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Abstract: In this paper, we highlight and resolve the shortcomings of single-input single-output
(SISO) millimeter wave (mm-Wave) radar systems for human activity recognition (HAR). A 2× 2
distributed multiple-input multiple-output (MIMO) radar framework is presented to capture human
activity signatures under realistic conditions in indoor environments. We propose to distribute the
two pairs of collocated transmitter–receiver antennas in order to illuminate the indoor environment
from different perspectives. For the proposed MIMO system, we measure the time-variant (TV) radial
velocity distribution and TV mean radial velocity to observe the signatures of human activities. We
deploy the Ancortek SDR-KIT 2400T2R4 mm-Wave radar in a SISO as well as a 2× 2 distributed
MIMO configuration. We corroborate the limitations of SISO configurations by recording real human
activities in different directions. It is shown that, unlike the SISO radar configuration, the proposed
MIMO configuration has the ability to obtain superior human activity signatures for all directions. To
signify the importance of the proposed 2× 2 MIMO radar system, we compared the performance of
a SISO radar-based passive step counter with a distributed MIMO radar-based passive step counter.
As the proposed 2× 2 MIMO radar system is able to detect human activity in all directions, it fills a
research gap of radio frequency (RF)-based HAR systems.

Keywords: direction-independent human activity recognition; fall detection; distributed MIMO;
FMCW radar; micro-Doppler signatures; aspect angle; multistatic radar systems; passive step counter;
DTW; velocity estimation

1. Introduction
1.1. General Background

In recent years, the number of application areas of human activity recognition (HAR)
has greatly increased, such as remote health assessment [1], smart home [2], smart surveil-
lance [3], human–computer interaction [4], sports [5], autopilots [6], and social robotics [7].
Radio frequency (RF)-based in-home sensing is still considered a developing technology
facing some key challenges regarding HAR. However, the attractive features of RF-based
HAR systems have brought them to the forefront of indoor HAR systems. Alternatively,
vision-based and wearable sensor-based HAR systems have already produced numerous
and adequate results. However, unlike RF sensors, visual sensors such as cameras or light
detection and ranging (LiDAR) may suffer from issues such as privacy invasion, sensitivity
to lighting, and obstructive illumination. On the other hand, wearable sensors such as
accelerometers, magnetometers, gyroscopes, and emergency push buttons are radically
intrusive, fragile, must be carried by the user, and are prone to user negligence.

RF sensors such as Wi-Fi and radar systems must have robustness to environmental
variations, lighting conditions, user’s privacy, and nonobstructive illumination. Over the
years, two established technologies, Wi-Fi and radar, have been explored in RF sensing
for HAR [8–11]. Unfortunately, commercial Wi-Fi devices suffer from carrier frequency
offsets due to hardware limitations and environmental variations [12]. As a consequence
of carrier frequency offsets, the phases of the channel frequency response are particularly
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noisy in commercial Wi-Fi devices and thus hard to utilize [8,10,11,13]. In contrast, with the
application of radar signal processing [11,14–16], data fusion techniques [17,18], machine
learning, and deep learning algorithms, it will be possible in the coming years to track and
classify multiple human activities by means of radar systems in unprecedented complex
settings. The work presented in this paper is a step forward in that direction, where we
have addressed the problem of the direction-independent recognition of human activities
and proposed an effective solution in the context of RF sensing. It should be mentioned
that radars have traditionally been deployed by official or governmental entities in appli-
cation areas such as weather [19], naval [20] and aerial surveillance [21], air defense [22],
ground traffic control [23], altimeters [24], geology [25], and astronomical research [26].
However, due to their miniaturization and cost effectiveness, the current radar systems
have found utilization in self-driving cars [27–29], emerging medical solutions [30], and
HAR systems [31–34].

1.2. Related Work

One crucial challenge for radar-based HAR systems is the direction of motion of certain
activity in relation to the illuminating radar. For instance, a person may fall in a direction
either parallel or perpendicular to the radar’s boresight. Conceivably, a monostatic single-
input single-output (SISO) radar will not be able to detect the fall if the fall direction is
perpendicular to the boresight of the radar. This is due to the fact that the radar systems
are merely sensitive to the changes in the scatterer’s radial distance with respect to the
radar itself. A scatterer moving perpendicular to the radar’s boresight has zero Doppler
frequency and thus appears as a stationary object to the radar and can therefore not be
distinguished from other stationary objects in an indoor environment by the radar system.
Generally, a strong degradation of the classification performance is expected for activities
with a greater angle of motion to the radar’s boresight. The prior state-of-the-art approaches
to alleviate this problem are delineated here along with their limitations.

The authors in [35,36] suggest that a SISO radar positioned on the ceiling can detect
fall activities. However, this is not a general solution for direction-independent HAR.
For direction-independent HAR, it is understandably compelling to use monostatic beam-
forming multiple-input multiple-output (MIMO) radars that are capable of measuring
the angular information [37]. However, these systems are often limited by their angular
resolution, which in turn limits their cross-range resolution significantly. Such monostatic
MIMO radars do not perform adequately, especially not for persons relatively far away
from the radar, which degrades the overall classification accuracy. The authors in [38]
use the phase information of frequency modulated continuous wave (FMCW) monopulse
radars to measure the angle of arrival, but the study is limited to hand gesture sensing. The
authors in [39] combine the FMCW mode of radars with interferometry to track vital signs
and detect position and life activities, but they do not generally address the challenges
caused by the direction of human activities. To improve the angular resolution, direction
of arrival algorithms such as the “estimation of signal parameters via rotational invariance
techniques” (ESPRIT) method and “multiple signal classification” (MUSIC) method can also
be used [40], but these direction of arrival algorithms usually require a high signal to noise
ratio [41]. Although the authors of [18] discuss a multistatic Doppler radar, the study is
limited to the detection of armed persons. A bi-static radar configuration is used in [42]
to improve the activity classification performance. However, the quality of data can be
improved by using a MIMO radar system instead. The performance of another radar
configuration is explored in [43] using a MIMO radar system in bi-static configuration, but
the study is limited to personnel localization only.

