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Abstract

Quantile-quantile (Q-Q) plots are often difficult to interpret because it is unclear
how large the deviation from the theoretical distribution must be to indicate a lack of
fit. Most Q-Q plots could benefit from the addition of meaningful global testing bands,
but the use of such bands unfortunately remains rare because of the drawbacks of current
approaches and packages. These drawbacks include incorrect global type-I error rate, lack
of power to detect deviations in the tails of the distribution, relatively slow computation
for large data sets, and limited applicability. To solve these problems, we apply the
equal local levels global testing method, which we have implemented in the R Package
qqconf, a versatile tool to create Q-Q plots and probability-probability (P-P) plots in a
wide variety of settings, with simultaneous testing bands rapidly created using recently-
developed algorithms. qqconf can easily be used to add global testing bands to Q-Q plots
made by other packages. In addition to being quick to compute, these bands have a variety
of desirable properties, including accurate global levels, equal sensitivity to deviations in
all parts of the null distribution (including the tails), and applicability to a range of null
distributions. We illustrate the use of qqconf in several applications: assessing normality
of residuals from regression, assessing accuracy of p values, and use of Q-Q plots in
genome-wide association studies.

Keywords: Q-Q plots, equal local levels, Kolmogorov-Smirnov, GWAS, multiple testing, global
testing, simultaneous region.

1. Introduction

Quantile-quantile (Q-Q) plots (Wilk and Gnanadesikan 1968) are a common statistical tool
used for judging whether a sample comes from a specified distribution, and, perhaps most
usefully, for visualizing the particular ways in which the sample might seem to deviate from
that distribution. Despite their ubiquity, they are often difficult to interpret because it is

https://doi.org/10.18637/jss.v106.i10
https://orcid.org/0009-0007-7344-834X
https://orcid.org/0000-0002-1718-5676


2 qqconf: Equal Local Levels Q-Q Plot Testing Bands in R

challenging to determine whether the extent of the observed deviation from the specified
distribution is sufficient to indicate a lack of fit as opposed to just being due to sampling
variability. To aid in interpretation, it is useful to put goodness-of-fit testing bands on Q-Q
plots.
A few methods have been created toward this end (reviewed by Aldor-Noiman, Brown, Buja,
Rolke, and Stine (2013)). Naively, one could use a pointwise testing band, an approach that
is equivalent to conducting a level-α test on each order statistic of the sample. However,
because of the large number of tests, the probability that at least one data point lies out-
side the band is far higher than α, so the pointwise approach does little to help with the
problem of interpretability. To appropriately deal with this multiple testing problem, the
Kolmogorov-Smirnov (KS) statistic (Kolmogorov 1941; Smirnov 1944) is sometimes used to
create a simultaneous testing band for a Q-Q plot. While this method controls type-I error,
the KS test suffers from very low power under a variety of reasonable alternatives because it
has low sensitivity to deviation in the tails of the null distribution (Aldor-Noiman et al. 2013;
Berk and Jones 1979; Mason and Schuenemeyer 1983).
To overcome this problem, one can instead apply the equal local levels (ELL) global test-
ing method to create simultaneous testing bands for Q-Q plots. The ELL global testing
method was originally introduced by Berk and Jones (1979) (their M+

n is a one-sided ELL
test statistic) and further developed by Gontscharuk and colleagues (Gontscharuk, Landwehr,
and Finner 2015; Gontscharuk, Landwehr, Finner et al. 2016; Gontscharuk and Finner 2017)
as an improvement over the higher criticism (Donoho and Jin 2015) and KS global testing
methods. To conduct the ELL global test at level α, one conducts a “local” (or pointwise)
test at level η on each order statistic of the sample and rejects the global test whenever at
least one of the local tests is rejected, where the local level η must be chosen so that the
global level of the test is the desired value α. The fact that the same local level is applied
to each order statistic means that the ELL testing band can be viewed as impartial in its
sensitivity to deviations from different parts of the null distribution, a sensible choice for use
in a generic tool such as a Q-Q plot. In the specific context of assessing normality with a Q-Q
plot, Aldor-Noiman et al. (2013) proposed to apply ELL to create two-sided testing bands
by using simulation to determine the value of η needed in each case, a method they called
“tail sensitive” (TS) because it has more sensitivity in the tails than KS. Through a series of
examples and simulations, they effectively demonstrate the superiority of ELL testing bands
over KS for detecting deviations from normality in a Q-Q plot in a variety of cases of interest.
An advantage of the simulation-based approach to computing ELL bands is that it gives a
straightforward way to incorporate the effects of parameter estimation. However, such an
approach is arguably too slow to be conveniently applied to large, modern datasets. Con-
sidering that the Q-Q plot is meant to be a handy visualization tool and not an end-goal of
analysis, it is important that the bands be virtually instantaneous to compute on a laptop or
they are unlikely to be widely used. In our ELL implementation, instead of simulation, we use
pre-computation based on fast algorithms, supplemented with asymptotic approximations for
sample sizes over 100K.
Until now, available software for putting testing bands on Q-Q plots has been limited. The
base R package stats (R Core Team 2023) provides functionality for creating a Q-Q plot to
compare a sample against the normal distribution, and with a bit more difficulty, one can
create Q-Q plots for other distributions, but it does not provide any way to put testing bands
on those plots. The package qqplotr (Almeida, Loy, and Hofmann 2018) provides a number
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of helpful additions to the base R functionality, including the ability to easily create Q-Q
plots for a variety of reference distributions, the ability to create simultaneous testing bands
using KS for a variety of reference distributions, and the ability to create simultaneous testing
bands using TS only for the normal reference distribution. However, because it is based on
simulation, the TS approach can be a bit slow, taking several minutes to produce bands for
a sample size in the tens of thousands.
Our development of the R package qqconf is motivated by two major unmet needs in obtaining
testing bands for Q-Q plots: (1) the need for ELL testing bands for non-normal distributions,
particularly the uniform distribution, and (2) the practical need for greater speed in obtaining
ELL testing bands for Q-Q plots in all cases, including normal. Regarding (1), in addition
to testing for normality, important uses of Q-Q plots include assessing accuracy of p values
(Section 3.2) and applications in genomics (Section 3.3) both of which involve assessing uni-
formity, so it would be extremely useful to have ELL simultaneous testing bands for Q-Q
plots for the uniform case in particular, as well as for other non-normal distributions in gen-
eral. Regarding (2), in light of the demonstrated superiority of ELL over other approaches
for creating testing bands for Q-Q plots, one of our major software goals is to make creation
of ELL testing bands (at least for α = 0.05 or 0.01) so fast that this approach can confidently
be used as the default for all Q-Q plots, without concern for taxing the casual user’s patience
or processing resources.
In what follows, we introduce the R package qqconf (Weine, McPeek, and Mark 2023), avail-
able from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=qqconf, for making Q-Q and probability-probability (P-P) plots. The get_qq_band
function in qqconf can quickly provide ELL testing bands for comparing even very large sam-
ples to any reference distribution with a quantile function (e.g., qnorm, qchisq) implemented.
In addition to these testing bands, which can be output for use with other plotting packages,
qqconf provides a variety of plotting functionalities that allow the user to easily visualize
where any deviation of the sample from the null distribution may occur. In Section 2, we
introduce the methods required for computation of ELL testing bands for Q-Q plots. In
Section 3, we demonstrate the functionality of qqconf in applications including assessing nor-
mality of residuals from regression (Section 3.1), assessing accuracy of p values (Section 3.2),
and use of Q-Q plots in genome-wide association studies (Section 3.3).

2. Methods

2.1. Local levels for global hypothesis testing

Our ELL method for creating appropriate simultaneous testing bands for Q-Q plots can be
viewed as an application of the following more general testing framework. Suppose we have
real-valued observations

X1, . . . , Xn
iid∼ F,

with order statistics X(1) ≤ X(2) ≤ . . . ≤ X(n), and we are interested in conducting the
following hypothesis test at level α:

H0 : F = F0 vs. HA : F ̸= F0,

https://CRAN.R-project.org/package=qqconf
https://CRAN.R-project.org/package=qqconf
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where we refer to H0 as the “global null hypothesis” and α as the “global level”, and where F0
is a known continuous distribution on R1 (or on some finite or infinite sub-interval of R1 such
as (-1,1) or (0,∞)). For simplicity, we start by assuming that all parameters of F0 are known
(we relax this assumption later). One approach to this hypothesis testing problem, referred to
as “local levels” (Gontscharuk et al. 2016), is to conduct n separate (“local”) hypothesis tests,
one on each of the order statistics X(1), . . . , X(n), where the test on the ith order statistic has
level ηi (the ith local level). Then, one rejects the global null hypothesis if at least one of the
n local tests results in a rejection. That is, we construct a set of intervals

(h1, g1), . . . , (hn, gn),

where hi < gi for 1 ≤ i ≤ n, and under the null hypothesis, P(X(i) /∈ (hi, gi)) = ηi, and we
reject H0 if

X(i) ̸∈ (hi, gi) for at least one value of i such that 1 ≤ i ≤ n. (1)

In this general setting, the level α of the global test is determined by the vectors of lower and
upper interval endpoints, (h1, . . . , hn) and (g1, . . . , gn) and the null cdf F0.

