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Environmental effects on brain 
functional networks in a juvenile 
twin population
Emma Tassi 1,2,8, Eleonora Maggioni 1,8, Maddalena Mauri 3,4, Corrado Fagnani 
5, Nivedita Agarwal 6, Anna Maria Bianchi 1, Maria A. Stazi 5, Maria Nobile 3 & 
Paolo Brambilla 2,7*

The brain’s intrinsic organization into large-scale functional networks, the resting state networks 
(RSN), shows complex inter-individual variability, consolidated during development. Nevertheless, 
the role of gene and environment on developmental brain functional connectivity (FC) remains largely 
unknown. Twin design represents an optimal platform to shed light on these effects acting on RSN 
characteristics. In this study, we applied statistical twin methods to resting-state functional magnetic 
resonance imaging (rs-fMRI) scans from 50 young twin pairs (aged 10–30 years) to preliminarily 
explore developmental determinants of brain FC. Multi-scale FC features were extracted and tested 
for applicability of classical ACE and ADE twin designs. Epistatic genetic effects were also assessed. 
In our sample, genetic and environmental effects on the brain functional connections largely varied 
between brain regions and FC features, showing good consistency at multiple spatial scales. Although 
we found selective contributions of common environment on temporo-occipital connections and of 
genetics on frontotemporal connections, the unique environment showed a predominant effect on FC 
link- and node-level features. Despite the lack of accurate genetic modeling, our preliminary results 
showed complex relationships between genes, environment, and functional brain connections during 
development. A predominant role of the unique environment on multi-scale RSN characteristics was 
suggested, which needs replications on independent samples. Future investigations should especially 
focus on nonadditive genetic effects, which remain largely unexplored.

Recent technical and methodological advancements in functional Magnetic Resonance Imaging (fMRI) field 
have enabled an accurate characterization of functional brain networks during resting state, leading to important 
information about the brain pathophysiology. At rest the human brain is organized in multiple large-scale net-
works, called resting-state networks (RSNs), resulting from the synchronous activation of distant brain regions 
involved in processes like vision, audition, motor planning, memory, and  attention1–4. Independent component 
analysis (ICA) findings demonstrated high spatial consistency of the RSNs across  subjects2,3,5,6. Their reproduc-
ibility was confirmed by seed-based functional connectivity (FC) studies, which identified sets of nodes being 
consistently organized into functional  modules7,8. Of note, connectivity’s alterations within and among the RSNs 
were observed in different neuropsychiatric  disorders9,10. Shifting from a group-level to a subject-level perspec-
tive, recent fMRI findings showed the existence of individual functional brain network characteristics that remain 
unique and stable across  years11–13. Accordingly, subject-specific functional brain network topography seems 
predictive of behavioral  phenotypes14.

In this respect, how developmental changes result in individualized FC signatures is still debated. Studying 
the developmental determinants of FC might inform on individual differences in behavior, giving insight into 
complex mental disorders’  etiology15. Although RSNs result to be largely established early in development, 
passing from childhood to adolescence they exhibit a shift from a local (segregated) to a more distributed 
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(integrated) topological  organization16. Individualized FC fingerprints progressively emerge from childhood to 
early  adulthood17, arising from influences of genetics, environment, and their interaction that remain largely 
 unexplored18.

Twin studies provide an excellent platform for the estimation of developmental determinants and herit-
ability on RSNs, by considering that monozygotic (MZ) twins carry identical genomes, while dizygotic (DZ) 
twins share approximately 50% of the genome. Within this context, ACE and ADE twin models compare the 
intra-pair correlation between monozygotic (MZ) and dizygotic (DZ) twin pairs to estimate the proportion of 
phenotypic variance explained by additive genetics (A), unique environment (E), and common environment (C) 
or nonadditive genetics (D) influences, respectively. Thus, twin design applied on resting state fMRI (rs-fMRI) 
data allows the most accurate estimation of genetic and environmental effects on intrinsic FC  patterns19, allowing 
the characterization of inter-individual neurodevelopmental differences.

Up until now, just a few studies investigated the determinants of inter-subject RSN variability, especially dur-
ing the  neurodevelopment20–24. Their results suggest complex scale-, region-, and feature-specific relationships 
between genetics and RSNs, which do largely vary from after  birth20, through childhood and  adolescence22,23 and 
up to young  adulthood21. Predominant genetic contributions were reported on regional FC metrics during the 
first two years of  life20, as well as environmental effects on selective frontolimbic pathways during childhood and 
 adolescence19,20. Findings on global FC metrics suggest significant genetic influences on global brain efficiency 
since  childhood24. Moderate heritability of this and other common graph metrics was observed by Sinclair 
et al.21 in a large sample of twins aged between 18 and 30 years. Interestingly, heritability estimates were found 
to depend on network connection densities, with greater heritability values associated with network metrics at 
lower connection densities.

Current evidence suggests that the brain’s FC metrics are largely heritable in selected time windows from 
infancy onwards, but dynamic environmental influences on selective RSNs seem to occur as well. The het-
erogeneity of the available studies arises from methodological differences that span from preprocessing to the 
employed statistical twin design, resulting in fragmented knowledge. Thus, there remains the urgent need to 
better understand intrinsic FC metrics’ determinants throughout development.

In this context, using a whole-brain, multi-model, multi-scale, and multi-feature approach, the present twin 
study aimed to cross-sectionally explore the genetic and environmental contributions on functional connectome 
during a long and delicate developmental phase, from late childhood to early adulthood. A rs-fMRI dataset 
obtained from 43 twin pairs aged between 10 and 30 years was used to extract FC features at multiple spatial 
scales, from each network link to the whole-brain network. Although our small sample impeded a Structural 
Equation Model (SEM) analysis, we tested the applicability of twin models and, when possible, decomposed the 
feature variance into genetic and environmental components.

Based on limited evidence to date, we hypothesized that the majority of FC metrics at different network scales 
would be under stronger genetic control compared to shared environmental control. In view of the spatially 
heterogeneous individual FC  variability25, we expected non-uniformly distributed genetic-environmental influ-
ences on local FC patterns. Furthermore, as heritability estimates may vary according to the connection densities 
of the  network21, we expected greater genetic effects in relevant long-range functional pathways compared to 
small-network short-scale pathways.

Materials and methods
Study population. The dataset employed in the present study was collected from 50 pairs of twins (com-
posed of 42 males and 58 females, mean age 18.5 years, age range 10–30 years) at the Scientific Institute IRCSS 
E. Medea of Bosisio Parini (Lecco, Italy). The twin study, which was conducted in collaboration with the Italian 
Twin  Registry26, was aimed to explore the genetic and environmental contributions to brain development and 
behavior. To this end, socio-demographic, psychopathological, behavioral, cognitive, genetic, and neuroimaging 
information were collected from all participants at a single time point. Here, only socio-demographic and neuro-
imaging information was used to pursue the study’s primary objective. Exclusion criteria were intelligence quo-
tient (IQ) < 70 based on Wechsler intelligence scales for adults/children (WAIS/WISC)27,28 diagnosis of autism 
spectrum disorder, epilepsy or other neurological disorders, history of head trauma, severe visual, auditory, or 
language comprehension deficits, number of gestation weeks < 34. The research protocol was approved by the 
competent Research Ethical Committee in accordance with the 2013 Fortaleza version of the Helsinki Declara-
tion and subsequent amendments. A written informed consent to the study was obtained by all participants of 
legal age, or their parents in the case of minors. In view of the sexual dimorphism of brain morphology and 
function, the rs-fMRI data processing was performed only on 46 same-sex twin pairs, of which 19 pairs were 
monozygotic (MZ) (10 male pairs, 9 female pairs, 16.7 ± 5.25 years) and 27 pairs were dizygotic (DZ) (9 male 
pairs, 18 female pairs, 19.3 ± 6.59 years). After quality check (described in the “fMRI pre-processing” section), 
3 additional pairs were excluded from the statistical analyses, resulting in a dataset of 43 twin pairs (25 DZ and 
18 MZ).

