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ABSTRACT  18 

Agricultural image and vision computing are significantly different from other object classification-based 19 
methods because two base classes in agriculture, crops and weeds, have many common traits. Efficient crop, 20 
weeds, and soil classification are required to perform autonomous (spraying, harvesting, etc.) activities in 21 
agricultural fields. In a three-class (crop-weed-background) agricultural classification scenario, it is usually 22 
easier to accurately classify the background class than the crop and weed classes because the background 23 
class appears significantly different feature-wise than the crop and weed classes. However, robustly 24 
distinguishing between the crop and weed classes is challenging because their appearance features generally 25 
look very similar. To address this problem, we propose a framework based on a convolutional W-shaped 26 
network with two encoder-decoder structures of different sizes. The first encoder-decoder structure 27 
differentiates between background and vegetation (crop and weed), and the second encoder-decoder structure 28 
learns discriminating features to classify crop and weed classes efficiently. The proposed W network is 29 
generalizable for different crop types. The effectiveness of the proposed network is demonstrated on two crop 30 
datasets – a tobacco dataset and a sesame dataset, both collected in this study and made available publicly 31 
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online for use by the community – by evaluating and comparing the performance with existing related 32 
methods. The proposed method consistently outperforms existing related methods on both datasets. 33 

KEYWORDS crops and weeds, pixel-level classification, semantic segmentation, weed detection. 34 

