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Abstract: The present era is facing the industrial revolution. Machine-to-Machine (M2M) communica-
tion paradigm is becoming prevalent. Resultantly, the computational capabilities are being embedded
in everyday objects called things. When connected to the internet, these things create an Internet of
Things (IoT). However, the things are resource-constrained devices that have limited computational
power. The connectivity of the things with the internet raises the challenges of the security. The user
sensitive information processed by the things is also susceptible to the trusability issues. Therefore,
the proliferation of cybersecurity risks and malware threat increases the need for enhanced security
integration. This demands augmenting the things with state-of-the-art deep learning models for
enhanced detection and protection of the user data. Existingly, the deep learning solutions are overly
complex, and often overfitted for the given problem. In this research, our primary objective is to
investigate a lightweight deep-learning approach maximizes the accuracy scores with lower compu-
tational costs to ensure the applicability of real-time malware monitoring in constrained IoT devices.
We used state-of-the-art Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and
Bi-directional LSTM deep learning algorithm on a vanilla configuration trained on a standard mal-
ware dataset. The results of the proposed approach show that the simple deep neural models having
single dense layer and a few hundred trainable parameters can eliminate the model overfitting and
achieve up to 99.45% accuracy, outperforming the overly complex deep learning models.

Keywords: Internet of Things; deep learning; natural language processing; RNN; LSTM; malware
detection

1. Introduction

Internet of Things (IoT) is an emerging concept that involves Machine-to-Machine
(M2M) communication [1,2]. The prime purpose is to bring the smart capability to everyday
life using ubiquitous devices with computational, sensing and communication functionali-
ties, often referred to as IoT devices [3]. With the increasing implications of the IoT devices
in various domains such as smart hospitals, homes, streets, offices, etc., we are entering
into the revolution of being transformed into smart world [4,5]. However, the implications
of IoT devices are challenging mainly because IoT devices are constrained devices, have
limited computational capability, and are usually battery-powered [6]. The major mode
of communication among the IoT devices is a compact string encoding such as JavaScript
Object Notation (JSON) [7]. However, due to computational constraints, communication in
IoT devices is prone to cybersecurity threats.

The cybersecurity technologies are designed to provide a shield against computers,
networks, programs, and data from attack, mutation, or unauthorized access [8,9]. Among
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them, IoT networks have become a significant threat to cybersecurity due to their immense
popularity and widespread use [10]. IoT devices enable the industrial evaluation that
allows everyday things to become intelligent and ubiquitously assist humans in day-
to-day tasks [11]. Billions of people are reportedly taking advantage of IoT platforms,
including autonomous vehicle driving. smart healthcare, smart home, etc., to control their
environment in real-time [12]. The existing number of connected IoT devices is more than
20.4 billion and is expected to increase exponentially [13].

Recent research has shown that IoT networks are becoming an easy target of cyber
criminals [12]. For instance, the rapid spread of users’ private information, such as health
data, can result in expensive lawsuits [10]. Empirical analysis has shown more than a
million confirmed cybersecurity breaches, resulting in the financial loss of approximately
$400 million [12]. The Mirai malware infected over 1.2 million IoT peripherals causing the
most intense Distributed Denial of Service (DDoS) attacks which further led to the loss of
millions due to the downtime [14]. Similarly, ransomware is a mutation of malware that
encrypts the user’s sensitive information and demands a ransom for decryption, causing up
to 200 million dollars in damage [15]. Therefore, urgent attention towards introducing tools
and techniques for securing IoT devices information and resources is becoming crucial [10].

Exiting research has critically analyzed the inherent properties of cybersecurity attacks.
For instance, an attack signature can be identified from a predefined string, pattern, or rule
corresponding to a known attack [16]. Thus, detecting foreseen attacks can be viewed as a
pattern recognition problem [15]. The human intellectual capability to recognize patterns
is the most primitive cognitive skill that is a foundation for different high-level selection-
making in complicated environments [17]. This intellectual capability has resulted in the
immense growth of pattern recognition techniques such as image recognition, natural
language processing, speech recognition, and so on [18].

