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Abstract
Context The microservices architectural style is gaining momentum in the IT industry.
This style does not guarantee that a target system can continuously meet acceptable perfor-
mance levels. The ability to study the violations of performance requirements and eventually
predict them would help practitioners to tune techniques like dynamic load balancing or
horizontal scaling to achieve the resilience property.

Objective The goal of this work is to study the violations of performance requirements of
microservices through time series analysis and provide practical instruments that can detect
resilient and non-resilient microservices and possibly predict their performance behavior.

Method We introduce a new method based on growth theory to model the occurrences
of violations of performance requirements as a stochastic process. We applied our method
to an in-vitro e-commerce benchmark and an in-production real-world telecommunication
system. We interpreted the resulting growth models to characterize the microservices in
terms of their transient performance behavior.

Results Our empirical evaluation shows that, in most of the cases, the non-linear S-shaped
growth models capture the occurrences of performance violations of resilient microservices
with high accuracy. The bounded nature associated with this models tell that the perfor-
mance degradation is limited and thus the microservice is able to come back to an acceptable
performance level even under changes in the nominal number of concurrent users. We also
detect cases where linear models represent a better description. These microservices are
not resilient and exhibit constant growth and unbounded performance violations over time.
The application of our methodology to a real in-production system identified additional
resilience profiles that were not observed in the in-vitro experiments. These profiles show
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the ability of services to react differently to the same solicitation. We found that when a ser-
vice is resilient it can either decrease the rate of the violations occurrences in a continuous
manner or with repeated attempts (periodical or not).

Conclusions We showed that growth theory can be successfully applied to study the occurences
of performance violations of in-vitro and in-production real-world systems. Furthermore,
the cost of our model calibration heuristics, based on the mathematical expression of the
selected non-linear growth models, is limited. We discussed how the resulting models can
shed some light on the trend of performance violations and help engineers to spot prob-
lematic microservice operations that exhibit performance issues. Thus, meaningful insights
from the application of growth theory have been derived to characterize the behavior of
(non) resilient microservices operations.

Keywords Performance requirement · Time series analysis · Point processes ·
Growth theory · Microservices systems

1 Introduction

Over the last few years, microservices emerged as the architectural style of choice in a
variety of application domains in the IT industry. Loosely, the microservices paradigm
is an approach for developing a single application as a suite of small black-box ser-
vices, each running in its own process and adopting lightweight messaging protocols like
HTTP/REST (Lewis and Fowler 2014). These services are built around business capabil-
ities and they are independently deployable by automated procedures inside “continuous
development/delivery” pipelines. As stated by Taylor et al. (2009), in this context, avail-
able architecture alternatives and their parameters lead to a non-trivial space of architecture
deployment configurations to choose from. Recent studies confirm that these choices sig-
nificantly influence the performance and scalability of microservices systems. Moreover,
improper deployment environment settings and misconfigurations are often root causes of
transient performance degradation that are difficult to predict especially under unforeseen
circumstances like workload spikes (Ueda et al. 2016; Avritzer et al. 2020b). As stated
by Soldani et al. (2018), there exists a growing scientific interest in the microservices
architectural style, in particular, for what concerns performance modeling, analysis, and pre-
diction. Recent research focuses on the detection of performance violations and the study
of their occurrences over time. A performance violation is a condition occurring whenever
a given performance requirement is (temporary) not satisfied. A performance requirement
is typically defined according to usability engineering practices (Nielsen 1994) or explicit
contracts with the customer (e.g., service level agreement). Nevertheless, issues arise when
the performance requirement or the information needed to determine it is unavailable or
not accessible. According to Jiang and Hassan (2015), this is a common scenario. Thus, we
propose to adopt the method introduced by (Avritzer et al. 2018) to automatically derive the
performance requirement by empirically estimating the threshold value which defines the
acceptable behavior of each microservice.

The major goal of this work is to provide an novel instrument that allows analyze the
performance violations of microservice operations over time, describe their resilience and
eventually spot operations that may not be able to recover from a degraded operating mode.

We introduce a novel approach to model the occurrences of performance violations of
microservices systems based on stochastic models of growth theory, which have been for
long successfully used in the context of reliability analysis (e.g., Virene (1968), Abdel-
Ghaly et al. (1986), Musa et al. (1987), Succi et al. (2003a), Taber and Port (2014), Rossi
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et al. (2010), Taber and Port (2016), and Kumar et al. (2019)) and more recently to describe
the COVID-19 pandemic (Shen 2020). In our work, we use such a theory to model the
occurrences of performance violations in service operations over time. To the best of our
knowledge, this is the first time growth theory of point processes is exploited to model
performance violations. Specifically, our approach models the occurrences of performance
violations of each microservice operation of a System Under Test (SUT) as a point process
(or counting process) that describes the cumulative number of violations over time.

To apply our approach, we conducted an empirical evaluation by carrying out both in-
vitro and in-production controlled experiments. In-vitro experiments were conducted by
testing a microservice system benchmark called Sock Shop with synthetically generated
end-users. In-production experiments were conducted by monitoring a real-world Telecom-
munication service-based system developed by ERICSSON and deployed in their production
environment while interacting with real end-users. In both cases, we first defined a quan-
titative threshold expressing the performance requirement (Avritzer et al. 2020a), and then
we collected violations of this threshold for each microservice operation over time. Then,
we fit nine state-of-the-art non-linear growth models on the datasets of microservice oper-
ations and then we compared them in terms of four estimation accuracy and prediction
ability. The results of our empirical evaluation show that growth models can be derived and
calibrated with limited effort. We found that the average execution time per individual cali-
bration process is low and it varies from less than a second to about 1 minute. We also found
that, for most of the microservices, finite non-linear growth models can describe the occur-
rence of performance violations better than linear models when the target service operation
is resilient, i.e., the operation eventually restores acceptable performance levels even under
changes of the nominal workload conditions. Considering both estimation and prediction
ability, we also observed that S-shaped growth models are the most accurate for a large
number of operations, but not for all. For some operations, we have indeed found that linear
models are better. The operations whose violations follow a linear model do not exhibit a
resilient behavior. Thus, they require attention from engineers.

The major contributions of this work can be summarized as follows:

1. novel modeling approach for the analysis of transient performance behavior of
microservices, grounded on stochastic models of growth theory applied to collect,
model, analyze, and interpret performance violations over time;

2. holistic methodology that drives the mechanical creation of multiple growth models
and then the selection of the most appropriate model(s) able to estimate and predict
performance violations over time with the highest accuracy;

3. empirical evaluation through controlled experiments using in-vitro and in-production
environments that aim at studying the cost-effectiveness of the model calibration pro-
cess, the accuracy of alternative growth models, the insights that can be extracted
from the models, and the applicability as well as the generalization of the findings to
real-world systems running in production.

The remainder of the paper is structured as follows. In Section 2 we introduce an overview
of our methodology. In Section 3 we introduce our research questions and the preliminary
stages of our methodology (experiment design and execution). In Section 4, we detail the
core stage of our methodology used to derive the growth models that describe the performance
violations (model learning and selection). In Section 5, we describe the major experimen-
tal results obtained from the execution of controlled experiments and answer our research
questions. In Section 6, we discuss threats to validity. In Section 7, we discuss related work.
Finally, in Section 8, we report our conclusion and future directions of this work.
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2 Methodology

In this section, we introduce the main stages of our methodology that guide the genera-
tion of the growth models. We start defining the performance requirement that allows us to
compute the violations (Section 2.1). Then, we illustrate the two core stages of the method-
ology: experiment design and execution (Section 2.2); and model learning and selection
(Section 2.3). We conclude this section by discussing the prerequisites we assume on a
target system that allows our methodology to be replicated (Section 2.4).

2.1 Performance requirement and violation

The notion of performance requirement refers to the capability of the target microservices
system to handle requests within time constraints. We measure the performance of an oper-
ation by its response time. Its performance requirement is defined by its response time
being smaller than a given performance threshold. To compute the threshold, we leverage
the domain-based metric approach introduced in Avritzer et al. (2018). We first determine
a reference workload (or load) and deployment architecture 〈λ0, α0〉. We assume that the
system deployed with enough resources and accessed by a minimal number of concurrent
users is responsive, that is the response time of individual operations is acceptable. We
then evaluate the SUT under a target load and deployment architecture 〈λ, α〉 and com-
pare the performance under the reference and target settings. To this aim, we first perform a
load test session under the reference setting 〈λ0, α0〉 to compute the average response time
μj (λ0, α0) and standard deviation σj (λ0, α0) of the requests to each operation oj . Thus, we
define the j th performance threshold, as follows:

�j (λ0, α0) = μj (λ0, α0) + 3 · σj (λ0, α0). (1)

Then, we perform a new load test session under the target setting 〈λ, α〉. We say that that
the operation oj violates the performance requirement at time t̄ if:

RTj (t̄) > �j (λ0, α0) (2)

with RTj (t̄) the response time of operation oj at t̄ . Equation (1) and (2) can be explained by
the Chebyshev’s inequality (Pukelsheim 1994; Ibe 2013), which represents a non-parametric
version of the well-known 3 · σ empirical rule. The Chebyshev’s inequality states that at
least 88.8% of the values in a univariate distribution lie within three standard deviations
from the mean. Thus, a response time above the threshold �j , as in (1), represents an out-
lier behavior detected as a performance violation. This approach falls in the category of
strategies referred to as response time percentiles as discussed by Wert (2018). Such a strat-
egy allows a substantial amount of violations to be detected in a short time and therefore,
the non-linear regression analysis to be carried out with statistical significance even after a
small observation period.

