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Abstract. In this paper, a full Acoustic Modal Analysis (AMA) procedure to improve the
CAE predictions of the car interior noise level is proposed. Some of the challenges that can be
experienced during such an analysis are described and new solutions to face them are proposed.
Particular AMA challenges range from the arrangement of the experimental setup to the post-
processing analysis. Since a large number of microphones are needed, a smart localization
procedure, which automatically determines the microphone three dimensional (3-D) positions
and dramatically reduces the setup time, is presented herein. Furthermore, the need for a
large number of sound sources spread across the cavity to assure a homogeneous sound field
makes modal parameter estimation a nontrivial task. Traditional modal parameter estimators
have indeed proven not to be effective in cases where many input excitation locations have
to be used. Hence, a more suitable estimator, the Maximum Likelihood Modal Model-based
(ML-MM) method, will be employed for such an analysis.

1. Introduction
Nowadays, the automotive industry is asked to fulfil ever more demanding requirements for noise
reduction and passenger comfort. Design engineers are asked to face the big challenge of reducing
in-vehicle noise and improving passengers acoustic experience by keeping the intervention costs
to a minimum. It is clear that the adoption of a numerical method to perform vibration and
acoustic analyses is attracting increasing attention because of its merits in saving costs and time.
Nevertheless, it is obvious that the effectiveness of this approach greatly depends on the accuracy
of the predictions made using such models. So, in order to guarantee reliable simulations of
the interior sound field of a vehicle cabin, experimental Acoustic Modal Analysis (AMA) can
be considered a must-be-performed step, since it allows for validation and updating of these
numerical models, and improvement of the overall modelling know-how.
In this paper, a full procedure to perform an experimental acoustic modal survey of an
automotive cabin is proposed, with the goal of providing useful and practical guidelines. The
particular challenges of such an analysis, which range from the test preparation to the post-
processing analysis, will be shown, and different solutions will be presented.

http://creativecommons.org/licenses/by/3.0
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2. Formulation of the acoustic problem
Consider a cavity of volume V enclosed by a surface Ω = ∂V and excited by a point monopole
of volume velocity per unit volume q, located at the arbitrary point r0. If the surface Ω is
acoustically rigid, the governing equation of the system is [3]:

∇2p(r, t)− 1

c2
∂2p

∂t2
(r, t) = −ρ∂q

∂t
δ(r − r0), (1)

where p is the acoustic pressure, which is a function of space r and time t, ∇2 is the Laplace
operator, c is the speed of sound and ρ the density of the medium, and the source function is
represented mathematically by a delta function.
Assuming now that a number of point monopoles of known volume velocity per unit volume
are placed in the cavity and the sound pressure across the volume is sampled at an appropriate
number of points, it can be shown that the continuous wave equation (1) can then be substituted
by its discrete equivalent:

MF p̈ + CF ṗ + KFp = −ρq̇, (2)

where, to preserve the analogy with a structural finite element model, the matrix MF is called
the acoustic mass matrix; the matrix CF is the acoustic damping matrix; the matrix KF is
called the acoustic stiffness matrix. In view of this equivalence between acoustics and structural
dynamics, it can be concluded that the classical modal parameter estimation approach can be
followed also in the acoustic modal analysis case.

3. Test preparation, test model creation and setup
In this section, the measurement setup and equipment needed for typical AMA tests will be
described. Details on the sound sources and their position, on the number of sensors, their
spatial distribution, and their mounting inside the cavity will be given.

3.1. Sound sources
Calibrated volume velocity sources are necessary to measure acoustic FRFs that are required
in AMA tests. The sound sources have to be omnidirectional and have a negligible size in
order not to influence the field, especially in the higher frequency range. So the need exists
for a dedicated source that is compact, omnidirectional and capable of generating high noise
levels. The LMS Qsources Low-Frequency Monopole Sound Source (Q-MED) can fulfil such
requirements (Fig. 1). It is a unique monopole sound source that has been developed to acquire
acoustic and vibro-acoustic FRFs accurately without disturbing the acoustic behaviour of the
passenger compartment.

Figure 1: LMS Qsources low-
frequency monopole sound source

(a) Side View

(b) Front
View

(c) Back
View

(d) Top
View

Figure 2: Reference distribution

As shown in [1, 4, 5], an appropriate source distribution over the entire cabin is required to
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properly estimate the acoustic modes. With reference to the analysis reported in [1], where up
to 12 volume velocity sources were set in geometrically symmetric locations, close to the edges,
corners and at the maximum amplitude locations to avoid nodal lines and excite close to pressure
maxima on the boundaries, a typical distribution of sound sources is displayed in Fig. 2. Too few
sources do not allow for correct identification of the mode shapes as exciter-location-dependent
mode shape distortions are clearly visible [1]. For this reason, it is highly advisable to use a
rather large number of sources and source locations.