Various machine learning-based approaches were introduced in the literature to rec-
ognize contextual and visual patterns in different domains [2,19]. Many of these ma-
chine learning algorithms are establishing a pivotal role in solving otherwise complicated
problems including for instance medical context [20] and cybersecurity issues. Several
researchers have produced various datasets based on historical data analysis and security
attacks to ease this challenge [21]. Many malware-related text repositories are stored online
in textual modality, and various researchers consume such texts for training purposes [22].
However, the enormity and diversity of the texts make it challenging for the researchers to
obtain rapid valuable insight. A potential solution is using Natural Language Processing
(NLP) to quickly highlight critical information, such as the specific actions and conse-
quences caused by a particular malware [23]. This can assist researchers in understanding
the properties of specific malware and ease further advancement.

At present, the algorithms to detect malware in string work on deep learning models.
These algorithms work on the probability and statistical theories and therefore are compu-
tationally more expensive [16]. The recent advancement in the deep learning models can
autonomously learn using billions of trainable parameters, which increases accuracy scores;
however, at high computational costs [16]. To increase the accuracy scores, researchers
often significantly increase the trainable parameters resulting in high computational costs
and complexity [17].

With progressing automation and an increasing number of online systems, various
security breaches such as unauthorized access malware attacks, data ransom, and denial of
service (DoS) have been reported at an exponential growth rate during the recent years [24].
Nearly 90% of consumers express the concerns on the IoT cybersecurity [25]. Furthermore,
this number will probably develop, as per the measurements of AV-TEST organization in
Germany [16]. About 26.66 billion devices are currently produced [25] and with the number
of IoT devices reaching 75.44 billion by 2025, generating 186 zettabyte of data [26,27]. With
IoT systems having billion of devices, zettabyte of data, and sophisticated connections is
starting to become an immense security concern [28]. Therefore, it is becoming essential
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for organizations to adopt and implement a robust deep learning-based cybersecurity
approach to counter cyberattacks [18].

The deep learning models that can autonomously learn using enormous trainable
parameters have been shown to mimic near-human-like reasoning. The common inception
of deep learning models is extensive computational requirements. However, securing
intelligent M2M communication is challenging without integrating deep learning algo-
rithms [29]. Moreover, a research gap exists that investigates the effectiveness of the deep
learning models trained on relatively smaller footprints. Therefore, in this research, we
are interested in investigating the implication of deep learning models’ accuracy that are
trained on a smaller footprint. Since information privacy and security is one of the most
challenging aspects of IoT, it is becoming critical to enable IoT devices to intelligibly handle
security incidents on the runtime [1].

Therefore, in this research, we are interested in finding a lightweight deep learning
model that can retrain maximum accuracy with minimum computational costs, which
is acceptable in a constrained environment such as IoT. We are using the state-of-the-
art vanilla configuration-based RNN [30], LSTM[31], Bi-LSTM [32] model. We trained
these models on the widely used MalwareTextDB dataset to test the accuracy scores. We
further compared the deep learning-based approaches with the traditional algorithmic
machine learning-based approaches to determine their effectiveness. The initial result of
the proposed approach shows that lightweight deep learning models can be trained to
achieve significant accuracy with fewer computational requirements.

Contributions

Most of malware detection approaches employs relatively complex and computation-
ally expensive deep neural learning models. The approaches that use a simple machine
learning algorithms also suffered from low accuracy scores. Therefore, a research gap
exists in investigating a lightweight approach that can predict the malware text with ac-
ceptable accuracy scores and lower computational costs applicable in IoT environments.
The contributions of our research are as follows.

• Exploring a light-weight deep learning-based approach that is applicable in constraint
IoT devices.

• Proposing the deep learning models based on minimal parameters and hidden layers.
• Evaluating the proposed approach on the existing state-of-the-art malware dataset.
• Outperforming the existing baselines in terms of accuracy, precision and recall.

The remainder of this paper is organized as follows. In Section 2, we review re-
lated work and provide a comparative analysis of the existing state-of-the-art approaches.
Section 3 presents our proposed approach and formalize the proposed architecture. Section 4
explains the implementation details including benchmarks, configurations and parameter-
ization process. In Section 5, we critically discuss the results and perform a comparison
with the existing approaches. Section 6 finally concludes our discussion and highlights the
future research directions.

2. Literature Review

The IoT encapsulates computational, sensing, and communication capability [5]. These
IoT devices are interconnected in a networked environment which leads to heterogeneity.
Moreover, some of the application areas of IoT, such as smart health care, smart metering,
smart homes, etc., are shown to have user trustability issues considering communication
security challenges [33]. Therefore, these security issues can not be overlooked, which may
compromise the things availability [14].