1. INTRODUCTION 35 
Efficient crop, weeds, and soil classification are prerequisites for autonomous spraying, harvesting, crop health monitoring, 36 
and weeding activities in agricultural fields (Subeesh et al., 2022; Hashemi-Beni et al., 2022; Milioto et al., 2018). Semantic 37 
segmentation (Sa et al., 2018) offers a solution based on the classification of prediction of every pixel into three classes. As 38 
reported in the literature (You et al., 2020), the classification of background is generally achieved with a high accuracy, which 39 
is significantly different feature-wise from the vegetation (crop and weed classes); however, the difficulty lies in distinguishing 40 
between crop and weed classes that have resemblance in colour and leaf structure. Secondly, in some previous works, the 41 
background is shown to be effectively removed using linear thresholding methods, as done in (Ferreira et al., 2017). Still, this 42 
strategy poses a challenge for accurately classifying vegetation, particularly in variable lighting conditions. The top background 43 
subtraction techniques currently utilised are based on deep neural networks and have significantly improved performance in 44 
contrast with traditional unsupervised approaches (Bouwmans et al., 2019). So, deep neural network-based background 45 
removal is desirable, as they are expected to handle non-linear lighting conditions better. 46 
To address the challenges mentioned above, we propose a deep learning framework based on a convolutional W-shaped 47 
network (a W network). The key innovation point of the proposed network is the usage of optimised two encoder-decoder 48 
structures connected in series for achieving the desired pixel-level classification as opposed to traditional approaches based on 49 
a single encoder-decoder configuration. The first encoder-decoder structure differentiates between background and vegetation. 50 
The second encoder-decoder structure primarily aims to learn discriminating crop and weed features in the background-51 
removed images, which has been found to robustly and efficiently classify vegetation (crop and weed) classes in this study. As 52 
a part of the experimental validation, we show that the proposed framework is generalisable to multiple crop types. This has 53 
been demonstrated by training the proposed W network from scratch on our collected tobacco crop dataset and then fine-tuning 54 
for our collected sesame crop dataset using transfer learning. The proposed method shows encouraging results for both crop 55 
types compared to the existing related methods. We have made both datasets available online (Moazzam, 2023) for the research 56 
community. 57 
 58 
2. RELATED WORK 59 
Efficient crop, weed, and soil classification is critical for autonomous agricultural activities such as spraying and harvesting. 60 
Traditional thresholding-based methods for background removal suffer from limitations in variable lighting conditions, leading 61 
to the removal of vegetation pixels. To accurately classify vegetation and background pixels, there is a need for a learning-62 
based method. Previous studies have attempted to address this issue using techniques such as Otsu adaptive thresholding, 63 
normalization, ExG-ExR indices, histogram equalization, and morphological operations. However, these methods still have 64 
limitations in terms of coarse background removal, inappropriate contrast enhancement, and difficulty in selecting appropriate 65 
thresholds for real-world aerial images. Therefore, the need for an improved learning-based method for background removal 66 
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is necessary, making suitable deep learning techniques desirable. Milioto et al. (2017) and Espejo-Garcia et al. (2020) used 67 
Otsu's thresholding method on NDVI and normalized RGB channels, respectively, but both faced difficulties in variable 68 
lighting conditions. Knoll et al. (2019) used the HSV color space, while Le et al. (2020) used ExG-ExR indices, and Jiang et 69 
al. (2019) used histogram equalization, but all faced limitations in background removal. Alam et al. (2020) utilized 70 
morphological operations to distinguish between soil and vegetation, but this approach changed the image data at the corners, 71 
making the background removal coarse. Therefore, the use of suitable deep learning techniques is crucial for improving 72 
background removal in agricultural image and vision computing. 73 
2.1 Crop/ Weed Classification Using Classical Machine Learning-Based Methods 74 
Classical machine learning-based methods have been employed for crop and weed classification; Sabzi et al. (2020) utilized 75 
thirteen color features, eight shape features, eight texture features, and five moment-invariant features, whereas (Karimi et al., 76 
2006) and (Wendel and Underwood, 2016) employed SVM and LDA to classify plants. However, as feature engineering remains 77 
a challenge in classical machine learning, the application of deep learning is preferred to extract thousands of features 78 
automatically. Additionally, (Ishak et al., 2007) suggested that the neural network-based technique can be improved by adding 79 
convolutional layers to capture more discriminative features. Therefore, deep learning-based methods are preferable for larger 80 
datasets as they can extract more discriminative features automatically. 81 
2.2 Object Detection-Based Deep Learning Methods For Crop/ Weed Classification 82 
In recent years, object detection-based deep learning methods have been used for crop/weed classification, relying on vegetation 83 
blob or bounding box detection within an image (Nkemelu et al., 2018; Partel et al., 2018). These methods, of course, require 84 
reliable bounding box annotations and image-level annotations. This category of methods is generally computationally efficient 85 
but has limitations in terms of localisation when weeds are in close proximity or are occluded by crops. This category of methods 86 
make use of Faster RCNN (Jiang et al., 2020) and YOLO family neural networks like YOLO-V3 (Sharpe et al., 2020), YOLOv4 87 
(Zhao et al., 2022), YOLOv5 (Wang et al., 2022), YOLOv6 (Dang et al., 2023), and YOLOv7 (Gallo et al., 2023). These deep 88 
learning neural networks are efficient, however, there are two major problems found in their implementation. The first problem is 89 
mixed detection and bounding boxes overlap. This way, crop and weed detection become ambiguous as rectangular boxes could 90 
contain both classes. The second problem found in the implementation of YOLO models is missed detections for small weeds. 91 
Therefore, pixel-wise deep learning application is recommended if a fine outline of crop and weed plants is required. 92 
2.3 Semantic Segmentation-Based Methods For Crop/Weed Classification 93 
