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Abstract 

Episodic memories refer to our ability to encode and reinstate experiences. By 

extension, these memories shape how we view ourselves and the world around 

us. Despite this, little is known about how neurons in the hippocampus encode 

and retrieve new episodes. Here, I will demonstrate evidence for single neurons 

in the human hippocampus that code specific episodic memories (hence called 

Episode Specific Neurons), both through a rate code and a temporal code. 

Importantly, these neurons cannot be construed as coding for specific time-

points or concepts. Next, I will extend these findings to population activity in 

the local field potential. I report evidence for a reinstatement in high frequency 

power during successful memory processing that mirrors earlier findings in 

single neurons. Again, these results cannot be explained by activity induced by 

a content-code. Despite the undisputed importance of theta activity in memory 

processing, we find no consistent evidence of an increase in theta power during 

memory processing. Likewise, we find no evidence that earlier identified 

Episode Specific Neurons or other hippocampal neurons fire preferentially at a 

particular theta phases or theta phase offsets between encoding or retrieval of 

episodic memories. Lastly, I embed these findings in the broader literature, 

identify future experiments, and discuss possible translational applications.  
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Chapter 1 

 

General Introduction 

 

1.1 The shocking origin of neuroscience 

If one were to set out in search for the earliest scientific breakthrough that led to this work 

an educated guess would land on Luigi Galvani. The legacy of the Italian polymath is 

grounded in his discovery that the muscles of frogs twitch when electrically stimulated  

(Galvani, 1791). He thereby refuted the contemporary belief that animal spirits inside hollow 

nerves drive movement and sensation. Although he was wrong in attributing the muscle 

twitches to an innate force he called “animal electricity”, he still managed to demonstrate 

the electrical nature of nerve impulses, thereby laying the foundation of electrophysiology 

and modern neuroscience (Piccolino, 1998). 

The impact of Galvani's work was so immense that it has been likened to the French 

Revolution (Piccolino, 1998). It ultimately led Alessandro Volta to invent the electrical 

battery and inspired Mary Shelley to write the classic horror story Frankenstein (Piccolino, 

1998). Galvani's name survives until today in the verb galvanize and still has a place in 

popular culture through songs such as Galvanize (curiously by The Chemical Brothers). 

An equally reasonable choice would be Ramón y Cajal, who in the late 1880s discovered 

that the central nervous system is made up of separate interconnected neurons (Ramón y 

Cajal, 1888). He later suggested that their ability to form new connections may explain 

learning (Ramón y Cajal, 1894). About 60 years later, Donald Hebb proposed a principle 

according to which the connections of two neurons are strengthened if one neuron repeatedly 

excites the other neuron (Hebb, 1949). This led to the popular paraphrase "Neurons that fire 

together, wire together" which was coined not by Hebb himself, but by Shatz (Shatz, 1992). 
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1.2 A walk down memory lane  

We experience the world around us filtered through the lens of our experiences. Without 

memories, we could not hold on to these experiences locking us perpetually in the present. 

It follows that memories are at the core of what makes us humans. 

Episodic memory, a term coined by Endel Tulving in 1972 (Tulving, 1972), is the ability to 

encode and later recollect experiences that contain a what, where and when. They are rich in 

detail, integrating information from multiple modalities, they are encoded automatically, 

require no repetitions, and can last an entire life (Teyler & Rudy, 2007; Tulving, 2002). By 

remembering these episodic memories, it is as if we were mentally transported back to that 

time, re-experiencing them anew (Tulving, 2002). An example of an episodic memory is 

when I was sitting in a small coffee shop in Sevilla in the company of my loved one. The 

sun had not yet reached its peak and was pleasantly warm. A mild breeze carried over the 

smell of freshly brewed coffee and bits of conversations from other patrons. It was a 

satisfying way to start the day, my body still exhilarated from the workout we just finished. 

The waiter brought over two coffees. On the way back to the kitchen he hesitated, turned on 

his heel and walked back to our table. "Your PhD thesis was a fantastic read", he said with 

a slight Spanish accent, adding "but why was your example for episodic memories so long?".  

Semantic memories on the other hand refer to factual knowledge and understanding of 

concepts (such as knowing that the very real coffee shop in the above story was called "La 

Nueva Peseta"; Squire, 1987). Together with episodic memories they belong to the subgroup 

of declarative memories (Squire, 1987). Declarative memories, sometimes also called 

explicit memories, can be expressed (i.e., declared) overtly and form the basis for conscious 

recollection (Squire, 1987, 1992). In reality, the line separating semantic and episodic 

memories can get blurry. For example, if you were asked how old you were when you 

received your childhood pet, the retrieved memory would have semantic (your age) and 

episodic aspects (the experience itself).  