2.2. Two-sided ELL

For the Q-Q plot application, we want to create level-α testing bands that are “agnostic” to
any alternative distribution. By this, we mean that we would like to design a local levels test
such that, firstly, the global test applies equal scrutiny to each order statistic, i.e., we set the
local levels to be equal:

η1 = η2 = · · · = ηn = η, (2)

and, secondly, the local tests give equal weight to deviations of F from F0 in either direction,
i.e., we choose

hi = F −1
0i (η/2) and gi = F −1

0i (1− η/2), (3)

where F0i is the cdf of the ith order statistic under the null hypothesis, which is easily
obtained from F0 (see, e.g., Section 5.4 of (Casella and Berger 2002)). We refer to the global
test derived from local levels under conditions (2) and (3) as the two-sided ELL test.
The main difficulty in applying the two-sided ELL test is in determining the local level η that
will result in the desired global level α. One nice property of the two-sided ELL is that the
local level η needed to achieve global level α depends only on α and on the sample size n,
and not on F0 at all. This can be seen by noting that under the null hypothesis,

F0(X1), . . . , F0(Xn) iid∼ U(0, 1). (4)

Thus, without loss of generality, we can take the null distribution to be U(0, 1) and determine
the needed η and the interval endpoints (h1, . . . , hn) and (g1, . . . , gn) for this case. To convert
back to the original scale, all that is needed is to apply F −1

0 to each of the resulting interval
endpoints.

2.3. Calculation of the local level for two-sided ELL

Given the sample size n and the desired global level 0 < α < 1, we define ηn(α) to be the local
level η that will result in global level α for the ELL test. Note that ηn(α) is a continuous,
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monotone increasing function of α, and we denote its inverse by αn(η). Given n and α, the
basic approach to obtaining ηn(α) involves a binary search over η ∈ (0, 1), where for each
value of η, we obtain (h1, . . . , hn) and (g1, . . . , gn) via Equation 3, and then we calculate
αn(η), the probability of the event described in Equation 1, i.e., we find that probability that
(X(1), . . . , X(n)) falls outside the region (h1, g1) × · · · × (hn, gn). Then we perform a binary
search to find the η such that αn(η) = α, the desired global level.
To calculate αn(η), several recursive approaches have previously been developed (see Shorack
and Wellner (2009)), as well as a fast Fourier transform (FFT) based approach (Moscovich
and Nadler 2016). In qqconf, we apply the method of Moscovich and Nadler (2016), as imple-
mented in Moscovich (2020b), which can be used by the ELL method to obtain simultaneous
Q-Q plot testing bands at global level α for any n and α. In addition, qqconf offers a faster
approximate approach specifically for the most commonly-used global levels of α = 0.05 and
0.01. To do this we have applied our own recursive formula (Appendix A) for obtaining αn(η)
in order to generate look-up tables for ηn(α) for α = 0.05 and 0.01 with sample sizes n up to
1 million and 500K, respectively, where the tables are relatively dense for n up to 100K. If the
user inputs α = 0.05 or 0.01 with a value of n less than or equal to 100K, we either return back
the pre-computed value of η if n happens to be a grid point, or we use linear interpolation
if the value of n is between grid points, which leads to a highly accurate approximation. If
the user inputs a value of n greater than 100K with α = 0.05 or 0.01, we use the asymptotic
approximation given in Section 2.4. This allows qqconf to provide essentially instantaneous
simultaneous testing bands for the cases α = 0.05 and 0.01 for any reference distribution with
quantile function implemented, with the FFT approach (Moscovich and Nadler 2016) used
primarily for fast “on-the-fly” calculations with other choices of α.

2.4. Local level approximations in large samples

For sufficiently large values of the sample size n (or, equivalently, the number of local tests),
it can be expedient to apply an accurate asymptotic approximation of ηn(α) in place of exact
computation. Previous authors (Gontscharuk and Finner 2017) showed that an asymptotic
approximation of ηn(α) is

ηasymp = − log(1− α)
2 log(log(n)) log(n) .

However, as they note, this approximation gives poor performance for n even as large as
104 (see Figure 1 of Gontscharuk and Finner (2017)). To improve this approximation, they
propose to add a smaller order correction term, resulting in an approximation of the form

ηapprox = − log(1− α)
2 log(log(n)) log(n)

[
1− cα

log(log(log(n)))
log(log(n))

]
, (5)

where cα is chosen empirically. For the values α = 0.01, 0.05, and 0.1 they chose cα =
1.6, 1.3, and 1.1, respectively. To select these cα values, the authors calculated the values of
ηn(α) to high precision on a grid of values up to n = 10, 000.
We performed more extensive tests of these approximations for the cases α = 0.01 and 0.05.
To do this, we calculated the values of ηn(α) with high precision on a grid of values up to
n = 500, 000 for α = 0.01 and up to n = 106 for α = 0.05. Based on our evaluation, we find
that cα = 1.3 is satisfactory for α = 0.05, but that cα = 1.6 for α = 0.01 is not sufficiently
accurate for our purposes. We instead found that cα = 1.591 led to better performance for
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α = 0.01. For example, for n in the range of 15K to 500K, the absolute relative error in the
approximation based on cα = 1.6 is always more than 0.0067, while that based on cα = 1.591
is always less than 0.001.
We implement these asymptotic approximations in qqconf as part of our faster approximate
approach specifically for α = 0.01 and 0.05 with n > 100K, as described in Section 2.3. (Our
package also implements the approximation given in Equation 5 for α = 0.1 with cα = 1.1.)

2.5. One-sided ELL

In some instances, a one-sided version of ELL is of particular interest. For example, suppose
X1, . . . , Xn are p values, with Xi representing the p value of the ith hypothesis test, which has
corresponding null hypothesis H

(i)
0 , where X1, . . . , Xn are assumed to be independent, with

Xi ∼ U(0,1) if H
(i)
0 is true. Suppose we are interested in testing the global null hypothesis

H0 : all of H
(1)
0 , . . . H

(n)
0 are true against the alternative HA : at least one of H

(1)
0 , . . . H

(n)
0 is

false. Within the equal local levels framework, we would typically do this by assuming

X1, . . . , Xn
iid∼ F,

and testing the null hypothesis H0 : F (x) = x for all x ∈ (0, 1) vs. the one-sided alternative
HA : F (x) > x for at least one x ∈ (0, 1). In this case, a one-sided test is commonly used
because one is typically only interested in p values that are smaller than expected, not larger
than expected. This is exactly the context considered in Berk and Jones (1979), in which the
ideas behind ELL were first laid out.
More generally, one could test

H0 : F = F0 for all x ∈ R vs. HA : F > F0 for some x ∈ R.

In this context, a one-sided global test of H0 based on local levels η1, . . . , ηn would involve
first constructing a set of lower bounds h1, . . . , hn, where

hi = F −1
0i (ηi), (6)

and then rejecting if

X(i) < hi for at least one value of i such that 1 ≤ i ≤ n.

