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Abstract

Multi-hazard mapping in urban areas is relevant for preventing and mitigating the impact
of nature- and human-induced disasters while being a challenging task as different com-
petencies have to be put together. Artificial intelligence models are being increasingly
exploited for single-hazard susceptibility mapping, from which multi-hazard maps are ul-
timately derived. Despite the remarkable performance of these models, their application
requires the identification of a list of conditioning factors as well as the collection of rele-
vant data and historical inventories, which may be non-trivial tasks. The objective of this
study is twofold. First, based on a review of recent publications, it identifies condition-
ing factors to be used as an input to machine and deep learning techniques for single-
hazard susceptibility mapping. Second, it investigates open datasets describing those
factors for two European cities, namely Milan (Italy) and Sofia (Bulgaria) by exploiting
local authorities’ databases. Identification of the conditioning factors was carried out
through the review of recent publications aiming at hazard mapping with artificial intel-
ligence models. Two indicators were conceived to define the relevance of each factor.
A first research result consists of a relevance-sorted list of conditioning factors per haz-
ard as well as a set of open and free access data describing several factors for Milan
and Sofia. Based on data availability, a feasibility analysis was carried out to investi-
gate the possibility to model hazard susceptibility for the two case studies as well as for
the limit case of a city with no local data available. Results show major differences be-
tween Milan and Sofia while pointing out Copernicus services’ datasets as a valuable
resource for susceptibility mapping in case of limited local data availability. Achieved
outcomes have to be intended as preliminary results, as further details shall be disclosed
after the discussion with domain experts.

Highlights for public administration, management and planning:

• We identify the factors conditioning urban susceptibility to different nature-
and man-induced hazards and a set of open data describing such factors for two
case studies (Milan and Sofia). Data shall be used as input to artificial intelligence
models for urban susceptibility mapping.

• Obtained results are key to a thorough assessment of urban susceptibility to single
and multi-hazard scenarios. Indeed, they can contribute to identifying the actions
needed to increase urban preparedness and resilience.

• Research outcomes are meant to provide local stakeholders and decision-makers
with valuable tools to improve urban planning and development strategies with
the purpose of mitigating hazards’ negative effects on existing activities and assets.
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The paper was originally presented at the “GIS
Ostrava 2022 Earth Observation for Smart City
and Smart Region“ conference held on-line
in March, 2022 (https://gisak.vsb.cz/gisostrava/in-
dex.php). Selected presentations from the confer-
ence were significantly extended and are now pub-
lished in this volume as thematic papers exploring
various topics related to usage of Earth Observation
in smart city and smart region applications.

1 Introduction

Nature- and human-induced hazards are extreme
phenomena that may have severe impacts on both
the natural and man-made environment. Overpop-
ulation, climate change, and urban development
in areas that are susceptible to this kind of hazards
may result in disasters affecting the environment
and communities (Alexander 1995; Adger 2006; Kel-
man et al. 2015; Skilodimou & Bathrellos 2021).
The annual reported number of natural disasters
by type from 1970 to 2019 shows an increasing
trend starting from the 70s, being floods the most
frequent hazard (EM-DAT 2020). In 2020, there
were 193 major flood events globally, accounting
for 60% of the major disasters of that year, affecting
a significant amount of people (Academy of Disaster
Reduction & Emergency Management 2021). Sec-
ondary peril events – i.e., natural disasters that tend
to happen fairly frequently and imply low to medium
losses (e.g., floods, landslides, and wildfires) – have
been increasing during the last five years. Indeed,
2021 was the first year in which two secondary
peril events generated losses above USD 10 billion,
namely, Uri winter storm and the flooding in Europe
(Bevere & Remondi 2022).
The urban resilience concept refers to the capac-
ity that individuals and communities have within
a city to survive, adapt, and grow despite the chal-
lenges that they may experience (Resilient Cities
Network 2022). Urban resilience is a response
to three main trends: climate change, urbanization,
and globalization. The three of them lead to risks
such as the increase of extreme events, e.g., floods
and landslides, and environmental challenges, e.g.,
the increase in deforestation and greenhouse gas
emissions. Therefore, proper urban planning
is of paramount importance to prevent the negative
consequences of nature- and human-induced haz-
ards as well as to mitigate the associated risk.
Most of the published studies focused on the anal-
ysis of single hazards (Raška et al. 2020), but ur-
ban areas are typically susceptible to numerous
hazards that may occur simultaneously or consec-

utively (Skilodimou et al. 2019), leading to much
worse consequences on activities, people, and as-
sets. For this reason, the development of a state-of-
the-art method for an effective multi-hazard assess-
ment is crucial. This is especially true for the urban
centers, where the amount of exposed and vulner-
able elements, such as people, settlements, and in-
frastructures, is particularly significant. As multi-
hazard maps are ultimately derived from a proper
combination of single-hazard maps (Skilodimou
et al. 2019; Nachappa et al. 2020), a thorough un-
derstanding of the factors driving the susceptibil-
ity of the single hazards in a certain urban area
is key to an exhaustive multi-hazard assessment.
To that end, this work investigates through an in-
depth literature review the conditioning factors
that play a role in the most typical hazards that may
threaten the urban environment. The obtained
list of conditioning factors is promising to sup-
port the production of single and multi-hazard sus-
ceptibility maps at the urban level using machine
and deep learning techniques.
This work was carried out in the framework
of the Harmonia project (HARMONIA 2022,
https://harmonia-project.eu/), which aims at provid-
ing stakeholders and urban planners with a decision
support system to improve urban resilience and cli-
mate change mitigation strategies. The four Euro-
pean pilot cities of the project areMilan (Italy), Sofia
(Bulgaria), Ixelles (Belgium), and Piraeus (Greece).
Specifically, this paper focuses on Milan and Sofia,
creating cases of study to assess the conditioning
factors that take a part in the hazards that affect
each city and provide an associated list of datasets.
Furthermore, a list of detailed conditioning factors
is provided for every single hazard, namely ground
subsidence, landslide, flood, earthquake, heat is-
land, and air pollution.
The remainder of this paper is structured as follows.
The methodology followed to list single hazards’
conditioning factors and the corresponding results
are presented in Section 2. Case studies are dis-
cussed in Section 3, where the most frequent haz-
ards and the available datasets for each city are pre-
sented. Finally, the final discussion and conclusions
are reported in Section 4.
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Fig. 1 Procedure adopted in the literature for the production of single-hazard susceptibility maps with machine
and deep learning algorithms.