Declarative memories can in turn be distinguished from non-declarative memories (Squire, 

1992). This category contains procedural memory (e.g., knowing how to make a coffee) and 

priming, which refers to the phenomena that exposure to a stimulus influences the behaviour 

or response to a later stimulus (e.g., judging someone’s character as "warmer" after holding 

a warm coffee; Williams & Bargh, 2008). These memories do not require conscious 

perception which is why they are also referred to as implicit memories (Squire, 1992). 
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1.3 Intracranial electrophysiological recordings in epilepsy patients 

Roughly 1% of the population suffers from epilepsy, and in one-third of these cases 

treatment and medication provide no remedy from seizures (Kwan et al., 2011). If the seizure 

onset is focal, i.e., spatially confined it is sometimes possible to resect the epileptic tissue 

which effectively cures the patient (Engel, 1996). Henry Molaison, also known as Patient 

H.M., was the most prominent epilepsy patient. He underwent a resection of both 

hippocampi and large parts of his MTL, which led to a seizure-free life (Corkin, 1984; 

Scoville & Milner, 1957; Squire, 2009). As a side effect of the surgery, he developed a 

graded retrograde amnesia and a complete anterograde amnesia, meaning that he retained 

some distant memories, but could neither remember recent memories nor create new ones 

(Corkin, 1984; Scoville & Milner, 1957; Squire, 2009). This inspired a new wave of research 

implicating the hippocampus and neighbouring structures in episodic memory processing 

(Corkin, 1984; Scoville & Milner, 1957; Squire, 2009). Nowadays, an extensive battery of 

tests is administered prior to resection, with the aim to exclude as much healthy tissue as 

possible (Parvizi & Kastner, 2018). One important procedure is the intracranial implantation 

of depth electrodes at suspected seizure onset zones, based on seizure characteristics, 

anatomical scans, and long-term surface EEG recordings (Parvizi & Kastner, 2018). Once 

implanted these electrodes typically remain in place for 1-2 weeks to gain an understanding 

which brain regions are responsible for the generation of epileptic seizures and will later be 

resected (Parvizi & Kastner, 2018; Quian Quiroga, 2019). While these electrodes are 

implanted, researchers perform experiments with willing patients granting insight into the 

neurophysiological underpinnings of various brain functions.  

The clear advantage of intracranial electrophysiological recordings over traditionally used 

non-invasive methods is a spatially confined and well-localized signal (vs surface EEG or 

MEG) with a high temporal resolution (vs fMRI) (Quian Quiroga, 2019). In contrast to 

invasive recordings in animals, humans can typically perform a task after minimal 

instructions and can provide comprehensible verbal feedback when prompted. A severe 

disadvantage of intracranial recordings is a relatively limited coverage of the brain compared 

to traditionally used brain recording methods. This downside is exacerbated by the fact that 

the spatial positions of the intracranial electrodes are determined by clinical need and not 

scientific experimentation (Parvizi & Kastner, 2018; Quian Quiroga, 2019). Furthermore, 

access to epileptic patients that are willing to participate in scientific research is limited. 

Finally, even if these hurdles are overcome, it is important to ascertain that pathologic 

epileptic activity does not influence the obtained results (Parvizi & Kastner, 2018; Quian 

Quiroga, 2019). 
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Ward and Thomas (1955) were the first to successfully record human single neurons. They 

did so in the posterior temporal lobe using glass micropipettes while surgeons tried to 

localize the epileptic focus and repair a bone defect in the patient’s skull. The type of 

microwire electrodes that are still in use today (Fried et al., 1999) have been described in the 

early 70s by Babb and colleagues (Babb et al., 1973). These so-called Behnke-Fried 

electrodes are single-use intracranial depth electrodes that consist of a 1.3 mm hollow 

macroelectrode through which a bundle of eight high-impedance microelectrodes and one 

low-impedance microwire is inserted. By default, the low-impedance wire is used as a 

reference for the high-impedance wires. Microwires have a width of ~40 µm and radially 

protrude 4-5 mm past the end point of the macro depth electrode. They are made from 

platinum, which has a high impedance for lower frequencies and a low impedance for higher 

frequency bands. This allows the recordings of action potentials of multiple local single 

neurons superimposed on local field potentials. Each microwire bundle typically yields 

around a dozen separate neurons. Usually, fewer single neurons can be recorded at the end 

of the first recording week, which is likely due to gliosis at the microwire tip (Fried et al., 

1999).  

