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�ere has been a signi�cant surge in the interest in adopting cutting-edge new technologies in the civil engineering industry in
recent times that monitor the Internet of �ings (IoT) data and control automation systems. By combining the real and digital
worlds, digital technologies, such as Digital Twin, provide a high-level depiction of bridges and their assets. �e inspection,
evaluation, and management of infrastructure have experienced profound changes in technological advancement over the last
decade. Technologies like laser scanners have emerged as a viable replacement for labor-intensive, costly, and dangerous tra-
ditional methods that risk health and safety.�e newmaintenance techniques have increased their use in the construction section,
particularly regarding bridges. �is review paper aims to present a comprehensive and state-of-the-art review upon using laser
scanners in bridge maintenance and engineering and looking deeper into the study �eld in focus and researchers’ suggestions in
this �eld. Moreover, the review was conducted to gather, evaluate, and analyze the papers collected in the years from 2017 to 2022.
�e interaction of research networks, dominant sub�elds, the co-occurrence of keywords, and countries were all examined. Four
main categories were presented, namely machine learning, bridge management system (BMS), bridge information modeling
(BrIM), and 3D modeling. �e �ndings demonstrate that information standardization is the �rst signi�cant obstacle to be
addressed before the construction sector can bene�t from the usage of Digital Twin. As a result, this article proposes a conceptual
framework for building management using Digital Twins as a starting point for future research.

1. Introduction

Digital Twin, in a simple term, is a virtual representation of
an operation, product, or service that enables real-time data
�ows between the physical and virtual assets. �is fusion
between the virtual and physical environments enables data
processing and control tools to avoid downtime, create new
opportunities, and even predict the future conditions. In
other words, the Digital Twin serves as a connection between
the physical and smart components connected to a cloud-
based system to process data about real-time status [1].

1.1. e De�nition of Digital Twin. Having a digital model
for an asset is not enough to provide whole-life cycle asset
management, especially in the maintenance and operation

phase. �erefore, there is ongoing research on how to in-
corporate the Digital Twin concept that integrates arti�cial
intelligence, machine learning, and big data analytics to
create dynamic models that can learn and update the status
of the physical counterpart from multiple heterogeneous
data sources [2]. What can Digital Twin o�er to the building
sector? To answer this question, it is necessary to �rst look
into what a Digital Twin is. As several industries are using
this concept (e.g., space and air force, marine, o�shore, and
aerospace industry), there are multiple de�nitions of the
term. However, the CIRP Encyclopedia of Production En-
gineering [3] released a de�nition of the phrase Digital Twin
in 2019 that seems to cover most use cases, which is as
follows: “a digital twin is a digital representation of an active
unique product (real device, object, ma-chine, service, or
intangible asset) or unique product-service system (a system
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consisting of a product and a related service) that comprises
its selected characteristics, properties, conditions, and be-
haviors by means of models, information, and data within a
single or even across multiple life cycle phases.” �e de�-
nition uses the phrase “unique product,” and the reason for
this is to emphasize the need for a Digital Twin to represent
only one asset because of the accumulation of information.
�e product’s history is essential, as previous damage or
repairs will signi�cantly a�ect how the product will respond
to loads in the future. Another aspect that is worth looking
closer into in the de�nition is the following phrase: “[..] or
even across multiple life cycle phases.” It is to underline the
possibility to letting the Digital Twin follow the product even
after the end of its life cycle in the event of refurbishing or
reusing some of the components in other projects, and the
history of the components will be valuable.

1.2. e Origin of Digital Twin. �e origins of the Digital
Twin concept are, by many [4–7], credited to Michael
Grieves, who, in 2002, held a presentation about product life
cycle management. In the presentation, Grieves showed all
of the essential parts of a Digital Twin model, these being the
real space, the virtual space, and the gathering and pro-
cessing of data in-between the physical asset and the digital
replica. Grieves initially referred to it as a “conceptual ideal
for product life cycle management.” Later on, Grieves
changed it to “Mirrored Spaces Model” and then called it
“Information Mirroring Model.” Grieves wrote an article in
2011 with John Vickers, who worked for NASA, and in this
article, the term “Digital Twin” was used [3]. �us, the main
parts of Digital Twin can be seen in Figure 1.

Michael Grieves published recently a chapter about the
commonly wrong understanding that the Digital Twin does
not exist unless there’s a physical object [7]. According to
Grieves, the primary criterion for determining if a digital
model is a Digital Twin is whether the model is designed to
become a physical product with a physical counterpart. He
gives a nice example here. A �ying carpet digital model will
never become a Digital Twin, because we have no ability to
make it a physical object.

1.3. e Development of Digital Twin. Using models to
represent the real world is not new within the engineering
�eld. NASA built physical “twins” of the spacecrafts in the
Apollo program in 1967–1972 [9]. However, it is only in the
last quarter of the 20th century that it became possible to
create virtual replicas within computers’ digital space. �e
improved algorithms and computational power that the
modern computer technology has brought forward have
made designing, analyzing, visualizing, and communicating
engineering projects more eªcient. Prior to this techno-
logical development, there was an immense challenge to
ensure that all of the 2D drawings �t together when
translated into 3D models. Signi�cant time, and thereby
cost, was wasted in building physical assets only to identify
clashes and errors during construction and then having to go
back to the drawing board and starting the design process all
over again [10]. However, with the latest technology in place,

the con�icts are detected in the design phase, and con-
struction does not occur before a signi�cant number of
issues in the design phase are solved.