2 Definition of single hazards’
conditioning factors

2.1 Methodology

This work focuses on the identification of the fac-
tors conditioning the susceptibility of an urban con-
text to different nature- and man-induced hazards.
The list of hazards considered in the paper encom-
passes geological and seismic hazards (ground sub-
sidence, landslides, and earthquakes), hydrological
hazards (floods), meteorological and climate haz-
ards (heat islands), and man-made hazards (air pol-
lution). Drought and extreme precipitation were
not considered in this work because they can-
not be modeled at the city level, despite the in-
crease of drought events in the last 40 years (EM-
DAT 2020) and the worldwide annual precipitation
anomalies (United States Environmental Protection
Agency (EPA) 2021). Nevertheless, extreme precip-
itation shall be considered as a conditioning factor
for other possible hazards, such as floods. For a dif-
ferent reason, fires were not considered in this pa-
per. Although the susceptibility to this hazard may
be modeled at a local level, most of the reviewed
papers deal with the susceptibility to wildfires. Ur-
ban fires are typically induced by different phenom-
ena, such as industrial accidents and explosions.
Despite other types of hazards might affect the ur-
ban environment (e.g., pandemics and industrial ac-
cidents), the investigation was restricted to those
stated in the frame of the project Harmonia.

The conditioning factors playing a role in the oc-
currence of each hazard were identified through
a review of recent scientific publications. The lit-
erature review was carried out by employing two
popular research engines, namely Web of Sci-
ence (https://www.webofscience.com) and Sco-
pus (https://www.scopus.com/home.uri), according
to specific criteria. First, the research was lim-
ited to the most recent publications (i.e., from 2018
to 2022) dealing with single and multi-hazard map-
ping with machine/deep learning models. Separate
research was carried out for the different hazards,
however, a set of common keywords was defined
and used to optimize the review process, namely,
“conditioning factors”, “machine learning”, “deep
learning”, “susceptibility”, “hazard”, and “map-
ping”. The research keywords were then manu-
ally adjusted and refined for each hazard-specific
review based on the research outcome. A more
in-depth analysis of the publication’s content was
performed only for papers providing a relevant list
of conditioning factors and exploiting the workflow
described in the following.
A straightforward and common procedure to pro-
duce susceptibility maps with artificial intelligence
algorithmswas employed inmost of the works found
in the literature. The procedure can be described
as follows (see Fig. 1). Firstly, a list of condi-
tioning factors for single hazards is defined. Sec-
ondly, two types of data are collected, either from
national/local inventories or from freely and publicly
accessible databases. Specifically, data regarding
conditioning factors and past hazard occurrences
are retrieved. Past event occurrences are split into
a training dataset and a validation dataset in the
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modeling process. Eventually, machine and deep
learning algorithms are applied to produce a single-
hazard susceptibility map.
Although in principle conditioning factors should
be independent of the method used to compute
susceptibility maps, only papers dealing with ma-
chine/deep learning techniques were investigated
in order to detect the input variables leading
to the best performance of artificial intelligence
techniques.
The above-described procedure is quite standard
(e.g., Choubin et al. 2020; Dang et al. 2020;
Ebrahimy et al. 2020; Ahmad et al. 2021; Chen et al.
2022). However, the definition of a list of condi-
tioning factors is not so straightforward as a variety
of factors directly or indirectly play a role in the ur-
ban susceptibility to the hazard occurrence. Some
factors are common to most of the literature works,
but some relevant differences can be found in the
different publications. For the sake of complete-
ness, all the factors cited in the literature were
taken into consideration and a degree of relevance
was assigned to each of them.
For each hazard, the conditioning factors were me-
thodically reported in a table containing the type
of conditioning factor (e.g. hydrogeological, meteo-
rological, topographical), the corresponding phys-
ical variable (e.g. groundwater level, maximum
daily temperature, slope angle), its unit of measure-
ment (e.g. meters, Celsius degrees), and the pa-
pers where a reference to such a factor was found.
A method for assigning the degree of relevance
to each factor was conceived and applied. Specif-
ically, the degree of relevance was assigned based
on two indicators (Fig. 2). The first indicator (Indi-
cator 1) corresponds to the number of publications
mentioning each factor. A factor cited in a higher
number of publications was considered more rele-
vant. Conditioning factors having the same num-
ber of citations were then sorted based on a second
indicator (Indicator 2), which takes into consider-
ation the number of citations of each publication.
Specifically, the second indicator is defined as the
ratio between the number of citations of each paper
and the number of years passed since it was pub-
lished. Therefore, factors mentioned by highly-cited
publications were labeled as most relevant.
For the sake of clarity, Fig. 2 depicts an ex-
ample. Conditioning factors are sorted according
to the first indicator (the first factor in the table
has the highest value of Indicator 1). The second
and the third factors are characterized by the same
number of publications, thus they are sorted accord-
ing to the second indicator. In particular, the second
conditioning factor is cited in Paper 1, which has

the highest value of Indicator 2. For this reason, it is
considered more relevant than the third condition-
ing factor, which is not cited in the same publication.
The two indicators were conceived to give an ob-
jective though preliminary evaluation of the impor-
tance of each factor, however, additional consider-
ations regarding the specific local context and data
availability should be made when selecting the fac-
tors to be employed for susceptibility mapping. Ac-
cordingly, the list of variables may vary depending
on the specific case study. This aspect will be fur-
ther emphasized in the following sections.

2.2 Results

A total number of 49 papers (48 dealing with single-
hazards and 1 involving multiple-hazards) were ini-
tially retrieved and screened. Only 34 papers ac-
tually met all the research requirements (33 single-
hazards and 1 multiple-hazards) and were therefore
finally subject to in-depth analysis. Table 1 provides
a summary of the number of reviewed papers deal-
ing with each hazard.
The sorted lists of conditioning factors for each haz-
ard are presented in the form of tables in the Sup-
plementary Material. Conditioning factors were
arranged according to the methodology described
in the previous section, however, the actual value
of the two indicators per factor and publication
are not reported for space constraints. Neverthe-
less, essential information concerning each factor
is provided. Specifically, tables provide a reference
to the hazard definition as well as the references
to the reviewed papers. To best understand which
kind of variable affects the susceptibility to the dif-
ferent hazards, conditioning factors were grouped
into categories (e.g., geological, hydrological, me-
teorological factors), so that similarities and dif-
ferences among the various hazards could be dis-
closed.