MRI acquisition protocol. Structural and functional MRI data were acquired at the IRCCS E. Medea using 
a 3T scanner (Philips Achieva, Best, The Netherlands) equipped with a 32-channel head coil. rs-fMRI volumes 
(n = 200) were obtained using a T2*-weighted echo planar imaging (EPI) sequence with the following param-
eters: repetition time (TR) = 2500 ms, echo time (TE) = 35 ms, flip angle = 8°, 30 axial slices with no gap, in-plane 
matrix size = 128 × 128, voxel size = 1.8  mm × 1.8  mm × 3  mm. During the rs-fMRI session, the subjects were 
asked to keep their eyes closed, not to think about anything in particular, and not to fall asleep. The morphologi-
cal reference for the fMRI results was provided by a 3D T1-weighted turbo field echo (TFE) SENSE sequence 
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with TR = 8.3 ms, TE = 3.8 ms, flip angle = 8°, 190 axial slices with no gap, in-plane matrix size = 240 × 240, voxel 
size = 1 mm × 1 mm × 1 mm.

MRI analyses. The MRI data pre-processing, connectivity feature extraction, and statistical analyses were 
mainly performed in Matlab R2019b (The MathWorks, Inc.) using the open-source Statistical Parametric Map-
ping (SPM) software (version 12, https:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm12/)29, the open-source Brain 
Connectivity Toolbox (BCT) (https:// sites. google. com/ site/ bctnet/)30, and in-house Matlab scripts including 
functions from the Statistics and Machine Learning toolbox. The FSL software (version 6, https:// fsl. fmrib. ox. ac. 
uk/ fsl/ fslwi ki/)31, was also used for a pre-processing step. The fMRI processing pipelines are illustrated in sche-
matic form in the Supplementary Figure S1.

fMRI pre‑processing. The raw fMRI volumes from each subject were imported in SPM12 and spatially realigned 
to the subject’s first volume using the least squares approach followed by a rigid body transformation. The sub-
ject’s structural T1-weighted image was co-registered to the mean fMRI image through an affine transformation, 
corrected from intensity biases, and segmented into different tissue types. The forward deformation field param-
eters estimated in the latter step were used for normalization of the fMRI volumes from the subject’s native space 
to the standard Montreal Neurological Institute (MNI) space. The realigned and normalized fMRI volumes were 
smoothed using a 3D Gaussian kernel filter with Full Width at Half Maximum (FWHM) equal to 6 mm and 
imported in the FSL software. Here, the pre-processed fMRI volumes from each subject were temporally high-
pass filtered (cut-off frequency of 0.01 Hz) and entered into a single-subject spatial ICA decomposition using 
the FSL Multivariate Exploratory Linear Optimized Decomposition into Independent Component (MELODIC) 
toolbox (https:// fsl. fmrib. ox. ac. uk/ fsl/ fslwi ki/ MELOD IC). Artefactual independent components (ICs) were 
marked using a semi-automatic spatiotemporal tool recently published by our research group and subsequently 
regressed out from the fMRI  volumes32. In our study, the choice to use the proposed tool was motivated by its 
good performances in the detection of noise-related ICs in rs-fMRI data (> 80% of accuracy, sensitivity, and 
specificity in 32). The tool marks an unknown IC as either artefactual or physiological based on (i) the spatial 
correlation between its spatial map and those from labeled artefactual ICs, (ii) the proportion of high-frequency 
content (> 0.1 Hz) in its time series, as assessed via a relative power spectral analysis. ICs with values of spatial 
correlation or high-frequency power higher than predefined thresholds (identified as optimal  in32) were marked 
as artefactual. The results from the automatic IC labeling were subjected to a final careful inspection, which was 
followed by the removal of noise-related ICs.

The resulting fMRI volumes were subjected to the connectivity and statistical analyses described in the next 
sections.

In a final quality check, the subjects with a percentage of noise-related ICs > 75% and their siblings were 
excluded from the analyses, resulting in a dataset composed of 43 twin pairs.

The overall quality of the fMRI dataset was assessed by monitoring the extent of movement artefacts before 
and after the denoising steps. Specifically, the extent of motion in the original fMRI dataset was measured using 
framewise displacement (FD), whereas the effects of denoising on motion artefacts were quantified using the 
FD-DVARS metric, which was compared from before to after pre-processing via paired t-tests.

In the original fMRI dataset, the average FD across included subjects was 0.41 mm (± 0.76 mm) below the 
commonly used FD censoring threshold of 0.5 mm. Furthermore, our pre-processing pipeline resulted in a 
significant reduction of FD-DVARS (p < 0.001), which on average decreased from 0.78 (± 0.20) to 0.64 (± 0.21) 
before ICA, up to 0.60 (± 0.21) after ICA.

Seed‑based FC analysis. The SPM Marsbar toolbox (version 0.44, http:// marsb ar. sourc eforge. net/) was used 
to obtain the parcellation of the subjects’ fMRI volumes in N = 90 regions of interest (ROIs) of the Automated 
Anatomical Labeling (AAL)  atlas33, representing the nodes for the functional connectivity (FC) analysis. We 
selected all AAL ROIs except from the ones located in the cerebellum and vermis, which were not covered by the 
fMRI volumes in some or all subjects.

For each subject, we extracted the mean BOLD time series of the voxels within each ROI (node). Using Matlab 
in-house scripts, instantaneous statistical dependencies among ROIs were assessed by computing the Pearson 
correlation coefficients between the BOLD time series of each pair of ROIs, resulting in a N × N FC adjacency 
matrix for each participant, whose elements represent the pairwise cross-correlation between the BOLD time 
series of the corresponding ROIs. Only the functional connections corresponding to significant Pearson cor-
relation values (p < 0.05) were considered, by setting to zero the non-significant ones. The resulting subject-level 
FC matrices (either weighted or binarized using an arbitrary positive 0.5 threshold) were further analysed to 
extract FC features of interest.

FC feature extraction. Brain network properties at multiple spatial scales, i.e., at the link and node levels and 
in the entire network ( N = 90 AAL ROIs), were extracted from the subject-level FC matrices. Node-level and 
network-level topological features were extracted using graph theory functions from the  BCT30. For each ROI 
(node), the node-level degree, local efficiency, clustering coefficient, and betweenness centrality were computed 
from the binarized FC matrix, whereas the node-level strengths of positive and negative weights were computed 
from the weighted FC matrix. The binarized FC matrix was also used to extract the whole-brain network-level 
global efficiency, characteristic path length, degree, density, and Louvain modularity. The detailed description of 
each FC feature is reported in the Supplementary Table S1 and Supplementary Table S2.

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://sites.google.com/site/bctnet/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
http://marsbar.sourceforge.net/
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Statistical twin analyses. The link-, node-, and network-level FC features (detailed in the previous section) were 
correlated between twins, and intra-pair correlations were compared between MZ and DZ pairs to disentangle 
the relative contributions of genetic and environmental factors, as described in the following sections.