1.3. Contributions

The problems faced by the aforementioned SISO and MIMO radar systems motivate
us to develop a solution for a direction-independent HAR system. To illuminate the
indoor environment from different perspectives, we propose to distribute multiple pairs of
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collocated transmitter–receiver radar antennas in an indoor environment for a direction-
independent human activity detection system (see Section 4). This multi-perspective view
of a distributed MIMO radar system will allow us to render direction-independence for
HAR. The micro-Doppler signatures or radial velocity distribution (see Section 2) obtained
using the proposed approach can help us to design HAR systems capable of classifying
complex activities. Thus, the proposed framework is a step forward towards a more
pragmatic and sophisticated radar-based HAR system.

The principal contributions of this work are listed as follows:

1. A basic multi-perspective 2× 2 MIMO radar system is presented which can be easily
scaled to a higher number of transmitter and receiver antennas for better performance.

2. We analyze the time-variant (TV) radial velocity distribution and TV mean radial
velocity for the proposed distributed antenna configuration.

3. For the 2× 2 MIMO radar configuration, we investigate the impact of a human falling
incident and a walking activity on the measured radial velocity distribution and
measured mean radial velocity.

4. We analyze the impact of two different activities performed in three different directions
on the measured channel characteristics for a SISO and a 2× 2 MIMO radar system. We
corroborate the limitations of the SISO radar system by analyzing the real radar data.

5. We demonstrate the robustness of the proposed 2× 2 MIMO radar system against
different directions of the actual human walking and falling activity. We show that the
proposed solution is able to detect the human gross motor activity in the horizontal
xy-plane.

6. We analyze the performance of a radar-based passive step counter by integrating it
with a SISO radar system. It is shown that the radar-based passive step counter, when
used with a SISO radar system, may miss some human walking steps or detect false
steps depending on the walking direction.

7. It is shown that by deploying the radar-based passive step counter with the proposed
2× 2 MIMO radar framework, the step counter would accurately detect the number
of steps for all considered human walking directions.

8. Finally, we quantify, compare, and numerically assess the performance of the SISO
and 2 × 2 MIMO radar systems by using the dynamic time warping (DTW) [44]
distance metric.

1.4. Paper Organization

The paper is organized as follows. The system model and preprocessing techniques
are delineated in Section 2. Section 3 describes the problems encountered with SISO
radar systems for detecting human activities performed in different directions. Section 4
shows how the proposed 2× 2 MIMO radar system overcomes the shortcomings of the
SISO radar system. The experimental results for actual human activities are detailed in
Sections 3 and 4 for the SISO and 2× 2 MIMO radar systems, respectively. Finally, Section 6
draws the conclusions.

2. Radar Signal Preprocessing

In this paper, we have adopted an FMCW 2× 2 MIMO radar to capture the micro-
Doppler signatures of a moving person from different perspectives. The fundamental
waveform transmitted by the ith transmitter antenna ATx

i (i = 1, 2) of the FMCW radar is
the chirp waveform [45]

ci(t′) = exp
[

j2π
(

f0t′ +
γ

2
t′2
)
+ jφi

]
, 0 ≤ t′ < Tsw (1)

where t′ denotes the fast time, f0 is the initial RF frequency, γ is the slope of the linear
chirp in the time-frequency domain, φi is the initial phase, and Tsw is the chirp interval.
The two transmitters of the 2× 2 MIMO radar operate in a time division multiple access
(TDMA) mode. For n = 0, 1, . . . , the time windows occupied by the ith transmitter are
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(2n + i − 1)Tsw ≤ t′ < (2n + i)Tsw. The chirp waveform is transmitted periodically by
each transmitter in their respective time slot. The overall transmit signal si(t, t′) can be
represented as a sum of shifted versions of the fundamental waveform ci(t′) according to

si(t, t′) =
∞

∑
n=0

ci(t′)δ(t− tn,i) (2)

for i = 1, 2, where δ(·) is a Dirac delta function, t is the slow time, and tn,i is the discrete
slow time. For TDMA mode, the discrete slow time tn,i is related to chirp interval Tsw by
tn,i = (2n + i− 1)Tsw. The expression (2) allows us to represent the transmit signal si(t, t′)
as function of two separate time variables.

The wireless channel link between the ith transmitter antenna ATx
i and jth receiver

antenna ARx
j is denoted by ATx

i –ARx
j , where i, j ∈ {1, 2}. When modeling the human body

as a cluster of L scatterers [46], the beat signal s(l)b,ij(t, t′) corresponding to the lth scatterer

and the channel link ATx
i –ARx

j can be represented by

s(l)b,ij(t, t′) =
∞

∑
n=0

a(l)ij exp
[

j
(

2π f (l)b,ijt
′ + φ

(l)
ij

)]
δ(t− tn,i) (3)

for l = 1, 2, . . . ,L. The symbol a(l)ij stands for the path gain, which is primarily determined

by the path loss and the radar cross section. For simplicity, we assume that the path gain a(l)ij

is constant within the observation interval. For the lth scatterer, the beat frequency f (l)b,ij and

phase φ
(l)
ij in (3) are given as [47]

f (l)b,ij =
2d(l)ij γ

c0
(4)

and

φ
(l)
ij =

4πd(l)ij

λ
(5)

respectively, where d(l)ij is the total propagation distance, which is given by

d(l)ij =
1
2

[
dTx

l,i + dRx
l,j + LTx

i + LRx
j

]
. (6)

The symbol c0 represents the speed of light in vacuum and λ is the wavelength.
The quantity dTx

l,i in (6) is the distance between the transmitter antenna ATx
i and the lth

scatterer. Similarly, the distance between the receiver antenna ARx
j and the lth scatterer

is represented by dRx
l,j . The lengths of the RF cables are denoted as LTx

i and LRx
j in (6)

for the transmitter antenna ATx
i and receiver antenna ARx

j , respectively. In this paper,

the transmitter antenna ATx
i and receiver antenna ARx

j are collocated for i = j. As a

consequence, the distances from the transmitter antenna ATx
i and receiver antenna ARx

j to

the lth scatterer become identical for i = j; i.e., dTx
l,i = dRx

l,j (i = 1, 2). Moreover, the RF cable

lengths of the transmitter antenna ATx
i and receiver antenna ARx

j are the same for i = j,

i.e., LTx
i = LRx

i (i = 1, 2). For the lth scatterer and the aforementioned antenna placement

constraints, the total propagation distance d(l)ij in (6) reduces to the sum of the radar radial

range r(l)ij and the RF cable length Li; i.e.,

d(l)ij = r(l)ij + Li (7)
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where the radar radial range r(l)ij is the Euclidean distance between the lth scatterer and the

transmitter antenna ATx
i or the receiver antenna ARx

j , and Li = LTx
i = LRx

j for i = j. Note
that we distribute multiple pairs of collocated transmitter–receiver antennas; therefore, the
transmitter antenna ATx

i and receiver antenna ARx
j are not collocated for i 6= j. Consequently,

to compute the total propagation distance d(l)ij , the expression in (6) must be used instead
of (7) for i 6= j. With reference to [48], the composite beat signal sb,ij(t, t′) is the sum of all

beat signals s(l)b,ij(t, t′) associated with the cluster of L scatterers, which can be expressed as

sb,ij(t, t′) =
L
∑
l=1

s(l)b,ij(t, t′). (8)

