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ABSTRACT Data Science is increasingly applied for solving real-life problems, both in industry and in
academic research, but mastering Data Science requires an interdisciplinary education that is still scarce on
the market. Thus, there is a growing need for user-friendly tools that allow domain experts to directly apply
data analysis methods to their datasets, without involving a Data Science expert. In this scenario, we present
DSBot, an assistant that can analyze the user data and produce answers by mastering several Data Science
techniques. DSBot understands the research question with the help of conversation interaction, produces a
data science pipeline and automatically executes the pipeline in order to generate analysis. The strength of
DSBot lies in the design of a rich domain specific language for modeling data analysis pipelines, the use of
a suitable neural network for machine translation of research questions, the availability of a vast dictionary
of pipelines for matching the translation output, and the use of natural language technology provided by
a conversational agent. We benchmarked DSBot on two sets of 100 natural language questions and of
30 prediction tasks. We empirically evaluated the translation capabilities and the autoML performance of
the system. In the translation task, it obtains a median BLEU score of 0.75. In prediction tasks, DSBot
outperforms TPOT, an autoML tool, in 19 datasets out of 30.

INDEX TERMS Automated Machine Learning, Data Science, Human-Computer Interaction, Intelligent
Systems, Natural Language Understanding, Pipeline Optimization, Python

I. INTRODUCTION
Data Science is situated at the intersection between computer
science and statistics and has recently emerged as a new
discipline, providing suitable methods for exploring research
questions for arbitrary application domains. In the industrial
setting, companies exploit data to optimize processes, pre-
dict revenues, and prevent failures by planning predictive
maintenance interventions [1]. In research, scientists use
data to validate or formulate novel hypotheses and support
decision-making [2]. The process of data democratization
amplifies these advantages: more and more data repositories
are published online to be freely used by researchers all over
the world [3].

Still, leveraging the increasing availability of data requires
advanced capability in data management and modeling,

statistics, machine learning, and programming. As a result,
Data Science so far is not fully accessible for domain experts,
who may lack strong technical skills and computational
background. Data Science tasks are often challenging also
for both novice and experienced data scientists. Every dataset
is different and requires a tailored sequence of operations to
extract useful knowledge [4]. Researchers may adopt a non-
optimal analysis pipeline or struggle with unappropriated
tools or methods, often obtaining inaccurate if not erroneous
results. They may spend a lot of time in implementing
preliminary data analysis pipelines for the sole objective of
exploring the characteristics of datasets, before delving into
more sophisticated analyses.

To mitigate these difficulties, in our previous work - fo-
cused on computational genomics - we designed and imple-
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mented GeCoAgent [5], a conversational agent to empower
biologists with limited computational skills. GeCoAgent is a
web application that comes with a large integrated warehouse
of more than 200,000 genomic experiments. The user can in-
teract with a conversational agent to explore this information
and to progressively request the data they are interested to.
A user study, involving PhD candidates in biology, biochem-
istry, and computational biology, showed that even users with
limited computational background can succeed in performing
data science tasks using GecoAgent, far beyond what they
could have achieved by using Python or R. Capitalizing on
the experience of this past research work, we have developed
DSBot, an interactive machine learning tool that combines
Natural Language Processing, conversational technologies,
and AutoML techniques. The objective of DSBot is to trans-
late a research question, expressed in natural language, into
an executable data science pipeline on any dataset. Our
system is based on four design principles that extend and
improve GeCoAgent in several directions:

• DSBot is domain-independent: it is decoupled from any
data repository and operates on any tabular dataset, en-
abling the user to upload their own data. As such, DSBot
can be exploited for any arbitrary Data Science appli-
cation. In contrast, GeCoAgent is domain-dependent:
it operates on its own genomic data warehouse only,
and its analysis capability is specialized for this specific
content;

• DSBot requires even lower knowledge on data science
methods than GeCoAgent, and enables any domain
experts to perform complex data analysis tasks on their
own data.

• GeCoAgent requires the user to provide a procedural
specification of the data analysis pipeline, i.e., the user
must progressively specify the operational steps needed
to perform the desired analysis. In DSBot, the user ex-
presses their research question in a declarative way, i.e.,
describing their analysis goals and not the operations or
algorithms needed to build the desired results. For ex-
ample, the user can ask “What are the factors that most
influence the price of a house?" rather than specify how
to obtain the results, e.g., “Encode categorical vari-
ables, apply a scaler, train a linear regression model and
return the features with the highest absolute value of the
associated coefficient”. DSBot automatically translates
the user’s declarative requirements into an operational
pipeline, choosing the best algorithms and parameters
to optimize the results.

• From a conversational design perspective, in GeCo-
Agent the conversation is driven only by the user’s
choices, selected from a set of pre-defined options
provided at each step by the conversational agent. In
DSBot, the conversation is generated by taking into
account both the user’s explicit choices and the dataset
properties. The conversational agent interacts with the
researcher proactively and in a participatory way, both

during the elicitation of data analysis requirements and
during the progression of the pipeline execution. For
example, some portions of the dialogue are devoted to
check with the user if the agent has understood the user’s
intentions correctly. In addition, DSBot involves the
user in the key decision points where knowledge about
the semantics of the uploaded data and human’s explicit
choices are needed. For example it asks which features
to select (“Please list the features you want to consider”)
or how to deal with missing or noisy data (“Should out-
of-range values be removed because most likely to be
a measurement error, or should they be considered as
acceptable?”).

DSBot is an end-to-end system, able to assist the user in
the whole data analysis process from beginning (research
question declaration) to end (analysis results reporting).
Once users have uploaded their dataset and expressed their
data analysis need ("research question"), the system analyzes
the data and takes care of pre-processing operations, for
example, by transforming categorical variable with one-hot-
encoding representation for clustering analysis, or normaliz-
ing quantitative variables, or addressing missing value issues.
Once all the necessary information has been collected from
the user and from the data, DSBot exploits a custom-made
Automatic Machine Learning (AutoML) algorithm to select
the best algorithm and tune its (hyper)parameters. Finally,
DSBot returns graphs and tables that summarize the analysis
results and are integrated with comments in natural language.

We tested DSBot on more than 3000 "research questions"
to assess its capability to translate user’s information needs
into correct operational pipelines. We also evaluated the
execution time and outcomes of the analyses performed by
DSBot over 30 datasets of different nature, and compared
them with the ones obtained using TPOT, a well-established
AutoML tool [6]. Our results show that our system achieves
comparable performance (in terms of accuracy and root mean
square error) in a significantly shorter execution time.

The innovation presented in this article is not only con-
cerns the delivery of a new domain independent tool to assist
inexperienced users in performing data science analyses,
but also concerns a novel approach that combines Large
Language Models, Conversational Technology, and AutoML
techniques in a sophisticated unique way. Large Language
Model techniques are used to translate the user’s research
questions, expressed in a declarative way, into operational
specifications, i.e., the operations and algorithms that com-
pose the data analysis pipeline. Conversation Technology is
exploited to engage users into a dialogue aimed to validate
with them the correctness of the operational pipeline with
regard to their needs, using concepts and terminology that
can be understood by people with low data science knowl-
edge. Conversational Technology is also exploited during
the execution of the pipeline when it is necessary to collect
further information from the user. AutoML techniques are
used to select the ’optimal’ ML algorithm by: (i) executing
multiple ML algorithms on subsets of the dataset uploaded by
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the user; (ii) automatically selecting the best one along with
the values of its (hyper)parameters; (iii) running the selected
algorithm on the full dataset.