1.4. Bridge Inspection and Maintenance. Technological ad-
vancements in multiple domains have been exceedingly
exceptional, such as the Internet of �ings (IoT), arti�cial
intelligence (AI), and cloud computing [11]. �ese tech-
nologies have enabled the digitalization of various assets,
systems, and processes across di�erent industrial sectors
over the last few decades. Sensors and intelligent data ac-
quisition assist in improving any asset’s life cycle that may
include steps from extraction, design, production, distri-
bution, maintenance, all the way to recycling [12].�e digital
twin (DT) idea, likewise, uses the technologies above and
integrates a virtual object with a real thing throughout its life
cycle [13]. �ese new technologies provide the necessary
foundation for study in various �elds, including defect
prognostics and production eªciency, to name a few. �e
demand for inspection, evaluation, and management has
expanded drastically over the last few years, especially for
bridges. According to a report published in the American
Society of Civil Engineering (ASCE), bridges need reha-
bilitation and service at some point throughout their life-
span, suggesting that roughly around 40% of American
bridges are over 50 years old, with 13.6 percent of them being
functionally de�cient [14]. Similar trends can also be found
globally, in places like Australia, the U.K., and most Eu-
ropean nations, including Norway [13]. Aside from the few
pre-existing characteristics like design and construction,
several postexisting elements in�uence bridges’ structural
eªciency and general condition. Environmental in�uences,
structural age (lifespan), and maintenance procedures are
among them [15]. �e established monitoring and inspec-
tion methods are primarily responsible for maintenance
plans [16].

Traditional periodical inspection and condition assess-
ment methods based on on-site physical inspection are time-
consuming, expensive, and potentially dangerous. Fur-
thermore, maintenance omissions or delays may result in
signi�cant future expenses [17]. It can be even more im-
portant when the structure is of particular use or value.
Bridges are among the most vulnerable and critical com-
ponents of the road network system, and they must be
thoroughly inspected and maintained. �ese vital structures
are frequently built in diªcult-to-reach locations in a rough
terrain [16]. As a result, putting in place an e�ective
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Figure 1: Digital Twin technology [8].
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inspection procedure and a regular maintenance/rehabili-
tation strategy is vital. Hence, these excessive expenses can
be significantly reduced by cost-effective and proactive in-
spection and monitoring methods and asset management
[18]. )e construction industry needs digitalization and new
technology because of the lack of productivity, research and
development, and poor technological advancement. )e
construction industry is mentioned as the least digitalized
industry and especially slow to innovation in digital tech-
nologies. Digital technologies like the digital twin (DT) are
already being used in manufacturing, and automotive in-
dustries are widely used [19].

1.5. Laser Scanning. )ree-dimensional (3D) laser scanning
is a new noncontact measuring tool for quickly gathering
surface topography data points.)e obtained data points are
specified by x, y, and z coordinates associated with attributes,
such as the laser beam’s intensity. Aerial, mobile, and ter-
restrial laser scanning systems can be categorized depending
on the location of the laser sensors during data acquisition.
Using terrestrial laser scanners (TLS) is becoming prevalent
and widespread. TLS offers considerable promise for in-
spection operations because of its rapid speed, submillimeter
precision, and low cost compared to existing inspection
methods. TLS is used in building and maintenance [20].
Because of TLS’s widespread use, multiple review articles
have been written on its state-of-the-art. Son et al. [21]
examined developing ways to extract and analyze BIM
models from obtained data points for FM and production
monitoring (PM). Pătrăucean et al. [22] offered an overview
of an automated as-built BIMmodel construction using laser
scanner data. Lu and Lee [23] outlined image-based 3D
model development using point cloud data. Wang and Kim
[24] examined TLS in the construction sector and analyzed
data collecting settings and laser scanning data quality. Kim
et al. [25] examined works on a laser scanner-based ge-
ometry quality inspection of civil constructions. Spencer
et al. [26] reviewed modern computer vision monitoring
approaches for civil infrastructure condition assessment.
Czerniawski and Leite [27] recently detailed 10 years of
research in automatically digitizing structures. None of
those mentioned above review publications detailed TLS’s
vast uses in bridge engineering, inspection, and mainte-
nance. )is research uses scientometric and state-of-the-art
review methodologies to examine the applicability of TLS in
bridge engineering.

1.6.PointClouds. 3D point cloud data may be acquired from
numerous data sources, such as laser scans, pictures, and
videos [23, 28]. Reality capture methods that create 3D point
cloud data have matured and become ready to use, enabling
more precise and inexpensive point cloud data collection.

As point cloud data collecting systems advance, the re-
quirement tocapture3Dpoint clouddata forexistingbuildings
and infrastructures grows. BIM improves project performance
from design to construction and facilities management (FM).
As-planned BIMs are prepared throughout project planning
and design to show design intent. However, because of design

modifications made during construction, the intended BIM
typically does notmatch the actual project circumstances. As a
result, an as-built BIM is required after the building phase.
Additions and alterations may bemade during FM, rendering
the as-built BIMoutdated.An as-is BIM for existing facilities is
required to provide FM functions in this situation. )us, the
3D point cloud data may be utilized to construct as-built/as-is
BIM models. Point cloud data use includes building and in-
frastructure geometry quality checking and construction
progress tracking.