In an FMCW radar, the composite beat signal sb,ij(t, t′) is produced by the quadrature
mixer component of the radar. The analog to digital converter (ADC) digitizes the composite
beat signal sb,ij(t, t′) with a sampling rate of Fs with respect to fast time t′. For each chirp
interval Tsw, the digitized data are stacked in a raw data matrix Dij. The rows and columns
of the raw data matrix Dij contain samples of the composite beat signal sb,ij(t, t′) in the
fast-time and slow-time domain, respectively. The slow-time sampling interval is actually
equal to the chirp interval Tsw.

The fast Fourier transform (FFT) performed on the raw data matrix Dij with respect
to fast time t′ and slow time t is known as the range FFT and Doppler FFT, respectively.
For the channel link ATx

i –ARx
j , the expression for the range FFT, also known as the beat

frequency profile Sb,ij( fb, t), is given as

Sb,ij( fb, t) =
Tsw∫
0

sb,ij(t, t′)e−j2π fbt′dt′ (9)

where fb represents the beat frequency. The short-time Fourier transform (STFT) is related
to the slow-time domain t and applies on the function resulting from the range FFT in (9).
In other words, the data from the beat frequency profile Sb,ij( fb, t) are multiplied by a
rectangular window function Wr(·) sliding in slow time t to provide overlapping segments
for the FFT operation; i.e.,

Xij( fb, f , t) =
∞∫
−∞

Sb,ij( fb, t′′)Wr(t′′ − t)e−j2π f t′′dt′′ (10)

where f is the Doppler frequency and t′′ denotes the running time.
Finally, the TV micro-Doppler signature Sij( f , t) is obtained by integrating Xij( fb, f , t)

over the beat frequencies fb from zero to the maximum beat frequency fb,max and computing
the absolute value to the power of 2; i.e., [49]

Sij( f , t) =
∣∣∣ fb,max∫

0

Xij( fb, f , t)d fb

∣∣∣2. (11)

Note that, according to the Nyquist sampling theorem, the maximum beat frequency
fb,max is equal to 1/2 of the ADC sampling rate Fs; i.e., fb,max = Fs/2.

The TV mean Doppler shift B(1)
ij (t) can be obtained from the micro-Doppler signa-

ture Sij( f , t) according to the relation [50]

B(1)
ij (t) =

∫ ∞
−∞ f Sij( f , t)d f∫ ∞
−∞ Sij( f , t)d f

. (12)
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As the Doppler frequency f can be mapped on the radial velocity v according to
v = c0 f /(2 f0), we can obtain the TV radial velocity profile Vij(v, t) from the TV micro-
Doppler signature Sij( f , t) as

Vij(v, t) = Sij

(2 f0

c0
v, t
)

. (13)

The TV micro-Doppler signature Sij( f , t) in (11) is computed from the composite beat
signal sb,ij(t, t′), and thus it contains the micro-Doppler information of all L scatterers
with their respective strengths. Analogously, the radial velocity profile Vij(v, t) in (13)
contains the radial velocity information of each scatterer with respect to the slow time t.
The strength or power of the lth scatterer in the radial velocity profile Vij(v, t) depends on

the path gain a(l)ij .
From the TV radial velocity profile Vij(v, t), we can compute the TV radial velocity

distribution pij(v, t) by

pij(v, t) =
Vij(v, t)∫ ∞

−∞ Vij(v, t)dv
(14)

from which we can obtain the mean radial velocity v̄ij(t) using the relation

v̄ij(t) =
∞∫
−∞

vpij(v, t)dv. (15)

As good descriptive statistics that quantitatively summarize all the main features of
the TV micro-Doppler signature Sij( f , t) or radial velocity distribution pij(v, t), we can

utilize the mean Doppler shift B(1)
ij (t) or the mean radial velocity v̄ij(t), respectively. The

TV mean Doppler shift B(1)
ij (t) in (12) is basically a weighted arithmetic mean of the TV

micro-Doppler signature Sij( f , t). Similarly, the mean radial velocity v̄ij(t) in (15) is the
weighted average of the velocity components of all L human body segments computed
for each time instance t. The TV radial velocity distribution pij(v, t) and TV mean radial
velocity v̄ij(t) will play an important role in analyzing real-world measurement data in
Sections 3 and 4.

3. Human Activity Signatures Measured by Using a SISO FMCW Radar System

An FMCW radar modulates its transmit signal frequency to detect the radial range of a
target. The electromagnetic signal transmitted by the FMCW radar interacts with stationary
and non-stationary objects present in the radar’s range, thus altering the amplitude, phase,
and frequency of the transmitted signal. After applying suitable radar signal preprocessing
techniques, the phase and frequency variations of the backscattered signal provide the range
and micro-Doppler information of the target (see Section 2). As part of the preprocessing,
the multipath components originating from objects relatively stationary to the radar system
are filtered out, thereby making the radar system merely sensitive to the radial component of
the object’s motion. Therefore, detecting and processing a scatterer’s motion perpendicular
to the radar’s boresight becomes a major challenge. For a human body under observation,
the radar signals are reflected off the human body segments. Generally, human body
segments can be modeled as a cluster of point scatterers [46]. The TV radial range and
micro-Doppler signature caused by such moving body segments can be measured from the
backscattered radar signals.

In this section, we primarily focus on the impact of the direction of human activity
on the TV radial velocity distribution pij(v, t) of a SISO radar system, where i, j = 1. To
highlight the limitations of the SISO radar system deployed in an indoor environment, we
first describe the measurement setup. Secondly, we illustrate three different experimental
scenarios in which the human activities are performed and analyzed. Thirdly, we show
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the radial velocity distribution p11(v, t) and mean radial velocity v̄11(t) derived from
measurements of a SISO radar system. Finally, the implications of different directions of
human activities on the performance of an RF-based step counting algorithm are discussed
for the considered SISO radar system.

