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Abstract: With advanced neural network techniques, language models can generate content that
looks genuinely created by humans. Such advanced progress benefits society in numerous ways.
However, it may also bring us threats that we have not seen before. A neural text detector is a
classification model that separates machine-generated text from human-written ones. Unfortunately, a
pretrained neural text detector may be vulnerable to adversarial attack, aiming to fool the detector into
making wrong classification decisions. Through this work, we propose µAttacking, a mutation-based
general framework that can be used to evaluate the robustness of neural text detectors systematically.
Our experiments demonstrate that µAttacking identifies the detector’s flaws effectively. Inspired
by the insightful information revealed by µAttacking, we also propose an RR-training strategy, a
straightforward but effective method to improve the robustness of neural text detectors through
finetuning. Compared with the normal finetuning method, our experiments demonstrated that
RR-training effectively increased the model robustness by up to 11.33% without increasing much
effort when finetuning a neural text detector. We believe the µAttacking and RR-training are useful
tools for developing and evaluating neural language models.

Keywords: machine learning security; neural text generation; machine text detection; mutation
testing

1. Introduction

Since AlexNet [1], neural networks (NNs) have been the major driving force for rapid
AI development in the last ten years and have shown promising results in various domains
recently [2–10]. With the advanced techniques, NNs may produce textual and imagery
content looking as if genuinely created by humans [11–13], which benefits society in many
domains, from medical image processing [14–17] to speech-to-text conversion [18,19],
machine language translation [20,21], marketing communication [22,23], and so forth.
However, such advanced technology also makes it easier to generate human-like content
at a large scale for nefarious activities, for instance, generating misinformation [24,25]
and targeting specific groups for political agenda [26,27]. This newly emerging threat
is even more troubling with the recent development of large language models [28,29],
such as OpenAI’s ChatGPT [30], GPT-4 [31], and Google’s Bard [32]. Researchers are
actively developing neural text detectors for distinguishing neural text (i.e., NN-generated
text) from human-written ones and have shown plausible performance for long sequence
detection [33,34]. However, short sequence detection is still challenging with a performance
that is not better than random guessing [26]. More importantly, pretrained neural text
detectors are vulnerable to adversarial attacks, aiming to fool the detector into making
wrong classification decisions. Unfortunately, systematically evaluating the robustness of a
neural text detector is still non-trivial due to the lack of existing evaluation tools.
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Mutation analysis is a white-box attacking method used to evaluate the quality of
existing software [35,36]. The analysis is based on well-defined mutation operators that
mimic typical programming errors and measure the percentage of mutation operators that
cause different software behavior from the original design [37]. This strategy follows “the
boiling frog syndrome”, [38] modifying a program in small ways. The purpose of such
a kind of attacking is to help the software tester locate weaknesses in the code that are
seldom [39,40].

Inspired by the advances in mutation analysis, we propose a general mutation-based
framework for evaluating the robustness of pretrained neural text detectors. We call the
framework µAttacking because the evaluation uses well-defined mutation operators to
adversarial attack pretrained models. We particularly focus on short neural text detection
since it is more challenging for existing detectors and, hypothetically, might be more harm-
ful. Since people are heavily engaged in social media, a large-scale information operation
targeting social media with short neural text may be more effective than generating longer
sequences for news articles.

The µAttacking finds that the state-of-the-art RoBERTa-based detector [41] is exception-
ally vulnerable to simple but common mutations. In some cases, the detector performance
is even less than 0.07 AUC (the area under the receiver operating characteristic curve) on
separating human-written texts from machine-generated ones. From the experiments, we
also found that neural text intends to be more grammatically correct than human-written
ones. For instance, human-written texts are 100 times more likely to have missing arti-
cles (i.e., a, an, the) than those generated by neural network algorithms. Inspired by this,
we propose a simple but effective RR-training strategy that introduces uncertainty to the
model by randomly removing words at the training stage. Our experiments show that
the robustness of the RoBERTa-based detector can be further improved by up to 11.33%
on AUC when finetuning the model using RR-training, comparing the finetuning result
without it. Note that no mutation operators or text are used in the finetuning stage.

We believe µAttacking and RR-training are useful language-analysis model-development
tools. The µAttacking provides a systematic way to evaluate the robustness of language-
analysis models that have not been evaluated before. The RR-training improves model
robustness without involving additional data or a significant amount of work. To summa-
rize, our paper presents the following intuitive contributions:

• Introducing µAttacking, a mutation-based strategy for systematically evaluating the
robustness of neural network language-analysis models.

• Demonstrating robust analysis of neural text detection model using µAttacking
through adversarial attacks.

• Proposing the RR-training strategy that improves the robustness of language-analysis
models significantly without requiring additional data or effort.

The rest of the paper is organized as follows: The related technical background are
presented in Section 2. Then, the proposed mutation-based framework and RR training
strategy are introduced in Section 3. The dataset simulation and experiment setup are
provided in Section 4. The detailed experimental results on various evaluation tasks are
illustrated in Section 5. The paper ends with a discussion and conclusion in Section 6.

2. Technical Background

This section introduces some high-level but necessary technical background that
may be needed to understand our work, including automatic text generation, neural text
detection, mutation analysis, and adversarial attacks.
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2.1. Automatic Text Generation

Automatic text generation is a field of study in natural language processing that
combines computational linguistics and artificial intelligence [42–44]. The field has pro-
gressed significantly in recent years due to advanced neural network technologies [45,46].
Neural-network-based approaches are currently dominant in the field. Popular methods
may include Transformer [11], GPT-1/2/3/4 [12,31,47,48], RoBERTa [49], and their variants,
such as Med-Bert [50] and ChatGPT [30] that are used in several text domains. Due to
the high text-generation performance, NN-based methods are popular in image caption
generation [51], automatic text summarization [52], machine translation [53], moving script-
writing [54], poetry composition [55], etc. Although the generated text may look precise
and reasonable, due to the nature of neural networks, it is non-trivial to guarantee the
semantic correctness of the generated text. In this work, we refer to the text generated by
neural network models as neural text.

2.2. Neural Text Detection

We refer to neural text detection as distinguishing neural text from human-written ones.
Although neural text detection may still be under-researched, it has attracted increasing
attention over the last few years [56–58]. Various approaches have been proposed. For
instance, Bhatt and Rios used linguistic accommodation in online-conversion interaction
to identify whether the text was generated by a chatbot [58]. Solaiman et al. used the
probability distribution expressed by neural language models directly by computing the
total probability of the text sequence of interest. If the calculated probability is closer to
the mean likelihood over a set of known machine-generated sequences, the text sequence
is classified as machine generated [41]. This study used the RoBERTa-based detector, a
state-of-the-art model, to demonstrate the neural text detection task. The model was based
on the largest GPT-2 model (consisting of 1.5B parameters) [12]. Additionally, the model
was finetuned to distinguish between texts being generated from the GPT-2 model and
human texts. In total, 500,000 text samples were used in training [26].

