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Resumo

Nas últimas décadas, o controlo não-linear tem sido cada vez mais utilizado, maioritaria-
mente devido ao desenvolvimento demelhores ferramentas de análise, utilizadas para a sim-
ulação problemas reais, que tendem a ser não-lineares. Os controladores não-lineares têm
a vantagem de serem mais precisos e eficientes quando utilizados em situações complexas,
como controlo orbital, rendezvous de satélites, e controlo de atitude, comparados com con-
troladores lineares. No entanto, as técnicas comuns de controlo não-linear requerem o uso
de modelos com alto grau de fidelidade, o que muitas vezes não é o caso, limitando assim a
sua utilização.

Além disso, os rápidos avanços no campo de machine learning levantaram a possibilidade
de utilizar ferramentas como redes neuronais para aprender a dinâmica de sistemas não lin-
eares, numa tentativa de poder computar as entradas de controlo sem a necessidade de re-
solver as equações matemáticas altamente complexas que alguns controladores não lineares
necessitam que sejam resolvidas, em tempo real, contornando assim a necessidade de maior
potência computacional, que pode reduzir custos e peso, em missões espaciais. Esta dis-
sertação focar-se-á no desenvolvimento de um controlador neuronal, baseado em controlo
pseudolinear por H∞, com o intuito de ser aplicado no problema de controlo orbital, bem
como no problema de controlo de atitude.

O controlador resultante provou ser robusto ao lidar com perturbações importantes, rele-
vantes em missões espaciais, devido ao facto de ter sido treinado usando dados do contro-
lador H∞. Além disso, como o controlador original é pseudolinear, o controlador neuronal
pode captar as dinâmicas não lineares que existem nas equações de movimento, bem como
nas equações da dinâmica de atitude.

Palavras-chave

Controlo Robusto não-linear, Redes Neuronais, Controlo de Atitude, Controlo de Órbita
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Abstract

Nonlinear control has become increasingly more used over the last few decades, mainly due
to the research and development of better analysis tools, that can simulate real-world prob-
lems, which are almost always, nonlinear. Nonlinear controllers have the advantage of being
more accurate and efficientwhen dealingwith complex scenarios, such as orbit control, satel-
lite rendezvous, or attitude control, compared to linear ones. However, common nonlinear
control techniques require having a high-fidelity model, which is often not the case, thereby
limiting their use.

Additionally, rapid advancements in the field of machine learning have raised the possibility
of using tools like neural networks to learn the dynamics of nonlinear systems in an effort
to compute control inputs without the need to solve the highly complex mathematical equa-
tions that some nonlinear controllers require to solve, in real-time, therefore bypassing the
need of higher computational power, which can reduce costs and weight, in space missions.
This dissertation will focus on the development of a neural controller based on H∞ pseudo-
linear control, to be applied to the satellite attitude control problem, as well as the satellite
orbit control problem.

The resulting controller is proven to be robust when dealing with important disturbances
that are relevant in spacemissions, due to being trained usingH∞ controller data. Moreover,
since the original controller is pseudolinear, the neural controller can capture the nonlinear-
ities that exist in the equations of motion as well as in the attitude dynamics equations.

Keywords

Nonlinear Robust Control, Neural Networks, Attitude Control, Orbit Control
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Chapter 1

Introduction

This chapter will present the general background for the problem to be studied in this disser-
tation. It will start by providing a small introduction concerning flight vehicle automation
and control in aerospace, followed by a comprehensive but concise description of some of the
more commonly used techniques to address this problem. The last two sections will briefly
explain the objectives of this thesis as well as provide a general structure of the contents.

1.1 Project Motivation

For hundreds of years, Humanity had set its eyes on the skies. From Da Vinci’s ornithopter
to the Wright Flyer, it was only a matter of time before the air was conquered. However,
mankind is famous for always wanting to achieve more, and soon enough, began focusing its
attention on space exploration.
In the past century, countless efforts have been made to achieve this newer dream, from the
first Gemini and Apollo programs which culminated with the first Moon landing in 1969,
to the international collaborative effort that gave origin to the International Space Station
(ISS), at the turn of Millenium.
These days, however, space missions aren’t exclusive to government-owned agencies, and

Figure 1.1: International Space Station

in recent years, the world has experienced the emergence of several privately owned com-
panies, like SpaceX and Blue Origin, for example, with already proven applications, such as
satellite constellations that can deliver global internet coverage and even space tourism. No
matter the application, every single one of those missions has to have specific control sys-
tems. For example, a single satellite can have many different control systems, such as the
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GPS (Global Positioning System), the orbit control system, and the attitude determination
and control system. These systems will be differently designed according to the mission,
which can result in a different number and type of sensors and actuators, for instance. To
address these demands, great theoretical advances were made in the field of control theory,
with the purpose of achieving faster, more reliable, and robust controllers that could be used
in numerous space applications. Parallel to these advancements, the field of machine learn-
ing also kept making significant progress mainly through the use of neural networks. Neural
networks work by learning the dynamics of an existing dataset and offer the advantage of
computing solutions to an existing problem, faster than the original model from which they
learned. This concept raises the possibility of merging these two areas in an effort to de-
sign a capable neural controller, which can be useful in space applications, where weight and
computational efficiency pose two very important constraints.

1.2 Survey of methods on Nonlinear Control

Simply put, control system design deals with the problem of making a physical system be-
have according to certain desired specifications [1]. A key notion that is related to control
systems is the concept of control laws. The control law is a mathematical formula used by
the controller to determine the necessary changes in the system to achieve a given state. This
control law is found by a specific controller that the designer chooses. Linear control laws are
the simplest forms of control from a purely mathematical perspective. The reason for this is
that a linear time-invariant system (LTI) can be studied in the frequency domain, making use
of powerful tools such as Laplace transforms, bode plots, root locus, etc [2]. This approach,
although simpler and intuitive comeswith some drawbacks, one of which is assuming a small
range of operations. That range of operations can be viewed as a linear system in itself, in
practice, however, most systems exhibit nonlinear behavior. Usually, linear controllers are
only reliable concerning the solution relative to which the linearization is performed. If the
system is expected to deviate from that point, the model can become inadequate and the lin-
ear controller no longer suffices. Of course, this comes with the additional assumption that
the system model can be linearizable in the first place [3]. Indeed in control systems, there
are many nonlinearities whose discontinuous nature doesn’t allow a linear approximation.
These are often called ”hard nonlinearities” and they include dead zones, saturation, hys-
teresis, and other discontinuities that cannot be properly compensated by linear methods,
and therefore, nonlinear methods must be used. Another drawback of linear controllers is
the model uncertainties. To design a linear controller, one has to assume, with a high degree
of confidence, that the parameters of the system to the model are reasonably well known.
However, most of the time, control problems involve uncertainties related to these parame-
ters, therefore, it is easy to see how a linear controller might become significantly degraded
or even unstable, as it can be based on inaccurate model parameters. For the reasons above
mentioned, nonlinear controllers might offer more advantages as they tend to have better
performance and lower cost. In fact, linear controllers might even be more expensive in
industrial settings, as they often require high-quality sensors and actuators to produce a lin-
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ear behavior in the specified operation range, while their nonlinear counterparts can easily
achieve good performancewith less expensive controllers [3]. All in all, designing a nonlinear
controller might be paradoxically simpler as the nonlinearities are inherent to the physical
model of the plant and not the controller architecture per se.

To first understand how nonlinear controllers are designed, it is important to give a concise
summary of the concept of Lyapunov Stability theory.

1.2.1 Lyapunov Stability concepts

Consider the general, nonlinear, dynamical system described by:

ẋ = f(t, x), x(t0) = x0 (1.1)

Where x(t) ∈ Rn and f : Rn × Rn is locally Lipschitz in x and piecewise continuous in t. A
function is said to be Lipschitz if it satisfies the following inequality:

||f(t, x)− f(t, y)||p ≤ L||x− y||p (1.2)

In which || · ||p denotes any p-norm and the positive constant L, is called a Lipschitz constant.
The phrase locally Lipschitz or globally Lipschitz simply indicates the domain overwhich the
Lipschitz condition holds [4].

In short, a function is said to be locally Lipschitz on a domain D ∈ Rn if each point of D
has a domain D0 such that f satisfies the condition 1.2 is satisfied for all points in D0 with
Lipschitz constant L0. When f : R → R the Lipschitz condition can be written as:

||f(y)− f(x)||p
||y − x||p

≤ L (1.3)

The above condition implies that on a plot f(x) versus x, a straight line joining any two points
of f(x) cannot have a slope whose absolute value is greater than L [4]. As such, any function
f(x) that has an infinite slope at some point is not locally Lipschitz at said point. To compre-
hend this concept graphically, consider the representation in figure 1.2. For a function that
satisfies condition 1.3, there exists a double cone, whose origin moves along f(x) such that
f(x) always stays outside of the double cone.

Let us now consider an autonomous system ẋ = f(x) where f : D → R is a locally Lipschitz
map from a domain D ⊂ Rn into Rn. Suppose x ∈ D is an equilibrium point of the system,
such that, f(x) = 0. For convenience, let us also assume that the equilibrium point x is
located at the origin of Rn, that is, x = 0. The equilibrium point x = 0 is:

• stable if, for each ε > 0 there is δ = δ(ε) > 0 such that

||x(0)|| < δ ⇒ ||x(t)|| < ε, ∀ t ≥ 0

3



Figure 1.2: Example of a Lipschitz function

• unstable if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that

||x(0)|| < δ ⇒ limt→∞ x(t) = 0

The approach above is often difficult to generalize, as it involves knowing all solutions of
ẋ = f(x) which turns out to be impossible. Another approach is to use energy concepts.
The underlying philosophy of this approach is related to the concept that if the total energy
of a system is continuously dissipated, then the system will eventually reach an equilibrium
state. Assume the existence of an energy function E(x) of an autonomous system. Due to
the system’s underlying characteristics, such as friction, for example, E(x) must keep de-
creasing until it reaches a certain equilibrium point. As such, by examining the derivative of
E(x) along the trajectories of the system, one can, in principle, determine the stability of any
existing equilibrium point.

In 1892, A.M Lyapunov realized that specific functions could be used instead of energy func-
tions and mathematically extended the aforementioned concept such that the stability of a
system could then be analyzed by studying the behavior of said functions. These functions
are called Lyapunov functions.

Let V : D → R be a continuously differentiable function defined in a domain D ⊂ Rn that
contains the origin. The derivative of V along the trajectories of a system ẋ = f(x), V̇ (x),
can be computed as:

V̇ (x) =

n∑
i=1

∂V

∂xi
ẋi =

n∑
i=1

∂V

∂xi
fi(x) =

∂V

∂x
f(x) (1.4)
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The derivative of V along the trajectories of a given system depends on the system equations.

Consider Br = {x ∈ Rn : ||x|| ≤ r} ⊂ D a ball of size r around the origin. V is said to be:

• positive definite on Br if

V (0) = 0 and V (x) > 0, ∀x ∈ Br so that x ̸= 0

• positive semidefinite on Br if

V (0) = 0 and V (x) ≥ 0, ∀x ∈ Br so that x ̸= 0

• negative semidefinite or negative definite if −V (x) is positive semidefinite or positive
definite

• radially unbounded if

V (0) = 0, V (x) > 0 in Rn − {0} and V (x) → ∞ as ||x|| → ∞

With these definitions, we can now state Lyapunov’s direct method, also called Lyapunov’s
second method for stability.

Lyapunov’s stability theorem: Let x = 0 be an equilibrium point of an autonomous
system ẋ = f(x(t)) and D ⊂ Rn be a domain containing x = 0. Let V : D → R be a
continuously differentiable function, then:

• if V (x) is positive definite and V̇ (x) is negative semidefinite, then the origin is stable

• ifV (x) is positive definite and V̇ (x) is negative definite, then the origin is asymptotically
stable

A continuously differentiable function V (x) satisfying either of the conditions of Lyapunov’s
theorem is called a Lyapunov function. Figure 1.3 helps make the theorem more intuitive.
The surface V (x) = c, for a value of c > 0, is called a Lyapunov surface. The figure shows
different Lyapunov surfaces, each with an ever-increasing value of c. When V̇ (x) is negative
semidefinite, that is, V̇ (x) ≤ 0 implies that when a trajectory crosses a Lyapunov surface with
constant c, then it moves inside an existing set Bc = {x ∈ Rn : V (x) ≤ c} and never moves
to a surface with higher c again. Moreover, if V̇ < 0, the trajectorymoves from one Lyapunov
surface to an inner one with a smaller value of c. As c continues to decrease, eventually the
Lyapunov surface converges to the origin, therefore showing that the origin is stable.
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Figure 1.3: Level surfaces of Lyapunov function [4]

1.2.2 Gain Scheduling

Designing a linear controller usually works by linearizing around a single operating point,
the equilibrium point, described in the section above. The obvious drawback is that this lin-
earization approach is only guaranteed to work in some neighborhood of that equilibrium
point. One simple but effective method that is used to overcome the small range of opera-
tions of a linear controller is called gain scheduling. Gain scheduling works by extending the
validity of the linearization approach to a range of operating (equilibrium) points [4]. Assum-
ing that the dynamics of the system change with each equilibrium point, then, in principle,
it is possible to linearize the system at every one of those points, design a linear controller
for each point, and lastly implement the resulting linear controllers as a single controller
whose parameters are changed with a scheduling mechanism that are monitoring the oper-
ating points.
The concept of gain scheduling had its origins in connection with flight control systems [5].
Here, the nonlinear equations of motion of the aircraft are linearized using a Jacobin lin-
earization approach about specific equilibrium points that capture key modes of operation
throughout the flight envelope. There is a more modern approach, which does not involve
Jacobian linearization of the plant dynamics, called quasi-LPV (Linear Parameter Varying).
In this approach, the plant dynamics are rewritten to disguise the nonlinearities as time-
varying parameters that are then used as scheduling variables. Afterward, linear controllers,
like PIDs, or LQR, are designed to achieve the required stability and performance require-
ments for the linearizations or quasi-LPV scheduling [6], [7]. The third step, which is the
actual gain scheduling, consists of implementing the family of controllers in such a way that
the controller gains are scheduled according to the current value of the scheduling variables.
In the example of flight control, these scheduling variables can be the dynamic pressure,
Mach number, altitude, and angle of attack [4]. Lastly, the gain-scheduled controller is im-
plemented on the nonlinear system.
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Figure 1.4 shows a block diagram of a gain-scheduling approach for the flight control of an
airship [8].