Several review papers have been published to summarize
the state-of-the-art 3D point cloud data for construction
applications. )e three review papers above focus on pro-
cessing laser scan or image data to create as-built/as-is BIM
models. )e automated reconstruction of as-built BIM
models from laser-scanned point cloud data was examined
by Tang et al. [28]. Pătrăucean et al. [22] examined as-built
BIM model reconstruction studies, focusing on modeling
building element geometries from point cloud data. Lu and
Lee [23] evaluated image-based BIM model rebuilding. Son
et al. [21] analyzed the point cloud data for production
monitoring and civil infrastructure architecture. Ma and Liu
[29] reviewed 3D civil engineering rebuilding approaches
and applications. However, none of the available review
papers describe 3D point cloud data bridge applications
across a project lifecycle.

)is study reviews 3D point cloud data’s uses. After
reviewing several construction applications, how to obtain
and handle point cloud data is discussed. Literature eval-
uation and in-depth conversations identify research gaps
and offer future research topics.

)e rest of the paper is arranged accordingly. Section 2
explains the methodology used for the scientometric anal-
ysis. Section 3 defines the state-of-the-art digital solutions
for bridges, including BIM, IoT, BAS, Data-driven, and
machine learning, and classifies the reviewed papers into
application domains. Section 4 discusses the future trends of
Digital Twin from various perspectives. Section 5 presents
the conclusion.

2. Scientometric Review

)e scientometric review is a quantitative assessment of
current research on the formation of science that evaluates
the effect of journals, organizations, and nations in a specific
research field. )is reviewing strategy can give better
knowledge, providing a thorough summary of presently
published publications and citation effect [30, 31]. Visual-
izing laser scanning in bridges can help readers understand
research trends and patterns. A quantitative approach is
proposed for evaluating laser scanning papers in bridge
engineering and asset management in this work. )is
methodology applies bibliometric tools to published liter-
ature to trace the structure and evolution of specific con-
cerns and aims [31]. Network modeling and visualization
analyze the current research area’s intellectual environment
and identify important topics that researchers may strive to
answer. )e identification of influential scholars that shape
the topic of study is based on keyword and abstract analysis.

Advances in Civil Engineering 3



Co-occurring keywords analysis and coauthor analysis by
country of origin [21, 32] also reveal research tendencies. For
bibliometric mapping, VOSviewer [33] was used.

2.1.Methodology toFindLiterature. Although there has been
a tremendous amount of research published in conference
proceedings and scienti�c journals over the past decade, the
research about the Digital Twin technology is still limited,
especially for bridge maintenance. �erefore, the literature
search has primarily focused on high-ranked journals and
reputable conferences in civil engineering, construction
management, and structural health monitoring. Scopus, a
database of more than 75 million records of articles and
books, was the primary source of information for the lit-
erature search. In addition, a search of Google Scholar and
Web of Science was also carried out as an additional lit-
erature check. An overview of the literature search process is
shown in Figure 2. As shown in Figure 3, the quantity of
papers produced between 2017 and 2022 is presented an-
nually. During this period, the quantity of articles linked to
Digital Twin for bridges has increased. �e trend is even
more evident in 2019 with the growing quantity of research
publications. �us, the exponential increase of Digital Twin
research in bridges demonstrates the dramatic in�uence on
the construction industry. After manually avoiding dupli-
cated research between databases, we ended up with 108
documents from Scopus, 47 documents from Google
scholar, and 31 papers fromWeb of Science. Keywords, such
as “3D point cloud,” “Laser scanner,” “Digital Twin,”
“Building information modeling,” and “Laser scanning,”
were utilized in the early stages of the literature search. In the
beginning, 186 documents were recognized. Some of the
publications were from �elds unrelated to the research topic,
such as astronomy, physics, medicine, and mathematics. As
a result, we used two di�erent sets of criteria at this point.
Papers were initially excluded from consideration based on
their topic matter before limiting to the 2017–2022 (no
papers about the topic before 2017 and the study included
the papers until 16.06.2022) publication date. As a result of
the �rst standard, 53 documents were removed, and as a
result of the second, 24 documents were removed. A total of
78 documents were discarded, leaving 108 documents.

As seen in Table 1, this process is carried out by �nding
the most respected publications and conferences. �e most
published articles connected to the application of Digital
Twin for bridge maintenance and assessment are found in
Automation in Construction and Sensors, as indicated in
Table 1.

2.2. Co-Occurrence of Keywords Analysis. Keywords are
necessary for presenting a published work’s core concepts
and topic areas and demonstrating a brief overview of the
study horizons [34]. �e co-occurrence of keywords was
examined using VOSviewer to develop and study the map of
the current knowledge domain in Digital Twin for bridge
engineering and evaluation. �e literature search results
were processed and displayed using the keywords network,
as shown in Figure 4.�e keywords network is displayed in a

distance-based diagram by the VOSviewer. Table 2 shows the
number of occurrences, average year published, number of
linkages, and overall link strength for this network, which
has 44 nodes and 653 links. Each term in this network is
referred to as a node, and the connections between them are
referred to as links. �e distance between two nodes de-
termines the strength and weakness of a link. A greater
distance between two keywords/nodes suggests a weaker
association, whereas a smaller distance indicates a more vital
link [35]. �e total link strength is the sum of the connection
strengths associated with a single node. Furthermore, the
size of the given nodes represents the number of papers in
which the term was formed, and a variety of colors indicate
di�erent study years [36].