The first incidence of IoT malware was reported by Symantec [34]. This report brought
evidence of the malware issue for IoT security. The inherited nature of IoT devices to
work in a diverse communication network while providing great connectivity among
various devices yet is a hotspot for cyber criminals to infect the IoT devices with crafted
malware [35]. A malware-infected IoT device can potentially hijack the massive data of
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interest, leading to the consumers’ privacy concerns [36]. Furthermore, the malware can
traverse up to the IoT platform, injecting the whole IoT service [33]. Therefore, it is vital
to investigate AI-enabled IoT devices that can detect malware on runtime with acceptable
accuracy scores without impractical computational costs.

Malware is a miscellaneous program that often disguises itself inside the normal data
to evade antivirus detection [33]. To counter the inherent disguising mechanism of malware,
often pattern matching algorithms are deployed [15]. To detect the abrupt anomaly in
the datastream, often Natural Language Processing (NLP) techniques are used [37]. The
research has shown that NLP can be effectively deployed in filtering infected pieces of
string [14]. The inherent working process of NLP in detecting malware is illustrated in
Figure 1. Firstly, the dataset is selected for training the NLP model. This dataset is divided
into training and testing datasets to train and test an NLP model, respectively (Figure 1
(Left)). Subsequently, the training dataset is passed to an NLP model, illustrated in Figure 1
(Middle). The present state-of-the-art language model includes Doc2Vec, that are trained
on the whole document at once, usually via embeddings. Similarly, Word2Vec is trained
on the individual bag of words using transformers. There also exists traditional Latent
Semantic Indexing (LSI) to capture the inherent semantics of the data. These models are
trained via the training dataset and evaluated using the unseen testing dataset. Finally, a
trained model is deployed to classify the clean and infected data shown in Figure 1 (Right).
Depending on a particular domain or dataset, a best-performing classifier is selected. These
classifiers often use the machine and deep learning algorithms, discussed in the following
subsection.

Figure 1. Overall working process of NLP-based malware detection: (Left), Datasets (Middle), NLP
Modeling (Right), Classification and evaluation.

Machine learning (ML) is an area of artificial intelligence. The primary purpose of
machine learning is to predict, detect and classify data through model’s parameters using
training dataset [22]. It has recently been shown that ML can offer prospective capabilities
to tackle difficult several problems including computer vision, image processing, data
mining, and cybersecurity [2,38–40]. Deep learning refers to machine learning technologies
utilizing ‘deep’ artificial neural networks to enhance machine learnability [41]. One of the
key features of deep learning is end-to-end training and representation learning, making it
a perfect candidate for natural language processing (NLP) [33]. At present, deep learning
architectures such as long short-term memory (LSTM), bidirectionally long short-term
memory (BiLSTM), gated recurrent unit (GRU), or convolutional neural network (CNN)
are often preferred in NLP [42].

The LSTM network architecture consists of three basic gates: input, output, and
forget gate [42]. This model can decide which information to keep and what to discard
during training. The BiLSTM network, on the other hand, can identify the information
relationships from the beginning to the end and vice versa during training [42]. The GRU
is similar to the LSTM but reduces the vanishing gradient problem, causing high model
saturation during training. The CNN extracts features from the data according to the spatial
principle. The Recurrent Neural Network (RNN) is a feed-forward model that enables the
networks to capture the temporal dynamics and perform sequential prediction [43].
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Most NLP approaches comparatively employ these models at relatively high complex-
ity by adding significant deep hidden layers and trainable parameters [23]. The challenges
associated with deep learning include a lack of model internal working and the requirement
of extensive training data and computationally powerful resources [44]. In a constrained
environment such as IoT, this becomes even more challenging [45].

Roopak et al., used multi-layers essemble of LSTM to detect the DDoS attack in IoT
network, achieving a maximum of 98.44% accuracy scores [45]. Researchers in [44] designed
an urban-emergency classifier using a CNN deep learning model to detect alarming sounds,
such as a fire alarm and subsequently generated textual alert to the user, with 92% accuracy.
Taiwo et al. [46], instantiated a CNN model in IoT-enabled cameras, to detect potential
robbery attempts, achieving 99.8% accuracy.

However, the existing deep learning approaches are instantiated to enhance the IoT
devices functionalities. An investigation on enhancing the security of the data generated by
IoT devices using lightweight AI-enabled models is yet to be explored. In the subsequent
section, we explore the state-of-the-art technologies used in detecting security issues.

