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Cells

Alfredo Sanchez Garcia, Sissel Tind Kristensen, and Rune Strandberg
University of Agder, Grimstad, 4879, Norway

Abstract

This work presents new analytical expressions for the temperature coeffi-
cients of the voltage, current and power of a solar cell at its maximum power
point. A new analytical expression of the temperature coefficient of the fill
factor is also derived. The new expressions are written as functions of solar
cell parameters that can be extracted from the current-voltage characteristic
of the cell. Non-ideal diode behavior is partially accounted for through a tem-
perature dependent ideality factor. The recombination parameter γ, which has
been shown to account for the thermal sensitivity of all mechanisms determin-
ing the open-circuit voltage, appears to play a role also for the temperature
coefficient of the maximum power point. The expressions are tested against
experimental data, which covers measurements from 18 multicrystalline silicon
solar cells with different bulk resistivities and cell architectures. It is found
that the new model captures the essence of the temperature variation shown
by the investigated parameters.

1 Introduction
The temperature sensitivity of a solar cell parameter, such as the open-circuit volt-
age, Voc, is usually described by its temperature coefficient (TC) [1]. Some work has
been done aiming to explicitly quantify the TCs of Voc and the short-circuit current,
isc [2, 3], but so far, there has not been much focus on the temperature sensitiv-
ity of the maximum power point (MPP). Quantification of TCs, particularly at the
MPP, is of special importance as it is desirable to accurately predict the temperature
dependent performance of solar cells under real operating conditions. The lack of
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analytical models describing the temperature sensitivity of the MPP represents a
gap in the scientific literature which this work seeks to fill. To this end, Khanna’s
model for the maximum power point [4] is used as a starting point to derive analyt-
ical expressions for the TCs of the voltage, current and power at the MPP. Inspired
by the work of Dupré et al. in Ref. [3], the influence of the recombination param-
eter γ in the temperature sensitivity of the MPP is also explored. For this, energy
losses related to non-radiative recombination are considered through the External
Radiative Efficiency (ERE), as defined in Ref. [5]. The derived expressions also
account for temperature variations of the bandgap, which are modeled with a linear
function of the temperature. Some preliminary results have already been presented
in Ref. [6]. This extended version includes the derivation of the expressions for the
TCs of photovoltaic parameters that were not included in the preliminary version. In
the present work, non-ideal diode behavior is also accounted for through a temper-
ature dependent ideality factor. The derived quantities are expressed as functions
of each other and of well-known parameters, such as Voc and isc. This allows for
the derivation of an analytical expression for the TC of the fill factor. Finally, the
new expressions are tested with experimental data obtained from suns-Voc measure-
ments of 18 multicrystalline silicon solar cells with different bulk resistivities and cell
architectures.

2 Theoretical Background
Assuming non-degenerate conditions, the total current density, i, produced by a solar
cell as a function of its voltage V , is given by Shockley’s diode equation [7],

i = iG − i0 exp

(
V

mVt

)
≈ isc − i0 exp

(
V

mVt

)
, (1)

where i0 is the thermal recombination current [8] and the photogeneration current,
iG, has been approximated by the short-circuit current, isc. This assumption is valid
for practically all solar cells [9]. The thermal voltage Vt is defined by qVt = kT , where
k is Boltzmann’s constant and T is the cell temperature. Non-ideal diode behavior
is accounted for through the ideality factor m which is assumed to be constant with
respect to the voltage but allowed to vary with the temperature. As commonly found
in literature on solar cells, the open-circuit voltage Voc is easily obtained from Eq. (1)
by setting i = 0, which gives

Voc = mVt log

(
isc
i0

)
. (2)
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The power P delivered by the cell is given by the product P = V i [9]. At the
maximum power point, it holds that dP/dV = 0. In Ref [4], Khanna et al. found
that Lambert’s W function, defined by z = W(zez) [10], allows for an analytical
expression of the maximum power point voltage, Vmpp, of the form

Vmpp = mVt

[
W

(
e
isc
i0

)
− 1

]

= mVt

[
W
(
e1+

Voc/mVt
)
− 1
]
, (3)

where Eq. (2) was made use of in order to write isc/i0 = exp [Voc/mVt]. The maximum
power point current, impp, is obtained by inserting Eq. (3) into Eq. (1). This yields

impp = isc

[
1− 1

W (e1+Voc/mVt)