3.1. Measurement Setup

In this paper, we used a commercially available MIMO radar system called Ancortek
SDR-KIT 2400T2R4, which is an FMCW millimeter wave (mm-Wave) radar operating at
24 GHz. We configured the radar in SISO mode of operation and used a single transmitter
antenna ATx

1 and a single receiver antenna ARx
1 . We used a monostatic configuration of

the antennas to capture the micro-Doppler information of a human body moving in the
xy-plane. In a monostatic configuration, the transmitter and receiver antennas of the SISO
radar system are collocated. The SISO FMCW radar system was configured according to
the parameters listed in Table 1. The pulse repetition frequency (PRF) of the SISO FMCW
radar system is equal to the inverse of the chirp interval Tsw, i.e., PRF = 1/Tsw. This is
due to the fact that we do not require the TDMA mode of operation for the SISO radar
system. In other words, the transmitter antenna ATx

1 transmits the chirp waveform ci(t′)
in (1) continuously in time.

Table 1. System parameters of the SISO experimental setup.

Description Symbols Values

RF cable lengths (LTx
1 , LRx

1 ) (0.3, 0.3) m
Carrier frequency fc 24.125 GHz

Radar’s bandwidth BW 250 MHz
Sweep time Tsw 500 µs

Pulse repetition freq. PRF 2 kHz

3.2. Scenarios of Human Activities

The indoor environment is a laboratory cluttered with fixed items such as wooden
furniture, computers, routers, and other miscellaneous laboratory tools and electronics.
The direction of activities of a person relative to the SISO radar system are depicted in
Figure 1. To elucidate the direction of human motion in an experiment, we refer throughout
this section to a 3× 3 grid illustrated in Figure 1, in which three different scenarios of
human movement are represented by different markings. The human activities have been
carried out in three different directions in order to demonstrate the limitations of the
SISO radar system in the context of HAR. Scenario 1 is a trivial scenario, where a person
moves towards the SISO radar system. In this case, the human motion is parallel to the
radar boresight, implying that the SISO radar system does not encounter any problem
capturing the micro-Doppler signatures with high accuracy. Most of the research on HAR
is limited to merely Scenario 1 with the SISO radar systems in a monostatic configuration.
However, the shortcomings of SISO radar configuration come to the surface if we consider
a human activity that is perpendicular to the boresight of the SISO radar system. Thus,
in Scenario 2, when a person moves perpendicular to the radar boresight or moves from
the position (x2, y3) to (x2, y1), then the SISO radar system captures a completely different
micro-Doppler signature that is suboptimal for HAR. In Scenario 3, the person moves
diagonally in the 3× 3 grid of Figure 1, either from (x3, y3) to (x1, y1) or from (x1, y1) to
(x3, y3). We expect to acquire adequate human activity signatures in Scenario 3, but not
as good as the human activity signatures of Scenario 1. For each of Scenarios 1, 2, and 3,
we consider a walking and falling activity. The results of the recognized human activities
by employing the monostatic SISO radar system are shown in the next subsection for
Scenarios 1, 2, and 3.
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Figure 1. A SISO radar system in the presence of a moving person in a cluttered indoor environment.

3.3. Results for the Monostatic SISO Configuration

To show the limitations of the aforementioned monostatic SISO radar system, we
recorded the human motion in three different directions, which are depicted in Figure 1. We
process the recorded raw radar data by means of radar signal preprocessing, as described
in Section 2. The radial velocity distribution p11(v, t) has been computed by using (14), and
the mean radial velocity v̄11(t) has been obtained from (15) for the human walking and
falling activities. Figures 2 and 3 show the measured radial velocity distribution p11(v, t)
over time t corresponding to a falling and walking activity, respectively. The black dashed
lines in Figures 2 and 3 represent the measured mean radial velocity v̄11(t). We can see
from Figures 2 and 3 that the measured mean radial velocity v̄11(t) provides a descriptive
statistic, which quantitatively summarizes all the main features of the TV radial velocity
distribution p11(v, t).

(a) (b) (c)

Figure 2. For a SISO radar system, the measured radial velocity distribution p11(v, t) and mean radial
velocity v̄11(t) of a human falling activity for (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

Recall from Figure 1 that in Scenario 1, a person moves parallel to the SISO radar
boresight—i.e., from position (x3, y2) to (x1, y2)—whereas in Scenario 2, the person moves
perpendicular to the SISO radar boresight—i.e., from position (x2, y3) to (x2, y1). Figure 2a,b
shows a person falling parallel (Scenario 1) and perpendicular (Scenario 2) to the radar
boresight direction, respectively. Note that in Scenario 1, the person suddenly moves closer
to the SISO radar system upon falling. Thus, the falling activity produces high and abrupt
positive changes of the radial velocity distribution p11(v, t), which leads us to suppose
that the fall of a person parallel to the radar boresight will be captured perfectly by the
SISO radar system, as illustrated in Figure 2a. On the other hand, a fall perpendicular
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to the radar boresight does not cause a high and abrupt change in the radial velocity
distribution p11(v, t), as shown in Figure 2b.

(a) (b) (c)

Figure 3. For a SISO radar system, the measured radial velocity distribution p11(v, t) and mean radial
velocity v̄11(t) of a human walking activity for (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

The same observations can be made for a person walking in the direction parallel
and perpendicular to the radar boresight presented in Figure 3a,b, respectively. Thus, the
activity fingerprints captured by the SISO radar system as shown in Figures 2 and 3 are not
sufficient to effectively classify different human activities, especially when the direction
of the activity is perpendicular to the radar’s boresight. Furthermore, in Scenario 3, the
person moves diagonally in the 3× 3 grid of Figure 1; i.e., from (x3, y3) to (x1, y1). The
SISO radar system is able to generate adequate human activity signatures in Scenario 3 as
shown in Figures 2c and 3c for the falling and walking activities, respectively. It should be
mentioned that unlike the falling activity related to Scenario 3, the initial and final positions
of the walking activity are (x1, y1) and (x3, y3), respectively. As the person is walking away
from the SISO radar system in Scenario 3, the radial velocity components of the TV radial
velocity distribution p11(v, t) are negative, as can be seen in Figure 3c.