Intra‑pair FC correlation. For each FC metric, separately for MZ and DZ twin pairs, we computed the linear 
partial correlation coefficient between the selected feature values obtained from Twin#1 and Twin#2 in each pair, 
at net of the effects of age and sex. As a result, we obtained zygosity-specific correlations ( rMZ and rDZ ) for the 
link-level weights ( n=4500, elements (i, j) of the FC matrix, i = 1 : (N − 1), j = (i + 1) : N ), as well as the node-
level ( n=540) and the network-level ( n=5) parameters. In each case, the rMZ and rDZ values were then compared 
to verify the applicability of genetic modelling and, if that was the case, to select the optimal model to be used, 
as described in the following Section.

Genetic and environmental influences on FC features. The analysis of genetic and environmental influences was 
performed on the FC features characterized by 1) rMZ > 0 and rDZ > 0 , 2) rMZ > rDZ . The complete twin statistical 
modelling pipelines used to extract genetic and environmental components are illustrated in schematic form in 
Fig. 1.

Three main scenarios of genetic and environmental contributions were distinguished based on the rMZ/rDZ 
 ratio34,35. These scenarios involve three of the following four possible sources of influence: (i) additive genetic 
source (A), representing the effects of all alleles that influence the phenotype; either (ii) nonadditive genetic 
source (D), representing interactions between alleles at the same locus (dominance) or at different loci (epistasis), 
or (iii) shared environmental source (C), representing exposure effects that are common to family members (e.g., 
family exposures during infancy and childhood); (iv) unique environmental source, representing individual-
specific exposure effects (e.g., lifestyles, infections and diseases, traumatic events).

When the condition rMZ > 4rDZ > 0 was satisfied, the FC parameter under analysis was assumed to be 
influenced by nonadditive genetic epistatic effects. These effects cannot be resolved using classical twin designs, 
that is, they cannot be estimated as a linear function of the rMZ and rDZ values associated with the parameter.

Figure 1.  Schematic illustration of genetic and environmental analysis pipeline. For each FC metric, separately 
for MZ and DZ twin pairs, we computed the linear partial correlation coefficient between the selected feature 
values obtained from each twin in each pair, at net of the effects of age and sex. We obtained zygosity-specific 
correlations ( rMZ and rDZ ) for each FC metric at brain-, node- and link-level. Genetic and environmental 
analysis was performed on the FC metrics associated with rMZ > rDZ > 0 . Three main scenarios were 
distinguished based on rMZ

rDZ
 ratio: ADE or ACE twin model applicability and the analysis of nonadditive genetic 

effect of epistasis. The estimate of “broad-sense” or “narrow-sense” heritability was extracted for the FC metrics 
that verified respectively ADE or ACE twin model applicability condition. FC: functional connectivity. MZ: 
monozygotic. DZ: dizygotic. rDZ : intra-pair phenotypic correlation in DZ pairs. rMZ : intra-pair phenotypic 
correlation in MZ pairs.
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When the condition 0 < 2rDZ < rMZ < 4rDZ was verified, both genetic (additive and dominant) and unique 
environmental factors were hypothesized to affect the FC feature. These contributions were modelled using the 
ADE model, composed of additive (A) and dominant (D) genetic effects, as well as unique environmental influ-
ences (E). The proportions of variance in the FC feature that are due to these three factors were estimated as: 
A = 4rDZ − rMZ , D = 2rMZ − 4rDZ and E = 1− rMZ . A “broad sense” estimate of heritability was obtained as 
the sum of the A and D coefficients: H2

= A+ D = rMZ , which thus provides information on the proportion of 
variance in the phenotype that is explained by total (additive and dominant) genetic variance.

When the condition 0 < rDZ < rMZ < 2rDZ was verified, we considered the contributions of additive genetic 
(A) and shared (C) and unique (E) environmental factors on the FC parameter, which were estimated using the 
ACE model as: A = 2(rMZ − rDZ) , C = 2rDZ − rMZ and E = 1− rMZ . A “narrow sense” estimate of heritability 
was provided by the coefficient A: h2 = A = 2(rMZ − rDZ) , which thus quantifies the proportion of phenotypic 
variance that is accounted for by additive genetic variance.

For all link-, node-, and network-level FC features, regardless of the most suitable genetic model, significant 
differences between rMZ and rDZ values were assessed based on their Fisher’s Z-transforms, setting the sig-
nificance threshold to p = 0.05. Multiple comparisons’ correction was performed using the Bonferroni method 
by considering as N the number of comparisons per condition (e.g., epistasis, ACE, ADE). Both uncorrected 
 (punc < 0.05) and Bonferroni corrected  (pBonf < 0.05) results will be shown. Furthermore, in the main resting state 
networks (RSNs, described in Table 5), we computed the percentage of network connections for which epistatic 
effects or genetic plus environmental effects—as explained by ACE or ADE twin models—were detected (post-
hoc RSN-level analysis). The list of AAL atlas regions included in each RSN under analysis is reported in the 
Supplementary Table S3.

Results
This section reports the twin sample characteristics and the estimated genetic and environmental effects on multi-
scale FC features, the latter described only link-level, node-level, and post-hoc RSN-level results are described.

Sample. The original socio-demographic and rs-fMRI dataset was collected from 50 pairs of twins. After 
exclusion of twin pairs with sex differences (n = 4) or low-quality rs-fMRI data during the noise-related ICs qual-
ity check step (n = 3), the resulting sample of 43 twin pairs, including 25 DZ pairs and 18 MZ pairs, was selected 
for subsequent statistical analyses (schematized in Fig. 1). A power analysis based on Monte Carlo simulations 
(n = 10,000) showed that our sample enabled the detection of a strong broad-sense heritability (60%) against the 
null hypothesis of no heritability with 86.70% power (95% confidence interval 84–89%).

The selected sample’s characteristics are detailed in Table 1. Age, sex, and behavioral characteristics based on 
the Child/Adult Behavior CheckList (CBCL/ABCL) were comparable between MZ and DZ twin pairs.

Link-level FC metrics. The FC links associated with (1) epistatic effects, (2) additive/dominant genetic and 
unique environmental effects (ADE model factors), or (3) additive genetic and common/unique environmental 
effects (ACE model factors) are highlighted in Fig. 2A–C graphs. In these graphs, the higher is the dimension 
of a region of interest (ROI, node), the higher is the number of functional links involving that ROI and showing 
the corresponding effect. The stacked bar plots in Fig. 2D show, for each ROI, the number of links characterized 
by the three effects. The stacked bar plots in Fig. 3A–C show, for each effect, the number of links per ROI with 
the specified effect in the top 20 ROIs in descending order. The Fig. 3D–G graphs illustrate the links suitable for 
ADE/ACE modelling weighted according to the relative genetic and environmental contributions.

Epistasis. The 7.97% of all functional connections were found to depend on nonadditive genetic effects from 
alleles at multiple loci, that is, on epistatic effects. Notably, these links were balanced between inter-hemispheric 
(51.10%) and intra-hemispheric (48.90%) ones. As shown in Fig. 3A, depending on the ROI, epistatic effects 
were present in a number of ROI connections ranging from 0 to 17 (19.10%). No epistatic effects were observed 
in the links involving the bilateral posterior cingulate cortex and left hippocampus, whereas bilateral inferior 
orbitofrontal cortex, right middle temporal pole, right amygdala, left Heschl’s gyrus, and left pallidum were 
characterized by more than 15% of connections with epistatic effects.

Table 1.  Demographic and behavioral information of the sample. For continuous variables, means ± standard 
deviations are reported. MZ: monozygotic; DZ: dizygotic; T: T-statistics; χ2: χ2 statistics; p: p-value; ABCL/
CBCL: Adult/Child Behaviour CheckList; TOT: total score; INT: internalization score; EXT: externalization 
score.

