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ARTICLE INFO ABSTRACT
Dataset link: https://arrow.tudublin.ie/datas/2 The development of data-driven heart sound classification models has been an active area of research in recent
0/ years. To develop such data-driven models in the first place, heart sound signals need to be captured using
Keywords: a signal acquisition device. However, it is almost impossible to capture noise-free heart sound signals due to
Phonocardiogram the presence of internal and external noises in most situations. Such noises and degradations in heart sound
Heart sound signals can potentially reduce the accuracy of data-driven classification models. Although different techniques
Heart sound classification have been proposed in the literature to address the noise issue, how and to what extent different noise
Noise and degradation and degradations in heart sound signals impact the accuracy of data-driven classification models remains
Quality enhancement unexplored. To answer this question, we produced a synthetic heart sound dataset including normal and
Synthetic dataset abnormal heart sounds contaminated with a variety of noise and degradations. We used this dataset to
investigate the impact of noise and degradation in heart sound recordings on the performance of different
classification models. The results show different noises and degradations affect the performance of heart sound
classification models to a different extent; some are more problematic for classification models, and others are
less destructive. Comparing the findings of this study with the results of a survey we previously carried out with
a group of clinicians shows noise and degradations that are more detrimental to classification models are also
more disruptive to accurate auscultation. The findings of this study can be leveraged to develop targeted heart
sound quality enhancement approaches — which adapt the type and aggressiveness of quality enhancement
based on the characteristics of noise and degradation in heart sound signals.
1. Introduction can help with the early diagnosis of heart disease which, in turn, could
reduce mortalities due to heart disease.

Cardiovascular diseases are currently the leading cause of mortality Heart sounds are generally captured using digital stethoscopes or
worldwide, accounting for one-third of deaths globally [1]. Early di- mobile phones. Although such devices typically benefit from noise
agnosis through pervasive approaches can help detect heart disease in reduction and cancellation technologies [9-11], they can still capture a
patients at earlier stages and consequently improve the survival rate. considerable amount of noise while recording heart sounds, especially
Auscultation has been a cost-effective approach for pre-screening heart in noisy environments. Due to the presence of internal physiological
disease for over 200 years [2]. However, auscultation is a subjective body noises and ambient artifacts in clinical and non-clinical settings,
practice and requires extensive training [3]. Therefore, automatic anal- it is almost impossible to record noise-free heart sound signals in
ysis of heart sounds has been presented as an alternative to auscultation real-world scenarios.

It has been stated that noise and contaminations in heart sound
recordings can reduce the performance of data-driven models [12-15].
Researchers have adopted different approaches to mitigate the negative
impact of noise and degradations in captured signals on the perfor-
mance of data-driven heart disease diagnostic systems. Heart sound
quality enhancement is one of the most widely adopted approaches
to reducing noise in captured signals. A whole host of enhancement
techniques have been employed in the field, such as filtering [4,5]

for early pre-screening of heart abnormalities. In recent years, a variety
of data-driven heart disease diagnostic systems have been developed
that can distinguish normal from abnormal heart sounds [4-8]. Such
data-driven heart disease detection models can be used as pre-screening
tools in situations where access to trained medical professionals is lim-
ited, which is the case in many under-developed regions of the world.
Unfortunately, over 75% of deaths due to cardiovascular diseases occur
in such regions of the world [1]. Automatic analysis of heart sounds
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and wavelet-based denoising [14-17]. Heart sound quality classifica-
tion is another approach in which a data-driven model distinguishes
low-quality heart sounds from good-quality ones [18-20]. Low-quality
signals are discarded, while recordings with an acceptable quality are
subsequently presented to heart disease diagnostic models.

While numerous methods have been proposed in the field to en-
hance or classify the quality of heart sounds, it has remained unex-
plored how and to what extent noise and degradation in heart sound
signals can impact the overall accuracy of data-driven models. A deeper
understanding of the impact of noise and degradations in heart sound
recordings on the performance of the data-driven models allows us to
adapt the heart sound capture process with the aim of minimizing the
negative impact of such noise and degradations. Also, such an under-
standing enables us to adjust the quality enhancement of the captured
heart sounds based on their noise content and develop targeted heart
sound pre-processing pipelines. In this regard, this study aims to answer
the following research question: how do noise and degradations in heart
sound signals impact the overall accuracy of data-driven models?

To answer this research question, we produce a synthetic dataset
containing normal and abnormal heart sounds with various noises and
degradations. This dataset will then be employed to train and evaluate
multiple heart sound classification models. This enables us to system-
atically investigate the impact of a variety of noises and degradations
on the performance of heart sound classification models. Previously
we investigated the impact of noise and degradations on heart sound
signals’ diagnosability by conducting a survey with a group of trained
clinicians [21]. In this study, we will also observe the similarities
between the impact of noise and degradations on the performance of
classification models and the results of our previous study.