II. STATE OF THE ART
A. AUTOMATIC CODE GENERATION
Coding is a cognitively expensive task [7] in which program-
mers must first learn the programming language and then
translate their ideas into the language they have learnt [8],
[9]. A vast amount of research has tried to develop interfaces
that translate natural language directly into executable code.

Today, Automatic Code Generation tools vary a lot in
their functioning, accepted input, and programming language
produced. Authors in [10] propose a taxonomy for classifying
these applications, according to the input type – a high-level
description of the task to be executed or a detailed description
of all the commands to be programmed – and the output to
be produced – whether executable code, code snippets, or a
representation in an intermediate language.

From the technological perspective, we can cluster Au-
tomatic Code Generation tools into three main groups. The
first one includes simple instruments driven by grammars,
matching natural language patterns and translating them into
executable code [11]. The second one includes more com-
plex systems, using probabilistic or combinatorial grammars
to enrich the set of user sentences accepted [12], [13], or
exploiting natural language processing techniques to under-
stand users’ requests and extract useful information for the
generation of the code [14], [15]. A third most recent group
exploits machine learning techniques to automatically gener-
ate executable programs. In particular, Neural Networks are
widely used for this purpose, together with large corpus of
training data [16]–[18].

B. AUTOML
Automated Machine Learning (AutoML) is a branch of artifi-
cial intelligence that aims at automatizing the entire machine
learning process [19]. Two categories of users benefit from
AutoML: data scientists, who can concentrate their focus
on models optimization and interpretation, and non-machine
learning experts, who have easier access to machine learning
methods [19]. Three widely used AutoML systems are Auto-
WEKA, Auto-Sklearn, and TPOT.

Auto-WEKA [20] automatically selects the best algorithm
and configuration between the ones offered by the Weka
platform. The choice is made by transforming the problem of
choosing algorithm and parameters into a bayesian optimiza-
tion problem. Auto-WEKA is agnostic from the optimization
technique: it can operate either by choosing the algorithm and
its hyperparameters consequentially or simultaneously.

Auto-Sklearn [21] is an AutoML library that operates on
scikit-learn. It improves its performances thanks to additional
steps in the optimization pipeline, a meta-learning phase
at the beginning of the process to warm-start the bayesian
optimizer, and an ensemble construction mechanism that
combines models evaluated during the optimization.

TPOT [6], exploits genetic programming as optimization
engine. Machine Learning pipelines are represented as tree
structures on which the genetic algorithm is executed. Every
pipeline is evaluated, and the top performing ones are used to
create the next generation of pipelines.

While automation and efficiency are among AutoML’s
primary features, the process still needs human intervention
at a number of critical phases, such as identifying the relevant
features of domain-specific data or picking the appropriate
machine learning problem [22].

C. INTERACTIVE MACHINE LEARNING
With the advances in ML and Data Science, we have wit-
nessed an increasing interest in improving Data Science tools
in order to reduce the efforts of expert data scientists and
to facilitate advanced data analysis for non-experts, promot-
ing accessibility to and adoption of Data Science solutions.
In [23], [24], the authors highlight the need for ML methods
and tools that are more interactive and better integrated with
human expertise and needs, complementing and enhancing
the work of domain experts, particularly in situations where
providing fully automated functionality is computationally
very demanding. In the current state of the art, a number
of interactive ML platforms exists that we can categorize
according to the degree of freedom they leave to users.

The simplest platforms support the execution of a single
machine learning task, typically classification. Users must
only upload data with some additional information (such as
the label variable, in the case of supervised learning) and the
software automatically performs the analysis and builds the
model. In [25], the author proposed a web interface to create
a multi-label image classifier built on TensorFlowJS [26].
Uploading the image files in different folders for every la-
bel, the system produces a Convolutional Neural Network
and produces two files, one containing the architecture of
the network, the other its weights. Teachable Machine is a
platform provided by Google to create images and audio
classifiers [27]. Users upload samples and by clicking a
single button the platform trains a classification algorithm to
solve the given problem. Then, users can export the model as
a snippet of JavaScript code to be employed in any project.
Iyer et al. proposed Trinity, a web interface to analyze spa-
tial data [4], automatically creating binary and multi-classes
classificators. Data are pre-processed and prepared for CNN-
based learning, and visualizations are returned to users. If the
output of model is satisfactory, Trinity offers a workflow to
put it into production.

Other tools sacrifice the complete automation of the pro-
cess and let users choose the best performing algorithm
by confronting the solutions proposed by the platform. For
example, Model LineUpper combines visualizations and Ex-
plainable AI techniques to interactively compare AutoML
solutions [28]. Distilling the results of an empirical evalu-
ation of the system, the authors elicited a set of guidelines
useful for the design of platform for comparing Data Science
models. All the guidelines focus on the importance of the
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freedom offered to the user in adjusting models and the
transparency of the operations, such that users can understand
precisely what the system did automatically.

Other systems help users to identify the appropriate oper-
ations for the analysis they want to perform . For example,
Snowcat [29] automatically proposes a set of research prob-
lems to answer through the data to be analyzed. Based on the
user’s problem choice, it trains a set of models and provides
an interactive dashboard to explore them. Users also have the
possibility of downloading the generated models for further
analysis.

In AutoDS [30], once data workers have uploaded their
dataset, the system automatically suggests ML configura-
tions, preprocesses data, selects algorithms, performs model
training, and then presents the resulting pipeline on web-
based graphical user interface and a notebook-based Python
programming interface. The paper reports an empirical con-
trolled study which explored AutoDS with 30 professional
data scientists; one group used AutoDS, and the other did
not, to complete an assigned data science project. The results
showed that AutoDS improved productivity, and the models
produced by the AutoDS group had higher quality and less
errors. Still, the human confidence on the final model was
lower in the AutoDS group. Lack of total control on the
system is considered to be the predominant cause of this
skepticism. In addition, 43% of participants declared that
they trusted AutoDS (i.e., they were confident in the system
and considered it reliable (13% did not, and 43% were
neutral). Lastly, 50% of participants did not believe that
AutoDS would replace human data scientists (only 10% had
this belief, with the rest remaining neutral.)

In [31], the authors developed a visual method to compare
multiple classifiers considering model performance, feature
space, and model explanation. ModelWise adapts visualiza-
tions with rich interactions to support multiple workflows to
achieve a model diagnosis, improvement, and selection.

Many tools concentrate on offering users a set of instru-
ments they can use for their analysis, at the cost of requiring
users to have a good understanding about the methodologies
they want to use. For example, TwoRavens is an interface
to operate on data publicly available on Dataverse reposito-
ries [3], [32]. Through a graph-based UI, users can explore
the data they selected and choose the statistical method to
analyze them.

Pyrus is an online modelling environment developed for
authoring data science pipelines through a graphical inter-
face [33]. It has been designed around the principle of sepa-
ration of concerns: data scientists can implement block units
that perform data science operations in a dedicated interface,
while domain experts can use a block interface to create
pipelines with the units implemented in the system. Still, to
use this platform users must have a basic understanding of
data science to better compose their pipelines.

Some studies explore the use of conversational technolo-
gies during the data science process. Ava [34] works on
a structured process: the conversation predicates on a pre-

defined process in which the conversation asks users the
desired operations and parameters. Although effective, this
choice constrains users to use only the modules that fit in
the process model. Iris [35], instead, acts as a conversational
wrapper for data science operators that allow users to com-
pose their pipelines in freedom. Yet, users must know the
modules and their functionalities; the conversational layer
does not offer support in composing the operations.