2.3. Mutation Analysis

Mutation analysis, also known as mutation testing, is a fault-based system-level testing
approach that evolved in software testing [37]. Unlike other methods of testing that aim at
testing the correctness of software behavior, mutation testing aims at testing the robustness
of the software and how to deal with input data that is not originally designed to deal with.
Mutations are different versions, slightly changed, from the original code [36], and may
be measured using methods such as [59]. Therefore, test cases used to test original code
are also used to test mutation versions. Once a test case detects a mutation, the mutation
is said to be killed (i.e., discovered). This indicates that the test cases visit the particular
mutation area in the code. As such, mutation testing tests the “test cases” rather than the
code, ensuring that they cover all code areas (i.e., test case coverage or effectiveness) [40].
Our work brings mutation analysis from the software testing field to natural language
analysis by proposing a general framework for mutation generation. Various mutations
generated by the framework can be used to evaluate the robustness of a neural text detector
or any other language analysis model.

2.4. Adversarial Attacks

Adversarial attacks are growing threats in AI and machine learning, intending to fool
machine learning models with deceptive data [60,61]. In general, adversarial attacks are
classified into two categories: white-box attack and black-box attack [62]. In the former
one, the attacker has access to the model, while in black box attacks, the attacker has no
access to the property [63,64]. The deceptive data are often purposely designed to cause a
model to make a mistake in its predictions despite resembling a valid input to a human.
Numerous ways may be used to acquire the deceptive data or adversarial samples, such as
fast gradient sign attack (FGSA) [65] and generative adversarial networks (GANs) [66].
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The proposed µAttacking combines adversarial attacks and mutation analysis to
evaluate language-analysis model robustness. In the adversarial machine learning domain,
µAttacking is a white-box approach in which the attacker has access to the initial text.
On the other hand, the mutation-based aspect aims to gradually change the text from the
initial one to confuse detectors (typically known as the boiling frog attack). Extending the
mutation-based features to adversarial attacks is essential since it is crucial for applications
that depend on machine learning models to make decisions to ensure that such models are
immune to inputs they are not trained for. This can also fit in the scope of an important
recent and evolving area, detecting unknown attacks.

3. Method

Inspired by the mutation analysis in software testing, we propose µAttacking with a
general framework for two types of mutation operators (Section 3.1.1). The mutation oper-
ators are used for adversarial sample generation. The adversarial samples can then be used
to evaluate a neural text detector model through adversarial attacks (Section 3.1.2). Inspired
by the evaluation result of µAttacking (Section 5.1), we propose a random-remove (RR)
training strategy to improve the robustness of the neural text-detection model (Section 3.2).

3.1. µAttacking

The proposed µAttacking framework contains two components: (1) mutation oper-
ators and (2) adversarial attacks. Two general mutation operators are proposed to simu-
late two common scenarios when malicious actors try to bypass the neural text detector:
character- and word-level mutation operators.

3.1.1. General Mutation Operator Framework

Given a text corpus (e.g., a paragraph), τ, which contains an ordered list of words,
ω = {ω1, ω2, . . . , ωn}, and an ordered list of punctuation, υ = {υ1, υ2, . . . , υm}, the order of
the words and punctuations in the corresponding lists are followed by the original order in
the text corpus. Mutation operators, µc(·) and µw(·) are used to generate the character-level
and word-level mutations of τ, respectively.

Mathematically, the character-level operator, µc(·), is defined as:

ω′i = µc(ωi, ρ, σ), (1)

where ωi ∈ ω, ρ is a letter in ωi, σ is the mutation of ρ, and ω′i is the mutation of ωi.
After the mutation, the original ω, where ω ∈ τ and ω = {ω1, ω2, . . . , ωi, . . . , ωn}, is
changed to ω′ = {ω1, ω2, . . . , ω′i , . . . , ωn}. The mutation text corpus is τ′ = {ω′, υ}. For
instance, given a text corpus, τ, where τ = Mutation-Based Adversarial Attacking. The
ordered list of words is ω = {Mutation, Based, Adversarial, Attackinge}. Assume
ωi = Mutation, ρ = a, and, σ = α. Then, ω′i =Mutαtion and τ′ = Mutαtion-Based
Adversarial Attacking.

The word-level operator, µw(·), is defined as, mathematically:

ω′′ = µw(ω, ωj, ω′j), (2)

where ωj ∈ ω, ω′j replaces ωj, and ω′′ = {ω1, ω2, . . . , ω′j, . . . , ωn}. For instance, given
the same text corpus as before where: τ = I am generated by a neural net, assume
ωj = net, and ω′j = network. After applying µw(·) to ω = net, the mutation is ω′′ =

{I, am, generated, by, a, neural, network}.
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The character-level mutation operators intend to simulate the situation where nefar-
ious actors make minor character-level changes to the text to bypass automatic filtering
systems on the internet. The words may look weird after the changes but may still present
the same information to human users. Although the strategy looks simple, it works effec-
tively in many cases. For instance, for a keyword-based filtering system, the character-level
mutation fools the filtering system by generating a new “word” that may not be on the
keyword list. For a contextual-embedding-based system, the newly generated “word”
might be embedded far away from the original word in the embedding space, which may
also effectively fool the filtering system.

The word-level operators aim to simulate another strategy to fool an automatic filtering
system—replacing words with other words, which is also commonly used in the real world.
For instance, a student may wish to pass the plagiarism check by replacing some words
with synonyms in an essay copied online. The word-level mutation operators are intended
to simulate such nefarious activities.

The character- and word-level mutation operators introduced in this section are two
general operators. Various specific operators may be developed based on these two general
types. For instance, a misspelling operator can be developed using the character-level
operator, and an adjective-removing operator can also be developed by replacing the
adjectives in a text corpus with "" (i.e., the empty string). As a proof of concept, in this
work, we proposed nine sets of mutation operators in Section 5. Section 4.3 gives a detailed
explanation of the operators. However, users are not limited to the operators used in this
study. One may easily design more operators that may be more suitable for their specific
tasks under the proposed framework.

3.1.2. Attacks on Neural Text Detectors

Neural network language models can be trained to distinguish human-written text
vs. neural text. Among several existing detectors, the RoBERTa-based detector [41] is well
known for the state-of-the-art performance on the GPT-2-generated text [26,67]. We apply
adversarial attacks to the RoBERTa-based detector using the adversarial samples generated
with the mutation operators introduced in Section 3.1.1. To attack the neural text detectors,
we first apply the mutation operators to a set of neural texts to generate the adversarial
samples. Then, the adversarial samples are used to test a pretrained RoBERTa-based
detector. The basic process is illustrated in Figure 1.

Figure 1. Adversarial attack of the pretrained RoBERTa-based detector.

Figure 2 shows the general training process of the ReBERTa-base detector, which was
accomplished by finetuning a RoBERTa large model with the outputs of the 1.5 B parameter
GPT-2 model. The RoBERTa large model was trained for text generation on 160 GB of
text, including Books Corpus, English Wikipedia, CommonCrawl News dataset, Web text
corpus, and Stories from Common Crawl [49]. To finetune the detector, both human-written
and machine-generated textual data were fed to the detector to evaluate whether they were
neural text or not. A binary loss function was used to assess the network prediction by
comparing the prediction and the ground-truth label of the input. Afterward, the loss was
back-propagated to the detector for tuning the network parameters.
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Figure 2. The RoBERTa-based detector general training procedure.