]
. (4)

The maximum power that a solar cell can produce is given by [9]

Pmpp = Vmppimpp = VociscFF, (5)

where FF is the Fill Factor. Inserting Eqs. (3) and (4) yields [4, 11]

Pmpp = mVtisc

[
W
(
e1+

Voc/mVt
)
− 2 +

1

W (e1+Voc/mVt)

]
. (6)

2.1 Temperature Coefficient

The TC of a solar cell parameter (Voc, isc...) describes how this parameter changes
with the temperature. The relative temperature coefficient of a parameter, X, as a
function of the temperature, T , denoted here βr

X(T ), is defined as the rate of change
of X over the considered temperature range and normalized by X, i.e., [12]

βr
X(T ) =

1

X

dX

dT
=

d

dT
log [X(T )] . (7)

The temperature dependence of many solar cell parameters, such as Voc or the effi-
ciency, is approximately linear for normal operating temperatures [1]. The derivative
in Eq. (7) is then nearly constant and the temperature coefficient becomes a single
valued parameter, hence its designation. Inserting Eq. (5) in Eq. (7), it is seen that
the relative TC of Pmpp can be expressed as the sum of the relative TCs of Voc, isc
and FF, i.e., [3]

βr
Pmpp

= βr
Voc

+ βr
isc + βr

FF = βr
Vmpp

+ βr
impp

. (8)
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2.2 The recombination parameter γ

For a solar cell operating at the radiative limit, the thermal recombination current,
i0 in Eq. (1), is well approximated by

i0 ≈ qVt exp

(
−Eg

qVt

)
E2

g . (9)

To account for non-radiative recombination, Green introduced the concept of Ex-
ternal Radiative Efficiency (ERE) in Ref. [5]. The ERE is defined as the fraction
of the total dark current recombination in the cell that results in radiative emission
from the cell [5]. Following Ref. [3], the ERE is introduced in Eq. (1) by making the
substitution i0 → i0/ERE. Assuming that the ERE is independent on the voltage, the
expression for Voc in Eq. (2) becomes

Voc = Vt log

(
ERE

isc
i0

)
, (10)

where m is set to 1 to match the expression presented in Ref. [3]. Using Eqs. (10)
and (7) as a starting point, it can be shown that the absolute TC of Voc, βVoc , is
given by [3]

βVoc =
Voc − Egc

q
− kT

q
γ

T
, (11)

with

γ = 1 + 2T
E ′

g

Eg

− T
ERE′

ERE
− T

i′sc
isc

, (12)

where the prime denotes derivative with respect to the temperature. This explicit
expression for the γ parameter is obtained by making use of the explicit form of i0
found in Eq. (9). To obtain Eqs. (11) and (12), one also needs to assume a bandgap
that changes linearly with the temperature [1], i.e.,

Eg(T ) ≈ Eg(Tc) + (T − Tc)
dEg

dT

∣∣∣∣
T=Tc

+O(T 2)

= Egc + TE ′
g +O(T 2), (13)

with Egc = Eg(Tc) − TcE
′
g. For, e.g., crystalline silicon, Egc = 1.206 eV and

E ′
g = −2.73 × 10−4 eVK−1 [1]. The recombination parameter γ in Eq. (12) was

first introduced by Green in Ref. [1] as a way to account for the temperature sensi-
tivity of all mechanisms determining Voc and was later explicitly quantified by Dupré
et al. in Ref. [3]1.

1The notation T X′

X is equivalent to d logX
d log T .
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3 The model
To shorten the notation, the argument of Lambert’s W function in Eqs. (3), (4)
and (6) is denoted by zoc. Foreseeing its usability in the coming derivations, note
from Eq. (4) that

1

W(zoc)
= 1− impp

isc
. (14)

This identity will be used in the derivation of the expressions for the TCs to eliminate
the W functions when this is advantageous. From Eqs. (3) and (7), the relative TC
of Vmpp, βr

Vmpp
, is given by

βr
Vmpp

=
d

dT
log Vmpp

=
d

dT
log
[
mVt

[
W
(
e1+

Voc/Vt
)
− 1
]]

=
1

T
+

m′

m
+

1

W(zoc)− 1

d

dT
W(zoc)

=
1

T
+

m′

m
+

1

W(zoc)− 1

W(zoc)

1 +W(zoc)

d

dT

[
1 +

Voc

Vt

]

