
WeakSATD: Detecting Weak Self-admitted Technical Debt

Barbara Russo
Free University of Bozen-Bolzano

Italy

barbara.russo@unibz.it

Matteo Camilli
Free University of Bozen-Bolzano

Italy

matteo.camilli@unibz.it

Moritz Mock
Free University of Bozen-Bolzano

Italy

moritz.mock@stud-inf.unibz.it

ABSTRACT

Speeding up development may produce technical debt, i.e., not-

quite-right code for which the effort to make it right increases with

time as a sort of interest. Developers may be aware of the debt as

they admit it in their code comments. Literature reports that such a

self-admitted technical debt survives for a long time in a program,

but it is not yet clear its impact on the quality of the code in the

long term. We argue that self-admitted technical debt contains a

number of different weaknesses that may affect the security of a

program. Therefore, the longer a debt is not paid back the higher

is the risk that the weaknesses can be exploited. To discuss our

claim and rise the developers’ awareness of the vulnerability of the

self-admitted technical debt that is not paid back, we explore the

self-admitted technical debt in the Chromium C-code to detect any

known weaknesses. In this preliminary study, we first mine the

Common Weakness Enumeration repository to define heuristics

for the automatic detection and fix of weak code. Then, we parse

the C-code to find self-admitted technical debt and the code block

it refers to. Finally, we use the heuristics to find weak code snippets

associated to self-admitted technical debt and recommend their

potential mitigation to developers. Such knowledge can be used to

prioritize self-admitted technical debt for repair. A prototype has

been developed and applied to the Chromium code. Initial findings

report that 55% of self-admitted technical debt code contains weak

code of 14 different types.

CCS CONCEPTS

• Software and its engineering→ Maintaining software; • Secu-

rity and privacy→ Software and application security.
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1 INTRODUCTION

Not-quite-right code is introduced for short-term needs [4, 34]. If

it is not fixed, it may increase over time with negative impact on

code quality [38] and, if it is fixed, it may cause cost of additional

rework [20]. Such additional effort is called technical debt. Examples

of technical debt are code smells and bug hazards. Identifying auto-

matically such a code is the goal of recent lines of research [1, 37, 38].

One option is to trace Self-Admitted Technical Debt (SATD), i.e., code

comments explicitly introduced by developers to tag the technical

debt [1, 11, 20]. Such comments can be automatically detected and

the associated code can be identified and removed or modified to

mitigate the debt (i.e., paying back technical debt) [37]. According

to developers’ opinion, SATD is not introduced because of pres-

sure [1], but it is rather included intentionally to track future bugs

and areas of the code that need refactoring [10, 12]. It has been

hypothesised that SATD may affect software correctness [10], but

literature has not yet reported a conclusive answer [1, 32, 35, 37].

Not-quite-right code may indeed contain weaknesses (i.e., code that

exposes software to security breaches). Such weaknesses can be

exploited by a party to cause the product to modify or access un-

intended data, interrupt proper execution, or perform incorrect

actions that were not specifically granted to the party who exploits

the weakness. Thus, the longer this code remains in the software,

the higher will be the interest to pay it back, and the longer will

be the exposure of the software to third party’s exploitation. As

SATD on average survives for over 1,000 commits [1], weaknesses

in the SATD-related code represent a real security risk. Even though

developers are aware of the technical debt since they self-admit it,

they may not be aware of the portion of such debt that is also weak

and the security risks at which their software is exposed. In this

work, we consider the following research question:

RQ: Is self-admitted technical debt related to weaknesses in

source code?

We argue that detecting weaknesses associated to SATD can in-

crease developers’ awareness on the vulnerability of their code and

on the risk of not paying the technical debt back and help them plan

maintenance activities for security concerns (e.g., prioritize SATD for

repair).

In this paper, we present a preliminary study in which we ana-

lyzed the source code written in C of the Chromium project [2] to

understand whether code blocks to which SATD comments refer

may contain weaknesses. To achieve this goal, we developed the

WeakSATD approach that mines the public Common Weaknesses

and Enumeration (CWE) repository [24] to derive a set of heuristics

to detect known weaknesses in software code and recommend their

mitigation. SATD comments and related code are then retrieved.

Finally, the heuristics are used to automatically detect the presence

and the types of weaknesses in the code to which SATD comments

refer. Mitigation to such weaknesses are then recommended. We
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believe that such knowledge can be leveraged to prioritize SATD

for repair (e.g., with or without weaknesses or with one or more

weaknesses) and speed up SATD removal.

The remainder of this paper is as follows. We introduceWeak-

SATD in Sec. 2. We discuss our initial findings with the Chromium

project in Sec. 3. We briefly report related work in Sec. 4. We con-

clude the paper and we present future directions in Sec. 5.