The remainder of this paper is structured as follows: Section 2
overviews the related work on the impact of noise and the application
of synthetic datasets. Section 3 provides the details of the datasets and
data-driven models employed in this study. In Section 4, the results
are given. In Section 5, results are discussed. Conclusions and future
directions are presented in Section 6.

2. Related work
2.1. Noise impact

Noise and degradations with internal or external sources can have
a negative impact on auscultation. Shindler [22] has stated that high
levels of environmental sounds, such as speech, can interfere signifi-
cantly with auscultation. Coviello [23] has pointed out that noises due
to muscular movements can interfere with heart sounds and make it
harder for clinicians to perceive the salient characteristics of the heart
sounds. In addition to ambient and movement noises, internal phys-
iological noises can also be disruptive to auscultation. Ranganathan
et al. [24] have emphasized that intense breathing noises can interfere
with assessing heart sounds and reduce the accuracy of auscultation.
In our previous work, we surveyed a group of thirteen clinicians to
understand the characteristics of diagnosable heart sounds and the
impact of noises and degradations on the diagnosability of heart sound
recordings [21]. This survey included a subjective listening test with
20 heart sound recordings contaminated with different noises and
degradations. Analyzing the results of this survey showed that, from
the point of view of clinicians, noise and degradations in heart sound
signals have a detrimental effect on the diagnosability of heart sounds.

Noise and degradation in heart sound recordings can also reduce
the accuracy of data-driven classification models. Paul et al. [12] have
indicated that internal or external noises can mask fundamental heart
sounds and increase the false positives of the classifiers. According to
Kumar et al. [13], noise in heart sound recordings can alter the mor-
phological characteristics of the heart sounds and change the features
salient to accurate diagnostics. Gradolewski et al. [14] have stated
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that some heart sounds, such as late-systolic and pan-systolic mur-
murs, have similar characteristics to noise, and, as a result, applying
denoising algorithms can decrease the misclassification of such signals
by data-driven models. Jain et al. [15] have indicated that noise and
degradations in heart sound signals can reduce the accuracy of the
segmentation of heart sounds into heartbeat cycles, which in turn can
lead to a sub-optimal heart sound classification model. Although it has
been emphasized that noise and degradation in heart sound signals can
potentially reduce the accuracy of classification models, we could not
find any comprehensive study exploring the impact of different noises
and degradations on classification models.

2.2. Synthetic data

Synthetic data has been widely employed to develop and evaluate
data-driven models in different domains. Synthetic data can have dif-
ferent use cases. For example, it has been used in cases where access to
large datasets was limited or real-world datasets lack diversity [25-27].
It has also been used in cases where the impact of different variations
in input data on the performance of algorithms has been the subject of
the study [28].

In this study, we produced a heart sound dataset which is a synthetic
combination of real-world clean heart sounds with a variety of noises in
different SNR levels. Such a synthetic dataset offers several advantages
over publicly available datasets for our use case. First, by synthetically
adding noise to heart sound signals, we can generate recordings con-
taminated with a large variety of noise types common in both clinical
and non-clinical settings. Also, by using different SNR levels, we can
control the intensity of noise contamination in each of the recordings,
allowing us to generate samples with various noise levels, from roughly
clean to very noisy. Such a controlled synthetic setting enables us to
thoroughly investigate the impact of different noise variables, such as
noise types, groupings, intensities, and durations, on the performance
of data-driven models. To date, publicly available heart sound datasets
have been mainly captured in controlled environments, and recordings
of such datasets are not diverse enough in terms of noise types and
intensities. Also, it is very difficult to accurately determine the amount
and types of noise in heart sound recordings in real-world datasets, and
as a result, it would not be possible to provide a detailed analysis of the
impact of noise and degradations on the performance of data-driven
models using such datasets.

3. Method

In this section, we provide the details of the methodology for this
study. The overall approach can be summarized as follows:

+ A synthetic heart sound dataset including normal and abnormal
heart sounds contaminated with a large variety of noise and
degradations is generated. To generate this dataset, clean heart
sounds are mixed with noises of different types, durations and
groupings in different SNR levels.

The synthetic dataset is split into train and test sets.

Multiple classification models are developed. To develop these
models, different feature representations (log-spectrogram and
mel-spectrogram) and two commonly used classifiers in heart
classification (support vector machine and convolutional neural
network) are employed.

Support vector machine models are trained using the synthetic
training set. Convolutional neural network models are pre-trained
using a dataset called PhysioNet and then fine-tuned using the
synthetic training set.

After training the models, we use the synthetic test set to evaluate
the classification models.



D. Shariat Panah et al.

Table 1
Details of the clean heart sound recordings used to generate the synthetic dataset.