=
1

T
+

m′

m
+

mVt

Vmpp

W(zoc)

1 +W(zoc)

d

dT

[
1 +

Voc

mVt

]
, (15)

where the derivative of Lambert’s W function, which can be found in, e.g., Ref. [10]
was used. Additionally, Eq. (3) was used to make (W(zoc) − 1)−1 = mVt/Vmpp. The
last derivative in Eq. (15) can be written as

d

dT

[
1 +

Voc

mVt

]
=

dVoc

dT

q

mkT
− qVoc

mkT 2
− m′

m

=
Voc

mVt

[
βr
Voc

− 1

T
− m′

m

]
, (16)

where the definitions of relative TC in Eq. (7) was used. Inserting now Eq. (16) into
the last line of Eq. (15) yields

βr
Vmpp

=
1

T
+

m′

m
+

W(zoc)

1 +W(zoc)

[
βr
Voc

− 1

T
− m′

m

]
Voc

Vmpp

. (17)

Employing Eq. (14) to eliminate the W functions, the factor in front of the parenthesis
of Eq. (17) becomes

W(zoc)

1 +W(zoc)
=

isc
2isc − impp

= I. (18)
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To shorten the notation, note that 1/T + m′/m equals the derivative with respect to
the temperature of the logarithm of mVt, i.e., βr

mVt
. Eq. (17) then becomes

βr
Vmpp

= βr
mVt

+ I
[
βr
Voc

− βr
mVt

] Voc

Vmpp

. (19)

Performing the same type of derivation with Eqs. (4) and (6) as starting points, the
relative TCs of impp and Pmpp can be expressed as

βr
impp

= βr
isc + (1− I)

[
βr
Voc

− βr
mVt

] Voc

Vmpp

, (20)

βr
Pmpp

= βr
mVt

+ βr
isc +

[
βr
Voc

− βr
mVt

] Voc

Vmpp

, (21)

where it is straightforward to show that Eqs. (19), (20) and (21) satisfy Eq. (8).
Finally, using Eqs. (8) and (21), the relative TC of the fill factor, FF, can be written
as

βr
FF = βr

Pmpp
− βr

Voc
− βr

isc

= βr
mVt

−
(
βr
mVt

− βr
Voc

) Voc

Vmpp

− βr
Voc

=
(
βr
mVt

− βr
Voc

)(
1− Voc

Vmpp

)
. (22)

4 The recombination parameter γ

As mentioned in section 2, Green introduced the recombination parameter γ as a
way to account for the temperature sensitivity of all mechanisms determining Voc [9].
Eqs. (3), (4) and (6) show a direct link between the open-circuit voltage and the
maximum power point. The parameter γ should therefore be expected to play a
role in the temperature sensitivity of the maximum power point. In this section, the
expressions for the TCs are derived in an alternative way to include the γ parameter.
To match Dupré’s expression in Ref. [3], m = 1 will be assumed in this section. By
combining Eqs. (11) and (16), it becomes clear that

Voc

Vt

(
βr
Voc

− 1

T

)
=

1

Vt

(
βVoc −

Voc

T

)
= − 1

T

(
γ +

Egc

kT

)
, (23)
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with γ being given by Eq. (12). Substituting this identity into Eq. (17) yields

βr
Vmpp

=
1

T
− W(zoc)

1 +W(zoc)

1

W(zoc)− 1

Voc

Vt

[
1

T
− βr

Voc

]

=
1

T
− W(zoc)

1 +W(zoc)

1

W(zoc)− 1

−1

T

(
γ +

Egc

kT

)

=
1

T

[
1 +

isc(isc − impp)

impp(impp − 2isc)

(
γ +

Egc

kT

)]
, (24)

where Eq. (14) has been used to eliminate the W functions. Likewise with βr
impp

and
βr
Pmpp

, inserting Eq. (23) into (20) and (21) yields

βr
impp

=
1

T

[
T
i′sc
isc

+
(isc − impp)

2

2iscimpp − i2mpp

(
γ +

Egc

kT

)]
, (25)

βr
Pmpp

=
1

T

[
1 + T

i′sc
isc

+

(
1− isc

impp

)(
γ +

Egc

kT

)]
. (26)

As for Eqs. (19), (20) and (21), it is straight forward to show that Eqs. (24), (25)
and (26) also satisfy Eq. (8). Finally, it should be mentioned that alternative pre-
liminary forms of Eqs. (24) and (25) were presented in Ref. [6].