3.2. Random-Removing Training Strategy

Empirically speaking, pretrained neural network models are often less robust when
handling out-of-distribution data. For instance, Wang et al. show that pretrained neural
network models may achieve near-human or even above-human performance on certain
medical diagnosis tasks on the in-distribution data. However, the model performance was
significantly reduced when applying the pretrained model to out-of-distribution data (e.g.,
data samples collected from a different hospital or region) [68]. However, research showed
that relaxing model prediction by introducing a small amount of uncertainty to classifi-
cation models helps increase the overall model performance [69–72]. For instance, Label
Smoothing [69] is widely used in computer vision classification tasks. Instead of targeting 1
for the correct class, Label Smoothing tries to predict 1− ε for the correct class label, where
ε is usually a small number, such as 0.01. MixCut [71] is another example, which mixes two
images of two classes together into one image and predicts the mix proportionally to the
number of pixels of combined images. Both Label Smoothing and MixCut demonstrate a
significant performance improvement by introducing a small uncertainty to the model.

Inspired by the methods mentioned above, as well as the robustness evaluation result
using µAttacking in Section 5.1, we propose a random-removing (RR) training strategy
to improve the robustness of neural text detectors by introducing a small uncertainty
during the training stage (Algorithm 1). We name the method as RR-training. Specifically,
given a training instance, we randomly apply the word-level mutation operator µw where
µw = (ω, ωj, "") to k words in ω. For each input text τ, k is randomly decided and
k ∈ [0, f loor(len(ω)×m)], where len(ω) = indicates the number of words in the ordered
list, f loor(·) indicates the floor function, and m ∈ [0.0, 1.0] is the maximum percentage of
words we might want to remove. For instance, assume τ ={random remove some words}
and m = 0.3. Then, len(ω) = 4, f loor(len(ω)× 0.3) = 1, and 0 ≤ k ≤ 1. Our RR-training
strategy may also be considered as an input-level dropout [73] operation.
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Algorithm 1: RR-Training

/* Require: Neural text detector model hΘ(·), training data
D = {T ,L}, text corpus T = {τ1, τ2, . . . , τi}, classification labels
L = {ι1, ι2, . . . , ιi} where ι ∈ {0, 1}, loss function L(·), word-level
mutation operator µw(·), random class R(·), and sort function
sort(·). */

for i ∈ 0 to len(T ) do
ω, υ← τi // Obtain the ordered word list and the punctuation list
from τi

r ← R.randInt(0, 1) // Obtain a random integer for 0 or 1.

/* Apply mutation to τi if r is 1 */
if r == 1 then

n← R.randInt(0, f loor(len(ω)×m)) // Obtain a random number of
words

// that will be removed from ω
indices← {index1, index2, . . . , indexn} // Obtain a list of n random
indices of

// words, where 0 <= indexi < len(ω).
sort(indices) // Sort the list in ascending order.

/* Remove n words */
for j ∈ 0 to n do

ω = µw(ω, ωindices[j], " ") // Using the word-level mutation
operator

// to remove words from ω

end
τi ← {ω, υ} // Update τi. n words are removed from the
original τi

end

/* Train the model */
logits← hΘ(τi) // Feed data to the model
loss = L(logits, ιi) // Calculate the loss
loss.back() // Back-propagation

end

4. Dataset and Experiment Setup
4.1. Data Preparation and Neural Text Acquiring

Due to the low diversity between human-written text and machine-generated short
text, detecting machine-generated short text is more challenging than for longer text.
Unfortunately, neural text detection for shorter text is as important as longer text, if not
more. For instance, the influence of social media in our life is increasing daily. A large-scale
information operation on social media may lead to national crises. Automatic content
generation reduces the human resource demand of launching such an operation. Thus,
distinguishing machine-generated posts from those written by humans in social media
posts is a critical step in defending an AI-backed information operation. Ideally, the
experiment should use actual social media data; however, acquiring such data is non-travel,
especially acquiring machine-generated data since no effective methods exist to determine
whether a machine generates a particular social post. Thus, we had to generate some
simulated data by ourselves, and we designed an oversimplified social media scenario
where social media posts may have two typical features:
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• The text in a post is usually relatively short. For instance, the typical length of tweets
is often between 25–50 characters.

• A good percentage of posts contain images and text. The text is often related to the
image.

To simulate the oversimplified social media scenario mentioned above and to acquire
neural text and human-written text more efficiently, we used the MS COCO2017 dataset [74],
a dataset containing both imagery and text data. The text data are written by humans,
describing the corresponding images. Each imagery sample comes with five human-written
descriptions. To speed up our experiments, we selected the first 10,000 imagery samples
from the dataset. Then, we used a bin-search-based image caption generation model [75]
to generate five more descriptions for each image. The pretrained weights of the caption-
generation model from the authors were used in this study directly. Our simulated social
media post dataset contains 10,000 images and 100,000 captions, with 50,000 from the
original MS COCO2017 dataset and 50,000 generated by us. Then, we used the original MS
COCO2017 descriptions as human-written samples and those generated by us as neural
text. The dataset was divided into the train, val, and test sub-sets on the image level with a
ratio of 70:15:15, respectively.

4.2. Models and Training Setup

Three neural text-detection models are compared in this study, namely: (1) RoBERTa-
Base, (2) RoBERTa-Finetune, and (3) RoBERTa-RR.

• RoBERTa-Base: The RoBERTa-based detector was originally released by OpenAI. We
used the model as-is and used the author-related weights.

• RoBERTa-Finetune: A finetuned RoBERTa-based detector using our training set. All
the embedding layers were frozen during the training. We only optimized the classifier
as part of the model. No mutation operators were applied during the training.

• RoBERTa-RR: Another finetuned RoBERTa-based detector that followed the same
setup of the RoBERTa-Finetune model but was trained using the RR-training strategy.

The RobertaForSequenceClassification model (i.e., roberta-large) provided by
HuggingFace [76] was used as the architecture of the RoBERTa-based detector. The Ope-
nAI pretrained weights (https://openaipublic.azureedge.net/gpt-2/detector-models/v1
/detector-large.pt (accessed on 8 October 2022)) were used for RoBERTa-Base and were
used to initialize the RoBERTa-Finetune and RoBERTa-RR models. All the experiments
were conducted using an Nvidia A100 GPU card. Both finetuned models were trained for
50 epochs using our train set. The best checkpoint was selected based on the evaluation
performed on the val set. The test set was applied for the final evaluation. We padded each
input to have a maximum length of 50. The AdamW [77] optimizer with a learning rate of
1 × 10−4, a batch size of 512, and the cross-entropy loss was used during the training.

4.3. Mutation Operators and Adversarial Attacks

We developed nine sets of mutation operators using the character- and word-level
operator introduced in Section 3.1.1, including six sets of character-level operators and
three sets of word-level operators. The output text from the nine sets of operators was then
used as adversarial samples to attack the three models. In total, up to 2355 operators were
derived from the nine sets and were used in this study.