Figure 1.4: Gain scheduling block diagram [8]

Gain scheduling is based on the well-developed classic linear control theory. Consequently,
it is commonly applied these days. Additionally, certification authorities are accustomed to
gain-scheduled controllers being used in flight control systems. There are also many more
advantages of gain scheduling [5], such as:

• It can be used even on difficult nonlinear problems.

• It does not require severe assumptions on the plant model, and as such, can be used in
the absence of complete analytical plantmodels. Particularly, the linearization schedul-
ing can be used when the plant information is limited to just a few equilibrium points
and the corresponding plant linearizations.

• The design is straightforward and intuitive, as it can be executed using physical vari-
ables in the plant whereas nonlinear control design often involves coordinate transfor-
mations.

• Gain-scheduled controllers can also be made robust, using a robust controller likeH∞.
(See also [9] for a linear gain scheduled controller)

• It enables controllers to respond to rapid changes in operating conditions. The schedul-
ing variables must reflect changes in operation conditions

• Gain scheduling through linearization is often less computationally expensive thanmany
nonlinear design techniques. This is highly advantageous when there is a need to opti-
mize the cost of the aircraft.

• Lastly, it is very intuitive to evaluate the stability of a gain-scheduled controller for both
the linearization approach and the quasi-LPV approach.

The approach above also has some limitations that will be put forward in section 1.3 together
with additional limitations of other common nonlinear control methods.
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1.2.3 Feedback Linearization

Feedback linearization is another widely used approach to nonlinear control design. It has
been used successfully in the control of helicopters, high-performance aircraft and industrial
robots [10] [3].

Themain idea behind thismethod is to algebraically transform anonlinear dynamical system
into either a fully or partly linear one. This linearization differs entirely from the conventional
Jacobian linearization described in the section above. Instead, the feedback linearization is
achieved by state transformations and feedback, and as such the nonlinearities are canceled
by the system inputs.

Choosing a different state representation to simplify the form of a system’s dynamics is akin
to changing reference or coordinate frames inmechanics. Techniques like feedback lineariza-
tion work by transforming the original system models into equivalent models of a simpler
form.

The idea of feedback linearization, that is, canceling the nonlinearities and imposing linear
dynamics can be applied to nonlinear systems when they are written in the companion form.
Consider the following single-input single-output (SISO) model:

ẋ = f(x) + g(x)u, y = h(x) (1.5)

Where x ∈ Rn is the state vector, u ∈ R is the control input and y is the output. f(x) is
a nonlinear function. The objective is to find a coordinate transformation z = T (x) that
transforms the system above in the companion form also called the controllability canonical
form.

The companion form is when the above system is rewritten as:
ẋ1
...

ẋn−1

ẋn

 =


x2
...
xn

b(x)




0
...
0

a(x)

u (1.6)

As it can be seen, all the nonlinear terms nowonly affect the n-th state variable of x. Addition-
ally, the input u only affects xn too. The companion form is very useful to control problems
because the control input enters a chain of integrators and can move every state, meaning
that a system is controllable if it can be written in the companion form. This in turn allows
the control input to be isolated. Let us define the virtual control input v as:

v = b(x) + a(x)u (1.7)

This virtual input can in turn be used to control the entire system in a simple linear way. This
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is called feedback linearization. Rewritting equation 1.7:

u = a−1(x)(v − b(x)) (1.8)

The system reduces to dnx
dtn = v and by setting v to:

v = −k0x− k1
dx

dt
− k2

d2x

dt2
− . . .− kn−1

dn−1x

dtn−1
(1.9)

We can rewrite the system into a linear closed-loop system of the form:

dnx

dtn
+ kn−1

dn−1x

dtn−1
+ . . .+ k1

dx

dt
+ k0 = 0 (1.10)

By choosing the appropriate scalar positive gains ki the closed-loop system properties can be
set. This stabilization problem can also be used in a tracking task, in which x has to follow
some reference signal xr. Thereforewe can define e = x−xr and substitute e for x in equation
1.10 which can rendered exponentially stable through proper ki gain selection [4].

Once the virtual input v is found, the required input u can be found through equation 1.8.
The process of finding v is called the outer loop of feedback linearization, whereas, finding
u and inserting it into the real system is the inner loop, as can be seen in figure 1.5 It is

Figure 1.5: Block diagram of feedback input-output linearization [11]

now important to mention that the technique described above assumes that the plant can
be represented in the companion form 1.6. More often than not it is difficult to write in that
form. Notice that the figure abovementions input-output linearization. This is an alternative
to the problem just mentioned.

The key notion behind input-output linearization is to find an explicit relation between the
control input and the system outputs, which can then be applied to systems that aren’t orig-
inally represented by equation 1.6. Let’s consider the system in equation 1.5. Notice that the
output y is only indirectly related to the control input u. As such, it is difficult to see how
the input u can be designed to control the behavior of the output y. However, as was already
explained in this section, there is a way to reduce the difficulty of this task as long as a direct
relation between the system output y and the control input u can be found.
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The basic idea of the technique is to differentiate y = h(x) until u appears explicitly. The
next step is to then design u to obtain a linear relation for v. By differentiating one time:

ẏ =
∂h

∂x
ẋ = ∇h[f(x) + g(x)u] = Lfh(x) + Lgh(x)u (1.11)

Where the operator on the rightmost side of the equation is called the Lie derivative. Let’s
introduce the concept of Lie derivative as explained in [4]. Given the smooth scalar function
h(x) : Rn → R and the smooth vector field f(x) : Rn → Rn the Lie derivative can be defined
as:

Lfh(x) =
∂h

∂x
f(x) (1.12)

The Lie derivative is the derivative of h along the trajectories of the system ẋ = f(x). This
notation is convenient because it is possible to apply the Lie derivative multiple times to the
same vector field or a new one:

L0
fh(x) = h(x)

Lk
fh(x) = LfL

k−1
f = ∇[Lk−1

f h(x)]f(x)

LgLfh(x) = ∇[Lfh(x)]g(x)

(1.13)

Let us consider equation 1.11 again. IfLgh(x) ̸= 0, then the virtual control input can be taken
as v = ẏ and the equation is easily solved for u. On the other hand, if Lgh(x) = 0 then further
differentiation is necessary until u appears explicitly. IfLgLfh(x) is zero again the procedure
is repeated once again until the Lie derivative LgL

p−1
f is nonzero. At that point, the virtual

control input v is taken as the pth derivative of y, y(p). Therefore, as per equation 1.7:

y(p) = Lp
fh(x) + LgL

p−1
f h(x)u (1.14)

Finally, from equation 1.8 the control input comes as:

u =
1

LgL
p−1
f h(x)

[−Lp
fh(x) + v] (1.15)

Here, the integer p is called the relative degree of freedom of the system. The relative degree
of an nth order system is, at the very least equal to n. If n < r then there are n− r states that
don’t depend on the control input explicitly and they represent the internal dynamics of the
system. As such, these dynamics are uncontrollable. They have to be stable, i.e, bounded,
for the system to work properly. This is one of the main drawbacks of feedback linearization,
and more specifically, input-output linearization. Nevertheless, when successfully applied,
feedback linearization can be considered a reliable solution to nonlinear control, as well as
an alternative to gain scheduling. Indeed, feedback linearization became initially relevant
as an improved and simpler solution when compared with gain scheduling [12]. Between
these two techniques, feedback linearization is far less complex regarding the design, as a
scheduling mechanism is not necessary and only a single linear control law is needed.
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1.2.4 Sliding Mode Control

Sliding Mode Control (SMC) is a nonlinear control method that results from discontinuous
control. It is a robust control technique, therefore it is more suitable to deal with model
uncertainties. A switching logic is the key feature of this controller so that the closed-loop
trajectories are forced to follow a desired trajectory of a dynamic system towards an equilib-
rium point. This ”forcing” of the trajectories is called ”sliding”, and the ”sliding” is done on
a sliding manifold (or surface).
A very brief and high level mathematical summary, based on [4], [3] [13] will now be given.
Consider the second order system:

ẋ1 = x2

ẋ2 = h(x) + g(x)u
(1.16)

In which h(x) and g(x) are unknown nonlinear functions and g(x) > g0 > 0 for all x. The
intention here is to design a state feedback control law to stabilize around the origin. Let’s
suppose that this control law can be designed in a way that constrains the motion of the
system to amanifold s such that s = a1x1+x2 = 0. On this manifold, the motion is governed
by ẋ1 = −a1x1. By assigning a proper value to a1 such that a1 > 0 then we can guarantee that
x(t) tends to zero as t tends to infinity and the rate of this convergence depends on the value
of a1 chosen. Moreover, the motion on the manifold s is independent of h(x) and g(x), so the
question is how can the trajectory be forced to go to the manifold s = 0 and be maintained
there.

We know that:

ṡ = a1ẋ1 + ẋ2 = a1x2 + h(x) + g(x)u (1.17)

Supposing that h(x) and g(x) satisfy the following inequality:∣∣∣∣a1x2 + h(x)

g(x)

∣∣∣∣ ≤ ρ(x), ∀x ∈ R2 (1.18)

Where ρ(x) is some known function. Let V = 1
2s

2 be a candidate Lyapunov function for ṡ.
As such, we can write V̇ as:

V̇ = sṡ = s[a1x2 + h(x)] + g(x)su ≤ g(x)|s|ρ(x) + g(x)su (1.19)

Using the control law u = −β(x)sgn(s) in which β(x) ≥ ρ(x) + β0 with β0 > 0 and sgn(s)
being a signum function. By definition, a signum function extracts the sign of a real number,
and here it is defined as:

sgn(s) =

{ 1, s > 0

0, s = 0

−1, s < 0

(1.20)
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Then we can write V̇ as:

V̇ ≤ g(x)|s|ρ(x)− g(x)[ρ(x) + β0]ssgn(s) = −g(x)β0|s| ≤ −g0β0|s| (1.21)

Consequently, the trajectory reaches the manifold s = 0 in finite time and once it reaches, it
can’t leave it, as seen from the inequality above, V̇ ≤ −g0β0|s|.
To summarize, the motion of the trajectories consists of a reaching phase, where the trajec-
tories that start off the manifold s move towards it, and a sliding phase, during which the
trajectories move along the manifold s = 0. Figure 1.6 from [4] illustrates this idea. The

Figure 1.6: Phase portrait under sliding mode control [4]

manifold s = 0 is referred to as sliding manifold and the control law u = −β(x)sgn(s) is
what we call sliding mode control (SMC).

Sliding mode control has many advantages over some other used nonlinear control laws.
One of which is the possibility to be implemented without needing to know large amounts
of information about the dynamics of the system to be controlled, compared to feedback
linearization, and even gain scheduling to some extent. Another great advantage of sliding
mode control is that it is a robust controller, meaning that it responds well to uncertainty. In
fact, during the sliding phase of the controller, the motion is independent of h(x) and g(x).
One major issue of SMC is what is often called chattering. Chattering is caused due to im-
perfections in switching devices and delays between the time the sign s changes and the time
the control switches. Figure 1.7 exemplifies this problem. The figure portrays a trajectory
starting in the region s > 0 and heading towards the sliding manifold s = 0. It arrives at the
manifold at point a but due to the delay of the controller, the trajectory crosses the manifold
into the region s < 0. When the control eventually switches the trajectory reverses its direc-
tion and goes towards the manifold once more. It crosses the manifold before the controller
switches yet again. The process repeats and creates de zig-zag motion depicted in the figure,
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Figure 1.7: Chattering due to delay in control switching [4]

known as chattering. Chattering is unwanted, as it results in low control accuracy, high heat
losses in electrical power circuits, and high wear of mechanical parts [4]. It may also degrade
the performance of the system and lead to instability.

1.2.5 Backstepping

Backstepping is another technique for nonlinear control. It is similar to feedback lineariza-
tion, in the sense that it allows the use of linear control laws, together with the cancellation
of nonlinearities. The key difference is that backstepping is applied to systems that are in
a strick-feedback form [4]. Systems built in this form are built from subsystems that ”back
out” from another irreducible subsystem which can be stabilized with any control technique.
This ”backing out” from that irreducible subsystem to other subsystems, and stabilizing each
one with new control laws is called backstepping. The name originates from this recursive
nature. As such, backstepping offers some advantages over feedback linearization, mainly
the range of nonlinear systems to which it can be applied, and the fact that backstepping en-
sures stability at each intermediate subsystem, instead of linearizing the system as a whole,
therefore yielding less conservative control laws.