2 WEAKSATD

In this section, we introduce an overview of the whole approach

(Sec. 2.1), we describe how we mine and leverage the information in

the CWE issues (Sec. 2.2), how we derive our weakness heuristics

(Sec. 2.3) used to analyze the Chromium project, the detection of

SATD-blocks (Sec. 2.4), and the WealSATD prototype (Sec. 2.5).

2.1 Overview

Figure 1 illustrates a high-level overview of our approach that

includes the following steps.

Define relevant CWE issues. We first mine the CWE repository

that contains the state-of-the-art list of existing weaknesses (hard-

ware and software) and extract the weakness types (called CWE

issues) that pertain to software code written in C and include in

their description of some C-code examples.

Mine CWE repository. Then, we define weakness heuristics as

regex rules in C by analyzing the code snippets reported as weak-

code examples in these CWE issues’ description (we call them weak-

code snippets). For the rest of the paper, we refer to weak code as a

portion of the code that contains one or more weak-code snippets.

Detect SATD in code. At the same time, we determine the SATD-

blocks as the blocks (e.g., method block or block of a loop) in the

C-code of Chromium to which SATD instances refer. To this aim,

we parse the code to identify SATD comments with regex rules

matching the 62 patterns defined by Potdar and Shihab [20] and to

detect code blocks associated with them.

Find SATD-blocks that contain CWE issues. Finally, we use regex

rules to find weak-code snippets in the SATD-blocks and provide

mitigation actions by exploiting the information contained in the

description of the CWE issues. The same information is leveraged

to provide mitigation actions.

We have developed a prototype tool that automatizes our ap-

proach, visualizes instances of SATD-blocks that contain potential

weaknesses, and suggests mitigation actions[28]. Finally, we im-

plemented the approach also using GitHub Actions [6] to enable

automation of our approach in CI/CD pipelines. A more detailed

description of our approach follows in the next sections.

An anonymized package containing the implementation ofWeak-

SATD demo, the list of heuristics, the Github Actions, and the data

extracted from CWE is publicly available [28].

2.2 Exploring the CWE repository

CWE is part of a larger MITRE [3] initiative for collecting, classify-

ing, and publishing data on weaknesses, vulnerabilities, and attacks

to software and hardware. CWE is a public community-maintained

moderated repository of over 900 types of software and hardware

known weaknesses. Weakness types are entered in CWE as issues

(CWE issues). Each issue may include a description, relationships

with other issues (if any), platforms and programming languages

that can be affected, known consequences related to attacks or sys-

tem malfunctioning, demonstrative code examples, and potential

mitigation actions as in Table 1. Search in the CWE repo can be

performed by issue-ID or keywords. No API is available, and the

dataset can be downloaded as a set of .cvs or .hml files. CWE issues

are also linked to records stored in the Common Vulnerabilities

and Enumerations (CVE) [23] or National Vulnerabilities Database

(NVD) [19], i.e., the U.S. government repository of standards-based

vulnerability management data represented using the Security Con-

tent Automation Protocol (SCAP). CVE contains data on vendors,

products and versions of products as well as vulnerabilities per

type (e.g., Denial of Service, Code Execution, Overflow, etc.). Fi-

nally, the exploitation of vulnerabilities (e.g., exploitation code and

information) are maintained in the exploit database [30]. Entries

in the exploit DB, CVE/NVD and CWE repositories are all linked

through the identifier CWE-ID. Some bug tracking systems (e.g.,

Mozilla [15]) are also using the CWE-ID to annotate issues related

to security. Thus, by linking SATD to CWE issues, we can trace

technical debt to weaknesses, their effects (vulnerabilities and bugs)

and possible attacks (exploitation).

The CWE repository contains more than 920 different weak-

nesses types (CWE issues) for software and hardware linked each

other through their CWE-ID when this is specified in the Rela-

tionships field, as shown in Table 1. For instance, CWE-242 is a

“member of” the general category CWE-699. The relationships field

can include different types of associations between CWE issues like

MemberOf, ChildOf and ParentOf.

To select the relevant list of CWE issues, we have inspected the

900 CWE types also exploiting the relationship they declare in their

description. We have then manually isolated the issues that: (1)

pertain only to software development (total 419), (2) can be found

in the C programming language, and (3) contain a code example in

the C language. By applying these criteria, we finally obtained a

sample of 80 CWE issues.

Table 1: Relevant information in a CWE issue.

