance, the criticality of two software components

sharing the same memory address space is the highest criticality

among the twos. The results of the software-level analyses are doc-

umented in a software dependability and safety analysis report,

which is fed back to the system-level analysis in order to: 1) iden-

tify software failures that might have impact on the system-level

criticality, 2) provide specific recommendation for the system-level

activities to drive a change in the system architecture model.

Complementary to these activities, the Hardware-Software Inter-
action Analysis (HSIA) (section [12, §5.2.5]) verifies how the software

reacts after hardware failures. This analysis is performed at system-

level but requires a significant support from software developer.

For each potential hardware failure that might affect software, it

is mandatory to provide a a set of requirements that define the

software behaviour in the occurrence of that hardware failure.

It is worth mentioning that among the techniques to increase

fault tolerance, the N-version programming to solve the common

cause failures is not a recommended method [12, §6.4].

3.4 ECSS-Q-ST-60-13C
The ECSS-Q-ST-60-13C standard [9] (in conjunction with ECSS-

Q-ST-60C [10]) is related to COTS components, and the focus in

entirely on hardware characteristics and testing (including procure-

ment, temperature stress tests, mechanical analysis, etc.).

3.5 ECSS-Q-HB-60-02A
The handbook ECSS-Q-HB-60-02A [15] summarizes the techniques

used to mitigate the effect of radiation-induced faults. The docu-

ment mostly focuses on hardware fault tolerance techniques, with

the exception of the section on SIHFT [15, §14]. The handbook

emphasizes the importance of SIHFT in the context of COTS hard-

ware to reduce the costs but maintain reliability to SEE. Software

techniques are categorized in: 1) redundancy at instruction level,

2) redundancy at task level, and 3) redundancy at application level.

All these techniques are based on the instruction/task/application

replica+voting schema. The handbook describes in detail such tech-

niques. It is also worth mentioning the following sections [15, §15],

explaining system-level protections, such as watchdogs, error cor-

recting codes, and other techniques, and section [15, §16], dealing

with validation methods and, in particular, fault injection.

3.6 ECSS-Q-ST-80C
The quality standard ECSS-Q-ST-80C [14] describes the require-

ments to be used for the development and maintenance of space

software. Paragraph [14, §6.2.2.9] describes the necessity to ver-

ify that the software correctly reacts to hardware failures without

leading to system failures, as specified in the HSIA document. The

subsequent paragraph [14, §6.2.2.10] focuses on criticality concept,

as we already discussed in Section 3.3. The standard also specifies

how criticality is defined: Table D-1 in [14, §Annex D] provides

the definitions of each criticality level and how to map it to the

"category functions" classification.

3.7 DO-178B/C - Aviation1

The DO-178B [27] and DO-178C present more general consider-

ations on software characteristics then the other standards. The

timing properties of the software are cited in objective [27, §6.3.4],

which requires the reviews and analyses to be accurate and con-

sistent, and in [27, §6.4.3] where the requirements-based hard-

ware/software integration testing can be used to find violations of

the worst-case execution time estimations. In the DO-178C a clari-

fication is added to specify that also compiler and linker, and their

options, and hardware features affecting the execution time must

be considered in the WCET analysis. The DO-178C also introduces

measurement-based analyses but still requires to have a rigorous

demonstration that the timing measurements triggered the worst-

case condition [21]. The white paper by Rapita Systems describes

the challenges in multi-core timing analysis under DO-178C [22].

Paragraph [27, §2.2.2] states that software levels are not related

to the software failure rate, i.e., the software reliability rates can-

not be used by system safety assessment process as can hardware

failure rates. Indeed, the the failure probabilities are assigned by

the DO-254 standard to the hardware. It also states that N-version

programming can be used as extra safety measure, but its improve-

ment cannot be quantified in terms of failure probabilities ([27,

§2.3.2]). Finally, software partitioning is also mentioned and each

partition has the same criticality of the highest of its members.

There is no mentioning about dependency between partitions (they

are assumed independent).

4 THE IMPACT ON SAFETY
4.1 Are the proposed technologies compliant

with the standards?
4.1.1 SIHFT. Most of the standards allow the use of SIHFT to

reach the reliability goal, but only in a qualitative way: they do

not allow the software to have a defined probability of failure,

preventing to use SIHFT for the demonstration of the quantitative

goal of reliability against hardware faults. For instance, DO-178B/C

explicitly specifies that software levels are not assigned to specific

failure rate probability like the hardware failure rates. This non-

quantifiability is due to the fact that software failures are usually

considered software bugs. Indeed, it is difficult (if not impossible) to

estimate the probability that a bug exists. Vice versa, in SIHFT, the

probabilities come from the hardware fault probabilities, therefore

they are quantifiable, provided that a careful analysis is performed.

The use of such probabilities can be a first step in the reconciliation

process with hardware and software failure probabilities.

4.1.2 Mixed-Criticality. The definition of criticality and its classi-

fication is similar among all the standards. ECSS has 4 criticality

levels (A-D, A is the highest) and DO-178B/C has 5 criticality levels

1
Note: Paragraph reference numbers in this section refer to DO-178B, not DO-178C.
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(A-E, A is the highest). Similarly, in automotive, ISO 26262 [19]

specifies 4 criticality levels (A-D, D is the highest) and, in railways,

EN 50128 [16] specifies 5 criticality levels (0-4, 4 is the highest).