The first baseline method proposed in the classification of malware using Malware-
TextDB was by the authors in [22]. They used a generic Support Vector Machine (SVM)
and naive bays classifier to identify the malware string. Subsequently, due to the proven
success of deep learning-based solutions, the research community started to propose
ensemble-based classifiers trained on a deep neural model.

For instance, Villani [47] used word embeddings based on Glove vectors. These
embeddings were trained on a general Wikipedia text to represent the tokens. Additionally,
they used the LSTM model and subsequently trained a binary classifier using BiLSTM.
They used the attention mechanism to fine-tune the weights of the important tokens. Flytxt
constructed an ensemble of CRF and NB classifiers [48]. The CRF model was based on
lexical and contextual features. They mainly detected whether a token belongs to the tag
Action, Entity, or Modifier. The summarized comparative study of the aforementioend
approaches is displayed in Table 1.

Table 1. Comparison with the present state-of-the-art approaches.

Year System Authors Features Model Accuracy Limitations

2017
SemEva

Lim et al. [22] POS
SVM 69.70 Used only statistical method

SemEva Naive Bays 59.50

2018

Villani Loyola et al. [47] Wikipedia Tokens Word-embeddings initialized
using Glove vectors 84.47 Trained solely on

Wikipedia text data

Flytxt Sikdar et al. [48] NER labels Ensemble of CRF and NB classifiers 85.28 Used only statistical method

DM Ma et al. [49] NER labels BiLSTM-CNN-CRF 79.45 Overly complex
model configurationHCCL Fu et al. [50] POS BiLSTM-CNN-CRF 86.41

Digital Brew et al. [51] POS, lemma,
bigrams linear SVM classifier 79.45 Used only statistical method

NLP Phandi et al. [17] Tokens Convolutional neural network with
original glove embeddings 76.86 Low accuracy scores

2019 Neural Ravikiran et al. [52] NLP labels Multimodal convolutional neural network -
Accuracy scores not reported

2020 CRF Pfeiffer et al. [53] POS Dynamic conditional random fields -

DM NLP [49] focused on sequence labeling and presented a hybrid approach with
BiLSTM-CNN-CRF. They extracted the char-level features using the CNN layer. Using
other contextual information, such as POS and labels, as the input to BiLSTM layer trained
embeddings and fed the output of the BiLSTM layer into a CRF layer to make entity label
prediction. HCCL [50] performed the proposed BiLSTM-CNN-CRF architecture with the
significant distinction of using only POS as features. The aim was to build an end-to-
end system without excessive dependency on feature engineering or data preprocessing.
Ravikiran et al. [52] proposed a three-layer neural network and naive bays classifier
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achieving a maximum accuracy score of 65%. Pfeiffer et al. [53] used Conditional Random
Fields (CRF) on MalwareTextDB and achieved a maximum accuracy of 86%.

Most of these approaches used relatively complex and computationally expensive deep
neural learning models. The approach uses simple machine learning algorithms, which
also suffered from low accuracy scores. Therefore, a research gap exists in investigating a
lightweight approach that can predict the malware text with acceptable accuracy scores
and lower computational costs applicable in IoT environments.

3. Proposed Approach

We proposed the lightweight deep learning approach for detecting malware in the
textual strings using natural language processing techniques. Specifically, we are interesting
in investigating a deep learning model that uses minimal configurable parameters and
hidden layers. To the best of our knowledge, we are the first to determine the effectiveness
of the vanilla-configured deep learning models and compare them with the relatively
complex configurations. The detailed overview and architectural details of the proposed
approach are provided as follows.

3.1. Overview of the Approach

The proposed solution follows traditional malware detection using the NLP mecha-
nism. Mainly, we performed malware detection in four major steps, as shown in Figure 2.
Firstly, we shortlisted the database for training our model, illustrated in Figure 2a. This
dataset was divided into training, validation and testing datasets, used to train, validate
and test the deep learning solution, respectively. Secondly, we performed essential prepro-
cessing steps highlighted in Figure 2b. Precisely, we tokenize each word to facilitate the
label extraction task. Based on the tokenized vector, we identified and removed duplicate
entries to eliminate bias in the dataset. This also ensures that instead of relying on pattern
matching, the model identifies the exact signatures of the malware. We also added a special
preprocess handler to label and classify missing or miscellaneous tokens as “UNK”. Thirdly,
we instantiated our deep learning solution and trained the model based on the batches of
the malware text data, shown in Figure 2c. Primarily, we instantiated multiple deep learning
models using minimal configuration to determine the most efficient and best-performing
solution. The data generator module created batches of the training dataset to minimize
computational requirements. Finally, the trained model was evaluated in Figure 2d. Based
on the unseen testing dataset, we validated the deep learning models. This process also
included further optimization of the deep learning parameters for maximum accuracy
scores and classification of the tokens for malware prediction. Complete architectural
instantiation details and formalization are provided in the subsequent subsection.