In summary, interactive machine learning is an emerging
and prolific field of research. At the same time, our literature
review shows that users must have good expertise in order
to fully trust the results produced by these platforms [30],
[36]. With our work, we aim at filling this gap, providing a
tool that does not require advanced Data Science knowledge,
leaves users freedom to perform analyses driven by research
questions, and provides enough information and explanation
for enhancing the user’s trust in the results.

III. METHODS
Data Science is an extremely broad topic, encompassing a
wide set of research questions and possible analyses, some
of which require ad-hoc solutions; DSBot operates on a well
defined subset of tasks (and therefore analyses) and under
a number of constraints. The input to DSBot is limited to
a single table, where each sample, i.e., each row of the
table, is a tuple of features, each one independent from the
others. Any spreadsheet or result of DBMS query can be
used. Sorting and relationships between rows of the dataset
(such as time series) are not represented, and therefore the
methods that exploit these properties cannot be applied. The
dataset can have any number of features, but at most one
target. Moreover, the type of data of both feature and target
columns are limited to real numbers and categories, thus
excluding multidimensional or complex information such
as images, audio tracks or text; such complex data require
domain specific pre-processing and feature engineering that
are beyond the scope of DSBot.

A. OVERVIEW OF THE SYSTEM
We present an overview of the DSBot mechanism used to
build and execute data analysis pipelines. In order to com-
plete an analysis task, DSBot goes through several stages;
some of them require interactions with the user, while other
phases are fully automatized. The whole process is illustrated
in Figure 1 and comprises the following eight main steps:

1) The user uploads the dataset and specifies the target
column;

2) The system runs a set of standard analyses on the
dataset to infer descriptive characteristics, such as data
types or the presence of missing values;

3) The user formulates a research question as a natural
language sentence;

4) The system applies a machine translator to translate the
natural language question in a Data Analysis Workflow
(DAW) pipeline;
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5) A conversational agent engages the user in a dialogue
to ensure that the produced DAW sentence corresponds
to the user expectations; in this step, DSBot may also
use the dialogue to elicit other requirements from the
user, in order to correct or refine the DAW pipeline;

6) The confirmed DAW pipeline is compared with a
pipeline dictionary, from which the best matching
pipeline is selected; the pipeline produced in this way
can be augmented with additional operations, to cope
with the dataset characteristics (e.g., handling of miss-
ing data and/or outliers);

7) The pipeline is executed; during execution, the system
may interact with the user to drive the execution flow,
for example asking for a specific subset of the features
upon which the analysis should be performed;

8) The results of the analysis are visualized.
To recap, starting from a declarative specification of the
analysis by the user, which means a high-level description of
the desired output that abstracts from any operational details,
DSBot analyzes the input dataset to produce and execute an
appropriate pipeline that matches the user goals.

FIGURE 1: Conceptual architecture of the system.

B. COMPONENTS
Hereafter, we present and discuss the details of the various
components of DSBot and show how they interact.

1) Data Analysis Workflow Domain-Specific Language
The Data Analysis Workflow (DAW) is a Domain Spe-
cific Language (DSL) that encodes the pipelines for Data
Analysis. It is a formal language that aims at representing
the sequence of data manipulation and analysis operations

High Level Low Level

missingValues
fillMissingValues
removeMissingValues
missingValuesHandle

encoding oneHotEncoder

outliers
outliersRemove
outliersDetection

zeroVariance zeroVarRemove
strongCorrelatedFeatures correlatedFeaturesRemove

featuresToRemove removeFeatures

preprocessing
standardization
normalization

labelOperations
labelRemove
labelAppend

correlation
pearson
spearman

classification

autoClassification
randomForest

logisticRegression
kNeighbors
adaBoost

clustering
kmeans
dbscan

agglomerativeClustering
outliersDetection outliersDetection

featureSelection

lasso
selectKBest
laplace

userFeatureSelection
featureImportance featureImportance

featureEngineering
pca2
mds

associationRules apriori

regression
autoRegression
ridgeRegression
linearRegression

performance
regressionPerformance
confusionMatrix

plot

scatterplot
clustermap
roc

lassoPlot
tableRegression

tableAssociationRules
featureImportancePlot

TABLE 1: High level and low level symbols included in
DAW domain specific language.

for (a) being interpreted and executed and (b) being stored
and searched in the knowledge base. A DAW sentence is
composed of two parts: the dataset descriptions and the
list of operations. The first is a set of terms describing the
main dataset features, such as missingValues, outliers,
zeroVarianceFeatures; the second one denotes a se-
quence of operations to be performed on the dataset to
accomplish a specific objective. DAW language is extensible;
new terms can be added to both datasets description and
workflow operations as new features are added to the system.
A workflow description in DAW is a sequence of symbols
that represent the linear flow of operations to be executed.
There are two classes of symbols, namely high-level and low-
level, which are organized in a hierarchy in which each low-
level symbol is a specialization of a high-level one. Low-
level symbols have a one-to-one correspondence with a oper-
ation that can be directly executed, while high-level symbols
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Name Description
missingValues Some values are missing or NA
categorical Has both categorical and numeric features

onlyCategorical Has only categorical features
continuosLabel The target has continuous values
categoricalLabel The target has categorical values

outliers Some features presents outliers
lessThan3Features Less than 3 features are present
strongCorrFeatures Presence of strongly correlated features
uninformativeFeatures Some feature is not informative
zeroVarianceFeatures Presence of features with zero variance

TABLE 2: Dataset Characteristics inferred by DSBot.

need to be first specialized in a low-level symbol, either by
automatic mechanisms (described later in this Section) or
by interacting with the user. A comprehensive list of the
symbols of DAW is reported in Table 1; a brief description
of operations associated with low-level symbols is available
in the Supplemental Material. As an example, consider the
following DAW sentence:
userFeatureSelection oneHotEncode classification roc

This sentence describes a data analysis workflow applicable
to a dataset. The four operations are executed sequentially;
userFeatureSelection is a low-level operator that can be
executed and it may require to interact with the user to ask
for further information. On the contrary, classification is
high level and, before being executed, it must be specialized
to a low-level operator, by means of a mechanism described
later. The remaining operations are low-level and do not
require user interaction, they can be executed automatically.

DAW has two main uses: describing the analysis to be
performed and storing manually curated models of analyses
in the pipeline dictionary. Note that the symbols of DAW
correspond to a specific algorithm and abstract from its
parameters; such parameters are automatically tuned by the
pipeline executor. Finally, it is worth mentioning that the
language is extensible; new symbols can be added to DAW
as new features are added to the system.

The DAW also provides a further benefit: it conceptually
and logically separates between the production of the analy-
sis and its execution. As a consequence, if better tools are
available to perform Data Science operations, it would be
sufficient to substitute the execution engine, without affecting
the translation machinery. For example, one could provide
a big-data version of DSBot simply replacing the current
execution engine with one based on the ML libraries of
Apache Spark.

2) Preliminary Dataset Analysis
Once the user has uploaded the data and has specified the
label, DSBot proceeds automatically to infer the characteris-
tics of the current dataset to drive the selection of possible
analyses and the choice of a good pipeline. The list of
characteristics is reported in Table 2. While many of them
are self-explanatory, others require further description:

• outliers: indicates that the dataset contains items
whose values significantly differ from the others. For-

mally, the input dataset D ∈ n × p contains at least
one row di, i = 1, ..., n with more than the 90% of the
numerical attributes of di such that:

|di,j − µj | > 3× σj

where di,j is the element of the dataset at the i-th row
and j-th column, µj and σj are respectively the mean
and the standard deviation of the j-th column;

• strongCorrFeatures: indicates the presence of pairs
of numerical columns (di, dj), i ̸= j with a Pearson
correlation coefficient greater than 0.9;

• uninformativeFeatures: indicates that the dataset
contains at least one categorical column such that the
number of its distinct elements is larger than half of
the number of rows of the dataset. In other words, each
value, on average, is associated to less than two samples
and thus it is likely to be an identifier of the samples
(e.g., patient id).