MZ DZ Stats

N twins 36 50 –

N Females, N Males 18, 18 34, 16 χ
2=1.418,  p = 0.234 (pair-based)

Age [years] 17.012 ± 5.185 20.094 ± 6.261 T = 1.708,  p = 0.096 (pair-based)

ABCL/CBCL TOT 49.41 ± 7.81 49.13 ± 7.79 T = 0.155,  p = 0.877 (subject-based)

ABCL/CBCL INT 51.735 ± 8.426 50.727 ± 8.287 T = 0.529,  p = 0.599 (subject-based)

ABCL/CBCL EXT 47.000 ± 9.531 48.977 ± 8.812 T = 0.948,  p = 0.346, (subject-based)
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The comparison between rMZ and rDZ values based on Fisher’s Z-transform revealed significant differences, 
even if at the uncorrected level  (punc < 0.05), in 13.79% of the network links showing epistatic effects (highlighted 
in blue for the top 20 ROIs in Fig. 3A). Right middle temporal pole was the ROI with the highest number of links 
being significantly more correlated in MZ twins than in DZ twins (n = 11). The highest correlation difference was 
observed in the connection between right middle temporal pole and right precentral gyrus (Z = 2.94, p = 0.0016).

ADE model. The functional connections influenced by both additive and dominant genetic factors accounted 
for 7.14% of the total number of links, balanced between intra-hemispheric (48.95%) and inter-hemispheric 
(51.05%) ones. The number of links per ROI influenced by ADE factors ranged from 0, in the bilateral posterior 
cingulate cortex and right parahippocampal gyrus, to 25 (28.09%), in the right middle temporal pole (Fig. 3B). 
The right amygdala showed the second highest percentage of links suitable for ADE modelling (n = 24, 26.97%).

Based on the Fisher’s Z statistics, significant correlation differences between MZ and DZ pairs emerged, only 
at the uncorrected level, in 4.20% of these links  (punc < 0.05, highlighted in blue for the top 20 ROIs in Fig. 3B). 
Again, the right middle temporal pole showed the highest number of connections for which rMZ was significantly 
higher than rDZ (n = 9). The most significant Z statistics (i.e., correlation difference) was observed in its connec-
tion with the right middle cingulate cortex (Z = 2.59, p = 0.005).

The “broad-sense” heritability estimates ( H2
= A+ D ) for these links indicated an average predominance 

of environmental effects (E = 63.38 ± 16.19%) over genetic ones ( H2 = 36.62 ± 16.19%). The links with  H2 > 50% 
accounted for 18.88% of the total (highlighted in red in Fig. 3D), whereas the remaining links showed predomi-
nant E effects (highlighted in cyan in Fig. 3E). The H2 maximum was observed in the connection between right 
middle temporal pole and right middle cingulate cortex (corresponding to the peak Z statistic).

ACE model. The links meeting the ACE model criteria represented 9.61% of the total. Among them, intra-
hemispheric and inter-hemispheric links were roughly balanced, accounting for 48.83% and 51.17%, respec-
tively. The number of ROI connections affected by ACE factors varied from 0 in the left posterior cingulate 
cortex to 32 (35.96%) in the right fusiform gyrus (Fig. 3C). Proportions of these links higher than 20% were also 
observed in the right inferior temporal gyrus, left inferior orbitofrontal cortex, and left middle temporal pole.

Figure 2.  Twin models on link-level FC metrics. A-C. Graphs representing the brain functional connections 
influenced by epistasis (A), ADE factors (B), and ACE factors (C). Intra-hemispheric and inter-hemispheric 
connections are represented in blue and green, respectively. The size of each ROI (node) in the graph is 
proportional to the number of ROI connections influenced by the corresponding factor. D. Stacked bar plot 
representing the numbers of links per node influenced by epistasis (violet), ADE factors (magenta), and ACE 
factors (grey). FC: functional connectivity. ROI: region of interest. Panels were created with Matlab R2019b 
software (http:// www. mathw orks. com), assembled with Microsoft Power Point software (https:// www. micro soft. 
com/ it- it/ micro soft- 365/ power point) and exported using GIMP v.2–10 (https:// www. gimp. org/).

http://www.mathworks.com
https://www.microsoft.com/it-it/microsoft-365/powerpoint
https://www.microsoft.com/it-it/microsoft-365/powerpoint
https://www.gimp.org/
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The Fisher’s Z-statistics comparison showed no significant correlation differences between MZ and DZ pairs 
in any of the links suitable for ACE modelling. Accordingly, the “narrow-sense” heritability estimates for these 
links, corresponding to the additive (A) genetic effects, indicated an average predominance of environmental 
influences (C + E = 81.91 ± 13.23%) over genetic ones ( h2 = 18.09 ± 13.23%). Only five links (1.56% of the ACE 
links) were characterized by h2>50% (highlighted in red in Fig. 3F).

Although shared environmental effects were lower than unique environmental ones (C = 12.29 ± 10.52%, 
E = 69.62 ± 14.98%), they accounted for more than 50% of the FC variance in three connections (0.78% of the 
ACE links, highlighted in magenta in Fig. 3G). All these links involved the right fusiform gyrus, with (1) left 
calcarine cortex (C = 64.00%), (2) right superior occipital cortex (C = 53.91%), and (3) right middle occipital 
cortex (C = 55.20%).

Node-level FC metrics. The locations of node-level FC features (degree, local efficiency, clustering coef-
ficient, betweenness centrality, strength of positive weights, and strength of negative weights) influenced by (1) 
epistatic effects, (2) ADE model factors, or (3) ACE model factors are listed in the following sections. rMZ and 
rDZ values for all these node-level features are illustrated in the Supplementary Figure S2.

Epistasis. Depending on the FC metric, specific ROIs were found to be influenced by epistatic effects. The most 
influenced features were the nodal degree and the nodal strength of positive weights, for which epistatic effects 
were observed in 11.11% and 10.00% of the network ROIs, respectively. Conversely, the local efficiency feature 
showed these effects only in 3.33% of the ROIs. For each nodal parameter, the ROIs influenced by epistatic effects 
are summarized in Table 2, together with the corresponding Fisher’s Z statistics and related p values. Specifically, 
all the ROIs associated with both non-significant and significant p-value estimates are reported, with Bonferroni 
corrected results in bold. Significant correlation differences between MZ and DZ pairs (p < 0.05) emerged for (1) 

Figure 3.  ROI sorting based on link-level effects. A-C. Bar plots representing in light blue the number of 
functional connections influenced by epistasis (A), ADE factors (B), and ACE factors (C) in descending order 
in the 20 top ranking ROIs. Network links with significant correlation differences (p < 0.05) extracted from 
Fisher’s Z statistics between MZ and DZ pairs are highlighted in dark blue in panels (A, B). (D–E) Functional 
connections suitable for ADE model weighted for their genetic (D) and environmental (E) contributions. In 
D, links with “broad-sense” heritability > 50% are highlighted in red. In E, links with unique environmental 
effects (E) > 50% are highlighted in cyan. F-G. Functional connections suitable for ACE model weighted for 
their genetic (F) and environmental (G) contributions. In G, links with “narrow-sense” heritability > 50% are 
highlighted in red. In G, links with common environmental effects (C) > 50% are highlighted in magenta. Panels 
were created with Matlab R2019b software (http:// www. mathw orks. com), assembled with Microsoft Power 
Point software (https:// www. micro soft. com/ it- it/ micro soft- 365/ power point) and exported using GIMP v.2–10 
(https:// www. gimp. org/).

http://www.mathworks.com
https://www.microsoft.com/it-it/microsoft-365/powerpoint
https://www.gimp.org/
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the strength of positive weights in right inferior orbitofrontal cortex, (2) the strength of negative weights in the 
right inferior temporal gyrus, (3) the degree of connections of right amygdala, and (4) the clustering coefficient 
of right middle orbitofrontal cortex. Of note, correlation differences that emerged for the strength of negative 
weights in right inferior temporal gyrus remained significant after Bonferroni correction (Z = 4.25,  pBonf < 0.001).