5 Experimental Method
The theoretical expressions are compared to measurements of 18 solar cells with dif-
ferent bulk resistivities, ρ, and cell architectures. The cells are industrially fabricated
from three different compensated p-type multi-crystalline silicon (mc-Si) ingots and
can be divided into three groups: (a) ρ = 1.3 Ω · cm, Aluminum Back Surface Field
(Al-BSF) cells, (b) ρ = 0.5 Ω · cm, Passivated Emitter and Rear Cells (PERC), (c)
ρ = 1.3 Ω · cm, PERC. Each group contains six cells from various brick positions,
numbered from 001-060, with position 001 denoting a cell from the bottom of the
brick and position 060 denoting a cell from the top. The performance of the cells
was measured with temperature dependent suns-Voc using a NeonSeeTM AAA sun
simulator with a built-in water heater. This allowed for the acquisition of i−V data
without series resistance effects at a temperature range between 293K and 343 K,
and subsequently, calculation of the TCs. The suns-Voc method was chosen to enable
better comparison with the theoretical expressions, which do not account for series
resistance effects.
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6 Numerical Method
From the temperature dependent suns-Voc measurements, the experimental values
of Voc, isc, Vmpp, impp, Pmpp and FF were extracted at multiple temperatures. The
corresponding TCs were determined by fitting the measured values to second degree
polynomials of the temperature before calculating the derivative at each of the mea-
sured temperatures. This method is chosen over a simpler linear regression because
some of the measured solar cell parameters (particularly isc and impp) show depen-
dencies with the temperature that are far from linear. Regarding the temperature
dependence of the ideality factor, Eq. (1) was evaluated at the MPP to obtain

m =
1

Vt

Vmpp − Voc

log
(
1− impp

isc

) , (27)

where Eq. (2) was used to eliminate iG and i0. Note that m is voltage dependent for
most common solar cells. This was also the case for the studied cells. If one assumes
that m(V ) is not going to vary significantly from Vmpp to Voc, Eq. (27) can be used
to estimate m at the measured temperatures and then fit to a polynomial to obtain
m(T ).

7 Experimental and numerical results
In this section, the polynomials of the temperature corresponding to the measured
values of Voc, isc, Vmpp, impp, βr

Voc
and βr

isc are used to evaluate Eqs. (19), (20), (21)
and (22). The obtained values are then compared to the experimental relative TCs,
which are calculated according to the method explained in section 6.

Figs. 1, 2, and 3 present the numerical results as follows: In the upper graph of
each subfigure, the parameter of interest is plotted as a function of the cell tempera-
ture. Here, the crosses represent measured values. For example, in the top graph of
Fig. 1(a), the crosses correspond to the experimental values of Vmpp. The continuous
lines display the polynomials that fit the measurements. Each color represents a cell
from the ingot position stated in the legend. In the lower graph of each subfigure, the
relative TC is plotted as a function of the cell temperature. Here, the experimental
TCs are displayed with crosses. The dashed lines show the TCs calculated with the
proposed model. In the bottom graph of, e.g., Fig. 1(a), the dashed lines display
TCs calculated with Eq. (19).

Starting with Vmpp, Figs. 1- 3(a) show a nearly linear dependence with the tem-
perature for the measured cells. Eq. (19) describes reasonably well the measured
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Figure 1: Vmpp, impp, Pmpp, FF and their corresponding relative TCs as a function
of the temperature for the cells in group (a). In all eight graphs, the experimental
values and their TC are displayed with crosses. The continuous lines at the top
graphs represent the polynomial fit of the measurements. The dashed lines at the
bottom graphs correspond to the new expressions presented in this work.
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βr
Vmpp

values, although discrepancies can be observed. In Fig. 1(a), the maximum
discrepancy is of 3.2 %, found for the cell in position 022 at T = 338 K. A possible
explanation for the discrepancies involves the possible non-ideal diode behavior of
the measured cells. Some non-ideality is accounted for by the temperature dependent
ideality factor, but this is still an approximation since the ideality factor in general
may show some voltage dependency. Crystalline silicon cells are often better de-
scribed with two-diode models rather than with Eq. (1). Noise in the measurements
originating from the difficulties in stabilizing the temperature during the relatively
long data acquisition times may also explain some of the discrepancy between the
model and the experiments.