Table 2 shows the frequency of each keyword as the
number of occurrences. “Digital Twin” and “Life cycle” are
the two primary terms that often appear in this table, in-
dicating substantial research in this �eld. Based on the data
presented, the frequency of keywords, such as “bridge in-
spection,” “damage detection,” “laser scanner,” and “point
clouds” indicates that research into bridge inspection and
assessment, as well as their connections to digital twins and

Two fold keywords: tools and applications resulted in 186 documents

Publication year limited to 2017-2022 Documents exluded based on subject
area

Documants screened through
applications of Digital Twin for Bridges

using laser scanning

Determine the eligibility of the documents

Application areas

Figure 2: Scienmetric review procedure �owchart.
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bridge lifecycle, is limited. )us, there is a clear and urgent
need for more research in this area.

2.3. Coauthorship Analysis. )e coauthorship network was
obtained based on the bibliometric technique, showing the
research work of the significant authors and the cooperation
between them in the presented field. )e number of pub-
lications produced by a researcher determines the node size,
and the thickness of the link indicates the level of the au-
thor’s cooperation. Figure 5 includes 1000 nodes and 3082
links, as shown in Table 3. Based on the given information,
the list of the most productive authors who have the most
published papers is presented in Table 4.

2.4. Network of Countries. VOSviewer software was used to
generate a network depicting the distribution of research
articles to illustrate nations’ contributions on the subject.
)is network consisted of 27 nodes and 334 connections. As
indicated in Figure 6, the following nations contributed the
most articles to this field of research: China (111 papers), the
United States (70 papers), the United Kingdom (65 papers),
Germany (49 papers), and Italy (31 papers).

3. State-of-the-Art Review

)e research methodology was extended to a comprehensive
review of Digital Twin and TLS applications in bridge en-
gineering and asset management based on four major cat-
egories: (1) machine learning, (2) bridge information
modelling (BrIM), (3) bridge management system (BMS),
and (5) 3D modeling.

3.1. Machine Learning. )e BIM, laser scanning, and IoT
digital infrastructure generate a large amount of data to
support decision-making and monitoring processes in the
bridges project [37]. Automating these processes with data-
driven solutions becomes a need to improve construction
management and reduce operational costs [38–42]. Hence,
machine learning (ML) and data-driven algorithms are
valuable tools for processing such data and computing
valuable information about the bridges. Indeed, ML tech-
niques may provide a data-driven bridge model to monitor
the current operations, forecast possible situations in the
future, and detect cracks. Algorithms such as artificial neural
networks (ANN), convolutional neural networks (CNN), and
dynamic graph convolutional neural network (DGCNN) are
some tools that can assist in processing data for bridge as-
sessment [43]. However, it is yet to be determined whether
damage requires repair using automated inspection. )e
damaged region must be located in 3D space to identify
whether the primary component is implicated. Hard coding
has been proposed for bridge component categorization
[44, 45]. However, in these systems, point cloud data seg-
mentation is not automated. Only simple bridge types with
vertical and horizontal components and no sophisticated
forms could be used.

)e region expanding approach [46, 47] has been pro-
posed for segmenting components to categorize point cloud
data from bridges automatically. )is method extracts a
curved surface and plane by extending seed points into an
area until an edge is reached in the point cloud data, where
the change in the vector surpasses a specific threshold and
where the seeds are manually or automatically entered.
Schnabel et al. [48] suggested a random sample consensus
(RANSAC)-based technique for forming a model at the site
where the sum of the distances is reduced by comparing
samples randomly taken from point cloud data with a 3D
geometry model (e.g., a sphere or cylinder). Xu et al. [49]
adapted this approach into an octree with a high processing
speed for point cloud data obtained from a construction site.
For a grid-like steel construction, Laefer and Truong-Hong
[50] suggested a method for filling occluded sections using a
repetitive pattern. However, these model-based solutions
cannot be used on bridges without a grid-like structure or
basic geometry (e.g., spherical or cylindrical).

Previous research on automatically identifying bridge
components was unable to process the segmentation of

Table 1: Top journals and conferences with relevant published papers (2017–2022).

Source Documents Citations Total link strength
Automation in construction 33 528 2357
Sensors 14 44 1028
Applied sciences 11 54 943
IEEE access 10 295 886
Computers in industry 8 64 789
Sustainability 16 141 767
Journal of building engineering 4 30 538
20th congress of IABSE 3 4 13
Proceedings of the 37th international symposium on automation and robotics 4 9 3
IOP conference series: earth and environmental science 5 5 0

Figure 4: Network of co-occurring keywords.
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input data. )ey can interpret certain forms, however, they
cannot segment or categorize parts or categories. As the
component class to which a segmented object belongs
cannot be recognized, it cannot be utilized to automate
maintenance. Kim et al. [51] provided a methodology for
segmenting and categorizing bridge components based on
the semantic segmentation of point cloud data using
PointNet [52], a deep learning-based system that concur-
rently segments and classifies data. PointNet can learn
unstructured cloud data, however, it does not learn infor-
mation about the local link between points, and the data are
learned separately [53]. )e sorts of components in a bridge

might differ depending on their connection to other com-
ponents and the shape information of each component. To
determine a bridge’s safety class, an algorithm capable of
precisely identifying and segmenting each component and
differentiating major from auxiliary components is required.

3.2. Bridge Information Modeling (BrIM). One of the causes
of the high expenses of bridge maintenance is the time-
consuming inspection and assessment processes. Efforts
have been undertaken to identify bridge surface degradation
automatically. From photos collected by unmanned aerial

Table 2: Keywords linked to network data.