Recording # Type Duration (s)
1 Normal 12.0
2 Normal 10.1
3 Normal 13.8
4 Normal 10.0
5 Normal 3.0
6 Normal 12.8
7 Normal 10.2
8 Normal 15.0
9 Abnormal - Aortic regurgitation 12.0
10 Abnormal - Aortic stenosis 10.9
11 Abnormal - Mitral regurgitation 12.0
12 Abnormal - Mitral stenosis 11.2
13 Abnormal - Mitral valve prolapse 11.5
14 Abnormal - Mitral valve prolapse 2.5
15 Abnormal - S3 10.1
16 Abnormal - S4 10.0
Table 2

Details of the noise types, their groupings and durations that have been mixed with
clean heart sound recordings to generate the synthetic dataset.

Noise type Noise grouping Noise duration
White Color Long
Pink Color Long
Red Color Long
Sensor movement Movement Short
Body movement Movement Short
Deep breathing Internal Long
Fast breathing Internal Long
Coughing Internal Short
Digestive sound Internal Short
Talking Ambient Long
Door open/close Ambient Short
Phone ringing Ambient Long
Music Ambient Long
Water flow Ambient Long
vV Ambient Long
Dishwasher Ambient Long
Washing machine Ambient Long
Kettle Ambient Long
Vacuum cleaner Ambient Long
Dog barking Ambient Short
Bird singing Ambient Long

» To investigate the impact of noise and degradations in heart
sound signals on the performance of classification models, we
report the overall accuracies of the models across heart sounds
contaminated with different noise types, durations, groupings and
SNR levels.

In Section 3.1, we describe the process of generating the synthetic
heart sound dataset. Also, we provide the details of another heart sound
dataset called PhysioNet used in our experiments. Afterwards, in Sec-
tion 3.2, we explain the stages of developing heart sound classification
models, including pre-processing, feature extraction and classification.

3.1. Datasets

3.1.1. Synthetic dataset

This section provides the details of the synthetic heart sound dataset
used in subsequent experiments and the stages of generating this
dataset. Table 1 summarizes the specifications of the clean heart
sounds, including their types and durations used to produce the syn-
thetic dataset.

As shown in Table 1, we collected multiple clean normal, and ab-
normal heart sounds from different resources such as publicly available
datasets and YouTube. There are sixteen clean heart sounds, consisting
of eight normal and eight abnormal recordings. Abnormal recordings
include more common murmurs and extra heart sounds. We chose
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abnormalities that are more prevalent in publicly available heart sound
datasets. As shown in Table 1, out of these sixteen recordings, fourteen
signals are over 10 s long, and the duration of the other two signals
is 2.5-3.0 s. Given that we aim to explore the impact of heart sound
duration on the accuracy of the classification models, we included
both short- and long-duration signals. Short-duration recordings are
long enough to include at least two heartbeat cycles, but, at the same
time, they are significantly shorter than the majority of the signals. We
assessed the quality of these heart sound recordings through listening
and visual inspection of the waveforms to ensure they are noise-free or
contain a very low noise level.

Twenty-one different noise types were mixed with each of the base
clean heart sound recordings. To have a comprehensive set of noise
types, we chose the noise types that are common in clinical and non-
clinical environments, such as home-places. Table 2 summarizes the
details of the noise types, their groupings and durations. Noise types are
categorized into four groups based on their source: color, movement,
internal, and ambient. This categorization of noise types is similar to
the classification provided by Gradolewski et al. [29]. Color noises were
generated through simulation, while internal and ambient noises were
collected from different publicly available datasets. Movement noises
were captured using a mobile phone from the body surface. Regarding
the ambient noises, noise types prevalent in clinical and non-clinical
environments such as homeplaces were used. Including the noise types
that are specific to non-clinical environments (e.g., home appliances
noise) allows us to simulate situations where patients capture their
heart sounds using consumer devices like mobile phones at home. Each
clean heart sound was additively mixed with each noise contamination
in ten different SNR levels: -10, -5, 0, 5, 10, 15, 20, 25, 30, and 40.
In order to produce noisy heart sound signals with desired SNR levels,
we changed the noise variance and additively mixed that with clean
heart sound recordings. As shown in Table 2, these noise types are
also categorized in terms of length into short- and long-duration noises.
Long-duration noises were longer than the base clean heart sound
signals, and as a result, they covered the whole or most parts of the
generated recordings. In the case of short-duration noises, they were
randomly distributed in time. In other words, we sampled a uniformly
random number based on the duration of the clean heart sound record-
ing and used that number as the starting point to add short-duration
noise to the clean signal. Fig. 1(a) illustrates the phonocardiogram of a
clean normal heart sound, and Fig. 1(b) shows the phonocardiogram of
the same heart sound contaminated with dishwasher noise where SNR
is equal to 10.

Using the process described above, 3360 synthetic heart sound
recordings were generated. The sampling frequency of the recordings
is 2000 Hz. Heart sounds samples and labels can be accessed online.'
The synthetic dataset includes 210 noisy permutations for each clean
heart sound recording. The specifications of the synthetic train and test
sets are as follows:

Half of the samples in the synthetic dataset (1680 recordings) are
placed in the train set, and the other half in the test set.