The above mentioned characteristics allow the system to
select different pipelines that are most appropriate for the
uploaded dataset. Indeed, each characteristic is handled by
different operations included in the available pipelines within
the dictionary, explained in Section III-B5.

3) Question Translation
In order to translate from English to DAW, we employed
a large language model able to perform well even with a
low resource language. After evaluating various options, we
decided to use T5 (Text-To-Text Transfer Transformer) [37]
as our machine translation method. T5 is an encoder-decoder
model based on transformers developed by Google and pre-
trained on a multi-task mixture of unsupervised and super-
vised tasks collected in the “Colossal Clean Crawled Corpus"
(C4) [37]. This makes it highly adaptable and able to be
fine-tuned for a variety of natural language processing tasks,
including machine translation [37]. In particular we adopted
T5-small that has 60 million parameters.

To fine-tune T5, we used a synthetic dataset of approxi-
mately 350,000 sentences generated from a set of manually
created templates with their corresponding translation in
DAW and expanded by means of Parrot1, a python library
for rephrasing.

Since the tokens in DAW language are a finite and rel-
atively small set, sentences produced by T5 were further
filtered to ensure that they contained only words that are
contained in the DAW vocabulary.

4) Conversational Comprehension Assessment
After the conversion of the user’s request in a DAW, a con-
versational agent assesses whether the system has correctly
interpreted the input sentence. To do that, the system receives
the DAW sentence and converts the operations contained in
it into a textual description. Descriptions are merged in a
single textual message that is sent to the user asking for

1https://pypi.org/project/python-parrot/
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confirmation; the text describes operations at a high level,
abstracting from their technicalities and focusing instead on
their expected result. Data Science jargon is not used, as it
may be not understood by DSBot users.

Being interested in the outcome of the operation and not
in the functioning of the algorithm itself, we can use the
same textual description for different terms that belong to
the same algorithmic family. For example, we can transform
both "kmeans" and "agglomerativeClustering" modules
in the following description: "to group your data in such a
way that objects in the same group (called a cluster) are more
similar (in some sense) to each other than to those in other
groups (clusters)". The same description holds for the term
"clustering".

Hence, the symbols in the DAW belong to high and low
level classes. Each high level class symbol corresponds to
one or more symbols in a low level class. For example, the
symbol in the high level class classification, corresponds to
low level symbols such as randomForest, logisticRegression,
autoClassification, etc.

Every node in the tree may have a textual description, that
contains the sentence to be produced in the conversation.
When a term must be translated, the system retrieves, through
a tree-search, the deepest node having a textual description in
the path from the root to the searched node, and returns that
description, which is then concatenated to the descriptions
of the other words in the DAW, and sent to the user for
confirmation.

Users can confirm the textual description, or ask for more
detailed explanations, or for an example of application of
the workflow, so as to understand if they have correctly
understood. Explanations and example production follows
the same principles of the textual one. If users confirm the
workflow, the control is passed to the Workflow Enrichment
module (Sec. III-B5).

If the system has not correctly understood what the user
wants to do, the conversational agent guides the user in the
selection of an operation, following the state-machine-based
representation of the conversation flow shown in Figure 2.
Rounded corners rectangles represent the moments in which
the conversational agents sends a message to the user through
the chat, and waits for one of the responses indicated on the
exiting arrows; diamond shapes represents the agent’s deci-
sions on dataset properties; rectangles represents decisions
on the data science pipeline that will be proposed to the user.

The conversation aims at eliciting the user’s operational
goal, i.e., the high-level operation the user wants to per-
form: clustering, regression, classification, association rules,
or correlation matrix. The conversation exploits the dataset
information to improve the experience and facilitate users’
comprehension. If the dataset has a label, the first proposed
operation is the prediction of a value; in case of affirmative
response from the user, the system automatically decides
whether applying regression or classification according to the
nature of the label. If, instead, the user has not indicated any
label, then the conversational agent first asks whether the user

wants to find relationships in the data (i.e., association rules
or correlations), clustering, or prediction tasks.

When the family of algorithms is identified, heuristics on
data are used to elicit the algorithm to use. For example,
once the user agrees on finding relationships in the data,
correlation is automatically chosen if the dataset only con-
tains numerical variable, while it is excluded if the dataset
does not continue any numerical variable. In the same way,
in prediction tasks, classification or regression are chosen
according to the nature of the variable to predict. When the
desired operation has been elicited, a new pipeline containing
the operation is produced and the control is passed to the
Workflow Enrichment module.

5) Pipeline Dictionary and Workflow Enrichment
As illustrated in Figure 1, the DAW obtained as translation
of the research question, together with the dataset char-
acteristics, is matched against a dictionary which includes
manually curated pipelines. The resulting best match is then
used to correct and augment the DAW, taking advantage of
established best practices in Data Science. For example, if
the dataset contains columns that have zero variance (i.e.,
whose values are constant), the best match includes ze-
roVarianceRemoval step. Up to now, the pipeline dictionary
contains 9634 pipelines distributed over 439 combinations of
pipeline characteristics. By design, the pipeline dictionary is
extensible with new pipelines.

Consider a input dataset D, with the set of characteristics
{ds1, . . . , dsn} and a user’s question translated into a se-
quence of operations opu1 , opu2 , . . . , opuU

. The search in the
pipeline dictionary is meant to identify the entry:

(ds1, . . . , dsm)opk1
, opk2

, . . . , opkU

with the constraint that:

{ds1, . . . , dsn} ⊆ {ds1, . . . , dsm}

(i.e., every characteristic of the dataset in the pipeline dic-
tionary entry must be found in the input dataset). Each
compatible pipeline in the pipeline dictionary is then ranked
with a matching score and the most fitting one is then chosen.

In order to identify such best matching sequence, we
implemented a dynamic programming algorithm inspired by
the Needleman-Wunsch algorithm for the pairwise optimal
alignment of sequences [38]. This algorithm will select the
best matching pipeline based not only on the user’s input,
but also on the characteristics of the dataset, therefore im-
proving the outcome of the analysis. An example of analysis
results before and after the enrichment of the pipeline is
shown in Figure 3, considering a scenario in which the user
uploaded the Penguin dataset [39] and asked for a clustering
analysis. Figure 3(a) shows the results of the pipeline execu-
tion when the dataset characteristics are not considered. In
this case, the pipeline executed is removeMissingValues,
oneHotEncoder and kmeans. Figure 3(b) shows the re-
sults of the second analysis, which takes into account the
characteristics of the dataset and is able to extract more

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3272503

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Reformulation 
of user's request

Output choice -  
performance or feature 

importance

User disagrees

User 
indicated a 

label
YesPrediction proposal

No

Relationships proposal

User disagrees

User disagrees

Clustering proposal

User disagrees

User 
indicated a 

label

No

Prediction proposal

Error message - 
invitation to retry

User disagrees

Yes

User agrees

Dataset 
has categorical 

values?