ADE model. The test of ADE model applicability to node-level FC metrics highlighted a small number of ROIs, 
associated with specific features, influenced by ADE factors. The clustering coefficient was the feature with the 
highest number of ROIs (equal to 8.89% of the total) suitable for ADE modelling. Conversely, the strength of 
negative weights and betweenness centrality exhibited ADE effects in the minimum number of ROIs, account-
ing for 2.22% of the total. For each nodal feature, the ROIs for which the ADE model was suitable are listed in 
Table 3, together with the corresponding ADE coefficients and “broad-sense” heritability estimates. Significant 
correlation differences between MZ and DZ twins were observed only in the strength of positive weights in right 
middle temporal pole (Z = 1.66, p = 0.048).

Table 2.  Location and statistics of epistatic effects on node-level FC metrics, reported for each ROI that 
result significantly and non-significantly influenced by epistatic effect. Orb, orbital part; Inf, inferior part; 
Mid, middle or median part; Sup, superior part, R, right; L, left; Post, posterior part; Ant, anterior part; 
FC, functional connectivity; Z: Fisher’s Z statistics; n.s., not significant. P-values surviving the Bonferroni 
correction are bolded.

Node-level FC metric ROIs Z-statistics p-values

Strength of positive weights

Frontal Inf Orb L Z = 1.2159 n.s

Frontal Inf Orb R Z = 1.7323 p = 0.0416

Amygdala, R Z = 1.4793 n.s

Occipital Inf L Z = 0.3426 n.s

Paracentral Lobule L Z = 0.9264 n.s

Paracentral Lobule R Z = 0.9295 n.s

Heschl L Z = 0.8185 n.s

Temporal Pole Sup R Z = 1.2350 n.s

Temporal Pole_Mid L Z = 0.4449 n.s

Strength of negative weights

Cingulum Ant R Z = 1.1804 n.s

Cingulum Mid L Z = 1.3585 n.s

Cingulum Mid R Z = 0.8367 n.s

Parietal Inf L Z = 0.5618 n.s

Precuneus L Z = 0.6659 n.s

Temporal_Inf_R Z = 4.2472 p < 0.001

Degree

Precentral R Z = 1.0946 n.s

Olfactory L Z = 0.8336 n.s

ParaHippocampal R Z = 0.2017 n.s

Amygdala R Z = 2.0414 p = 0.0206

Lingual R Z = 0.9892 n.s

Fusiform L Z = 0.4646 n.s

Postcentral R Z = 0.7843 n.s

Paracentral Lobule L Z = 1.2837 n.s

Temporal Mid L Z = 0.4837 n.s

Temporal Inf R Z = 0.9516 n.s

Local efficiency

Rolandic Operculum L Z = 0.5786 n.s

Insula L Z = 0.7832 n.s

Temporal Mid L Z = 1.2738 n.s

Clustering coefficient

Frontal Mid Orb R Z = 1.6853 p = 0.0406

Rolandic Operculum L Z = 0.6179 n.s

Insula R Z = 0.9402 n.s

Cuneus R Z = 1.0720 n.s

Paracentral Lobule L Z = 0.5233 n.s

Caudate_L Z = 0.9640 n.s

Betweenness centrality

Frontal Mid Orb R Z = 0.7991 n.s

Lingual L Z = 0.6765 n.s

Parietal Sup R Z = 0.7678 n.s

Temporal Pole Sup L Z = 0.0919 n.s
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Overall, based on the ADE model coefficients and the related “broad-sense” heritability estimates, the environ-
mental effects overcame additive and dominant genetic effects (E = 66.30 ± 15.51%, H2 = (A + D) = 33.70 ± 15.51%). 
The ADE-suitable node-level features that resulted strongly heritable ( H2> 60%) were the strength of positive 
weights in right middle temporal pole and the strength of negative weights in right rectus. The latter was associ-
ated with the maximum “broad-sense” heritability estimate, equal to 61.91%. Predominant genetic effects ( H2> 
50%) were observed also for the betweenness centrality in left putamen, local efficiency in right pallidum, and 
clustering coefficient in both right pallidum and left inferior temporal gyrus.

ACE model. A few, localized node-level FC metrics met ACE modelling criteria. Among all features, local effi-
ciency was influenced by ACE factors in the highest percentage (7.77%) of ROIs. On the contrary, the strength 
of negative weights and degree features showed ACE effects in the lowest number of ROIs, accounting for 3.33% 
of the total. Table 4 reports, for each node-level feature, the ROIs for which the ACE model was applied with the 
corresponding ACE coefficients and “narrow-sense” heritability estimates. No significant correlation differences 
between MZ and DZ twins were observed in any of the ACE suitable node-level features.

Accordingly, in all the ACE suitable node-level FC metrics, environmental effects overcame genetic ones 
((C + E) = 86.06 ± 11.54%, h2=A = 13.94 ± 11.54%). The highest genetic influence was observed on the local effi-
ciency of right insula, whose “narrow-sense” heritability was estimated at 33.67%. Although unique environ-
mental effects were predominant (> 50%) in all these metrics, shared environmental factors accounted for up 
to ~ 30% of variance. The features most affected by shared environment (> 20%) were, in descending order, the 
clustering coefficient of right middle temporal pole, the strength of positive weights of right fusiform gyrus, the 
local efficiency and clustering coefficient of left superior occipital cortex, and the strength of negative weights 
of left fusiform gyrus.

Table 3.  Location of ADE factor influences on node-level FC metrics reported for each ROI in which ADE 
model was applicable, and the corresponding ADE coefficients and “broad-sense” heritability estimates. Orb, 
orbital part; inf, inferior part; mid, middle or median part; sup, superior part, r, right; l, left; post, posterior 
part; ant, anterior part.H2

ADE
 , “broad-sense” heritability estimate.

Node-level FC metric ROI A, D, E H
2

ADE

Nodal strength of positive weights

Precentral R A = 7.86%, D = 8.64%, E = 83.50% 16.49%

Lingual R A = 14.15%, D = 8.75%, E = 77.10% 22.90%

Occipital Mid R A = 0.32%, D = 9.89%, E = 89.79% 10.20%

Occipital Inf R A = 24.22%, D = 13.74%, E = 62.03% 37.96%

Fusiform L A = 9.77%, D = 14.32%, E = 75.91% 24.08%

Temporal Pole Sup L A = 14.14%, D = 2.81%, E = 83.06% 16.94%

Temporal_Pole_Mid_R A = 1.71%, D = 59.75%, E = 38.54% 61.45%

Nodal strength of negative weights
Rectus R A = 46.19%, D = 15.72%, E = 38.09% 61.91%