3.4. Implications on the Performance of an RF-Based Step Counter

In this subsection, we investigate how the SISO radar system affects the performance
of an RF-based step counter under three different experimental scenarios. The radar-based
passive step counter [49] was developed in order to count the number of steps in an
unobtrusive manner for an SISO FMCW radar system. The authors of [49] compared
the performance of their radar-based passive step counter with the wearable Garmin
Forerunner 935 step counter. The reported accuracy of the radar-based passive step counter
was more than 98%, which was similar to the accuracy of the Garmin Forerunner 935
step counter system. However, the walking activity of a person was restricted to merely
Scenario 1, where a person would walk either towards or away from the SISO radar system.
This restriction was naturally enforced by the limitations of the SISO radar system in the
context of activity direction. In this section, the performance of the radar-based passive
step counter is shown for Scenarios 1, 2, and 3.

To detect the number of steps in a particular walk activity, the SISO radar’s raw data
are processed according to the block diagram shown in Figure 4. The Ancortek radar in a
SISO configuration produces raw in-phase and quadrature (IQ) data for the wireless chan-
nel link ATx

i –ARx
j . The raw IQ data are processed by the radar signal preprocessing block

(see Section 2) to generate the radial velocity distribution p11(v, t) and mean radial veloc-
ity v̄11(t). The Savitzky–Golay smoothing filter [51] has been adopted to smooth the mean
radial velocity v̄11(t) using the MATLAB command “smooth(y,span,'sgolay',degree)”,
where “y” is the input vector or mean radial velocity vector v̄11(t), “span” is the number
of data points used for smoothing, “sgolay” is the Savitzky–Golay smoothing filter, and
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“degree” is the polynomial degree of the Savitzky–Golay filter. In our experiments, the
“span” and “degree” are chosen to be 60 and 4, respectively.

raw 
IQ dataSISO Radar

System
Radar Signal

Preprocessing

Step
Detection 
Module

detected 
stepsSavitzky-Golay

Smoothing Filter
timestamps

Figure 4. The block diagram of the RF-based step counter for a SISO radar system.

The solid black curves in Figure 5a–c show the smoothed mean radial velocity v̄11(t)
for Scenarios 1, 2, and 3, respectively. The smoothed mean radial velocity v̄11(t) is processed
by the RF step detector to detect the number of steps and their corresponding timestamps.
The detected steps of the RF step detector are distinctly marked and labeled in Figure 5. In
Scenario 1, the human subject started walking from the position (x3, y2) and took four steps
towards the position (x1, y2). We can see from Figure 5a that the RF step detection algorithm
has successfully detected the four steps. However, in Scenario 2, when the human subject
walked with four steps from the position (x2, y3) towards the position (x2, y1), the SISO
radar system is unable to produce an intelligible walking activity signature. Consequently,
the RF step detection algorithm is unable to detect all the steps that were taken by the
human subject. Apparently, the RF step detector missed one of the four steps in Scenario 2
as shown in Figure 5b. Moreover, in Scenario 3, where a person walked from the position
(x1, y1) towards the position (x3, y3) taking only four steps, the SISO radar system is able
to produce a fair walking activity signature. Thus, the RF step detector is able to detect the
four steps successfully as depicted in Figure 5c. Thus, we can conclude that the monostatic
SISO radar system is not sufficient to capture the human micro-Doppler signatures with
high precision in all directions.

  Step 1
  Step 2

  Step 3

  Step 4

(a)

  Step 1  Step 2

  Step 3

(b)

  Step 1

  Step 2

  Step 3
  Step 4

(c)

Figure 5. For a SISO radar, the number of steps detected from the smoothed mean radial velocity v̄11(t)
of a human walking activity according to (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

It is now evident that the aforementioned limitations of the SISO radar system restrict
the detection of the scatterer’s motion in the horizontal xy-plane. We must observe the
environment from different perspectives to effectively detect the scatterer’s motion. Thus,
we need a distributed RF sensing system to effectively determine the TV trajectories of the
object under observation. For this reason, we propose to distribute at least two collocated
transmitter–receiver antenna pairs in an indoor environment and preprocess the data for
each wireless channel link (see Sections 2 and 4). It should be mentioned that for SISO
radar-based HAR systems, the classification accuracy will drop as the direction of the
human motion relative to the radar’s boresight changes from parallel to perpendicular.
Furthermore, as we increase the overall system complexity in the context of human activity
classification, the performance of a machine learning or deep learning classifier is expected
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to further degrade for a SISO radar system. For instance, the system complexity is increased
by classifying more than two kinds of activities such as falling, walking, sitting on a chair,
and standing from a chair. We can now safely assert that a monostatic SISO radar system is
not an apposite choice for direction-independent human activity detection.

4. Human Activity Signatures by Using a Distributed MIMO FMCW Radar System

The lack of the multi-perspective illumination of SISO radar systems is their major
limitation, preventing the realization of a direction-independent HAR system (as described
in Section 3). To overcome this limitation, we propose to utilize a MIMO radar system and
distribute its antennas in an indoor environment to realize a direction-independent HAR
system. We have distributed two pairs of collocated transmitter–receiver antennas to illumi-
nate the indoor environment from different perspectives. For the sake of simplicity, we have
limited the number of antennas to four, but the proposed approach can be straightforwardly
scaled for a larger number of antennas. A separate radar signal preprocessing chain (as
described in Section 2) has been adopted for each pair of collocated transmitter–receiver
antennas. Thus, we have deployed a 2× 2 MIMO radar system, which consists of two radar
subsystems denoted as Radar1 and Radar2. Radar1 comprises a transmitter antenna ATx

1
and a receiver antenna ARx

1 . Analogously, Radar2 consists of a transmitter antenna ATx
2 and

a receiver antenna ARx
2 . We propose to position the two radar subsystems such that their

boresight axes are orthogonal to each other, which enables the 2× 2 MIMO radar system to
effectively capture the scatterer motion in the horizontal xy-plane.

In this section, we mainly emphasize the impact of the direction of human activities on
the TV radial velocity distribution pii(v, t) of the link from ATx

i to ARx
i for i ∈ {1, 2}. First,

we discuss the measurement setup for the proposed 2× 2 MIMO radar system. Second,
three different experimental scenarios are illustrated in which the human activities are
performed and analyzed. Third, we discuss the radial velocity distribution pii(v, t) and
mean radial velocity v̄ii(t) derived from measurements of the 2× 2 MIMO radar system.
Finally, the implications of different directions of human activities on the performance of
an RF-based step counter are discussed.