Only categorical values

Algorithm = 
association rules

No categorical values

Algorithm = 
correlation

Yes, not only

Algorithm choice - 
correlation or 

association rules

User selects association rules

Algorithm = 
association rules

Algorithm = 
correlation

User selects correlation

User agrees

Algorithm = 
clustering

User agrees

User agrees

Dataset 
has categorical 

values?
Yes

Algorithm = 
classification

No

Algorithm = 
regression

User wants feature importance

Output = 
feature importance

User wants performance

Output = 
performance

Columns in 
the dataset

3 columns or more

Feature Selection Choice - 
Manual or Automatic

less than 3 columns Feature selection = 
none

User selects automatic

Feature selection = 
automatic

Feature selection = 
manual

User selects manual

END - 
error 
page

START

END - 
analysis

FIGURE 2: Finite State Machine of the high level conversation flow for user’s operational goal elicitation.

significant clusters. In this case, the pipeline executed is
fillMissingValues, oneHotEncoder, normalization
and kmeans.

6) AutoClassification and AutoRegression Modules
In DSBot, not all the modules require input from the user.
There are some operations that are fully automated: the
most relevant ones are IRAutoClassification and IRAutoRe-
gression. These two execute different modules of classifica-
tion and regression, respectively, tuning the parameters. The
module and the parameters with the best accuracy and root
mean squared error (RMSE), respectively, are chosen for the
analysis and are used for the prediction.

More precisely, the AutoClassification module is applied
after some preprocessing operations and a Lasso feature
selection. It divides the dataset into training and test set and
it runs four different modules of classification: a Random
Forest classifier, an Ada Boost classifier, a k-nearest neigh-
bors (KNN) classifier, and a Logistic Regression classifier.
In order to decide which module is the best one, it also
runs a parameter tuning module on each of them to try
the best combination of parameters and compare each of
the four modules with the best parameters. In particular, it
applies a random search strategy for the four modules, each
one on its own parameters. The search starts by evaluating
all the candidates (i.e., combinations of parameters) with a
small amount of samples and selects the best combination
of parameters iteratively, using more and more samples. The
candidates for each modules are listed below.

• Random Forest Classifier:
– criterion: Gini or entropy;
– number of estimator from 10 to

min(max(
√
n_row ∗ n_col, 50), 500), with a step

of 10;
– min_samples_split: from 2 to min(n_row∗3

2 , 100)
with a step of 5;

– max_depth: [2,
√
n_col, n_col∗3

2 , None].
• Logistic Regression:

– inverse of regularization strength: [1e-4, 1e-3, 1e-2,
1e-1, 0.5, 1., 5., 10., 25.].

• K-nearest neighbors:
– n_neighbors: from 1 to min(n_row

10 − 1, 50) with a
step of 1;

– weights: uniform or distance;
– p: 1,2.

• Ada Boost:
– number of estimator from 10 to

min(max(
√
n_row ∗ n_col, 50), 500), with a step

of 10;
– base estimator: [DecisionTreeClassifier, Extra-

TreeClassifier, SVC].
After having computed the accuracy for each module and
for different sets of parameters, the AutoClassification mod-
ule defines the best combination according to the accuracy
obtained and run it on the training set. It then saves the
prediction of the testing sets and the features importance for
showing the user either the performance, with or a ROC curve
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(a) Results of the execution of the pipeline chosen without
considering the dataset characteristics.

(b) Results of the execution of the pipeline that takes into
account the dataset characteristics with the selected workflow.

FIGURE 3: Example of an analysis’ results before (a) and after (b) the enrichment of the pipeline.

or a confusion matrix, or the importance of the features in two
different plots.

Also, an AutoRegression module is applied after some pre-
processing operations and a Lasso feature selection. It divides
the dataset into training and test set and it runs four different
modules of regression: a Random Forest Regressor, an Ada
Boost Regressor, a Linear Regressor and a Ridge Regressor.
In order to decide which module is the best one for that
dataset, it not only runs these four modules, but also runs a
parameter tuning module on each of them to try the best com-
bination of parameters and compare the four modules with
the best parameters. Also in the regression case, we tuned the
parameter using a random search with cross validation that
starts considering all the possible combinations of parameters
on a subset of samples, and then iteratively selects the best
combination applying it to a bigger subset of samples. The
parameters for the regression modules are:

• Random Forest Regressor:
– number of estimator from 10 to

min(max(
√
n_row ∗ n_col, 50), 500), with a step

of 10;
– min_samples_split: from 2 to min(n_row∗3

2 , 100)
with a step of 5;

– max_depth: [2,
√
n_col, n_col∗3

2 , None].
• Linear Regressor.
• Ridge Regressor:

– alpha: from 0 to 1 with a step of 0.1.
• AdaBoost Regressor:

– number of estimator from 10 to
min(max(

√
n_row ∗ n_col, 50), 500), with a step

of 10;

– base estimator: [DecisionTreeRegressor(), Extra-
TreeRegressor(), SVR(kernel=’linear’)].

After having computed the accuracy for each module and for
different sets of parameters, the AutoRegression module
defines the best combination according to the root mean
squared error obtained and run it on the training set. It then
saves the prediction of the testing sets and the features impor-
tance for showing either the performance or the importance
of the features in two different plots with a brief explanation
of the results.

C. ARCHITECTURE

The main components of the system are shown in the archi-
tecture in Figure 4.

• The frontend allows the user to interact with the tool
in a user-friendly way. It consists of a single-page web
application, with different modules for the web chat,
the input acquisition, and the result visualization; it has
been implemented using Vue.js framework to ensure
modularity and extendibility.

• The backend comprises several components, the most
relevant of which are the query translator, the pipeline
dictionary, the pipeline executor, and the dialogue man-
ager.

– The backend receives the dataset and the pipeline
executor executes the preliminary analysis on the
data.

– The query translator transforms the research ques-
tion into a DAW pipeline.

– The dialogue manager checks with a short conver-
sation with the user if the translation is correct and
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FIGURE 4: Architecture of DSBot.

helps the user if they do not understand what they
have to do.

– The pipeline executor looks for the best pipeline in
the pipeline dictionary, creates a module for each
operation it has to execute and runs it. To complete
the pipeline, the pipeline executor can require hu-
man intervention and ask the user for some parame-
ters or details. Other operations instead perform au-
tomatically the analysis, two examples are IRAuto-
Classification and IRAutoRegression, detailed in
Section III-B6. While executing some operations,
the pipeline executor can sometimes notify the user
by providing them with interesting details high-
lighted during the execution. An example is the
percentage of removed outliers.

• The docker server is used with RASA, an open-source
Natural Language Understanding Unit (NLU) [40]. This
service is in charge of translating user sentences dur-
ing conversation in symbols understandable from the
dialogue manager (intents) and extract the parameter
necessary for the task completion (entities).

The backend is implemented in Python using the Flask
framework to serve the frontend and manage users’ ses-
sions. The analysis, and visualization function are fully
implemented in Python, leveraging the large availability of
libraries for data analysis and visualization. The commu-
nication between the frontend and the backend occurs by
means of Web Socket (using the socket.io package). This
enables fast, real-time, and bidirectional communication; the
communication is often instantiated by the backend, which
pushes pieces of information to the frontend.

IV. USE CASES
In this section we present two examples of DSBot executions,
one on a dataset of genomic features and one on a dataset of
clinical and demographic features. The first one shows a full
example of analysis starting from the upload of the dataset
until the visualization of the results; the second one focuses

on the conversational part, and shows a conversation in which
DSBot initially fails in understanding the natural language
request from the user.

A. ANALYSIS USE CASE
This use case concerns a data-driven analysis of genomic data
of patients affected by breast cancer, one of the most common
tumor types. Breast cancer is commonly classified in four
molecular subtypes, namely basal, luminal A, luminal B, and
her2 [41]. Different subtypes influence the development of
the disease as well as the choice of the best therapy [41].