Newer probes such as the Neuropixels 1.0 contain 384 channels across a 20 µm × 70 µm × 

10 mm shank (Dutta et al., 2019; Jun et al., 2017). Apart from a higher quantity of recorded 

neurons, the rigid distance (20 µm) between neighbouring channels allows for a higher 

quality spike sorting as spikes are propagated across contacts. In comparison, local 

similarities between microwires cannot be used in conventionally used electrodes as they 

spread out in an unpredictable way during implantation. Using a Neuropixels probe Durand 

and colleagues (Durand et al., 2022) recorded almost 600 neurons across 13 different brain 

regions using six different Neuropixels probes in a mouse. In the first reported use of this 

novel probe in humans, Paulk and colleagues recorded upwards of 300 cortical single 

neurons in two patients awaiting DBS implantation for movement disorder. However, in one 

epilepsy patient awaiting tissue resection, the probe in the lateral temporal lobe only 

recorded the activity of 29 neurons (Paulk et al., 2022). Of note, the entire recording was 

conducted within the confines of the operating room for just 15 minutes, so no experimental 

intervention was possible (Paulk et al., 2022). Compared to commonly used electrodes in 

humans, the higher yield of neurons with newer probes will facilitate analyses of assemblies 

of neurons and their interactions with different brain regions (Durand et al., 2022). 
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1.4 Microwire recording – LFP and Single Units 

The recorded microwire signal can be divided into two components depending on their 

frequency. The first component is the local field potential (LFP), which reflects changes in 

the extracellular membrane potential and ranges until 300 Hz. Superimposed onto the LFP 

is the activity of individual neurons and multi-units in close proximity to the microwire.  

Action potentials (also called spikes) are characterized by a steep and transient amplitude 

increase in the signal.  Spike detection and sorting can be implemented using a variety of 

existing toolboxes, with new ones being developed continuously that demonstrate promising 

results (Pachitariu et al., 2023). Here, we used the wave_clus algorithm, which is described 

in detail in Chaure and colleagues (Chaure et al., 2018). The following is a brief synopsis of 

the processing steps performed by this algorithm. The first step to detect neural spikes is to 

filter the data so it only contains the spike-band which ranges from 300 Hz to 3000 Hz. Next, 

the data is segmented into smaller epochs of typically five minutes each, so artefacts 

occurring in one segment do not increase the threshold across the entire recording. Each one 

of these epochs is then individually thresholded using some form of deviation to a measure 

of central tendency (such as the mean or median). Points where the threshold is surpassed 

are stored as putative spikes. This spike detection is done separately for positive and negative 

deflections. Once a spike is detected, the features of each spike-waveform are computed 

using a Haar wavelet and the most significant coefficients are identified using a Lilliefors 

test (Chaure et al., 2018). Next, nonparametric clustering is performed in the feature space 

using superparamagnetic clustering. Superparamagnetic clustering groups spike waves into 

clusters based on nearest-neighbour interactions (Blatt et al., 1996). Through template-

matching in Euclidian space, unclassified waveforms are assigned to one of the identified 

clusters. The resulting clustering solution is then manually inspected and further optimized 

by rejecting artefact clusters, splitting clusters that represent multi-unit activity and merging 

clusters that likely stem from the same neural source (Chaure et al., 2018). 
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Figure 1.1. Example schematic of a power spectrum visualising the 1/f relation between 

power and frequency.  

The black line represents the aperiodic component of the signal, and the grey line reflects 

the superimposed periodic activity. The x-axis shows the frequency, and the y-axis displays 

the power. Both axes are in log-space. 

 

The extracellularly recorded local field potential (LFP) represents synchronously active 

neurons that are spatially aligned. Synaptic activity is the largest contributor to the LFP, but 

transmembrane currents from soma, dendrites, spikes, and spike afterpotentials also impact 

the LFP (Buzsáki et al., 2012). The LFP can be divided into periodic (oscillatory) and 

aperiodic (fractal, non-oscillatory) components (see Figure 1.1.). Aperiodic power is 

inversely related to the frequency and roughly follows a 1/f relationship (where f is the 

temporal frequency). This power-frequency relationship is likely due to dendrites acting as 

a low-pass filter (Linden et al., 2010) and because fewer neurons can be active in shorter 

cycle lengths of higher frequencies (Buzsáki et al., 2012). In the past, the aperiodic part of 

the signal was often ignored or considered background noise (Donoghue et al., 2020). 