Keyword Occurrence Links Total link strength
Machine learning

Artificial intelligence 34 37 135
Automation 18 28 63
Big data 15 27 80
Cyber physical system 15 23 66
Data analytics 16 30 82
Decision making 42 39 174
Digital storage 18 32 79
Digital twin 279 43 574
Embedded system 24 27 99
Industrial research 16 20 53
Industry 4.0 25 28 93
Information management 43 42 206
Internet of things 41 37 193
Internet of )ings (IoT) 20 31 85
Life cycle 88 42 303
Machine learning 25 30 85
Manufacture 29 27 80

Bridge information modeling
Architectural design 75 42 365
BIM 32 35 127
Building information modeling 22 29 98
Bridge information modeling 59 40 239
Construction 15 26 86
Construction industry 33 35 145
Data acquisition 23 28 88
Information theory 29 37 168
Project management 15 26 78
Sustainable development 15 23 44

Bridge management system (BMS)
Bridge 16 20 42
Bridges 35 31 127
Inspection 16 26 68
Maintenance 32 33 137
Virtual reality 20 29 59
Damage detection 16 18 51
Digital twin 39 38 104
Monitoring 25 27 75
Structural health monitoring 38 29 105

3D modeling
3D modeling 22 23 79
Laser scanning 16 14 27
Photogrammetry 16 18 42
Point clouds 23 22 64
Semantics 18 29 69
)ree dimensional computer graphics 24 28 86
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vehicles (UAV), Kim et al. [54] used region with convolu-
tional neural networks (R-CNN) to find fractures on the
structural surface. Wang et al. [55] created a stitching
technique to solve the problem of calculating long fractures
that could not be shot in a single image. )eir work,
however, was limited to identifying localized damage. To
complete a full condition evaluation, global geometric
context is still required to incorporate local inspection data.
Bridge management systems (BMS), such as AASHTOW are
[56] being utilized to store and manage structured bridge
condition data. However, instead of analyzing the structural
state of a single bridge component, BMS is primarily
designed for system-wide decision-making [57].

)e bridge information model (BrIM) (Figure 7) is an
alternate solution that can manage this information on both
the structure and component levels. )e United States

National Building Information Model Standard Project
Committee defines the Building Information Model (BIM)
as “a digital representation of physical and functional aspects
of a facility” [59].)e BrIM is not just a 3D physical model. It
can also store component-level information for life cycle
management [60]. Tanaka et al. [16] created a BrIM based on
industry foundation classes (IFC) tomanage inspection data.
DiBernardo [61] examined the present data management
process for existing bridge assets and developed a framework
for organizing and analyzing inspection data that integrated
BrIM and existing commercial bridge software products. In
addition to storing inspection data, BrIM may help stake-
holders collaborate and cooperate throughout the bridge life
cycle, including structural health monitoring, rehabilitation,
behavior modeling, and prediction [60].

BIM use for newly constructed transportation infra-
structures soared in Europe between 2012 and 2017, driven
by the benefits. By 2017, however, just 52% of engineers and
contractors had used BIM on at least half of their projects
[62]. Only a few newly constructed bridges have BrIM as-
designed, whereas most existing bridges still use traditional
information management methods like datasheets. As a
result, automatic production of as-built BrIM is critical for
digitalizing the life cycle management of existing bridges.

)ere are four processes involved in developing an as-
built BIM for an existing structure: 3D reconstruction, se-
mantic modeling, geometrical modeling, and building in-
formation modeling [27]. Reality capture devices are used in
3D reconstruction to create digital representations of
existing buildings, such as point clouds. )ree modeling
stages follow, intending to generate BIM from the digital
representation. In semantic modeling, for example, the
subsets of the 3D reconstruction are given labels in a BIM
taxonomy. )e parametric representation of each class in-
stance’s shape, position, and spatial connection will then be
constructed in geometrical modeling. Finally, the semantic
and geometrical characteristics in the building information
modeling are combined and recorded to files in the BIM
format (e.g., IFC), resulting in building information models.

Actual reality capture methods are widely used to
generate point cloud representations for 3D reconstruction.
To track the displacements of a supported steel beam, Park
et al. [63] used terrestrial laser scanning (TLS) to create a
point cloud model. Photogrammetry based on 2D photos
was used by Brandon et al. [64] to construct the point clouds
of bridges so that surface condition and geometry infor-
mation could be seen. Roca et al. [65] used a lidar mounted
on a UAV to acquire the point cloud data of structures to
develop building envelope models and do energy analysis.

Despite substantial advances in data gathering systems,
only a few as-built BrIM for existing bridges have been
produced. )e critical barrier is time-consuming, labor-
intensive, and expensive modeling operations from point
cloud to BrIM [45]. )e third phase, geometrical modeling,
and the fourth step, information modeling, were automated
in several published studies. Geometric modeling is com-
monly achieved by fitting parametric geometry represen-
tations, such as planes and cylinders, to point clusters [61].
Nonparametric representations, such as polygonal meshes,

Figure 5: Network of coauthorship.

Table 3: )e coauthorship network’s general characteristics.

Network Nodes Links Total link strength
Coauthorship 1000 3082 3220

Table 4: List of the top 6 most productive authors (2017–2022).