For the sake of simplicity, this section will only explain the backstepping procedure applied
to a simple, second-order, SISO system. This special case is called integrator backstepping
[4]. Consider the system:

ẋ1 = f(x1) + g(x1)x2

ẋ2 = u
(1.22)

Where (x1, x2) ∈ R2 are the system states, and the scalar u ∈ R is the control input. The
functions f and g are smooth in a domain that contains x1 = 0 and x2 = 0, and they are
also assumed to be known functions. The system just described can be viewed as a cascade
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connection of two components. The first component is the subsystem x1 with x2 as the input,
whereas the second component is the integrator x2 with u as the input. Let us suppose that
the subsystem x1 can be stabilized by a smooth state feedback control law x2 = h(x1), with
h(0) = 0, such that the origin of:

ẋ1 = f(x1) + g(x1)h(x1) (1.23)

Is asymptotically stable. Let V1(x1) be a smooth, positive definite Lyapunov function that
satisfies the inequality:

∂V1
∂x1

= [f(x1) + g(x1)h(x1)] ≤ −W (x1) (1.24)

With W (x1) being positive definite. If we add and subtract g(x1)h(x1) on the right side of
equation 1.23, we obtain the following equivalent representation of system 1.22:

ẋ1 = [f(x1) + g(x1)x2] + g(x1)[x2 − h(x1)]

ẋ2 = u
(1.25)

A change of variables can also be made, z = x2 − h(x1), which results in the system written
as follows:

ẋ1 = [f(x1) + g(x1)x2]] + h(x1)z

ż = u− ḣ
(1.26)

Going from system 1.25 to the system 1.26 can be seen as backstepping −h(x1) through the
integrator. As f ,g, and h are known functions, then the derivative of h can be found through

ḣ =
∂h

∂x1
[f(x1) + g(x1)x2] (1.27)

Changing variables again, v = u − ḣ to reduce the system to a cascade connection, we’re
finally left with

ẋ1 = [f(x1) + g(x1)x2]] + h(x1)z

ż = v
(1.28)

Notice that this final system is very similar to 1.22, with the difference being that the first
component, x1, now has an asymptotically stable origin when the input is zero. We therefore
can make use of this fact to stabilize the system as a whole. Let V2 be a candidate Lyapunov
function:

V2(x1, x2) = V (x1) +
1

2
z2 (1.29)
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Deriving, we obtain

V̇2 =
∂V

∂x1
[f(x1) + g(x1)h(x1)] +

∂V

∂x1
g(x1)z + zv ≤ −W (x1) +

∂V

∂x1
g(x1)z + zv (1.30)

By choosing

v = − ∂V

∂x1
g(x1)− kz, k > 0 (1.31)

We’re left with

V̇2 ≤ −W (x1)− kz2 (1.32)

If we recall section 1.2.1, the result above shows that the origin, x1 = 0 and z = 0, is asymp-
totically stable. And since h(0) = 0 we conclude that the origin x1 = 0 and x2 = 0 is also
asymptotically stable. By substituting v,z, and ḣ, we get the state feedback control law

u =
∂h

∂x1
[f(x1) + g(x1)x2]−

∂V

∂x1
g(x1)− k[x2 − h(x1)] (1.33)

If all the assumptions hold globally, and if V (x1) is radially unbounded, then the origin is
globally asymptotically stable. This is one of the key features of backstepping, being based
on Lyapunov stability.

The special case aforementioned can be scaled up to higher order systems via the recursive
application of integrator backstepping. In this case, there are many subsystems to backstep
through, each one being stabilized until the final one is reached.

1.3 Limitations of conventional methods

The methods mentioned in the previous sections all have some limitations, some of which
have already been mentioned throughout and will be summarized in this section. Most of
themhave to dowith the complexity of themethod. Take gain scheduling for instance. While
it may often be straightforward and computationally cheap, it’s not a very good controller for
systemswith significant nonlinearities as it requires a higher number of controllers to reduce
performance degradation at each operating point. At first glance, this seems to go against
the purpose of gain scheduling, making the controller more complex for the designer, while
also demanding higher computational power. This makes gain scheduling a very specific
controller that might only be applied to nonlinear systems which aren’t that complex.

Feedback linearization was initially developed as an improved solution to gain scheduling.
Since it doesn’t require a scheduling mechanism, it could in principle be less complex to
implement in the cases mentioned above, with high nonlinearities. However, it has a very
important limitation, which has to do with how well the model of the system corresponds to
the real system. The process of designing a controller usually starts with creating a reliable
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model of the system to be controlled. As such, models don’t always capture themathematical
descriptions of highly nonlinear systems.

Sliding mode control, on the other hand, doesn’t need as much information about the dy-
namics of the system as feedback linearization and can be easily tuned by the designer. Ad-
ditionally to being easier to implement, it is also a robust controller, responding very well
to uncertainty. However, sliding mode control requires extra care when designing, as an
aggressive controller of this kind often leads to chattering, resulting in a loss of performance.

Backstepping is another controller that is said to be robust and can handle uncertainties
to some degree. It is similar to sliding mode control in the sense that the stability is guar-
anteed by a Lyapunov function, with the additional feature that it is asymptotically stable.
Nonetheless, it suffers from the same limitations as some of the other controllers. Like feed-
back linearization, backstepping needs information about all system states. Furthermore,
it is harder to implement as it requires a higher level of mathematical understanding than
some other methods.

All in all, while the methods prior mentioned all provide great solutions to nonlinear control
design, they also come with some limitations. Whether their limitations might be related to
the design complexity or the extent they can be used to control a nonlinear system, one can
begin to ask if there might be a nonlinear controller that is both fast and easy to implement,
while also being robust and with great performance.

1.4 Objectives of the thesis

In this section, the objective of this dissertation can be explained. It can be divided into two
specific objectives;

• To combine two very common control techniques, therefore obtaining a nonlinear ro-
bust controller, based onH∞ control.

• To use data from the aforementioned controller in order to design an improved neural
controller to be used in two models, the attitude control model, and the orbit control
model.

By validating the neural controller when used in attitude and orbit control, the combination
of the two techniques will also be validated.

1.5 Dissertation Outline

The present chapter introduced themainmotivation behind this dissertation, as well as a re-
view of the state-of-the-art on nonlinear control. The remaining structure of this document
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can be better understood below.
Chapter 2 introduces the reader to the control techniques used to design the controller. It
also adds some theoretical background to complement concepts already described in section
1.2.
Chapter 3 exposes the model of the first application, the attitude control model. It starts
by providing the dynamic equations for a satellite and the model is then developed, with
all the necessary matrices, so that the algorithm described in chapter 2 can be applicable.
Afterwards, some background on neural networks will be provided, and the specific neural
controller architecture for the attitude control problem will be described.
Chapter 4 will expose the equations of relativemotion for a chaser satellite, relative to a point
in the circular orbit that was chosen to be tracked. The equations of motion for a satellite in
an Earth-centered inertial frame will also be written. The rest of the chapter is similar to
chapter 3.
Chapter 5 will showcase the simulation results for both applications. And finally, chapter 6
will make some concluding remarks regarding the results obtained, and possible improve-
ments to be made in future work.
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Chapter 2

Nonlinear Robust Control

In this chapter, a pseudolinear control technique, and a robust control technique will be ex-
plained. The robust control technique will be integrated into the pseudolinear method in
question and they will be used together so that a nonlinear robust controller can be synthe-
sized. Firstly, some notions of controllability and observability will be given. Afterwards,
some background on the nonlinear control model will be concisely summarized followed by
the robust control technique. Lastly, some background on neural networks will also be pro-
vided.

2.1 Stability, Controllability and Observability

Although some remarks about stability have already been made, this section will emphasize
what is needed to have stable, controllable, and observable. Since the controller to be de-
signed is not linear, these conditions have to be tested each time.

2.1.1 Stability

A system is said to be stable if the real parts of the eigenvalues of matrix A are negative, that
is, given the dynamic system ẋ = Ax, said system is stable if Re(λ) < 0.

2.1.2 Controllability

A system is said to be controllable if it is possible, using a controller, to move the system
between any two arbitrarily defined states in a finite time. Moreover, a system is said to
be stabilizable if not only it is controllable, but it is also possible to drive the system to the
steady state. To test the controllability of a system, a simple condition needs to be satisfied.
Consider the following system:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2.1)

With the respective controllability matrix Co:

Co = [B AB A2B · · · An−1B] (2.2)

Where n is the number of states in the state vector.
If the controllability matrix has full rank, then the system is controllable, i.e, the system is
stable if rank(Co) = n.
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2.1.3 Observability

A system is said to be observable if the state of the system x(t) can be determined given the
input u(t) and the output y(t). Conversely, if a system is not observable, then that means
that some or all states cannot be determined by only measuring the output and knowing the
input.

Observability is a dual notion of controllability, as such, the condition to be satisfied for the
system to be observable is very similar to the controllability condition.
Given the observability matrix O:

O =



C

CA

CA2

...
CAn−1


(2.3)

The system is observable if rank(O) = n.

2.2 Pseudolinear Control Modelling

In this dissertation, the nonlinear controller is designed using a simple but effective tech-
nique called the State-Dependent Riccati EquationMethod (SDRE), which turns a nonlinear
system into a pseudolinear system. By allowing nonlinearities in the system states, it pro-
vides great design versatility through the use of state-dependent coefficient (SDC) matrices
[14]. To achieve this, the method relies on factorization (parametrization)of the nonlinear
dynamics into the state vector and the product of a matrix-valued function that is state de-
pendent. This brings the nonlinear system to a (nonunique) linear structure having SDC
matrices. These pseudolinear matrices are then used to solve an algebraic Riccati equation
(ARE) online to obtain a suboptimal control law. Since the matrices vary with every point in
state-space, then the ARE has to give a different solution for every point as well [15].

Considering the following nonlinear model:

ẋ = f(x) +B(x)u(t), x(0) = x0 (2.4)

Where x ∈ Rn is the state vector and u ∈ Rm is the input vector and t ∈ [0,∞[. If it is assumed
that f(0) = 0 and f(·) ∈ C1(Rn) then a continuous nonlinear matrix function A(x) always
exists such that:

f(x) = A(x)x (2.5)

Where A : Rn → Rn×m can be found by mathematical factorization and is nonunique when
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n > 1. Hence, the nonlinear model 2.4 becomes:

ẋ = A(x)x(t) +B(x)u(t), x(0) = x0 (2.6)

Which is linear in its structure, with A(x) and B(x) being SDC or pseudolinear matrices. A
control law can then be written as:

u(x) = k(x) = K(x)x, u(0) = 0 (2.7)

In which k(·) ∈ C1(Rn) is intended to minimize a given cost function. Therefore, the closed-
loop dynamics matrix of the model can be written as:

ACL = A(x)−B(x)K(x) (2.8)

The application of any linear control synthesismethod to the pseudolinear SDC structure in
2.6, inwhichA(x) andB(x) are treated as constantmatrices, forms an extended linearization
control method, or also known as apparent linearization [14]. The ACL matrix is a Hurwitz
matrix, that is, all of the real parts of its eigenvalues are negative, therefore, the system is
stable.

2.2.1 Solution

The Hamilton-Jacobian-Bell (HJB) equation gives a necessary and sufficient condition for
optimality of control concerning a loss function. Considering the following formulation of
the HJB equation described in [14]:

∂V T (x)

∂x
[f(x) +B(x)u] +

1

2
[xTQ(x)x+ uTR(x)x] = 0 (2.9)

It has been shown that the optimal control is the feedback:

u∗(x) = −R−1(x)BT (x)
∂V T (x)

∂x
(2.10)

And that locally, ∂V T (0)
∂x = 0, so ∂V T (x)

∂x can be written as:

∂V T (x)

∂x
= P (x)x (2.11)

WhereP (x) is amatrix that is a solution to aRiccati equation that will be explained in chapter
2.3. Therefore, the gain matrixK(x) is:

K(x) = R−1(x)BT (x)P (x) (2.12)

Where P (x) is the solution to an algebraic Riccati equation.

The pseudolinear (SDRE) approach provides an approximation to the solution of the HJB
equation and yields a suboptimal feedback control law. At any given time, the pseudolinear
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algorithm simply involves solving the Riccati equation and applying the control at x, and as
such, is simpler than solving the HJB equation.

It is important to understand that there is a necessary condition on f(x) and B(x) for the
existence of a feedback matrixK(x) that results in ACL being pointwise Hurwitz [16].

Condition 1: A C1(R) control law is recoverable (obtained from a given design method)
by pseudolinear (SDRE) control in a region Ω if there exists a pointwise stabilizable SDC
parametrization {A(x), B(x)} such that the closed-loop dynamics matrix ACL is pointwise
Hurwitz in Ω, and the gain matrixK(x) satisfies the pointwise minimum-phase property in
Ω, that is, the zeros of the loop gain K(x)[sI − A(x)]−1B(x) lie in the closed left half plane
Re(s) ≤ 0.

One of themain advantages of the pseudolinearmethod is the degrees of freedom that it con-
tains. For instance, the weighting matrices Q(x) and R(x) can be tweaked which can result
in a faster or slower system regulation with stronger or weaker control effort, for example.
In addition, the nonuniqueness of the matrix A(x) parametrization also provides great flex-
ibility.

Themethod described herein has also been extended forH∞ control [17], which is the robust
controller to be described in the next section.

2.3 Robust Control

Robust control is a possible approach to designing an accurate control system in the pres-
ence of significant plant uncertainties. The feature that a control system must possess for
it to operate properly in realistic situations is defined as robustness. If a controller can be
designed in such a way that the system is controlled and remains stable when its parameters
vary within certain expected limits, then can be said to be robust. One of the most known ro-
bust control methods for sensitivity-optimization ofmultivariable systems is theH∞ method
[18]. TheH∞ has not only been applied to orbit and attitude control systems, but it has also
served as a robust estimator [19].