We assume as the user a clinician who analyzes a genomic
dataset containing gene expressions (i.e., the level at which
each gene is active within a biosample) for a cohort of 1,127
patients affected by breast cancer, in order to understand if
there are breast cancer subtypes that are easily confused.
Thus, in our dataset, rows refer to the patients and the
columns to the genes. For each patient, we measure the
expression of the 50 genes of PAM50 panel, which have been
identified by oncologists to be the most related with the breast
cancer subtype. In addition, each patient is labeled with their
subtype.

Figure 5 shows the web interfaces for the user to upload the
dataset (’pam50_m...fed.csv’), specifying the label ’Expert
subtype’. In this phase, the user specifies three character-
istics of the dataset: if it has an index column, if it has
column names, and the label. DSBot presents a preview of
the uploaded table, then analyzes the dataset and extracts
the characteristics it needs. Particularly, this genomic dataset
has a categorical label and has outliers. These characteristics
are used to match the best pipeline according to the user’s
question.

In the following step, the user expresses a research ques-
tion in natural language, using the interface shown in Fig-
ure 6. In the example, the user wants to discover the breast
cancer subtypes that are most difficult to discern. The user’s
question in natural language - reported in Figure 6, could be
the following:

Can you tell me which are the most similar subtypes?

DSBot interprets the question and identifies the following
preliminary DAW pipeline as appropriate for the user’s re-
quest:

classification confusionMatrix

The chatbot provides a short explanation to help the user
understand how the request has been interpreted, rephrasing
the user’s request consistently with the preliminary pipeline
identified, and then asks for confirmation to proceed (Fig-
ure 7- right side). The confirmed preliminary DAW pipeline,
along with the inferred dataset characteristics, are used as
input for matching the pipeline dictionary. The final DAW
pipeline (reported below) is identified and executed, and the
final results are visualized to the user ((Figure 7- left side).

labelRemove standardization outliersRemove
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lasso autoClassification confusionMatrix

During the execution of the final pipeline, DSbot provides
feedback to the user (e.g. "The 2.838% of the rows are
outliers. I will remove them" - (Figure 7- right side). After
the final results are visualized, the chatbot highlights the key
findings.

B. CONVERSATION USE CASE

In this second use case the user wants to analyze the stroke
prediction dataset [42], which comprises clinical and demo-
graphic features. Table 3 reports an example of the conversa-
tion between the DSBot (B) and the user (U), as it would hap-
pen in the case the system failed to interpret the first request
from the user. The conversational agent of DSBot provides
suggestions on the possible alternative analysis taking into
account the characteristics of the dataset. In particular, DSBot
proposes to do a prediction analysis since the user indicates
a label; in addition, since DSBot sees that the label is cat-
egorical, it proposes a classification algorithm rather than a
regression one. Subsequently, it wants to know if the required
analysis should provide the performance or the importance
of the features. In this example, the user requires a feature
importance analysis by asking for ’influencing factors’.

DSBot suggests also to do a feature selection analysis
before the classification algorithm; in particular, it asks for an
automatic feature selection or for a manually one. The user
decides for a manual feature selection and provides the list
of features to remove. Subsequently, while DSBot performs
the analysis, it requires some information from the user,
such as removing or filling the missing values. Furthermore,
the conversational agent also provides some insights of the
analysis, such as the percentage of the removed outliers.

The reported conversation also demonstrates how the tool
is domain agnostic; indeed it only considers feature charac-
teristics and not feature semantics to interact with the user
and select the best pipeline.

V. EVALUATION
We performed two evaluations assessing different goals: (i)
to evaluate the performance of DSBot in terms of accuracy
and computation time, and (ii) to test the system capability to
understand the user’s research questions and to translate them
into accurate executable DS pipelines (refer to Equation ??).

A. EVALUATION OF THE AUTOMATIC MACHINE
LEARNING PIPELINE EXECUTOR

With this analysis, we wanted to validate the performance
of DSBot in terms of accuracy (for classification tasks), and
RMSE (for regression tasks). Furthermore, we measured the
execution time, which must be minimized to guarantee a
smooth user experience.

As a baseline for our experiments, we used TPOT [6], a
popular AutoML framework for classification and regression;
it uses genetic programming to explore thousands of ML

BOT: What do you want to obtain?

USER: Analyze my data

B: Let me understand if I interpreted well your request. First, you want
to group your data in such a way that objects in the same group (called
a cluster) are more similar in some sense to each other than to those in
other groups (clusters). Then, you want to visualize the results in a
plot. Is it right?

U: I don’t know

B: From your request, I understood you want to apply clustering, an
analysis that aims at finding groups of data similar to each other (clusters).
This kind of analysis doesn’t require any additional information from
you, it works in total autonomy.
Have I understood correctly your request?

U: No

B: I think I misinterpreted your original request. I will ask you some
questions to better understand what you want to do. I see that you
indicated the presence of a label in your dataset. Do you want to try
to predict its value from the other data?

U: Yes

B: Given the composition of your dataset, we will use a Classification
Algorithm to predict the value contained in the column class. Are you
interested in the prediction itself, or are you more interested in
understanding which are the most influencing factors in determining
the prediction?

U: I want to see the influencing factors

B: Ok, we will perform a Feature Importance analysis, to highlight
which are the most important factors in the prediction outcome
I need one last piece of information: do you want to use all
the columns in your dataset or do you want to use only a subset
of them?

U: Only a subset

B: Perfect! Do you want me to select the columns automatically?

U: No
B: Ok, I’ll ask you the columns later on. Let’s proceed! List the
features you want to remove using a comma to separate them:
gender, age, hypertension,heart_disease, ever_married,
work_type, Residence_type,avg_glucose_level, bmi,
smoking_status

U: gender, ever_married, work_type, Residence_type

B: Ok, I will consider only columns age, hypertension,
heart_disease, avg_glucose_level, bmi, smoking_status, class
B: 33.366% of the rows have at least a missing value.
Do you want to REMOVE or to FILL the rows with missing
values?

U: Remove

B: Ok, I will remove them. The 20.548% of the rows are
outliers. I will remove them

TABLE 3: Conversation between DSBot and the user after
the interpretation of the first user’s request failed (use
case B).
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FIGURE 5: Web user interface to upload the input dataset and indicate the label (use case A)

FIGURE 6: Web user interface: textbox for questions (use case A).
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FIGURE 7: Web interface for visualization of final results and chatbot explanations (use case A).

pipelines intelligently and returns the one that optimizes a
user-defined score function.

TPOT was chosen as a candidate against which to test the
performance of DSBot, since also TPOT is implemented in
Python and, similar to DSBot, it utilizes the scikit-learn ML
library.

We considered a scenario in which the user does not spec-
ify the algorithm to be used for the classification or regression
task but lets DSBot automatically select one algorithm and
tune it hyper-parameters.

The evaluation was performed on datasets selected among
the ones on which TPOT was evaluated by its authors2 and
some from Kaggle3. The final set comprises a total of 18
datasets for classification and 12 for regression. In addition,
we selected the collection of datasets to be as heterogeneous
as possible, including many different domains.

Note that while DSBot is an end-to-end tool, able to
perform a complete analysis, including data cleaning, data
preprocessing and result visualization, TPOT only analyzes
datasets with no missing values or categorical features (which
have to be encoded in advance) in order to determine either
the best classifier or the best regressor.