Table 1 Number of papers initially screened and finally
considered for each hazard

Hazard

No. of

initial

papers

No. of

papers

considered

Ground subsidence 9 9

Landslides* 7 7

Floods* 6 6

Earthquakes 4 4

Heat island 16 5

Air pollution 8 4

* The paper (Nachappa et al. 2020) was counted for both land-
slides and floods as it deals with multiple-hazard assessment
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Fig. 2 Methodology applied to assign a degree of relevance to each conditioning factor.

Ground subsidence, landslides, and floods share
a similar list of conditioning factors. Most of these
factors are topographical variables that can be di-
rectly derived from a Digital Terrain Model (DTM)
of the study area (e.g., slope, aspect, elevation).
The susceptibility to these hazards is also con-
ditioned by similar hydrological variables (e.g.,
rainfall) as well as the geological characteristics
of the area (e.g. lithology). This type of data is pro-
vided by local or regional agencies and its availabil-
ity is strictly dependent on the specific context.
Despite the similarities, some hazard-specific condi-
tioning factors were found in the literature. In par-
ticular, the aquifer unit characteristics (e.g., perme-
ability and sedimentary cover thickness) for ground
subsidence, the slope and soil characteristics (e.g.,
slope length, convergence index, and soil type)
for landslides, and the river catchment character-
istics (e.g., flow accumulation and sediment trans-
port index) for floods. Factors related to the slope
and river catchment properties may be derived
by leveraging the study region DTM. Data about
the aquifer unit properties are obtained by in-situ
surveys and distributed by local authorities.
Some of the above-mentioned factors, namely DTM-
related variables (slope, elevation, aspect, and cur-
vature) and geological variables (geology and prox-
imity to faults), affect the susceptibility to earth-
quakes as well. However, other relevant condi-
tioning factors for earthquakes are closely related
to the region seismicity (e.g., magnitude, epicenter,
and fault densities). Data about seismic variables
are typically provided by national or research agen-
cies, such as the INGV (National Institute of Geo-
physics and Volcanology) for Italy.
Heat island and air pollution are quite different from
the other hazards, as their occurrence is not related
to a specific event, such as a landslide or flooding,
but to the exceedance of a certain physical variable

threshold. Specifically, in the case of heat island,
the two target physical variables are air tempera-
ture and air relative humidity, whereas the target
variable of air pollution is the pollutants’ concentra-
tion.
Despite these differences with respect to the hydro-
geological hazards, a similar approach can
be adapted to produce susceptibility maps of air
heat islands and air pollution. Tables point out
that these two phenomena are conditioned by sim-
ilar meteorological variables, primarily related
to temperature (e.g., maximum temperature),
wind (e.g. wind speed), and topographical fac-
tors (e.g. elevation). However, some differences
may be pointed out. Susceptibility to heat islands
is conditioned by the urban morphology in terms
of buildings and streets orientation and density
(city canyons), and anthropogenic heat fluxes.
On the other hand, air pollution is affected by other
meteorological factors (e.g., evapotranspiration,
soil moisture, dew point). Detailed data about
urban morphology can be derived from the Topo-
graphic Database (TDB) which is generally provided
by the single municipalities.
The analysis brought to light the relevance of land
cover as a crucial factor in determining the suscep-
tibility to most of the considered hazards. This type
of information is provided by international agencies
through dedicated services (such as the Copernicus
Land Cover service) as well as local authorities.
As a final note, the reviewed papers dealing with
susceptibility to landslides consider different types
of movements, including rockfalls/rockslides, debris
flows, shallow landslides, and complex movements
(Nachappa et al. 2020; Emami et al. 2020; Ahmad
et al. 2021), without differentiating variables more
relevant to the different types of landslides. Accord-
ingly, the list of physical variables reported in this
work may be considered as a comprehensive result,
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however, more insightful evaluations should be per-
formed depending on the specific context.

3 Case studies:
open data for Milan and Sofia

Once defined the relevant conditioning factors
to be leveraged for urban susceptibility mapping,
the availability of open data was investigated, as the
physical variables that will eventually be used
as an input to machine and deep learning algo-
rithms strictly depend on the case study and data
characteristics. For this reason, the availability
of data for two pilot cities was investigated. Specif-
ically, Milan (Italy) and Sofia (Bulgaria) were con-
sidered as case studies in this work. The reason
for this choice is twofold. On the one hand, both
Milan and Sofia are pilot cities of the project Har-
monia. Furthermore, a comparison between cities
characterized by a significant difference in terms
of data availability can be carried out.
For each case study, potential nature- and man-
induced hazards were identified based on exist-
ing official documentation. Sources of open data
that may be leveraged for the description of condi-
tioning factors for each hazard were then pointed
out. To best understand which conditioning fac-
tors, and, consequently, which hazards could be de-
scribed and modeled through each dataset, rela-
tionships between data, factors, and hazards were
represented through Sankey diagrams. Despite
significant differences between the two case stud-
ies in terms of data availability, most local open
datasets may be retrieved either from the munic-
ipality and regional Geoportals or from the local
government plans. Useful global coverage datasets
provided by the Copernicus Program Services were
also investigated, as they may be adopted either
as useful complementary information or in case
of missing local data.