Occipital Sup L A = 11.26%, D = 20.81%, E = 67.93% 32.07%

Nodal degree

Amygdala L A = 8.95%, D = 0.55%, E = 90.50% 9.49%

Fusiform R A = 2.54%, D = 43.39%, E = 54.07% 45.93%

Temporal Pole Mid R A = 25.43%, D = 12.20%, E = 62.37% 37.63%

Local efficiency

Calcarine L A = 4.57%, D = 24.74%, E = 70.69% 29.30%

Cuneus L A = 4.69%, D = 13.27%, E = 82.05% 17.95%

Lingual L A = 5.28%, D = 22.96%, E = 71.77% 28.23%

Paracentral Lobule L A = 15.20%, D = 6.24%, E = 78.56% 21.44%

Caudate L A = 3.24%, D = 36.84%, E = 59.92% 40.08%

Pallidum R A = 16.28%, D = 37.77%, E = 45.95% 54.04%

Temporal Pole Mid L A = 11.31%, D = 26.39%, E = 62.29% 37.70%

Clustering coefficient

Insula L A = 15.21%, D = 19.07%, E = 65.71% 34.28%

ParaHippocampal L A = 3.33%, D = 5.73%, E = 90.94% 9.06%

Calcarine L A = 4.06%, D = 24.12%, E = 71.82% 28.18%

Cuneus L A = 1.73%, D = 16.24%, E = 82.02% 17.98%

Fusiform R A = 27.02%, D = 11.14%, E = 61.83% 38.16%

Pallidum R A = 2.72%, D = 47.53%, E = 49.75% 50.24%

Temporal Pole Mid L A = 5.08%, D = 34.66%, E = 60.26% 39.74%

Temporal Inf L A = 28.22%, D = 23.97%, E = 47.82% 52.18%

Betweenness centrality
Putamen L A = 43.42%, D = 8.84%, E = 47.74% 52.26%

Thalamus R A = 38.35%, D = 10.91%, E = 50.74% 49.25%
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Post-hoc RSN-level analysis. The results of the post-hoc analyses concerning the main RSNs are summa-
rized in Table 5. For each RSN, the group average values of FC are reported in Figure S3. All the ROIs included 
in each RSN are reported as nodes in the figure, together with the strongest functional connections (with values 
above the 0.5 threshold). For each RSN, the percentages of network connections associated with epistatic effects 
or with genetic and environmental factors expressed by ACE/ADE twin models are reported. On average, ACE 
model explained the highest proportion of links in the auditory (40%), visual (~ 24%), and central executive 
(~ 9%) networks. Epistatic effects were prevailing in the connections of the motor (~ 11%) and salience (~ 9%) 

Table 4.  Location of ACE factor influences on node-level FC metrics reported for each ROI in which ACE 
model was applicable, and the corresponding ACE coefficients and “narrow-sense” heritability estimates. Orb, 
orbital part; inf, inferior part; mid, middle or median part; sup, superior part, r, right; l, left; post, posterior 
part; ant, anterior part.h2

ACE
 : “narrow-sense” heritability estimate.

Node-level FC metric ROI A, C, E h
2

ACE

Nodal Strength of positive weights

Rectus L A = 0.01%, C = 17.59%, E = 82.40% 0.01%

Rectus R A = 4.52%, C = 9.42%, E = 86.07% 4.52%

Fusiform R A = 16.25%, C = 28.42%, E = 55.32% 16.25%

Postcentral R A = 6.09%, C = 4.93%, E = 88.98% 6.09%

Temporal_Inf_R A = 31.16%, C = 4.75%, E = 64.09% 31.16%

Nodal Strength of negative weights

Frontal Sup R A = 16.32%, C = 13.32%, E = 70.36% 16.32%

Frontal Mid R A = 17.75%, C = 4.53%, E = 77.73% 17.75%

Fusiform L A = 24.29%, C = 23.76%, E = 51.95% 24.29%

Nodal degree

Rectus L A = 4.70%, C = 8.67%, E = 86.63% 4.70%

Temporal Pole Sup L A = 8.48%, C = 6.01%, E = 85.51% 8.48%

Temporal Inf L A = 11.25%, C = 2.28%, E = 86.47% 11.25%

Local efficiency

Insula R A = 33.67%, C = 1.52%, 64,81% 33.67%

Cingulum Post R A = 30.95%, C = 1.55%, E = 67.50% 30.95%

ParaHippocampal R A = 3.95%, C = 13.28%, E = 82.78% 3.95%

Occipital Sup L A = 0.59%, C = 24.11%, E = 75.30% 0.59%

Occipital Sup R A = 5.11%, C = 0.77%, E = 94.11% 5.11%

Fusiform R A = 26.40%, C = 6.52%, E = 67.08% 26.40%

Postcentral_L A = 23.44%, C = 8.44%, E = 68.12% 23.43%

Clustering coefficient

Cingulum Post R A = 31.93%, C = 1.42%, E = 66.65% 31.93%

ParaHippocampal R A = 6.04%, C = 9.16%, E = 84.77% 6.04%

Occipital Sup L A = 0.90%, C = 23.91%, E = 75.19% 0.90%

Occipital Sup R A = 5.63%, C = 0.48%, E = 93.89% 5.63%

Postcentral L A = 21.44%, C = 10.50%, E = 68.06% 21.44%

Temporal Pole Mid R A = 1.62%, C = 29.80%, E = 68.59% 1.62%

Betweenness centrality

Frontal Inf Triangular R A = 10.26%, C = 2.28%, E = 87.46% 10.26%

Cingulum Ant L A = 33.58%, C = 0.04%, E = 66.38% 33.58%

Calcarine L A = 0.24%, C = 7.30%, E = 92.46% 0.24%

Temporal Mid R A = 13.68%, C = 10.47%, E = 75.84% 13.68%

Table 5.  Percentage of resting state network connections affected by epistatic effects or genetic and 
environmental influences expressed by ACE or ADE twin models. SAL, salience network; DMN, Default mode 
network; CEN, central executive network; MOT, sensorimotor network; VIS, visual network; AUD, auditory 
network; BG, basal ganglia network; RSN, Resting state network.

RSN Epistatic effect ADE model ACE model

SAL 8.79% 6.59% 6.59%

DMN 3.63% 5.04% 5.85%

CEN 7.67% 6.09% 9.25%

MOT 21.43% 7.14% 10.71%

VIS 4.40% 5.50% 24.18%

AUD 0% 6.67% 40.00%

BG 0% 6.67% 0
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networks. Conversely, the basal ganglia network was characterized only by functional connections (~ 7%) influ-
enced by the ADE model factors.

Discussion
In our study, a cross-sectional rs-fMRI dataset from young pairs of twins was analyzed to gain insights into 
developmental genetic and environmental determinants of brain functional connectome. For the first time, these 
determinants were comprehensively explored using a multimodal analysis framework, based on multiple brain 
network features at multiple spatial scales (i.e., brain-, RSN-, node-, and link- levels) using multiple statistical 
approaches (including ADE and ACE models).

In line with prior knowledge, our preliminary evidence shows that brain FC is characterized by complex 
region- and feature-specific patterns of genetic-environmental effects throughout development. Of note, we 
found a good regional consistency of these effects across multiple spatial scales. Indeed, our findings suggest 
that frontotemporal FC is at least partially under genetic control, since epistatic and additive/dominant genetic 
influences were found both in selective frontotemporal connections and in the interactions of frontotempo-
ral regions with the rest of the brain. Notwithstanding, we found an overall predominance of environmental 
influences on link-level and node-level FC features; unique environmental factors explained most of the inter-
individual variability in the majority of FC features, but shared environment was also found to play a role on 
selective temporo-occipital connections.