2.3.1 H∞ controller

Let us consider the following schematic representation of theH∞ controller:

The plant P contains two inputs, w the disturbance signal, and u the controlled input, de-
pendent on the controller K It has two outputs, z the performance output that we want to
minimize, and v the measured output. Figure 2.1 shows a schematic representation of the
system.

The H∞ problem consists of finding a solution to an optimization problem and finding the
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Figure 2.1: Structure of theH∞ control system

controller that solves this optimization in a way that minimizes the H∞ norm of the closed-
loop transfer matrix function from w to z. This is equivalent to saying that the controller
finds a solution that allows the minimization of the effect the disturbance has on the per-
formance output, that is, the measured output. The H∞ is defined as the worst-case gain in
terms of energy that the system can have [20]. Therefore, designing a controller prepared
to work in this worst-case scenario ensures that it performs well in regular conditions with
high disturbance.

To solve this problem, let us consider the following linear time-invariant system:

dx

dt
(t) = Ax(t) +Bu(t) +Dw(t),

z(t) = Ex(t)

(2.13)

Where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, w(t) ∈ Rp is the disturbance, or
exogenous signal, and z(t) ∈ Rq is the output. The A, B, D, and E are constant matrices.

The transfer function in question comes written as:

Tw→z(s) = E[sI − (A+BK)]−1D (2.14)

The problem is solved by finding a matrix K that minimizes the H∞ norm. The norm is
simply the maximum singular value of a scalar transfer function in the Hardy space and is
usually written as follows:

||X||∞ = sup{||X(jω)|| : ω ∈ R} (2.15)

With ||X|| denoting the maximum singular value of any matrixX. Essentially, the controller
will try to bring down the maximum of the transfer function 2.14. The solution to the afore-
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mentioned problem is hard to achieve, as some norms hard difficult to minimize. One pos-
sible solution is to denote a value γ such that γ is as close to ||X||∞ as desired. Therefore:

||Tw→z(s)||∞ < γ (2.16)

Once a desiredKmatrix (controller gain) is found, then thismatrix is used to find the control
inputs that can then be fed back to the plant, as seen in figure 2.1. The control inputs are
written as:

uk = K(xk − xeq) (2.17)

Where xeq is the equilibrium or reference state vector, that is, the state vector that the con-
troller is intended to achieve, with k ∈ N0 representing the point in time. The reference state
vector depends on the model and as it will be seen in the following chapters, for this disser-
tation xeq is zero for every state variable, with some caveats. The final step now is to actually
find a solution to equation 2.16, which means findingK.

There are many possible solutions, some involve using linear matrix inequalities (LMI) [20]
while others involve solving a Riccati equation [21]. This dissertation follows the latter ap-
proach. It has been shown in [21] that the gain K can be found by solving a given Riccati
equation as long as the following assumptions are made:

Assumption 1: The measured output is the state x(t), i.e, E is an identity matrix.
Assumption 2: There is no direct transmission from w(t) to z(t), i.e, the transfer functions
from u and w to the controlled output z are strictly proper, meaning that the degree of the
numerator is less than that of the denominator.

Then the following definitions guarantee a solutionK:

Definition 1: Let a constant γ > 0 be given. The system is said to be stabilizable via state
feedback with disturbance attenuation γ if there exists a controller K such that the closed-
loop system is internally stable and the closed-loop transfer function from the disturbance w
to the controlled output z satisfies T ′

s(−jω)Ts(jω) ≤ γ2I for all γ ∈ R.
Definition 2: LetQ ∈ Rn×n andR ∈ Rm×m be given positive definite matrices. For a given
constant gamma > 0, the system described in 2.13 is said to satisfy ARE with attenuation
constant γ if there exists ε > 0 such that the Riccati equation:

PA+A′P − 1

ε
PBR−1B′P +

1

γ
PDD′P +

1

γ
E′E + εQ = 0 (2.18)

has a positive definite solution P ∈ Rn×n.
Definition 1 can be viewed as a version of the Zames’ small-gain theorem to a control system
[4]. The smaller the product, the more robust the system is. In the second definition, the
constant ε has to do with the saturation of the actuators. Additionally, the state-feedback
matrixK = −R−1B′P

2ε satisfies both requirements. SubstitutingK in equation 2.17 yields the
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control input to be fed back into the system.

2.3.2 Solution to the Riccati equation

Let equation 2.18 be written as function of P , that is, φ(P ) = 0.

P can be found by using Banach’s fixed point method [22]:

Ṗ = φ(P ) (2.19)

To find the solution to this problem, we first need to start with a stabilizing control solution:

PLQR = P0 = P (t0) (2.20)

WherePLQR is the solution to the Riccati equation but with γ = ∞ and ε = 1. Notice that this
form of the Riccati equation is the equation of the LQR (Linear quadratic regulator) problem,
in which the solution can be easily found with a single line of code in MATLAB. In short, the
first solution to 2.19 is not robust, that is, it is transparent to the perturbations. The final
solution must now be found through iteration.

Denote P∞ as the solution through iteration of the real Riccati equation concerning the H∞

problem. Then the long term value of P , i.e P∞ = limt→∞ f(t).
In this case, P∞ is constant, therefore Ṗ∞ = 0 = φ(P∞).

Mann Iteration

The first step of the Mann Iteration is as follows [23]:

P k+1 = Pk + λφ(Pk) (2.21)

With λ being the step. For this dissertation, λ = 0.01. The second step of the iteration is
written as:

Pk+1 = βPk + (1− β)
φ(Pk) + φ(P k+1)

2
(2.22)

Where β is a constant very close to one, for example, β = 0.97.
All that is needed now is a stopping condition. If ||Pk+1 − Pk||F ≤ error then P∞ ≈ Pk+1, in
which ||Pk+1 − Pk||F is the Frobenius norm and error is arbitrarly chosen. Due to computa-
tional constraints, error = 0.001.

Once the final value of P , which is now P∞, is found, this matrix will be used inK = −R−1B′P
2ε

withK being used in the control law expressed in 2.17 and fed back into the system which is
now stabilized.
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An H∞ controller can be reliable even when considering environments with high levels of
uncertainty/disturbances, which can be advantageous when compared with classical control
techniques such as LQR as it can potentially lead to less fuel consumption [24].

The reader can now come to realize that the controller described herein, and the pseudolinear
model described in the first section of this chapter, both involve solving Riccati equations. As
such, when applied together, what results is a sufficiently robust controller that can also cap-
ture the nonlinearities of a system. Indeed, this approach has already proven to be effective
in designing advanced guidance laws and missile autopilots [25] [26] [27].

2.4 Neural Network Design Concepts

Chapter 1made the point that nonlinear controllers show better performance and robustness
than their linear counterparts, whilst also being more useful in controlling real-life systems.
Despite this, they too have some shortcomings. The controller described in sections 2.2 and
2.3 combines a nonlinear control technique as well as a robust control technique. The final
controller needs to perform a relatively slow iteration to find the control inputs. This itera-
tion needs to be redone at every point in state space. Sometimes it computes a solution very
quickly, other times it can take longer. Gradually these computing times add up so for that
reason there has been significant research and interest in the use of neural networks to con-
trol nonlinear systems. Neural networks have the promise of being faster and more robust
with the downside of having a long training time [28],[29].

Neural networks often called Artificial neural networks (ANN), are parallel computational
structures, meaning that several calculations are carried out simultaneously, giving them the
ability to approximate highly nonlinear functions, as long as they can be trained with enough
data [30].

Consider the representation of a basic neuron model in figure 2.2.

Figure 2.2: (A) Representation of a mathematical artificial neuron model. (B) Simplified representation of an
artificial neuron model [31].

The output y of this neuron can be represented by:

y = ϕ(z) = ϕ(wTx+ b) (2.23)

There are four key parameters when talking about a neuron. The inputs xi; in the example
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above there are three inputs. Each of these inputs will have a weight, wi, that reflects the
importance of that input. The value of the weights will change during the training process,
to achieve the desired output. To find the output z we take the weighted sum of all the inputs
and sometimes add a bias b. Once the sum z is obtained, it is passed through a nonlinear
activation function ϕ to produce the output y. The activation function says whether a neuron
is activated or not. The bias b can be used to shift the activation function andhave an activated
neuron in cases where it wouldn’t usually be.

The example aforementioned only concerns a single neuron. To design a controller, one
needs an actual neural network. There are many types of neural networks, such as feedfor-
ward neural networks, their descendants, recurrent neural networks, convolutional neural
networks, and much more [31]. In this dissertation, it was decided that the simplest archi-
tecture, a feedforward neural network, would suffice. In a feedforward neural network, in-
formation always moves in one direction, never going back. More precisely, the connections
between the neurons never form a cycle. As such, since the pseudolinear technique (SDRE)
described in 2.2 does not require information about the previous states of the system, this
kind of structure can be used [30].

Figure 2.3 illustrates two examples of a feedforward neural network.

Figure 2.3: (A) Shallow feedforward neural network. (B) Deep feedforward neural network with three hidden
layers [31].

Supervised training is usually the training paradigmused to train shallow feedforward neural
networks, meaning that the training uses sets of paired inputs and desired outputs. During
training, a cost function needs to be minimized. The cost function is the sum of the errors in
each layer and reflects the difference between the desired output and the calculated output at
a given iteration. This cost function is minimized by calculating its derivative (gradient) as-
sociated with a given state with respect to the weights, which are updated with each iteration.
This process is called backpropagation.
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Some additionally key concepts that will be useful to understand the neural network design:

• Learning rate - a parameter that reflects the rate atwhich themodel corrects theweights.
A higher learning rate will shorten training time, at expense of lower accuracy. Con-
versely, a lower learning rate will take longer but will ultimately make a model more
accurate.

• Epochs - Each time the entire dataset is passed forward and backward is called an
epoch.

• Batch size - The entire dataset is usually too large to pass all at once, therefore, it needs
to be divided into batches to pass through the network. The batch size reflects how
many training examples are in a batch

• Iteration - Number of batches needed to complete 1 epoch.
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Chapter 3

Neural Control of Attitude Dynamics

This dissertationwill showcase two applications of themethods described in chapter 2, which
will be used in this section to generate some data, with the purpose of training a neural net-
work for the stabilization of a spacecraft’s attitude.
In section 3.1, the attitude control model for the training will be explained and in section 3.2,
the specific network designed for this application will be summarized. Finally, in section 3.3
both the training algorithm and the generation of training data will be explained.

3.1 Attitude Control Modelling

The first application will be for the attitude control of a spacecraft. First, we need to define a
model that can capture the mathematical intricacies of an attitude system. A rigid spacecraft
is usually controlled by three gas jet actuators which can be used to accomplish arbitrary
reorientation maneuvers of the spacecraft using torque feedback [32].

Let these torques be defined as:

τ = [τ1 τ2 τ3]
T (3.1)

And let the control vector be defined as:

u =

u1u2
u3

 =


τ1
J1
τ2
J2
τ3
J3

 (3.2)

Where

J =

J1 0 0

0 J2 0

0 0 J3

 (3.3)

Is the inertia matrix of a given spacecraft, composed of moments of inertia, in a coordinate
frame defined by its principal axes [32].

Letω1, ω2, ω3 be the principal axis components of the absolute angular velocityω of the space-
craft. We can write the equations that describe the evolution of the angular velocity of a
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spacecraft as follows:

ω̇1 = b1ω2ω3 + u1

ω̇2 = b2ω1ω3 + u2

ω̇3 = b3ω1ω2 + βu3

(3.4)

With

b1 =
J2 − J3
J1

b2 =
J3 − J1
J2

b3 =
J1 − J2
J3

(3.5)

And J1 = 86.35kg.m2, J2 = 85.15kg.m2, J3 = 114.10kg.m2 as per [33]. β is a parameter that
represents the operating effectiveness of the actuator related to the corresponding precession
axis [33]. In this dissertation, β = 0.5

To express the attitude of a satellite with reference to some defined frame in space, it is com-
mon to use Euler angles. Below are the equations that describe the evolution of the Euler
angles, taken from [33].

θ̇ = (ω1 sin θ − ω3 cos θ) tanϕ+ ω2

ϕ̇ = (ω1 cos θ + ω3 sin θ)

ψ̇ = −(ω1 sin θ − ω3 cos θ)

cosϕ

(3.6)

Euler angles are very useful for small attitude-angle maneuvering. However, when dealing
with larger attitude changes, the attitude kinematics are more effectively expressed using
quaternions [34]. This is mainly due to a phenomenon called gimbal lock. Gimbal lock sin-
gularity is the loss of one degree of freedomwhich can happen in equations 3.6 when ϕ = 90.
On that note, many attitude control systems circumvent this problem by using quaternions
instead of Euler angles. If the Euler angles are converted to quaternions then we can write
the dynamical model of quaternions as follows:

η̇0

η̇1

η̇2

η̇3

 =
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0



η0

η1

η2

η3

 =M(ω)η (3.7)

Where η = [η0 η1 η2 η3]
T is the quaternion vector. We can now combine the quaternions

dynamics model described above with the angular velocity dynamics model and get the com-
plete attitude model of a satellite. Let x = [ω1 ω2 ω3 η0 η1 η2 η3]

T , be our state vector. The
aim now is to write the attitude model in such a way that the techniques described in chapter
2 can be applied.

Notice that both the set of equations 3.4 and 3.7 showadependency onω that can be exploited
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to write the model in the pseudolinear form that was described in section 2.2.