3.1 Milan case study

Among the hazards considered in this study, nature-
and man-induced hazards that may affect the city
of Milan and its metropolitan area are essentially
ground subsidence, floods, earthquakes, heat is-
land, and air pollution.
Specifically, some parts of the metropolitan city
are affected by ground subsidence, primarily due
to the significant groundwater withdrawal across
the urban area (ISPRA 2020). Some portions
of the major rivers’ neighboring areas are charac-

terized by a high flood probability, which makes
flood a relevant hazard to be taken into consid-
eration. On the contrary, being the metropoli-
tan city entirely located in the Po plain, landslides
are not a concerning hazard (ISPRA 2021). As
for the seismic risk, despite the area being charac-
terized by averagely low seismicity, somemunicipal-
ities of the metropolitan city and the city of Milan it-
self are classified within zone 3, meaning a low seis-
mic hazard with possible moderate ground shaking
(Regione Lombardia 2014).
Urban heat island is another relevant phenomenon
that affects the urban center, both in winter
and summer, primarily during clear sky nights (Cli-
maMI 2019). Lastly, like most of the cities across
the Po plain, Milan suffers from air pollution, which
may become a particularly concerning hazard dur-
ing wintertime. To provide an example, in 2021
the PM10 concentration threshold of 50 μg/m3 was
exceeded in 61 days in the urban area (ARPA Lom-
bardia. 2022).
Given these pieces of information, an investiga-
tion of openly available datasets that could help
describe conditioning factors for the above-cited
hazards was carried out. Data is mainly provided
by the Municipality of Milan Geoportal (https://geo-
portale.comune.milano.it/sit/open-data/), the Lom-
bardy Region Geoportal (https://www.geo-
portale.regione.lombardia.it/download-ricerca),
the Italian National Institute of Statistics (IS-
TAT) (http://dati.istat.it/), the INGV (https://is-
tituto.ingv.it/it/risorse-e-servizi/archivi-e-banche-
dati.html), and the Lombardy Region Environmental
Protection Agency (ARPA) (https://www.arpalom-
bardia.it/Pages/Ricerca-Dati-ed-Indicatori.aspx).
These agencies provide researchers, local stake-
holders, and private citizens with a consistent
amount of authoritative geospatial data with open
licenses in easily readable formats.
Table 2 provides insights into the characteristics
of the datasets, including source, format, refer-
ence system, resolution (for raster data) and scale
(for vector data), year of last revision, and license.
Datasets are primarily provided in standard vec-
tor and raster formats (shapefile, GeoPackage, grid,
and GeoTIFF) or tabular formats (CSV and XLS),
within geographic (WGS84 or ETRF00) or pro-
jected (WGS84 UTM32N) coordinate reference sys-
tems. Datasets are characterized by different scales
and spatial resolutions, but all of them may be rea-
sonably considered adequate for the analysis of haz-
ards at the urban level. As for the temporal avail-
ability, most datasets were updated a few years ago.
Datasets are updated by the provider depending
on their temporal variability. Specifically, meteoro-
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Table 2 Open datasets available for Milan

Dataset Format
Reference

system

Resolution

/ Scale

Year of

last revision
License

Digital Terrain Model Grid WGS84 UTM32N 5 m 2015 CC-BY 4.0

Topographic database GeoPackage WGS84 UTM32N 1:2000 2021 CC-BY 4.0

Land use and cover Shapefile WGS84 UTM32N 1:10000 2019 CC-BY 4.0

Underground geological database Shapefile WGS84 UTM32N 1:10000 2022 CC BY-NC-ND 4.0

Geological map Shapefile WGS84 UTM32N 1:50000 2017 CC-BY-NC-SA~3.0 IT

Groundwater piezometric levels Shapefile WGS84 UTM32N 1:25000 2014 CC-BY-NC-ND 4.0

River network Shapefile WGS84 UTM32N 1:10000 2022 CC-BY 4.0

Roads, railways, and underground Shapefile WGS84 UTM32N 1:10000 2022 CC-BY 4.0

Population census CSV, XLS WGS84 UTM32N Not specified 2011 CC-BY 3.0

Parametric earthquake catalog XLS WGS84 Not specified 2021 CC-BY-SA 4.0

Macroseismic database XLS WGS84 Not specified 2021 CC-BY-SA 4.0

Seismic hazard XLS, TXT WGS84 Not specified 2004 CC-BY 4.0

Land Surface Temperature GeoTIFF ETRF00 85 m 2018 License terms*

Meteorological data CSV WGS84 Not specified 2022 CC0 1.0 Universal

* Non-exclusive, fully-paid up, royalty free, worldwide, non sublicensable, non-transferable right to

access and use the Materials for academic, non-profit, or other similar noncommercial purposes only.

Source: Lombardy Region Geoportal- ISTAT- INGV-Milan Geoportal-Lombardy Region ARPA

Fig. 3 Connections between datasets, conditioning factors, and hazards for Milan.
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logical and seismic data are provided with a daily
frequency, whereas quasi-static layers (e.g. geolog-
ical map, river network, DTM) are occasionally up-
dated.
The analysis of data pointed out that most condition-
ing factors may be described through open datasets.
Fig. 3 represents through a Sankey diagram the re-
lationships between the above-mentioned datasets,
conditioning factors, and hazards. Specifically,
the DTM and the TDB may be leveraged to derive
a consistent number of conditioning factors that are
pivotal for mapping most of the considered hazards.
For the same reason, other relevant datasets in-
clude land cover, geological databases, and mete-
orological data.
Conditioning factors that cannot be described with
the available open datasets include some meteoro-
logical variables that are relevant for air pollution
(e.g., actual evapotranspiration, soil moisture, va-
por pressure, and dew point). However, satellite
imagery derived products made available by Coper-
nicus may compensate for the lack of data.

3.2 Sofia case study

Sofia city is located in the Sofia Valley at the foot
of the Vitosha mountain in the country of Bulgaria.
The city was built in the west of the Iskar River
and is surrounded by mineral springs. According
to the literature review, the most concerning haz-
ards and the ones that were considered in this pa-
per for Sofia are floods, air pollution, earthquakes,
and landslides.
Large floods and drought periods have increasingly
taken place in the Upper Iskar Basin in the region
of Sofia (Daniell 2011). PM10 concentrations in Bul-
garia were one of the highest in 2009 and it con-
tinues to be the aforesaid nowadays (Dimitrova &
Velizarova 2021). PM is particularly harmful during
the winter period in big cities, such as Sofia, being
domestic heating and transport emissions the main
sources. The city is also exposed to a high seismic
risk due to its location in the center of the Sofia
seismic area (Paskaleva et al. 2004). Landslides
are the most serious part of the geological haz-
ards in Bulgaria, after earthquakes (Ivanov 2017),
in fact, according to the susceptibility map pro-
posed (Ivanov et al. 2020), the administrative region
of Sofia has a moderate landslide susceptibility.
Some of the conditioning factors necessary to model
the above-mentioned hazards can be retrieved
from publicly available datasets. The main
sources of data for the city of Sofia are Sofiaplan
(https://sofiaplan.bg/) and Geographic Information
System Sofia (GIS Sofia) (http://www.isofmap.bg/).