3.2. Sensor Placement
In order to guarantee a good description of the mode shapes and a sufficient number of degrees
of freedom for the updating, a sensor layout as the one depicted in Fig. 3 is usually employed.

Figure 3: Wireframe model

Sensors need to be uniformly spread across the whole cabin, even in extreme positions, such
as in foot regions, between the windshield and the dashboard, and in the hat shelf region.
With reference to the test case reported in [1], more than 500 measurement points are required.
Determining the exact location of so many sensors by hand would be extremely cumbersome.
Hence, automatic methods would be essential for drastically reducing the setup time and
localizing microphones in a smarter way. For this purpose, a fast, accurate and cost-effective
procedure has been developed and validated [6–8].

3.2.1. Smart localization procedure
The microphone localization procedure employed is based on multilateration: the distances be-
tween at least four sources (anchors), whose coordinates are known or estimated a priori, and
a microphone (target) are utilized to determine the unknown position of the microphone in
three-dimensional (3-D) space. However, due to the complex structure and obstructions typi-
cal of a car cabin (e.g., seats, dashboard, etc.), the direct path may be obstructed, a so-called
Non-Line-Of-Sight (NLOS) condition. As a consequence, acoustic range estimates based on the
time-of-arrival (TOA) may have an erroneous positive bias, i.e., the signal arrives at a micro-
phone through reflections instead of through the direct (shortest) path.
The proposed method copes with the problem of NLOS through an identification and discard
(IAD) algorithm: the erroneous NLOS measurements are detected and pruned, so that the
microphones are localized using the LOS distances only, hence yielding more accurate 3-D lo-
calization results. For further details, the reader can refer to [6].
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For multilateration, the sound source should ideally be a monopole. It means that, within the
frequency range of interest, the characteristic length of the source must be smaller than the
minimum wavelength, and the source itself must be always omnidirectional. For this purpose,
a new, dedicated and compact LMS Qsources volume source has been utilized (Fig. 4). These
LMS Qsources volume velocity sources are designed to be used in a high frequency band (1 to
20 kHz), which is an important bandwidth to ensure accurate TOA measurements [9].

Figure 4: New compact LMS Qsources volume
velocity source

Figure 5: Source Distribution

The anchors should be placed in strategic positions so as to localize the largest number of
microphones. With reference to the experimental case reported in [8], where microphones were
placed in critical positions, an example of anchors configuration is illustrated1 in Fig. 5. During
the measurements, the averaged temperature of the environment must be recorded in order to
calibrate the speed of sound, whereby the temperature is assumed to be constant throughout
the cabin.
The linear frequency modulated (chirp) signal have been used for this application.
In order to have a qualitative idea of the effectiveness of the method, the coordinates from
the CAD model are assumed as a reference. The discrepancies between the (inaccurate) CAD
positions and the acoustically estimated coordinates do not allow for an absolute localization
error quantification, but they are sufficient for demonstrating the effectiveness of the approach
in a complex scenario, such as a car cabin.
In Fig. 6, a comparison is made between a localization algorithm were the pruning is not
applied (i.e. NLOS distances remain present), versus the considered localization algorithm
where erroneous distances are identified and discarded2. As visible in Fig. 6, the application of
the NLOS IAD algorithm is not only effective, but also essential for a correct localization of all
microphones.

4. Modal Parameter Identification
It has been observed in [1, 4, 5, 10] that it is quite challenging for classical modal parameter
estimation methods to curve-fit an FRF matrix with so many columns (12 references, as reported
in § 3.1); typically, not all references are well fitted for a particular sensor location. Therefore,
there is a need for a new solver capable to overcome such a difficulty. The Maximum Likelihood
Modal Model-based (ML-MM) modal parameter estimator [2] has been proven to be more
suitable for such a kind of data [1, 10]. A brief description of the estimator is reported in
the follow.

1 The model of the car is for illustrative purposes only.
2 The results have been obtained by using all the 11 sources, imposing a threshold ζ = 2 cm, and using as initial
guess the centre of gravity of the anchors.
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(a) (b)

Figure 6: Localized microphones without (a) and with (b) the application of the NLOS IAD
algorithm

4.1. Maximum Likelihood Modal Model-based method
The so-called ML-MM method is a multiple-input, multiple output (MIMO) frequency-domain
estimator providing global estimates of the modal model parameters. Since it is an iterative
method based on solving a non-linear optimization problem, initial values for the modal model
parameters (i.e., poles, participation factors, mode shapes, lower and upper residuals) are needed
to start the optimization process. In the first step, the Polymax method [?] is applied to the FRFs
to obtain the initial estimates for the poles and the participation factors of the physical modes
within the analysis band. Then, initial values for the mode shapes and the lower and upper
residuals are estimated in a complementary step using the so-called Least-Squares Frequency
Domain (LSFD) estimator [11]. In the next step, once the initial values for the entire modal
model parameters are obtained, the ML-MM solver starts minimizing the error between the
modal model equation and the measured data in a maximum-likelihood sense. Assuming the
different measured FRFs to be uncorrelated, the ML-MM cost function to be minimized can be
formulated as:

KML-MM(θ) =

No∑
o=1

Ni∑
i=1

Nf∑
k=1

∣∣Hoi(ωk)− Ĥoi(θ, ωk)
∣∣2

σ2Hoi
(ωk)

, (3)

where N0 is the number of outputs, Ni the number of inputs, Nf the number of frequency lines,
ωk = 2πfk the circular frequency at frequency fk [Hz], Hoi(ωk) ∈ C is the measured FRF,

Ĥoi(θ, ωk) ∈ C the modelled FRF, and σ2Hoi
(ωk) = var[Hoi(ωk)] ∈ R.