However, more recent research has pointed to the steepness or tilt as well as the offset of the 

1/f aperiodic component as an indicator for excitation (Gao et al., 2017) and a proxy for 

neural firing (Manning et al., 2009). The periodic part reflects true oscillatory activity (i.e., 

rhythmic activity in a circumscribed frequency range). Activity in these narrowband 

frequencies has been associated with a wide range of cognitive processes (Buzsaki & 

Tingley, 2018; Hanslmayr et al., 2007; Jensen et al., 2007; Klimesch et al., 2007; Landau & 

Fries, 2012). Analysing this oscillatory activity without consideration of the 1/f shape can 

be problematic (Herweg et al., 2020; Samaha & Cohen, 2022) as the shape of the 1/f can 

bias the oscillatory activity. Moreover, a tilt or change in offset can be erroneously 
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interpreted as a change in oscillatory activity (Herweg et al., 2020). There are multiple 

methods to separate the signal into periodic and aperiodic parts such as Irregular Resampling 

Auto-Spectral Analysis (IRASA; Gao et al., 2011) and Fitting Oscillations and One Over F 

(FOOOF; Donoghue et al., 2020). 

 

1.5 The hippocampus 

1.5.1 Etymology and anatomy 

The etymological root of hippocampus comes from the Greek words hippos (horse) and 

kampos (sea monster) and trace back to the anatomist Julius Caesar Aranzi, who compared 

the shape of the hippocampus to that of a sea horse (Bir et al., 2015). Although the term 

hippocampus prevailed, different names have been proposed in the past, such as “silkworm” 

or “Ram’s horn” (Bir et al., 2015). Humans have two mirrored hippocampi, one in each 

hemisphere. These hippocampi are located beneath the neocortex within the medial temporal 

lobe (MTL). The hippocampus can be divided into the dentate gyrus, hippocampus proper 

(CA1-CA3) and the subiculum. Highly processed information flows from the prefrontal 

neocortex, perirhinal cortical areas and association cortices through the EC to the 

hippocampus (Teyler & Rudy, 2007). This cortical information is integrated with subcortical 

input from the amygdala and thalamus (Swanson & Mogenson, 1981; Teyler & Rudy, 2007). 

 

1.5.2 The Indexing Theory of the human hippocampus 

More than three decades ago, Teyler and DiScenna proposed the Indexing Theory as a 

framework to explain hippocampal function during the encoding and retrieval of episodic 

(at the time called experiential) memory in humans (Teyler & DiScenna, 1986). According 

to the Indexing Theory, during initial encoding the various multimodal elements that make 

up an episode instate a cortical activity pattern that is projected to an assembly of neurons in 

the hippocampus. Subsequently, a partial input of the initial experience is sufficient to 

reactivate the entire assembly of associated hippocampal neurons, a process known as 

pattern completion. These neurons then project back to the neocortex, reinstating the entire 

experience (Teyler & DiScenna, 1986; Teyler & Rudy, 2007). Pattern separation refers to 

the complementary ability to distinguish between distinct episodes. Because each experience 

is uniquely indexed, even the highly overlapping cortical representations of two similar 

episodes can be separated in the hippocampus (Teyler & DiScenna, 1986; Teyler & Rudy, 

2007). This hippocampal index allows a flexible way to quickly store the cortical 
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representation of an episodic memory. Over time, the initially strengthened synaptic 

connections for unimportant memories either decay (Hardt et al., 2013) or fall victim to 

interference (Underwood, 1957). Within this framework the function of the hippocampus 

can be likened to a librarian: it can direct one to the necessary information within the library 

(the neocortex) but does not possess the knowledge itself. This implies that the hippocampus 

is content-free as hippocampal neurons arbitrarily bind concurrent cortical activity 

irrespective of the semantic content they represent. 