This sections highlights significant pixel-level crop-weed classification methods. These deep learning models provide 94 
inference for every pixel in the image, this way the resultant detections of crop, weed and background show a smooth profile 95 
outline. (Sa et al., 2018) and (Abdalla et al., 2019) proposed semantic segmentation-based frameworks involving pixel-level 96 
classification of crops and weeds in the field. (Kamath et al., 2022) applied SegNet and UNet to classify weeds in paddy crops. 97 
(Hashemi-Beni et al., 2022) also used SegNet and UNet for crop and weed classification in a sugarcane dataset. However, 98 
these networks did not demonstrate encouraging results in terms of the classification of crops and weeds. This is apparently 99 
due to the usage of a single classifier to distinguish among three classes (background, crop, and weed); as the background class 100 
is more distinctive, it gets classified more accurately, whereas crop and weed classes need more attention. Better pixel accuracy 101 
is expected to be achieved using a sequential concatenation of two semantic segmentation models as proposed by (Kim et al., 102 
2022), MTS-CNN network composed of two UNet models connected as one. It has two stages, each using an encoder size of 103 
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four. This is the best semantic segmentation classifier so far to the best of our knowledge however, there remains room to 104 
improve further and optimise this network to differentiate between background, crop, and weed efficiently. 105 
Semantic segmentation is the best fit deep learning technique if we want pixel-level classification or if we want a fine profile 106 
of detections of crop, weed and background classes. Moreover, a two stage application of semantic segmentation is more 107 
accurate as compared to single stage semantic segmentation in the case where target is weed classification in agricultural crops 108 
as suggested by (Kim et al., 2022). Kim et al. (2022) proposed a two-stage semantic segmentation model that shows promising 109 
results for crop and weed classification, and we propose to optimize this model further. 110 
To optimize two-stage semantic segmentation-based framework, we propose a simpler model to distinguish between 111 
background and vegetation in the first stage and a model with more neurons to then (expectedly) better distinguish between 112 
crop and weed classes in the second stage. To this end, we proposed a deep learning-based fully convolutional W-shaped 113 
network that uses two encoder-decoder structures with variable encoder sizes coupled in series to achieve better pixel-level 114 
classification. 115 
3. DATASETS 116 
We collected a tobacco and a sesame crop dataset for this study. The tobacco dataset is captured using Mavic mini drone 117 
gimbal camera 1/2.3” CMOS sensor in Mardan, Khyber Pakhtunkhwa, Pakistan, and the sesame dataset is captured using an 118 
Agrocam NDVI sensor in Ballo Shahabal village near Jhang, Punjab, Pakistan. These datasets are captured in early stage of 119 
the crops, different fields of tobacco crop dataset are captured after 15 to 40 days after emergence (DAE) of plants and different 120 
fields of sesame crop dataset are captured after 16 to 45 days after emergence (DAE) of plants. The image capture resolution 121 
of both datasets is 1920×1080 pixels. Due to hardware and software limitations, the images are divided into non-overlapping 122 
patches of size 480×352 pixels, which are then used for training and testing. The tobacco dataset is captured at an average 123 
altitude of 4 meters and the sesame dataset is captured at an average altitude of 4.5 meters, corresponding to ground sampling 124 
distance (GSD) of 0.1 cm/pixel and 0.3 cm/pixel, respectively. We conducted eight fly campaigns for each dataset. For training 125 
we have selected the fields which have more diversity in them in terms of different weeds and different sizes of weeds, this 126 
helps in term of better training of neural networks. Testing is done very extensively in our research by choosing multiple fields 127 
other than the fields on which training is done, this practice helps in achievement of better generalizable model. For testing of 128 
tobacco crop, total images used in training and testing are 864 and 1656 respectively, which shows train/test percentage of 35: 129 
65, however the readers should not be confused by bigger percentage of testing data, as this complete testing data belongs to 130 
seven different tobacco fields. Similarly in the case of sesame crop, total images used in training and testing are 1200 and 720 131 
respectively, which shows train/test percentage of 62 : 38, and the testing data belongs to six different sesame fields. The 132 
MATLAB Image Labeller app is used to label both datasets. The tobacco dataset offers RGB imagery, whereas the sesame 133 
dataset offers NGB imagery (i.e., NIR, Green, and Blue channels). The data capturing campaign for both of tobacco and sesame 134 
datasets are shown in Fig. 1 with respect to time, date and number of images used in experiments. The soil and sunlight 135 
conditions in these datasets are not quantifiable. There is a variability in the soil and sunlight that makes classification of these 136 
datasets more challenging. 137 
4. PROPOSED NETWORK ARCHITECTURE 138 
4.1 Shortcomings in the Existing Pixel-wise Classification Methods 139 
When compared to the soil background class, the semantic segmentation of crop and weed classes performs poorly, which is one 140 
of its flaws, as we have seen in the literature. In the past, when semantic segmentation has been used, soil pixels were very 141 
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accurately classified, whereas the performance of crop and weed classification was inferior as the crop and weed pixels were 142 
confused between each other. This led to the  increase in the number of false positives and false negatives, thereby lowering the 143 
accuracy of weed classification, as  reported in the quantitative results in earlier works (Abdalla et al., 2019, Kamath et al., 2022). 144 
The more likely explanation for this issue is that background classification is frequently accurate because it differs greatly from 145 
vegetation (classes of crop and weed), in terms of features. However, it might be difficult to discern between crop and weed 146 
classifications since their colours and leaf structures are similar. We recommend the use of two encoder-decoder structures that 147 
are paired in sequence to enhance crop and weed pixel-wise categorisation. The first encoder-decoder structure could identify 148 
between background and vegetation on background-removed pictures, whereas the second encoder-decoder structure could learn 149 
to distinguish between crop and weed traits. 150 