Author Documents Citations
Zhang Y. 9 219
Brilakis I. 9 111
Liu Z. 9 53
Li J. 7 40
Kaewunruen S. 6 61
Wang J. 6 10

Figure 6: Network of countries.
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were also used for complicated forms that could not be
characterized by parametric representations [66]. Lu and
Brilakis [57] also devised a slicing-based method for directly
constructing IFC entities from the labeled point clusters of
bridge components and producing BrIM. )eir technology
has successfully automated geometrical and information
modeling in RC bridges. Indeed, the automation of geo-
metrical and information modeling approaches has ad-
vanced significantly in recent years, and a slew of
commercial software products (e.g., ImageModeler, Leica
CloudWorx, PolyWorks Modeler, and others) have devel-
oped to help [23]. )e second phase, semantic modeling,
however, remains challenging to automate. Although there
has been progress in recognizing a few particular items in
structures (e.g., pipelines [67], structural steels [68]), no one
approach can complete the semantic modeling by identi-
fying all needed objects. In the case of bridges, the geom-
etries of point clouds from different bridge types are
generally diverse, and outliers are frequently present. )is
challenge has been exacerbated by the lack of training data
caused by the high reality capture cost, making the end-to-
end deep learning model challenging to implement. As a
result, no research has been able to perform accurate and
reliable bridge component detection [51, 69].

3.3. BridgeManagement System (BMS). Bridge management
systems (BMS) are often used by road authorities to manage
the facilities of bridge structures. Inspection, structural
health monitoring (SHM), and rehabilitation are the pri-
mary functions of these systems [70]. By adopting more
advanced computerized management systems, managing
agents can better handle the quantity of information needed
for successful infrastructure management [71].

To guarantee the safety of bridges throughout their
design life and beyond, regular assessments and actions are

necessary. To check the health of a bridge throughout its
lifespan, systematic quality evaluation processes known as
routine inspections are performed [72].

Currently, most bridge inspections are carried out by
hand, with inspectors performing extensive visual exami-
nations and field measurements [73]. On the other hand,
manual inspections take a long time and rely heavily on the
inspector’s familiarity with the studied system’s structural
behavior [72]. )e notion of automating, systematic, and
quantitative 3D point cloud evaluation in place of human
visual perception is now being researched [74]. )e most
recent study integrates picture collecting techniques with
damage identification and feature extraction approaches
into an automated bridge inspection system [74]. Table 5
lists current technologies used to automate bridge inspection
and damage identification.

In the literature, few studies use Digital Twin for bridges.
During the Henry Hudson Bridge renovation in New York,
Andersen & Rex (2019) [86] built an SHM system backed by
a digital twin that could forecast reactions to probable
catastrophic scenarios. Shim et al. [87] suggested a bridge
maintenance system based on the notion of digital twins by
developing the following three models:

(a) (b)

(c)

Figure 7: (a) 3DBrIMmodel in revit. (b) Sample IFCtextfilewithcrack information, and (c) integratedBrIMmodelopened inBIMVision [58].

Table 5: Technologies for inspection, automatic damage identifi-
cation, and references.

Tool References
Laser scanning [70, 75, 76]
Photogrammetry [77, 78]
Ground penetrating radar (GPR) [79–81]
Unmanned aircraft vehicle (UAV) [82, 83]
Light detection and ranging (LiDAR) [84]
Wireless sensor network (WSN) [85]
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(i) A three-dimensional geometry model
(ii) A model that depicts the bridge’s current state.
(iii) An intermediate model between the �rst two.

�e geometric digital twins of existing bridges have been
constructed by Lu and Brilakis [57]. �e authors argue that a
platform-agnostic data format, IFC, should be used to ex-
press all the geometric and property information. It was the
last of the three Digital Twin frameworks that Ye and col-
leagues [88] presented, which was evaluated in the case study
of railway sleepers equipped with �ber optic sensor (FOS)
systems.

Building information modeling (BIM) may be used to
create digital models that can then be utilized to predict
structural degradation using �nite element methods (FEM)
and foresee the consequences of such decay on the integrity
of structures [79, 80, 89]. In a smart BMS, the precise
modeling of the current state and forecasting of future
behavior are crucial components [73]. Autodesk Revit, the
most widely used commercial BIM software, has been
recognized as one of the most sophisticated digital twinning
systems by several writers in this study [73]. In addition, an
industry foundation class (IFC) platform is provided,
allowing data to be exchanged across nonnative �le formats
[90]. A neutral �le format for transmitting digital building
models, such as IFC, can help alleviate interoperability
diªculties [74].

To design a BMS, several stages must be considered. �e
signi�cance of conducting routine bridge inspections was
�rst recognized. �e critical concerns with present tech-
niques and technology were improving inspection and
damage detection. �e second component, digital models,
focused on BIM, FE modeling, and data integration tools
across platforms. Finally, the third segment addressed digital
twins, revealing a lack of clarity on the de�nition of the
Digital Twin for the construction sector and the fact that,
while expanding, the approach to bridge management is still
in its infancy. As a result, the intended BMS should include
the following while using Digital Twins:

(i) Inspection: an automated procedure that combines
precise and dependable technology to enable the
development of digital models and automatic
damage identi�cation with little to no reliance on
the human eye or site visit.

(ii) BIM model: a semantically rich and comprehensive
model built primarily automatically from geometry
data and contains the original geometry, current
status updated with inspection data, and the visu-
alization of monitoring points.

(iii) Digital Twin: derived from the BIM model, the
digital twin should be able to automatically update
with site monitoring data and connect to additional
layers, such as an FE model, for future behavior
prediction.

