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Abstract Recently, there has been an increasing interest in developing statistical
methods able to find groups in matrix-valued data. To this extent, matrix Gaussian
mixture models (MGMM) provide a natural extension to the popular model-based
clustering based on Normal mixtures. Unfortunately, the overparametrization issue,
already affecting the vector-variate framework, is further exacerbated when it comes
to MGMM, since the number of parameters scales quadratically with both row and
column dimensions. In order to overcome this limitation, the present paper intro-
duces a sparse model-based clustering approach for three-way data structures. By
means of penalized estimation, our methodology shrinks the estimates towards zero,
achieving more stable and parsimonious clustering in high dimensional scenarios.
An application to satellite images underlines the benefits of the proposed method.
Abstract Ad oggi, c’è un sempre crescente interesse nello sviluppo di metodi statis-
tici in grado di identificare gruppi in dati matriciali. I modelli mistura con ker-
nel Gaussiano matriciale (MGMM) forniscono un’estensione naturale al cluster-
ing basato su modelli con misture normali multivariate. Sfortunatamente, il prob-
lema dell’eccessiva parametrizzazione, che già interessa il framework a due dimen-
sioni, è particolarmente evidente nei MGMM, poiché il numero di parametri cresce
all’aumentare sia del numero di righe che di colonne. Al fine di superare questa
limitazione, l’articolo introduce un approccio di clustering basato su modelli sparsi
per strutture di dati matriciali. Tramite la stima penalizzata, la nostra metodolo-
gia riduce il valore delle stime ottenendo un clustering più stabile e parsimonioso
in scenari ad alta dimensione. Un’applicazione a immagini satellitari evidenzia i
vantaggi del metodo proposto.

Andrea Cappozzo,
Department of Statistics and Quantitative Methods, University of Milano-Bicocca, e-mail: an-
drea.cappozzo@unimib.it

Alessandro Casa, Michael Fop
School of Mathematics & Statistics, University College Dublin e-mail: alessandro.casa@ucd.ie,
michael.fop@ucd.ie

1



2 Andrea Cappozzo, Alessandro Casa, and Michael Fop

Key words: Model based clustering, Matrix distribution, EM-algorithm, penalized
likelihood, Sparse matrix estimation

1 Introduction and motivation

Model-based clustering is a mathematical-based approach to account for hetero-
geneity in a population, useful for discovering subgroups in data [2]. This frame-
work assumes that each cluster corresponds to a different component of a finite
mixture, with the Gaussian distribution being the standard choice when dealing
with continuous data [4]. Nonetheless, the ever-increasing complexity of real-world
datasets is jeopardizing the usage of standard Gaussian Mixture Models (GMM),
as they tend to be over-parametrized in high-dimensional spaces [1]. To this extent,
parameters regularization by means of penalized estimation has been proven useful
in performing model-based clustering and variable selection in such scenarios [9].

The aforementioned problem complicates even further when dealing with three-
way data structures, where for each statistical unit variables are repeatedly measured
over different occasions. These increasingly common situations lead to a complex
statistical framework, for which the observations are assumed to be realizations of
some matrix-variate distribution. In details, for a given sample of n standardized
matrices X = {X1, . . . ,Xn}, with Xi ∈ Rp×q, the GMM extension to the three-way
data context is provided by the matrix normal mixture model (MGMM [7]), in which
the marginal density of each Xi reads:

f (Xi;ΘΘΘ) =
K

∑
k=1

τkφp×q(Xi;Mk,ΩΩΩ k,ΓΓΓ k). (1)

The number of mixture components is denoted by K, τk’s are the mixing propor-
tions with τk > 0,∀k = 1, . . . ,K, ∑

K
k=1 τk = 1 and φp×q(·;Mk,ΩΩΩ k,ΓΓΓ k) is the k-th

component density of a p×q matrix normal distribution:

φp×q(Xi;Mk,ΩΩΩ k,ΓΓΓ k) = (2π)−
pq
2 |ΩΩΩ k|

q
2 |ΓΓΓ k|

p
2

exp
{
−1

2
tr(ΩΩΩ k(Xi−Mk)ΓΓΓ k(Xi−Mk)

′)

}
,

with Mk representing the mean matrix and ΩΩΩ k and ΓΓΓ k are the rows and columns
precision matrices with dimensions p× p and q× q, respectively. The previously
mentioned over-parametrization issue deeply affects model in (1), since the number
of parameters ΘΘΘ = {τk,Mk,ΨΨΨ k,ΣΣΣ k}K

k=1 scales quadratically with both dimensions
p and q. Motivated by this, the present manuscript proposes a matrix-variate exten-
sion to the two-way penalized model-based clustering framework introduced in [9],
assuming that Mk, ΩΩΩ k and ΓΓΓ k, k = 1, . . . ,K, possess some degree of sparsity. The re-
sulting model flexibly accounts for cluster-wise conditional independence patterns,
providing a unified way for jointly reducing the number of estimated parameters
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and eliminating redundant variables, combining advantages of state-of-the-art pro-
cedures for matrix-variate clustering [5, 8].