 151 
Fig. 1. The bigger red circle is 936 on 7th April and 864 for 9th April. The small red circle represents 120 images. Similarly for 152 
sesame, the small blue circle represents 120 images, and the bigger blue represents 600 images. The tobacco data is taken on 153 
consecutive days; however, the sesame data is spread over a period of 2 months of plant growth. 154 
 155 
4.2 Innovation Point of Proposed W Network 156 
As opposed to the conventional method of semantic segmentation, which employs just one encoder-decoder structure for pixel-157 
wise classification of all classes, our proposed W network uses two encoder-decoder structures for pixel-wise classification. The 158 
second encoder-decoder structure in our proposed W network has a unique job to do, and that is to learn better aspects of both 159 
kinds of vegetation, such as crops and weed, which are difficult to tell apart because of their close similarities. 160 
There is a scientific basis for the suggested W network; for example, vegetation and background are extremely distinct groups 161 
that can be clearly distinguished from one another, unlike crop and weed classifications, which have many qualities in common. 162 
Furthermore, we noticed that crop and weed classification is less accurate than background classification in the literature, which 163 
is how we came up with the concept of two encoder-decoder structures. 164 
 165 
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4.3 Proposed W Network 166 
Our proposed W network (Moazzam et al., 2023) takes three-channel image input. The W network has two encoder-decoder 167 
structures. The first encoder-decoder structure is responsible for differentiating between vegetation and background, and it has an 168 
encoder size of two. We selected the encoder size by experimenting with an encoder size of two, three, and four and chose the 169 
encoder size of two that maximizes the classification performance, keeping computational complexity to a minimum. 170 
After the first encoder-decoder structure, we added a background removal layer before the second encoder-decoder structure. This 171 
layer removes background pixels, and these images without background are fed into the second encoder-decoder structure. The 172 
second structure is trained separately from the first structure on crop, weed, and background classes, and then it is added to the 173 
first structure after the background removal layer. The second structure learns discriminative crop and weed features better when 174 
the background-removed images are used for training. It has an encoder size of three, again chosen experimentally by varying 175 
encoder sizes. Crop and weed have a higher appearance similarity than background and vegetation, and that’s why a higher 176 
encoder size is required here compared to the first structure. 177 
The encoder-decoder structures in the proposed W network could incorporate different backbone and segmentation networks. We 178 
experimented with SegNet and UNet segmentation networks and used Vanilla, Vanilla Mini, VGG16, MobileNet, and ResNet50 179 
as backbones. As part of training and testing, we used non-overlapping patches of the size 224x224 for MobileNet as this is the 180 
maximum size it operates on and the size 480×352 for the remaining ones. Our experimentation showed UNet as the best 181 
segmentation network. As a backbone to UNet, Vanilla Mini and VGG16 showed the best pixel classification results in the first 182 
and second encoder-decoder structures, respectively. A detailed architecture of the proposed W network is shown in Fig. 2. 183 
4.4 Computational Complexity of Proposed W Network 184 
Here in this section, we analyze the trainable and untrainable parameters of the proposed W network’s encoder-decoder structures 185 
in comparison to UNet. Deep neural networks’ complexity is demonstrated by these parameters. The proposed W network’s first 186 
encoder-decoder structure contains 471,586 trainable parameters and 0 untrainable ones, whereas the second encoder-decoder 187 
structure has 12,321,603 trainable parameters and 1,920 untrainable ones. In comparison to the proposed W network, UNet has 188 
roughly 12,321,603 trainable parameters utilizing the VGG16 backbone. Overall, the proposed W network has more 189 
computational complexity than UNet even when using the same backbone, and this complexity increase is due to the incorporation 190 
of additional 471,586 trainable parameters in the proposed W network’s initial encoder-decoder structures. 191 
4.5 Implementation of Proposed W Network 192 
Data augmentation of vertical and horizontal flips are applied, which are expected to result in better model learning. Binary cross-193 
entropy and categorical cross-entropy are chosen as the loss function in 1st and 2nd encoder-decoder structures, and Adam is 194 