All the standards agree on the criticality propagation concept:

when a failure dependency exists, any software component that

may cause the failure of a software component of criticality 𝑋 must

be at least of 𝑋 criticality. This is expected and matches most all sci-

entific works. However, the standards do not explicitly consider the

opposite case: what happens if a task of higher criticality negatively

impacts the execution of a lower criticality task? This is a key prob-

lem that exists when the academic approach to mixed-criticality is

used in the industrial context. Standards specify how to manage

co-running tasks on the same device, especially when tasks with

different criticalities co-exist on the same platform. ECSS-E-HB-40A

suggests the partitioning strategy to allow the logical separation of

software building blocks with different integrity levels.

The answer to the question of whether traditional MC is ap-

plicable or not relies on if higher criticality can affect the execu-

tion of lower criticality or not. MC differs from partitioning be-

cause tasks share the same resources (including time) and therefore

may interfere with each other. The standards generally describe

“software-dependent failures”: we can consider in this category a

higher-criticality task overrunning its low-criticality WCET caus-

ing a failure propagation to another task of lower-criticality. The

problem is how to evaluate the probability that this event occurs:

the probability that a task overruns its low-criticality WCET is hard

to estimate. Therefore, it seems difficult to determine the plausibility

of this event (as required by, for instance, ISO 26262).

4.1.3 Probabilistic real-time. The specification on how the WCET

estimation should be performed is almost identical in all the ana-

lyzed documents. In fact, ECSS-E-HB-40A requires to demonstrate

by analysis whether timing constraints can be satisfied. The same

requirement is present in DO-178B/C. All these standard allow the

use of measurement-based techniques as testing to find possible

violation (as an extra safety measure), but a static analysis is still

required as proof of correctness (or the measurement-based must be

formally provided proof of correctness). No safety-critical standards

mention probabilistic analyses.

4.2 Possible standard changes
4.2.1 SIHFT. Linking the probability of a fault occurring in the

hardware to the software failure is mathematically possible. For

instance, if a transient fault occurs in hardware with a given prob-

ability, this fault event can be extended to a fault event in the

software. Then, if software fault tolerance techniques are in place,

the failure probability of the software can be reduced. Recent works

studied how to compute this exact software failure rate caused by

hardware [25, 23]. For this reason, we believe that standards should

evolve in allowing the use of SIHFT in a quantitative way with

respect to the goal of reliability. Clearly, a SIHFT technique should

be approved for quantitative use, only if an analytical proof of the

quantitative improvement is provided.

4.2.2 Mixed-Criticality. Baruah [1] believes that the problem of

non-applicability of MC to real systems is actually a matter of

changing the current practices (and standards), rather than real

limitations of the MC theory. Indeed, allowing higher-criticality

tasks to cause a graceful degradation of lower-criticality tasks looks

a reasonable mechanism. In some cases, this dependence can be

analytically analyzed, providing a quantitative bound of the impact

on lower-criticality tasks [25]. While not immediately applicable

like SIHFT, we believe that a discussion on how to introduce MC in

the standards should start, especially in spacecraft systems where

the consolidation of multiple platforms is a key optimization goal.

4.2.3 Probabilistic real-time. In our opinion, the full transition to

measurement-based approaches to estimate theWCET is not a valid

choice for safety-critical software (yet).While static analyses cannot

cope with the increasing complexity of the hardware, measurement-

based approaches (both deterministic and probabilistic) cannot

guarantee to have obtained sufficient information content to pro-

vide a reliable estimation. However, exploiting measurement-based

approaches for small parts (such as at the instruction-level or ba-

sic block-level) or as a comparison (e.g., to verify “how far” the

static WCET is far from the real one) can be advantageous. The

other possibility is to introduce probabilistic estimations only for

lower-critical workloads; however, it should be accepted that it is

not possible to demonstrate safe quantitative numbers yet.

5 FUTURE DIRECTIONS AND CONCLUSIONS
SIHFT approaches are already used in industrial safety-critical sys-

tems, even if they are used to provide a “qualitative reliability”.

We believe that novel analyses and tools that increase the level of

detail on how SIHFT impacts on the reliability metrics can be a

good starting point for the introduction of SIHFT in standards. In

parallel, the study of novel SIHFT techniques, possibly transparent

to the developer, can improve such quantitative benefits.

Mixed-criticality is another technology with a good level of ma-

turity, and many approaches are formally proven and implemented

in several research prototypes. More work needs to be done on

solving practical implementation issues and on the relation with

standards, especially how to handle graceful degradation.

Probabilistic real-time is, for sure, the technology of the three

with the lowest technology readiness level, because theoretical

problems still exist [26]. However, the feeling in several members

of the scientific community is that we cannot advance without

including statistical property in the systems. Probabilistic or not,

the WCET problem is the most crucial issue to introduce modern

computing platforms in critical systems.

In conclusion, critical systems, and especially spacecraft systems,

need to guarantee logical and temporal correctness. We showed

three technologies that may help in reaching these two goals in

modern COTS computing platforms, we discussed their advantages

and limitations, and we compared them with the current certifi-

cation processes, highlighting the incompatibilities and possible

changes that can be introduced in standards.
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