Train and test sets contain noisy permutations of different clean
heart sound recordings: noisy permutations of heart sound num-
bers 1, 3, 6, 8,9, 11, 12 and 15 are placed in the train set, while
noisy permutations of heart sound numbers 2, 4, 5, 7, 10, 13, 14
and 16 are placed in the test set. The details of these base clean
heart sound recordings have been provided in Table 1.

Train and test sets are balanced across the two classes (normal
and abnormal).

The train set contains only long-duration recordings, while the
test set contains both short- and long-duration signals.

Noise types are the same across the train and test sets and include
all twenty-one noise types, as summarized in Table 2.

SNR levels are the same across the train and test sets and include
ten levels: —10, -5, 0, 5, 10, 15, 20, 25, 30, and 40.

—
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Fig. 1. (a) Phonocardiogram of a clean normal heart sound, (b) Phonocardiogram of the same heart sound contaminated with dishwasher noise.
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Fig. 2. Heart sound classification pipeline.

3.1.2. PhysioNet dataset

The PhysioNet heart sound dataset [30] was published as part of
the PhsyioNet/Computing in Cardiology 2016 challenge. This dataset
comprises six smaller subset datasets that different research groups
collected across the world in controlled or uncontrolled environments.
PhysioNet dataset contains 3240 heart sound recordings, out of which
2575 samples were captured from healthy subjects while 665 sam-
ples were collected from pathologic subjects. Some of the recordings
were labeled as unsure, which means that they were too noisy to
be categorized as normal or abnormal. For this study, we excluded
these low-quality recordings from the dataset. It should be noted that
this dataset does not provide any information regarding the noise
content (e.g., noise type and intensity) of the recordings. In the last
few years, PhysioNet dataset has been widely employed as the largest
publicly available heart sound dataset to develop data-driven heart
sound classification models. This dataset is used in our experiments for
pre-training deep learning models.

3.2. Data-driven models

As shown in Fig. 2, developing data-driven models for heart sound
classification includes three steps: pre-processing heart sound record-
ings, extracting features from heart sounds, and training classification
models. This section provides the details of these three stages.

3.2.1. Pre-processing

In the pre-processing stage, long-duration recordings are split into
5- or 10-s segments. 10-s and 5-s recordings are later used to train and
test support vector machine (SVM) and convolutional neural network
(CNN) models, respectively. Given that deep learning models generally

need a large number of samples for training, splitting the recordings
into 5-s segments increases the number of available samples for training
the deep learning models. The synthetic dataset also includes short-
duration recordings which are only used for testing the models. These
short-duration recordings are zero-padded before being fed into CNN
models to ensure they are of the same length (5 s). Then, amplitude
normalization is performed to minimize the variations in amplitudes
across the signals, using the following equation (as in Ref. [16]):
X()

Max (1X1]) W

Xrorm() =

In the above equation, X (¢) represents the value of the heart sound
signal at the time t, and Max(|X|) is the maximum of the absolute value
of the heart sound signal.

3.2.2. Feature extraction

After pre-processing the recordings, Linear- and Mel-scaled Short-
Time Fourier Transform (STFT) features are extracted from signals.
STFT is the most widely used time-frequency feature representation for
heart sound classification [31]. This feature representation is computed
using the following equation [32]:

S}

X(m,w) = Z x[nlw[n — mle™" 2

n=—oo

Where x[n] is the signal to be transformed and w[n] is the window
function (Hann window). After computing the STFT of the signals, spec-
trogram representations were computed using the following equation:

S(m, w) = | X (m, w)|? 3
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Max-pooling
2x2

Fig. 3. Architecture of the CNN model with Mel-spectrogram as input (Mel-CNN model).

The spectrogram gives the power of the signal for each time and fre-
quency pair. We used Log-spectrograms as well as Mel-spectrograms as
our two feature representations. Mel-spectrogram is computed by con-
verting the linear frequency scale to the Mel scale using the following
formula [33]:

Mel(f) = 2595log, (l + %) (©)]

We used Librosa library [34] to extract the above features. Window
and hop lengths were fixed at 256 and 128, respectively. As for Mel-
spectrograms, 64 Mel bands were used. In order to reduce the com-
putational cost of training the support vector machine models, the
average values of the features across the time axis were computed (as
in Ref. [35]).

3.2.3. Classification

After extracting the feature representations, they are used to train
the classifiers. Two different classifiers are employed in this study: Sup-
port Vector Machine (SVM) and Convolutional Neural Network (CNN).
Both classifiers have been frequently used in the field to develop heart
sound classification models. Given that we use Log-spectrogram and
Mel-spectrogram as input features for these classifiers, four different
models are developed: (a) Log-SVM, (b) Mel-SVM, (c) Log-CNN, and
(d) Mel-CNN.

To implement the SVM models, we used the default parameters as
provided in the Scikit-Learn library [36]. The synthetic dataset was
used to train and evaluate the SVM models.