The character-level operators were categorized into two groups: (1) µc(ωi, a, α) and
(2) µc(ωi, e, ε). Each group contained three sets of mutation operators: the set of articles,
the set of adjectives, and the set of adverbs. The operators of articles focused on the three
articles—a; an; the. The operators of adjectives focused on 527 common adjectives provided
by the Missouri Baptist University (MBU) Academic Success Center (https://www.mobap.
edu/wp-content/uploads/2013/01/list_of_adjectives.pdf (accessed on 8 October 2022)).
The operators of adverbs focused on 255 common adverbs also provided by MBU (https:
//www.mobap.edu/wp-content/uploads/2013/01/list_of_adverbs.pdf (accessed on 8
October 2022)). In total, the experiment involved six sets of character-level mutation

https://openaipublic.azureedge.net/gpt-2/detector-models/v1/detector-large.pt
https://openaipublic.azureedge.net/gpt-2/detector-models/v1/detector-large.pt
https://www.mobap.edu/wp-content/uploads/2013/01/list_of_adjectives.pdf
https://www.mobap.edu/wp-content/uploads/2013/01/list_of_adjectives.pdf
https://www.mobap.edu/wp-content/uploads/2013/01/list_of_adverbs.pdf
https://www.mobap.edu/wp-content/uploads/2013/01/list_of_adverbs.pdf
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operators, with up to 1570 operators (i.e., 3 articles + 527 adjectives + 255 adverbs, each
word has up to two character-level mutations).

The word-level mutation operators were applied by replacing certain words with
empty strings, µw(ω, ωi, ""). Following the setup of the character-level mutation operators,
the ωi used in µw was also selected from the three types of words—articles, adjectives, and
adverbs. The same word lists were used to build the word-level operators.

5. Results and Analysis
5.1. Evaluating Robustness with µAttacking

Seven binary classification tasks were used to evaluate the robustness of the pretrained
neural text detector, RoBERTa-Base, on our test set, namely human text vs. neural text
and human text vs. neural text w/ different mutations. We combined the two character-
level mutation groups (i.e., µc(ωi, a, α) and µc(ωi, e, ε)) in reporting the performance and
reducing the total sets of mutations to six, namely, (1) word-level mutation of articles,
(2) word-level mutation of adjectives, (3) word-level mutation of adverbs, (4) character-
level mutation of articles, (5) character-level mutation of adjectives, (6) and character-level
mutation of adverbs. Note that the number of mutation operators was not changed.

We tested the RoBERTa-Base model using the original test set and the test set with six
sets of mutations applied to the neural text. Ideally, the performance on the mutated text
should be similar to those without mutations if a model is robust enough. Table 1 exhibits
the detailed performance for the test cases. We evaluated the performance using the area
under the receiver operating characteristic curve (denoted as AUC) and accuracy (denoted
as ACC). The performance of AUC is also summarized in Figure 3a, and the performance
of ACC compared with other models is shown in Figure 3b.

In the table and figure, we used H to indicate human-written text, M to indicate neural
text (i.e., machine-generated text), and the subscripts to indicate the type of mutation
operators. The first letter in the subscript, i.e., m, indicates that the result is for mutation; the
second letter in the subscript indicates the level of the mutation operator, either word-level
(denoted as w) or character-level (denoted as c); and the third letter in the subscript indicates
the types of words that the mutation operator is applied on, such as r for articles, j for
adjectives, and d for adverbs. For instance, H vs. M means Human-Written Text vs. Neural
Text, H vs. Mmwr means human-written text vs. neural text mutations with the word-Level
mutation operators of articles (i.e., the world-level mutation operators were applied to
the articles), and H vs. Mmcd means human-written text vs. neural text mutations w/the
character-level mutation operators of adjectives.

The results revealed that the RoBERTa-Base model is not robust enough to handle the
mutated text. For instance, when applying the model on the original test set (i.e., for H
vs. M), the model achieves a 0.6381 AUC and 58.92% accuracy. However, the performance
reduced significantly when applying the model on the test set with mutated neural text
(i.e., the last six columns in Table 1), with the lowest AUC of 0.0676 and ACC of 33.38%.

The results also illustrated that the RoBERTa-Base model is extremely vulnerable to
mutation operators for removing words that lead us to analyze our dataset statistically. We
found that human-written text is ≈100 times more likely to be missing articles (i.e., a, an,
the) than neural text. Our analysis shows that approximately ≈4% of human-written text
does not have a single article in the sentence. However, the same number for neural text is
only 0.04%, which is only 99% less than human-written text.

Table 1. Detailed performance of RoBERTa-Base in different classification cases.

Metric H vs. M H vs. Mmwr H vs. Mmwj H vs. Mmwd H vs. Mmcr H vs. Mmcj H vs. Mmcd

AUC 0.6381 0.2488 0.3695 0.2591 0.0676 0.0676 0.0714
ACC 0.5892 0.3504 0.4460 0.3892 0.3338 0.4213 0.3686
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(a) (b)

Figure 3. (a) The area under the receiver operating characteristic curve for RoBERTa-Base different
classification cases for in-distribution data. (b) The accuracy of RoBERTa-Base, RoBERTa-Finetune,
and RoBERTa-RR in different cases. The absolute accuracy values of each bar are reported in
Tables 1 and 2.

5.2. Improving Robustness Using RR-Training

Inspired by the model evaluation result of using µAttacking in Section 5.1, we pro-
posed RR-training to improve the neural text detector robustness. We conducted several
experiments to evaluate and demonstrate the effectiveness of this training method. First,
we compared the finetuning model performance produced with and without RR-training–
RoBERTa-Finetune and RoBERTa-RR, respectively (Section 5.2.1). Then, we applied the
pretrained RR-training model on out-of-distribution data (Section 5.2.2). After that, we
compared RR-training with dropout (Section 5.2.3). Finally, we evaluated the effective
percentage of words removed from the text (Section 5.2.4).

5.2.1. In-Distribution Data

To show the advantage of the RR-training, we first finetuned two models from
RoBERTa-Base using our training set. The two models were RoBERTa-Finetune and
RoBERTa-RR, finetuned with and without RR-training, respectively. Then, the same binary
classification tasks, introduced in Section 5.1, were evaluated on our test set in this section.
Table 2 shows the detailed performance of the RoBERTa-Finetune and RoBERTa-RR over
the seven binary classification tasks. The best performance amount the two models are
highlight in bold text. The performance is also summarized in Figures 3b and 4. The results
reveal that RoBERTa-Finetune and RoBERTa-RR are significantly better than RoBERTa-Base.
The RoBERTa-RR performs substantially better on 11 out of 14 evaluation results, with up
to an 11.33% improvement on AUC and up to a 12.05% improvement on ACC.

Table 2. Detailed performance of RoBERTa-Finetune and RoBERTa-RR in different classification cases.

Metric Model H vs. M H vs. Mmwr H vs. Mmwj H vs. Mmwd H vs. Mmcr H vs. Mmcj H vs. Mmcd

AUC Finetune 0.7227 0.7855 0.8216 0.8140 0.6788 0.6788 0.6363
RR 0.7168 0.8124 0.8476 0.8395 0.7557 0.7557 0.6842

ACC Finetune 0.6794 0.7295 0.7436 0.7384 0.6283 0.6646 0.5818
RR 0.6625 0.7609 0.7714 0.7678 0.7046 0.6135 0.6465
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(a) RoBERTa-Finetune (b) RoBERTa-RR

Figure 4. The area under the receiver operating characteristic curve for RoBERTa-Finetune and
RoBERTa-RR in different classification cases for in-distribution data.