2.2 Experiment design and execution

According to the schema in Figure 1, the first stage can be conducted using either an
in-vitro or in-production setting. As detailed in the next sections, to evaluate our method-
ology we considered both in-vitro and in-production settings. We first executed a set
of in-vitro controlled experiments on a demo system and then we replicated the experi-
ments with a real-world in-production system. The in-vitro experiments allow us to control
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Fig. 1 Overview of the main stages of our methodology

variables and repeat observations, while the in-production experiments allow us to per-
form our methodology in a real-world environment and show its applicability in industrial
contexts.

In-vitro experiments In this case, we follow two steps to define the expected nominal
operational setting and then execute the proper load testing sessions that feed the second
stage model learning and selection.
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1. Definition of the nominal operational setting. This step defines the execution context
that is likely to happen in production. According to Avritzer et al. (2020a), this context
is defined through a workload specification model from which user behavior models are
derived and then mixed according to frequencies as defined by the so-called behavior
mix. A workload intensity (i.e., number of concurrent users) is then selected to represent
the nominal workload that is expected in production.

2. Monitor violation with synthetic workload. This step reproduces a demanding oper-
ational setting to stress the microservices and then analyze their performance. The
demanding setting is created by augmenting the nominal one with changes in the num-
ber of concurrent users. Such changes are meant to add noise and emulate a production
setting in which the number of concurrent users is not fixed and may increase unex-
pectedly. Two load testing sessions in our in-vitro environment are then performed to
collect the data to fit the performance models. In particular, we collect the performance
violations based on the definition of performance requirements of the SUT. The out-
come of this step is the log of all the performance violations per individual operation
invoked for all microservices.

In-production experiments In this case, the methodology follows a single step to monitor
the target system in production while interacting with real users. The monitoring activity
feeds directly the second stage model learning and selection.

1. Monitor violations with real workload. Rather than defining and reproducing a syn-
thetic operational setting using an in-vitro environment, we monitor the target system
in-production while interacting with real end-users that stress the microservices under
a demanding operational setting. In this case, the reference and target deployment
architectures are the same. As we could not know the number of concurrent users,
we monitor the microservices under different rates of server utilization and we collect
response time data in order to detect occurring performance violations over time.

2.3 Model learning and selection

The second stage takes as input the outcome of the experiment execution and it analyzes the
performance violations to build the candidate growth models and then select the best one(s).
This process follows three main steps reported below.

1. Definition of the point processes.
After collecting runtime evidence from the first stage, we identify the candidate

point processes that model the performance violations of the target microservices over
time. Here, we adopt growth theory (Rigdon and Basu 2000) to model events (i.e., per-
formance violations) over time as stochastic processes, in order to analyze and predict
future scenarios. The outcome of this stage is a set of candidate models that represent
different possible performance evolution scenarios.

2. Calibration of the performance models. In this phase, we tune the selected models by
fitting them on the available data in order to determine the model parameters that best
describe the empirical evidence. As stated by Virene (1968), the initial choice for model
parameters is not trivial. This choice often determines the ability to converge in the
fitting process. Thus, we propose an automated strategy to identify the initial values of
the parameters and control the regression procedure of the candidate models.

3. Selection of the top performance models. This last step aims at evaluating the models
through a systematic comparison. Namely, we evaluate the calibrated models based on
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the ability to fit the experimental data by means of four state-of-the-art metrics of accu-
racy (i.e., the ability to model the occurrences of performance violations) and prediction
ability (i.e. the ability to predict future violations). The outcome of the comparison pro-
duces the best performance models for each individual microservice or microservice
operation of the target system from which engineers can extract insights and identify
resilience issues.

2.4 Prerequisites

Our approach can be applied to any service-based system provided that some prerequisites
are satisfied. Such prerequisites allow the response time to be collected and the performance
behavior to be monitored for each service or service operation of interest. This ensures that
any performance issues can be localized at service or lower level. In the following, we list
the prerequisites that shall hold to apply our methodology. It is worth noting that microser-
vices systems meet all of them. In general, the approach can be also applied to systems
having a Service Oriented Architecture (SOA) as long as the below prerequisites hold. In
the in-vitro environment, we were able to perform a study at the level of microservice oper-
ations, whereas in the in-production environment we performed the study at the level of
individual microservices.

– a target SUT is a service-based system in which each service exposes one or more
operations accessible through a RESTful API or SOA Protocol;

– each service implements a single business capability within a bounded context (Richardson
2018);

– the SUT is deployed onto an in-vitro or in-production environment supporting the
execution of services upon one or more virtual/bare-metal machines;

– the response time of individual client requests can be measured and recorded at the
lowest available granularity level (either service-level or operation-level);

– measurable solicitation can be applied to the target systems (workload intensity, server
utilization, or alike) in two different operational settings: a reference (ideal) setting
used to extract performance requirements, and a demanding setting used to monitor the
performance violations.

3 Experiment design and execution

In this section, we first introduce the research questions (Section 3.1). Then, we present
the design and execution of the experiments we conducted using in-vitro and in-production
settings (Sections 3.2 and 3.3, respectively) to answer our research questions.

3.1 Research questions

The major goal of this work is to study growth theory in the context of performance mod-
eling of microservices systems and the detection of resilience issues. To this end, we aim at
answering the following research questions.

RQ1: What is the cost-effectiveness of the proposed calibration heuristic for fitting
growth models? We study both the cost, in terms of execution time, and the effectiveness, in
terms of success ratio of the calibration process, considering all the state-of-the-art growth
models in Table 10 describing the occurrences of performance violations.
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RQ2: To what extent do the proposed non-linear growth models accurately estimate the
occurrences of performance violations of microservice operations? We study to what extent
state-of-the-art growth models can represent the occurrences of violations of performance
requirements.

RQ3: What are the insights we can derive from growth theory applied to the study of
performance violations of a microservice system? We study whether there exists a model
that, more than others, accurately represents the occurrences of performance violations. In
such a case, the model characteristics may help interpret the performance of the operations
over time and eventually elevate attention on microservices that yield severe performance
issues.

RQ4: To what extent our methodology can be applied to real-world in-production sys-
tems? We study the applicability of our methodology in a real-world system interacting
with end-users in production to further extend and generalize our findings. The production
environment of real-world systems typically add challenges such as the lack of control over
factors of interest and settings of the SUT.

3.2 In-vitro everxperiemnt

3.2.1 System under test

We adopt a microservices system called Sock Shop1. Sock Shop is considered a microser-
vice reference application used by researchers in the field of performance engineering to
evaluate their approaches, e.g., see the studies by Benni et al. (2020), Assunção et al. (2020),
and Grambow et al. (2020), to name a few. The system implements a containerized e-
commerce web application composed of 19 microservice operations (Table 1) implemented
by using heterogeneous technologies (e.g., JAVA, .NET, NODE.JS, and GO). The services
expose REST APIs listed in Table 1.

The users interact with the application through a web user interface. As an example, a
buyer is likely to follow these steps: visit the home page, execute the authentication, view
the catalog and some details, add one or more product to the cart, and then create an order.
This usage pattern reduces to a path of service invocations. For instance, surfing the cat-
alog and adding products to the cart can be executed through the following path of valid
requests: cataloguePage, showDetails, getItem, getCustomer, getCart,
and addToCart. Instead, a nominal visitor is likely to surf the catalog without authen-
ticating and filling up the cart. In general, different user behaviors yield various request
invocations that mixed with a particular workload intensity compose the workload of the
SUT.

3.2.2 Behavior specification

The approach used to define the behavior of the synthetic users in terms of session-based
interactions with the SUT is adopted by Avritzer et al. (2020a), Avritzer et al. (2018), and
Vögele et al. (2018). In particular, the specification of the behavior consists of a number of
elements that are detailed below and illustrated in Figure 2:

1Sock Shop is an open source project maintained by Weaveworks. Both the documentation and the sources
are publicly available at https://microservices-demo.github.io/.
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Table 1 Operations exposed by microservices of Sock Shop

Label Path (relative) Method

addToCart /cart POST

basket /basket.htm GET

catalogue /category.html GET

cataloguePage /catalogue?page = {}&size = {} GET

catalogueSize /catalogue/size?size = {} GET

createOrder /orders POST

getAddress /address GET

getCard /card GET

getCart /cart GET

getCatalogue /catalogue GET

getCustomer /customers/{} GET

getItem /catalogue/{} GET

getOrders /orders GET

getRelated /catalogue?sort = {}&size = {}&tags = {} GET

home /index.html GET

login /login GET

showDetails /detail.html?id = {} GET

tags /tags GET

viewOrdersPage /customer-orders.html GET

– a workload specification model, in terms of the allowed sequences of requests to
microservice operations;

– a set of behavior models, representing user sessions in terms of valid operations and
a pseudo-random think time between subsequent invocations defined according to the
aforementioned workload specification model;

– a behavior mix, in terms of probabilities (frequencies) associated with each behavior
model to occur during workload generation.