CNN models were implemented using TensorFlow 2.8 deep learning
library. Fig. 3 shows the architecture of the CNN model with the
Mel-spectrogram as input. This model consists of three convolutional
layers. The first, second and third convolutional layers have 16, 32
and 64 kernels, respectively. A kernel size of (3, 3) was used for all
three convolutional layers. Also, the stride was fixed at 1, and the
ReLu function was used as the activation function. Each convolutional
layer is followed by a max-pooling layer with a pool size of (2, 2).
To reduce overfitting of the models, a dropout layer with a rate of
0.5 was used after each max-pooling layer. After convolutional and
max-pooling layers, a fully connected layer with 100 neurons and the
ReLu activation function was used. After this fully connected layer,
another dropout layer with a rate of 0.5 is placed. The final layer of
this architecture is Softmax which outputs the probability distributions
of the potential outcomes (normal or abnormal).

32 x40 x 32 16 x 20 x 32
Fully-connected O Softmax
_— —_— 7
100
Table 3
Performance of the classification models on the synthetic test set.
Model Recall (Normal) % Recall (Abnormal) % Accuracy %
Log-SVM 67.9 73.9 70.9
Mel-SVM 68.8 75.6 72.2
Log-CNN 89.4 + 1.3 62.6 + 1.8 76.0 + 0.4
Mel-CNN 82.3 + 0.5 831 1.1 82.7 + 0.4

To train the models, Adam optimization [37] with a learning rate
of 0.001 and cross-entropy objective function were used. CNN models
were first pre-trained on the PhysioNet dataset for 60 epochs. This
way, we can ensure that the CNN models are pre-trained on a large
variety of normal and abnormal heart sounds. Then, all layers except
fully connected layers were frozen, and the models were fine-tuned
using the synthetic training set for 10 epochs. The trained CNN models
were evaluated on the synthetic test set. This process was repeated ten
times, and average and standard deviation values were reported for
each metric.

It is worth noting that we first tried to train CNN models from
scratch without pre-training using only the synthetic dataset. However,
we observed those models were overfitting the synthetic dataset to an
extreme extent. As a result, we excluded them from this study.

3.2.4. Evaluation metrics

The performance of the models is measured using two different
metrics. The first one is recall which is used to quantify the performance
of models across each class and calculated using the following formula:

Recall = _Trr (5)
TP+ FN

Given that the synthetic test set used to evaluate models is balanced
across normal and abnormal classes, we also use accuracy to measure
the overall performance of the classification models. Overall accuracy
is computed as follows:

TP+TN
TP+TN+FP+ FN
In the above equations, TP, FP, TN, and FN are the number of true
positive, false positive, true negative, and false negative samples in the
results test set, respectively.

©

Accuracy =
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Fig. 4. Accuracy of the classification models across short- and long-duration heart
sound recordings.

4. Results
4.1. Classification models’ overall performance

Table 3 summarizes the results of evaluating classification models
on the synthetic test set.

As shown in Table 3, CNN models outperform SVM models in terms
of overall accuracy. The Mel-CNN model achieves the highest accuracy
and recall for the abnormal class, while the Log-CNN model achieves
the highest recall for the normal class.

4.2. Noise and degradation impact

In this section, we explore the impact of signal duration, noise
type, noise grouping, noise duration and SNR on the accuracy of the
classification models.

4.2.1. Signal duration

As mentioned in Section 3.1.1, the synthetic dataset contains short-
(2.5-3.0 s) and long-duration (over 10 s) recordings. This dataset was
split into training and test sets. The training set contains only long-
duration signals, while the test set used to evaluate the classification
models includes both short- and long-duration recordings. Fig. 4 depicts
the impact of signal duration on the accuracy of the classification
models.

As shown in Fig. 4, the overall accuracies of the models are consid-
erably lower on short-duration heart sounds compared to long-duration
ones. This drop in the performance of the models is more extreme for
CNN models compared to SVM models. In other words, the accuracies
of CNN models are over 80% on long-duration signals, while they
fall below 50% when these models are evaluated using short-duration
signals.

4.2.2. Noise type

As mentioned in Section 3.1.1, the synthetic dataset contains normal
and abnormal heart sounds contaminated with twenty-one noise types.
There are 80 samples in the test set for each noise type. Fig. 5 illustrates
the overall accuracy of the models evaluated using heart sound signals
contaminated with different noise types. In this plot, the noise types
have been arranged based on the average accuracy of the classification
models, from the noise type with the lowest (white noise) to the one
with the highest (sensor movement noise) average accuracy.

As shown in Fig. 5, the classification models show different accura-
cies for heart sounds contaminated with different noise types. Also, we
can observe that SVM models show larger fluctuations across different
noise types than CNN models, indicating they are more sensitive to
noise type than CNN models — We can see that for some noise types,
like TV or dishwasher noise, SVM models offer the lowest accuracies
(below 55%), while for some others, like deep breathing and phone
ring noise, they achieve much higher accuracies (over 85%).
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4.2.3. Noise grouping

As summarized in Table 2, noise types in synthetic heart sounds are
categorized into four groups: color, movement, internal and ambient.