Title CWE-242: Use of Inherently Dangerous Function

Description The program calls a function that can never be guaranteed
to work safely

Extended Description Certain functions behave in dangerous ways regardless of
how they are used. ... The gets() function is unsafe because
does not perform bounds checking on the size of its input.
An attacker can easily send arbitrarily-sized input to gets()
and overflow the destination buffer. ...

Relationships Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name
MemberOf C 1228 API/Function Errors

Modes of Introduction: Phase: Implementation
Applicable Platform Languages: C, C++
Common Consequences Technical Impact: Varies by Context
Likelihood Of Exploit High
Demonstrative Examples The code below calls gets() to read information into a buffer.

Example. Language: C

char buf[BUFSIZE ];

gets(buf);

Potential mitigations Phases: Implementation; Requirements ban the use of dan-
gerous functions. Use their safe equivalent.
Phase: Testing; Use grep or static analysis tools to spot usage
of dangerous functions.
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Figure 1: Overview of our approach to detect weaknesses in code associated to SATD.

2.3 Weakness Heuristics

To identify weaknesses in the code, we define a set of heuristics by

manually inspecting the 80 CWE issues. Firstly, we further reduce

the number of CWE issues to analyze by exploiting the dependency

structures among them. Specifically, we re-use the heuristic of the

parent node when possible and we implement only the heuristics

for the child nodes when the parent’s issue description is too coarse

to detect its children. At the end, we come up with 34 relevant

heuristics. After applying the aforementioned selection criteria, we

implement regex rules to parse the C-code by analyzing the descrip-

tion and the code snippets included as examples of vulnerability in

C in the description of the corresponding CWE issue. The recom-

mended mitigation actions of the CWE issue are further extracted

from the CWE description and associated to the weak-code snip-

pet. The heuristics we find depend on the specific programming

language, the available information in the CWE repository, and

researchers’ personal knowledge of the language, although they are

independent from the Chromium project. Thus, they are far from

being a complete set for any C-written project and represent only

a demonstrative sample to illustrate our research idea. Table 2 illus-

trates an example of heuristic we defined for the issue CWE-676 in

the C language. The weak-code snippet in CWE-676 creates a local

copy of a buffer to perform some data manipulations. The func-

tion strcpy() copies a string into a buffer with no control on the

size of the string potentially exposing the software to buffer over-

flow exploits. The heuristic we defined searches for the potentially

dangerous functions in C, strcpy() illustrated in the CWE-676

Table 2: A heuristic for CWE-676.

Title CWE-676: Use of Potentially Dangerous Function

Example in C void manipulate_string(char * string){

char buf [24];

strcpy(buf , string);

...

}

Heuristic Search for “strcpy(” with no alphanumerical character in front of the keyword

example and also for each of the potentially vulnerable functions in

the banned list maintained by Microsoft [14]. More complex regex

rules have been defined in other cases. The set of regex rules we

implemented are available in the replication package [28].

2.4 SATD-blocks

As per common practice [1, 37], we implement a set of regex rules

to search among all comments for the 62 patterns defined by Potdar

and Shihab [20] to detect SATD in code [21] and use srcML to

decompose C-code in comments and blocks, [1, 20, 37]. Then, we

associate a SATD instance to a block following a proximity rule as

we derived as in the following. Firstly, in all comments in the code

we search the ones that include one or more SATD patterns (SATD-

comments). Secondly, we consider all code blocks and associate

each of them to a SATD comment by a proximity rule based on

the results of a Wilcoxon test between the two distributions of

lines of code between SATD comments and enclosing or following

code blocks. For instance, for the Chromium project, we decided to
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select blocks that occur after a comment since the Wilcoxon test

significantly (𝛼=0.05) reported the block after the comment as the
nearest one1. SATD comments that are not associated to any code

block are not included in the analysis. We finally call SATD-block,

the code block associated in this way to a SATD comment.

2.5 Weak SATD

With the regex rules defined from the heuristics, we search weak-

code snippets in SATD-blocks and calledWeak SATD the positive

results. It is worth noting that a block can contain more instances

of such snippets from the same or different CWE issues, Listing 3.

For each of the found weak-code snippet, we also retrieve the

mitigation actions recommended by the CWE issue in the field

“potential mitigations”, as shown in Table 1.

Prototype. We developed a prototype tool implementing the

WeakSATD approach. The tool is a web-based application that uses

react.js and npm-packages (e.g., lodash and adm-zip). A RESTful

API is implemented by using express and mongoose to interact

with MongoDB and babel to allow compliance with the react syntax.

The API handles saving of relevant CWE data and statistics on

weak-code snippets in MongoDB as JSON record. The tool uses

SrcML to retrieve relevant items from the code (comments, blocks).