Although the RoBERTa-Finetune worked better on the original test set (i.e., without
mutations), the RoBERTa-RR shows its strength in mutation cases. With RR-training, the
model performance on separating human-written text and neural text with word-level
mutations is improved by an average of 10.12% on AUC and 4.80% on ACC. The model
also significantly improves the classification performance of character-level mutations with
an average of 3.24% on AUC and a 4.01% on ACC. In general, RoBERTa-RR is 6.43% and
4.37% better than RoBERTa-Finetune on AUC and ACC, respectively. This experiment
shows that RR-training can improve the model robustness effectively.

5.2.2. Out-of-Distribution Data

To further evaluate the robustness of the proposed RR-training strategy and the model
transferability, we also conducted an experiment that assessed the pretrained RoBERTa-RR
on an out-of-distribution (OOD) dataset. The OOD dataset was generated using [78] by
passing the images of our testing set to the neural text generation model.

Figure 5 shows the AUC of RoBERTa-RR on the seven binary classification tasks, demon-
strating that the RoBERTa-RR model produces similar performance to the in-distribution data
with an average of 6% degrade on character-level mutations and 10.45% degraded word-level
mutations. We believe this is an acceptable performance since the two datasets significantly
differ from each other. We only present the evaluation result on AUC in this section because
the accuracy also shows the same trend.

5.2.3. Comparing with Dropout

Since RR-training may be considered as the input-level dropout, we also compared RR-
training with dropout. Figure 6a shows the RoBERTa-Base with a dropout layer randomly
dropping 30% neurons during the training. Figure 6b shows the AUC curves of the
RoBERTa-RR model with m = 0.3 (i.e., random removal of up to 30% of words in the
sentence). The figures indicate that with the same spontaneous removal rate, the proposed
RR-training generates substantially better than dropout. Figure 6c shows that when adding
the same dropout layer (with 30% of random dropping) to the same RoBERTa-RR (m = 0.3),
the model performance is reduced significantly. We believe this is caused by the piling
up of randomness. Adding 30% neuron dropping and 30% input-level dropping might
roughly translate to up to 90% random dropping, which introduces too much uncertainty
during the training.
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Figure 5. The area under the receiver operating characteristic curve for RoBERTa-RR on out-of-
distribution data.

5.2.4. Effective of Random Removing Ratio

A hyperparameter m (i.e., the random removal ratio) needs to be selected to use the
proposed RR-training. This section shows the effect of different m values. We trained eight
different RoBERTa-RR models with m = {0.1, 0.2, 0.3, . . . 0.7, 0.8} using our training set.
We then tested each model using our testing set. Figure 7 illustrates the AUC curves of
different m values.

The figure shows that RR-training is not very sensitive to the m value, especially
when m is small (i.e., m ≤ 0.4). With a larger m, more uncertainty will be introduced to
the model during training. The model performance will be degraded if m is large, e.g.,
m ≥ 0.5. However, when m is too small, RR-training might not be able to introduce
enough uncertainty during the training, which also leads to non-optimal performance
(e.g., m = 0.1). Similar to many other hyperparameters used for neural networks, such
as learning rate and dropout ratio for dropout, a sweet spot needs to be found to obtain
optimal performance. In general, we suggest using a m value between 0.2 and 0.4. In this
study, we set m = 0.3.

(a) RoBERTa-Base with dropout (b) RoBERTa-RR without dropout (c) RoBERTa-RR with dropout

Figure 6. The area under the receiver operating characteristic curve for RoBERTa-Base, RoBERTa-RR
without random dropout and RoBERTa-RR with 30% random dropout (i.e., dropout = 0.3).
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(a) m = 0.1 (b) m = 0.2 (c) m = 0.3 (d) m = 0.4

(e) m = 0.5 (f) m = 0.6 (g) m = 0.7 (h) m = 0.8

Figure 7. Effect of random removal ratio (i.e., m) for RR-training.

6. Discussion, Conclusions, and Future Directions

Due to the progress of advanced neural network techniques, language models may
produce human-like text that benefits society from various aspects. However, there is also a
risk that such advanced intelligent techniques may be used by malicious actors for nefarious
activities, such as information operations on a large scale, from spreading misinformation
to targeting specific groups for political agenda. A robust detector that can separate neural
text from human-written text is the first step to defending against such newly emerged
AI-powered cyber threats. Unfortunately, how researchers may systematically evaluate
the robustness of a neural text detector is still being determined in the literature. Thus,
we propose the µAttacking, a mutation-based framework that evaluates the robustness
of neural text detectors through adversarial attacking. With µAttacking, researchers can
generate textual test cases in a well-controlled and close-ended environment. The precise
test cases provide a systematic evaluation of the robustness of language analysis models.

In this study, we used µAttacking to evaluate the state-of-the-art RoBERTa-based
detector for separating human-written text from machine-generated text. The results
show that the detector has significant flaws. The insightful evaluation results lead us to
a statistical analysis and finds that human-written text is 100 times more likely to miss
articles in sentences than neural text. Based on this finding, we proposed RR-training to
significantly improve the model robustness. However, we also believe that the robustness
issue of neural text detectors should be better addressed at the feature level.

Tokenization or word embedding is the essential step that feeds natural language text
to a neural network model. The input-level changes generated by the mutation operators
of µAttacking cause changes in the tokenization stage, leading the word to have a different
embedding vector. In addition, the contextual embedding characteristics of RoBERTa may
make this vector change more dramatic since contextual embedding generates different
embeddings of the same word based on the context. Thus, when feeding the adversarial
samples into the RoBERTa-based detector, contextual embedding layers also produce
different embeddings of the non-changed words. In this case, the distance between the
original and adversarial samples may increase even more in the feature spaces. Thus, one
future direction of this work is reducing the feature space differences between the original
and adversarial samples. Some potentially useful methods might include using contrastive
learning and siamese network [79,80] and dynamic feature alignment [81,82].
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In conclusion, we proposed the µAttacking, a mutation-based evaluation framework
that produces close-ended, precise textual test cases for evaluating language-analysis
models that take text sequences as input. We demonstrated the framework for evaluating
the neural text detector. The results showed that the detector is extremely vulnerable
to simple adversarial attacks, and they lead to an insightful analysis of the flaws, which
inspired us to propose RR-training for improving the robustness of the language-analysis
model. The proposed method is a general-purpose method that is not limited to any specific
application domain. The µAttacking can be used in evaluating the robustness of any
downstream applications that take text sequences as input, such as ChatBot detection [58],
SQL injection detection [83], and software debugging [84]. In addition, researchers may
also design their mutation operators that better fit their specific tasks under our framework,
making the proposed method more flexible and applicable to various models. We believe
that the proposed µAttacking and RR-training will be useful for those seeking systematic
and insightful analysis of language models, as well as developing robustness language
analysis models.