To allow the comparison, we fed DSBot with the original
datasets; for TPOT, we filled the missing values using an
Iterative Imputer method and we encoded the categorical
variables using a one-hot-encoder. Then, for each dataset, we
performed the following workflow 50 times and averaged the
results:

2http://www.randalolson.com/data/benchmarks/
3https://www.kaggle.com/

• We randomly selected the 20% of the samples from the
dataset, used those as held-out dataset and the remaining
as training set;

• We run TPOT on the training set using 5 genera-
tions of populations of 50 pipelines; a typical TPOT
pipelines may include feature selection, feature engi-
neering, model selection, and parameter tuning.

• We run DSBot on the training set. It automatically
builds a pipeline covering from the data preprocessing to
the data visualization; as classifier (regressor) we used
the autoClassification (autoRegression) mod-
ule. We stopped the pipeline after the selection of the
model, as we were not interested in the result presen-
tation. Typical DSBot pipeline may include different
method to handle missing values (impute, remove),
encoding of categorical features, outlier removal and
feature selection.

• The cases have been carefully selected so that user
intervention is not necessary.

• Both the methods return a classifier (regressor) pipeline.
First of all we saved the time needed by the two systems
to produce their candidate models.

• We applied the two candidate models on the held-out
dataset and measure the accuracy for the classification
tasks and the Root Mean Squared Error (RMSE) for the
regression tasks.

Aggregated results in term of performance and execution
times are reported in Tables 4 and 5. In both tables, each
row corresponds to a dataset on which the pipeline was
executed both with TPOT and DSBot. The columns contain
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the dataset dimensions (rows × columns), the average per-
formance relative to 20 runs with DSBot with its standard
deviation (accuracy for classification, RMSE for regression),
the performance comparison between DSBot and TPOT
(DSBot mean performance − TPOT mean performance), the
average time taken to execute one run with DSBot, the time
comparison of execution time between DSBot and TPOT
(DSBot mean time/TPOT mean time × 100).

Regarding the classification, DSBot achieved better perfor-
mance in term of accuracy in 11 over 18 datasets: vowel, ve-
hicle, diabetes types, cleveland nominal, vote, chess, stroke,
australian, dna, dermatology, and ann thyroid. In six of these
cases, we obtained an accuracy greater than 95 %. In others
four we obtained an accuracy between 75% and 85%, while
only cleveland nominal obtained a low accuracy, equal to
56%. When DSBot had worst performances than TPOT, it
always got a comparable accuracy (within 95% of TPOT’s
accuracy).

Also the execution time is shorter w.r.t. TPOT: for clas-
sification tasks, on average DSBot spent 14.85% of the
time required by TPOT for the same analysis, while for the
regression it spent 3.46% of the time required by TPOT.

Regarding the regression, we obtained better performances
on 8 over 12 datasets. In these cases, DSBot performs better
than TPOT obtaining a smaller RMSE in much less time.

B. EVALUATION OF THE TRANSLATION INTO
EXECUTABLE PIPELINE
To assess the capability of the system in translating a human
question into a workflow of operations, we built a dataset of
research questions in natural language, each associated with a
description of the operations used to answer those questions.
We exploited the dataset section on the Kaggle4 platform,
where users can upload datasets and the Python notebooks
of analysis relative to those datasets.

To build our evaluation, we filtered the datasets, and we
ranked them from the most voted by the community to
the least one. We selected the most voted datasets, and we
excluded the ones that could not be analysed in DSBot,
e.g., the ones containing temporal data or in which data
is provided in more than one table. Then, for each one
of the selected dataset, we examined the 30 most voted
notebooks uploaded, searching for textual description of the
operations performed by the notebook. We associate to each
research question the pipeline used in the notebook, written
in DAW language. We excluded all the research questions
not supported by DSBot. Where the operation was supported
but not the specific algorithm (e.g., when a notebook used
neural network for classification), we used the high-level
term to describe the operation (e.g, classification) instead of
the specific algorithm. The resulting test set contains 100
research questions.

For each dataset, for each question, we saved the pipeline
performed on Kaggle in DAW language. We then translated

4https://www.kaggle.com

the research questions with our fine-tuned T5 based model.
We used the BLEU score [43], a widely-used metric in ma-

chine translation, to measure the performance of our model.
In our experiment, we computed the score up to 4-grams
as our DAW sentences range between 1 and 4 tokens. The
BLEU score ranges from 0 to 1 and reflects the similarity of
the machine-translated text to a set of high-quality reference
translations [43].

With this metric, T5 was able to achieve a mean score
of 0.69, median score of 0.75 with a mode equal to 1 with
49 exact translations, indicating that the model’s translations
were highly similar to the reference translations.

Overall, our use of T5 for machine translation from En-
glish to DAW proved to be an effective approach. The
model’s ability to handle input sequences and understand
context, combined with its high level of adaptability, made
it an ideal choice for this task. Furthermore, the high BLEU
score achieved by the model demonstrates its ability to gen-
erate accurate translations.

VI. CONCLUSIONS
This paper describes DSBot, a novel approach and system to
build and execute data analysis pipelines starting from natural
language requests and datasets uploaded by the user. The
most significant aspects of DSBot include the definition of
DAW, a domain specific language for describing data analysis
pipelines; a machine translation based on a neural network
for producing a DAW sequence from the user’s query; a
matching algorithm to extract the best matching pipeline
out of a dictionary of pipelines; and a conversational agent
interacting with the user whenever necessary.

DSBot does not merely execute the operations explic-
itly requested by the user, but automatically augments the
pipeline so as to improve the result, in a way that is accessible
to a user who is not deeply expert in data analysis. We
provide empirical evidence of the potentiality of such a
tool by discussing its evolution in two case studies: one to
investigate the advantages of the conversation, the other in
which DSBot finds the optimal pipeline to answer the user’s
research question.

DSBot is a first step towards the exploitation of Data
Science by non-experts, paving the ground for a new family
of tools that makes Data Science more accessible and usable
by a larger audience.

Still, there are some open issues to address.
In the current implementation, no actions are taken in

the case of an unbalanced dataset. This problem may be
addressed by either adopting rebalancing strategies during
the data preprocessing steps (e.g., downsampling or over-
sampling) or by computing different evaluation metrics (e.g.,
Matthew Correlation Coefficient). An additional area of im-
provement is the automatic selection of machine learning
models, which in the current version of the system is based
on Accuracy metric, which is not appropriate in situations of
unbalanced data sets and, in such situations should be substi-
tuted by more informative metrics (e.g., balanced accuracy).
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Dataset rows × columns Mean (std) accuracy ∆ mean acc. time [sec] % time TPOT
Yeast 1479× 8 0.5939 (3.91e-02) -0.0134 3.17 1.77
Vowel 990× 13 0.9803 (1.00e-02) 0.0657 2.83 1.08
Vehicle 846× 18 0.8055 (3.67e-02) 0.1432 3.98 3.49

Breast cancer 286× 9 0.7008( 5.34e-02) -0.0292 1.05 3.02
Diabetes types 768× 8 0.7662 (3.91e-02) 0.0341 2.08 4.46
Cleveland nom. 303× 7 0.5688 (5.48e-02) 0.0155 1.51 3.42
Balance scale 625× 4 0.8904 (2.45e-02) -0.0172 2.51 4.72

Vote 435× 16 0.9557 (2.36e-02) 0.0086 1.86 4.56
Chess 3196× 36 0.9860 (5.67e-03 ) 0.0011 35.21 17.94
Stroke 5110× 11 0.9500 (8.08e-03) 0.0023 223.38 131.11

Australian 690× 14 0.8500 (4.40e-02) 0.0094 3.23 6.44
Ecoli 327× 7 0.8530 (4.04e-02) -0.068 1.50 3.24

Car evaluation 1728× 21 0.9528 (2.18e-02) -0.0179 4.48 2.31
DNA 3186× 180 0.9498 (8.09e-03) 0.0091 63.91 5.89

Diabetes 768× 8 0.7701 (2.79e-02) 0.0406 2.53 5.43
Dermatology 366× 34 0.9479 (2.42e-02) -0.0169 2.02 2.79

Adult 48842× 14 0.8661 (2.20e-03) -0.0042 669.24 53.14
Ann thyroid 7200× 21 0.9962 (1.42e-03) 0.0099 59.56 12.41

TABLE 4: Evaluation of classification tests.