Fig. 6 compares the accuracy of the classification models across
these noise groupings. As shown in Fig. 6, all classification models show
their lowest performance on the recordings contaminated with color
noises while performing best on the ones with movement noises. All
models are sensitive to noise grouping, showing different accuracies
across different noise groupings.

4.2.4. Noise duration

Noise contaminations used to generate the synthetic dataset can be
categorized in terms of length into short- and long-duration noises (as
specified in Table 2). Fig. 7 compares the accuracy of the classification
models across recordings contaminated with short- and long-duration
noises.

As shown in Fig. 7, all models are sensitive to noise duration and
show lower accuracies when evaluated using signals contaminated with
long-duration noises compared to short-duration noises.

4.2.5. SNR

As discussed in Section 3.1.1, in order to generate the synthetic
dataset, clean heart sounds were mixed with noise contaminations
with different SNR levels (from —10 to +40). For each SNR level, 168
recordings are available in the synthetic test set. Fig. 8 depicts the
accuracy of the classification models across heart sound recordings with
different SNR levels.

As shown in Fig. 8, Log-SVM and Mel-CNN models show a steady
increase in accuracy from SNR —10 to 40. However, in the case of Mel-
SVM and Log-CNN models, we observe an increase in accuracies from
SNR -10 to 20, while for SNR levels higher than 20, the accuracies are
roughly unchanged.

5. Discussion
5.1. Classification models’ overall performance

In Section 4.1 of the results, we presented the overall performance
of the classification models. The results show that the gap between the
recalls of the normal and abnormal classes is larger for the Log-CNN
model compared to the other models. This can indicate that the Log-
CNN model is biased towards the normal class. This bias suggests that
the Log-CNN model is overfitting the synthetic dataset. The synthetic
dataset used to train the classification models was produced using a
relatively small number of base clean heart sounds. At the same time,
we should note that deep learning models such as CNNs generally need
a large amount of training data, making them more prone to overfitting
the synthetic dataset than SVM models. The reason why we only ob-
serve this overfitting in the case of the Log-CNN model may be that the
higher dimensionality of the Log-spectrogram feature representation,
at twice that of the Mel-spectrogram, makes the Log-CNN model more
prone to overfitting than the Mel-CNN.

It is worth mentioning that drawing comparisons between the ab-
solute accuracies of the classification models is not the purpose of this
study. Instead, we aim to understand the pattern of accuracy change for
each classification model in the face of different noise and degradation

types.

5.2. Noise and degradation impact

In Section 4.2.1, we discussed the impact of heart sound signal du-
ration on the performance of classification models. All models showed
a lower performance when evaluated using short-duration recordings
(2.5-3.0 s) than long-duration signals (5-10 s). This finding is in line
with the results of our previous study with clinicians where the majority
of the survey’s respondents (92%) stated that they needed to listen to at
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Fig. 6. Accuracy of the classification models across heart sounds contaminated with
noises of four different groups. Lines are used for readability and ease of visualization
but do not signify a relationship between categories on the x-axis.

least six heartbeat cycles before using the recordings for diagnosis [21].
As we mentioned in Section 3.2.1, we zero-padded the short-duration
signals before using them for testing the CNN models to make sure the
inputs to these models are of the same length. To rule out zero-padding
as a contributing factor to the low accuracy of short-duration signals,
we repeated the short-duration signals and used them to evaluate the
CNN models. We observed similar results as in Fig. 4 which indicates
that zero-padding does not reduce the accuracy of CNN models.
According to Chen et al. [38], an average heartbeat cycle is 0.8 s
long, which means that the short-duration recordings in the syn-
thetic dataset include around three heartbeat cycles on average. Short-
duration heart sound signals, such as 1-s [6,38], or 3 s [39,40] record-
ings, have been used in the field to develop data-driven heart sound
classification models. However, the results show that the classifica-
tion models perform considerably worse on the short-duration record-
ings, which suggests that short-duration signals should be avoided
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Fig. 7. Accuracy of the classification models across heart sounds contaminated with
short- and long-duration noises.
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Fig. 8. Accuracy of the classification models across heart sounds with different SNR
levels (from —10 to 40).
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Table 4
Mean, standard deviation, minimum and maximum accuracies for each classification
model across all recordings.

Model Mean % SD % Min % Max %
Log-SVM 70.9 9.5 53.8 85.0
Mel-SVM 72.2 10.5 56.3 92.5
Log-CNN 76.8 4.1 65.7 81.4
Mel-CNN 82.9 5.9 72.9 92.9

in situations where we can capture heart sound signals with longer
durations.