As for the temperature dependence of Pmpp, some small nonlinearities can be
observed in Figs. 1- 3(b) (see, e.g., the curves corresponding to the cells in positions
022 and 044 at the in the top graph of Fig. 1(b)) but the overall dependence with
the temperature is approximately linear. Figs. 1- 3(b) show an excellent agreement
between the measurements and the values predicted by Eq. (21). Here the relative
discrepancies between the proposed model and the experiments are much smaller,
typically below 1.5% for the cells in groups (a) and (c) and below 3% for the cells in
groups (b).

In Figs. 1- 3(c), impp and βr
impp

are plotted as functions of the temperature. Here,
a nonlinear dependence of impp with the temperature of the cell can be observed.
Moreover, in some of the measured cells, impp appears to even have a local extremum.
An example of this is the cell from position 034 in Fig. 1(c), where impp(T ) is clearly
observed to have a maximum. This is mirrored in the bottom figure, where it can
be seen that the curve for βr

impp
(T ) crosses zero. The nonlinear behavior of impp

can also be observed in Figs. 2(c) and 3(c) and it is particularly clear in cell 003 of
group (b) and in cells 003 and 052 of group (c). In all three groups, the cells that
show the clearest nonlinear behavior are positioned towards the top and bottom of
the ingot. This may be coincidental, but it is worth noting that the concentration of
impurities is higher towards the top (segregation) and bottom (diffusion) of the ingot.
This suggests a connection between the nonlinear behavior of impp and high impurity
concentration. Despite the non-linear behavior of impp, the proposed model shows
a reasonably good agreement with experimental values of βr

impp
for all the studied

cells. It can be concluded from Fig. 1(c) that restricting the temperature sensitivity
of impp of the studied cells to a single coefficient may be misleading. Although these
nonlinearities originate, from a physical point of view, from the dependence of βr

impp

with βr
isc [3]; the nonlinear behavior of impp can be implied from Eq. (5). If a single

coefficient can describe the temperature sensitivity of Vmpp and Pmpp, then, one can
write Vmpp = a1T + b1 and Pmpp = a2T + b2. Here ai are the slopes of the straight
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lines, equal to the corresponding absolute TC, i.e., a1 = βVmpp and a2 = βPmpp , and bi
are the parameters in question at T = 0 K. Since Vmpp and Pmpp must follow Eq. (5),
impp must be given by

impp =
a2T + b2
a1T + b1

, (28)

which is not a linear function and, therefore, its derivative is not a constant. There-
fore Vmpp, impp and Pmpp cannot be linearly dependent on the temperature simulta-
neously.

Figs. 1- 3(d) show FF and βr
FF plotted as functions of the temperature for the cells

in groups (a), (b) and (c), respectively. Here, some small bends in the curves can be
observed but, overall, the dependence with the temperature of the measurements is
well described by straight lines. Here, the discrepancy between the predicted values
and the experiments may also be attributed to temperature noise in the measure-
ments and the diode model employed in the derivation of the expressions. Still, the
proposed model predicts reasonably well the experimental values.

8 Conclusions
In this work, analytical expressions that describe the temperature sensitivity of the
maximum power point have been derived. The expressions were tested with mea-
surements from 18 multicrystalline silicon solar cells with different bulk resistivities
and cell architectures. It was found that the new model describes with low discrep-
ancy the temperature sensitivity of the investigated parameters and is in very good
agreement with the experimental values.

From Eq. (28), it was concluded that not all parameters of a solar cell can vary
linearly with the temperature at the same time. Using a single valued TC, though
practical, may therefore be misleading. Additionally, it is worth noting that a single
TC does not provide any information of the temperature sensitivity of the solar cell
outside of the normal operating temperature interval, where linear dependence with
temperature is usually assumed [3]. Contrary to previous literature, the model pre-
sented in this work shows how the temperature coefficient of solar cell parameters
may vary with the temperature and, since no assumptions have been made regarding
the temperature dependence of the parameters, the derived expressions describe the
temperature sensitivity of the maximum power point at any given temperature. Fi-
nally, with respect to further developments, the techniques and methods employed in
this work may be used to derive expressions for the TCs that include the effect of the
series resistance [13, 14]. This would not only allow for a more accurate description of
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the temperature sensitivity of the MPP, but also potentially gaining understanding
of the temperature sensitivity of the series resistance.
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