selected as the optimizer. There is usage of both vertical and horizontal data augmentation. The epoch with the smallest validation 195 
loss is used to save the best-trained model. Furthermore, as for the number of parameters, the W network has expectedly got a 196 
larger number of parameters due to its two encoder-decoder structures as compared to UNet and SegNet. For example, with 197 
VGG16 backbone, for W network the first encoder-decoder structure has 471,586 trainable and zero non-trainable parameters, 198 
and the second encoder-decoder structure has 12,321,603 trainable and 1,920 non-trainable parameters. On the other hand, UNet 199 
and SegNet both have approximately 12 million parameters with this backbone model. We used the mean intersection over union 200 
(MIOU), pixel accuracy, and F1-score as the evaluation metrics. 201 
 202 
 203 
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  204 
Fig. 2. Architecture of the proposed W network. The structure 1 has an encoder size of two and the structure 2 has an encoder size 205 
of three. The arrows show a flow of data in layers sequentially. Every square box in the neural network shows a different layer 206 
within network 207 
 208 
5. RESULTS AND DISCUSSION 209 
Fig. 3 shows the performance of the proposed W network on different tobacco fields in terms of MIOU. The tobacco dataset has 210 
seven test fields, having different soil and sunlight conditions. The proposed W network consistently shows encouraging 211 
performance.  212 
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 213 
Fig. 3. MIOU of the W network on tobacco fields. Note that the campaign number 5 is used for training. 214 
Note that the comparatively smaller MIOU on campaign number 3 is likely because the data contains early-stage minuscule 215 
weed (difficult to be seen even with a naked eye) that could be missed by the method. One important thing to mention here is 216 
normally one dataset is divided into training and testing, which gives higher classification results, opposite to that completely 217 
different datasets, which are acquired in different fields conditions are used in testing results shown in Fig. 3. 218 
In most of the researches we saw in literature, a normal practice is to divide the data in train-test split, this practice generate 219 
higher accuracy results as both train and test data is taken under same conditions, however if we use completely separate 220 
datasets which are taken at different location with different timing and lighting conditions, for training and testing then it is a 221 
challenging situation. We have experimented with both same field training and testing and separate field training and testing 222 
to show that our trained models are not overfitting or underfitted, the slightly low MIOU in the case of separate field training 223 
and testing are due to different field conditions. 224 
Using the same field number ‘2’ for training and testing with a 70/30 split, and we discovered that the MIOU was significantly 225 
higher as compared to when field number ‘1’ was used for training and field number ‘2’ for testing. Using the same field for 226 
training and testing will always produce better results than using separate fields for training and testing. Fig. 4 compares the 227 
outcomes for these two different train-test configurations. While it is true that using the same field for training and testing can 228 
sometimes produce better results than using separate fields, it is not a universal truth. Our intention was to suggest that there 229 
can be benefits to using the same field for training and testing in certain cases, particularly when dealing with small datasets 230 
or when there is a lack of diversity in the available fields. However, we acknowledge that there are potential drawbacks to 231 
using the same field for training and testing, including overfitting and lack of generalization to other fields as shown in Fig. 4. 232 
The reason behind selection of UNet and SegNet is that they are extensively used in recent related articles, e.g. (Sa et al., 2018), 233 
(Abdalla et al., 2019), (Kamath et al., 2022) (Hashemi-Beni et al., 2022) (Kim et al., 2022), where these networks are used to 234 
solve agriculture crop-weed classification problem with encouraging performance. 235 
Regarding the selection of Vanilla, Vanilla Mini, and MobileNet as backbones, the reason is their adaptability and 236 
computational performance for real-time application. These networks provide lower computational complexity and faster 237 
inference when used as a backbone. We thought it would be useful to show the effectiveness of these lighter-weight models in 238 
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comparison to more computationally heavy models, which is why we also experimented with the well-known VGG16 and 239 
ResNet50 models. 240 