�e Digital Twin system should also include a study of
optimal intervention techniques for the facility management
element of the structure during its entire life cycle, predict

improvements because of future interventions, and handle
intervention, inspection, and ancillary expenses, including
traªc delays, accidents, and environmental damage. Allow
for the storage of fundamental construction data, inspection
data, and intervention history. �e system should also be
user-friendly, with features like attentive warnings when
speci�c metrics approach warning or critical levels. �e
possible technologies discovered in the literature for each of
these macro characteristics were summarized in the
framework shown in Figure 8. Nondestructive testing (NDT)
may be used to discover the inner geometry and material
qualities using this framework, and diverse techniques can be
coupled to create novel bridge facility management.

3.4. 3DModeling. �e most challenging task is to transform
raw data into information that can be used for data col-
lection and 3D model reconstruction. With properties like
intensity and color, raw topographic point cloud data cannot
be used to analyze object surfaces. �e engineers desire an
accurate 3D portrayal of this task’s end outcome. Engineers
may be able to make better management or assessment
decisions using the 3D model generated for civil infra-
structures, such as bridges. Data collection and 3D model
development are the most frequent techniques for
employing a point cloud in bridge engineering (Figure 9).
Data collection techniques on-site should be optimized to
maximize the number of scan stations and coverage areas.

Bridge engineering applications require large amounts of
high-quality data point clouds, which are challenging to

Photogrammetry

Inspection Digital Twin Facility
management

BIM model Lifecycle
management

Structural health
monitoring

Finite element model

Damage identification

Data exchange

Laser scanner

Ground Penetrating
Radar (GPR)

Unmanned Aircraft
Vehicle (UAV)

Light Detection and
Ranging (LiDAR)

Wireless sensor
network (WSN)

Figure 8: Bridge facilities management framework based on digital
twins.

Figure 9: 3D point cloud of the crooked river bridge [91].
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collect. A mistake in scanning or identifying an insufficient
scanning location might result in missing data points in this
step. Data collection is more difficult because infrastructures
like bridges are more varied and complex in terms of kind,
orientation, form, size, and the surrounding scene [73, 92].

Scanning processes are developed by engineers for the
purposes of data collection and site surveying, and scanning
parameters have been established [93, 94]. Optimizing hi-
erarchical scanning was employed by Jia and Lichti to tackle
TLS viewpoint planning issues. Hinks et al. [95] used a flight
planning strategy to provide complete object coverage with
little data redundancy.

Data capture rate (pixels per second), scanning time, and
the amount of redundant data and noise are all affected by
the data quality level. Scanning geometry, surface smooth-
ness, reflectivity, and laser scanner properties can all affect
the quality of the data points collected [96]. )e resolution
setting defines the lowest visual item dimension, commonly
in centimeters for concrete and millimeters for steel [92].
TLS has difficulty identifying enough data points to rep-
resent edges in steel structural components since they are
frequently narrow segments with edges [97]. Satisfactory
resolutions must be considered for damage identification
proposals to investigate moderate (at least) cracks, spalling,
and scaling [98]. )ese researchers studied beam fractures
using this method, as did Cabaleiro and colleagues [99]. TLS
could detect fractures up to 3 millimeters wide using a one-
millimeter resolution.

Ambient conditions, such as humidity, temperature, and
light have a role in the initial step. )e surface roughness of
the exposed object is also a factor. )e surface’s smoothness,
roughness, and color can affect laser beam traversal and
return. )e TLS location and incidence angle are two
components of geometry scanning [24]. According to Laefer
et al. [98], orthogonal distance and incidence angle might
change fracture width detection results. )is study dem-
onstrates a 1.37mm absolute error at a 5.0–7.0m orthogonal
distance. Some basic adjustments may be applied to the
scanning mechanism. Selecting appropriate surveying
equipment, such as a high-tech laser scanner and tripod with
stabilizer, and having a defined scanning plan may decrease
duplicate data acquisition for an effective monitoring op-
eration like a bridge inspection.

For bridge information modeling (BrIM), assessment,
and maintenance, this process builds a 3D model of the
bridge structures from raw data points. From the beginning
of the design process until the end, the virtual 3D model of
the bridge may be used. Because of construction and use, a
bridge’s condition may vary over time, resulting in a state
different from what was initially documented in the design
documents. Large-scale structural changes can only be
shown by an accurate, as-built 3D model derived from a
thorough survey [100].

Preprocessing, segmentation, and CAD model con-
struction are part of the 3D modeling process. Data
cleansing and registration are two of the first steps in pre-
processing. )e noise in raw TLS data points affects the
construction of 3Dmodels. In the data clean-up stage, angle,

median, and chordal filters can help reduce noise. Datapoint
clouds must be aligned using target points and methods in
the light of the multiple scan locations [101]. For this stage,
TLS instruments and software have lately introduced in-
novative preprocessing methods that reduce the amount of
office labor [102]. Segmentation turns the input into geo-
metric shapes that represent the surface of the observed item
[29]. )e difficulty of establishing an adequate automatic
segmentation method has risen because of the increasing
number of data points. CSG and B-rep are the tools of choice
when dealing with this issue. B-rep creates a 3D object from
various surfaces, whereas CSG develops 3D solid models
from volumetric primitives using Boolean operations [103].
)e bounded fundamental primitives of solid models in CSG
are stated as the following: cone/cylinder/sphere/cuboid.
Edges, vertices, and surfaces are used in the B-rep technique
to determine solid model boundaries. Using the CSG
technique, all bridge components are broken down into
basic subsets/primitives. B-rep and CSG have been com-
bined in recent studies [103].