Sofiaplan provides a catalog of datasets used
for their own analysis or the result of their work
which may be accessed via their API. GIS Sofia
datasets, e.g., cadastral map, buildings, road net-
work, may be accessed via WMS and WFS connec-
tions freely or paid.
The relevant open datasets available for this case
study are described in Table 3, which indicates
the format, reference system, resolution or scale,
year of last revision, and license terms of the open
datasets which correspond directly or indirectly
to one or more conditioning factors. Sofiaplan
is the only source of data utilized as it is the only
platform in which data could be directly accessed
and not only visualized in a WebGIS.
The relationship between the available datasets,
the conditioning factors that can be derived from
them, and the hazards of Sofia city is depicted
in Fig. 4 as a Sankey diagram. The most impor-
tant dataset is the DTM from Sofiaplan because
of the list of conditioning factors that can be de-
rived from it, e.g., slope, elevation, aspect, which
are useful tomodel all the considered hazards. Daily
rainfall and temperatures for the historical period
of 1976 to 2005 datasets are considered to model
floods, landslides, and air pollution but are con-
straint to the time range availability. Furthermore,
some of the datasets included in Table 3 are not in-
cluded in Fig. 4 as they refer to forecasted data un-
der certain scenario which may be used after a haz-
ard susceptibility assessment but not to model haz-
ard occurrences.
Other relevant datasets include the landslide inven-
tory and the areas with significant potential flood
risk. The landslide inventory (Ministry of Regional
Development & Public Works 2022) is a very useful
dataset as it provides historical data of the landslide
occurrences in Bulgaria, alongside the relevant de-
tails of each event. This information is of key im-
portance because the occurrences of the hazardous
events have to be correlated with the conditioning
factors. On the other hand, the areas with signif-
icant potential flood risk (Sofiaplan 2018) dataset
directly assesses the flooding susceptibility.
The lack of data necessary to model the concern-
ing hazards in the city of Sofia can be observed
in Fig. 4, and also, when compared with Fig. 3,
the strong difference of data availability with re-
spect to the city of Milan can be remarked. There
is not enough data to cover most of the condition-
ing factors, in fact, most of the meteorological, land
cover, geological, and seismic factors are missing.
Only the topographical factors are mostly available.
For this reason, global or continental datasets, e.g.,
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Table 3 Open datasets available for Sofia

Dataset Format
Reference

system

Resolution

/ Scale

Year of

last revision
License

Digital Terrain Model GeoTIFF
WGS84

UTM34N
5 m 2017 Sofiaplan license terms*

River network GeoJson WGS84 Not specified 2019 Sofiaplan license terms*

Daily rainfall for the historical

period 1976 - 2005
GeoJson WGS84 Not specified 2020 Sofiaplan license terms*

Maximum daily rainfall according

to the RCP 4.5 (moderate) scenario

for the future period 2021 - 2050

GeoJson WGS84 Not specified 2020 Sofiaplan license terms*

Daily precipitation amounts

according to the RCP 4.5 (moderate)

scenario for the future period 2021 - 2050

GeoJson WGS84 Not specified 2020 Sofiaplan license terms*

Temperatures for the historical

period 1976 - 2005
GeoJson WGS84 Not specified 2020 Sofiaplan license terms*

Temperatures under scenario

RCP 4.5 (moderate) for the future

period 2021 - 2050

GeoJson WGS84 Not specified 2020 Sofiaplan license terms*

*It must be mentioned in a clear and visible way that these materials are a product

of Sofiaplan Municipal Enterprise (Sofiaplan 2022)

Source: Sofiaplan

Fig. 4 Connections between datasets, conditioning factors, and hazards for Sofia.
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Copernicus Services derived products or Worldpop,
may be utilized to cover the missing information.

3.3 Copernicus Services’ products

Copernicus is the European Union’s Earth Obser-
vation (EO) program which offers information ser-
vices from satellite EO and in-situ data (Coper-
nicus 2022). There are six thematic streams
of Copernicus services: land, atmosphere, cli-
mate change, emergency, marine, and security.
The first four streams are considered particularly
relevant for this study. Each one of these four the-
matic streams provides useful information in Eu-
rope for the single and multi-hazard assessment
by providing the conditioning factors necessary
data when there is no local and/or higher resolution
data.
Copernicus Land Monitoring Services (CLMS) pro-
vides geographical information on land cover, i.e.,
Corine Land Cover, the DEM, and the Urban At-
las. Corine Land Cover 2018, with 44 classes
and 100 meters of spatial resolution (Copernicus
Land Monitoring Service 2018). The DEM is also
available at 25 meters resolution as a GeoTIFF
(Copernicus Land Monitoring Service 2016a), from
which slope, aspect, and hillshade are derived
and provided (Copernicus Land Monitoring Service
2018, 2016b,c,d). Other conditioning factors can
be derived from the DEM and shall be computed
by the reader. Furthermore, the Urban Atlas 2012
provides land use and land cover data for Functional
Urban Areas (FUA) (Copernicus Land Monitoring
Service 2016e). This service was updated in 2019
to integrate the population data in the service poly-
gons.
Copernicus Atmosphere Monitoring Service
(CAMS) has a large product catalog including
parameters like carbon dioxide and monoxide,
methane, nitrogen oxides, ozone, PM1, PM2.5,
PM10, sulfates, solar radiation, and others. This in-
formation can be used as part of the input for an air
quality assessment (Copernicus Atmosphere Moni-
toring Service 2022).
Copernicus Climate Change Service (C3S) provides
authoritative information and applications to ana-
lyze the past, present, and future climate. The rele-
vant C3S datasets for this study include:

• Temperature and precipitation gridded data
for global and regional domains derived from
in-situ and satellite observations (Copernicus
Climate Change Service 2022a): high resolu-
tion gridded dataset which integrates temper-
ature and precipitation observations (remote
sensed and in-situ) from selected sources.