 

1.5.3 Information flow during memory processing 

According to a model by O’Reilly and Rudy (O'Reilly & Rudy, 2001), during memory 

encoding information from the neocortex reaches the entorhinal cortex (EC) where two 

representations are generated. One representation is projected via the broad and diffuse 

perforant path to the dentate gyrus (DG), forming a sparse rendering of the cortical activity 

pattern. The DG then connects to CA3 through the sparse, focused and topographically 

arranged mossy fibre pathway, with approximately 70 synapses linking to each CA3 neuron 

in rats (O'Reilly & Rudy, 2001). At the same time, the other representation projects from the 

EC to CA1 and back. This connection is point-to-point and not diffuse like the perforant path 

(Naber et al., 2001; Tamamaki & Nojyo, 1995). Due to the coactivity of neurons in CA3 and 

CA1, their diffuse and widespread synaptic connections through the Schaffer Collaterals are 

strengthened. During retrieval, a partial input of the original representation is sufficient to 

reactivate the representation in CA3, where the entire representation is pattern completed. 

This in turn reinstates the appropriate CA1 representation that can project back to the EC 

because of the bidirectional connection between EC and CA1 (O'Reilly & Rudy, 2001). 

 

1.5.4 Role in remote memories 

The Standard Model of Systems Consolidation (Squire & Alvarez, 1995) proposes that a 

memory trace is initially encoded in the hippocampus and only weakly encoded in the 

neocortex. Over time the hippocampus reactivates the cortical pattern thereby gradually 

strengthening the synaptic connections that formed the initial memory trace in the neocortex 

– a concept that dates back to Marr (Marr, 1971). As a result, the hippocampus eventually 

becomes redundant. This is in line with the graded retrograde amnesia observed in patient 

H.M. (Scoville & Milner, 1957), whose hippocampus and extensive parts of the medial 

temporal lobe (MTL) had been removed. The forgetting of more recent memories can be 

attributed to their incomplete consolidation. 
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McClelland and colleagues (McClelland et al., 1995) extended the Standard Model of 

Systems Consolidation and developed a computational theory wherein the hippocampus is 

responsible for rapid learning of new information that could then be integrated into the 

neocortex over longer time periods (see also Hirsh, 1974). The hippocampus separates 

experiences and avoids catastrophic interference between older and newer memories through 

the implementation of a sparse and orthogonal code where each event is represented by a 

distinct assembly of neurons. This complementary learning systems approach provides a 

solution to the challenge that the brain needs to both recognize general patterns in the 

environment and capture the details of a particular episode (O'Reilly & Rudy, 2001). Of 

note, Schapiro and colleagues (Schapiro et al., 2017) solved this conundrum in a 

computational model by assigning statistical learning and encoding of specific episodes to 

separate hippocampal subfields. In contrast, the Multiple Trace Theory (Nadel & 

Moscovitch, 1997) proposed that the hippocampus remains essential for episodic memory 

even for remote memories. However, similar to the Systems Consolidation account, the 

hippocampus aids in the stabilisation of semantic memories in the neocortex. In support of 

this Corkin (Corkin, 2002) argued that remote memories of H.M. were semanticized and 

thus did not reflect retrieval of true episodic memories. Importantly, whether the Systems 

Consolidation or the Multiple Trace Theory prevails has no bearing on the concept of a 

hippocampal index assembly which is compatible with either framework. 

 

1.6 Neurons in the hippocampus 

1.6.1 Neurons coding content: Concept Neurons 

Concept Neurons (CNs) are neurons in the human MTL that fire in response to specific 

concepts in an all-or-none way (Gelbard-Sagiv et al., 2008; Quian Quiroga et al., 2008; 

Quian Quiroga et al., 2005) They exhibit a high degree of multimodal invariance (i.e., they 

respond to Jennifer Aniston as an image or her spoken name) and context invariance (i.e., a 

concept neuron tuned to Jennifer Aniston would activate regardless of whether you see her 

in a movie, a park or in a café; Quian Quiroga et al., 2005). Curiously, the latency of their 

firing rate is much later than would be required by simple sensory processing and object 

recognition, which is an indication of their involvement in memory processing (Mormann et 

al., 2008). This lines up with the observation that most concept neurons are tuned to 

personally relevant concepts and depend on the subjective and conscious perception rather 

than objective sensory properties (Quian Quiroga et al., 2014; Quian Quiroga et al., 2008). 