3.2.3 Automated load testing

This process generates load tests and executes them on the SUT with synthetic users accord-
ing to a given operational setting in an automatic manner. Each user u, described by a
behavior model, operates during a test session with probability weight ω defined by the
behavior mix. The set of synthetic users and their weight values define the usage profile, as
shown in Figure 2. The usage profile is formally defined as follows:

� = {〈ω1, u1〉, . . . , 〈ωh, uh〉}. (3)

where ui is a behavior model that conforms to the workload specification model, and ωi is
the corresponding weight as defined by the behavior mix. The workload is then generated
by a weighted random sampling of synthetic users that behave according to the models.
Load tests are executed under a given workload intensity in terms of number of concurrent
users. The output of a test session is a triplet (μj , sdj , νj ) consisting of 1) the mean of the
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Fig. 2 Example of usage profile defined through the workload specification model, a number of behavior
models, and the behavior mix

response time, the standard deviation of the response time, and the invocation frequency of
each operation oj .

Automation has been implemented using the PPTAM testing framework2 introduced
by Avritzer et al. (2019) and Avritzer et al. (2021). PPTAM handles the generation and
execution of the tests and it automates the deployment/undeployment of the SUT. This
orchestration layer relies on a user-friendly DSL that specifies the test sessions in a
declarative manner through a number of parameters:

– usage profile � (behavior models and behavior mix);
– selected workload intensity λ;
– deployment configuration α including the amount of RAM, CPU share, and replicas

per microservice.

Figure 3 shows a high-level schema of the infrastructure used to implement our in-vitro
environment for the controlled experiments. As shown by the schema, DOCKER automates
the deployment of the SUT by using the selected configuration α. Then, the FABAN mod-
ule is used to generate the nominal workload intensity λ according to the usage profile �.
To augment the nominal workload, we generated pseudo-random changes in the number
of concurrent users (i.e., the demanding setting) by adopting the academic version of the
MIRAI bot (Barker 2016; Antonakakis et al. 2017), which is a modified version of the mal-
ware described by Antonakakis et al. (2017). We exploited the capability of the bot to send
random HTTP requests to the services exposed by the SUT. As anticipated in Section 2, the
additional load is meant to add noise and emulate a realistic environment where the work-
load can change in an unforeseen way. During the test session, PPTAM logs the response
time for each executed request and it feeds the model learning module that builds in turn the
candidate growth models.

2The software implementation of PPTAM as well as the dataset of our experiments are publicly available at
https://github.com/pptam/pptam-tool
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Fig. 3 Infrastructure used to automate the in-vitro experiments

The two nodes in Figure 3 are containerized virtual machines on top of the VMware
ESXi3 hypervisor. Two virtual machines have been used for containerized deployment: the
Load driver node with 4 GB RAM, 1 CPU core at 2600MHz; and the SUT node, with 8 GB
RAM, 4 cores at 2600 MHz with SSDs. Both machines use an EMC VNC 5400 series
network attached storage solution4 and are connected using a shared 10 Gbit/s network
infrastructure. We rely on Docker CE v17.12 for the deployment of the containerized appli-
cation on both infrastructures. The Mirai requests are conducted from the load driver server
machine, which is configured with 4 GB RAM, 1 core at 2600MHz, and is connected to the
SUT server machine through a 1000 MBit network.

3.2.4 Test deployment and execution

We executed two test sessions, Test1 and Test2. In Test1, we chose and deployed the
SUT under the reference setting 〈α0, λ0〉. Specifically, we chose:

α0 = {4 GB RAM, 100% CPU share, 1 replicas for all operations}
λ0 = 2

assuming that with the highest possible resources and only two users the SUT is responsive
at its best. As described in Section 4, the reference setting is used to extract the performance
requirements that allow us to record the violations during the second session.

Thus, we performed the second test Test2 for which we deployed the SUT for a target
setting 〈α, λ〉:

α = {2 GB RAM, 25% CPU share, 2 replicas for getCart}
λ = 100

We halved the RAM and reduced the shared CPU while replicating the container for the
most solicited getCart under 100 concurrent users. Such a setting represents an arbitrary
target configuration that engineers might want to evaluate under demanding circumstances.

3https://www.vmware.com/products/esxi-and-esx.html
4http://www.emc-storage.co.uk/emc-vnx-5400
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Fig. 4 Test2 timeline

In both Test1 and Test2, we adopted three behavior models (Visitor, Buyer,
Order visitor) and the following behavior mix (0.4, 0.3, 0.3), as follows:

– Visitor (ω = 0.4): visits the home page, views the catalog and the details of some
products.

– Buyer (ω = 0.3): visits the home page, logs in, views the catalog and some details,
adds a product to the cart, visits the cart, and creates an order.

– Order visitor (ω = 0.3): visits the home page, logs in, and views the stored
orders.

A think time (i.e., the time between the completion of one request and the start of the next
one) modeled as exponential distribution (with average inter-arrival time between 1 and 5
seconds) is added to represent a more realistic user behavior, as stated by Avritzer et al.
(2020a). The test sessions have been executed by following these steps:

– deployment of the SUT and PPTAM;
– 60-seconds test execution (ramp-up) to reach a steady state;
– 30-minutes test execution under the given load and usage profile;
– collection of response time data for each operation over the 30 minutes session.

During Test2, the MIRAI bot is launched as a dedicated parallel process after the test
rump-up stage, Figure 4. After the warm-up of MIRAI (three minutes), the response time
is collected until the end of the ramp-down, in which the SUT continues to receive HTTP
requests for seven more minutes. The initial ramp-up and the final ramp-down are needed to
avoid the interference of other initialization or de-initialization processes eventually running
during the execution of the MIRAI bot. The MIRAI bot is configured with the following
parameters:

– 20 minutes (1200 seconds) duration of interference;
– HTTP protocol;
– target IP address of the SUT (i.e., the machine with Sock Shop installed); and
– 256 concurrent threads.

3.3 In-production experiments

3.3.1 Deployed system

Our target system of choice in this setting is a real-world large-scale telecommunication
system developed by ERICSSON. The production environment of the company is a cluster
of bare metal machines 5. The system is composed of more than 20 subsystems developed

5The complete specification of the deployment architecture of the production environment is omitted due to
the disclosure agreement signed with ERICSSON.
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Fig. 5 In-production infrastructure of the Telecommunication System

by distributed teams using agile practices. The scale of operation makes the system
particularly interesting for our investigation (millions of concurrent users per second). Fur-
thermore, it represents a relevant and representative example of a performance-critical
service-based system satisfying the pre-requisites listed in Section 2. For this case study,
we used a subset of the performance-critical services running onto the processing servers of
the infrastructure shown in Figure 5. The system receives requests from the network, which
are sent to a load balancer and then forwarded through an API gateway to our subsystems
of interest composed of the following main microservices6: Adjustment, Control,
DBDataManagement, InternalCommunication, Interrogation, Offline,
Online, Recomposition, ResourcesRead, ResourcesUpdate.

3.3.2 Operational setting and execution

We carried out two experiments to set up the threshold for performance requirements and
collect violations. Being an in-production setting, we could not control the workload using
synthetic users and define behavior specifications as in Section 3.2.2. We instead monitored
the workload of real end-users by measuring the server’s utilization and collect the response
time with the monitoring tools provided by the company. For the same reasons, the reference
and target deployment architectures for the experiments is the same.

We executed a first session under 40% server utilization rate (6.4k transactions per sec-
ond). According to Ericsson’s stakeholders, in this setting the system is assumed to achieve
the desired performance level. Thus, we monitored the system and collected the response
time to extract the performance requirements for all services following our methodology. In
a second session, the response time per individual service was collected by observing the
system for ∼ 21 hours under the utilization rates 50%, 60%, 70%, 80%, 90%, and 100%
(up to 16.0k transactions per second) to collect the performance violations.

4 Model learning and selection

In this section, we describe in detail the second stage of our methodology outlined in
Section 2. We describe the point processes used to model the occurrence of performance

6The names of the services have been abstracted by the ERICSSON stakeholders according to the disclosure
agreement.
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violations (Section 4.1). Then, we discuss the calibration of these models (Section 4.2).
Finally, we present the estimation and prediction measures to compare and rank the models
(Section 4.3).

4.1 Point processes of performance violations

As anticipated in Section 2, our approach exploits growth theory traditionally used in soft-
ware reliability (Virene 1968; Rigdon and Basu 2000; Lyu 1996; Rossi et al. 2010; Port and
Taber 2018). According to such theory, occurrences of events are modeled as a stochastic
point process. In this work, we design models of performance evolution as stochastic pro-
cesses where events are the occurrences of performance violations observed during load
testing. According to growth theory (Rigdon and Basu 2000), for each operation oj , we can
model the occurrences of violations by the random variable Nj(t) that counts such events
as follows:

Nj(t) = Nj((0, t]) = |x ∈ (0, t] : RTj (x) ≥ �j | (4)

The variable Nj(t) defines a counting process, whose expected mean E[N(t)] is a right-
continuous function of global time defined as:

fj (t) = E[Nj(t)] =
∑

n≥1

n · P {Nj(t) = n} (5)

The function fj (t) models the expected cumulative number of performance violations of an
operation oj over time. In literature, various analytic expressions for the functions f have
been proposed. In this work, we consider a number of candidate models traditionally used by
the research community to study phenomena of interest in software and hardware reliability
as well as economics and social science (Rossi et al. 2010; Lyu 1996; Succi et al. 2003a).
We let the reader refer to Appendix A for the full list of state-of-the-art models we selected.
In particular, Table 10 lists them and provides the corresponding analytical expressions. As
shown by the table, such expressions are parametric (either two or three parameters per
individual model). Thus, non-linear regression allows the parameter values to be identified
by fitting them on performance violations data, as described in the following.