 241 
Fig. 4. Accuracy difference with separate and same field training and testing (BG stands for background, C stands for crop, W 242 
stands for weed, IOU stands for intersection over Union and MIOU stands for mean intersection over Union) 243 
We have selected different variation of UNet and SegNet as benchmark to validate the proposed W network. We have conducted 244 
extensive experiments to validate our proposed W network. Table I highlights six different experiments under same conditions 245 
of proposed W network and the selected benchmark which showed superiority of proposed W network as depicted by results 246 
shown in Fig. 5, 6 and 7.  247 

Table I 248 
Comparisons of Proposed W Network with Benchmark semantic segmentation models 249 

Experiment NO. Proposed W Network  Benchmark Dataset 

1 W network with VGG16 backbone Unet with VGG16 backbone Tobacco 

2 W network with vanilla mini backbone Unet with vanilla mini backbone Tobacco 

3 W network with MobileNet backbone Unet with MobileNet backbone Tobacco 

4 W network with vanilla backbone SegNet with vanilla backbone Tobacco 

5 W network with ResNet50 backbone SegNet with ResNet50 backbone Tobacco 

6 Finetuned W Network UNet Sesame 

 250 
Fig. 5 and Fig. 6 compare UNet and SegNet with the W network using the tobacco dataset from all test campaigns with different 251 
backbones within these networks. The results show that the proposed W network consistently outperforms UNet and SegNet.  252 
To test the generalization ability of the proposed W network, we fine-tuned and adapted the trained network on the tobacco dataset 253 
for the sesame dataset. All the layers of the W network are fine-tuned except the background removal layer, using 1200 images 254 
of sesame for 50 epochs. 255 
We evaluated the effectiveness of the proposed W network on images from six different sesame fields and compared the 256 
performance against UNet with Vanilla Mini backbone (Fig. 7) as this combination showed the best performance among all of 257 
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the backbone combinations with UNet and SegNet (Fig. 5, 6). The results show that the W network performs better than UNet 258 
(Fig. 7). 259 
For a more holistic evaluation, we also show a performance comparison of the proposed W network with UNet based on the pixel 260 
accuracy (P) and F1-score measures both on tobacco and sesame datasets. Fig. 8 shows the cumulative performance in terms of 261 
the average accuracy (Pavg) and average F1-score (F1avg) computed by averaging the corresponding values across all test images. 262 
The proposed W network consistently outperforms UNet on both tobacco and sesame datasets. 263 
 264 

 265 
Fig. 5. Comparison of the UNet and W network with different backbone models on tobacco dataset. 266 

 267 
Fig. 6. Comparison of the SegNet and W network with different backbone models on tobacco dataset. 268 
 269 
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 270 
Fig. 7. Comparison of the UNet and fine-tuned W network on different fields of sesame crop. Campaign number 2 and 6 are 271 
used for fine-tuning tobacco-trained model. 272 

 273 
Fig. 8. Comparison of the UNet and W network on both datasets based on average accuracy (Pavg) and average F1-score 274 
(F1avg). 275 
We have compared our proposed W network with (Kim et al., 2022) MTS-CNN two-stage network, which consists of two 276 
UNets connected in series. The input image sizes for this experiment were fixed at 480×352 for both MTS-CNN network and 277 
our proposed W network, which is helpful for comparing the outcomes. In our experiment, we keep encoder-decoder sizes for 278 
MTS-CNN at three for both UNet stages. In the proposed W network, the first stage employs an encoder size of two, and the 279 
second stage an encoder size three. The implementation hyperparameters for our suggested modal and the MTS-CNN are kept 280 
the same. A comparison of the proposed model with MTS-CNN is shown in Fig. 9. 281 
Although the outcomes from the two approaches are comparable, the proposed W network is more computationally efficient. 282 
The complexity of the MTS-CNN network increased by use of the same size encoder in both phases. Therefore, we advised 283 
utilizing UNet with encoder sizes 2 and 3 for the two stages respectively in our proposed method. 284 

1 3 4 5 7 8
Unet 0.64 0.74 0.67 0.76 0.63 0.57
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As we can see, our suggested model (471,586 + 12,321,603 = 12,793,189 trainable parameters) is considerably less 285 
computationally complex than MTS-CNN (12,321,603 + 12,321,603 = 24,643,206 trainable parameters) when comparing 286 
computational complexity of both models using same 480×352 size input images. As a result, the proposed W network model 287 
we’ve developed can be seen as an optimized version of MTS-CNN with just around half the computing complexity. 288 