These concept neurons are not topographically organized, i.e., spatially close concept 
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neurons might code for vastly different concepts (De Falco et al., 2016). This spatial 

organization benefits episodic memory processing as it allows association between any two 

concepts without connecting distant areas (Quian Quiroga, 2019). According to Quian 

Quiroga (Quian Quiroga, 2019, 2020; Quiroga, 2012), these CN are the building blocks of 

episodic memory formation and retrieval. If you met your best friend in your favourite café 

the concurrent activation of two assemblies of CN (one for your friend and one for the café) 

would represent the episode in the hippocampus. These assemblies would then project back 

to the neocortex reinstating the sensory activity pattern first induced during the formation of 

the episode. This back-projection parallels the one described in the Indexing Theory (Teyler 

& DiScenna, 1986; Teyler & Rudy, 2007) with the important difference that the hippocampal 

representation consists of previously existing concept-specific neural assemblies. A separate 

memory of the same friend in a park would in turn be represented by the simultaneous 

activity of the same assembly coding for your friend and another assembly representing the 

park. 

 

1.6.2 How are neurons allocated to a memory trace?  

Over one hundred years ago, Richard Semon proposed that a memory is represented by the 

long-lasting physical changes in neural assemblies that encoded the initial experience 

(Semon, 1904). This memory trace is termed “engram” in the animal literature (Josselyn et 

al., 2015; Park et al., 2016; Semon, 1904). Unlike Index Neurons, which are assumed to be 

in the hippocampus, the entire engram representing an experience spans multiple assemblies 

in various brain regions that are functionally connected (Roy et al., 2019). Optogenetics and 

chemogenetics have been especially beneficial to memory research in animals. Experiments 

conducted on rodents revealed that neurons are allocated to an engram based on their 

excitability, with those having higher excitability more likely to be included (Frankland & 

Josselyn, 2015; Josselyn, 2010). Excitability is defined as the inclination of a neuron to fire 

an action potential in response to a signal (Dong et al., 2006). Rashid and colleagues (Rashid 

et al., 2016) showed that neurons assigned to an engram inhibit neighbouring neurons for 

about six hours through GABAergic interneurons. Without this inhibition, memories that 

occur close in time might be encoded by non-overlapping neurons. After being allocated to 

an engram, neurons representing an event remain in a state of elevated excitability for over 

six hours. Consequently, some of the initial engram neurons are likely to be coallocated to 

events that occur within this timeframe (Cai et al., 2016; Rashid et al., 2016). After this 

period, excitability drops making it less likely that the same engram neurons represent 

temporally distant events (Frankland & Josselyn, 2015; Silva et al., 2009). Cai and 
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colleagues (Cai et al., 2016) found evidence for this in CA1 of mice, that were presented 

with context A, followed by context B seven days later and then context C five hours later. 

Engrams representing the contexts separated by a shorter temporal gap were largely 

overlapping, while those with a larger time delay showed no such overlap. Rashid and 

colleagues (Rashid et al., 2016) extended these findings by optogenetically stimulating 

neurons in the lateral nucleus of the amygdala that were allocated to an event 24h before a 

second event took place (i.e., outside of the six hour window of increased excitability). Due 

to this artificially induced excitability, the second event was coallocated to the same subset 

of neurons. A similar result was obtained when the remote memory was retrieved prior to 

the acquisition of a related memory, suggesting a mechanism for integrating newer memories 

with relevant older memories (Rashid et al., 2016; Yokose et al., 2017). This mechanism of 

coallocation is suspected to be responsible for false memories: engram cells in the dentate 

gyrus active during the exploration of context A were optogenetically reactivated in context 

B, where the mice also received footshocks. Mice then showed fear reinstatement in context 

A (artificial fear memory) and B (natural fear memory), but not in a third neutral context 

(Ramirez et al., 2013). Similarly, Vetere and colleagues (Vetere et al., 2019) tagged neurons 

in the olfactory bulb and synchronized it with either appetitive or aversive neural pathways. 

Subsequently, mice showed attraction or aversion to the real odour giving credence to the 

idea that an artificial memory was created in the absence of a real experience.  

Engram neurons are necessary and sufficient for memory retrieval. After destroying a subset 

of neurons that were initially allocated to a fear memory mice suffered from a profound 

memory loss (Han et al., 2009). Importantly this loss-of-function was specific to the fear 

memory and new fear conditioning was possible. Ablating other neurons did not lead to a 

disruption in memory. Conversely, artificial reactivation of engram cells in the dentate gyrus 

reliably led to the retrieval of the memory even in the absence of external retrieval cues (Liu 

et al., 2012). In a neutral context, mice did not freeze until the engram representing the fear 

memory was optogenetically reactivated. This represents a gain-of-function and cements 

engram cells as causally relevant for memory processing. Although findings from rodent 

brains do not by default translate to the human brain, there is enough overlap that non-human 

animal work can inform human research and provide useful hypotheses. For instance, it is 

unknown how neurons become assigned to a memory in humans, but it is possible that 

excitability determines this allocation process as well. 
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1.7 Goal of this thesis 