We define the one-sided ELL test with global level α to be the test of this type obtained by
setting η1 = · · · = ηn = η and choosing η to obtain global level α.
Given the sample size n and the desired global level 0 < α < 1, we define η

′
n(α) to be the

local level η that will result in global level α for the one-sided ELL test. As in the two-sided
case, we denote the inverse function of η

′
n(α) by α

′
n(η). Given n and α, we obtain η

′
n(α) by a

binary search over η ∈ (0, 1), where for each value of η, we obtain (h1, . . . , hn) via Equation 6,
and then we calculate α

′
n(η), the probability that (X(1), . . . , X(n)) falls outside the region

(h1, 1) × · · · × (hn, 1). Then we perform a binary search to find the η such that α
′
n(η) = α,

the desired global level.
To calculate α

′
n(η), several approaches have previously been developed (Shorack and Wellner

2009; Moscovich 2020a). qqconf currently uses the method of Moscovich and Nadler (2016)
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Sample Empirical type-I error (se) when using
size Sample sd MAD Qn Sn True
100 0.0011 (0.0003) 0.0963 (0.0030) 0.0278 (0.0016) 0.0427 (0.0020) 0.0522 (0.0022)
500 0.0035 (0.0006) 0.1015 (0.0030) 0.0260 (0.0016) 0.0443 (0.0021) 0.0514 (0.0022)

10,000 0.0111 (0.0010) 0.1040 (0.0031) 0.0327 (0.0018) 0.0498 (0.0022) 0.0480 (0.0021)

Table 1: Empirical type-I error at nominal level 0.05 for testing normality with different
parameter estimation methods, based on 104 simulation replicates.

as implemented in Moscovich (2020b). We have also implemented two recursive approaches,
described in Appendix B: an exact version and an approximate version that is much faster
and bounds the relative error in the reported global significance level to a tolerance set by
the user.

2.6. Additional implementation issues

To create the “expected” quantiles for a Q-Q plot, we apply the inverse cdf F −1
0 to a set

of probability points. For the normal distribution, it has been shown (Blom 1958) that the
means of the order statistics of n i.i.d. draws are well-approximated by the above process when
ppoints(n) is used to generate the probability points, while for the uniform distribution, the
means of the order statistics are obtained exactly when ppoints(n, a = 0) is used. For
other distributions, appropriate approximations to the means of the order statistics could be
obtained on a case-by-case basis. (Because a P-P plot is basically a variation on a uniform
Q-Q plot, the exact mean probability points for a P-P plot are obtained for all distributions
by ppoints(n, a = 0).) For creating the “expected” line in a Q-Q plot, we propose the
medians of the order statistics as a useful alternative to their means. Exact medians of the
order statistics for i.i.d. draws from any distribution can easily be obtained by applying the
inverse cdf to qbeta(0.5, 1:n, n:1). The resulting “expected” line is the unique line that
is guaranteed to lie completely within the ELL band, regardless of the global level α or the
distribution. All 3 of the above expected lines are options within qqconf.
The most commonly-encountered uses of Q-Q plots are to assess normality in various contexts
and to assess uniformity of p values for a set of independent hypothesis tests, and we give
examples of both in Section 3. When assessing normality, typically the mean µ and standard
deviation σ would not be known but would need to be estimated from the data in order to
make either an “expected” line or any kind of testing band for a Q-Q plot. For example, in
base R the function qqline makes an expected line that by default passes through the first
and third quartiles, which is equivalent to estimating µ by the mid-quartile and σ by the
inter-quartile range multiplied by 0.7413.
In qqconf, the default is to estimate µ by the median and σ by the estimator Sn of Rousseeuw
and Croux (1993), where Sn is a highly robust scale estimator with very low gross-error
sensitivity that is more efficient than median-absolute-deviation (MAD) and approximately
unbiased even in small sample sizes. To validate this choice, we performed simulation studies
under the null hypothesis of normality and assessed the type 1 error of the 5% rejection bounds
generated by ELL, where we used one of 5 choices for (µ, σ): (1) sample mean and sample
s.d., (2) sample median and sample MAD, (3) sample median and Qn, another estimator of σ
discussed by Rousseeuw and Croux (1993), (4) sample median and Sn, and (5) the true values
of µ and σ for comparison, and where these are denoted in Table 1 by ‘sample sd’, ‘MAD’,
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‘Qn’, ‘Sn’ and ‘true’, respectively. We note that the entire simulation study is invariant to
the choice of true mean and s.d., because these just become location and scale factors for
all the data and the estimators and therefore cancel out in the type-I error assessment. The
results for n = 100, 500 and 104 are given in Table 1, where we can see that using median and
Sn gives type-I error very close to the nominal level, though slightly conservative for small
sample sizes. Methods to handle parameter uncertainty with an exact calculation (as opposed
to simulation) have been discussed in the context of the normal distribution (Rosenkrantz
2000), but a general method towards this end has not been developed. Use of Q-Q plots
for distributions other than normal for which the parameters are unknown is rarer, and for
those cases the current default in qqconf is maximum likelihood estimation, though the user
can replace that with an estimate of their choice. Note that in applications such as assessing
uniformity of p values (Section 3.2) or in the genomics example in Section 3.3, no parameter
estimation is required.

3. Examples
One of the main advantages of the local levels method compared to other global testing
approaches is that it can easily be used to put testing bands onto Q-Q plots by simply
graphing each (hi, gi) interval. This allows us to examine how a dataset might deviate from
some null distribution much better than simply applying a test that yields a binary conclusion.
Below, we present a few examples where a Q-Q plot is useful, and where the local levels test
seems ideal for assessing deviation from a global null hypothesis.

3.1. Assessing normality of residuals from regression

When performing an ordinary least squares (OLS) regression, it is common to assume that
the error terms are independently drawn from a normal distribution, e.g., Y = Xβ + ϵ, where
Yn×1 and Xn×p are observable, βp×1 is an unknown parameter vector, and conditional on X,
ϵ = (ϵ1, . . . , ϵn)⊤ is assumed to satisfy

ϵ1, . . . , ϵn
iid∼N(0, σ2). (7)

After obtaining the OLS estimate β̂ and the residual vector r = Y − Xβ̂, we would like a
Q-Q plot of the residuals with a normal reference distribution to aid in testing assumption
(7) above. Without prior reason to believe that the errors may deviate from normality at
any particular point in the distribution, it makes sense to use ELL bands in this case. This
is very easy to do with qqconf, as we show below.
First, we generate data to perform a regression. Here, we generate each ϵi independently from
a t(3) distribution.

R> set.seed(20)
R> n <- 100
R> x <- runif(n)
R> eta <- rt(n, df = 3)
R> y <- x + eta

Then, we fit a regression with the simulated data
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R> reg <- lm(y ~ x)

Figure 1 shows a Q-Q plot created with base R functionality using the functions qqnorm and
qqline, as follows:

R> qnorm_plot <- qqnorm(reg$residuals)
R> qqline(reg$residuals)

Clearly there is some indication of deviation from normality in Figure 1, but it can be hard to
tell how significant the deviation is without a testing band. In Figure 2, we improve upon this
by using qq_conf_plot to create a Q-Q plot with a 0.05-level ELL testing band as follows:

R> qq_conf_plot(obs = reg$residuals,
+ points_params = list(col = "blue", pch = 20, cex = 0.5))

In Figure 2, we can clearly see that both the left and right tails of the residuals go beyond
the normal testing bounds, giving strong evidence that the errors were not generated from a
normal distribution.
If the user prefers to use another plotting software, qqconf also provides a separate inter-
face, get_qq_band, for obtaining the testing band iself. The band_method argument of
get_qq_band allows for ELL, KS or pointwise bands to be created. The band computed
by get_qq_band can easily be used with, e.g., base R’s qqnorm as below, producing Figure 3.
When adding a testing band to a Q-Q plot produced outside of qqconf, in order to have
the correct type-I error for the band, it is essential that the same x-coordinates be used for
plotting both the data points and the bound points for the band. This is accomplished in
Figure 3 by use of sort(qnorm_plot$x) as the x-coordinates for the upper and lower bounds
for the band in the code below, as these were the x-coordinates used by qnorm to plot the
data points. Figure 3 is generated as follows:

R> band <- get_qq_band(obs = reg$residuals)
R> plot(qnorm_plot, col = "blue", pch = 20, cex = 0.5,
+ xlab = "Expected quantiles", ylab = "Observed quantiles")
R> lines(sort(qnorm_plot$x), band$lower_bound, col = "red")
R> lines(sort(qnorm_plot$x), band$upper_bound, col = "red")
R> qqline(qnorm_plot$x, datax = TRUE, distribution =
+ function(p) qnorm(p, mean = band$dparams$mean, sd = band$dparams$sd))

Moreover, if the user prefers to use qqplotr (Almeida et al. 2018), this can also be done easily,
as shown in Figure 4. Again, it is critical that the same x-coordinates be used to plot both
the points and the bounds of the band. This is accomplished in the code below for Figure 4 by
setting band_df$expected equal to build_plot$data[[1]]$x, which puts the x-coordinates
that will be used to plot the points into band_df$expected, and then using x = expected
as an argument to aes in the call to geom_ribbon that creates the testing band. Figure 4 is
generated as follows:

R> band_df <- data.frame(lower = band$lower_bound, upper = band$upper_bound,
+ obs = reg$residuals)
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Figure 1: Q-Q plot for regression residuals with base R functionality.