In Section 4.2.2, we showed the performance of the classification
models across heart sounds contaminated with varied noise types.
Table 4 summarizes the mean, standard deviation, minimum and max-
imum accuracies for each classification model across all recordings in
the test set. As shown in Table 4, for all noise types, the overall accuracy
of the CNN models is over 65%, while in the case of SVM models,
the accuracy goes below 57% for a few noise types. We can also see
that the standard deviations of average accuracies are larger for SVM
models compared to CNN models, which confirms the lower sensitivity
of CNN models to noise types. However, what is common between
these classification models is that they all react to the noise type, and
they do not offer similar accuracies for all noise types. We can observe
that there is only one short-duration noise (digestive sound) in the left
half of Fig. 5, while in the right half, there are five short-duration
noises (door open/close, dog bark, body movement, cough, sensor
movement). Given that in this diagram, the noise types have been
ordered based on the average accuracy of the classification models, this
observation confirms that the continuous long-duration noises have a
more detrimental effect on the accuracy of the models than transient
short-duration artifacts. Also, we can see that most ambient and color
noises are in the left half of the diagram while the majority of internal
and movement noises are in the right half of the plot. This observation
shows that ambient and color noises are more problematic than internal
and movement noises for models.

Fig. 5 also illustrates the estimated segmental SNR values for record-
ings contaminated with different noise types. We can see that the
majority of noise types on the left half of the diagram have smaller
segmental SNR ranges with lower median values than the ones on the
right half of the diagram. This observation confirms that signals con-
taminated with uniform noises are more challenging for classification
models than the ones with transient noises. This can be due to the fact
that continuous noises contaminate the entire signal. Transient noises,
in contrast, contaminate a portion of the signal while the remaining
parts can be of good quality. These results clearly show that both
the duration and class of the noise are important factors that should
be considered when analyzing the impact of noise on heart sound
classification models. These results also suggest that different noise
types should not be treated the same way by quality enhancement
algorithms, as each noise type influences the classification models to
a different extent.

In Section 4.2.3, we compared the performance of classification
models on heart sounds contaminated with noises from different
sources. We observed that color and ambient noises are more problem-
atic for all models than movement and internal noises. This finding is
also in agreement with the results of our previous survey with clinicians
where respondents stated that ambient noises are more disruptive to
accurate auscultation than internal or movement noises [21]. They also
stated that internal and movement noises are roughly similar in terms
of their negative impact on the diagnosability of heart sounds [21].
The observation that ambient and color noises have a more detrimental
impact on the accuracy of the classification models than other noise
types demonstrates that heart sounds contaminated by such noises
should be prioritized over other noise sources for quality enhancement.

In Section 4.2.4, we explored the impact of noise duration on the ac-
curacy of classification models. We saw that all models perform worse
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on heart sounds contaminated with long-duration noises than the ones
contaminated with short-duration noises. These results are also aligned
with the survey results from our previous study. The survey results
indicated that continuous long-duration noises are more disruptive than
transient short-duration noises to accurate diagnostics [21]. This is
intuitively correct given the longer duration of distortion of the heart
signal and shows that long-duration noises must be prioritized over
short-duration noises for quality enhancement.

In Section 4.2.5, we investigated the impact of the SNR of the
recordings on the overall accuracy of the classification models. The
results show that all classification models benefit from increased SNR
levels, albeit with earlier plateauing for Mel-SVM and Log-CNN models.
These results indicate that applying noise reduction techniques with
the aim of improving the SNR of the recordings has a beneficial effect
on the accuracy of the classification models. However, the level of
performance gain varies from model to model.

Based on the above discussion, the implications of this study can be
summarized as follows: first, in some cases, it is possible to reduce the
negative impact of noise and degradation on the classification models
at the heart sound acquisition stage. For example, in Section 4.2.1, we
observed that classification models perform worse on short-duration
heart sounds compared to long-duration ones. Also, in Section 4.2.3, we
saw that ambient noises have a more detrimental impact on classifica-
tion models’ accuracy than internal or movement noises. By capturing
long-duration signals or reducing ambient noises, clinicians will be
able to decrease the destructive impact of such degradations on the
performance of the classification models. Therefore, clinicians can use
this study’s results to adapt the heart sound capture process to min-
imize the negative impact of such noises and degradations. Second,
in order to decrease the misclassification rate of classification models,
it is necessary to assess the captured heart sound signals in terms of
noise and degradation characteristics. For example, in Section 4.2.5,
we observed that classification models show a higher misclassification
rate when evaluated using the signals with lower SNR levels. Also, in
Section 4.2.4, we saw that long-duration noises have a more destructive
impact on the accuracy of the classification models compared to short-
duration noises. Assessing the characteristics of heart sound signals,
such as SNR at the pre-processing stage, allows us to discard low-
quality heart sounds or adjust the quality enhancement based on the
noise characteristics of the signal. Quality enhancement of the heart
sound signals has been widely employed in the field as a pre-processing
step to develop heart sound classification models [4,5,16,41]. However,
quality enhancement algorithms have been universally applied to heart
sound recordings, irrespective of the characteristics of noise and degra-
dation in the signal. At the same time, it has been shown that universal
quality enhancement can reduce the performance of classification mod-
els [42]. The results of this study show that the characteristics of noise
and degradation in a heart sound recording determine how and to what
extent the classification models are influenced. In this regard, assessing
the characteristics of the noise and degradations in heart sound signals
will allow us to develop targeted quality enhancement techniques which
adapt the type and aggressiveness of quality enhancement depending
on the noise content of the signals and the employed classification
model.