Figure 2. Overview of the proposed approach illustrating the: (a), Dataset (b), Preprocessing (c),
Deep learning model (d), Evaluation.

3.2. Architectural Design

Existing techniques have utilized either a simple machine learning algorithm or an
overly complex deep learning model. In the proposed approach, we are interested in finding
a lightweight solution that maximizes the accuracy scores while keeping the computational
requirements to a minimum.

This approach utilizes the most recent state-of-the-art deep learning models trained
with minimum trainable parameters, thus making it computationally less expensive with-
out a significant drop in accuracy scores. A detailed architecture of the proposed solution is
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displayed in Figure 3. Let F be the framework consisting of data, model, and optimization
layer, formalized as F = {DL, ML, OL}.

Figure 3. Architectural diagram of the proposed approach illustrating the: (Top), Data Layer
(Middle), Model Layer (Bottom), Optimization Layer.

3.2.1. Data Layer

The data layer (DL) encapsulates the dataset M repository. The M consists of a usage
manual, test cases, malware sentences, and corresponding annotated labels. Each sentence
is divided and annotated into three major parts: (i) Word “w”, (ii) Part-of-speech (POS)
“p”, and (iii) tag “t”, e.g., M = {w, p, t} where ‖w ∧ p ∧ t‖ /∈ ∅. The tags are further
divided into four categories; Entity “e”, Action “a”, Modifier “m”, and Object “o”, e.g.,
t = {e, a, m, o}. The e is the subject in focus and initiator of a. The a is referred to as an
event such as “registers”. The m is the word phrase that links to other words, such as
“to”. Finally, the o is the recipient of the action, such as “the attacker”. We extracted and
aggregated all the possible annotated parts present in the dataset. We encoded the M
into word-based embedding vector evm and target label-based embeddings vector evl . We
assigned a unique integer number to each unique occurrence of a word in evw such that
[∃w→ {0 . . . N}] where Nε‖w‖. Similarly, we mapped the target label evl to corresponding
evw, given as [∀iεw : f (i)→ t]. We further split the dataset (DS) into 70% for model training
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(DSt), 15% for validation (DSv) and 15% for testing (DSc) the trained model, formalized as
DS = {DSt, DSv, DSc} where DS ∈ M.

3.2.2. Model Layer

The model layer (ML) transformed each triplet T(word, POS, tag) ∈ M in DS into
word embedding vector ev. The purpose of embedding is to retain semantic relationships
for enhanced prediction capabilities in real time. The dimension of each embedding was
set to 50, ev = {d1, d2, d3, . . . , d50}. The embeddings in (DSt) were fed to the various
state-of-the-art deep learning models, including 1:N = {RNN, LSTM, Bi-LSTM}. The (DSv)
embeddings were used to validate the model during training. Finally, the unseen model
(DSc) embeddings were used to obtain actual accuracy scores of the trained model.

The Recurrent Neural Network (RNN) is a deep learning model that consists of four
major constructing blocks e.g., RNN = {ai, xi, yi}, where ai is the activation function, x is
the input batch, and y is the target label at ith state. This primitive building block structure
is illustrated in Figure 4. We are using vanilla configuration, which serves threefold. Firstly,
this allows minimal computational requirements. Secondly, any input length can be
processed, and lastly, model size does not increase with the input size. The RNN model
consists of three primary elements; input, activation function, and output. The input size (x)
is divided into small batches for fast processing. The activation function (a) is responsible
for training the neural network and ensuring correct output (y) predictions.

The RNN activation [54] at each iteration i function is defined as:

a<i> = g(Waaai−1 + Waxai + b0) (1)

where Waa is a weight matrix at the initial neuron and the Wax is a weight matrix at the
next neuron. The b is a bias factor to prevent division by zero error.