If confirmed on larger samples, our preliminary results could inform on the physiological balance between 
genetic and environmental effects on multiple brain network features—at different spatial scales—in a wide 
developmental period. This knowledge might ultimately prove useful in understanding susceptibility and protec-
tive factors for mental illnesses that arise during this delicate life period.

Developmental twin literature on the brain functional connectome. During the crucial develop-
mental window, brain functional characteristics experience age-related trajectories under the effects of genetics 
and environment, which contribute towards the establishment of adult brain function. So far, only a limited 
number of twin studies have explored developmental determinants acting on rs-fMRI-derived FC measures. 
Nevertheless, the small number of twin studies and their heterogeneity in terms of sample characteristics, rs-
fMRI data acquisition and processing protocols and statistical approaches have impeded the extraction of repro-
ducible results.

In the panorama of developmental twin studies, our investigation is preliminary but innovative in different 
aspects. Firstly, the inclusion of link-level FC phenotypes has provided more accurate insights into subtle genetic 
and environmental influences. Secondly, analysis of multiple topological features has revealed feature-specific 
influences, which might underlie different neural processes. Likewise, the selection of the most adequate sta-
tistical approach for each phenotype has enabled a more tailored discrimination between additive/nonadditive 
genetic effects (at single/multiple loci) and shared/unique environmental effects. Of note, our results complement 
the sparse evidence from twin studies that explored rs-fMRI connectivity but in single developmental stages—
from  childhood22,24 through  adolescence16,36 to young  adulthood21,37,38—using heterogeneous graph metrics 
related to regional, RSN, or global features of the brain network.

The role of genetics. A complex role of genetics on FC has been suggested by our pilot study, which 
includes epistatic effects, featured by the interaction of alleles at different loci of the chromosome, and additive 
and dominant effects, measuring the independent and interaction effects of alleles at a single locus.

Although previous researches suggest that nonadditive genetic variants influencing human complex traits are 
rare and often negligible compared to the additive genetic  variation39,40, recent twin studies have also included 
nonadditive genetic in the overall phenotypic  variation4. Thus, in classical twin studies we aren’t fully informed 
on the quantification of sources deviating from additive effect (i.e., C and D) and as a consequence such con-
tributions cannot be simultaneously quantified and ADE/ACE twin models need to be alternatively  chosen41. 
Interestingly Chen et al.,  201541 have suggested that nonadditive genetic components might often be masked by 
shared environmental factors, highlighting the potential risk of altered inhered genetic influences to the herit-
ability estimates in small twin samples. Within this context, further investigations on which kind of deviations 
could arise besides a simple additive genetic model are needed.

Our findings suggest an epistatic genetic control over selective functional interactions of frontotemporal 
regions, including inferior and middle orbitofrontal gyrus, right inferior and middle temporal gyrus, and right 
amygdala. The greatest genetic effect was found in the connection between right middle temporal and right 
precentral gyrus. Epistasis mostly acted on node-level features of degree and connection strength, in regions 
mainly but not exclusively located in frontal and temporal lobes. Our post-hoc RSN-level analyses suggest 
epistatic influences on the FC within the motor network, being characterized by more than 20% of connections 
with these effects. Of note, the right frontotemporal FC was affected by additive and dominant genetic effects 
as well, as shown by the ADE model results. The ADE-suitable link- and node-level features associated with the 
highest broad-sense heritability ( H2=(A + D) > 50%) were the FC link between right middle temporal pole and 
right middle cingulate cortex, as well as node-level features of strength of positive and negative weights in right 
middle temporal pole and right rectus, respectively. At the RSN level, the basal ganglia network connections 
were only suitable for ADE modelling, even if in a small percentage.

According to our link-level findings, the clusters of interconnected nodes in the sensorimotor, auditory, and 
salience RSNs -involving the amygdala, precentral gyrus, middle temporal cortex, and orbitofrontal cortex- were 
recently reported to be under strong genetic influence during childhood and  adolescence22,36. Interestingly, the 
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genetic control over the prefronto-temporal connections seems to originate during early infancy, as shown by 
Gao and  colleagues20, and to persist throughout  adulthood38.

At the regional level, the spatially sparse genetic influences that we observed on the node-level FC features 
-mainly connection strength and degree- have no precedents in the twin literature, due to the absence of studies 
that assessed the heritability of regional FC measures.

There have been researches analyzing the genetic and environmental influences on features reflecting local 
connectivity, but still extracted at the brain level. Moreover, their participants were either  younger24 or  older21. 
Since the impact of genes and environment on a specific brain feature was shown to be age-dependent16,42,43, 
their results are hardly comparable to ours. In this context, recent developmental investigations on brain func-
tional networks have suggested age-dependent dynamic genetic-environmental influences on FC within cortical 
 networks16,20. Nevertheless, whether these components dynamically influence FC during development is a matter 
of debate considering the absence of longitudinal twin studies from childhood through adolescence.

It should be remarked that, consistently with our RSN-level results, Fu et al.,  201536 showed stronger genetic 
influence on networks involved in sensorial processes, as sensorimotor and basal ganglia ones, than on networks 
involved in cognitive processes, as the default-mode, executive, and attention  ones37. Other possible explanations 
for these differences may be related to distinct developmental trajectories of these networks. In fact, previous 
evidence has demonstrated that the sensory networks complete the development at very early  ages44,45, whereas 
cognition-related networks continue their maturation throughout adolescence and early stage of  adulthood46. 
Therefore, the faster development of primary sensory regions might reduce the capability of environment to 
shape sensory networks compared to executive ones. Nonetheless, multiple studies showed a considerable role 
of the common environment on the sensorimotor  network16,37.

Our results suggest that some of the functional interactions within the salience network -especially involving 
the amygdala- are under genetic influence. In agreement with our findings, previous research on adolescent twins 
showed strong additive genetic influences over this network, which seem to be already present in the first years 
of  life16,20. Notwithstanding, increasing body of evidence suggests that the amygdala-frontal FC is influenced 
by both genetic and environmental  factors22. Of note, epigenetic studies on adolescent MZ twins demonstrated 
that unique life experiences can modify genetic expression, hormones, and amygdala-frontal  interactions23,47. 
Our results should thus be interpreted while considering that our twin sample embraces different developmental 
stages and in turn the dynamics of genetic and environmental effects on FC.

The role of environment. In our study, FC links and nodal features meeting ADE or ACE model criteria 
were found to be mostly affected by the unique environment. Unique environmental influences account for dif-
ferences among twin couples during life, as well as measurement errors. Thus, our findings suggest an overall 
predominance of environmental relative to genetic effects on the developmental FC, at least in the features that 
were not influenced by epistasis.

However, these results might be carefully interpreted since measurement errors, defined as random and uncor-
related within twin pairs, could potentially influence the results related to unique environmental  contribution48.

Furthermore, these environmental findings might seem in contrast with the strong heritability of the whole-
brain FC-including global efficiency and mean clustering coefficient- that was reported across different devel-
opmental  phases20,21,24,38. In this respect, it should be noted that our evidence does not result from global FC 
evidence, but from the integration of the effects observed on link- and node-level FC features. Moreover, our 
small sample has impeded the analysis of global FC features, which did not meet the criteria for ADE or ACE 
models’ application.

In this context, it is important to underline that although global metrics has been proposed to largely reflect 
effects at lower spatial  scales49, specific characteristics of global topology may not be evident at finer spatial 
graphs’  levels50. This could suggest that global FC features may not be sensitive to specific node and link-level 
neurodevelopment and related influences. Moreover, the robustness of our findings regarding global FC features 
might have been influenced by the AAL parcellation or FC thresholding that have been  chosen51–53.