Finally, we developed GitHub Actions for the analysed CWE issues

to exemplify the integration of WeakSATD into CI/CD pipelines.

The action is executed upon new release commits to spot weak-code

snippets in SATD-blocks. Then it notifies the developer with poten-

tial mitigation actions. The GitHub action runs as a job configured

through a .yml file as illustrated in Listings 1.

Listing 1: A GitHub Action forWeakSATD.

jobs:

weakSATDAction:

runs -on: ubuntu -latest

steps:

- uses: actions/checkout@v2

- name: Run weakSATD Action

uses: <account >/WeakSATD -Action@v0 .0.1

3 INITIAL FINDINGS IN CHROMIUM

We applied our approach to the C sources of Chromium [25], version

88.0.4323. We selected this project as it was originally used by

Nord et al. [17] for their initial findings on the relation between

vulnerabilities and technical debt and by Potdar and Shihab [20] in

the definition of the 62 SATD patterns.

Bymining the CWE repository, with our selection criteria (Sec. 2),

we obtained and implemented 34 weakness heuristics. For each

CWE issue, we refined the initial implementation of the weakness

heuristics in our demo tool after manually analyzing a sample

of 775 files sampled with 90% confidence level and 5% margin of

error. With this manual inspection, we also found that the SATD

pattern “take care” produced quite a few false positives in the SATD

comments of Chromium as illustrated in Listing 2. To stay on the

conservative side, we did not consider this pattern in our analysis.

1Note this result may be different in other software projects.

Listing 2: False positive comment for the “take care” SATD

pattern.

// Callers are encouraged to use the setters

provided which take care of setting |options|

as desired.

Finally, we made sure that for this sample, the tool predicted

weak-SATD blocks that were actual weak-code according to the

CWE description. We applied our weakness heuristics and our

SATD-block rule to 41753 C files. Table 3 shows that the percentage

of files with SATD and the percentage of comments with SATD

found with our approach is within the ranges reported in literature.

Table 3: % SATD files and comments in recent literature.

% files with SATD comments % SATD comments

WeakSATD [28] 1.6%∗ 0.1%∗

Potdar et al. [20] 2.4-31% -
Bavota et al. [1] - 0.2-0.4%
Maldonado et al. [12] - 0.02-0.21%
Zampetti et al. [37] - 0.02-0.21%
Iammarino et al. [8] - 0.02-0.21%
Fucci et al. [5] - 0.02-0.21%

∗Computed considering SATD comments with blocks only.

We found that 10885 files (26% of all C files) contain a number

of weak-code snippets ranging from 0 for issue CWE-243 to 4091

for issue CWE-783 (average=1197, Q1=14, median Q2=88, Q3=365).

It is worth noting that issue CWE-783 is very common as it refers

to the use of an expression in which operator precedence causes

incorrect logic. We also found 847 distinct SATD blocks for about

0.1% of all comments. We found SATD blocks in 634 different files

(about 1.6% of all files). Out of those SATD blocks, 465, that is, 55%

of them contain at least one potential weakness according to the

CWE catalog. We found that weak SATD-blocks are distributed

over 14 different CWE issues (about 41% of the implemented issues)

with a maximum of 197 SATD-blocks for issue CWE-483 “Incorrect

Block Delimitation" (e.g., missing brackets for an “if statement”).

Our initial findings with the Chromium project have no ambition

of generalization also because, at the current stage, we do not cover

all CWE issues. However, we can summarize our findings as follows

to answer our initial research question.

RQ summary: In our experiments with the Chromium project,

we found that 26% of all source files contain at least one weak-

code snippet. Furthermore, 55% of the SATD blocks contain

weak-code snippets of 14 different CWE issues. Indeed, correla-

tion between weaknesses and SATD warrant further research.

Listing 3: SATD comment and relative block with multiple

CWE instances.

1 /* FIXME: this code assumes that sigmask is an

even multiple of the size of a long

integer. */

2

3 unsigned long *src = (unsigned long const *)

set;

4 unsigned long *dest = (unsigned long *) &(

thread.p->sigmask);
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5

6 switch (how)

7 {

8 case SIG_BLOCK:

9 for (i = 0; i < (sizeof (sigset_t) /

sizeof (unsigned long)); i++)

10 {

11 /* OR the bit field longword -wise. */

12 *dest++ |= *src++;

13 }

14 break;

15 case SIG_UNBLOCK:

16 for (i = 0; i < (sizeof (sigset_t) /

sizeof (unsigned long)); i++)

17 {

18 /* XOR the bitfield longword -wise. */

19 *dest++ ^= *src++;

20 }

21 case SIG_SETMASK:

22 /* Replace the whole sigmask. */

23 memcpy (&( thread.p->sigmask), set , sizeof

(sigset_t));

24 break;

25 }

The Chromium code in Listing 3 shows an example of SATD

comment and its SATD block in which our tool detects the following

instances of CWE-issues: CWE-478 “Missing Default Case in Switch-

statement” (at the end of the switch), CWE-484 “Omitted Break

Statement in Switch” (after the second case), CWE-242/676 “Use of

Potentially/Inherently Dangerous Function” (line 23).