For each operation oj , the observed performance violations (according to Equation 2)
during a test session can be defined as follows:

Xj = {(tn, n) : RTj (tn) > �j }
where (tn, n) is a pair composed of the timestamp of the nth violation and n, the cumulative
number of violations occurred up to tn. A candidate performance function f is differentiable
and satisfies the following conditions:

1.
dfj

dt
> 0

2. ∃ t0 s.t. ∀t > t0,
d2fj

dt2 (t) < 0

Condition i) indicates that f grows monotonically, which means that the cumulative
number of violations keeps growing over time. Condition ii) detects a change of concavity
of the curve. The curve is convex before t0 and then concave after t0. This means that after
t0 the occurrences of violations get sporadic as time goes by. In other words, the cumulative
number of violations still increases but at a lower rate. Depending on whether t0 is the initial
or any later time instant, the resulting curve is concave (i.e., the violation rate decreases
from the beginning) or S-shaped (i.e., the violation rate increases and then decreases after
a certain amount of time), as shown in Figure 6. An S-shaped curve has a flex at t0, i.e. the
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time instant at which the curve’s concavity changes. At this point, the curve experiences its
maximal growth rate (highest violation rate). After this point, the curve becomes convex,
thus the operation recovers and the violation rate starts decreasing (the time between two
consecutive violations increases). After the flex, violations become rarer with time until
they reduce to sporadic events. When fj satisfies the two conditions, the operation oj is
considered resilient (i.e., it can recover from a performance issue). If fj is also bounded
(it has a horizontal asymptote a), the operation recovers from a performance issue in a
finite amount of time, i.e., at time t1 in which the number of residual violations can be
predicted by the model as a − f (t1). When the function f (e.g., a linear function) does
not satisfy the condition ii), the related operation continuously experiences performance
violations occurring with either constant or increasing rate. When the function f satisfies
both conditions but it is not finite, we cannot tell whether the related operation is resilient
in finite time as the number of residual violations cannot be calculated.

Since the analytic expressions in Table 10 represent finite models (Lyu 1996), an upper
bound for the growth also exists (i.e., a horizontal asymptote). Intuitively, if the data gath-
ered by testing the microservices yields a finite model (either concave or S-shaped), the
degradation of performance is limited and can be overall estimated by an expected num-
ber of violations. As mentioned above, Figure 6 shows an example of two candidate growth
models in the two cases: concave or S-shaped, respectively. The natural interpretation of
a concave model in our context yields an immediate steep violations’ growth followed by
its gradual decrease. The S-shape model exhibits instead a change in the pace of violations
occurrences for which an operation has an initial low pace of violations’ occurrence and
experience the steep growth only later.

4.2 Calibration of performancemodels

We introduce here an approach we use to calibrate the growth models taking into account
the data collected during operation. To determine the parameters’ values, state-of-the-art
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analytic models (see Table 10 in Appendix A) are fitted on performance violation data with
Ordinary Least Square (OLS) method, as described by Lyu (1996) and Rossi et al. (2010).
For instance, Figure 7 shows the Goel-Okumoto (GO) concave model (Goel and Okumoto
1979) fitted upon the performance violations of the microservice operation getCart. The
plot shows the observed violations (red line) and the calibrated model (blue line). The black
lines surrounding the blue line delimit the area of the 95% Confidence Interval (CI). The fit-
ting procedure starts by selecting initial values for all parameters (a0, b0, c0). This choice is
nothing but trivial with non-linear regression and multiple parameters (Virene 1968; Huang
et al. 2010). Indeed, a poor choice may result in a long iterative computation that may either
diverge or converge towards a non-satisfactory local minimum. To mitigate these issues, we
developed heuristics able to reduce the search space of initial values for the model’s param-
eters, as suggested by Virene (1968). To this aim, we analyzed each function in Table 10 in
terms of its behavior as analytic expression as detailed below.

– Being the growth models finite, we estimated the initial value of the parameter a as the
number of the total expected violations using the behavior of the model expression f

at infinite and we set it proportional to the total number of observed violations A as
follows:

lim
t→∞ f (t) = a ∝ A (6)

As an example, the total number of violations observed with getCart is 120. We used
this value to set our initial guess of the parameter a that was then calibrated to 127 (i.e.,
the green horizontal line in Figure 7).

– Given t1 and t2, two initial time values, we estimate the first derivative f ′ at 0 as the
increment ratio of the function f between t1 and t2:

f ′(0)(b, c) ∼ f (t2) − f (t1)

t2 − t1
(7)
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Fig. 7 GO model for getCart (blue line) calibrated from observations (red line)
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then, we compute the remaining parameters b and c (if exists7) by solving Equation 7.
For instance, according to Figure 7, the number of violations at t2 = 5 is around 25.
Thus, we can estimate the missing parameter b (the model GO has two parameters in
total) by solving the inequality f ′(0) ∼ 0.2.

– If needed, we then chose the values of the remaining parameter over a range of values
according to the parameter constraints of the model as described in Table 10.

From such estimations, we restricted the search space of the initial parameters’ values
and reduced the problem by iterating our procedure in Algorithm 1 over a finite sample of
trial values (e.g., x ∈ {1, ...1000}). Algorithm 1 refines the regression process K times to
search for significant parameters’ values in case the regression with the initial parameters’
values does not find a local minimum and parameters’ values are not significant (line 13).
The calibration procedure implemented in R8 using the non-linear regression algorithm of
the package nls29.

4.3 Model selection

All the candidate models calibrated through the procedure reported above, are then ranked
based on their ability to estimate and predict performance violations for each individual
operation. Firstly, we evaluate how well observations are represented by the models. For
this purpose, we use the Coefficient of Determination R2, which quantifies the proportion of
total variation of observations explained by the model, see Table 11. As described by Glantz
and Slinker (2001), this measure is known as the “goodness of fit” and the ideal (and max-
imum) value is R2 = 1. For non-linear models, R2 can also be negative. In this case, the
mean of the data provides a better fit than the models. In addition, the measure does not take
into consideration the number of model parameters as described by T.O. (1983), Spiess and

7The parameters of the models in in Table 10 are either two or three.
8https://www.r-project.org/
9https://cran.r-project.org/web/packages/nls2/
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Neumeyer (2010), and Rossi et al. (2010). For this reasons, we do not use such measure to
compare the models but we use it to discard those models whose R2 value is lower than 0.95.
Then, models are compared by means of four accuracy measures. Namely, two measures for
estimation ability (Relative Precision of Fit (RPF) and Coverage of Fit (CoF)) and two mea-
sures for prediction ability (Predictive Ability (PA) and Accuracy of the Final Point (AFP)).
Definitions and value ranges are reported in Appendix A, Table 11. The metrics RPF and
CoF capture two complementary facets of the estimation ability of a fitted model: the size of
the 95% CI and the number of observed violations captured in such area, respectively. Best
models have minimum RPF (approaching the ideal value 0) and maximum CoF (approach-
ing the ideal value 100%). The metrics AFP and PA quantify two complementary aspects
of prediction ability. AFP yields the ability of the model to approach the total number of
expected violations within the observation time. PA tells how early such approximation can
occur. Considering the last two metrics, the top models are those associated with minimum
PA (approaching the ideal value 0) and minimum AFP (approaching the ideal value 0).

We analyze each model first by using individual measures and then by combining RPF
and CoF for estimation, and AFP and PA for prediction. In the latter case, we then rank
models by means of the Euclidean distance from the ideal values, as follows:

dE =
√

|RPF − 0|2 + |CoF − 1|2 dP =
√

|PA − 0|2 + |AFP − 0|2 (8)

To avoid biases in using Euclidean distance for different scales, dE and dP have been
computed after all measures and ideal values have been normalized in the range [0, 1]. Nor-
malization has been performed using measures’ min-max values on the bounded region
surrounding the measures’ ideal values for which AFP ≤ 2, CoF ≥ 30% and RPF ≤
do/3, with do total number of violations for the operation o10. Finally, we select the
top models according to such rankings by considering either each individual measure or
the Euclidean distance which allows engineers to easily spot models that exhibit a good
trade-off between estimation and prediction.

5 Experimental results

In this section, we discuss the major results obtained from our experiments to answer the
research questions introduced in Section 3.

5.1 RQ1: What is the cost-effectiveness of the proposed calibration heuristic
for fitting growthmodels?

In the context of RQ1, we aim at studying the cost of the model calibration process as well
as its effectiveness. This investigation is motivated by the fact that the application of our
approach may be prohibitive in case such a cost is too high. To answer the question, we have
collected the execution time and the success ratio of the calibration process conducted in
our in-vitro experiments with Sock Shop. Figure 8 illustrates the bar plot of the number of
observed violations per operation collected during Test2. The number significantly varies
depending on how the operation is able to handle the requests. For instance, the number of
violations observed for the operation tags is almost 200, whereas for getCatalogue

10The region has been defined empirically to restrict the search by discarding poor models.
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it is almost 25. For all operations, we were able to collect at least 20 violations (horizontal
line in Figure 8).