Author Contributions: Study design, G.L. and I.A.; data collection, G.L. and J.G.; model training,
G.L., J.G. and F.Z.; data analysis, G.L., F.Z. and I.A.; literature search, G.L., J.G. and I.A.; figures, G.L.;
writing, G.L., J.G., F.Z. and I.A. All authors reviewed the manuscript and contributed to revisions.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Training data is available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
2. Zhang, Y.; Liang, G.; Salem, T.; Jacobs, N. Defense-pointnet: Protecting pointnet against adversarial attacks. In Proceedings of the

IEEE International Conference on Big Data, Los Angeles, CA, USA, 9–12 December 2019; pp. 5654–5660.
3. Xing, X.; Liang, G.; Blanton, H.; Rafique, M.U.; Wang, C.; Lin, A.L.; Jacobs, N. Dynamic image for 3d mri image alzheimer’s

disease classification. In Proceedings of the European Conference on Computer Vision Workshops, Glasgow, UK, 23–28 August
2020; Part I; pp. 355–364.

4. Su, Y.; Zhang, Y.; Liang, G.; ZuHone, J.A.; Barnes, D.J.; Jacobs, N.B.; Ntampaka, M.; Forman, W.R.; Nulsen, P.E.J.; Kraft, R.P.; et al.
A deep learning view of the census of galaxy clusters in illustristng. Mon. Not. R. Astron. Soc. 2020, 498, 5620–5628. [CrossRef]

5. Ying, Q.; Xing, X.; Liu, L.; Lin, A.L.; Jacobs, N.; Liang, G. Multi-modal data analysis for alzheimer’s disease diagnosis: An
ensemble model using imagery and genetic features. In Proceedings of the 43rd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society, Mexico City, Mexico, 1–5 November 2021; pp. 3586–3591.

6. Liu, L.; Chang, J.; Wang, Y.; Liang, G.; Wang, Y.P.; Zhang, H. Decomposition-based correlation learning for multi-modal mri-based
classification of neuropsychiatric disorders. Front. Neurosci. 2022, 16, 832276. [CrossRef] [PubMed]

7. Liang, G.; Xing, X.; Liu, L.; Zhang, Y.; Ying, Q.; Lin, A.L.; Jacobs, N. Alzheimer’s disease classification using 2d convolutional
neural networks. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine &
Biology Society, Mexico City, Mexico, 1–5 November 2021; pp. 3008–3012.

8. Lin, S.C.; Su, Y.; Liang, G.; Zhang, Y.; Jacobs, N.; Zhang, Y. Estimating cluster masses from SDSS multiband images with transfer
learning. Mon. Not. R. Astron. Soc. 2022, 512, 3885–3894. [CrossRef]

9. Li, K.; Zheng, F.; Wu, P.; Wang, Q.; Liang, G.; Jiang, L. Improving Pneumonia Classification and Lesion Detection Using Spatial
Attention Superposition and Multilayer Feature Fusion. Electronics 2022, 11, 3102. [CrossRef]

10. Xing, X.; Rafique, M.U.; Liang, G.; Blanton, H.; Zhang, Y.; Wang, C.; Jacobs, N.; Lin, A.L. Efficient Training on Alzheimer’s Disease
Diagnosis with Learnable Weighted Pooling for 3D PET Brain Image Classification. Electronics 2023, 12, 467. [CrossRef]

11. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

12. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

13. Workman, S.; Rafique, M.U.; Blanton, H.; Jacobs, N. Revisiting Near/Remote Sensing with Geospatial Attention. In Proceedings
of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022.

14. Mihail, R.P.; Liang, G.; Jacobs, N. Automatic hand skeletal shape estimation from radiographs. IEEE Trans. Nanobiosci. 2019,
18, 296–305. [CrossRef]

http://doi.org/10.1145/3065386
http://dx.doi.org/10.1093/mnras/staa2690
http://dx.doi.org/10.3389/fnins.2022.832276
http://www.ncbi.nlm.nih.gov/pubmed/35692429
http://dx.doi.org/10.1093/mnras/stac725
http://dx.doi.org/10.3390/electronics11193102
http://dx.doi.org/10.3390/electronics12020467
http://dx.doi.org/10.1109/TNB.2019.2911026


Electronics 2023, 12, 1948 15 of 17

15. Liang, G.; Fouladvand, S.; Zhang, J.; Brooks, M.A.; Jacobs, N.; Chen, J. Ganai: Standardizing ct images using generative
adversarial network with alternative improvement. In Proceedings of the 2019 IEEE International Conference on Healthcare
Informatics, Xi’an, China, 10–13 June 2019; pp. 1–11.

16. Liu, L.; Zhang, P.; Liang, G.; Xiong, S.; Wang, J.; Zheng, G. A spatiotemporal correlation deep learning network for brain
penumbra disease. Neurocomputing 2023, 520, 274–283. [CrossRef]

17. Liu, L.; Chang, J.; Wang, Y.; Zhang, P.; Liang, G.; Zhang, H. Llrhnet: Multiple lesions segmentation using local-long rang features.
Front. Neuroinform. 2022, 16, 859973. [CrossRef]

18. Ajami, S. Use of speech-to-text technology for documentation by healthcare providers. Natl. Med. J. India 2016, 29, 148. [PubMed]
19. Wang, C.; Tang, Y.; Ma, X.; Wu, A.; Okhonko, D.; Pino, J. Fairseq S2T: Fast Speech-to-Text Modeling with Fairseq. In Proceedings

of the AACL Association for Computational Linguistics, Suzhou, China, 4–7 December 2020; pp. 33–39.
20. Li, Q. Machine Translation of English Language Using the Complexity-Reduced Transformer Model. Mob. Inf. Syst. 2022, 2022,

6603576. [CrossRef]
21. Khan, N.S.; Abid, A.; Abid, K. A novel natural language processing (NLP)–based machine translation model for English to

Pakistan sign language translation. Cogn. Comput. 2020, 12, 748–765. [CrossRef]
22. Kaczorowska-Spychalska, D. Chatbots in marketing. Management 2019, 23, 251–270. [CrossRef]
23. Cheng, Y.; Jiang, H. Customer–brand relationship in the era of artificial intelligence: Understanding the role of chatbot marketing

efforts. J. Prod. Brand Manag. 2022, 31, 252–264. [CrossRef]
24. Huang, K.H.; McKeown, K.; Nakov, P.; Choi, Y.; Ji, H. Faking Fake News for Real Fake News Detection: Propaganda-loaded

Training Data Generation. arXiv 2022, arXiv:2203.05386.
25. Rezaei, S.; Kahani, M.; Behkamal, B. The process of multi-class fake news dataset generation. In Proceedings of the International

Conference on Computer Engineering and Knowledge, Mashhad, Iran, 28–29 October 2021; pp. 134–139.
26. Stiff, H.; Johansson, F. Detecting computer-generated disinformation. Int. J. Data Sci. Anal. 2022, 13, 363–383. [CrossRef]
27. Alsmadi, I.; Ahmad, K.; Nazzal, M.; Alam, F.; Al-Fuqaha, A.; Khreishah, A.; Algosaibi, A. Adversarial attacks and defenses for

social network text processing applications: Techniques, challenges and future research directions. arXiv 2021, arXiv:2110.13980.
28. NBCNews. Americans Are Wary of AI Tech like ChatGPT, Data Shows. Available online: https://www.nbcnews.com/meet-the-

press/data-download/chatgpt-ai-tech-leaves-americans-concerned-excited-rcna71369/ (accessed on 19 February 2023).
29. DailyMail. Rogue Artificial Intelligence Chatbot Declares Love for User, Tells Him to Leave His Wife and Says It Wants to Steal

Nuclear Codes. Available online: https://www.dailymail.co.uk/news/article-11761271/Rogue-artificial-intelligence-chatbot-
declares-love-user-tells-leave-wife.html (accessed on 16 February 2023).