Figure 4. Overview of the RNN architecture [54] illustrating the flow of input (x), output (y), and
activation function (a) at each layer.

The Long Short-Term Memory (LSTM) networks are the specialized neural network
introduced to eliminate the information loss or gradient decent problem in the RNN. The
LSTM is an advanced neural network whose inherent working mechanism extends from
the Gated Recurrent Unit (GRU) networks. Therefore, using LSTM serves two major
purposes. Firstly, it eliminates the gradient descent problem, and secondly, it provides
enhanced performance. Since the LSTM can be trained to discard the unnecessary in-
formation from the previous output. The major architecture of LSTM consists of three
major constructing blocks e.g., LSTM = { f g

i , Xg
i , yg

i }, where f g is the forget gate, xg is the
input gate, and yg is the output date ith state. The primitive building block structure of
LSTM is illustrated in Figure 5. We are using vanilla configuration for the same reason
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as discussed before. The LSTM model consists of three primary elements; forget, input,
and output blocks. The forget block decides which previous information to retain from
the previous neuron using the σ function. The input layer is responsible for learning new
information using σ and tanh functions. The output layer finally produces the consolidated
learning weight (y) predictions. This gated learning process allows maximum learnability
and reduces the vanishing of gradients problem. The LSTM activation [54] at each iteration
i function is defined as:

σ = g(W.[yi−1, xi] + b)Celli = tanh(W.[yi−1, xi] + b)tanh =
ez + e−z

ez − e−z (2)

Figure 5. Overview of the LSTM cell architecture [54] illustrating the flow of input (x), output (y),
and activation function (α) at the forget, input, and output layer.

The Bi-directional Long-Short Term Memory (Bi-LSTM) networks are the specialized
neural network introduced to learn from the future and past input sequences. Hence,
Bi− LSTM incorporates double LSTM models. This configuration allows retaining the
contextual information, however, at the added costs and complexity. The primitive building
block structure of Bi− LSTM is illustrated in Figure 6. We are using vanilla configuration
for the same reason as discussed before. The Bi− LSTM model consists of three primary
elements; input, LSTM layers, and output blocks. The input sequence is feed-forward to
the LSTM layers working in both directions. The output is the aggregated sum of at each
iteration i and finally produces the consolidated learning weight (y) predictions.

3.2.3. Optimization Layer

The optimization layer’s primary objective is to fine-tune the model during training to
achieve the best results. The indicators of the optimized model during training time are
accuracy and loss measures. The accuracy denotes the percent of times the model makes a
correct prediction, whereas the loss measure shows the amount of information lost during
the model’s training. The loss function [55] for each model is formalized as:

L(ŷ, y) =
N

∑
x=i
L(ŷ i, yi) (3)

This process is iteratively performed until a convergence point is met in which the
achieved accuracy remains the highest while the loss stays the lowest. Based on optimized
parameters, the model parameters are finally frozen, and a trained model is generated to
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make real-time predictions. The predictions are based on the probabilistic function [56]
having k classes:

P(y = k|x) = exTwk

∑J
j=1 exTwj

(4)

Finally, the class with the highest probability is selected via the argmax function [56],
that returns the target label of the predicted class, formalized as:

argmax(y1, y2, y3, . . . , yn) = (k1, k2, k3, . . . , kn) (5)

Figure 6. Overview of the Bi-LSTM architecture [55] illustrating the flow of input (x), output (y), and
LSTM directions.

4. Implementation Details

The deep learning-based approaches are primarily trained and evaluated on a particu-
lar dataset. Based on the model parameterization process, the instantiated deep learning
models are trained on the dataset. The parameterization process defines the learning rate,
data batches, number of hidden layers, iteration, etc. The detailed discussion on the bench-
mark, model instantiation, and parameterization process are discussed in the subsequent
subsections.

4.1. Benchmark

MalwareTextDB is one of the novels and largest text repositories comprising 26,790
labeled tokens obtained from 2080 sentences [22]. The initial work utilizing this dataset to
identify potential malware present in the text has been done on generic machine learning
algorithms [17]. Therefore, we used the MalwareTextDB dataset to determine its efficiency
compared to the deep learning-based solution. The obtained number of vocabulary, tags,
words and a number of instances are displayed in Table 2.
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Table 2. Extracted dataset details.