The variables for this dataset are precipita-
tion, temperature (air temperature at 2 me-
ters from the Earth’s surface), and tempera-
ture anomaly.

• Essential climate variables for assessment
of climate variability from 1979 to present
(Copernicus Climate Change Service 2022b):
contains climatic data, monthly anomalies
and monthly mean fields of Essential Climate
Variables (ECVs) at a 0.25° x 0.25° horizon-
tal resolution and a monthly temporal resolu-
tion. The variables include 0-7cm volumetric
soil moisture, precipitation, sea ice cover, sur-
face air relative humidity, and surface air tem-
perature.

• In situ temperature, relative humidity
and wind profiles from 2006 to March 2020
from the GRUAN reference network (Coperni-
cus Climate Change Service 2022c): GRUAN
stands for The Global Climate Observing Sys-
tem (GCOS) Reference Upper-Air Network
and it is an international reference observing
network of sites measuring essential climate
variables above Earth’s surface. It is provided
in a point format as a CSV file with 17 stations
around the world. Some of the main variables
of this dataset are air temperature, air pres-
sure, relative humidity, shortwave radiation,
wind from direction, and wind speed.

• In situ observations of meteorological vari-
ables from the Integrated Global Radiosound-
ing Archive and the Radiosounding Harmo-
nization dataset from 1978 onward (Coperni-
cus Climate Change Service 2022d): The data
is available as points (656 stations around
the globe) in a sub-daily temporal resolution
and can be downloaded as CSV file. The most
relevant variables of this dataset include air
dewpoint depression, air temperature, air
pressure, ascent speed, eastwardwind compo-
nent, northward wind component, relative hu-
midity, solar zenith angle, water vapor volume
mixing ratio, wind from direction, and wind
speed.

• E-OBS daily gridded meteorological data
for Europe from 1950 to present derived
from in-situ observations (Copernicus Climate
Change Service 2022e): a regular latitude-
longitude gridded dataset, providing data with
0.1° x 0.1° and 0.25° x 0.25° spatial resolution
and a daily temporal resolution. The variables
of this dataset are land surface elevation, max-
imum temperature, mean temperature, mini-
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mum temperature, precipitation amount, rel-
ative humidity, sea level pressure, surface
shortwave downwelling radiation, and wind
speed.

• River discharge and related forecasted data
by the European Flood Awareness System
(Copernicus Climate Change Service 2022f):
provides gridded modelled hydrological time
series forced with medium-range meteorologi-
cal forecasts. The dataset is available at a sub-
daily high resolution (5km x 5km). The avail-
able variables include river discharge in the
last 24 hours, river discharge in the last
6 hours, snow depth water equivalent, soil
depth, volumetric soil moisture, and others.

The Copernicus Emergency Management Service
(CEMS) is divided into two components, a map-
ping component and an early warning compo-
nent (Copernicus Emergency Management Service
2022). The mapping component, which has a world-
wide coverage, provides maps derived from satellite
imagery to support emergency management activi-
ties and risk reduction activities. It has been active
since 2012. The early warning component is com-
posed of three different systems: The European
Flood Awareness System (EFAS), The European For-
est Fire Information System (EFFIS), and The Euro-
pean Drought Observatory (EDO). Each one of them
has a global component to provide a global cover-
age. Considering this review, a hazard susceptibil-
ity assessment at the urban level, EFAS is relevant
to model flooding as it provides overviews on ongo-
ing and forecasted (up to 10 days) floods in Europe.

4 Discussion and conclusions

In this work, urban susceptibility to nature-
and human-induced hazards was addressed.
The first objective of this paper was the identifica-
tion of the conditioning factors that affect the sus-
ceptibility of an urban area to a series of nature-
and man-made hazards. Factors were identified
by leveraging methodologies and disclosures of re-
cent papers dealing with the problem of single
and multi-hazard mapping through artificial intelli-
gence models. An insightful and methodical litera-
ture review was carried out to point out the condi-
tioning factors that have to be considered to prop-
erly feed machine and deep learning algorithms
with the aim of producing single-hazard susceptibil-
ity maps. The scientific literature review permitted
to define a list of factors per hazard. Two indicators

were conceived and used to assign a first degree
of relevance to each factor.
The lists of conditioning factors reported in this
paper must be intended as a preliminary result
that was achieved through a scientific literature re-
view. However, reported tables will be discussed
with experts from different domains (e.g., hy-
draulics, geotechnics, hydrogeology, climatology),
partners of the project Harmonia, to keep the es-
sential variables and include relevant missing fac-
tors. The discussion with domain experts will hope-
fully disclose additional details concerning the data
characteristics requirements - such as the needed
spatial resolution and temporal frequency of the in-
formation - as well as other sources of data and the
best performing machine/deep learning techniques
to be adopted for the susceptibility mapping.
As a second objective, the work aimed at investi-
gating the availability of open datasets that could
support the description of the conditioning factors
and thus the hazards’ modeling. As data availabil-
ity depends on the particular context, two cases
of study, namely the cities of Milan and Sofia, were
here considered. The most concerning hazards
for these two cities were identified based on existing
documentations and reports, and national/local geo-
portals were explored to collect suitable datasets
that may help describing or deriving the condition-
ing factors.
Local and regional open datasets found for the two
case studies look promising, whilst not suffi-
cient for a thorough description of condition-
ing factors. Furthermore, significant differences
in terms of data availability and characteristics be-
tween the two cities were pointed out. Specifi-
cally, the datasets available for Milan enable most
of the conditioning factors to be described, while
way more limited information was found for Sofia,
suggesting that the employment of different suscep-
tibility models for the two cities is necessary. How-
ever, the large availability of worldwide coverage
satellite imagery derived products, such as those
provided by the Copernicus Services, partially en-
ables to overcome this limitation. Accordingly, use-
ful datasets made available by the Copernicus Ser-
vices were identified and listed. Despite not being
city-specific and often characterized by a coarser
spatial resolution in comparison to local authori-
tative data, Copernicus datasets represent a piv-
otal resource to enable the susceptibility and haz-
ard mapping in cities with poor data availability.
Furthermore, the use of global-coverage Coperni-
cus datasets would enable a transparent compar-
ison among different case studies being the input
variables for different cities coherent and unbiased.
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A comparison between the two case studies
and a city with no local data is briefly illustrated
in Table 4. Based on data availability and char-
acteristics in terms of spatial resolution, tempo-
ral frequency and year of last update, an evalua-
tion of single hazard susceptibility modeling feasi-
bility was carried out. For the city of Milan, local
datasets may almost entirely describe the condition-
ing factors lists with reasonably adequate space-
time resolution, and they are updated with satisfac-
tory temporal frequency by the data providers. Air
pollution may only partially be modeled with city-
specific datasets, as some important related condi-
tioning factors cannot be described with local data.
For the city of Sofia, landslides and floods may
be partially modeled considering the availability
of topographical factors and the lack of land cover,
geological, and hydrological ones. Meanwhile, it is
not possible to model earthquakes and air pollution
because the main factors necessary to model these
hazards, which are geological/seismic and meteoro-
logical, respectively, could not be retrieved from lo-
cal data.