30. OpenAI.com. ChatGPT: Optimizing Language Models for Dialogue. Available online: https://openai.com/blog/chatgpt/
(accessed on 17 December 2022).

31. OpenAI. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774.
32. Google.com. An Important Next Step on Our AI Journey. Available online: https://blog.google/technology/ai/bard-google-ai-

search-updates/ (accessed on 24 February 2023).
33. Pu, J.; Sarwar, Z.; Abdullah, S.M.; Rehman, A.; Kim, Y.; Bhattacharya, P.; Javed, M.; Viswanath, B. Deepfake Text Detection:

Limitations and Opportunities. In Proceedings of the IEEE Symposium on Security and Privacy, Los Alamitos, CA, USA, 22–24
May 2023; pp. 19–36.

34. Wolff, M.; Wolff, S. Attacking neural text detectors. arXiv 2020, arXiv:2002.11768.
35. Madeyski, L.; Orzeszyna, W.; Torkar, R.; Jozala, M. Overcoming the equivalent mutant problem: A systematic literature review

and a comparative experiment of second order mutation. IEEE Trans. Soft. Eng. 2013, 40, 23–42. [CrossRef]
36. Misra, S. Evaluating four white-box test coverage methodologies. In Proceedings of the Canadian Conference on Electrical

and Computer Engineering: Toward a Caring and Humane Technology, Montreal, QC, Canada, 4–7 May 2003; Volume 3,
pp. 1739–1742.

37. DeMillo, R.A.; Lipton, R.J.; Sayward, F.G. Hints on test data selection: Help for the practicing programmer. Computer 1978,
11, 34–41. [CrossRef]

38. Huang, L.; Joseph, A.D.; Nelson, B.; Rubinstein, B.I.; Tygar, J.D. Adversarial machine learning. In Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence, Chicago, IL, USA, 21 October 2011; pp. 43–58.

39. Niedermayr, R.; Juergens, E.; Wagner, S. Will my tests tell me if i break this code? In Proceedings of the International Workshop
on Continuous Software Evolution and Delivery, Austin, TX, USA, 14–15 May 2016; pp. 23–29.

40. Jia, Y.; Harman, M. An analysis and survey of the development of mutation testing. IEEE Trans. Soft. Eng. 2010, 37, 649–678.
[CrossRef]

41. Solaiman, I.; Brundage, M.; Clark, J.; Askell, A.; Herbert-Voss, A.; Wu, J.; Radford, A.; Wang, J. Release strategies and the social
impacts of language models. arXiv 2019, arXiv:1908.09203.

42. Mann, W.C. An overview of the Penman text generation system. In Proceedings of the AAAI, Washington, DC, USA, 22–26
August 1983; pp. 261–265.

43. Jelinek, F. Markov source modeling of text generation. In The Impact of Processing Techniques on Communications; Springer:
Berlin/Heidelberg, Germany, 1985; pp. 569–591.

44. Guo, J.; Lu, S.; Cai, H.; Zhang, W.; Yu, Y.; Wang, J. Long text generation via adversarial training with leaked information. In
Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

http://dx.doi.org/10.1016/j.neucom.2022.11.041
http://dx.doi.org/10.3389/fninf.2022.859973
http://www.ncbi.nlm.nih.gov/pubmed/27808064
http://dx.doi.org/10.1155/2022/6603576
http://dx.doi.org/10.1007/s12559-020-09731-7
http://dx.doi.org/10.2478/manment-2019-0015
http://dx.doi.org/10.1108/JPBM-05-2020-2907
http://dx.doi.org/10.1007/s41060-021-00299-5
https://www.nbcnews.com/meet-the-press/data-download/chatgpt-ai-tech-leaves-americans-concerned-excited-rcna71369/
https://www.nbcnews.com/meet-the-press/data-download/chatgpt-ai-tech-leaves-americans-concerned-excited-rcna71369/
https://www.dailymail.co.uk/news/article-11761271/Rogue-artificial-intelligence-chatbot-declares-love-user-tells-leave-wife.html
https://www.dailymail.co.uk/news/article-11761271/Rogue-artificial-intelligence-chatbot-declares-love-user-tells-leave-wife.html
https://openai.com/blog/chatgpt/
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://blog.google/technology/ai/bard-google-ai-search-updates/
http://dx.doi.org/10.1109/TSE.2013.44
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/TSE.2010.62


Electronics 2023, 12, 1948 16 of 17

45. Zhu, Y.; Lu, S.; Zheng, L.; Guo, J.; Zhang, W.; Wang, J.; Yu, Y. Texygen: A benchmarking platform for text generation models. In
Proceedings of the 41st International ACM Conference on Research & Development in Information Retrieval, Ann Arbor, MI,
USA, 8–12 July 2018; pp. 1097–1100.

46. Yu, W.; Zhu, C.; Li, Z.; Hu, Z.; Wang, Q.; Ji, H.; Jiang, M. A survey of knowledge-enhanced text generation. ACM Comput. Surv.
(CSUR) 2022, 54, 227. [CrossRef]

47. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training.
Available online. https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_
understanding_paper.pdf (accessed on 16 February 2023).

48. Yu, W.; Zhu, C.; Li, Z.; Hu, Z.; Wang, Q.; Ji, H.; Jiang, M. Language models are few-shot learners. Adv. Neural Inf. Process. Syst.
2020, 33, 1877–1901.

49. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly
optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.

50. Rasmy, L.; Xiang, Y.; Xie, Z.; Tao, C.; Zhi, D. Med-BERT: Pretrained contextualized embeddings on large-scale structured electronic
health records for disease prediction. NPJ Dig. Med. 2020, 4, 86. [CrossRef]

51. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 July 2015; pp. 3156–3164.

52. El-Kassas, W.S.; Salama, C.R.; Rafea, A.A.; Mohamed, H.K. Automatic text summarization: A comprehensive survey. Expert Syst.
Appl. 2021, 165, 113679. [CrossRef]

53. Vaswani, A.; Bengio, S.; Brevdo, E.; Chollet, F.; Gomez, A.N.; Gouws, S.; Jones, L.; Kaiser, Ł.; Kalchbrenner, N.; Parmar, N.
Tensor2tensor for neural machine translation. arXiv 2018, arXiv:1803.07416.