Item Number Dataset Instances

Sentences 6819 Training 4877
Words 168,138 Testing 1045
Tags 7 Validation 1045

Unique words 13,730 Total 6967

4.2. Instantiation

We implemented our approach in Google Colab (https://colab.research.google.com/,
accessed on 9 September 2022). The primary programming language used was python 3
(https://www.python.org/downloads/release/python-3101/, accessed on 9 September 2022).
To instantiate the model, we used the latest Keras https://keras.io/ and TensorFlow (https:
//www.tensorflow.org, accessed on 9 September 2022) library. For dataset preprocessing,
we used standard libraries such as pandas (https://pandas.pydata.org/, accessed on 9
September 2022) and NumPy (https://numpy.org/, accessed on 9 September 2022). We
tested our approach on the three most recent state-of-the-art deep neural architectures,
including LSTM, Bi− LSTM, and RNN. The instantiated architectures are illustrated in
Figure 7. Mainly, the input is passed to the model in the form of embeddings. Afterwards,
a single layer is used for training the model to minimize the computational complexity, as
displayed in Figure 7a for RNN, Figure 7b for LSTM and Figure 7c for Bi− LSTM. Finally,
a dense layer is added to produce the final prediction. The detailed configuration of the
instantiated models are summarized in Table 3.

Figure 7. Overview of instantiated models architecture illustrating the (a), RNN (b), LSTM and (c), Bi-LSTM.

Table 3. Instantiated models configuration.

Model Layer (Type) Output Shape Param #

LSTM
&

RNN

embedding_13 (Embedding) (None, 141, 32) 439,392
lstm (LSTM) (None, 141, 32) 8320
dense_13 (Dense) (None, 141, 8) 264

Total params: 447,976
Trainable params: 447,976
Trainable params: 447,976

Bi-
LSTM

Layer (type) Output Shape Param #
embedding_13 (Embedding) (None, 141, 32) 439,392
lstm (LSTM) (None, 141, 32) 2080
dense_13 (Dense) (None, 141, 8) 264

Total params: 441,736
Trainable params: 441,736
Trainable params: 447,976

4.3. Parameterization

The instantiated parameters are displayed in Table 4 for LSTM, BiLSTM and RNN
models. Mainly, we experimented with multiple batch sizes, embedding dimensions,

https://colab.research.google.com/
https://www.python.org/downloads/release/python-3101/
https://www.tensorflow.org
https://www.tensorflow.org
https://pandas.pydata.org/
https://numpy.org/
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and loss functions. The epochs were managed by the callback method based on the loss
function. We opted only to show the best-performing configurations. The instantiated
model parameters are shown in Table 3. Notably, a single hidden layer in the deep learning
model was used. The epochs were set based on the last point of accuracy convergence.

Table 4. Instantiated models parameters.

Model Parameters LSTM BiLSTM RNN

Layers 1 1 1
Embedding Size 141 141 141
Dropout Rate 0.2 0.2 0.2
Epochs (Till Convergence) 41 136 79
Learning Rate 0.0001 0.0001 0.0001
Batch Size 128 128 128
Accuracy 0.9945 0.9988 0.9987
Training Loss 0.0154 0.0040 0.0042
Validation Loss 0.1899 0.1977 0.0214
Optimizer Adam Adam Adam
Loss Function Cross entropy
Activation Function Softmax

5. Results and Discussion

We followed a convention of a 70-15-15 split ratio. Specifically, 70% of the dataset was
used to train the models. The 15% dataset was reserved for training and testing purposes.
We employed a total of 3 different deep neural network models, including Long-Short Term
Memory (LSTM), Bi-Directional LSTM (bi-LSTM), and Recurrent Neural Network (RNN).
The results achieved for the best-performing deep neural network are displayed in Table 5.
According to our analysis, the RNN achieves the best test accuracy score of 99.46%. The
training and validation curves of each model are displayed in Figures 8–10. Similarly, the
summary of visualized detailed evaluation measures including accuracy, precision, recall,
and F-1 measures, are displayed in Figure 11. The results were obtained through K-fold
validation technique with the value of K = 1. The obtained results were further averaged
by 10 folds and the obtained variance was 2.20.

The results confirm our hypothesis that often vanilla configuration of the less sophis-
ticated deep learning model can provide the best accuracy. Therefore, there exists the
need for the researchers to investigate a relatively more uncomplicated configured deep
learning model to solve a problem at hand. Moreover, the proposed model configuration
requirements are kept to a minimum. Hence, the proposed model has the potential to be
used in the IoT devices to monitor and classify the potentially malware infected strings.
Therefore, we envision future researchers to provide more innovative deep learning-based
solution to the security challenges in domain of IoT.