Furthermore, AAL brain parcellation’s capability in representing functional systems is still under 
 debate54,55,56,57. Nonetheless, AAL is the most widely used atlas employed to construct functional brain networks 
from the voxel  level58, for heritability analysis on graph theoretical  measures21 and for investigation of dynamic 
and non-dynamic FC  patterns56,57. Therefore, the absolutely correct parcellation remains an  enigma58.

Moreover, future analyses on larger independent samples coupled with the employment of multiple parcel-
lations, or anatomo-functional parcellations schemes, are needed to respond to this open question and produce 
reproducible findings.

Evidence from the ACE analyses has shown selective FC links and nodes being influenced by the shared 
environment. Shared environmental influences at the level of FC links were shown to be predominant (C > 50%) 
in temporo-occipital connections, specifically in the links between the fusiform gyrus and the calcarine and 
middle/superior occipital cortices. Interestingly, common environmental effects acting on FC links within the 
visual network, or involving occipital regions, were previously  reported16,21, whereas shared environmental effects 
concerning the fusiform gyrus were not previously indicated.

Our results suggest a role of common environment in shaping sensory networks, as the visual one, and 
occipital FC links. The lack of previous evidence supporting the effects on the fusiform gyrus could have been 
introduced by differences in the atlas choice or pre-processing  approaches16,59.

Node-level FC features showed lower common environmental influences, which were mainly observed in 
the above regions. In particular, these effects explained more than 20% of the phenotypic variance (C > 20%) in 
the node-level features of clustering coefficient, specifically in the right middle temporal pole and left superior 
occipital cortex, local efficiency in the left superior occipital pole, and node strength in the fusiform gyrus. Based 
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on our findings, environmental influences could play a non-negligible role in shaping the temporo-occipital 
architecture of functional brain communication during development. Twin literature evidence partially supports 
our findings, showing no effects of genes on the local clustering coefficient, indicating the level of local connect-
edness within the  network24. It should be noticed that previous research has established the existence of genetic 
factors acting on these topological metrics, but at the whole-brain level, showing significant heritability of the 
global brain  efficiency21,24,38 and clustering  coefficient21. Nevertheless, these findings cannot be compared to ours 
due to the global vs. local spatial scale, and could not be supported by our study due to its limited sample size.

Limitations. Several potential limitations of this study deserve a discussion. First, our twin sample was rela-
tively small for accurate genetic modelling. The statistical power of genetic studies is influenced by the sample 
size, which affects the statistical significance of the intra-pair phenotypic correlation values. In our study, a non-
negligible percentage of rMZ and rDZ estimates have not reached statistical significance (p < 0.05), thus imped-
ing further analyses. Therefore, the heritability estimates were obtained from the Falconer’s  formula60, whose 
formulation depends on the twin model applied. Although the Falconer’s formulation of heritability represents 
the simplest method of calculating the relative contribution of genetic effects, it generally provides a valid esti-
mate of the phenotypic variation that is attributable to genetic  factors61. However, a larger sample would have 
allowed fitting Structural Equation Modelling (SEM), offering a wide spectrum of straightforward hypothesis 
testing opportunities, including confounding and moderation effects on genetic and environmental estimates, 
as well as random measurements  errors62–64. A larger sample would also have allowed us to reliably test for 
genetic effects of limited magnitude (i.e. broad heritability below 0.60) and for common environmental effects, 
for which the classical twin design is generally  underpowered65. Nonetheless, over estimation of heritability 
may arise when fitting the model with multiple variables by employing a small sample  size62,66. Nevertheless, 
each design suffers from specific issues, thus a trade-off between the available sample and robustness of genetic-
environmental estimates should be reached.

Second, our analysis may be limited by the atlas’s choice that may have influenced the robustness of the 
results. Alternative methods, as the parallel use of multiple parcellation approaches or anatomical-functional 
parcellation  schemes67 should be applied.

Furthermore, our study considered the fMRI time series extracted from 90 selected ROIs of the AAL atlas, 
since for most of the subjects the fMRI field of view did not cover the cerebellum and vermis. Therefore, the 
corresponding AAL ROIs were excluded from further FC analysis. Specifically, although the cerebellum and 
vermis are relatively small areas located deep in the brain and with low fMRI signal-to-noise  ratio67, their exclu-
sion from the FC analysis could have affected the results, since the anatomical location and the number of FC 
nodes have been reported to affect the properties of brain  networks68–71. However, the inclusion of the majority 
of brain regions guarantees a robust FC network parcellation.

Third, in our study some FC features were computed after binarization of the FC matrix. The use of an 
arbitrary (correlation-based) 0.5 threshold might have influenced the results and their interpretation. A large 
instability of the network measures across binarization thresholds has been  reported72. However, there is no 
consensus on the optimal threshold to be used and future analyses should explore multiple thresholds that allow 
evaluating how the network properties and the relative heritability estimates depend on the threshold’s choice.

Possible methodological concerns may also arise from the choice of the fMRI denoising pipeline, specifi-
cally for the lack of global signal regression (GSR) and ad-hoc motion censoring (e.g., using FD) that could 
have influenced the motions’ presence and signal-to-noise-ratio of BOLD signals. However, despite GSR being 
largely applied as pre-processing step for several favorable  reasons73, its application is still a matter of debate in 
rs-fMRI  analyses74, since recent  evidence75 has hypothesized a neurophysiological basis for this global signal, 
suggesting that its regression may eliminate potential sources of neural activity. Likely, other concerns in our 
preprocessing steps may be referred to temporal filtering methods. Although we did not perform a bandpass 
filtering, recognized as standard practice for rs-fMRI processing in  literature76, we removed both low-frequency 
drifts and high-frequency components before and during ICA denoising, respectively. Overall, there does not 
exist a general consensus on the optimal resting-state processing steps to be performed, which must be selected 
in the context of each analysis. In this respect, our pipeline provides an effective and robust denoising framework 
that was quantitatively evaluated on rs-fMRI data in our  previous32 and current application.

Moreover, our study explored the determinants of brain FC using cross-sectional data, limiting the possibility 
of assessing the FC stability over development and impeding the analysis of age-dependent dynamic determinants 
of FC. In the absence of longitudinal information, alternative approaches that could be applied to a bigger cross-
sectional twin sample might include the investigation of FC determinants on subsamples belonging to different 
developmental age sections. On the contrary, the wide developmental age range in our small sample might pose 
constraints to our cross-sectional evidence.

As last, although in our study nonadditive genetic effects have been associated to a prominent role on brain 
FC at several spatial scales, results related to these contributions need to be cautiously interpreted, since small 
twin sample provide inadequate power to significantly clearly separate deviating contributions (e.g., C and D) 
with respect to pure  additivity41.

Moreover, more heritability studies testing for ADE model applicability may better highlight to what extent 
the variance in each brain FC graph metric could be attributable also to nonadditive genetic components.

Conclusions
Our preliminary twin study has investigated the determinants of multi-scale functional brain network charac-
teristics during development. Besides showing a predominance of unique environment, our results suggest the 
presence of genetic and common environmental influences on selective frontotemporal and temporo-occipital 
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connections, respectively. The emergence of multiple (additive and nonadditive) genetic contributions to local 
connectivity features in specific brain regions remarks the utility of adopting a multi-model, multi-scale, and 
multi-feature approach. If reproduced on independent samples, this evidence might ultimately provide insights 
into genetic and environmental risk factors for developmental mental disorders.

Data availability
The clinical and MRI datasets supporting the current study have not been deposited in a public repository because 
of privacy and ethical restrictions, but are available from the corresponding author on request.
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