For each choice of the initial model parameters (a0, b0, c0), estimated as described
in Section 4.3, and each combination of the 19 operations and nine growth models, we
executed Algorithm 1 with K = 10 to fit the models. In total, we executed the calibra-
tion process 171 times. In 96% of the cases, we successfully obtained model convergence
and parameters’ significance. In particular, for GOS and all operations, our heuristic has
been able to directly identify parameter values starting from our initial estimation. For all
remaining models but HD, W, and YR a multiplier of the initial estimation of one or more
parameters was needed. For HD, W, and YR a number of operations (5, 8, and 3, respec-
tively), we further needed educated guesses on the previous regression iterations to manually
identify the initial values of the parameters. For only 4% of the cases, we did not achieve
convergence within K = 10 iterations. Thus, we increased K by an order of magnitude
(K = 100) to check whether convergence was feasible by increasing the overall effort. In
all these cases we observed no convergence as outcome of the calibration. Table 2 shows
the fitted parameters of each individual model and each operation. Empty cells correspond
to not converging fitting process (4% of the cases), whereas grey cells indicate parameters’
values significant but outside the required ranges for the model (6% of the cases), as defined
in Table 10 (e.g., negative values).

The execution of our calibration procedure for Sock Shop lasted in total 3 hours and 9
minutes. During this time, the algorithm was completely executed for 171 times (9x19).
Thus, on average 1 hour and 6 minutes per microservice (Table 3).
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Table 3 Fitting execution time hh :mm :ss within the in-vitro experiments using Sock Shop (time less than
1 second is ignored)

model GO GOS Gomp HD* L W* WS YE* YR

total time 0:37:49 0:00:00 0:04:31 0:09:20 0:00:01 0:42:51 0:01:02 1:08:43 0:24:35

average time 0:01:59 0:00:00 0:00:14 0:00:29 0:00:00 0:02:15 0:00:03 0:03:37 0:01:18

∗
Non-converging fitting process for at least one operation.

5.2 RQ2: To what extent do the proposed non-linear growthmodels accurately
estimate the occurrences of performance violations of microservice operations?

To answer RQ2, we further analyzed the accuracy of the fitted non-linear models for the 19
services of Sock Shop and we compared it with the accuracy of the linear models.

To this aim, we first studied the top non-linear models for each accuracy measure, i.e.,
models that achieve the best value for the measure. Figure 9 shows that the microservice
operations have different top non-linear models for RPF, CoF, PA, or AFP. For instance,
GO, Gomp, and GOS, are top models for RPF and all operations, whereas considering
CoF, top models for some operations are also HD and L. Then, we studied how the models
trade-off among the different measures and we analyzed them in terms of their estimation
and prediction ability defined by the two Euclidean distances dE and dP , as described in
Section 4.3.

Table 4 reports per operation the two models that have respectively the best dE score
(E-model) and dP score (P-model). In this case, we can see that the logistic model L is the
most accurate (i.e., best dE and dP ) for a larger set of operations.

To better understand the values of Table 4, we visualize the E-model GOS and P-Model
L for viewOrderPAge, as an example, in Figure 10. Figure 10a plots violations (red
dots) and the models GOS and L along with their 95% CI areas and their RPF and CoF
values, whereas Figure 10b plots violations, the same models and their asymptote lines
along with the line representing the total number of violations observed (A), and their AFP
and PA values. GOS outperforms L in terms of estimation since it has a smaller CI area (the
RPF is equal to 8.78 and 11.27, respectively) and it captures more violation data points at
the beginning of the observation period (the CoF is equal to 0.83 and 0.78, respectively).
The change in the shape of the two models is also different, as shown in Figure 10b. GOS
starts decreasing the violation rate (curve flex) earlier at around 480 secs, whereas L does
it at around 1000 secs. The total number predicted by the model GOS approximates better
the total number of violations (PA=0.14) whereas the model L predicts the total number

Empir Software Eng (2022) 27: 39 Page 23 of 44    39



GO Gomp GOS HD L W WS YE YR

RPF

CoF

PA

AFP

0
2

4
6

8
10

Fig. 9 Number of top non-linear models per accuracy measure

Table 4 Top models per operation according to the rankings defined by dE and dP (E-model and P-model,
respectively)

service E-model RPF CoF P-model AFP PA

addToCart GO 2.93 52 GOS 0.15 0.93

basket L 2.50 52 GOS 0.01 0.84

catalogue L 6.72 74 L 0.18 0.96

cataloguePage L 3.79 67 L 0.18 0.90

catalogueSize L 8.78 68 L 0.09 0.92

createOrder L 5.19 60 L 0.00 0.96

getAddress GOS 9.38 79 L 0.13 0.95

getCard GOS 11.51 60 L 0.09 0.94

getCart GOS 3.65 53 HD 0.06 0.67

getCatalogue L 4.51 77 L 0.12 0.93

getCustomer L 5.53 57 L 0.08 0.89

getItem GOS 10.19 76 GOS 0.28 0.95

getOrders L 3.87 53 Gomp 0.02 0.90

getRelated L 12.11 57 Gomp 0.11 0.00

home NA NA NA L 0.55 0.96

login GO 6.98 58 L 0.12 0.00

showDetails L 6.48 69 L 0.11 0.91

tags L 8.14 64 L 0.13 0.88

viewOrdersPage GOS 8.78 83 L 0.24 0.93
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Fig. 10 Visualization of GOS and L models for viewOrdersPage

of failures earlier (PA=0.93), even though both models do not predict the total number of
violations much in advance as PA in both cases is close to 1.0.

Finally, we fit the linear model on the data of each operation and compute the measures
CoF, RPF, and PA11. The resulting values are reported in Table 5.

By each individual measure, Gomp and W are better than the linear model in terms of
RPF and CoF for all and almost all operations respectively, as shown in Figure 11. For PA,
we found that 59% of the operations have a non-linear model that is more accurate than a
linear one, but this model may vary across the operations.

As we are interested in trading off RPF and CoF, we then further compute dE for the
linear models (Table 5). We can see that there exists a small number of operations (3 out
of 19) whose violations are better estimated by a linear model as shown in Figure 12a (i.e.,
login, getCard, getRelated). Linear models may also show a good ability for early
prediction of the total number of observed violations, such as the operation login that, as
illustrated in Figure 12a and b, is closer to the ideal values of the measures compared to the
other models.

11AFP cannot be computed for unbounded models.
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Table 5 Accuracy of the linear
models R2 RPF CoF PA

addToCart 0.99 2.80 20 0.96

basket 1.00 2.82 36 0.86

catalogue 0.99 2.21 58.33 -

cataloguePage 0.93 10.99 32 -

catalogueSize 0.97 5.02 51 0.82

createOrder 0.98 4.68 50 -

getAddress 0.97 4.02 61 -

getCard 1.00 2.43 57 0.89

getCart 1.00 2.35 51 0.85

getCatalogue 0.99 1.76 77 -

getCustomer 0.83 17.67 25 -

getItem 1.00 3.20 32 0.95

getOrders 0.99 3.08 43 0.87

getRelated 0.98 3.23 74 -

home 1.00 2.41 30 0.87

login 0.98 4.01 74 0.72

showDetails 0.99 2.18 70 0.91

tags 0.97 5.28 55 0.96

viewOrdersPage 1.00 2.88 54 0.90

GO GOS Gomp HD L W WS YE YR

RPF

CoF

PA

0
5

10
15

20

Fig. 11 Number of operations for which non-linear models outperform the linear one in terms of RPF, CoF,
and PA measures
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Fig. 12 Linear or non-linear top model per microservice operation

5.3 RQ3: What are the insights we can derive from growth theory applied
to the study of performance violations of a microservice system?

We observed that non-linear S-shaped finite models represent the occurrences of viola-
tions for the majority of the operations of our SUT. As finite growth models are monotonic
increasing and bounded, the time between two violations after a certain point increases
with time and the total number of violations ever occurring for an operation is limited.
An operation showing such behavior is better and better able to handle requests with due
performance. Secondly, for the majority of the operations, the non-linear bounded models
are also S-shaped (Table 5). In this case, the violations’ rate first increases until its maxi-
mal limit (at the flex) and then gradually decreases toward zero (at infinite). An operation
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Table 6 Values used for the
fitting process of the model L operation x v (t1, t2)

addToCart,catologuePage (1:1000) 1 (1,4)

getCart (1:1000) 10 (1,2)

Remaining operations (1:1000) 1 (1,2)

showing such behavior is resilient: it can handle and recover from a degraded operating con-
dition. For instance, when the gradual accumulation of the requests into the message queue
eventually saturates causing a sudden increase of violations, the corresponding service may
trigger adaptive countermeasures, like autoscaling that dynamically changes the number of
microservice replicas and evenly distributes the load across them. In this case, the operation
is able to recover its initial performance and the violations’ rate starts decreasing. Thus, the
performance violations become more and more sporadic events.

We have also found that logistic is the growth model that represents the occurrences of
performance violations in 7 out of the 19 microservice operations (Figure 12), but not for
all of them. For some operations, the linear model is more accurate. In the following, we
take a closer look at both the logistic and linear models.