4 RELATEDWORK

In our work we adopt a simple pattern-based SATD detection

method, while other existing approachesmay be in principle adopted

to achieve higher accuracy [22, 36]. Supervised approaches may

be more precise in detecting SATD instances (60 − 85% precision

with ML [36] vs. 75% with unsupervised search [1]). Nevertheless,

they require ground truth and training effort that is not needed in

pattern-based SATD detection.

Considering the detection (or prediction) of security threats, re-

cent approaches exploit the information in the history of software

projects and connecting it to software vulnerabilities, [7, 9, 13, 16,

17, 29, 33]. For instance, Mazuera-Rozo et al. [13] classify code func-

tions with Deep and Machine Learning techniques to classify them

by known vulnerabilities, such as deadlock, race condition, and null

pointer dereference. The information on software vulnerabilities is

used to label the categories of the classifiers and the focus is on vul-

nerabilities (e.g., buffer overflow) and not on software weaknesses

(e.g., inadequate container capacity).

Table 4 lists recent pieces of work explicitly linking their results

to a set of CWE issues. As shown in the table, there is little over-

lapping with the issues considered in WeakSATD. Our approach

is indeed different. It exploits the information in the weakness

repository (CWE) to detect weak code in software projects.

The relationship between technical debts and weaknesses has

been recently studied [17, 31]. Initial findings confirm software

developers use technical debt concepts to discuss design limitations

and their consequences. However, correlations between vulnerabil-

ities and technical debt indicators requires further research. The

approach in [31] uses security bugs in issue tracking systems to

identify vulnerabilities. Such bugs are not weaknesses but errors

in code. According to the MITRE definition, weaknesses are code

snippets that can be potentially (not yet) be exploited. Different

from bugs and vulnerabilities, weaknesses represent, in our vision,

a sort of debt. None of the aforementioned approaches aim at de-

tecting SATD or connect SATD (or TD) with weaknesses or exploit

the information in CWE to identify weaknesses asWeakSATD.

Table 4: Recent literature, number of CWE issues analysed

and CWE-isse in common withWeakSATD.

Datasets CWE issues CWE issues in common withWeakSATD

Shallow-Deep (2021) [13] N/A N/A
Juliet Test Suite (2018) [18, 26] 118 195, 196, 401, 415, 416
DRAPER VDISC (2018) [26, 27] 4 none
Zou et al. (2019)[39] 33 467, 676
WeakSATD [28] 34 -

5 CONCLUSION AND FUTURE DIRECTIONS

More research is needed to understand the relation between vul-

nerabilities and technical debt [17]. We believe that WeakSATD

represents a novel contribution in this direction. We appliedWeak-

SATD to the Chromium project that has been previously used as

test bed in research on technical debt (e.g., [17, 20]). We found that

more than 55% of SATD instances contain weak code of 34 different

CWE issues. It is worth noting that the weak SATD report must be

taken as a warning only as some of the found weak code snippets

may be perfectly fine in some circumstances. At the current stage,

our work is not meant to predict vulnerabilities or attacks with high

precision or recall, but it can be used by developers to prioritize and

boost the repair of SATD with the help of the recommended miti-

gation. In addition, our initial findings with the Chromium project

have no ambition of generalization especially because we were able

to define a substantial amount if weakness heuristics but still not

covering all CWE issues. This allowed us to better focus on their

definition and implementation, but it prevented us from being more

extensive with our findings. Our plan for future work, is to explore

other publicly available datasets that are connected with the CWE

issues (e.g., the Juliet Test Suite [18]) and can be used to define

additional heuristics. We also plan to exploit the whole chain of

information available in MITRE (or MITRE-linked repositories) and

provide an instrument that recommend developers on the whole

chain of consequences (e.g., vulnerabilities, exposure, bugs, and

attacks) of leaving SATD in code. The CWE indexing can be used

for this scope, but not only. Indeed, some projects do not encode

the CWE-ID in their bug issues and security issues can be traced in

other ways, like regexes in commit messages, such as the approach

introduced in [17]. We also plan to study the perceived usefulness

of weakSATD by involving professional developers in controlled

experiments with humans.
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