Table 4 Evaluation of hazard modeling feasibility based
on existing open data

Hazard Milan Sofia

City with

no local

data

Ground

subsidence
•

Not

considered
•

Landslide
Not

considered
• •

Flood • • •

Earthquake • • •

Heat island •
Not

considered
•

Air pollution • • •

Hazard modelling feasibility:

• Possible • Partially possible • Not possible

On the other hand, a city with no local data was also
included for the sake of comparison. In this case,
the hazards shall be modeled considering only
Copernicus services which are available at a lower
spatial resolution (when compared to local data).
Copernicus land services cover topographical fac-
tors (by means of DEM), land cover factors (by
means of CLC), and land use/cover and popula-
tion (by means of Urban Atlas). Copernicus Cli-
mate Change Services cover the meteorological fac-
tors and river discharge data; Copernicus Atmo-
sphere Monitoring Services covers the pollutants
data. Therefore, in a city with no local data through

the Copernicus services it is possible to completely
model flooding and air pollution. It is only partially
possible to model ground subsidence, landslides,
and heat island due to the lack of key condition-
ing factors, i.e., groundwater drawdown, distance
to faults, and city canyons. Finally, it is not possible
to model earthquakes because the lack of geologi-
cal/seismic conditioning factors.
The single-hazard susceptibility maps that will
be obtained for the two case studies with
the methodology described in this paper repre-
sent a starting point to produce single and multi-
hazard/risk maps at the city level, that are foreseen
for the future development of this work. The avail-
able open datasets will be integrated and pre-
processed through existing open technologies, such
as Data Cube or Earth Engine, to be easily lever-
aged as an input to machine and deep learning al-
gorithms.
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Supplementary material

Table 5 Supplementary table

Ground subsidence [1]

Type of factor Physical variable Unit Papers

Land cover Land use/land cover - [2-10]

Topographical Slope degrees [3-10]

Geological/seismic Lithology/geology - [2-9]

Hydrological Groundwater drawdown/level m below Ground Level (GL) [3] [5-10]

Hydrological Distance to the river network m [5] [6] [8-10]

Topographical Elevation m [5] [6] [8-10]

Topographical Aspect - [5] [6] [8-10]

Hydrological Topographic Wetness Index - [6] [8-10]

Geomorphological Plan curvature - [6] [8-10]

Land cover Distance to the road network m [3] [6] [9] [10]

Geological/seismic Distance to the fault m [2] [6] [9]

Hydrological Rainfall mm/year [3] [5] [6]

Geomorphological Profile curvature - [6] [9] [10]

Geological/seismic Distance to drift/lineament m [4] [7]

Geological/seismic Rock Mass Rating - [4] [7]

Topographical Stream Power Index/stream density - [8] [10]

Geological/seismic Drift density m/m2 [4]

Hydrological Well density m/m2 [5]

Geological/seismic Permeability m/s [7]

Geological/seismic Aquifer unit (composition) - [2]

Geological/seismic (Sedimentary) cover thickness m [2]

Geological/seismic Earthquake intensity MMI (Modified Mercalli Intensity) [3]

Definition: [1] https://oceanservice.noaa.gov/facts/subsidence.html (National Oceanic and Atmospheric Administration
- NOAA)
References: [2] Bianchini et al. (2019) [3] Na et al. (2021) [4] Tien Bui et al. (2018) [5] Ghorbanzadeh et al. (2020)
[6] Hakim et al. (2020) [7] Oh et al. (2019) [8] Ebrahimy et al. (2020) [9] Mohammady et al. (2019) [10] Ranjgar et al.
(2021)
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Table 6 Supplementary table

Landslides [1]

Type of factor Physical variable Unit Papers

Geological Distance to faults km [2-8]

Topographical Slope degrees [2-8]

Topographical Elevation m [2-8]

Topographical Aspect - [3-8]

Land cover Land use/land cover - [3-8]

Geological Lithology/geology - [3-8]

Hydrological Topographic Wetness Index - [2] [4-8]

Land cover Distance to the road network km [2-4] [6-8]

Hydrological Distance to streams km [2-4] [6-8]

Hydrological Rainfall mm/year [2] [3] [7] [8]

Geomorphological Profile curvature - [2] [5] [6] [7]

Geomorphological Plan curvature - [2] [4] [5] [6]

Hydrological Stream Power Index - [5] [7] [8]

Land cover NDVI - [6] [7] [8]

Geological Soil type - [5] [8]

Geological Sediment Transport Index - [5] [8]

Topographical Slope length - [5] [6]

Hydrological Drainage density - [4] [6]

Geological Valley depth m [5]

Geological Convergence Index - [4]

Topographical Surface roughness - [6]

Topographical Terrain relief - [6]

Topographical Roundness - [2]

Definition: [1] https://www.usgs.gov/faqs/what-landslide-and-what-causes-one
(United States Geological Survey - USGS) References: [2] Hu et al. (2021) [3]
Nachappa et al. (2020) [4] Emami et al. (2020) [5] Dang et al. (2020)) [6] Zheng et al.
(2021) [7] Ahmad et al. (2021) [8] Hong et al. (2019)
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Table 7 Supplementary table