As described by David and Edwards (2001), the mathematical expression of the logistic
model12 can be used to represent a population with a bounded increase rate that depends
on the population’s size. Rephrasing it in our context, such expression models the rate of
occurrences of performance violations df

dt
as proportional to the product of the cumulative

number of occurred violations f (t) by time t and the violations not-yet occurred, a − f (t).
The analytic expression of the rate is defined as follows:

f ′(t) = df (t)

dt
= c

a
· f (t) · (a − f (t)) (9)

where a > 0 is the predicted total number of occurrences (i.e., the hypothetical upper-bound
of the curve), and c > 0 is the increase rate. The analytic solution of the model L as in
Table 4 is:

f (t) = a

(1 + b · e−c·t )
(10)

with b > 1. According to our heuristic (Section 4.3), we estimated the initial parameters as
in the following:

a = A · x, b = a

v
− 1, c = k

v
· a

a − v
(11)

with x ∈ R>0, k(t2, t1) = f ′(0) ∼ f (t2)−f (t1)
t2−t1

and v = f (0). The fitting process is then
performed with the values reported in Table 6. by iterating Algorithm 1 over 1000 integer
values for x. As described by Satoh and Yamada (2002), accurate estimates of the L param-
eters can be achieved if the dataset includes at least one point after the flex (i.e., the point
in time at which the concavity of the model changes). According to the model L, the flex t∗
occurs when half of the total expected violations have occurred:

t∗ = log(b)

c
, f (t∗) = a

2
(12)

12Nowadays, L is making the headlines for being able to model the pandemic contagion of COVID-19, as
illustrated in Shen (2020).
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Thus, given the total number of observed violations A, we obtain a successful fitting
process for the model L if the following condition holds:

a

2
< A (13)

For all our operations the inequality was satisfied13. For instance, the operation catalogue,
for which L is the top model for both estimation and prediction, has a = 54.2 and A = 45
and Equation 13 is satisfied.

Equation 13 also provides a practical instrument for decision-making to guide online
mechanisms of load balancing, like autoscaling. For instance, assuming that we have fitted
offline the model, we can then monitor the number of violations when the system is in
production, verifying whether this number is about to exceed half of the expected number
of violations predicted by the model (i.e., a/2), and, thereafter, activate the autoscaling
mechanism. Once the observed violations are fewer than half of the expected number of
violations predicted by the model, the logistic model may not be distinguished from an
unbounded model like the linear one.

The linear model represents even a preferable option for some of the operations of our
system (e.g., login, getCard, getRelated). These operations are not able to improve
the way they handle requests and violations keep on occurring at the same rate. Such oper-
ations yield performance issues and possible bottlenecks that need specific maintenance
attention.

5.4 RQ4: To what extent our methodology can be applied to real-world
in-production systems?

The goal of RQ4 is to illustrate how our methodology can also be applied to a real-world
system running in production for which companies typically do not have much control over
the operational context. As described in Section 3.3, we analyzed a Telecommunication
system developed by ERICSSON.

Table 7 lists the number of violations per microservice collected during a session of ∼ 21
hours. The table shows also the linear and non-linear fitted models. The execution of the cal-
ibration procedure for this system lasted in total 1 hour and 42 minutes. The calibration was
completely executed 108 times (9 × 12). Thus, on average 57 minutes per microservice (9
minutes less than the execution time with Sock Shop). Table 7 shows that it was not always
possible to fit all the linear and non-linear models with R2 ≥ 0.95 for all the microservices.
This phenomenon can be explained by the fact that, during the period of observation, we
found that the violations can follow additional trends than the basic concave/S-shaped one of
the growth models observed for Sock Shop (see Figure 6). These additional trends are com-
positions of basic concave/S-shaped growth models. Figure 13 illustrates them: the basic

13see the sample sizes in Figure 8 and the estimation of parameter a for the logistic model in Table 2.
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Fig. 13 Types of trend of the performance violations observed by monitoring the microservices of the
Telecommunication system. Each plot shows violations (red dots), a selected fitted model (blue line), and the
corresponding CI (black lines)

concave/S-shaped growth model (Figure 13a), a combination of a few basic concave/S-
shaped growth models (Figure 13b), a repeated periodical combination of the same basic
concave/S-shaped growth model (Figure 13c), and a convex model (Figure 13d). Finally,
Table 8 lists the top basic concave/S-Shaped models according to the dE and dP distances
and their estimation and prediction measures. We can see that few models can estimate
and predict the occurrences of violations. It is worth noting that for Interrogation,
Recompose, and StatusUpdate the same model appears for estimation and prediction.
These models have either high RPF or low CoF. By visualizing their graphs, we can see that
the data does not follow a unique concave or S-shaped trend but rather a trend that joins
multiple concave or S-shaped models. In other words, the application of our methodology
to the Telecommunication system allows us to discuss different types of resilience behavior
that were not found for Sock Shop, as follows.
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Table 7 Fitted models with non negative parameters and R2 ≥ 0.95 per microservice

label #violations models

Adjustment 156 Linear and GOS, Gomp, L, W, YE

Control 1102 All non-linear models except WS

DBDataManagement 82 -

Enquiry 634 GO, GOS, Gomp

InternalCommunication 1125 All non-linear models except GOS, HD, WS, YR

Interrogation 2281 GO, Gomp

Offline 347 Linear

Online 685 Linear

Recompose 623 Gomp

ResourceRead 0 -

ResourceUpdate 0 -

StatusUpdate 66 Linear

Robust behavior These microservices always meet the performance requirement. Thus,
they can handle variations of server utilization up to their maximum. This is the case of the
microservices ResourceRead and ResourceUpdate.

Resilient behavior with a single recovery profile According to Table 7, 10 out of 12
services yield performance violations. In particular, the table lists those microservices
for which the fitting and calibration process was successful. These services resemble the
resilient behavior of most of the operations in Sock Shop. The total number of violations
ever experienced by the microservice is limited and the rate of occurrences decreases in
time after a certain instant and violations become more and more sporadic. An example is
Control (Figure 13a), which exhibits a step increase of the violations and then a single
recovery profile that eventually brings the microservice into acceptable behavior.

Resilient behavior with multiple recovery profiles This is the case of the microservices
DBDataManagement, Offline, and Online whose violations follow a trend that

Table 8 Top models and their break down on the estimation/prediction measures

microservice E-model RPF CoF P-model AFP PA

Adjustment GOS 13.43 66.20 Gomp 0.23 0.89

Control GOS 33.40 57.46 HD 0.05 0.46

DBDataManagement - - - - - -

Enquiry GOS 20.50 54.76 GO 0.02 0.33

InternalCommunication GO 122.01 77.51 Gomp 0.18 0.87

Interrogation GO 227.12 78.86 GO 0.30 0.92

Offline - - - - - -

Online - - - - - -

Recompose Gomp 9.12 22.30 Gomp 0.05 0.38

StatusUpdates Linear 3.60 47.44 linear - 0.98
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combines sequentially different basic growth models. For instance, Figure 13c illustrates
the multiple recovery profiles for Online for which the model is a combination of four
basic growth models with shapes (concave, concave, S-shaped, S-shaped). This is consis-
tent with the findings reported by Avritzer et al. (2021) identifying these microservices as
affected by extensive processing.

Resilient behavior with seasonal recovery profiless This is the case of microservices
InternalCommunication and Interrogation. For instance, the violations of
Interrogation occur with a seasonal basic concave model as shown in Figure 13c.
According to Wert (2018), this represents the visible manifestation of the application hic-
cup antipattern which is typically caused by memory management issues (e.g., wrong cache
usage, large temporary objects) which may lead to increased pollution of memory.

Non-resilient behavior This is the case of StatusUpdate for which the fitting pro-
cess was successful only for the linear model. The collected violations follow a unbounded
convex growth which indicates a growing rate of violation occurrences.

6 Threats to validity

In this section, we discuss the major threats that could affect the validity of our work.

Construct validity The first threat is related to the strategy used to choose the threshold for
performance violations. As introduced in Section 2, the choice of this threshold determines
the number of violations occurring during the observation period. Thus, it might affect the
significance of the regression analysis. We mitigated this threat by choosing a pass/fail
criterion that ensured an adequate amount of violations leading to a significant regression
analysis. We also detailed the criterion used in our experimental settings to allow replication
of results.

A second threat is related to the fitting process. We used the Ordinary Least Square that
fits the curve by finding the parameter values that minimize the difference between the
data and the model function (i.e., the residuals). The difference is defined as the sum of
the squared errors. This technique is generally considered the best one for small to medium
sample sizes. Another viable approach is Maximum likelihood when the residuals have
non-Gaussian distribution (Tamura and Yamada 2005). The maximum likelihood technique
estimates parameters by solving a set of simultaneous equations that maximize the likeli-
hood that the observed data came from a function with those parameter values. Maximum
likelihood is generally considered a good statistical estimator in presence of a large sam-
ple size, that is not the case in our experimental setting. Furthermore, the CI provided by
the maximum likelihood technique is usually more realistic because it is wider and asym-
metric. Furthermore, the set of equations used to compute it is complex and must be solved
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numerically. As described by Wood (1996a), the least squares predictions are more stable
and correlate slightly better with the original data.

Internal validity Even though such threats typically do not affect exploratory studies like
the one presented in this article, we provide the reader with a detailed explanation of the
experimental settings (both in-vitro and in-production) to increase the trustworthiness of our
findings in terms of cause-effect relations. It is worth noting that our in-vitro experimen-
tal setting allowed for direct manipulation of the important factors of interest for our study:
workload intensity, usage profile, deployment configuration, and the parametric pass/fail
criterion which defines the performance requirements. The in-production experimental set-
ting conducted with the case study at ERICSSON allowed us to further study the applicability
of our approach and generalize the findings to real-world systems. In both cases (in-vitro
and in-production settings), we designed the experimental campaign by detailing all these
factors to avoid possible misinterpretation of cause-effect relations.

Conclusion validity One of the typical threats of using the growth theory concerns future
predictions. If the in-vitro testing environment in which the performance of the SUT has
been observed changes considerably from the one used for the production, we cannot expect
that the fitted models predict future performance in the same manner as stated by Pedrycz
et al. (2012). This threat is partially mitigated by assuming that our experimental setting
replicates the nominal conditions observed in production with high fidelity. Within the in-
production experiments carried out at ERICSSON, we replicated the nominal setting declared
by the stakeholders of the company to extract the performance requirements. Then, we
monitored the system while interacting with real end-users.