Dataset rows × columns Mean (std) RMSE ∆ mean RMSE Time [sec] % Time TPOT
Sample regression ds 10000× 21 1.40e-01 (8.92e-02) 4.51e-02 116.77 11.89
Students performance 1000× 8 2.69e-09 (5.99e-11) -1.71e-11 1.62 3.31

House price 545× 12 1.11e+06 (7.32e+04) -1.14e+05 1.56 3.43
Real estate 414× 7 8.09e+00 (1.81e+00) 4.82e-01 1.04 1.80

Material strength 1030× 8 5.54e+00 (8.96e-01) 3.06e-01 2.24 3.62
Patients LOS 835× 4 2.51e+02 (1.14e+02) 1.49e+01 2.35 2.54

Possum length 104× 13 2.08e+00 (2.29e-01) -7.79e-02 0.53 1.41
Insurance price 1338× 6 4.60e+03 (3.99e+02) -8.1e+02 2.10 2.50
Boston houses 506× 13 3.48e+00 (7.30e-01) -8.67e-02 1.42 2.78

Startup marketing 50× 4 9.02e+03 (2.76e+03) -2.54e+02 0.29 1.13
Insurance expenses 1338× 6 4.62e+03 (4.70e+02) -8.52e+01 2.13 3.31
Second hand cars 1000× 11 8.90e+03 (4.40e+02) -1.22e+02 2.01 3.85

TABLE 5: Evaluation of regression tests.

Given the modular nature of the DSBot, these extensions will
be relatively easy to develop and will be achieved in the near
future.

Other improvements concern two main issues: i) widening
and improving the set of pipelines supported by DSBot and
the operations supported by system that are currently allowed
on single-table data only; ii) enhancing the conversational
power of the chatbot in several directions: to elicit a wider
number of user’s research questions, to sustain a more natural
interaction, and to increase the transparency of the AutoML
processes and the explainability of the system (defined in [44]
as the degree at which an AI system can “enable human users
to understand, appropriately, trust, and effectively manage
artificially intelligent partners”).

Our plan is to address the first issue not only by integrating
and automatizing more algorithms and analysis modules,
e.g., methods used for survival analysis or time series, but
also by testing them on wide number of datasets, to enrich
the number of supported pipelines, refine their quality, and
provide more advanced computational support to the end
user. Concerning the chatbot, we will extend the training
corpora for research question interpretation and elicitation
by collecting many new real-world research questions, with
alternative formulations, and new exemplary conversation
flows. We will investigate the existing techniques of ex-
plainable AI [44] to identify those more appropriate for the

AutoML approach of DSBot. They will inform the design of
new conversational patterns for the chatbot [45], to provide
the user with explanations that make the analysis processes
and their outcomes more transparent, comprehensible, and
trustable.
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APPENDIX A

Operations supported by DAW - Domain Specific Lan-
guage for building data analysis workflows

• missingValuesHandle: first removes columns that con-
tain more than 50% of missing values, then computes
the percentage of rows with missing values: if they are
less than 5%, then missing values are removed; if they
are between 5% and 10%, then missing values are filled;
otherwise, the user is asked to check these rows and
make decisions about them.

• fillMissingValues: using iterative imputation, fills the
numerical missing values; while the categorical ones are
filled with the most common value in the column.

• removeMissingValues: removes the rows with missing
values.

• oneHotEncoder: applies one hot encoding to categor-
ical columns so that the dataset includes only either
numerical values or 0/1 values.

• outliersRemove: removes the rows that have more than
90% of elements that are considered outliers, i.e., whose
difference between the element value and the mean
value exceeds the triple of the standard deviation.

• zeroVarianceRemove: removes the columns that have
a variance equal to zero.

• correlatedFeaturesRemove: considering two features
that have a correlation higher than 0.9, it considers only
one of those two features and drop the other.

• removeFeatures: asks the users if they want to remove
the features that include more than 50% of different
elements.

• standardization: returns a standardized dataset by
applying the Standard Scaler method.

• normalization: returns a normalized dataset by apply-
ing a min-max scaler method.

• labelRemove: drops the target column from the dataset.
• labelAppend: re-appends the target column to the

dataset, when needed.
• pearson: computes the correlation matrix by applying

Pearson measure.
• spearman: computes the correlation matrix by applying

Spearman measure.
• autoClassification: tries different combinations of pa-

rameters and classification modules among the available
ones in order to retrieve the method along with the
parameters yielding to the best accuracy score.

• randomForestClassifier: implements the random for-
est classifier with the tuning of the parameters.

• logisticRegression: implements the logistic regression
classifier with the tuning of the parameters.

• kNeighborsClassifier: implements the kNeighbors
classifier with the tuning of the parameters.

• adaBoostClassifier: implements the adaBoost classifier
with the tuning of the parameters.

• autoRegression: tries different combinations of param-
eters and regression modules among the available ones

in order to retrieve the method along with the parameters
that are able to obtain the best mean squared error.

• linearRegression: implements the linear regression
with the tuning of the parameters.

• randomForestRegressor: implements the random for-
est regressor with the tuning of the parameters.

• ridgeRegression: implements the ridge regression with
the tuning of the parameters.

• adaBoostRegressor: implements the adaBoost regres-
sor with the tuning of the parameters.

• kmeans: implements the kmeans algorithm for cluster-
ing with the tuning of the parameters by applying Grid
Search.

• dbscan: implements the dbscan algorithm for cluster-
ing with the tuning of the parameters by applying Grid
Search.

• agglomerativeClustering: implements agglomerative
clustering with the tuning of the parameters by applying
Grid Search.

• lasso: applies Lasso linear model with iterative fitting
along a regularization path to perform feature selection.

• selectKBest: selects features according to the k highest
scores.

• laplace: performs feature selection with an unsuper-
vised method that uses the Laplacian score and selects
the features with the highest one.

• userFeatureSelection: allows the user to decide which
features to keep and which to remove.

• featureImportance: retrieves the importance of the
features after a classification or a regression algorithm.

• pca2: performs a principal component analysis, creat-
ing a 2D representation of the dataset (linear reduction).

• mds2: performs multi-dimensional scaling, creating a
2D representation of the dataset (non-linear reduction).

• apriori: implements the apriori algorihtm in order to
retrieve the frequent itemsets and the association rules
that lay in the provided data.

• regressionPerformance: after a regression algorithm.
it computes performance measures, such as r2, mean
squared error, root mean squared error and mean abso-
lute error.

• confusionMatrix: produces a summary of prediction
results on a classification problem.

• scatterplot: produces a scatterplot of the data, e.g.,
after a clustering problem.

• clustermap: supplies a clustermap of the correlation
matrix.

• roc: computes the ROC curve and the area under the
curve after having applied a classification method.

• lassoPlot: provides a barplot of the features extracted
with lasso.

• tableRegression: provides the regression performances
in a table to show to the user.

• tableAssociationRules: saves the association rules to
be presented to the user.

• featureImportancePlot: shows in a pie chart the im-
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portance of the features after a classification or regres-
sion problem.
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