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

Expected quantiles

O
bs

er
ve

d 
qu

an
til

es

Figure 2: Q-Q plot for regression residuals with ELL bounds using qqconf.
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Figure 3: Q-Q plot for regression residuals with ELL bands from qqconf added to a plot made
with base R qqnorm.
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Figure 4: Q-Q plot for regression residuals with with ELL bands from qqconf added to a plot
made with qqplotr.
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Figure 5: Q-Q Plot for regression residuals with KS bounds.

R> build_plot <- ggplot2::ggplot_build(
+ ggplot2::ggplot(band_df, ggplot2::aes(sample = obs)) +
+ qqplotr::stat_qq_point(dparams = band$dparams))
R> band_df$expected <- build_plot$data[[1]]$x
R> ggplot2::ggplot(band_df, ggplot2::aes(sample = obs)) +
+ ggplot2::geom_ribbon(
+ ggplot2::aes(ymin = lower, ymax = upper, x = expected),
+ fill = "grey80") +
+ qqplotr::stat_qq_line(dparams = band$dparams, identity = TRUE) +
+ qqplotr::stat_qq_point(dparams = band$dparams, color = "blue",
+ size = 0.5) +
+ ggplot2::xlab("Expected quantiles") +
+ ggplot2::ylab("Observed quantiles")

This example also highlights the advantages of the ELL method over KS. Because KS is much
more sensitive to deviations in the center of the distribution than it is to deviations in the tails
of the distribution, it does not yield a rejection of the null hypothesis in this case (Figure 5).
We generate the KS bounds in Figure 5 by simply setting the method argument to "ks" in
the qq_conf_plot function as follows:

R> qq_conf_plot(obs = reg$residuals, method = "ks",
+ points_params = list(col = "blue", pch = 20, cex = 0.5))
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3.2. Q-Q plots for assessing accuracy of p values

Suppose we have devised a new testing procedure to test a null hypothesis H0 with test
statistic T , where we also specify a particular method to calculate or approximate p values.
In such a situation it is important to perform some simulations under the null hypothesis
and check that the resulting p value distribution is approximately uniform in the simulation
experiment.
Typically, the verification of type-I error rate is done using the following procedure:

1. Generate n simulated datasets under H0, and calculate T for each simulated dataset to
obtain T1, . . . , Tn.

2. Select a value of α, and for each of T1, . . . , Tn, determine whether the null hypothesis is
rejected at level α. Let Nα be the observed number of the n tests that are rejected at
level α.

3. Let α∗ denote the true probability of rejection under the above procedure. Test the null
hypothesis H0 : α∗ = α by applying, e.g., a Z-test of proportions or an exact binomial
test to the data Nα.

While the above procedure provides reliable information about the type-I error calibration
for one level of α, it provides little information about the global calibration of p values. To
obtain a useful visualization of the overall performance of the p value calculation method, we
instead suggest the following procedure:

1. As above.

2. For each Ti, calculate the corresponding p value, pi, to obtain p1, . . . , pn.

3. Make a Q-Q plot comparing p1, . . . , pn to a U(0, 1) distribution, and apply the local
levels procedure to create a simultaneous testing band for the null hypothesis that
p1, . . . , pn

iid∼ U(0, 1).

This allows us to easily visualize the global calibration of the p values with just one graph
and diagnose any issues if they exist. In Step 3, one could use many different testing bands.
However, in the calibration of p values, we typically do not have the expectation that our
p values would be more likely to deviate from uniform in any particular region, and so it makes
sense to use the local levels test because it is agnostic to the space of alternative distribution.
Moreover, since it is generally most concerning if small p values are not calibrated (i.e., those
in the lower tail of the uniform distribution), the local levels test is preferable to the standard
KS test because it is much more sensitive in the tails (Aldor-Noiman et al. 2013).

χ2 test for independence in a 2× 2 table

We apply this approach to assess the calibration of p values from the Pearson χ2 test for
independence in a 2× 2 table. A well-known rule of thumb is that the χ2 test is appropriate
as long as the expected cell count in each cell under the null hypothesis is at least 5. We fix
the cell probabilities under the null hypothesis and consider two different cases: in scenario
1, the sample size is s = 200 and the condition in the rule of thumb holds (i.e., the minimum
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expected cell count exceeds 5), and scenario 2, the sample size is only s = 20 and the condition
in the rule of thumb does not hold. We use the local levels approach to generate simultaneous
testing bands to assess the calibration of the p values from the Pearson χ2 test for these two
scenarios.
More specifically, in each scenario, we randomly generate n = 1000 2×2 tables under the null
hypothesis, where each table contains s observations, with s = 200 in scenario 1 and s = 20
in scenario 2. We generate the observations in each table as i.i.d. multinomial with given
cell probabilities, which is natural since we want to investigate the effect of small expected
cell counts. (Furthermore, the i.i.d. multinomial setting is one in which the asymptotic
distribution for the test statistic is χ2

1.) For each table, the s observations are i.i.d. with
probability qi,j of falling in cell (i, j), for i = 0, 1, j = 0, 1, where q1,1 = a · b, q1,0 = a · (1− b),
q0,1 = (1−a) · b, and q0,0 = (1−a) · (1− b), with a = 0.15 and b = 0.4. For each table, let Xi,j

denote the observed count in cell (i, j). (If any table has X0,0 + X0,1 = 0 or = s, we discard
the table and draw a new one, because that would imply that one of the rows of the table is
empty, in which case the Pearson χ2 test statistic is not defined. Similarly, if any table has
X0,0 + X1,0 = 0 or = s, we discard the table and draw a new one.) For each of the tables in
the resulting sample, a Pearson χ2 test statistic T for independence is calculated. For each
scenario, this results in n = 1000 test statistics, T1, . . . , Tn, one for each table. From these,
we obtain n = 1000 p values, p1, . . . , pn by applying the χ2

1 approximation, i.e., pi = 1−F (Ti)
for i = 1, . . . , n, where F is taken to be the cdf of the χ2

1 distribution.
Figure 6 shows the resulting Q-Q plots for scenarios 1 (in blue) and 2 (in vermillion), where
the 45o line is shown as well as the testing band obtained from the equal local levels procedure
for testing, at global level 0.05, the null hypothesis that p1, . . . , pn have the same distribution
as n i.i.d. draws from U(0,1). In Figure 6, the Q-Q plot for scenario 2 is made first, and
then the Q-Q plot for scenario 1 is added to the same axes by setting the add argument of
qq_conf_plot to TRUE, as follows:

R> pvals_scenario_1 <- scan("Data/pvals_scenario_1", quiet = TRUE)
R> pvals_scenario_2 <- scan("Data/pvals_scenario_2", quiet = TRUE)
R> par(pty = "s")
R> qq_conf_plot(obs = pvals_scenario_2, distribution = qunif,
+ points_params = list(
+ col = palette.colors(palette = "Okabe-Ito")["vermillion"],
+ type = "l"),
+ asp = 1)
R> qq_conf_plot(obs = pvals_scenario_1, distribution = qunif,
+ points_params = list(
+ col = palette.colors(palette = "Okabe-Ito")["blue"],
+ type = "l"),
+ add = TRUE)
R> legend("topleft", legend = c("s=200","s=20"),
+ col = c(palette.colors(palette = "Okabe-Ito")["blue"],
+ palette.colors(palette = "Okabe-Ito")["vermillion"]),
+ lty = 1)

When assessing p values, typically the lower tail is of most interest, but this part of the plot is
difficult to see when the plot axes are on the original scale. To focus the visualization on the
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Figure 6: Q-Q plots for scenarios 1 (s = 200) and 2 (s = 20) with level 0.05 testing band and
standard axes.
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Figure 7: Q-Q plots for scenarios 1 (s = 200) and 2 (s = 20) with axes on the − log10 scale.
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small p values we can plot the axes on the -log10 scale, as in Figure 7, by setting the log10
argument of qq_conf_plot to TRUE. (Note that in Figure 7, small p values are to the top and
right of the plot, so a curve that is too low is conservative, and too high is anti-conservative.)
Figure 7 is generated as follows:

R> par(pty = "s")
R> qq_conf_plot(obs = pvals_scenario_2, distribution = qunif,
+ points_params = list(
+ col = palette.colors(palette = "Okabe-Ito")["vermillion"],
+ type = "l"),
+ log10 = TRUE, asp = 1)
R> qq_conf_plot(obs = pvals_scenario_1, distribution = qunif,
+ points_params = list(
+ col = palette.colors(palette = "Okabe-Ito")["blue"],
+ type = "l"),
+ log10 = TRUE, add = TRUE)
R> legend("topleft", legend = c("s=200","s=20"),
+ col = c(palette.colors(palette = "Okabe-Ito")["blue"],
+ palette.colors(palette = "Okabe-Ito")["vermillion"]),
+ lty = 1)

From Figures 6 and 7, it can be seen that in scenario 1, when s = 200 and the smallest
expected cell count is 12, there is no significant deviation of the p values from i.i.d. U(0,1)
under the null hypothesis. In contrast, in scenario 2, when s = 20 and the smallest expected
cell count is 1.2, the χ2

1 asymptotic distribution is not an accurate approximation to the
sampling distribution of T . As a result, we can see in Figures 6 and 7 that the p values differ
significantly from i.i.d. U(0,1) under the null hypothesis, with small p values tending to be
overly conservative, while the larger p values tend to be anti-conservative.
As a side note, to put our simulation results into the context of past theoretical work on the
Pearson χ2 test for independence, the following points from Lewis, Saunders, and Westcott
(1984) are helpful: (1) Conservativeness or anti-conservativeness of the χ2 approximation can
vary with p-value, which is consistent with our simulation results. (2) Conservativeness or
anti-conservativeness of the χ2 approximation can be predicted theoretically based on the
marginal totals, which vary across our simulations. However, if we analyze the expected
marginal totals under scenario 2, then guideline II in Section 6 of Lewis et al. (1984) predicts
that the χ2 approximation will tend to be conservative in that setting, which agrees with
what we observed in simulations for small p-values.

3.3. Q-Q plots for p values from genome-wide association studies

The goal of a genome-wide association study (GWAS) is to identify genetic variants that
influence a trait (where a trait is commonly a disease or some other measured variable such
as blood pressure or blood glucose level). For each individual in the sample, trait data are
collected as well as genetic data on a large number of single-nucleotide polymorphisms (SNPs)
throughout the genome. Based on these data, a statistical test is typically performed for each
SNP to assess whether it is associated with the trait, resulting in a large number of p values,
one for each SNP. Then a very stringent multiple testing correction is applied in order to
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declare a result for a SNP to be significant. As part of the data analysis, a Q-Q plot is
commonly presented to visualize and assess the distribution of genome-wide p values.
The implicit null hypothesis being assessed in such a Q-Q plot is H0: none of the tested SNPs
is associated with the trait. If the SNPs could be assumed to be independent, then this null
hypothesis would correspond to the p values being i.i.d. U(0,1) random variables. One could
argue for either a one-sided or two-sided alternative. The one-sided alternative would be that
there is an excess of small p values (which is equivalent to F (x) > x for some x ∈ (0, 1)
in the notation of Section 2.5), which would be biologically interpretable as indicating that
at least one SNP was associated with the trait. The two-sided alternative would simply be
that the distribution is non-uniform. While an excess of large p values would not have any
particular biological interpretation, it could indicate a problem with the data analysis, e.g.,
use of an inappropriate statistical test or the unexpected failure of assumptions underlying
the test used.
In fact, there is local correlation among genome-wide SNPs, which decays very rapidly with
distance as a result of genetic recombination. Typically, some “pruning” is done on the
genome-wide SNPs prior to analysis so that the remaining SNPs in each small, local region
are less correlated. While the remaining SNPs have a local correlation structure, this has only
a weak effect at a genome-wide scale, and a Q-Q plot with appropriate simultaneous bounds
can still provide a valuable visualization tool to assess the extent and type of deviation from
the null. When substantial correlation remains, an alternative is to create the testing band
based on an “effective number” of independent SNPs, neff. This could be done by setting
n=neff in get_qq_band. (In this case, different x-coordinates would obviously need to be
used for plotting the bounds of the band than for plotting the points.)
In GWAS, if the p values deviate from the null, it can be very useful to view graphically how
they deviate. For instance, if a few tests yield unusually small p values but the p values from
the bulk of the tests look relatively uniform, this suggests that the genetic variation affecting
the trait of interest is likely driven by a relatively small number of genetic variants. If,
however, there are some small deviations from uniformity throughout the p value distribution,
this could indicate that the trait of interest is affected by a large number of genetic variants
that all play some small part in a complex biological process, or it could potentially indicate
that there are some confounding variables that are not controlled for.
Either of the above two scenarios, representing very different alternative distributions, could
commonly arise in a GWAS, so the ELL method is a desirable choice for a putting testing
bands on the Q-Q plot because it is agnostic to the choice of alternative distribution. More-
over, since small p values are often of great interest in GWAS because they can indicate the
genetic variants that have the greatest influence on the trait, the use of ELL testing bands is
far superior to use of KS testing bands because of the comparatively greater tail sensitivity
of the former.

Application of equal local levels to Creutzfeld-Jakob Disease

We downloaded the p values from a GWAS of Creutzfeld-Jakob disease (CJD) in a sample
of 4,110 cases and 13,569 controls (Jones et al. 2020). Tests of association between risk
for the disease and genetic variants were done at 6,314,492 SNPs. Major genetic risk loci
were found on chromosomes 1 and 20. Here, we remove those chromosomes from the results
in order to be able focus on parts of the genome where we remain uncertain about to what



18 qqconf: Equal Local Levels Q-Q Plot Testing Bands in R

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

Expected quantiles

O
bs

ev
ed

 q
ua

nt
ile

s 
−

 E
xp

ec
te

d 
qu

an
til

es

Figure 8: Differenced Q-Q plot of CJD GWAS p values.

extent risk variants are present. For convenience, we subsample the remaining SNPs to 10,000
approximately evenly spaced SNPs, which also helps ensure that correlation between SNPs is
minimized.

R> cjd_df <- read.table("Data/cjd_sample.txt", header = TRUE)

We then make Q-Q plots of these 10,000 p values with 0.05-level testing bands. Note that
for large datasets, a Q-Q plot with standard axes is undesirable, because, e.g., the 0.05-
level testing band becomes extremely close to the diagonal as n grows, so generally all the
interesting information in the plot is more-or-less collapsed onto the diagonal, rendering it less
effective as a visual tool. For better visualization in a large dataset, we recommend instead
plotting the difference between the observed and expected quantiles versus the expected
quantiles, which we call a “differenced” Q-Q plot (alternatively called a “detrended” Q-Q
plot by Almeida et al. 2018). Such a plot can easily be created by setting the difference
argument to TRUE in qq_conf_plot. Figure 8, which depicts the differenced Q-Q plot for the
CJD data, is produced as follows:

R> qq_conf_plot(obs = cjd_df[,3], distribution = qunif,
+ points_params = list(pch = 21, cex = 0.2), difference = TRUE)

In a GWAS the lower tail of the p value distribution would typically represent the most
important genetic variants, so to highlight this region, we can use the log10 argument to plot
the axes on the -log10 scale for either a standard Q-Q plot (Figure 9) or for a differenced Q-Q
plot (Figure 10). To create Figure 9 we use

R> qq_conf_plot(obs = cjd_df[,3], distribution = qunif,
+ points_params = list(pch = 21, cex = 0.2), log10 = TRUE)
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Figure 9: Q-Q plot of CJD GWAS p values, with axes on the -log10 scale.
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Figure 10: Differenced Q-Q plot of CJD p values, with quantiles on the -log10 scale.
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and to create Figure 10 we use

R> qq_conf_plot(obs = cjd_df[,3], distribution = qunif,
+ points_params = list(pch = 21, cex = 0.2), difference = TRUE,
+ log10 = TRUE, ylim = c(-0.2, 1.1))

From the Q-Q plots, we can see that there is an excess of moderately small p values, indicating
that the test statistics do not follow the null distribution. The type of deviation observed
is suggestive of a large number of sub-significant signals, likely representing genetic variants
that each contribute a small amount to the trait. It is a common phenomenon in GWAS of
complex traits to have many small-effect SNPs whose signals do not become significant except
in very large sample sizes.