Despite numerous studies highlighting the importance of the hippocampus for memory 

processing, the underlying coding mechanism is still elusive. The Indexing Theory of Teyler 

& DiScenna (Teyler & DiScenna, 1986) suggests the existence of neurons that are active 

during the initial encoding of a memory and later reinstated during the successful retrieval 

of the same memory. Although proposed over 35 years ago, no evidence for such a neural 

pattern has been found in humans.  

In the second chapter of this thesis, I present evidence for Episode Specific Neurons 

(ESNs) that code for discrete episodes through a reinstatement of their firing rate from 

encoding to retrieval. Importantly, using various approaches I demonstrate that ESNs are 

different from Concept Neurons in that they code for a conjunctive representation of the 

elements within an episode, rather than a particular element or concept within that episode. 

In the third chapter, I extend these single neuron findings to the population activity 

reflected in the local field potential (LFP). Power in the high frequency band (HFP; 40-200 

Hz) has been used as a proxy for neural activity of the local field potential (LFP; Buzsáki et 

al., 2012). In line with the findings from Chapter 2, I identified a significant number of 

microwires that show a reinstatement of HFP from encoding to retrieval in individual 

episodes. Again, this code was not driven by content-specific activity. 

In the fourth chapter, I report findings on the role of the theta band in memory 

processing. Recent research suggested that successful memory processing is reflected in an 

aperiodic power shift from the lower frequencies to the higher frequencies and a periodic 

narrow-band theta power increase. According to an influential theory memory encoding and 

retrieval occur in opposing phases of the theta oscillation to avoid catastrophic interference 

between new and older memories (Hasselmo et al., 2002). However, I found no conclusive 

evidence for a difference in aperiodic power or theta power between (i) remembered and 

forgotten episodes or (ii) between episodes that contained reinstating ESNs and episodes 

without ESN activity. Likewise, I did not discover consistent evidence of a (iii) phase 

preference of single neuron or ESN activity during encoding or during retrieval, (ii) or a 

significant theta phase offset between neurons firing at encoding and retrieval. 

Finally, in the fifth chapter, I will summarize the findings of the preceding three 

chapters and propose potential avenues for future research. This includes possible 

experiments that may determine if ESNs satisfy the criteria for Index Neurons introduced by 

Teyler and Discenna (Teyler & DiScenna, 1986). Moreover, I will suggest a way how CN 

might originate from ESNs and outline ways in which the insight gained from the basic 

research in this thesis can be applied to aid patients suffering from dementia and PTSD. 
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Chapter 2 

 

Hippocampal neurons code individual episodic 

memories in humans 

 

Abstract 

The hippocampus is an essential hub for episodic memory processing. 

However, how human hippocampal single neurons code multi-element 

associations remains unknown. Some argue that each hippocampal neuron 

codes for an invariant element within an episode. Instead, others have proposed 

that hippocampal neurons bind together all elements present in a discrete 

episodic memory. Here, we provide evidence for the latter. We show that 

individual neurons, which we term Episode Specific Neurons (ESNs), code 

discrete memory episodes. These ESNs do not reflect the coding of a particular 

element in the episode (i.e., concept or time). Instead, they code for the 

conjunction of the different elements that make up the episode. 
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2.1 Introduction 

Episodic memory refers to our ability to reinstate the what, where and when of past 

experiences (Tulving, 2002). This ability is thought to depend on the reinstatement of neural 

activity that was present at memory encoding (Pacheco Estefan et al., 2019). It is undisputed 

that the hippocampus plays an integral role in episodic memory processing (Lisman et al., 

2017; Marr, 1971; Squire, 1992) and the binding of multimodal information (Cooper & 

Ritchey, 2020). However, how it codes episodic memories remains controversial.  

One important open question is whether neurons in the hippocampus code for specific 

elements or an entire episode. Concept Neurons in the hippocampus fire in response to 

specific invariant elements independent of the context in which they are presented (Gelbard-

Sagiv et al., 2008; Mormann et al., 2011; Mormann et al., 2008; Quian Quiroga et al., 2005). 