Floods [1]

Type of factor Physical variable Unit Papers

Topographical Slope degrees [2-7]

Topographical Elevation/Digital Elevation Model m [2-7]

Land cover Land use/land cover - [2] [4-7]

Hydrological Distance to streams/rivers km [2-5] [7]

Hydrological Stream power index - [2] [4] [5] [7]

Hydrological Topographic wetness index - [2] [4] [5] [7]

Hydrological Rainfall mm/year [2] [5] [6]

Geological Lithology/geology - [2] [3] [5]

Hydrological Stream/river density - [3-5]

Topographical Profile curvature - [5] [7]

Topographical Plan curvature - [5] [7]

Geological Sediment transport index - [4] [5]

Topolographical Topographic position index - [4] [7]

Topolographical Topographic ruggedness index - [4] [7]

Hydrological Flow accumulation - [5]

Topographical Slope length factor - [7]

Land cover Distance to the road network km [2]

Topographical Aspect - [2]

Land cover NDVI - [2]

Topographical Topographic minimum curvature - [3]

Topographical Topographic relief - [3]

Geological Soil type - [4]

Definition: [1] https://www.nssl.noaa.gov/education/svrwx101/floods/ (National Oceanic
and Atmospheric Administration - NOAA) References: [2] Nachappa et al. (2020) [3]
Elmahdy et al. (2020) [4] Satarzadeh et al. (2022) [5] Pham et al. (2021) [6] Park et al.
(2017) [7] Lei et al. (2021)

Table 8 Supplementary table

Earthquakes [1]

Type of factor Physical variable Unit Papers

Topographical Slope degrees [2-5]

Topographical Elevation m [2-5]

Geological/seismic Epicenter density no./km2 [2-5]

Geological/seismic Proximity to fault km [2-5]

Geological/seismic Geology Amplification factor [2-5]

Geological/seismic Depth density no./km2 [2] [3] [5]

Topographical Curvature - [2] [3] [5]

Geological/seismic Fault density no./km2 [3-5]

Geological/seismic Proximity to epicenters km [3-5]

Geological/seismic Magnitude density Mw/km2 (Mw: moment magnitude) [2-4]

Geological/seismic Peak Ground Acceleration density g/km2 (g: gravity) [4] [5]

Geological/seismic Amplification factor - [2] [3]

Topographical Aspect - [5]

Geological/seismic Intensity distribution Magnitude [5]

Geological/seismic Peak Ground Acceleration g [2]

Geological/seismic Intensity variation - [3]

Definition: [1] https://www.usgs.gov/faqs/what-earthquake-and-what-causes-them-happen (United States Geolog-
ical Survey - USGS) References: [2] Jena et al. (2020b) [3] Jena et al. (2020c) [4] Jena et al. (2020d) [5] Jena et al.
(2020a)
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Table 9 Supplementary table

Heat island [1]

Type of factor Physical variable Unit Papers

Land cover Land cover types (albedo) % [2-6]

Land cover NDVI (and other land cover indexes) - [2] [3] [5] [6]

Topographical Elevation m [2] [5] [6]

Topographical Slope degrees [2] [5] [6]

Topographical Aspect - [2] [5] [6]

Land cover Land cover (greenery) % [4] [5]

Topographical Longitude and latitude degrees [2] [6]

Meteorological Windless days % [4]

Meteorological Average max summer temperature °C [4]

Meteorological Average summer thermal excursion °C [4]

Meteorological Clear sky days % [4]

Anthropogenic heat Population density no./km2 [4]

City canyons Building height UCZ (Urban Climate Zones) [4]

City canyons Average width of streets m [4]

City canyons Canyons orientation - [4]

City canyons Irregularities of the city - [4]

Topographical Proportion of land use/cover area - [6]

Topographical Distance from city center km [6]

Topographical Proportion of impervious surface area % [6]

Anthropogenic heat Anthropogenic heat flux W/m2 [6]

Topographical Distance from the coast km [2]

Climatic Land surface temperature °C [2]

Climatic Sun zenith angle degrees [2]

Topographical Hillshade - [5]

City canyons Building Coverage Ratio - [3]

City canyons Surface/Volume ratio - [3]

City canyons Sky View Factor - [3]

City canyons Canyon Geometry Factor - [3]

Definition: [1] https://www.epa.gov/heatislands/learn-about-heat-islands (United States Environmental Protection
Agency - USEPA) References: [2] Dos Santos (2020) [3] Okumus and Terzi (2021) [4] Sangiorgio et al. (2020) [5]
Yao et al. (2020) [6] Chen et al. (2022)

© Jan Evangelista Purkyně University in Ústí nad Labem



GeoScape 16(2) — 2022: 93—107 doi: 10.2478/geosc-2022-0008 Available online at content.sciendo.com

Table 10 Supplementary table

Air pollution [1]

Type of factor Physical variable Unit Papers

Meteorological Wind speed m/s [2-5]

Meteorological Annual average precipitation mm [2-5]

Socio-economic Highway/road density m/km2 [2-4]

Land cover NDVI - [2-5]

Meteorological Humidity index - [3-5]

Meteorological Wind direction distribution % [2] [4] [5]

Topographic Elevation m [2] [4]

Socio-economic Population density no./km2 [3] [4]

Meteorological Annual average temperature °C [4] [5]

Meteorological Minimum/maximum temperature °C [2] [3]

Land cover Land use/land cover - [2] [4]

Topographical Topographic Wetness Index - [2]

Topographical Terrain Roughness Index - [2]

Land cover Distance from water body km [2]

Socio-economic Distance from airports and seashore km [4]

Meteorological Actual evapotranspiration mm [5]

Meteorological Meteorological drought - [5]

Meteorological Soil moisture % [5]

Meteorological Vapor pressure Pascal [5]

Meteorological Soil heat flux W/m2 [5]

Meteorological Dew point °C [5]

Definition: [1] https://www.environmentalpollutioncenters.org/air/ (Environmental
Pollution Centers) References: [2] Choubin et al. (2020) [3] Shogrkhodaei et al. (2021)
[4] Schneider et al. (2020) [5] Ebrahimi-Khusfi et al. (2021)
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