4. Discussion
A Q-Q plot can be extremely valuable as a visualization tool for understanding the extent
and type of deviation of a data set from a given reference distribution. A crucial part of the
interpretation of a Q-Q plot is the ability to distinguish run-of-the-mill sampling variability
from meaningful deviation, and this can be accomplished by adding an appropriate testing
band to a Q-Q plot. ELL testing bands have been shown to be a notable improvement
over other available methods such as KS, but previously available software has been limited
to the normal distribution and is somewhat slow because it uses simulation to create the
bands. To address the need for rapid generation of testing bands for Q-Q plots for a variety
of reference distributions, we have developed qqconf, an R package for creating Q-Q plots,
which is available on CRAN. A notable feature of qqconf is the option to quickly and easily
add a simultaneous testing band based on ELL to a Q-Q or P-P plot, for any reference
distribution with a quantile function implemented. We show how qqconf can easily be used
to output bands for use in other plotting packages. For the most common testing levels of
0.05 or 0.01, generation of testing bands with get_qq_band in qqconf is so fast that one can
confidently generate such bands as a default when creating Q-Q plots.
qqconf makes various accommodations for large data sets, including (1) use of pre-computed
and/or asymptotic values for even faster implementation of testing bands in the function
get_qq_band; and (2) the option to easily display Q-Q and P-P plots on the difference
scale for better visualization of large data sets. For applications in genomics (Section 3.3)
and assessing accuracy of p values (Section 3.2), one is particularly interested in visualizing
deviations in the tail of the distribution. In such cases, it is particularly informative to view
the Q-Q or P-P plot on a log scale (where the details of the log transformation depend on
which tail is of interest). qqconf gives the option to easily generate such a log-transformed
Q-Q or P-P plot to focus on deviation in either the left or right tail.
Beyond the Q-Q plot application, ELL is a generic global testing method, and the prob-
lem of determining, for a given number of local tests n and a given global testing level α,
the appropriate local level ηn(α) for an ELL test can arise in other applications, particu-
larly in genomics. The qqconf package contains generic functions (get_bounds_two_sided,
get_level_from_bounds_two_sided, get_bounds_one_sided, and get_level_from_
bounds_one_sided) to quickly obtain ηn(α) for both one-sided and two-sided testing prob-
lems, using the FFT method (Moscovich and Nadler 2016) as implemented in Moscovich
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(2020b). For two-sided ELL in the cases of α = 0.05 and 0.01, we have used the method
of Appendix A to generate extensive look-up tables for n as large as 1 million and 500K,
respectively, and this permits quick access to these values or quick linear interpolation to
approximate between the grid points in cases where the grid is not saturated (e.g., near the
largest values of n). In addition, we have refined and applied previous asymptotic approx-
imations for two-sided ELL, which can be confidently used for data sets of size 100K or
larger.
In practice, we find that Q-Q plots are most often used either for distributions with known
parameters, such as U(0,1) or χ2 with known degrees of freedom, or for the normal distribu-
tion with unknown parameters. qqconf provides extremely accurate testing bands for all such
cases. For the case of non-normal, non-uniform reference distributions with unknown param-
eters, if the quantile/cdf/density functions are implemented in R, then by default qqconf will
use maximum likelihood estimation to estimate the parameters (though the user can easily
substitute estimates of their choice) and then form the testing band by taking these estimates
as known values. In sufficiently large data sets, standard asymptotic theory ensures that the
parameter estimates will be close to the true values, and this method will work well. In small
sample sizes, use of maximum likelihood estimation in this context (non-normal distributions
with unknown parameters) tends to lead to overly conservative testing bands. However, we
have not yet identified a substantive application that requires a non-normal reference distri-
bution with unknown parameters, so we do not know if this is of sufficient interest to warrant
further extensions. If a need for this were identified, then two possible approaches to making
the testing bands less conservative for that situation would be (1) for each distribution of
interest, identify or develop a parameter estimation method that can be shown to generate
bands with the appropriate global level (as we have already done for the normal distribution)
or (2) extend the simulation-based approach of Aldor-Noiman et al. (2013) to the distribution
of interest, where this could also involve choosing an appropriate estimation method as in (1).
A different potential extension of arguably greater interest is to dependent rather than i.i.d.
data, and for the case of multivariate normal data where the covariance structure is known
or could be estimated, a simulation-based approach along the lines of Akinbiyi (2020) could
be developed.
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A. Recursion to compute global level of two-sided ELL
First, note that because of property (4), without loss of generality, we can assume X1, . . . , Xn
iid∼U(0, 1), and we denote the resulting probability distribution by P0. The goal is then to
calculate the following probability:

α = P0
( n⋃

i=1
{X(i) /∈ (hi, gi)}

)
= 1− P0

( n⋂
i=1
{X(i) ∈ (hi, gi)}

)
= 1− P0

( n⋂
i=1
{X(i) ∈ (hi, gi]}

)
.

Let b1, . . . , b2n be the sorted values of h1, . . . , hn, g1, . . . , gn in ascending order. We also define
b0 = 0 and b2n+1 = 1. We divide the interval (b0, b2n+1) into 2n + 1 bins, where bin 1
is B1 = (b0, b1], bin 2 is B2 = (b1, b2], . . . , and bin 2n + 1 is B2n+1 = (b2n, b2n+1). Let
Nj =

∑n
i=1 1(Xi ∈ Bj) denote the random variable that counts the number of X’s falling

into bin j, for 1 ≤ j ≤ 2n + 1, and let Sk =
∑k

j=1 Nj be the kth partial sum of the N ’s, for
1 ≤ k ≤ 2n + 1. We make the following key observation:

{X(i) ∈ (hi, gi] for i = 1, . . . , n} = {lk ≤ Sk ≤ uk for k = 1, 2, . . . , 2n},

where for 1 ≤ k ≤ 2n,

uk =
{

0, if k = 1∑k−1
i=1 1

(
bi ∈ {h1, . . . , hn}

)
, otherwise

lk =
k∑

i=1
1
(
bi ∈ {g1, . . . , gn}

)
Note that u2n = l2n = n always holds. Here, uk is the number of order statistics whose lower
interval end points are to the left of bin k, so it is an upper bound on the number of Xi’s that
could occur in ∪k

j=1Bj . Similarly, lk is the number of order statistics whose upper interval
endpoints are to the left of bin k + 1, so it is a lower bound on the number of Xi’s that could
occur in ∪k

j=1Bj . Thus, if we define Λ = {(m1, . . . , m2n) ∈ {0, . . . , n}2n s.t. lk ≤ sk ≤ uk for
1 ≤ k ≤ 2n, where sk =

∑k
i=1 mi for 1 ≤ k ≤ 2n}, then

P0(∩n
i=1{X(i) ∈ (hi, gi]}) =

∑
(m1,...,m2n)∈Λ

P0(Nj = mj for j = 1, . . . , 2n)

=
∑

(m1,...,m2n)∈Λ

(
n

m1, . . . , m2n

) 2n∏
j=1

(bj − bj−1)mj ,

a sum of probabilities of multinomial events, where mj is the number of Xi’s that fall into
bin j. To calculate the needed probability, we define

c
(k)
j = P0(Sk = j and lq ≤ Sq ≤ uq for q = 1, . . . , k − 1), for k = 1, . . . , 2n and j = 0, . . . , n.

Then c
(k)
j = P0

(min(j,uk−1)⋃
m=lk−1

{Sk−1 = m and Nk = j−m and lq ≤ Sq ≤ uq for q = 1, . . . , k−2}
)
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=
min(j,uk−1)∑

m=lk−1

P0(Sk−1 = m and Nk = j −m and lq ≤ Sq ≤ uq for q = 1, . . . , k − 2)

=
min(j,uk−1)∑

m=lk−1

c(k−1)
m · P0(Nk = j −m|Sk−1 = m)

=
min(j,uk−1)∑

m=lk−1

c(k−1)
m · P (B = j −m), where B ∼ Binomial

(
n−m,

bk − bk−1
1− bk−1

)
,

which gives an easily computed recursive formula, where the initialization is c
(1)
0 = (1− b1)n.

In the case of general vectors ((h1, . . . , hn) and (g1, . . . , gn)), subject only to 0 ≤ hi < gi ≤ 1
for 1 ≤ i ≤ n, we could use the recursion to obtain c

(2n)
n , and then obtain the global level

α = 1 − c
(2n)
n . For the special case in which (h1, g1), . . . , (hn, gn) are derived from two-sided

ELL, i.e., Equations 2 and 3 hold, then as a result of the symmetry in the problem, for each
1 ≤ j ≤ n, we need only calculate c

(k)
j for k = 1, . . . , n + 1 instead of k = 1, . . . , 2n and then

use

1− α = P0
( n⋂

i=1
X(i) ∈ (hi, gi)

)
=

un∑
j=ln

c
(n)
j ·

c
(n+1)
n−j(n

j

)
bj

n(1− bn)n−j
.