The model will be written in the following form:

ẋ = A(x)x(t) +Bu(t) +Dw(t)

z(t) = Ex(t)
(3.8)

With A(x) being parametrized as

A(x) =



0 b1ω3 0 0 0 0 0

0 0 b2ω1 0 0 0 0

b3ω2 0 0 0 0 0 0

0 0 0 0 −ω1
2 −ω2

2 −ω3
2

0 0 0 ω1
2 0 ω3

2 −ω2
2

0 0 0 ω2
2 −ω3

2 0 ω1
2

0 0 0 ω3
2

ω2
2 −ω1

2 0


(3.9)

Notice that the matrix A(x) explicitly depends on the state vector x more specifically, it de-
pends on the angular velocities w.

Matrix B is constant and is written as

B =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0


(3.10)

As matrix B shows, the control inputs will act only on the angular velocities, but since the
quaternions change with w, as shown in matrix A, they too will be stabilized, although indi-
rectly, through the control inputs.

MatrixD is written as

D =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(3.11)

The matrix D shows that the perturbations will only affect the angular velocities. Lastly,
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matrix E is an identity matrix of size n× n where n is the size of x.

We now have the complete attitude control model that will be used to generate the training
data. In the following section, the specific neural network design will be explained.

3.2 Neural Network for Attitude Control

The specific neural network design for attitude control can now be described.

The neural controller will be composed of three shallow (one hidden layer) neural networks.
The reason for this is to avoid the need for a deep single network. Deep neural networks usu-
ally cost more time and require more computational power. By using three separate neural
networks, one for each control input, we can theoretically achieve lower training time. Each
of these networks will have seven inputs (the state vector x described previously, and a single
output, the control input u1. As for the hidden layer, a good rule of thumb is to use a number
of neurons equal to the mean between the input layer and the output layer, therefore, four
neurons will be used. The activation function for each neuron will be the sigmoid function,
which, as the name suggests, has a sigmoid curve. Lastly, the learning rate and the number
of epochs had to be chosen through trial and error, as either overfitting or underfitting was
occurring.

The neural controller was coded using a Python library called Tensorflow that automatically
defined the batch size. Additionally, this library offersmany optimizers to pick from, so a very
common one called Adam Optimizer was used, which employs a stochastic gradient descent
algorithm.

3.3 Data generation

Sections 3.1 and 3.2 covered the theory behind attitude neural control. This sectionwill make
a brief recap and explain how the training data is generated.

To train the neural networks we need two kinds of data. The inputs, which will be various
state vectors of the form x = [ω1 ω2 ω3 θ ϕ ψ], and the outputs, u = [u1 u2 u3]. The inputs
will be generated randomly within some boundaries and the outputs will be calculated using
the methods described in chapter 2 applied to the attitude model described in section 3.1.

The state vector x is composed of the angular velocities represented in rad/s and the Euler
angles represented in rad. The Euler angles are bounded by nature, as such they will be
randomly generated within the following limits:

−π ≤, θ, ϕ, ψ ≤ π (3.12)

As for the angular velocities, theoretically, they can have any value, however, it was chosen
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the same interval of values as the Euler angles.

Once enough inputs are generated, a conversion from Euler angles to quaternions needs to
be done because the attitude control model described in section 3.1 uses quaternions instead
of Euler angles. This can be done either by using the following set of equations:

η0 = cos(
ϕ

2
) cos(

θ

2
) cos(

ψ

2
) + sin(

ϕ

2
) sin(

θ

2
) sin(

ψ

2
)

η1 = sin(
ϕ

2
) cos(

θ

2
) cos(

ψ

2
)− cos(

ϕ

2
) sin(

θ

2
) sin(

ψ

2
)

η2 = cos(
ϕ

2
) sin(

θ

2
) cos(

ψ

2
) + sin(

ϕ

2
) cos(

θ

2
) sin(

ψ

2
)

η3 = cos(
ϕ

2
) cos(

θ

2
) sin(

ψ

2
)− sin(

ϕ

2
) sin(

θ

2
) cos(

ψ

2
)

(3.13)

Or by using a simple function in any programming language. In this case, it was done using
the function eul2quat inMATLAB.

The control inputs, which are the outputs of the neural network, are found by applying the
method described in chapter 2, with a small caveat. Equation 2.17 finds uk by multiplying
the matrix K with xk − xeq where xeq is the equilibrium state which is a vector of zeros, as-
suming we’re dealing with Euler angles. Since the conversion from Euler to quaternions had
to be done, the equilibrium is no longer a vector of zeros, but a vector with the quaternions
corresponding to the Euler angles being zero. As such, uk is equal to:

uk = K(xk − [0 0 0 1 0 0 0]T ) (3.14)

By applying the methods described in chapter 2 the initial state vectors will be driven to the
equilibrium state. The last step is to concatenate all these state vectors with the respective
control inputs and transfer this data to a Python file, to be used in the training of the neural
networks.
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Chapter 4

Neural Control of Orbital Trajectories

The second application of the method described in chapter 2 will be to control a spacecraft
in orbit. The orbit chosen was a Low Earth Orbit (LEO).
In section 4.1 the orbital control model will be explained. Since this application will deal
with two different reference frames, in section 4.1.3 the reference frame transformation will
be put forward. Lastly, in section 4.2 the neural controller design will be described, similarly
to section 3.2, with some small differences.

4.1 Orbit Control Modelling

In this section two very important models will be explained. In subsection 4.1.1 the relative
motion dynamics will be explained. Usually, the idea behind thismodel is to write themotion
of a satellite relative to another satellite in orbit, a common chaser-target problem. However,
it can also be used if we imagine that there is no target satellite in orbit. Instead, there is a
particle whose position the satellite needs to follow.

This model will then be combined with the equations of motion of a satellite in a real orbit,
outlined in subsection 4.1.2, with a real perturbation. At every time interval, the position will
be calculated using this second model, and the first model will be updated, with the intent
to drive the relative position of the satellite to zero, meaning that the satellite is now in the
intended orbit.

4.1.1 Relative Motion Dynamics

Let us assume that the target satellite is in a circular orbit. Denoting r as the vector from the
target satellite to the chaser satellite, and R as the vector from the center of the Earth to the
target satellite. The relativemotion of the chaser satellite in an Earth-centered inertial frame
can be written as [35]:

d2r
dt

= −µ
(

R+ r
|R+ r|3

− R
|R|3

)
+ af (4.1)

Where µ = 3.986× 105 km3

s2
is the Earth’s gravitational parameter and af is the acceleration

vector due to thrust forces. Considering the target-orbital coordinate system x−y−z shown
in figure 4.1, then r can be written as r = [x y z]T then equation 4.1 can be written for a
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Figure 4.1: Spacecraft rendezvous system and coordinates [36].

circular orbit as [35]:

ẍÿ
z̈

 =


2ωż + ω2x− µx

|R+r|3

− µy
|R+r|3

ω2z − 2ωẋ− µ
(

z−R
|R+r|3 + 1

R2

)
+ af (4.2)

Where ω is the orbital rate which is equal to 2π
T with T being the orbital period, and R+ r =

[x, y, z −R]. Recall equation 3.8 from section 3.1:

ẋ = A(x)x(t) +Bu(t) +Dw(t)

z(t) = Ex(t)
(4.3)

Where u(t) is now af , our acceleration vector due to thrust forces. To apply the method
described in chapter 2, the model needs to be written in a pseudolinear state-space form,
with A(x) being a parametrized matrix. Looking at equation 4.2, one can notice that some
of its elements already depend on the state X = [x ẋ z ż y ẏ ]. To use this representation,
the elements need to either have state variables either in the numerator, where they will
be constant whilst in state-space matrix form, or both in the numerator and denominator,
where theywill explicitly depend on some state variables whilst inmatrix form. However, the
element µR

|R+r|3 doesn’t have any state variable on the numerator. Additionally, the element
− µ

R2 is a constant and is neither multiplied nor divided by any state variable of X. This last
issue can be easily solved by considering that constant as a perturbation and adding it to
matrixD. The first issue however needs to be dealt with differently. Writing that element as:

µR

|R+ r|3
=

µRx2

|R+ r|3(1 + x2)
(4.4)

Will make sure that there is a state variable, in this case, x in the numerator, when the
parametrization is made. Looking at this variation, it is easy to see that as x tends to in-
finity, the value of the element will be multiplied by one, therefore minimizing the effects of
this variation. On the other hand, as x tends to zero, so does the value of that element.
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Finally, the model can be written as it is in equation 4.3, with A(x) being

A(x) =



0 1 0 0 0 0

ω2 − µ
|x,y,(z−R)|3 0 0 0 0 2ω

0 0 0 1 0 0

0 0 − µ
|x,y,(z−R)|3 0 0 0

0 0 0 0 0 1
µx

|x,y,(z−R)|3(1+x2)
−2ω 0 0 ω2 − µ

|x,y,(z−R)|3 0


(4.5)

B being

B =



0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1


(4.6)

TheD matrix is

D =



0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 − µ
R2


(4.7)

Lastly, once again, E is an identity matrix with size n × n, where n is the size of the state
vectorX.

The relative motion model is now completely defined. The next section will deal with the
orbital model.

4.1.2 Equations of motion

The equations of motion for a satellite in the Earth’s spherical gravitational field, together
with the thrust accelerations can be expressed in an inertial spherical coordinate system as
[37]:

r̈ = rθ̇2 sin2 ϕ+ rϕ̇2 − µ

r2
+ ur

θ̈ =
−2ṙθ̇

r
− 2θ̇ϕ̇ cotϕ+

uθ
r sinϕ

ϕ̈ =
−2ṙϕ̇

r
+ θ̇2 sinϕ cosϕ+

uϕ
r

(4.8)
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Where µ is the Earth’s gravitational parameter, r is the distance from the spacecraft to the
center of the Earth, θ is the angle measured from the X-axis in the XY-plane, and ϕ is the
inclination measured from the Z-axis to the vector r. ur, uθ and uϕ are thrust acceleration
components whose directions are îr, îθ and îϕ respectively, and are represented in figure 4.2
[37].

Figure 4.2: Motion of spacecraft in the Earth’s spherical coordinate system [37].

4.1.3 Coordinate transformation

As it was shown, this model will use two different reference frames. An earth-centered iner-
tial (ECI) frame of reference, and the rotating frame of reference that can be seen in figure
4.1.

As such, there has to be a rotation matrix that can transform the vectors from one frame to
another. Consider the state vector x in the ECI frame, which represents the position and
velocity in the reference orbit

x = [r v]T (4.9)

Where r = [x y z]T is the position vector and v = [ẋ ẏ ż]T is the velocity vector. The unit
vectors of the rotating frame of reference can be calculated as

z = − r

||r||

y = − r × v

||r × v||
x = y × z

(4.10)

And the rotation matrix from the ECI frame to the rotating frame can be written as

A = [x y z]T (4.11)
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As the reference point in the orbit changes, so does the rotation matrix A.

4.1.4 J2 Perturbation

To test the robustness of the controller, a perturbation needs to be added to the equations
aforementioned. One of the most important perturbations are the ones due to the Earth’s
gravitational potentials.

In this dissertation, the perturbation caused by the second zonal harmonic, J2 will be con-
sidered. The J2 perturbation reflects the oblation of the Earth due to its rotation. Oblation
means that the Earth has extra width, making it flatter than a perfect sphere.

The Earth’s gravitational potentials can be written as:

V =
µ

r
{1− J2(

ac
r
P2 cosϕ)} (4.12)

In which J2 equals 1.0826× 10−3, ae is the equatorial radius of the Earth, equal to 6378 km,
and P2 cosϕ is a Legendre polynomial function. The gravitational accelerations can be writ-
ten by computing the gradient of the gravitational potentials

a = ∇V =
∂V

∂r
îr +

1

r sinϕ

∂V

∂θ
îθ +

1

r

∂V

∂ϕ
îϕ (4.13)

Therefore, equations 4.8 can be rewritten by taking into account the J2 perturbation. The
equations turn into the following:

r̈ = rθ̇2 sin2 ϕ+ rϕ̇2 − µ

r2
+

3

2
µJ2a

2
e

3 cos2 ϕ− 1

r4
+ ur

θ̈ =
−2ṙθ̇

r
− 2θ̇ϕ̇ cotϕ+

uθ
r sinϕ

ϕ̈ =
−2ṙ ˙phi

r
+ θ̇2 sinϕ cosϕ+ 3µJ2

a2e
r5

cosϕ sinϕ+
uϕ
r

(4.14)

Lastly, to aid in the simulation, equations 4.14 will be rewritten in state-space notation, by
transforming them into a set of first-order differential equations, doubling the number of
equations, and attributing the following new variables:

x1 = r

x2 = ṙ

x3 = θ

x4 = θ̇

x5 = ϕ

x6 = ϕ̇

(4.15)
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And the state-space notation comes written as:

ẋ1 = x2

ẋ2 = x1x
2
2 sinx

2
5 + x1x

2
6 −

µ

x21
+

3

2
µJ2a

2
e

3 cosx25 − 1

x41
+ ux1

ẋ3 = x4

ẋ4 =
−2x2x4
x1

− 2x4x6 cotx5 +
ux3

x1 sinx5

ẋ5 = x6

ẋ6 =
−2x2x6
x1

+ x24 sinx5 cosx5 + 3µJ2
a2e
x51

cosx5 sinx5 +
ux5

x1

(4.16)

4.2 Neural Network for Orbit Control

The neural network architecture for orbit control is similar to the architecture for attitude
control, with the difference being that in this case there are only six inputs in the network.
Similarly, three neural networks to train for each control input ui, and there will be a hidden
layer with four neurons.
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Chapter 5

Simulation Results

This chapter will focus on exhibiting the simulation results for both the applications de-
scribed in the previous chapters with the purpose of validating the theory mentioned in said
chapters.
Section 5.1 will present the numerical method chosen to solve the differential equations that
characterize both models. Sections 5.2 and 5.3 will showcase the simulation results for the
attitude control and orbit control, respectively, the former will showcase the generated state
vectors, while the latter will display the chosen reference orbit to track.