4.1. Measurement Setup

To realize the proposed distributed 2× 2 MIMO radar configuration, we have used an
FMCW mm-Wave radar operating at 24 GHz to capture the micro-Doppler information
of a human body moving in the xy-plane. The MIMO FMCW radar system operating in
the TDMA mode was configured according to the parameters listed in Table 2. For the
Ancortek SDR-KIT 2400T2R4 radar system, we deployed RF cables with different lengths
to avoid interchannel interference [47]. Owing to the TDMA mode of operation, the PRF of
the 2× 2 MIMO FMCW radar system is equal to 1/2 of the inverse of the chirp interval Tsw;
i.e., PRF = 1/(2Tsw). In TDMA mode, the transmitter antennas ATx

1 and ATx
2 of the radar

subsystems Radar1 and Radar2, respectively, transmit the chirp waveform ci(t′) alternately
and periodically in their respective time slot according to (2).

Table 2. System parameters of the 2× 2 MIMO experimental setup.

Description Symbols Values

RF cable lengths (LTx
1 , LRx

1 , LTx
2 , LRx

2 ) (0.3, 0.3, 7, 7) m
Carrier frequency fc 24.125 GHz

Radar’s bandwidth BW 250 MHz
Sweep time Tsw 500 µs

Pulse repetition freq. PRF 1 kHz

For the proposed distributed 2× 2 MIMO configuration, the indoor environment
remains exactly the same as described in Section 3. The activities of a person are observed
in a laboratory cluttered with fixed objects such as electronics, chairs, tables, and other
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miscellaneous items, as shown in Figure 6. This Figure 6 also illustrates the actual experi-
mental setup, where the placement of antennas shows a close resemblance to the proposed
2× 2 distributed MIMO radar configuration depicted in Figure 7. The boresights of the
two radar subsystems are orthogonal to each other, which enables the 2× 2 MIMO radar
system to capture the radial velocity distribution pii(v, t) using (14) regardless the direction
of activity. For practical reasons, we have marked the 2× 2 MIMO radar’s operation region
according to the field of view (FOV) of the two radar subsystems (Radar1 and Radar2) as
shown in Figure 6.
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Figure 6. The distributed 2× 2 MIMO radar setup in the presence of a moving person walking in an
indoor environment.

4.2. Scenarios of Human Activities

To overcome the limitations of the SISO radar system in terms of activity directions,
we illuminate the environment from different perspectives via the proposed distributed
2 × 2 MIMO radar framework as shown in Figure 7. Recall that Radari comprises a
transmitter antenna ATx

i and a receiver antenna ARx
i (i = 1, 2) as illustrated in Figure 7.

The two radar subsystems have a common illumination region as depicted by a 3× 3
grid in Figure 7, which depends on the FOV and the maximum unambiguous range of
the radar. This common area essentially limits the region of operation, within which all
activities have to be performed. A moving human body under observation is illuminated
from two different angles, as shown in Figure 7. This multi-perspective view helps us to
overcome the limitations of the SISO radar system. For instance, if the subject moves in
the direction parallel to the boresight of Radar2, then the Doppler frequencies measured
with Radar2 change considerably more over a larger range than the Doppler frequencies
measured with Radar1. In this case, Radar2 will detect the motion of the subject more



Appl. Sci. 2022, 12, 1825 13 of 20

effectively than Radar1. However, if the subject moves parallel to the Radar1 boresight,
then Radar1 will obtain a much better micro-Doppler signature. The two radar subsystems
in Figure 7 complement each other in the way that when the direction of motion changes
from the x-axis to y-axis, the movement signature of the subject gradually disappears from
the Radar1 radial velocity distribution p11(v, t) and appears in the Radar2 radial velocity
distribution p22(v, t).

To show the effectiveness of the proposed 2 × 2 MIMO scheme, we recorded the
human motion in three different directions. In order to illustrate the direction of human
motion in a particular experiment, we refer throughout this section to the 3× 3 grid shown
in Figure 7, in which three different scenarios of human movement are represented by
different markings. The radial velocity distributions p11(v, t) and p22(v, t) of the two radar
subsystems have been computed, and the results are delineated in the next subsection for a
walking and falling activity of a person.
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Figure 7. Two radar subsystems forming a 2× 2 distributed MIMO radar system in the presence of a
moving person in a cluttered indoor environment.

4.3. Results for the Proposed 2× 2 MIMO Configuration

We have connected the Ancortek MIMO radar system with a signal processor, which
processes the MIMO radar’s raw IQ data according to the method discussed in Section 2.
For this research, we have recorded the radar’s raw IQ data for a 2× 2 distributed MIMO
radar system, and then we have processed the data offline using MATLAB. Identical but in-
dependent radar signal preprocessing chains are implemented for the two subchannels. For
each human activity, we have computed the radial velocity distribution pii(v, t) using (14)
and mean radial velocity v̄ii(t) using (15) for i ∈ {1, 2}. Figures 8 and 9 correspond to
Radar2, which show the TV radial velocity distribution p22(v, t) for the falling and walking
activities, respectively. Note that, for the monostatic SISO configuration and 2× 2 MIMO
configuration in Sections 3 and 4, respectively, the positions of the transmitter antenna ATx

1
and receiver antenna ARx

1 are identical. Therefore, Radar1 of the 2× 2 MIMO radar system
is identical to the monostatic SISO radar system. As a consequence, the TV radial velocity
distributions p11(v, t) corresponding to Radar1 and the SISO radar system are the same.
Recall that the TV radial velocity distributions p11(v, t) corresponding to Radar1 are shown
in Figures 2 and 3 for the falling and walking activities, respectively. For all observed
activities, we have also computed the mean radial velocity v̄ii(t), which is represented
by the black dashed line in Figures 2, 3, 8 and 9. The falling and walking activities were
performed in three different scenarios to see the effect of the human activity direction on
the measured TV radial velocity distribution pii(v, t).
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(a) (b) (c)

Figure 8. For Radar2, the measured radial velocity distribution p22(v, t) and mean radial veloc-
ity v̄22(t) of a human falling activity in (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

(a) (b) (c)

Figure 9. For Radar2, the measured radial velocity distribution p22(v, t) and mean radial veloc-
ity v̄22(t) of a human walking activity in (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