To show this, we first define the following values for k = 1, . . . 2n:

ũk =
{

0, if k = 2n∑2n
i=k+1 1

(
bi ∈ {g1, . . . , gn}

)
, otherwise

l̃k =
2n∑

i=k

1
(
bi ∈ {h1, . . . , hn}

)
Tk =

2n+1∑
j=k+1

Nj = n− Sk

Now, we make the following observations: (a) With two-sided ELL, gi = 1 − hn+1−i for
i = 1, . . . , n because F −1

Beta(i,n+1−i)(1 −
η
2 ) = 1 − F −1

Beta(n+1−i,i)(
η
2 ). (b) bk = 1 − b2n+1−k for

k = 1, . . . , 2n by (a). (c) uk = ũ2n+1−k and lk = l̃2n+1−k, for k = 1, . . . , 2n by (a) and (b).
(d) The random vector (N1, . . . , Nk) has the same distribution as (N2n+1, . . . , N2n+2−k) for
k = 1, . . . , 2n + 1. This follows from the fact that the vector (X1, . . . , Xn) has the same
distribution as (1−X1, . . . , 1−Xn) (since each Xi is independent uniform) and (b). (e) The
random vector (S1, . . . , Sk) has the same distribution as (T2n, . . . , T2n+1−k) for k = 1, . . . , 2n.
This follows from (d). (f) c

(k)
j = P0(T2n+1−k = j and l̃r ≤ Tr ≤ ũr for r = 2n+2−k, . . . , 2n),

which follows from (c) and (e). (g) Conditional on Sk, the random vector (X(Sk+1), . . . , X(n))
is distributed as the order statistics of n − Sk i.i.d. draws from U(bk, 1). (h) The random
vector (S1, . . . , Sr) and the random vector (Tr, . . . , Tn) are independent conditional on Sr.
This follows directly from (g). Combining the above results, we can write

{X(i) ∈ (hi, gi) for i = 1, . . . , n} = {lk ≤ Sk ≤ uk for k = 1, . . . , 2n}.

Also, observe that for any 2 ≤ r ≤ 2n− 1, we have {lk ≤ Sk ≤ uk for k = 1, . . . , 2n} =

{lk ≤ Sk ≤ uk for k = 1, . . . , r and Tr = n− Sr and l̃k ≤ Tq ≤ ũk for q = r, . . . , 2n}.
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Thus, we can write
∑ur

j=lr
P (Sr = j and lk ≤ Sk ≤ uk for k = 1, . . . , r − 1)

·I(l̃r ≤ n− j ≤ ũr) · P (l̃q ≤ Tq ≤ ũr for q = r + 1, . . . , 2n|Tr = n− j)

=
ur∑

j=lr

c
(r)
j · I(l̃r ≤ n− j ≤ ũr) · P (l̃q ≤ Tq ≤ ũr for q = r + 1, . . . , 2n|Tr = n− j)

=
ur∑

j=lr

c
(r)
j · I(l̃r ≤ n− j ≤ ũr) · P (l̃q ≤ Tq ≤ ũr for q = r + 1, . . . , 2n and Tr = n− j)

Tr = n− j

=
ur∑

j=lr

c
(r)
j ·

c
(2n+1−r)
n−j(n

j

)
bj

r(1− br)n−j

Now, if we let r = n above, then we get

P0
( n⋂

i=1
X(i) ∈ (hi, gi)

)
=

un∑
j=ln

c
(n)
j ·

c
(n+1)
n−j(n

j

)
bj

n(1− bn)n−j

as claimed.
For the calculation of general boundary crossing probabilities, this type of algorithm requires
O(n3) operations. However, for the ELL boundary crossing problem, based on experiments
involving a dense grid of values of n between 10 and 50, 000 and α = 0.05, we find that
the number of recursive steps required is approximately 8n2. While each recursive step
itself requires calculating a binomial probability which is O(n) due to the calculation of
the binomial coefficient multiplied by a quantity with powers as large as n, these calculations
can be memoized with O(n2) cost. Thus, in our specific context of ELL-based boundaries
and for the range of sample sizes in our application, we find that the computational time is
approximately a constant multiple of n2.
To find the value of η for which the local level is α, we perform a binary search over the
range (ηlower, ηupper), where ηupper = α and ηlower = α

n , which is the lower bound given by the
Bonferroni correction. For the given choice of P0, note that F0i is Beta(i,n− i + 1), which is
used to obtain hi and gi via Equation 3.

B. Recursions to compute global level of one-sided ELL
We describe an exact recursion to calculate α

′
n(η) as well as an approximation, also recursive,

which is much faster and bounds the relative error in the reported global significance level
to a tolerance set by the user. Again, because of the property in Equation 4, without loss of
generality, we assume that under the null hypothesis, X1, . . . , Xn

iid∼U(0, 1). Given a proposed
set of lower bounds h1, . . . , hn, where h1 < . . . < hn, the goal is to calculate the following
probability

α = P0
( n⋃

i=1
{X(i) < hi}

)
= 1− P0

( n⋂
i=1
{X(i) ≥ hi}

)
= 1− P0

( n⋂
i=1
{X(i) > hi}

)
,

where P0 is the probability under the null hypothesis H0 : X1, . . . Xn i.i.d. U(0, 1).
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Similar to the two-sided case, we divide the interval [0, 1] into n + 1 bins. First, we define
h0 = 0 and hn+1 = 1. Now, suppose bin 1 is B1 = (h0, h1], bin 2 is B2 = (h1, h2], . . . , and
bin n + 1 is Bn+1 = (hn, hn+1). Let Nj =

∑n
i=1 1(Xi ∈ Bj) denote the random variable that

counts the number of X’s falling into bin j, for 1 ≤ j ≤ n + 1, and let Sk =
∑k

j=1 Nj be the
kth partial sum of the N ’s, for 1 ≤ k ≤ n + 1. Similar to the two-sided case, we observe that
the following two events are the same:

{X(i) > hi for i = 1, . . . , n} = {Sk ≤ k − 1 for k = 1, 2, . . . , n},

Thus, if we define Λ = {(m1, . . . , mn) ∈ {0, . . . , n}n s.t. wn = n and wk ≤ k for 1 ≤ k ≤ n,
where wk =

∑k
i=1 mi for 1 ≤ k ≤ n}, then

P0(∩n
i=1{X(i) > hi}) =

∑
(m1,...,mn)∈Λ

P0(N1 = 0 and Nj = mj−1 for j = 2, . . . , n + 1)

=
∑

(m1,...,mn)∈Λ

(
n

m1, . . . , mn

)
n∏

j=1
(hj+1 − hj)mj ,

a sum of probabilities of multinomial events, where mj is the number of Xi’s that fall into
bin j + 1.

B.1. Recursion for exact calculation
For exact calculation of the needed probability, we define, for k = 1, . . . , n + 1,

c
(k)
j = P0(Sk = j and Sl ≤ l − 1 for l = 1, . . . , k − 1), for j = 0, . . . , k − 1, and c

(k)
k = 0.

Then for 0 ≤ j ≤ k − 1,

c
(k)
j = P0(Sk = j and Sq ≤ q − 1 for q = 1, . . . , k − 1)

= P0
( j⋃

m=0
{Sk−1 = m and Nk = j −m and Sq ≤ q − 1 for q = 1, . . . , k − 2}

)

=
j∑

m=0
P0(Sk−1 = m and Nk = j −m and Sq ≤ q − 1 for q = 1, . . . , k − 2)

=
j∑

m=0
c(k−1)

m · P0(Nk = j −m|Sk−1 = m)

=
j∑

m=0
c(k−1)

m · P (B = j −m), where B ∼ Binomial
(

n−m,
hk − hk−1
1− hk−1

)
,

which gives an easily computed recursive formula, where the initialization is c
(1)
0 = (1− h1)n.

Then the global level α is equal to 1− c
(n+1)
n .