Assuming volume acceleration FRFs, Ĥ(θ, ωk) ∈ CNo×Ni can be represented using the modal
model formulation [11]:

Ĥ(θ, ωk) =

Nm∑
r=1

(
φrlr

jωk − λr
+

φ∗r l
∗
r

jωk − λ∗r

)
+

LR

(jωk)2
+ UR, (4)

where Nm is the number of the identified modes, φr ∈ CNo×1 is the r-th mode shape, λr is
the r-th pole, (•)∗ stands for the complex conjugate of a complex number, lr ∈ C1×Ni is the
r-th participation factors vector, LR ∈ RNo×Ni and UR ∈ RNo×Ni are the lower and upper
residual terms used to compensate for the out-of-band modes, and θ is the parameters vector
(i.e., θ = {φr, lr, λr,LR,UR}). The maximum likelihood estimates of θ are obtained by
using a Gauss-Newton optimization. Furthermore, to ensure convergence, the Gauss-Newton
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optimization is implemented together with the Levenberg-Marquardt approach, which forces
the cost function to decrease. More details about the ML-MM method are presented in [2].

4.2. Considerations and results
The ML-MM method has been proven to outperform more classical modal parameter estimators
with such a kind of data.
With reference to the test case in [1], the initial values generated by applying the Polymax
method to the full 526× 12 FRF matrix were improved by applying the ML-MM method. The
analysis was stopped after 20 iterations. Nine pure acoustic modes are well identified in the
frequency range from 0-200 Hz (Fig. 8). The initial mean fitting error between measured FRFs
and Polymax synthesized FRFs was around 9%. The mean fitting error after applying the ML-
MM method reduced to only 2%. This improved overall curve fit is illustrated using two typical
elements from the full FRF matrix in Fig. 7.

Figure 7: Improved FRF curve-fitting quality shown for two typical FRFs; - Measured (red),
Polymax synthesis (green), ML-MM synthesis (blue)

5. Conclusions
A full Acoustic Modal Analysis (AMA) procedure to improve the CAE prediction of the the car
interior noise level has been proposed and successively validated. The challenges of typical AMA
tests are described in details. The huge amount of sensors required to have a good description
of the acoustic cavity, and the large number of sound sources to properly excite the cavity of a
car cabin make such tests extremely time-consuming and demanding. In order to have a good
description of the dynamic behaviour of the system, many sensors are indeed placed inside the
cabin. In such a complex environment, determining the microphone positions by hand is not
only tedious, but also inaccurate and cumbersome. Furthermore, where many input excitation
locations have to be used, it has been observed that traditional modal parameter estimators
have proven not to be effective.
In order to face such typical challenges, different solutions are proposed. Firstly, a smart
approach capable to automatically localize microphones in such a complex scenario is presented.
The method is based on acoustic distance measurements between a microphone and (at least 4)
sources. With the introduction of novel algorithms coping with reflections and non-line-of-sight
issues, the localization procedure has been proven to be effective, providing reliable results and
drastically reducing the measurement set-up time. Secondly, modal parameters are estimated
in the frequency range between 40 and 200 Hz, by applying a new modal parameter estimation
method, the so-called ML-MM estimator. Nine acoustically dominant modes are identified.
Although Polymax still yields good modal parameter estimates, ML-MM provides superior FRF
synthesis results and, hence, more reliable values.
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# Numerical Modes # Experimental
Modes

Mode Shapes
(Frequency,
Damping)

2 2
I Longitudinal

(51.06 Hz, 13.82%)

3 3

I Longitudinal &
Rigid-Body Trunk
(81.44 Hz, 14.94%)

4 4
I Lateral

(97.24 Hz, 10.65%)

5 5

II Longitudinal &
Rigid-Body Trunk
(137.79 Hz, 7.25%)

7 6
I Vertical

(148.66 Hz, 13.70%)

6 7

I Longitudinal & I
Lateral

(149.34 Hz, 6.57%)

8 8

I Longitudinal & I
Lateral & I Lateral

Trunk
(150.74 Hz, 11.79%)

9 9
III Longitudinal

(195.13 Hz, 6.05%)

Figure 8: Identified mode shapes using 12 references (rigid-body mode not shown)
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