External validity Threats to external validity have been addressed by selecting a com-
mon case study in our target application domain, as described in Section 3.2.1. As stated
by Avritzer et al. (2020b), Sock Shop has been recognized as a representative benchmark by
the performance engineering community. Furthermore, we applied our approach to a real
world system running in its production environment to study the applicability and general-
ize of our findings. Further generalization in other application domains requires additional
experimental activities with a diverse set of case studies.

7 Related work

The work presented in this paper has been influenced by existing work in the following
major research areas: performance modeling of microservices systems, growth theory for
event occurrences, and measures of accuracy and prediction.

7.1 Performancemodeling of microservices systems

A comprehensive literature review of microservice architectural challenges has been intro-
duced in Alshuqayran et al. (2016). The authors focus on the specific challenges of this
architectural style and related quality attributes. Such attributes for microservice archi-
tectures are mainly concerned with scalability, reusability, performance, fast agile devel-
opment, and maintainability. A systematic gray literature review of the existing techni-
cal/operational pains and gains associated with microservices can be found in Soldani et al.
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(2018). According to this latter work, microservices research is still immature and there is a
need for additional experimental and empirical evaluation of systematic methods and tech-
niques able to support the life cycle of microservices systems. The survey also recognizes
performance assessment of microservices as a pain in the IT industry.

Even though performance modeling has gained considerable attention by the software
and systems engineering community in the past two decades, recent research activities high-
light that performance delivered by microservices systems is hard to predict (Mukherjee
et al. 2014; Soldani et al. 2018). This statement points to the necessity to capture perfor-
mance evolution systematically and accurately. The detection of bottleneck components
represents a common yet essential task for increasing the performance of microservices sys-
tems. A comprehensive survey on successful performance modeling approaches particularly
tailored to component-based software systems can be found in Koziolek (2010). Perfor-
mance modeling and prediction approaches have been proposed at the beginning for early
design-time validation activities through simulations. The recent uptrend sees modeling
interleaved with runtime stages, where specifications are constantly learned or incremen-
tally built by observing runtime evidence as described by Calinescu et al. (2011). According
to Avritzer et al. (2021), statistical characterization of software performance antipatterns
can be extracted from the operational data by tuning single server queuing models (Bert-
sekas and Gallager 1992). This latter work focuses on those antipatterns that can be detected
by analyzing steady-state behaviors of the target system, rather than looking at the per-
formance evolution over time. Overall, automated approaches able to extract performance
models from operational data are highly demanded, since they can estimate and predict the
performance of a target implementation. As stated by Heinrich et al. (2017), among the key
challenges that emerged in performance modeling for microservices are: finding appropri-
ate modeling abstractions, and automated extraction of performance models. Our modeling
methodology aims at tackling these major challenges and providing engineers with suit-
able techniques and tools able to aid performance engineering activities for microservices
systems.

The work presented by Avritzer et al. (2020b) and Avritzer et al. (2018) introduced the
concept of microservice failure in terms of violation of performance requirements. Viola-
tions are then aggregated to carry out the so-called Domain Metric based analysis that aims
at evaluating the performance of the target microservices system as a whole. Specifically,
the authors designed test cases by setting a testing pass/fail criterion through a perfor-
mance threshold. The threshold is computed for each microservice by observing the SUT
under a simulated usage profile, low load (two concurrent users), and high resources. The
authors executed a series of such tests and measured the total performance of a SUT by
computing the average response time of non-failing microservices. As described by Camilli
et al. (2020), the Domain Metric approach has been also successfully adopted to evaluate a
migration from monolithic systems to microservices. This latter work introduces an iterative
methodology to recognize whether a migration step represents an improvement in terms of
performance and scalability by performing a quantitative evaluation of alternative architec-
tures. In our proposal, we define the pass/fail criterion to collect performance violations as
in Avritzer et al. (2018) and Camilli et al. (2020). We build upon the notions of performance
requirement as well as violation to analyze them over time and eventually build suitable
models able to describe present occurrences and (when possible) predict future occurrences.
To achieve this goal, performance violations for each microservice are modeled through a
stochastic point process grounded on growth theory.
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7.2 Growth theory

A wide variety of growth models have been proposed to capture different facets of the
fault detection process in software systems. Such models are traditionally used to describe
the evolution of software reliability over time as reported by Port and Taber (2018), Taber
and Port (2014), Rossi et al. (2010), Li et al. (2004), Li et al. (2005), Succi et al. (2003a),
Stringfellow and Andrews (2002), and Biffl and Gutjahr (2002) and help decision-makers
during software maintenance as in Taber and Port (2016). In this context, reliability is mod-
eled with time of failure occurrences, which in turn are assumed to grow in time in such
a way that the time to the next failure increases with time as well Musa et al. (1987),
Bassin and Santhanam (1997), Lyu (1996), Succi et al. (2003a), Rossi et al. (2010), and
Kumar et al. (2019). This behavior is modeled with stochastic processes that describe the
cumulative number of failures over time (Rigdon and Basu 2000). The expected mean of
the stochastic process defines a parametric function of time and represents the expected
total number of failures at any time instant. Then the parameters of the expected mean are
determined by non-linear regression on the actual data set of the cumulative number of
failures over time.

Growth models based on non-homogeneous Poisson processes (Rigdon and Basu 2000)
are particularly popular, such as the one proposed by Goel and Okumoto (1979). This
model was introduced to describe the fault detection process as an exponential distribu-
tion. Other common proposals are the Weibull distribution (Goel 1985) and the S-shaped
model introduced by Yamada et al. (1983). These models have been proposed to capture
possible increasing or decreasing failure rates. Such a pattern is also followed by the log-
logistic model introduced by Gokhale and Trivedi (1998), which describes an initial slow
learning phase of the process. The logistic model can be used to model both concave and
S-shape trends of the data. These days, such a model has shown its potential also in the
context of the COVID-19 pandemic to model the contagion growth, as described by Shen
(2020). The Gompertz model proposed by Ohishi et al. (2005) is more recent and it has
been derived from the extreme value theory. Among the aforementioned models used for
software reliability growth, the Weibull model turned out to be a good description of small
software projects, as described by Li et al. (2004), Li et al. (2005), Rahmani et al. (2009),
and Zhou and Davis (2005), whereas more complex models may be better to model large
distributed systems (Tamura and Yamada 2005). The work introduced by Rossi et al. (2010)
extends the previous study of Li et al. (20031) and Succi et al. (2003a) by combining the
two approaches: software reliability growth across software versions and measures of accu-
racy and prediction. Again, the Weibull model outperforms other models across versions in
terms of fitting and outliers.

Growth theory has been also used more recently to derive an empirical characterization
of the debugging process as described by Cinque et al. (2017). As an example, the work
presented by Nguyen et al. (2012) leverages growth theory to show that the time to repair
is influenced by developer expertise and by the specific application context. The study car-
ried out by Zhang et al. (2012) focused instead on the factors influencing the time latency
between the bug assignment and the actual starting of the repair actions. Essentially, they
found that the major factors are the assigned severity, the bug description, the number of
methods, and the number of code changes.

To the best of our knowledge, the usage of growth theory to assess and predict perfor-
mance violations of microservices systems has not been investigated yet.

Empir Software Eng (2022) 27: 39 Page 35 of 44    39



7.3 Accuracy of growthmodels

The measures of accuracy capture the properties of the growth models based on their ability
to fit the collected data as well as the ability to predict forthcoming data. As described
by Rossi et al. (2010), these measures can be categorized into three main groups: goodness
of fit; precision of fit; and prediction ability. Both goodness and precision of fit refer to
how the collected data is modeled, whereas the third category characterizes the ability of
the model to predict on new future data. Common measures for the goodness of fit are the
Coefficient of Determination, R2, (Draper and Smith (1998)) and the Akaike Information
Criterion, Li et al. (2005). The Relative Precision of Fit and the Coverage of Fit represent
two measures of choice for the precision of fit. They essentially provide the extent and the
ability to capture the data in the 95% confidence interval of the model, as described by Succi
et al. (2003b), and Wood (1996b), respectively. Measures of forecasting ability define the
ability to predict early through the Predictive ability as described by Succi et al. (2003b),
or accurately through the Accuracy of the Final Point, as in Yamada et al. (1983). These
measures are typically used in combination as they give complementary information (see
Section 4.3).

In this work, we also follow the guidelines introduced by Iannino et al. (1984) to carry
out the evaluation of the candidate growth models. In particular, the following major criteria
have been used: predictive ability (i.e., the ability of a model to predict future perfor-
mance violations), capability (i.e., the capability of the model to estimate the occurring
performance violations), applicability (i.e., a model should be applicable across different
microservices’ operations of the SUT), and simplicity (i.e., in gathering data for its fitting,
and its interpretation).

7.4 Comparison with existing approaches

Here we present a comparison between our approach and selected state-of-the-art
approaches that were recently introduced and that can be used to detect and study perfor-
mance violations in the context of microservices or more in general service-based systems.
Table 9 presents these approaches categorized into: main scope, theoretical foundation,
granularity of detected violations, performance threshold, and SUTs that have been used as
a benchmark for the corresponding approach. To the best of our knowledge, our approach
is the first one that leverages the theoretical foundation of the growth models to study
performance violations over time.