In Figure 7, we can see that the direction of movement is parallel to the boresight of
Radar1 and orthogonal to the boresight of Radar2 for Scenario 1. To perform the walking
activity in Scenario 1, the person walks from the position (x3, y2) towards the position
(x1, y2) in a straight line. Similarly, to perform a falling activity, the person first stands
still on the position (x3, y2) and then falls onto a mattress facing towards the antennas
of Radar1. Figures 2a and 8a show the impact of the falling activity on the measured TV
radial velocity distributions p11(v, t) and p22(v, t), respectively. For the walking activity,
Figures 3a and 9a show the measured TV radial velocity distributions p11(v, t) and p22(v, t),
respectively. Evidently from Figures 2a, 8a, 3a and 9a, the 2× 2 MIMO radar system is able
to acquire good multi-perspective human activity signatures for Scenario 1. As the direction
of the activity is towards Radar1 in Scenario 1, it is obvious that Figures 2a and 3a give better
activity signatures than Figures 8a and 9a, respectively.

The walking and falling activities are repeated for Scenario 2, where the initial and
final positions are at (x2, y3) and (x2, y1), respectively, as shown in Figure 7. Thus, the
direction of motion in Scenario 2 is orthogonal to the boresight of Radar1 and parallel to the
boresight of Radar2. In Figures 2b and 8b, the TV radial velocity distribution pii(v, t) of the
falling activity is shown for Radar1 and Radar2, respectively. Analogously, Figures 3b and 9b
show the TV radial velocity distribution pii(v, t) of the walking activity corresponding
to Radar1 and Radar2, respectively. From the measurement results, we can see that the
distributed MIMO radar system captures good human activity signatures for Scenario 2
as well. For Scenario 2, as the direction of the activity is towards Radar2, we observe that
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Figures 8b and 9b give better activity signatures than Figures 2b and 3b, respectively. In
other words, Radar2 produces better human activity signatures than Radar1 for Scenario 2.

In Scenario 3, the direction of movement is roughly diagonal to the boresights of Radar1
and Radar2, as shown in Figure 7. For the human falling activity, the initial and final positions
are (x3, y3) and (x1, y1), respectively. This is in contrast to the walking activity, where the
initial and final positions are (x1, y1) and (x3, y3), respectively. Figures 2c and 8c show the
TV radial velocity distribution pii(v, t) of the falling activity with respect to Radar1 and
Radar2. Analogously, Figures 3c and 9c show the TV radial velocity distribution pii(v, t)
of the walking activity corresponding to Radar1 and Radar2, respectively. Note that both
Radar1 and Radar2 capture adequate human activity signatures for Scenario 3. It is evident
from the measurement results that unlike the SISO radar system, the distributed MIMO
radar system has the innate capability to provide better multi-perspective human activity
signatures for all three scenarios.

4.4. Implications on the Performance of an RF-Based Step Counter

To illustrate the utility of the proposed distributed 2× 2 MIMO radar system, we
now investigate the performance of a radar-based passive step counter [49] for the MIMO
configuration. As mentioned in Section 3, the radar-based passive step counter was de-
signed only for human walking activities in accordance with Scenario 1. We have already
shown the performance limitations of the SISO radar system with the radar-based passive
step counter module in Section 3. In this section, we show how the integration of the
radar-based passive step counter module with the proposed 2× 2 MIMO radar system
will mitigate the shortcomings that we encountered with the SISO radar system. Recall
that illuminating the indoor environment from different perspectives, as shown in Figure 7,
will enable the distributed 2× 2 MIMO radar to capture the walking activity signature
regardless of its direction.

A basic block diagram of the 2 × 2 MIMO radar-based RF step counter is shown
in Figure 10, where it can be seen that the step counter module has been implemented
separately for Radar1 and Radar2. To detect the number of steps in a particular walking
activity, the 2× 2 MIMO radar’s raw IQ data are processed by the radar signal preprocessor
module (see Section 2). The radar signal preprocessor module generates the TV mean
radial velocities v̄11(t) and v̄22(t) for Radar1 and Radar2, respectively. The TV mean radial
velocity v̄ii(t) is smoothed by a Savitzky–Golay filter to be further processed by the RF step
detection module.

raw IQ data

raw IQ data

Radar Signal
Preprocessing

Step
Detection 
Module

detected 
stepsSavitzky-Golay

Smoothing Filter
timestamps

Radar Signal
Preprocessing

Step
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MIMO Radar

System

timestamps

Figure 10. The block diagram of the RF-based step counter for a 2× 2 MIMO radar system.

In Figures 5 and 11, the solid black curves show the smoothed TV mean radial veloc-
ities v̄11(t) and v̄22(t) for Radar1 and Radar2, respectively. By processing the smoothed
mean radial velocity v̄ii(t), the RF step detection module detects the number of steps and
their corresponding timestamps for the walking activity. The detected steps of the MIMO
radar-based RF step detector are distinctly marked and labeled in Figures 5 and 11 for
Radar1 and Radar2, respectively. For Scenario 1, the human subject started walking from
the position (x3, y2) and took four steps towards the position (x1, y2). We can see from
Figure 5a that the RF step detection algorithm has successfully detected the four steps for
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the radar subsystem Radar1. However, the RF step detection algorithm has detected five
steps in Figure 11a due to the poor quality of the data from Radar2. Thus, we can easily
discard the data from Radar2 and select the number of steps counted by the RF step counter
associated with Radar1.

  Step 2
  Step 1   Step 3

  Step 4

     Step 5

(a)

  Step 1

  Step 2
  Step 3

  Step 4

(b)

  Step 1  Step 2

  Step 3

  Step 4

(c)

Figure 11. For Radar2, the number of steps detected from the smoothed mean radial velocity v̄22(t)
of a human walking activity according to (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

On the other hand, for Scenario 2, when the human subject walked with four steps from
the position (x2, y3) towards the position (x2, y1), Radar2 is able to produce an intelligible
walking activity signature. For Scenario 2, we can choose the results from the Radar2-based
RF step counter, which accurately counts the number of steps, as shown in Figure 11b.
Therefore, unlike the SISO-based RF step counter, the 2× 2 MIMO-based RF step counter
is able to detect all the steps that were taken by the human subject in Scenario 1 and 2.
Moreover, for Scenario 3, when a person walked from the position (x1, y1) towards the
position (x3, y3) taking only four steps, both radar systems Radar1 and Radar2 are able
to produce good walking activity signatures. Thus, the RF step counter detects the four
steps successfully as depicted in Figures 5c and 11c for Scenario 3. It is now clear that by
observing the environment from different perspectives, the proposed 2× 2 MIMO radar
system is able to detect the scatterer’s motion in the horizontal xy-plane. We can conclude
that a distributed 2× 2 MIMO radar system is sufficient to capture the human activity
signatures in all directions.