The results were obtained through the use of MATLAB programming platform to generate
the training data and apply the techniques described in chapter 2, whereas the Python pro-
gramming languagewas used to design and validate the neural controllers as well as simulate
and plot the results.

5.1 Butcher’s Method

To simulate the control of either a satellite’s attitude or orbit, three important things are
needed. Firstly, the nonlinear differential equations have to be established, which was al-
ready done in chapters 3 and 4 for the attitude and orbit, respectively.
Secondly, an initial state vector x needs to be defined.
Lastly, an Ordinary Differential Equation (ODE) solver needs to be chosen. An ODE solver
allows us to see how a dynamical system evolves with time. In this dissertation, the Butcher’s
Method was chosen.

The Butcher’s Method, also known as the fifth-order Runge-Kutta algorithm [38], is a highly
accurate numerical solver that can solve ordinary differential equations of the form:

ẋ = f(x, u); x(t) ∈ Rn u ∈ Rm (5.1)

Which allows the possibility to compute the xk+1 value of xk. Using the method any number
of times with a given time step dt will compute the solution at every timestep, provided that
the initial conditions (t0, x0) are known.

The solution is computed using the following equation [38]:

xk+1 = xk +
1

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6) (5.2)
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Where ki = (i = 1, 2, 3, 4, 5, 6) are calculated, at each iteration, as:

k1 = dt f(xk, uk)

k2 = dt f(xk +
1

4
k1, uk)

k3 = dt f(xk +
1

8
k1 +

1

8
k2, uk)

k4 = dt f(xk −
1

2
k2 + k3, uk)

k5 = dt f(xk +
3

16
k1 +

9

16
k4, uk)

k6 = dt f(xk −
3

7
k1 +

2

7
k2 +

12

7
k3 −

12

7
k4 +

8

7
k5, uk)

(5.3)

Where xk is the state vector, and dt = 0.1 s. This time step value is small enough that the
results can be sufficiently accurate, while also being relatively fast compared with smaller
time steps [39].

5.2 Attitude Control Results

5.2.1 Generated Initial State Vectors

To train the neural networks, training data is necessary. In many applications, the training
data used is real data recorded from actual missions. However, in this dissertation, the train-
ing data has to be generated. Recalling section 3.3, the training data was generated within
some boundaries. Figures 5.1 and 5.2 show the initial angular velocities/rates and the initial
Euler angles, respectively.

Figure 5.1: Generated initial angular rates.

Around 5000 initial points were generated. The core idea here is to drive every single one of
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Figure 5.2: Generated initial Euler angles.

these variables to zero1, while saving the data at every step of the iteration. Both the state
vectors and the control input vectors are saved at every step.

5.2.2 Neural Network Training Results

As per section 3.2, three neural networks were used with each one being trained to compute
one of the control inputs ui, where i = 1, 2, 3. Figures 5.3, 5.4 and 5.5 show the training
results. The error is expressed in radians.

Figure 5.3: u1 neural network training metrics.

1In fact, the Euler angles aren’t directly driven to zero, see section 3.1. They are instead converted to quater-
nions, where the control algorithm drives the quaternions vector to [1 0 0 0]T , which are the corresponding
values for the quaternions. The reason Euler angles are plotted, is to ease visualization.
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Figure 5.4: u2 neural network training metrics.

Figure 5.5: u3 neural network training metrics.

In section 2.4, it was told that the number of epochs, as well as the learning rate, had to
be chosen through trial and error. The reason being the possibility of either underfitting
or overfitting occurring. Underfitting means that the model can’t capture the relationship
between the input and the output variables, and it usually happens when there is not enough
training data. Graphically, that means that both the validation and training errors no longer
decrease with the number of epochs, even though they could. On the other hand, overfitting
happenswhen themodel becomes good at predicting the training outputs, butwhennewdata
is provided it cannot achieve the same level of performance. Graphically, the validation error
starts to increase while the training error keeps decreasing until it eventually stabilizes. This
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means that as newer data is being fed, the model starts to become less and less accurate and
fails to generalize what it learned to unseen datasets. Looking at figures 5.3, 5.4, and 5.5, one
can notice that neither underfitting nor overfitting occur. Represented in blue and purple
are the training and validation Root Mean Squared Errors (RMSE), respectively, which was
the chosen loss function. In all three of the networks, both of these errors sharply decrease
with the number of epochs and remain constant after converging at a minimum. The RMSE
is calculated as follows:

RMSE =

√∑∞
n=1(Predictedi −Actuali)2

N
(5.4)

5.2.3 Attitude Control Simulation

This section will show the simulation results for a random initial attitude of the satellite.
Firstly, a simulation without any perturbation was done. Figures 5.6a, 5.6c and 5.6e show,
respectively, the angular rates, Euler angles, and control inputs evolution with time, for a
state vector x = [1.97 2.55 − 2.34 2.6 0.83 − 2.53]T , which is a worst-case scenario
state vector, that was chosen to show the robustness of the controller. Without perturbation,
the controller quickly stabilizes the satellite’s attitude, driving the angular rates and Euler
angles trajectories to zero, which is the desired state. At around 15 seconds the trajectories
are already very close to said state. Of course, in real life there are perturbations, so it remains
to be seen how the controller performs with perturbations.

To simulate what happens in a real environment, it was decided to add Gaussian perturba-
tions. This type of perturbation, like the name implies, has a normal distribution which is
said to mimic the effect of random perturbations that exist in nature. A normal distribu-
tion has two key parameters, the mean and the standard deviation. For this application, the
mean is µ = 0 and the standard deviation is σ = 1/3. By generating a random number
with this distribution and adding it to the angular rates, each time a new state vector is inte-
grated with the Butcher’s method, one can simulate a more realistic scenario. Figures 5.6b,
5.6d and 5.6f show the simulated results for the same initial state vector, but this time with
the added perturbations. Looking at these figures, one can easily notice the effect that the
perturbations have on the trajectories. Nevertheless, the controller effectively stabilizes the
satellite and tries to minimize the repercussions of the perturbations, therefore maintaining
all trajectories very close to zero, which is the desired state.

Analyzing the trajectories in both cases, we can begin to notice that there occur some unde-
sired phenomena. One of which has to do with the settling time which reflects how long the
trajectories take to achieve the desired state. This is often associated with either overshoot or
undershoot, meaning that the trajectories either go above or below the desired state. These
issues aren’t related to the neural network configuration per se, but instead, have to do with
the training data, and can easily be dealt with by finding proper weightingmatricesQ(x) and
R(x), introduced in section 2.2. The Q(x)matrix, also called the state weighting matrix, re-
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(a) Angular rates neural control without
perturbations

(b) Angular rates neural control with added
perturbations

(c) Euler angles neural control without
perturbations

(d) Euler angles neural control with added
perturbations

(e) Neural control inputs without
perturbations

(f) Neural control inputs with added
perturbations

Figure 5.6: Attitude neural control simulation with and without Gaussian perturbation

46



flects how important it is to achieve the equilibrium state. A Q(x)matrix with higher values
will achieve a faster regulation of the states. On the other hand, the R(x)matrix, also called
the control weighting matrix, is related to the use of fuel cost (eg. batteries, gas, etc). A R(x)
with higher values will result in a controller that tries to achieve a steady state whilst saving
as much fuel as possible. Since the approach described in chapter 2 implies solving a Riccati
equation for each point in state-space, it is easy to see how nonunique thismethod is, as there
are many techniques to find optimal weighting matrices, which are not in the scope of this
dissertation (but see [39] for a possible approach, albeit to design a linear controller).

5.3 Orbit Control Results

5.3.1 Generated Initial Positions

The type of controller described in chapter 2 works best when the initial positions of the
satellite are in the vicinity of the reference orbit. If the initial position is too far away from the
orbit, the resulting trajectory would not be ideal and the problem would require navigation
through waypoints which is not the purpose of this application. Instead, the satellite’s initial
position will already be very close to the reference orbit and the controller will quickly track
it until the satellite’s position coincides with the orbit.

All the simulations were made for a LEO (low earth orbit), more precisely, an orbit with
radius r = 6678 km.

5.3.2 Neural Network Training Results

Similarly to the training of the attitude controller, the training of the orbit controller was
done in a similar fashion, that is, using one neural network to train for each control input.

Figure 5.7: u1 neural network training metrics.
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Figure 5.8: u2 neural network training metrics.

Figure 5.9: u3 neural network training metrics.

Figures 5.7, 5.8, and 5.9 show the training results of each neural network. Once again, both
training and validation errors, expressed in kilometers, quickly decrease until they stabilize.
The number of epochs and the learning rate were both chosen through trial and error, ending
upwith 150 epochs and a learning rate of 0.01. 10 different starting positionswere usedwhich
resulted in around 8990 different points.

Once the training is done, the controller can nowbe validated. Recalling chapter 4, the inputs
of the neural controller are the relative state variables, that is, relative position and relative
velocity. As such, a plausible position vector was chosen, with adequate constraints, to guar-
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antee that the satellite is in the vicinity of the reference orbit. Figure 5.10 show the results
for the initial position, in the ECI frame, such that the state vector is x = [−4982 3.21 −
4600 3.5 12.2 6].

Figure 5.10: Relative position neural control.

Recall the rotation frame of reference in figure 4.1. We can easily see that in this first sim-
ulation, the satellite is already very close to the target orbit, except for the relative position
z, meaning that it is radially outward. Since the state states are relative motion states, when
all the position states equal 0 km, that means the satellite now coincides with the reference
orbit, and the controller was able to successfully track the reference point. Looking at figure
5.10 that it is exactly what can be observed.

Figure 5.11: Relative velocity neural control.
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Figure 5.11 shows the simulation results for the relative velocity. Similarly, if the relative
velocity is 0 km/s, thatmeans the satellite ismoving at the same speed as the reference point,
which changes with every iteration. Lastly, figure 5.12 shows the acceleration components
that act on the satellite.

Figure 5.12: Neural control inputs.

As expected, once the satellite coincides with the orbit, the control inputs converge almost
to zero. Notice the control input u3. Looking closely, one can notice that there is some noise
in the signal. This is due to the perturbations inherent to the model. Nevertheless, the con-
troller is robust enough so that the position of the satellite is stabilized.

Figures 5.10, 5.11, and 5.12 show the evolution of the relative position, relative velocity, and
controls with respect to time. It would be interesting to have a graphical representation of
the satellite tracking the reference orbit. Figures 5.13 and 5.14 show precisely that, with the
latter being a zoomed-in view. Both pictures show three different cases, with the blue line,
titled satellite 1 representing the case discussed in the previous figures. The simulation was
stopped once there was a high degree of confidence that the satellites were located in the
reference orbit. If the simulation continued we would see the blue, green, and orange lines
overlappingwith the red line, for as long as the simulationwent on. Paying attention to figure
5.14, it is easy to spot the kind of motion that results from the model described in chapter 4.
As the satellite closes in on the orbit, it will start to loop around it until it eventually converges
and from then on it stays in orbit. Thismovement ismore pronounced in the second satellite,
represented in green. In practical applications, this type ofmovement is also seen in the final
stages of satellite rendezvous, when the chaser satellite is closing in on the orbit. Indeed, the
equations mentioned throughout this dissertation are very commonly used in rendezvous
missions.
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Figure 5.13: Satellite orbit control.

Figure 5.14: Zoomed view of satellite orbit control.

Although the resulting controller is proven to be robust enough that it can deal with im-
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portant perturbations, some improvements can be made. One of which concerns the same
improvements observed in the attitude neural controller. The other improvement concerns
the control inputs, as in real life, the control inputs don’t quite behave like the results ob-
tained here. If they did, then there is the possibility that the satellite could not withstand
such changes in acceleration. An easy solution would be to study to maximum loads that the
spacecraft can withstand and impose limits on the control inputs. This improvement is also
valid for the attitude neural controller.
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Chapter 6

Concluding Remarks

Space exploration needs technological advancement. In recent times, processors have be-
come more and more powerful which raises the possibility of using advanced control tech-
niques, combined with machine learning, to be used in real-life satellite applications.
This work began with a short introduction to some established nonlinear control techniques.
It started by providing some background on Lyapunov theory followed by a succinct expla-
nation of gain scheduling, feedback linearization, sliding mode control, and backstepping,
whilst also highlighting some limitations of each technique. It thenmade case for combining
two widely used control techniques and using data from two applications to develop a neural
controller. The hypothesis put forward was that this neural controller could have high ro-
bustness, since one of the techniques from which it learned is a robust technique, while also
being a faster controller since it wouldn’t have to solve complex equations, as long as enough
training data was provided. The mathematical foundations for both techniques were then
laid out.
Afterwards, the dynamic equations for the satellite werewritten, followed by the specific neu-
ral network design. The same was done for the orbit control model. Once both models were
developed, the simulations were performed by using the fifth-order Runge-Kutta method,
also called Butcher’s Method.
For both applications, the results showed that the resulting controller is highly robust, at
least with respect to gaussian white noise, as well as to the J2 perturbation. The controller
effectively stabilized the satellite’s attitude even when the initial state vector is far from being
the equilibrium one. This was done to test the both robustness and the nonlinear aspect of
the controller. The controller also performed well when controlling a satellite’s orbit. The
results showed that if a satellite would, for one reason or another, find itself in the vicinity of
the reference orbit, the controller could successfully drive the satellite to the desired position
in orbit even when dealing with perturbations.