The approaches introduced by Avritzer et al. (2018), Avritzer et al. (2020a), and Camilli
et al. (2020) do not detect punctual violations but they aim at recognizing whether the aver-
age response time represents an outlier value. As reported in Table 9, the granularity of
these latter is coarse-grained. Issues are still detected at the service level, but responses
are collected and then aggregated, rather than being analyzed individually. The approach
proposed by Wert (2018) detects individual performance violations with respect to given
thresholds (e.g., service-level agreement). This setting could be applied in principle also in
our approach. Nevertheless, as stated by Jiang and Hassan (2015), threshold values for non-
functional requirements are often informally defined, leading testers to use rules of thumb
(like the “no-worse-than-before” principle). In our case, formal performance requirements
were not defined for both the Sock Shop benchmark and the telecommunication systems.
For this reason, we systematically extracted the baseline requirements from the available
data in a mechanical way by following the approach in Section 4. The analysis of intro-
duced by Wert (2018) differs from our approach since it aims at constructing the empirical
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cumulative distribution of the response time per service to understand whether the probabil-
ity of observing a response time greater than the given baseline threshold is acceptable. In
addition, the parametric algorithms proposed by Wert do not provide a method to evaluate
the parameters, quantify the performance requirements, and identify their violations.

The growth models used in this work (see Table 10) are models traditionally used
in the context of reliability growth. Most of them (all models but L and Gomp) are
non-homogeneous Poisson processes that gained popularity for describing the stochastic
behavior of software faults detected during the testing phase. As described by Shibata et al.
(2007), these models focus only on the fault-detection profile. In case, correction data is
available, queuing models have been adopted to describe the fault-correction process in
addition to detection. A popular model in this context is Mt/M/∞ queue which assumes a
time-dependent Markovian arrival, an exponential service, and an infinite number of fault
correction personnel. It is worth noting that in the context of performance violations we can-
not map the notion of fault-correction. Indeed, violations just occur. Thus, we can consider
them as “instantly served”. This corresponds to a Mt/D/∞ queuing model with constant
service time and infinite resources. According to Shibata et al. (2007), this model coincides
with a non-homogeneous Poisson growth model, which implicitly assumes an instantaneous
fault-correction activity. According to our experience with in-vitro experiments reported in
Section 5, we found that the performance violations of services exposed by Sock Shop are
in ∼ 84% of the cases better explained by the S-shaped non-linear model L (both in terms
of estimation and prediction), rather than non-homogeneous Poisson processes falling in the
category Mt/D/∞.

Consistently with the findings reported for the in-vitro experiments, with the real-world
in-production system, we observed that the violations associated with microservices having
a resilient behavior are better described by S-shaped non-linear models. Non-resilient oper-
ations were identified in all the cases a simple linear regression was better than non-linear
growth models. By analyzing the time series of the performance violations we also found
seasonal patterns revealing the presence of application hiccups. It is worth noting that these
latter issues were not detected using the approach presented by Avritzer et al. (2021) since,
as shown in Table 9, the level of the approach is coarse-grained. Namely, it adopts aggre-
gated performance indices (considering max response time values), whereas the application
hiccup requires the analysis of the whole trend of the performance indices over time.

8 Conclusions and future work

In this paper, we presented a novel approach to model transient performance behavior of
microservice operations. Specifically, we have studied the time series of performance vio-
lations of microservice operations using growth theory. The main stages of the approach
are as follows: i) experiment design and execution, which guides engineers in the definition
of appropriate controlled experiments conducted adopting either in-vitro or in-production
settings; and ii) model fitting and selection, whose major aim is to build and identify the
best growth model(s) able to describe and possibly predict the performance evolution of
each microservice (operation). We applied our approach using an in-vitro setting by test-
ing a benchmark e-commerce system. We then replicated the experiments adopting an
in-production setting by monitoring a real-world telecommunication system developed by
ERICSSON and running in the production environment of the company.

Empir Software Eng (2022) 27: 3939   Page 38 of 44



Our major results suggest that growth theory provides the foundation to model transient
performance degradation of microservices and it provides engineers with practical insights
derived by interpreting the analytic expression of the models. In our experience, non-linear
bounded S-shaped growth functions describe the occurrence of performance violations bet-
ter than linear models when the microservice can handle changes of the nominal operational
setting and therefore eventually restore the ability to exhibit acceptable performance levels
(e.g., by activating load balancing or horizontal scaling mechanisms). Our approach was
also able to spot microservices whose performance behavior is not resilient. In this case,
they exhibit a constant (or even exponential) growth of performance violations. For this
reason, these microservices represent bottlenecks that need attention by engineers during
system maintenance. The application of our methodology to a real in-production system
identified additional resilience profiles that were not observed in the in-vitro experiments.
These profiles show the ability of microservices to react differently to the same solicitation
in the same time interval. We found that when a service is resilient, it can either decrease
the violation rate in a continuous manner or with repeated attempts (periodical or not).

We plan to further explore how the fitted models can be used to predict future perfor-
mance behavior of the microservice operations. We are going to investigate the applicability
of traditional approaches used in software reliability analysis. For instance, exponential
smoothing on datasets of multiple testing sessions (Li et al. 2004) has the potential of extrap-
olating the initial values of the model parameters with high accuracy. In this direction, other
approaches used in reliability engineering, such as metaheuristic optimizing search might
be explored as well (Antoniol et al. 2008; Benaddy et al. 2011).

Appendix A: Finite GrowthModels andMetrics

Table 10 contains the definition of 9 state-of-the-art non-linear finite growth models we
considered in this work. For each model, the table shows the equation of the curve and a
textual description of the model parameters. We refer the reader to the provided references
for a comprehensive discussion of these models. Table 11 illustrates the metrics used to rank
and compare fitted models considering their estimation and prediction ability.

Table 10 Finite Growth Models

Model and type Equation Description

Goel-Okumoto (GO); Goel and
Okumoto (1979); Concave

a(1 − e−bt ) a: expected cumulative number of
failures;

a ≥ 0, b > 0 b: failure rate.

GO S-shaped (GOS); Yamada et al.
(1983); S-shaped

a(1 − (1 + bt)e−bt ) a: expected cumulative number of
failures;

a ≥ 0, b > 0 b: failure rate.

Gompertz (Gomp); Virene
(1968); S-shaped

abct
a: expected cumulative number of
failures;

0 < a ≤ 1, 0 < b <

1, 0 < c < 1
ab: initial reliability;

c: the growth pattern indicator
(small values of c indicate rapid
early growth and large values of c

indicate slow growth).
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Table 10 (continued)

Model and type Equation Description

Hossain and Dahiya (1993);
S-shaped

a(1 − e−bt )/(1 + ce−bt ) a: expected cumulative number of
failures;

a ≥ 0, b > 0, c > 0 b: failure rate; c: ratio of detectable
failures over the total final number
of failures

.

Logistic (L); Kececioglu
(1991); S-shaped/Concave

a/(1 + be−ct ) a: expected cumulative number of
failures;

a > 0, b > 1, c > 0 b: failure rate; for b > 1 S-
shape otherwise concave; c: ratio
of detectable failures over the total
final number of failures.

Weibull (W); Goel (1985);
S-shaped

a(1 − e−btc ), a: expected cumulative number of
failures;

a ≥ 0, b > 0, c > 0 b: failure rate; c: variation of failure
rate.

Weibull more S-shaped
(WS); Iannino and Musa
(1990); S-shaped

a(1 − (1 + btc)e−btc ) a: expected cumulative number of
failures;

a ≥ 0, b > 0, c > 0 b: failure rate; c: variation of failure
rate.

Yamada Exponential (YE);
Yamada et al. (1986); Con-
cave

a(1 − e−b(1−e−ct )) a: expected cumulative number of
failures;

a ≥ 0, b > 0, c > 0 (b(1 − e−ct )): cumulative testing
effort based on exponential model.

Yamada Raleigh (YR);
Yamada et al. (1986);
S-shaped

a(1 − e−b(1−e−ct2/2)) a: expected cumulative number of
failures;

a ≥ 0, b > 0, c > 0 b(1 − e−ct2/2): cumulative testing
effort based on Weibull model.

Table 11 Measures of Accuracy (Rossi et al. 2010)

Measure Formula Description and value range

Goodness of fit (R2) 1 −
∑

i (yi−f (ti ))
2

∑
i (yi−ȳ)2 Coefficient of Determination. How

good is the model to approach the
observed data w.r.t. the mean of the
observed data ȳ; maximum ≤ 1. As
suggested in Spiess and Neumeyer
(2010), we use such measure only
to select models with R2 < 0.95

Relative precision of fit (RPF) Area(CI)
|T | Size of the 95% Confidence Inter-

val (CI) of the fitted curve normal-
ized with the size of the interval of
time service delivered; complemen-
tary to CoF; minimum ≥ 0
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Table 11 (continued)

Measure Formula Description and value range

Coverage of fit (CoF) 100 · |{yi∈Area(CI)}|
A

Percentage of data captured by the
95% CI; complementary to RPF;
maximum in (0%,100%)

Predictive ability (PA) mint∈T {|A−f (t)|<10%A}
T

Portion of time needed by the
model to approach the total final
number of observed failures, A;
complementary to AFP; minimum
in (0,1)

Accuracy of final point (AFP) |A−α|
A

Portion of remaining failures
(defect slippage). A and α are
respectively the observed and the
predicted final total number of
failures; complementary to PA;
minimum ≥ 0
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