The remainder of the paper proceeds as follows: in Section 2 we introduce our
new proposal and we discuss its main methodological aspects. An application to
soil classification by means of satellite images is reported in Section 3. Section 4
summarizes the novel contributions and highlights future research directions.

2 Penalized matrix-variate mixture model

A penalized likelihood approach is introduced for parameter estimation. The result-
ing objective function to be maximized with respect to ΘΘΘ is:

`(ΘΘΘ ;X) =
n

∑
i=1

log

{
K

∑
k=1

τkφp×q(Xi;Mk,ΩΩΩ k,ΓΓΓ k)

}
− pλ1,λ2,λ3(Mk,ΩΩΩ k,ΓΓΓ k), (2)

with the penalization term pλ1,λ2,λ3(Mk,ΩΩΩ k,ΓΓΓ k) being equal to

pλ1,λ2,λ3(Mk,ΩΩΩ k,ΓΓΓ k) =
K

∑
k=1

λ1||P1 ∗Mk||1 +
K

∑
k=1

λ2||P2 ∗ΩΩΩ k||1 +
K

∑
k=1

λ3||P3 ∗ΓΓΓ k||1.

With ∗ we denote element-wise product, P1,P2,P3 are matrices with non-negative
entries, λ1,λ2 and λ3 are penalty coefficients and ||A||1 = ∑ jh |A jh|. A dedicated
EM-algorithm is devised for inference by firstly defining a suitable penalized com-
plete log-likelihood for model (2):

`C (ΘΘΘ ;X) =
n

∑
i=1

K

∑
k=1

zik

[
logτk−

pq
2

log2π +
q
2

log |ΩΩΩ k|+
p
2

log |ΓΓΓ k|+

−1
2

tr
{

ΩΩΩ k (Xi−Mk)ΓΓΓ k (Xi−Mk)
′}]
− pλ1,λ2,λ3(Mk,ΩΩΩ k,ΓΓΓ k) (3)

where as usual for mixture models zik = 1 if observation Xi belongs to the k-th
component, and 0 otherwise. The E-step at the t-th iteration requires computing the
estimated a posteriori probabilities of class membership ẑ(t)ik , achieved via the stan-
dard updating formula. On the other hand, the M-step involves a partial optimization
strategy. Let us denote with mlsk, xlsi, ωlsk, γlsk and pls1 the element in the l-th row
and s-th column of matrices Mk, Xi, ΩΩΩ k, ΓΓΓ k and P1. The sparse estimation of Mk is
achieved via a cell-wise coordinate ascent algorithm, where m̂(t)

lsk = 0 if
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lsk is obtained by solving
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with respect to m̂(t)
lsk, where n̂(t)k = ∑

n
i=1 ẑ(t)ik . Lastly, expressions for estimating sparse

precision matrices ΩΩΩ k and ΓΓΓ k rely on dedicated modifications of the the coordinate
descent graphical LASSO [3].

3 Application to Satellite Data

The considered data encompass 397, 211 and 237 satellite images of respectively
grey soil, damp grey soil and soil with vegetation stubble. Each scene (represented
by p = 9 pixels) is recorded q = 4 times with different spectral bands, resulting
in n = 845 samples of 4× 9 matrices. The methodology described in Section 2 is
employed to perform clustering on this three-way dataset, mimicking the analy-
ses performed in [5, 7]. Table 1 reports the classification error rate and number of
estimated parameters for our method and two competing procedures, namely con-
strained MGMM [5] and standard GMM (the original three-way samples are un-
folded in order to recast the problem into a two-way framework). Our model not
only succeeds in better retrieving the true underlying data partition, but it is also
the most parsimonious, displaying the lowest number of non-zero estimated param-
eters. The resulting sparse structures retrieved by our proposal are showcased in

Table 1 Misclassification errors and number of free estimated parameters for three clustering pro-
cedures, Satellite Data. Sparsemixmat denotes the proposal introduced in the present paper.

Sparsemixmat Sarkar et al. [5] Mclust [6]
Misclassification Error 0.0793 0.0828 0.3053
# of free parameters 218 275 850
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Fig. 1 Estimated sparse mean matrices (upper plots), row-precision matrices (middle plots) and
column-precision matrices (lower plots) for the three clusters, satellite data. Matrix entries that are
shrunk to 0 by the penalized estimator are highlighted with an ×.

Figure 1, where estimated parameters for the three soil types are displayed. Matrix
entries that are shrunk to 0 by the penalized estimator are highlighted with an × in
the plots. As expected, the clustering is mainly driven by the different patterns in
the mean matrices, while the column-precision matrices Γ̂ΓΓ k, k = 1, . . . ,3 possess the
highest level of sparsity.

4 Conclusion

The present work has introduced a novel penalized matrix-variate mixture model,
able to capture heterogeneity and redundancy in three-way data structures. By
means of sparse estimation, we are able to overcome the over-parametrization is-
sue occuring in MGMM when either the row or the column dimensions increase.

Future research directions aim at deriving an efficient procedure for performing
model selection. Jointly determining the best values for the penalty coefficients,
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as well as the number of mixture components define a challenging computational
problem: feasible solutions are currently being investigated.
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