Table 5. Proposed models evaluation summary report.

Model Parameters LSTM BiLSTM RNN

Test Accuracy 0.9631 0.9681 0.9946
Test Loss 0.2023 0.2274 0.0212
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Figure 8. Training and validation loss curves on LSTM model.

Figure 9. Training and validation loss curves on Bi-LSTM model.

Figure 10. Training and validation loss curves on RNN model.

To compare the proposed approach with the existing state-of-the-art approaches, we
employed the MalwareTextDB, which was first released in 2017 by Lim et al. [17]. Initially,
they used generic machine learning algorithms such as Naive Bays and Support Vector
Machine (SVM). Their achieved accuracy scores were 59.5% and 69.7%, respectively. In 2018,
nine teams were invited to the MalwareTextDP competition [17]. The maximum achieved
accuracy scores were reported to be 86% based on BiLSTM-CNN-CRF model. We tried
experimenting with vanilla LSTM, Bi-LSTM, RNN, and HMM. To the best of our knowledge,
a vanilla configuration of the deep learning model for MalwareTextDB classification was
not investigated previously. In our detailed analysis concerning statistical methods, we
also tested Hidden Markov Model (HMM), which was not previously investigated for
MalwareTextDB. After detailed analysis, we found the vanilla RNN deep learning model
configuration to give the best results (99% accuracy), surpassing all the previous baseline
methods. The statistical method such as HMM also resulted in at most 78% accuracy
scores. This comparative analysis is summarized in Table 6. Therefore, the relatively more
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straightforward deep learning-based model can be leveraged to surpass computationally
expensive statistical algorithms and deep-layered neural networks.

Figure 11. Comparison of the proposed approach with existing state-of-the-art approaches.

Table 6. Comparison with the present state-of-the-art approaches.

Year System Authors Model Accuracy Precision Recall

2017 SemEval Lim et al.
SVM 69.70 49.55 62.22

Naive Bays 59.50 38.17 78.89

2018

Villani Loyola et al. Word-embeddings initialized using Glove vectors 84.47 47.76 71.11

Flytxt Sikdar et al. Ensemble of CRF and NB classifiers 85.28 49.59 66.67

DM Ma et al. BiLSTM-CNN-CRF 79.45 39.43 76.67

HCCL Fu et al. BiLSTM-CNN-CRF 86.41 53.57 50.00

Digital Brew et al. linear SVM classifier 79.45 39.31 75.56

NLP Phandi et al. Convolutional neural network with original glove embeddings 76.86 38.46 72.22

2019 Neural Ravikiran et al. Multimodal convolutional neural network - 54.00 68.00

2020 CRF Pfeiffer et al. Dynamic conditional random fields - - -

2022 Proposed

LSTM 96.31 96.58 96.31

BiLSTM 96.81 96.78 96.75

RNN 99.46 96.79 96.63

HMM 78.33 - -

6. Conclusions and Future Directions

In this research, we started our discussion on the security issues in the IoT domain.
Subsequently, we briefly discussed emerging cybersecurity issues pertaining to malware
with potential approaches that provide the solution to increasing security risks. We investi-
gated a lightweight, state-of-the-art deep-learning approach, specifically, using the vanilla
configuration of the latest state-of-the-art deep neural models such as RNN, LSTM, and
Bi-LSTM, for the prediction of malware text. The instantiated models consisted of single
dense layer and only few thousand trianable parameters. To confirm our hypothesis, we
used the most extensively available novel MalwareTextDB dataset that could apply to IoT
devices based on the standard 70-15-15 datasets splitting method. The proposed approach
was thereafter compared with existing baseline methods employing MalwareTextDB pre-
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diction approaches which used a complex ensemble of deep learning models. According to
our experimental results, we achieved the best accuracy score of up to 99.45% on the simple
RNN deep neural model with a single hidden layer, outperforming the existing baselines.
Furthermore, we unveiled that a simple statistical model such as Hidden Markov generates
a respectable accuracy score of 78%. Therefore, the researchers need to explore a relatively
simpler deep learning models before shifting to complex configurations. In the future, we
look forward to practically investigating the deep learning models’ computation time and
storage complexity on IoT devices in real-time using multiple datasets to further determine
their feasibility in constrained IoT devices.
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