5. Discussion

From the experimental results of Sections 3 and 4, we can see that the proposed fun-
damental 2× 2 MIMO radar system ameliorates the limitations posed by the SISO radar
configuration. In Figures 2, 3, 8, and 9, adequate falling and walking activity signatures
were observed irrespective of the activity direction. Furthermore, to quantify and numeri-
cally assess the performance of the SISO and 2× 2 MIMO radar systems for each scenario,
we have computed the DTW [44] distance for the walking activity. A numerical analysis of
the falling activity signatures yields similar results. Therefore, to be concise, we have only
shown the performance of the SISO and 2× 2 MIMO radar systems for the walking activity.

The DTW algorithm performs a time series analysis by evaluating the similarity
between two temporal sequences. In this algorithm, the two temporal sequences are
expanded or stretched such that the overall Euclidean distance between the two sequences
is minimized, which makes the algorithm robust to any speed variations, accelerations, or
decelerations in the data. This algorithm has been widely used in speech [52], gesture [53],
and gait [54,55] recognition. To quantify whether a radar system has captured an adequate
human activity signature or not, we first need a reference human activity signature for
comparison. The reference activity signature is obtained in favorable conditions, where
a person walks in the direction parallel to the boresight of the SISO radar. For each radar
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subsystem, the DTW distance is computed between the reference human activity signature
and the captured human activity signature of a particular scenario. For the SISO radar
system, equivalent to Radar1, we obtain a single DTW distance metric for each walking
scenario as shown in the second and fourth columns of Table 3. However, for the proposed
2× 2 MIMO radar system, we obtain two distinct DTW distance metrics, one for each radar
subsystem (Radar1 and Radar2). For the 2× 2 MIMO radar system, the measured DTW
distance metrics of Radar1 and Radar2 are compared, and the activity signature with the
minimum DTW distance metric is chosen as shown in the last column of Table 3. Note
that the radar subsystem with the minimum DTW distance is chosen because its signature
would resemble the higher similarity to the reference activity signature.

Table 3. The DTW distance metric for the SISO and 2× 2 MIMO radar systems.

Scenario Dist. of Dist. of Dist. of Dist. of 2 × 2
# Radar1 Radar2 SISO Radar MIMO Radar

1 19.6 81.2 19.6 19.6
2 73.8 12.0 73.8 12.0
3 7.3 9.1 7.3 7.3

A performance summary of the SISO and 2 × 2 MIMO radar system is based on
the results shown in Table 3. It is clear that the SISO radar system is unable to obtain
an adequate activity signature in Scenario 2 as its DTW distance is very large (see the
underlined DTW distance metric in Table 3). Unlike the SISO radar system, the 2× 2 MIMO
radar system is able to perform well in all three scenarios, as evident from the measured
DTW distances and the results from Sections 3 and 4.

Although we have presented the basic 2 × 2 distributed MIMO radar system to
successfully capture the human activity signature in all directions, this study does not
include a machine learning or deep learning-based classification network to recognize
the type of human activity. However, an RF-based direction-independent HAR system
using the proposed MIMO radar configuration would be considered as an extension of
this research. To develop such a direction-independent HAR system, the data observed
by Radar1 and Radar2 need to be merged or fused together. As previous studies have
shown the performance improvements due to the fusion of the data obtained from either
homogeneous sensors [17,56] or heterogeneous sensors [9], we can expect to achieve similar
performance gains by fusing the data of Radar1 and Radar2. In all likelihood, the TV
radial velocity distribution pii(v, t) generated by the proposed 2× 2 MIMO radar system
would ameliorate the classification performance upon appropriate data fusion. Therefore, a
learning network based on the proposed 2× 2 MIMO radar data would be able to recognize
different activities in different directions.

For a computationally efficient machine learning algorithm, we can extract multiple
features from the TV radial velocity distributions p11(v, t) and p22(v, t). For instance,
we have computed a key parameter known as TV mean radial velocity v̄ii(t), which is
shown by the black dashed line in Figures 2, 3, 8, and 9. Higher-order parameters and
features can be readily computed for the data obtained from the proposed 2× 2 MIMO
radar system. Alternatively, a separate convolutional neural network (CNN) [57] may be
adopted to extract features from the data of Radar1 and Radar2. Then, the obtained features
corresponding to Radar1 and Radar2 can be merged using a deep neural network for the
classification of human activity. Conceivably, the proposed 2× 2 MIMO solution combined
with a machine learning or deep learning-based classifier would mitigate the concerns
regarding a direction-independent HAR system.

6. Conclusions

We have proposed a fundamental 2× 2 MIMO approach to analyze the radial velocity
distribution and mean radial velocity for falling and walking activities. We confirmed the
limitations of SISO RF sensing and emphasized the importance of a distributed MIMO RF
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system in the context of different directions of human activities. Unlike the state-of-the-art
monostatic SISO or MIMO radar systems, our proposed 2× 2 distributed MIMO radar
system enables the realization of a direction-independent HAR system using TV channel
characteristics of human activities obtained from different aspect angles. A comparison
with the performance of a radar-based passive step counter has been demonstrated for
a SISO and a proposed 2 × 2 MIMO radar system. It is shown that the 2 × 2 MIMO
radar-based step counter is able to accurately detect the number of walking steps in all
scenarios, while the SISO radar-based step counter fails to perform. Moreover, the DTW
distance metric is used to numerically assess the performance of the SISO and 2× 2 MIMO
radar systems.

Although the fundamental approach presented in this paper may be adopted for
various applications, we plan to extend this work to a direction-independent HAR system,
where we intend to increase the overall performance of the RF-based HAR system by
increasing the number of antennas. The proposed 2× 2 MIMO radar system can straight-
forwardly be scaled to an N × N MIMO radar system. Moreover, from the obtained
multi-perspective channel characteristics, multiple features can be extracted for a classical
machine learning-based HAR system. For a more complex HAR problem, a deep CNN can
be adopted based on the data from the proposed distributed MIMO radar framework.
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