 289 
Fig. 9. Comparison of the proposed model with MTS-CNN. 290 

 291 
Fig. 10 compares the proposed W network with UNet on key images from the tobacco dataset. Likewise, Fig. 11 compares the 292 
proposed W network with UNet on key images from the sesame dataset. The green bounding boxes show some key areas of 293 
interest. The W network performed better than UNet on both tobacco and sesame datasets, as the pixel-level classification of the 294 
W network is more accurate than the UNet as shown in Fig. 10 and Fig. 11. 295 
We can see in Fig. 10 that our suggested W network application of semantic segmentation improves the categorisation and 296 
separability of classes for tobacco and weed. We can see difficult lighting circumstances in three of the Fig. 10 photos, with direct 297 
sunlight in some places and shade in others. Effective weed and tobacco detection in these pictures demonstrates how resistant to 298 
changing lighting conditions our suggested method is. With green rectangular boxes, we’ve highlighted significant weed locations 299 
in Fig. 10 and Fig. 11 where our suggested approach has demonstrated higher class separability. 300 
 301 
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 311 
(a) 312 

 313 
(b) 314 

 315 
(c) 316 

 317 
(d) 318 

Fig. 10. Qualitative comparison of UNet and the proposed W network on tobacco dataset. In predicted results, yellow color 319 
represents weed pixels, cyan color represents pixels classified as tobacco, and dark blue color represents background. (a) Three 320 
key test images from tobacco dataset with different soil and sunlight conditions; (b) corresponding ground truth of the images 321 
in (a); (c,d) predicted results using UNet (c) and the proposed W network (d). Green rectangular boxes show better crop/weed 322 
prediction using the W network. 323 
 324 
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 325 
(a) 326 

 327 
(b) 328 

 329 
(c) 330 

 331 
(d) 332 

Fig. 11. Qualitative comparison of UNet and the proposed W network on sesame dataset. In predicted results, yellow color 333 
represents weed pixels, cyan color represents pixels classified as sesame, and dark blue color represents background. (a) Three 334 
key test images from sesame dataset with different soil and sunlight conditions; (b) corresponding ground truth of the images 335 
in (a); (c,d) predicted results using UNet (c) and the proposed W network (d). Green rectangular boxes show better 336 
sesame/weed prediction using W network. 337 
 338 
 339 
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6. CONCLUSIONS 340 
We proposed a new deep learning-based approach for classifying crops, weeds, and backgrounds in agricultural field applications. 341 
The proposed method is based on training a W-shaped network consisting of two encoder-decoder structures: the first structure 342 
removes the background, and the second structure learns discriminative features for classifying crops and weeds. We showed the 343 
effectiveness of the proposed W network by evaluating and comparing the performance with related state-of-the-art semantic 344 
segmentation networks, i.e., SegNet and UNet, on two new aerial agricultural datasets (a new RGB tobacco dataset and a new 345 
NGB sesame crop dataset). We collected the dataset as a part of this study and made it publicly available online for the community. 346 
In the tobacco dataset, the W network is trained directly from scratch. In contrast, on the sesame dataset, we showed the adaptibility 347 
of the proposed W network by fine-tuning it with the tobacco learned network. Due to this adaptability of proposed W network, 348 
it could be finetuned for other similar crops. To the best of our knowledge, no other researcher have done weed detection from 349 
aerial images in tobacco and sesame crops, so this research sets the benchmark and provides first customized solution of weed 350 
classification in aerial images for tobacco and sesame crops. 351 
The results showed that the proposed W network outperformed existing related approaches (SegNet and UNet) under the same 352 
neural network backbone models on same datasets. Indeed, the experimental evidence shows that the W network is equally 353 
effective whether used directly (i.e., learning from scratch for a particular crop type) or indirectly (transfer learning and fine-tuning 354 
for a different crop type) for background-crop-weed classification applications. In future work, we aim to test further the proposed 355 
W network’s generalisation capability on other crop types and heights from the crop. The limitation of the study is that it only 356 
focuses on two specific crops, tobacco and sesame, and thus, the generalizability of the proposed W network to other crop types 357 
at different imaging heights is not adequately tested. A potential application of this study could involve autonomous aerial spraying 358 
of agrochemicals on tobacco and sesame crops to treat weeds, pests, insects, and diseases. Also, an accurate application of 359 
chemicals is expected to reduce soil pollution and address health-related concerns. 360 
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