Feature-based segmentation (“feature-based segmenta-
tion”) or segments based on data points meeting mathe-
matical models were among the segmentation algorithms
researchers aimed to develop (“model-based segmenta-
tion”). When using feature-based segmentation methods,
such as region growth [47] and ray tracing [104], the cur-
vature of a surface is determined by comparing data points
gathered at various locations [105], such as the angle of
normal and unit vectors [106].

)e final step in producing an integrated geometric
model from segmented data points is constructing a 3D
CADmodel. Standard practices call for fitting and sweeping.
)e first method uses segmented points to create basic
primitives, while the second method extrudes a segmented
object along a path to see 3D CAD [47, 100].

Sweeping has become the topic of more studies. Laefer
and Truong-Hong [50] proposed an automated method for
swiping the determined profile along its longitudinal axis to
identify a steel structural component’s cross-section. Laefer
[107] discovered multiple cross-section cuts along a steel
component’s primary path in his research.

Yan et al. [108] used a three-phase voxel-based mesh
generation technique to create a three-dimensional struc-
tural model. )is method begins with voxel-based cross-
sectional cut extraction and extrudes the identified cuts
along their principal axes to use the correct component map.

4. Research Limitations and Future Studies

)is work adds to the body of knowledge, however, it also
has several limitations that need to be considered. Despite
a thorough search for relevant content, it is possible that
not all search phrases were identified. Scopus, Web of
Science, and Google Scholar databases were only used in
this research. As a result, additional articles on Digital
Twins for bridges have not been presented. )e results
may not fully represent the literature on Digital Twin
applications in bridges because of these limitations. It is
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possible that the study used subjective judgments to de-
termine the actual articles and to identify their application
in distinct lifecycle stages of literature. New advancements
in natural language processing are also required to au-
tomatically prevent duplication from diverse databases,
collecting material from all languages and encapsulating it
to present an overview of research from a global view-
point. Research findings should be interpreted in the light
of the limitations outlined above, which should be
considered.

5. Conclusion

Digital Twin technology will usher in a new era of digital
information in the building sector. According to the liter-
ature analysis, initiatives to adopt the Digital Twin idea for
bridges are underway. )ese initiatives, however, appear to
be in the early stages. Much study is required to effectively
include a full-scale high-fidelity Digital Twin model into the
bridge-building. Parallel initiatives to enhance BIM to in-
clude the operation and management phase by applying
Digital Twin technology appear to be underway. Even
though there are issues with integrating BIM, laser scanning,
sensor data, and processing the amassed data, BIM has the
advantage of being adopted for many assets. )e Digital
Twin provides the advantage of a solid basis for data pro-
cessing and BIM integration. However, when it comes to
bridges, the Digital Twin technology is further behind in
research and application.

In 2020, there was a considerable increase in digital twin
research for bridges. Digital Twins are predicted to gain
popularity despite being linked to several concerns, such as
data exchange constraints, project inefficiencies, and the lack
of a collaborative approach throughout the life cycle.

)e most influential journals in Digital Twin for bridge
maintenance are Automation in Construction, Sensors,
Applied Sciences, and IEEE Access. “Machine learning,”
“bridge information modeling (BrIM),” “bridge manage-
ment system (BMS),” and “3D modeling,” according to
scientometric study results, are four dominant research
disciplines.

)e analysis and mapping revealed that improving
prediction and knowledge integration across the project
lifecycle is critical in the near future.

To address the issues raised in this study, future research
should take a holistic approach. )e findings of this study
will assist both construction industry stakeholders and ac-
ademics by raising the knowledge of current research aims,
research gaps, and long- and short-term future research
trends in the field of Digital Twin research.

While the study used a small number of sources, the
information obtained from them was constrained by bib-
liometric constraints. Furthermore, scientometric mapping
and analysis uses solely academic research. Practical and
commercial advances are, therefore, omitted. )e future
study may include data from practitioners and corporations
to get better findings.
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[68] F. Bosché, “Automated recognition of 3D CAD model ob-
jects in laser scans and calculation of as-built dimensions for
dimensional compliance control in construction,” Advanced
Engineering Informatics, vol. 24, no. 1, pp. 107–118, 2010.

[69] Y. Hajjar and J. F. Hajjar, “Automated extraction of struc-
tural elements in steel girder bridges from laser point
clouds,” Automation in Construction, vol. 125, Article ID
103582, 2021.

[70] Accelerated Bridge Construction, https://www.fhwa.dot.gov/
bridge/abc/Reference 92: Here is the link: https://www.
routledge.com/Laser-Scanning-An-Emerging-Technology-i
n-Structural-Engineering/Riveiro-Lindenbergh/p/book/978
1032086910.

[71] Z. Mirzaei, B. Adey, P. )ompson, and L. Klatter, “Overview
of Existing Bridge Management Systems,” in Proceedings of
the Report by the IABMAS Bridge Management Committee,
Stresa, Italy, July 2012.

[72] G. Morgenthal, N. Hallermann, J. Kersten et al., “Framework
for automated UAS-based structural condition assessment of
bridges,”Automation in Construction, vol. 97, pp. 77–95, Jan.
2019.

[73] C. Popescu, B. Täljsten, T. Blanksvärd, and L. Elfgren, “3D
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