B.2. Recursion for fast approximation with error control
For sufficiently large k, the terms of the sum for small i in the update step

c
(k)
j =

j∑
i=0

c
(k−1)
j · P (B = j − i), where B ∼ Bin

(
n− i,

hk − hk−1
1− hk−1

)
,
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become negligible, and as k gets large, we speed up the algorithm by dropping negligible
terms while bounding the relative error in the final calculation of the global level. Because all
terms in the sum are positive, the approximation will be less than or equal to the true global
level, and below we define the error to be the global level minus the approximation, which
will always be nonnegative. This will lead to a slightly conservative ELL test, but with the
relative error in the level guaranteed to be bounded by an arbitrary pre-specified amount.
As k increases, we specify a schedule for checking whether there are sufficiently small terms
that can be dropped. We begin checking at k = first_check, and after that, we check
whenever k is a multiple of check_interval. At a given checkpoint, the decision of whether
additional terms can be dropped is based only on the current values of the recursive variables
c

(k)
i , 1 ≤ i ≤ k − 1 and the current value of accumul_err_upper_bnd, which is an upper

bound on the error in the global level due to the terms that have already been dropped. The
checkpoints at which additional terms of the sum are chosen to be dropped are termed “drop
points,” and we label these d1, . . . , dw, where first_check ≤ d1 < . . . < dw < n. We end up
with a modified recursion with initialization c̃

(1)
0 = (1 − h1)n and c̃

(1)
1 = 0, and with update

step:

c̃
(k)
j =

j∑
i=skipk+1

c̃
(k−1)
i · P (B = j − i), where B is Binomial(n− i, hk−hk−1

1−hk−1
),

for skipk + 1 ≤ j ≤ k − 1 and c̃
(k)
k = 0, where skipk = −1 for 1 ≤ k ≤ d1, skipk = Ti for

di < k ≤ di+1 and 1 ≤ i ≤ w − 1, and skipk = Tw for dw < k ≤ n. In other words, at drop
point d1, terms of the sum indexed 0 through T1 are dropped, and for 2 ≤ m ≤ w, at drop
point dm additional terms indexed by Tm−1 + 1 through Tm are dropped (terms 0 through
Tm−1 having already been dropped at previous drop points). At drop point d1, the value T1
is chosen to be the largest value of T such that

T < d1 and
∑T

j=0 c̃
(d1)
j

1−
∑d1−1

l=0 c̃
(d1)
l

≤ max_rel_err, (8)

and for 2 ≤ m ≤ w, at drop point dm, the value Tm is chosen to be the largest value of T
such that

dm > T > Tm−1 and
em−1 +

∑T
j=Tm−1+1 c̃

(dm)
j

1− em−1 −
∑dm−1

l=Tm−1+1 c̃
(dm)
l

≤ max_rel_err, (9)

where we define em to be the value of accumul_err_upper_bnd after recursion step k = dm,
which is given by

e1 =
T1∑

j=0
c̃

(d1)
j and for m > 1, em =

T1∑
j=0

c̃
(d1)
j +

m∑
i=2

Ti∑
j=Ti−1+1

c̃
(di)
j .

A given checkpoint k becomes a drop point if and only if there is some T satisfying the
corresponding constraints (either Equation 8 or 9).
We first show that em is an upper bound on the actual accumulated error am that will be
incurred in the calculation due to all terms dropped prior to drop point dm+1. We define E

to be the event {Sk ≤ k − 1 for k = 1, 2, . . . , n}. Then, as noted in Section 2, P (E) = c
(n+1)
n ,

and the global level is 1− P (E).
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Lemma: ai ≤ ei for i = 1, . . . , w.
Proof: Note that at drop point d1, dropping terms of the sum indexed 0 through T1 is
equivalent to adding an extra requirement that Sd1 > T1, so that instead of P (E), we will
be calculating P (E ∩ {Sd1 > T1}). Therefore, the actual accumulated error in the global
level that will be incurred by this is a1 = P (E ∩ {Sd1 ≤ T1}), which is bounded above by
P (Sd1 ≤ T1 and Sl ≤ l − 1 for l = 1, . . . , d1 − 1) =

∑T1
j=0 c

(d1)
j =

∑T1
j=0 c̃

(d1)
j = e1.

At the induction step, we assume that am−1 ≤ em−1. Now consider the actual accumulated
error am due to the terms dropped at drop points d1, . . . , dm. By similar logic as above,

am = P (E ∩ [∩m
j=1(Sdj

> Tj)]c) = P (E ∩ {[∩m−1
j=1 (Sdj

> Tj)]c ∪ (Sdm > Tm)c})

= P (E ∩ [∩m−1
j=1 (Sdj

> Tj)]c) + P (E ∩ [∩m−1
j=1 (Sdj

> Tj)] ∩ (Sdm > Tm)c)

= am−1 + P (E ∩ [∩m−1
j=1 (Sdj

> Tj)] ∩ (Sdm ≤ Tm)) ≤ am−1 +
Tm∑

j=Tm−1+1
c̃

(dm)
j

≤ em−1 +
Tm∑

j=Tm−1+1
c̃

(dm)
j = em,

where the 2nd and 3rd equalities are based only on elementary set theory. □

We now prove that this algorithm guarantees relative error of no more than max_rel_err in
the calculated global level. First we note that P (E) = c

(n+1)
n satisfies

c(n+1)
n ≤

k−1∑
j=0

c
(k)
j , for all 1 ≤ k ≤ n + 1,

where this useful inequality follows directly from the definition of c
(k)
j in Section 2. A conse-

quence is that P (E) ≤
∑d1−1

j=0 c
(d1)
j =

∑d1−1
j=0 c̃

(d1)
j . Second, we note that by similar reasoning,

for m ≥ 2,
P (E) = P (E ∩ [∩m−1

j=1 (Sdj
> Tj)]c) + P (E ∩ [∩m−1

j=1 (Sdj
> Tj)])

= am−1 + P (E ∩ [∩m−1
j=1 (Sdj

> Tj)]) ≤ am−1 +
dm−1∑

j=Tm−1+1
c̃

(dm)
j ≤ em−1 +

dm−1∑
j=Tm−1+1

c̃
(dm)
j .

Therefore, the actual relative error in the global level incurred at drop point d1, which is
a1/(1− P (E)), satisfies

a1
1− P (E) ≤

e1

1−
∑d1−1

j=0 c̃
(d1)
j

=
∑T1

j=0 c̃
(d1)
j

1−
∑d1−1

j=0 c̃
(d1)
j

≤ max_rel_err

by Equation 8. Furthermore, the actual relative error in the global level that will be incurred
in the calculation due to all terms dropped at or before dm is

am/(1− P (E)) ≤ em

1− em−1 −
∑dm−1

l=Tm−1+1 c̃
(dm)
j

=
em−1 +

∑Tm
j=Tm−1+1 c̃

(dm)
j

1− em−1 −
∑dm−1

l=Tm−1+1 c̃
(dm)
j

≤ max_rel_err
by Equation 9. □
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The resulting algorithm is given below.

Algorithm 1 Calculate approximate global level α for one-sided ELL from proposed lower
bounds using speedup.
Input: Vector of lower bound values where these must be increasing (h1, . . . , hn), first value
of k for which to check for skipping first_check, interval for which to check for skipping
check_interval, maximum allowed relative error in global level calculation max_rel_err.
get_level_from_bounds_one_sided((h1, . . . , hn), first_check, check_interval,
max_rel_err)

1: c
(1)
0 ← (1− h1)n

2: c
(1)
1 ← 0

3: accumul_err_upper_bnd← 0
4: skip← −1
5: for k = 2, . . . , n do
6: for j = skip + 1, . . . , k − 1 do
7: c

(k)
j ← 0

8: for m = skip + 1, . . . , j do
9: c

(k)
j ← c

(k)
j + c

(k−1)
m · dbinom(x = j −m, size = n−m, prob = (hk−hk−1)

(1−hk−1) )
10: end for
11: end for
12: c

(k)
k ← 0

13: if (k > first_check and k % check_interval == 0) or k == first_check then
14: available_err← max_rel_err− (1 + max_rel_err) · accumul_err_upper_bnd
15: calculated_total_prob← 0
16: for j = skip + 1, . . . , k − 1 do
17: calculated_total_prob← calculated_total_prob + c

(k)
j

18: end for
19: available_err← available_err− max_rel_err · calculated_total_prob
20: proposed_err← c

(k)
skip+1

21: proposed_skip← skip + 1
22: while proposed_err ≤ available_err do
23: proposed_skip← proposed_skip + 1
24: proposed_err← proposed_err + c

(k)
proposed_skip

25: end while
26: accumul_err_upper_bnd← proposed_err− c

(k)
proposed_skip

27: skip← proposed_skip− 1
28: end if
29: end for
30: c

(n+1)
n ← 0

31: for l = skip + 1, . . . , n− 1 do
32: c

(n+1)
n ← c

(n+1)
n + c

(n)
l

33: end for
34: α← 1− c

(n+1)
n

35: return α

end
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