Despite these successful results, the controller could still be improved, in future studies. One
of the original techniques from which the neural controller learned from involved solving
an algebraic Riccati equation for each state vector. In this dissertation, only the A matrix
changed, however, the weighting matrices can also be parameterized. By parametrizing the
weighting matrices we optimize for controller effort. Additionally, using control limiters can
have the same effect.
Regarding the neural controller architecture, some upgrades can be made. One of which is
through the use of an unsupervised layer, e.g, an autoencoder, which will find patterns in the
data, to group the different starting points with the respective evolution of said points. This
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allows the use of more training points which can result in a more accurate controller.
Lastly, in the future, instead of using generated training data for the neural controller, an-
other possibility will be to use real recorded data.
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Publication

The work done on the production of this dissertation resulted in the following papers:

Pedro M.C. Belizário, K. Bousson, Filipe Senra, ”Neural Control of Space Trajectories with
Pseudolinear Models”, ISATECH 2022, Belgrade, Serbia, 14th-16th September 2022

Filipe Senra, Pedro M.C Belizário, Milca de Freitas Coelho, K. Bousson, ”Machine Learning
based Orbit Prediction”, IAC-22, Paris, France, 18th-22nd September 2022
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 Neural Control of Space Trajectories with 
Pseudolinear Models 

Pedro M. C. Belizário, K. Bousson, Filipe Senra 

Abstract: This paper describes an approach to neural control of a satellite trajectory. 
A pseudolinear model is created to generate the necessary training data for the neural 
network. This model uses an H∞ to stabilize the relative motion of a satellite 
concerning another satellite. The purpose of this paper is to show the feasibility of 
such an approach and to better understand the benefits of using a previously trained 
neural network to control a satellite. 

Keywords: pseudolinear, relative motion, ANN. 

1. Introduction 

Countless space missions rely on successful rendezvous which requires precise 
control with minimal error (Park et al.1999). Linear optimal control theory has 
worked very well in designing linear controllers that drive the system to its desired 
output (Çimen et al.2008). Nonetheless, with recent technological advancements also 
came the recent applications of nonlinear control. Nonlinear controllers have the 
advantage of being closer to controlling real-life systems. However, nonlinear 
controllers are often more computationally expensive than linear ones and they are 
also slower because difficult algorithms must be solved and the solutions must be 
found online. For that reason, there has been considerable research and interest in the 
use of neural networks to identify and control nonlinear systems. Neural networks 
have the promise of being faster and more robust with the downside of having a long 
training time (Annaswamy and Yu,1998; Calise, 1996). In this paper, the neural 
network is intended to be trained offline and learn from data created beforehand. 

The paper is organized as follows: Section 2 where the problem is introduced, 
Section 3 where the model is presented, Section 4 where the controller is explained, 
and Section 5 and 6, where the results and conclusion are shown, respectively. 

2. Problem Statement 

In the present paper, a rendezvous problem with the target spacecraft in a 
circular orbit, such as the ISS, is considered.  Let us consider that a rendezvous model 
can be written in the following nonlinear way: 
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𝑥̇ = 𝐴(𝑥)𝑥(𝑡) + 𝐵(𝑥)𝑢(𝑡) + 𝐷(𝑥)𝑤(𝑡),   𝑥(0) = 𝑥0  

𝑧(𝑡) = 𝐸𝑥(𝑡) 

( 1) 

Where 𝑥(𝑡)  𝜖 ℝ𝑛  is the state and vector 𝑢(𝑡)  𝜖 ℝ𝑚 is composed of three independent 
accelerations used as control inputs and 𝑤(𝑡)  𝜖 ℝ𝑝 is a disturbance vector. Then the 
purpose of this work is to design a robust neural controller that can find adequate 
control inputs for any given time. 

3. Relative Motion Dynamics 

Assuming the target is in a circular orbit. Denoting r and R as the vector from 
the target spacecraft to the chaser spacecraft, and vector from the centre of the Earth 
to the target spacecraft, respectively then the relative motion of the chaser spacecraft 
in an Earth-centred inertial frame can be written as: 

𝑑2𝒓

𝑑𝑡2
= −𝜇 (

𝑹 + 𝒓

|𝑹 + 𝒓|3
−

𝑹

|𝑹|3
) + 𝒂𝑓 

( 2) 

In which 𝜇 is the Earth’s gravitational constant and 𝒂𝑓 is the acceleration vector 

due to thrust forces on the chaser spacecraft.  

 

Figure 1 Coordinates and definition (Yamanaka and Ankersen,2002) 

Considering the target-orbital coordinate system shown in Fig.1, then r comes 

written as 𝒓 = [𝑥 𝑦 𝑧]𝑻. Assuming the target is in a circular orbit, then the orbital rate 
ω is constant. Therefore, equation (2) can be written as the following set of equations: 
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[
𝑥̈
𝑧̈
𝑦̈
] =

[
 
 
 
 
 2𝜔𝑧̇ + 𝜔𝑥2 −

𝜇𝑥

|𝑹 + 𝒓|3

𝜔2𝑧 − 2𝜔𝑥̇ − 𝜇 (
𝑧 − 𝑅

|𝑹 + 𝒓|3
+

1

𝑅2
)

−
𝜇𝑦

|𝑹 + 𝒓|3 ]
 
 
 
 
 

+ 𝒂𝑓 

( 3) 

The model in equation (3) (Zhou et al,2011), now needs to be written as a 
pseudolinear model, that is, the A matrix is parametrized and written in a state-
dependent coefficient way. Therefore, the system of equations in 3 can be written as: 

[
 
 
 
 
 
𝑥̇
𝑥̈
𝑧̇
𝑧̈
𝑦̇
𝑦̈]
 
 
 
 
 

=

[
 
 
 
 
 
 
 

0 1 0 0 0 0

𝜔2 −
𝜇

|𝑥,𝑦,(𝑧−𝑅)|3
0 0 0 0 2𝜔

0 0 0 1 0 0

0 0 −
𝜇

|𝑥,𝑦,(𝑧−𝑅)|3
0 0 0

0 0 0 0 0 1
𝜇𝑥

|𝑥,𝑦,(𝑧−𝑅)|3(1+𝑥2)
−2𝜔 0 0 𝜔2 −

𝜇

|𝑥,𝑦,(𝑧−𝑅)|3
0 ]

 
 
 
 
 
 
 

 

[
 
 
 
 
𝑥
𝑥̇
𝑧
𝑧̇
𝑦
𝑦̇]
 
 
 
 

 + 

[
 
 
 
 
 

0
0
0
0
0

−
𝜇

𝑅2]
 
 
 
 
 

+ 𝒂𝑓  

( 4) 

Where the constant added at the end can be viewed as a deterministic 
perturbation.  

4. Neural Control Design 

This section is divided into two parts, the first part concerns the robust control 
method chosen and succinctly explains the theory behind it. This controller will 
generate the training data for the network, as explained in the second part. 

4.1 H∞ Controller 

As it can be seen by the system of equations (4), the model is not linear, as 
for every state vector x, the matrix A changes. In the literature, this is often called the 
State-Dependent Riccati Equation method (SDRE) and makes use of state-dependent 
coefficient matrices (Çimen, 2008). These matrices are used to solve an algebraic 
Riccati equation to give a suboptimal control law. Since the matrices vary with every 
point in state-space, the Riccati equation will give a different solution for every point 
in state-space also. This method captures the nonlinearities of a given system while 
at the same time permitting great design versatility. 
 
 In addition to using a pseudolinear model, the specific controller from which 
the neural network learns is an H∞ controller. In short, a gain matrix K is found 
solving the following Riccati equation (Khargonekar et al, 1998): 

𝑃𝐴 + 𝐴′𝑃 −
1

𝜖
𝑃𝐵𝑅−1𝐵′𝑃 +

1

𝛾
𝑃𝐷𝐷′𝑃 +

1

𝜖
𝐸′𝐸 + 𝜀𝑄 = 0 

( 5) 

Where 𝛾 is a perturbation attenuation constant. 
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Therefore, the gain matrix K which stabilizes the system can be written as: 

𝐾 = −
𝑅−1𝐵′𝑃

2𝜀
 

( 6) 

And with  𝑢 = 𝐾(𝑥)𝑥(t) 

4.2 Neural Network 

The artificial neural network (ANN) structure is made up of a hidden layer 
with 4 neurons, so with 6 inputs, we’re left with a 6-4 ANN format. Due to 
computational constraints, it was decided that the neural controller had to be trained 
using three separate neural networks, one for each control input. This avoids the need 
for a deeper network, greatly reducing the computational power for the simulation. 

An Adam Optimization algorithm was chosen, and the activation function of 
every layer was Sigmoid. 

5. Numerical Simulation 

To first simulate the controller and acquire the necessary data for the ANN, 
realistic values were given to an initial vector x, as to simulate real scenarios in which 
the relative position isn’t equal to 0. As the relative error between xk+1 and xk gets 
closer to an acceptable value, a new initial vector x is given and the process of 
controlling the system to the desired state starts again. This was repeated until there 
were enough values to train the ANN. Below are the results of the neural network 
training. 

Overfitting was an issue as at some point the validation error started to 
increase, however, some parameters such as the learning rate and the number of 
epochs were tweaked to achieve a good enough model. 

Figure 2 ux,uy,uz neural network, respectively 
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Fig.3 shows an example of the neural network model controlling the system 
for any given, realistic vector of relative motion.  

As it can be seen, the relative position vector is stabilized and driven to zero. 
Since the relative position vector is simply the difference between the position vector 
of the target and the position vector of the chaser, then this means that the chaser 
now coincides with the target, and the neural controller is working as intended. 

6. Conclusion and Future Work 

This paper aimed to design a neural controller based on pseudolinear models. 
Neural networks have the advantage of being computationally cheaper to use versus 
computing the solution of a nonlinear controller in real-time, with the disadvantage 
of the training time, and running into problems related to overfitting. To ensure that 
a good neural controller was developed, enough training data had to be created. Said 
data was created using a pseudolinear model of relative motions dynamic, and the 
system was stabilized for every point using an H∞. This required solving an algebraic 
Riccati equation for every single point in state-space since the A matrix was written 
in a state-dependent coefficient form. Afterward, the neural controller was designed 
and trained, and the desired result was achieved. 

Future work could incorporate the equations of motion for a satellite in the 
Earth’s spherical gravitational field with the J2 perturbation to validate the 
robustness of the model. 

 

 

 

 

 

 

Figure 3 left-Relative position; right-Control inputs 
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Abstract 

Physics-based models and estimation methods can often limit orbit prediction accuracy for being characterized by a 
high degree of complexity and nonlinearity. With the hypothesis that a Machine Learning (ML) approach can learn 
the underlying pattern of the orbit prediction errors from large amounts of observed data. In this paper, a LSTM (Long 
Short - Term Memory) Neural Network is explored for improving orbit prediction accuracy. The LSTM architecture 
was chosen since it addresses the common long-term dependency problem (vanishing or exploding gradient) when 
using BPTT (Back Propagation Through Time). To validate the results, a variation of the conventional Kalman Filter 
was implemented. The EKF (Extended Kalman Filter) was chosen for being the simplest real-time estimation algorithm 
with adequate tuning of its parameters. The neural network model that was used leveraged on its generality, orbit 
prediction accuracy, and computational cost for real-time orbit determination and onboard environment. The 
performance of the algorithm was assessed using TLE data from a LEO satellite. 
 
Keywords: Orbit prediction, neural networks, Kalman filtering, LEO satellite. 
 
Nomenclature 
𝑥𝑥�−   - a priori state estimate 
𝑥𝑥�  - a posterori state estimate 
𝑢𝑢  - control function 
P  - covariance matrix 
𝑃𝑃− - a priori covariance matrix 
A - Transition matrix 
W - Process noise matrix 
Q - Process noise covariance matrix 
K - Kalman gain 
H - Measurement partials matrix 
V - Measurement noise matrix 
R - Measurement noise covariance matrix 
z - Measurement vector 
h - Non-linear measurement equation 
I - Identity matrix 
 
Acronyms/Abbreviations 
AI-Artificial Intelligence  
ECEF-Earth-Centered-Earth-Fixed  
EKF-Extended Kalman Filter 
LSMT-Long Short-Term Memory  
MIMO-Multiple Inputs Multiple Outputs 
MISO-Multiple Inputs Single Output 
ML-Machine Learning  
MSE-Mean Squared Error 

 
SGP 4-Standard General Perturbations Satellite Orbit 
Model 4 
TLE-Two-Line Element  
 
1. Introduction 

Orbit determination is essentially made through the 
estimation of a set of discrete observations of position 
and velocity of the satellite at a given time. The set of 
observations encompasses external measurements from 
either earth bound or space bound sensors and 
measurements from the spacecraft’s sensors [1].  

Past observations compose a database that allows the 
prediction of the satellite’s movement state at a future 
time.  

Since observations are subject to random and 
systematic uncertainties, orbit determination and 
prediction are considered probabilistic [2]. These errors 
derive from measuring instruments and the mathematical 
models used. As such, it is necessary to model the physics 
of the phenomenon as precise as possible. Or, as an 
alternative, use innovative methods such as ML that do 
not require the modelling of the phenomenon, but, on the 
other hand, require large amounts of observed data [3]. 

ML algorithms can learn the underlying patterns of 
phenomena that is characterized by a high degree of 

mailto:filipesenra98@hotmail.com
mailto:pedro.belizario@ubi.pt
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complexity and nonlinearity. This is if large amounts of 
observed data are available. 