5.3. Limitations

This study has some potential limitations. Firstly, as discussed in
Section 3.1.1, we used 16 baseline heart sounds (8 normal, 8 abnormal)
as the seeding instances to generate a dataset of 3360 samples. This
dataset represents a controlled set of noise types and degradations to
answer our specific research question. We should note that this study
does not attempt to discover the impact of noise and degradation on
the performance of the data-driven models under a wide variety of
conditions. In the future, this research work can be repeated using
a dataset generated with a larger variety of baseline heart sounds to
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better understand how the size and scale of the dataset can affect
the results. Also, this study explored the impact of noises and degra-
dations on a small set of classification models. While a large variety
of feature representations and classifiers have been employed in the
field to develop heart sound classification models, in this study, we
focused on the classification models used most frequently. However,
there is still a slight possibility that other classification models react
differently to noises and degradations in heart sound signals. Finally, as
discussed in Section 3.2, we employed a segmentation-free heart sound
classification pipeline, which means that we used fixed-length signals
to train and evaluate the classification models. In other words, we did
not apply segmentation algorithms to segment heart sound recordings
into heartbeat cycles. Therefore, the results of this study may not be
generalizable to the cases where segmentation algorithms are used as
one of the stages in the modeling pipeline.

6. Conclusion

Noise and degradation in heart sound recordings can reduce the
accuracy of the data-driven classification models. In this study, we
investigated how and to what extent different heart sound signal char-
acteristics such as signal duration, noise type, noise duration and SNR
influence the performance of classification models. The general findings
can be summarized as follows:

+ The data-driven models perform worse on short-duration signals
than long-duration ones. Therefore, we suggest using signals with
at least 5-s durations when using a trained model for inference.
Based on the results, color (white and pink) and continuous am-
bient noises (e.g., music and TV) are the most problematic noise
sources for models. On the other hand, internal (e.g., cough and
breathing), movement (body and sensor movement) and transient
ambient noises (e.g., phone ring, dog bark) are less problematic
for data-driven models.

The classification models perform better on the signals contam-
inated with transient short-duration noises (e.g., cough, sensor
movement and dog bark) than the ones with continuous long-
duration noises (e.g., white or music noise). This is due to the
fact that transient noises contaminate only a small portion of the
signal while the remaining parts can have a high SNR as opposed
to continuous noises that contaminate the entire signal uniformly.
In other words, the results show that classification models can
achieve good accuracy on signals with high segmental SNR, even
if such signals have a low average SNR.

Although these findings may be intuitive from a human auditory
perception perspective, this study quantifies them to a certain extent
and guides us in terms of filtering heart sound data before presenting
them to data-driven classification models. Clinicians can also use the
findings of this study to identify noise and degradations that are
more problematic to classification models and consequently adapt the
heart sound capture process to reduce the negative impact of such
degradations.

Comparing the findings of this study with the results of a survey
we previously carried out with a group of clinicians regarding the
impact of noise on the diagnosability of heart sounds indicates that
clinicians and data-driven models suffer from noise and degradations
in a similar manner. The survey results showed that from the point
of view of respondents, short-duration heart sound recordings cannot
be used towards diagnostics. Also, clinicians believed that ambient
noises are more problematic to accurate diagnostics than internal and
movement noises. Lastly, they stated that continuous long-duration
noises are more disruptive to accurate diagnostics than transient short-
duration noises. We can see a good agreement between the impact of
signal duration, noise types and noise duration on the performance of
classification models and diagnosability of heart sounds from the point
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of view of clinicians. Therefore, the findings from our previous study
are now backed up by the results of this study.

Universal heart sound quality enhancement, which has been fre-
quently employed in the field as a pre-processing step, applies enhance-
ment algorithms irrespective of the noise characteristics of the signals.
However, the results of this study reinforce the importance of signal
quality assessment in the heart sound classification pipelines. Quality
assessment enables us to analyze the captured signals in terms of noise
and degradations and limit the application of quality enhancement
algorithms to specific signals which do not meet a required quality
threshold. The findings of this study can be leveraged to develop
targeted heart sound quality enhancement approaches which adapt
the type and aggressiveness of quality enhancement based on the
characteristics of noise and degradations in heart sound signals.

In future, we will extend this work by generating a larger synthetic
dataset using a more diverse set of base heart sounds. Also, we will
include a larger set of classification models to see if the results of
this study hold for other heart sound classification models as well. As
another future work, we will compare the universal and targeted heart
sound quality enhancement approaches to determine which approach
can better reduce the misclassification rate of heart sound classification
models.
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