54. Zhu, Y.; Song, R.; Dou, Z.; Nie, J.Y.; Zhou, J. Scriptwriter: Narrative-guided script generation. arXiv 2020, arXiv:2005.10331.
55. Yi, X.; Li, R.; Sun, M. Generating chinese classical poems with rnn encoder-decoder. In Chinese Computational Linguistics and

Natural Language Processing Based on Naturally Annotated Big Data; Springer: Berlin/Heidelberg, Germany, 2017; pp. 211–223.
56. Gehrmann, S.; Strobelt, H.; Rush, A.M. Gltr: Statistical detection and visualization of generated text. arXiv 2019, arXiv:1906.04043.
57. Adelani, D.I.; Mai, H.; Fang, F.; Nguyen, H.H.; Yamagishi, J.; Echizen, I. Generating sentiment-preserving fake online reviews

using neural language models and their human-and machine-based detection. In Proceedings of the International Conference on
Advanced Information Networking and Applications, Caserta, Italy, 15–17 April 2020; pp. 1341–1354.

58. Bhatt, P.; Rios, A. Detecting Bot-Generated Text by Characterizing Linguistic Accommodation in Human-Bot Interactions.
In Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Online, 1–6 August 2021;
pp. 3235–3247.

59. Cauteruccio, F.; Terracina, G.; Ursino, D. Generalizing identity-based string comparison metrics: Framework and techniques.
Knowl. Based Syst. 2020, 187, 104820. [CrossRef]

60. Lowd, D.; Meek, C. Adversarial learning. In Proceedings of the Eleventh ACM International Conference on Knowledge Discovery
in Data Mining, Chicago, IL, USA, 21–24 August 2005; pp. 641–647.

61. Qiu, S.; Liu, Q.; Zhou, S.; Wu, C. Review of artificial intelligence adversarial attack and defense technologies. Appl. Sci. 2019,
9, 909. [CrossRef]

62. Zhang, Y.; Song, Y.; Liang, J.; Bai, K.; Yang, Q. Two sides of the same coin: White-box and black-box attacks for transfer learning.
In Proceedings of the 26th ACM International Conference on Knowledge Discovery & Data Mining, Online, 6–10 July 2020;
pp. 2989–2997.

63. Athalye, A.; Carlini, N.; Wagner, D. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial
examples. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 274–283.

64. Bhagoji, A.N.; He, W.; Li, B.; Song, D. Practical black-box attacks on deep neural networks using efficient query mechanisms.
In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 154–169.

65. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial machine learning at scale. arXiv 2016, arXiv:1611.01236.
66. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. Commun. ACM 2020, 63, 139–144. [CrossRef]
67. Jawahar, G.; Abdul-Mageed, M.; Lakshmanan, L.V. Automatic detection of machine generated text: A critical survey. arXiv 2020,

arXiv:2011.01314.
68. Wang, X.; Liang, G.; Zhang, Y.; Blanton, H.; Bessinger, Z.; Jacobs, N. Inconsistent performance of deep learning models on

mammogram classification. J. Am. Coll. Radiol. 2020, 17, 796–803. [CrossRef]
69. Pereyra, G.; Tucker, G.; Chorowski, J.; Kaiser, Ł.; Hinton, G. Regularizing neural networks by penalizing confident output

distributions. arXiv 2017, arXiv:1701.06548.
70. Müller, R.; Kornblith, S.; Hinton, G.E. When does label smoothing help? In Proceedings of the Advances in Neural Information

Processing Systems, Vancouver, BC, Canada, 4–14 September 2019; Volume 32.
71. Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. Cutmix: Regularization strategy to train strong classifiers with localizable

features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2
November 2019; pp. 6023–6032.

72. Liang, G.; Zhang, Y.; Wang, X.; Jacobs, N. Improved Trainable Calibration Method for Neural Networks on Medical Imaging
Classification. In Proceedings of the British Machine Vision Conference, Online, 7–10 September 2020.

http://dx.doi.org/10.1145/3512467
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
http://dx.doi.org/10.1038/s41746-021-00455-y
http://dx.doi.org/10.1016/j.eswa.2020.113679
http://dx.doi.org/10.1016/j.knosys.2019.06.028
http://dx.doi.org/10.3390/app9050909
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1016/j.jacr.2020.01.006


Electronics 2023, 12, 1948 17 of 17

73. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

74. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

75. Shrimal, A.; Chakraborty, T. Attention beam: An image captioning approach. arXiv 2020, arXiv:2011.01753.
76. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. HuggingFace’s

Transformers: State-of-the-art natural language processing. arXiv 2019, arXiv:1910.03771.
77. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
78. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: Lessons learned from the 2015 mscoco image captioning challenge.

IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 652–663. [CrossRef] [PubMed]
79. Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML

Deep Learning Workshop, Lille, France, 6–1 July 2015; Volume 2.
80. Liang, G.; Greenwell, C.; Zhang, Y.; Xing, X.; Wang, X.; Kavuluru, R.; Jacobs, N. Contrastive cross-modal pre-training: A general

strategy for small sample medical imaging. IEEE J. Biomed. Health Inform. 2021, 26, 1640–1649. [CrossRef] [PubMed]
81. Zhang, Y.; Liang, G.; Jacobs, N. Dynamic feature alignment for semi-supervised domain adaptation. In Proceedings of the

British Machine Vision Conference, London, UK, 21–24 November 2022.
82. Dong, J.; Cong, Y.; Sun, G.; Xu, X. Cscl: Critical semantic-consistent learning for unsupervised domain adaptation. In Proceedings

of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 745–762.
83. Hlaing, Z.C.S.S.; Khaing, M. A detection and prevention technique on sql injection attacks. In Proceedings of the IEEE Conference

on Computer Applications, Yangon, Myanmar, 27– 28 February 2020; pp. 1–6.
84. Zhao, Y.; Su, T.; Liu, Y.; Zheng, W.; Wu, X.; Kavuluru, R.; Halfond, W.G.; Yu, T. ReCDroid+: Automated End-to-End Crash

Reproduction from Bug Reports for Android Apps. ACM Trans. Soft. Eng. Methodol. 2022, 31, 1–33. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPAMI.2016.2587640
http://www.ncbi.nlm.nih.gov/pubmed/28055847
http://dx.doi.org/10.1109/JBHI.2021.3110805
http://www.ncbi.nlm.nih.gov/pubmed/34495856
http://dx.doi.org/10.1145/3488244

	Enhancing Neural Text Detector Robustness with μAttacking and RR-Training
	Introduction
	Technical Background
	Automatic Text Generation
	Neural Text Detection
	Mutation Analysis
	Adversarial Attacks

	Method
	Attacking
	General Mutation Operator Framework
	Attacks on Neural Text Detectors

	Random-Removing Training Strategy

	Dataset and Experiment Setup
	Data Preparation and Neural Text Acquiring
	Models and Training Setup
	Mutation Operators and Adversarial Attacks

	Results and Analysis
	Evaluating Robustness with Attacking
	Improving Robustness Using RR-Training
	In-Distribution Data
	Out-of-Distribution Data
	Comparing with Dropout
	Effective of Random Removing Ratio


	Discussion, Conclusions, and Future Directions
	References