The data handled in this paper is of time-series nature, 
hence an approach that handles this kind of dataset well 
was chosen. The LSTM was found to be an appropriate 
neural network architecture since it has the capability of 
solving the common long – term dependency problem 
(vanishing or exploding gradient) [4]. 

The main objectives of the present study are: 
• Train and validate an LSTM model capable 

of orbit prediction. 
• Compare its feasibility, accuracy, and 

applicability to a Kalman Filter approach. 
This manuscript first exposes the challenges of orbit 

determination and prediction and offers and alternative in 
the form of a ML approach. In section 2, an introduction 
to the world of Artificial Intelligence is presented, 
followed by the theory behind the LSTM neural network. 
It ends with an explanation on the algorithm that 
describes the EKF. In section 3, the simulations are 
described. Subsections relate to data used, scenarios 
created, how was the model validated and the neural 
network’s configuration. In section 4, results are 
displayed, firstly in relation to the model’s performance 
and secondly to the prediction error. The final section 
entails conclusions taken from the results shown and 
future work. 
 
2. Theory and algorithms 
  

To note, the Extended Kalman Filter was developed 
to compare against the results obtained from the trained 
LSTM. The EKF only served as a comparison tool and 
was not as deeply studied as the LSTM. 
 
2.1 Artificial Intelligence 101 

 

Figure 1. Artificial Intelligence, Machine Learning and Deep 
Learning groups 

Artificial Intelligence is the larger of the groups 
(Figure 1), relating to any technology that enables 
computers to mimic human intelligence, using logic, if-

then rules, decision trees, and machine learning 
(including deep learning). Machine learning is a subset 
of AI that includes abstruse statistical techniques that 
enables machines to improve at tasks with experience. 
The category includes deep learning. The subset of 
machine learning is deep learning, composed of 
algorithms that permit software to train itself to perform 
tasks by exposing multi-layered neural networks to vast 
amounts of data [5]. 

 
2.1.1 LSTM Neural Network 

The LSTM network is a special kind of Recurrent 
Neural Network, capable of learning long-term 
dependencies. It is explicitly designed to avoid the long- 
term dependency problem, so remembering information 
for long periods of time is its default behaviour. 

All recurrent neural networks possess the form of a 
chain of repeating modules of the neural network. 
Standard RNN’s have a very simple structure containing 
a single layer. 

The LSTM also has this chain-like structure. 
However, the repeating module has a different structure, 
containing four layers that interact in a particular way 
(Figure 2) that makes the network forget or pass 
information, allowing only relevant information to be 
passed on to the next cell block [6].  

 

 

     
Figure 2. LSTM cell block 

 
1.1 Extended Kalman Filter 

 
The Kalman Filter is an optimal estimator with 

regards to minimizing the square error based on sensor 
readings and their variance.  

Among all the Kalman Filters available, the most 
common ones are the Standard Kalman Filter, the 
Extended Kalman Filter and the Unscented Kalman 
Filter. The filter chosen for this research was the EKF. As 
the name suggests, the EKF is an extension of the 
conventional Kalman Filter. This extension allows the 
linearization of nonlinear systems, thus, increasing the 
applications of the filter. The benefit of using such filter 
is its simplicity compared to other approaches dealing 
with nonlinear systems. This results in simpler code, 
turning it more transparent when it comes to safety 
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issues. With a not so complex algorithm, the execution 
time will also be shorter, making this filter the preferred 
choice for devices with limited hardware, such as small 
satellites [7]. 

The basic operation of the EKF starts with an initial 
estimate for 𝑥𝑥�𝑘𝑘−1 and 𝑃𝑃𝑘𝑘−1 and is divided in two parts, as 
follows: 
 
1.1.1 Time Update (“Predict”) 

(1) Project the state ahead 
 

𝑥𝑥�𝑘𝑘− = 𝑓𝑓(𝑥𝑥�𝑘𝑘−1,𝑢𝑢𝑘𝑘 , 0)   (1) 
 

(2) Project the error covariance ahead 
 

𝑃𝑃𝑘𝑘− =  𝐴𝐴𝑘𝑘𝑃𝑃𝑘𝑘−1𝐴𝐴𝑘𝑘𝑇𝑇 + 𝑊𝑊𝑘𝑘𝑄𝑄𝑘𝑘−1𝑊𝑊𝑘𝑘
𝑇𝑇    (2) 

 
1.1.2 Measurement Update (“Correct”) 

(1) Compute the Kalman Gain 
 

𝐾𝐾𝑘𝑘 =  𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑉𝑉𝑘𝑘𝑅𝑅𝑘𝑘𝑉𝑉𝑘𝑘𝑇𝑇)−1   (3) 
 

(2) Update estimate with measurement 𝑧𝑧𝑘𝑘 
𝑥𝑥�𝑘𝑘 =  𝑥𝑥�𝑘𝑘− +𝐾𝐾𝑘𝑘�𝑧𝑧𝑘𝑘 − ℎ( 𝑥𝑥�𝑘𝑘−, 0)�   (4) 

 
(3) Update the error covariance 

 
𝑃𝑃𝑘𝑘 = (𝐼𝐼 −  𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−   (5) 

 
3. Simulations 

This section will focus on the simulations used to 
validate the LSTM. Although it will only refer to the 
neural network, the data was also used for the EKF, 
needing only the test data. 
 
3.1 Data 

The data used for the purpose of this research was 
prevenient of a TLE file that was propagated for 48 hours 
using the SGP 4 propagator. A 10-second timestep was 
used, yielding 17281 samples. To verify the model’s 
robustness, a parallel set with added Gaussian noise was 
created (100m for position and 10m/s for velocity). 

The data was used following the ECEF coordinate 
system (Figure 3). 

 

 
Figure 3. ECEF coordinate system 

The TLE file used is of a Starlink satellite, more 
specifically STARLINK-1028. The satellite’s orbit 
parameters at the time of TLE file collection are as 
follow. 

 
Table 1. STARLINK – 1028 orbit parameters [8] 

Period 95.59 minutes 
Inclination 53.06° 

Apogee 548 km 
Perigee 546 km 

Eccentricity 0.0001504 
 
3.2 Scenarios 

To demonstrate that the more data is available, the 
better the performance of the neural network (model), 3 
scenarios were developed. The number of samples 
increases for each scenario to show that more data yields 
higher accuracy. A comprehensive table with the splitting 
of the data between training data and test data is 
presented below. 
 
Table 2. Scenario details 

Parameters Scenario 1 Scenario 2 Scenario 3 
Number of 

orbits 
10 training 

2 test 
20 training 

5 test 
24 training 

6 test 
Training 
Samples 

5737 11472 
 

13766 
 

Test 
Samples 

1148 
 

2869 
 

3520 
 

Split 
percentage 

~83% 
training 
17% test 

~80% 
training 
20% test 

~80% 
training 
20% test 

 
3.3 Model Validation  

As for any ML model created, it is necessary to 
validate it. A common way to do so is to compare the 
validation loss and the loss curves taken from the model 
training.  

Additionally, a pragmatic validation was added. This 
validation consists of calculating the error covariance 
matrix, taking the lowest eigenvalue’s ratio in 
comparison with the other 2 and consider it as the relative 
error. This calculation is done with 3 sets: training set 
(A), test set (T) and the whole set or global set (G). The 
3 relative errors must be within the following constraints 
for the model to be considered [9].  

 
0 < 𝜎𝜎�𝐴𝐴(𝑦𝑦, 𝑦𝑦�) ≤ 0.1 
0 < 𝜎𝜎�𝑇𝑇(𝑦𝑦,𝑦𝑦�) ≤ 0.2 
0 < 𝜎𝜎�𝐺𝐺(𝑦𝑦,𝑦𝑦�) ≤ 0.1 

 
3.4 LSTM Configuration 

Initially, a MIMO approach was taken. However, this 
approach turned out to perform poorly. The inputs were 
the previous 50 timesteps of the 3 position coordinates 
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(x, y and z), their respective velocities, giving a total of 
300 inputs. The output was the next step’s position and 
velocity. 

Alternatively, a MISO approach showed promising 
results. This time, only the 20 timesteps of the position 
were used as input (60 inputs) and the output was one of 
the position coordinates. This meant that 3 neural 
networks were necessary, one for each position 
coordinate. 

The model’s configuration was optimized through an 
iterative process, as there is no right way to find the 
perfect parameters for the problem at hand [4]. To aid in 
this process, Keras Tuner was utilized to quicken the 
search, being the Bayesian Optimizer the tuner of choice. 

After a thorough search, a simple configuration of an 
input layer, a hidden layer and an output layer was 
adopted for the 3 models. Although having the same 
structure, the 3 models possess different weights (or 
neurons), presented below. 
 
Table 3. Model’s summary 

Parameters Input Layer Hidden Layer Output 
Layer 

Type of 
Layer 

CuDNNLS
TM 

CuDNNLST
M 

Dense 

Neurons (x 
model) 

512 160 1 

Neurons (y 
model) 

256 256 1 

Neurons (z 
model) 

224 416 1 

 
The loss function selected was MSE, for which the 

calculation is described below. 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
�(𝑦𝑦 − 𝑦𝑦�)2 

 
All models were trained for 300 epochs with a batch 

size of 32 and Adam as the optimizer. All tasks were 
performed using the Keras library in Python. 
 
4. Results  

The first part of this section deals with the neural 
networks’ performance, focusing on validating the 
models through the comparison between the validation 
loss and loss curves and the pragmatic validation. 

The second part will touch on the prediction error 
between the models and the EKF, calculated as follows. 

 
𝑒𝑒 = 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

 
As the results for the 3 scenarios follow the same 

trends and for the purpose of not cluttering the section, 
only the first scenario will be discussed. 
 

4.1 Model Performance 
All scenarios were simulated with and without the 

presence of noise. In this section, the loss curve graphs 
for the position x of Scenario 1 will be presented. A table 
containing the average of validation loss and loss for 
every scenario, position and presence of noise will be 
displayed. 
 

  
 

 
Figure 4. Loss and validation loss for position 

component 𝑥𝑥 without noise added (top) and with added 
noise (bottom) for Scenario 1 

At first glance the graphs do not resemble a typical 
loss curve that decreases and remains constant after 
converging at a local minimum. However, the loss 
already starts at a very low value in the order of 
magnitude of 10-2. From here the curve tends to decrease. 
Several approaches were attempted to smooth out the 
curves, however this would affect the results. If 
promising results need to be traded to achieve a smooth 
loss curve, it is preferable to keep the promising results 
[4]. 

A table detailing the average of both loss and 
validation loss for every position component of the 3 
scenarios with and without noise is presented below. 
 
Table 4. 

 Scen
ario 

1 

Scen
ario 
1 w/ 
noise 

Scen
ario 

2 

Scen
ario 
2 w/ 
noise 

Scen
ario 

3 

Scen
ario 
3 w/ 
noise 

Loss 
x 

4.17
E-05 

4.71
E-05 

3.46
E-05 

3.03
E-05 

2.30
E-05 

1.96
E-05 
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Valid
ation 
loss x 

1.38
E-05 

1.70
E-05 

1.09
E-05 

1.63
E-05 

1.46
E-05 

1.20
E-05 

Loss 
y 

4.38
E-05 

3.57
E-05 

1.93
E-05 

2.45
E-05 

1.51
E-05 

1.53
E-05 

Valid
ation 
loss y 

2.54
E-05 

1.58
E-05 

1.39
E-05 

1.03
E-05 

3.97
E-06 

7.81
E-06 

Loss z 4.98
E-05 

3.49
E-05 

2.43
E-05 

1.90
E-05 

1.93
E-05 

1.89
E-05 

Valid
ation 
loss z 

1.59
E-05 

2.21
E-05 

1.28
E-05 

8.24
E-06 

4.38
E-06 

3.84
E-05 

 
From the table it is possible to notice 2 trends: both 

losses tend do decrease as more data is fed to the models 
and the validation loss and loss are of the same 
magnitude, meaning that there are no signs of overfitting. 
  
4.2 Prediction Errors 

In this section, the prediction errors are presented. 
The first 2 graphs compare the errors between the 
predictions based on the data without and with the 
addition of noise in Scenario 1. The following graphs 
pertain to the remaining 2 scenarios. 

 
 

 
 

 
Figure 5. Prediction error without (top) and with 
(bottom)noise for scenario 1. 

 

 
Figure 6. Prediction error without noise for scenario 2. 

 

 
Figure 7. Prediction error without noise for scenario 3. 

From Figure 5 it is inferable that the addition of noise 
to the dataset will increase the error in the prediction, as 
expected. However, it is not a significant increase. 
Comparing the 3 scenarios without the presence of noise 
shows that with the increase of data available for the 
models to be trained, the predictions will be more 
accurate. From these graphs it is also noticeable that, as 
opposed to increase over time, the prediction error 
remains within a certain interval.   

Preliminary results obtained from the Kalman Filter 
showed errors in the same order of magnitude. However, 
its predictions are of higher accuracy. 
 
5. Conclusions and Future Work 
 

In this work, a Machine Learning approach to Orbit 
Prediction has been presented. For comparison purposes, 
an EKF was also developed. During the design of the 
neural network, one strong conclusion drawn is that to 
design a neural network model that fits the purpose of the 
research is not straightforward and can take a 
considerable amount of time. Also, although a higher 
level of accuracy was preferable, the neural network 
performed as desired. 

With only preliminary results of Kalman Filter at 
hand, these results yielded higher accuracy than those of 
the Machine Learning approach.  

A final take is that a Machine Learning approach 
would be adequate for orbits which dynamics are harder 
to model and where uncertainty is higher. 

Future work includes further tuning of the model for 
higher accuracy, investigate the use of already trained 
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models and physics-based models and higher altitude 
orbits. 
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