One contemporary idea is that the diverse elements that make up an episode are coded by 

the simultaneous activity of a set of these Concept Neurons (Quian Quiroga, 2020; Quiroga, 

2012) or by expanding the selectivity of existing Concept Neurons (Ison et al., 2015). 

According to this framework when you are sitting in your favourite coffee shop with your 

best friend, one set of Concept Neurons might code for the coffee shop and a separate set for 

your friend (Figure 2.1A). 

Alternatively, single units in the hippocampus might sparsely encode a specific set of 

elements within an individual episode and act as pointers to cortical modules during memory 

reinstatement. According to this so-called Indexing Theory (Teyler and DiScenna, 1986; 

Teyler and Rudy, 2007), the entire episode with your friend in the coffee shop is represented 

by a set of hippocampal neurons (Figure 2.1A). Unlike Concept Neurons, these Episode 

Specific Neurons (ESNs) would fire in response to the conjunction of all the diverse 

information within an episode and not in response to individual content elements. Despite 

computational models pointing towards the existence of ESNs (Bowman & Wyble, 2007; 

Krotov & Hopfield, 2020; Parish et al., 2021; Whittington et al., 2022), to this day there is 

no evidence for such a sparse conjunctive code in humans.  

In the present work, we provide support for the existence of this content-agnostic episodic 

memory code implemented through Episode Specific Neurons. We leveraged intracranial 

microwire recordings to investigate the firing patterns of neurons in the human hippocampus 

and hypothesized that a significant number of hippocampal neurons reinstate their firing rate 

within a specific episode (i.e., fire during encoding and retrieval).  

Importantly, these ESNs would code for the conjunctive elements present within an episode 

and are not tuned to individual elements within the episode. The existence of ESNs does not 
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preclude Concept Neurons from participating in episodic memory processing. However, 

investigating the role of Concept Neurons in episodic memories goes beyond the scope of 

this work. As control analyses, we investigated whether this firing activity can be explained 

by a firing response to specific invariant elements, as occurs in Concept Neurons (Quian 

Quiroga et al., 2005), or by a time preference, as occurs in Time Cells (TC; Reddy, Zoefel 

et al., 2021; Umbach et al., 2020). 

 

 

Figure 2.1. Difference between Indexing Theory and Concept Neuron based 

hippocampal coding of episodic memories, experiment procedure for experiments 1 & 

2. 

(A) Left: The classic Indexing Theory (Teyler & DiScenna, 1986) proposes that neurons in 

the hippocampus represent a conjunctive code that binds together all the elements that make 
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up the episode in the form of an index. Within this framework, neurons do not directly code 

for the elements themselves (i.e., the smell of the coffee, your friend, the background music, 

the café, etc.), but rather act as pointers to these different elements which themselves are 

coded elsewhere (i.e., the neocortex).  Right: Some hippocampal neurons are thought to code 

for specific elements or concepts, which is why they are called Concept Neurons (Mormann 

et al., 2011; Mormann et al., 2008; Quian Quiroga et al., 2005). Within this framework, a 

group of neurons collectively code an episodic memory, with each neuron representing a 

specific element involved in that episode (i.e., a neuron coding for the coffee, another neuron 

coding for your friend, etc. (Quian Quiroga, 2020; Quiroga, 2012). It is important to note 

that one index or one concept is likely to be coded by an assembly of neurons, not a single 

neuron. 

(B) Outline of the procedure for Experiment 1. During encoding, all participants were 

instructed to imagine a vivid episode involving an animal cue and two associate images (two 

faces, two places or a face and a place) and rated its plausibility. This approach is suitable 

for investigating episodic memory as originally defined by Tulving in 1972 (Tulving, 1972). 

During recall, participants were asked to retrieve the associated images when cued with the 

animal cue. The experiment was self-paced and every episode was learned and tested only 

once. Following each encoding block of roughly 20 episodes, participants performed a short 

distractor task. The pink areas represent the time windows used for subsequent analyses (see 

Methods). 

(C) Outline of the procedure for Experiment 2. Left: The memory task was largely the same 

as in Experiment 1 (see Figure 2.1B). However, events consisted of one cue (either an 

animal, a face or a place) and one associate image (either an animal, a face or a place). Right: 

After the memory task, patients performed a visual tuning task where the previously used 

stimuli were shown multiple times in quick succession without a memory component. This 

approach has been traditionally used to identify putative Concept Neurons. 

 

2.2 Materials and Methods 

2.2.1 Procedure of memory Experiment 1 

During the encoding phase of the experiment the participant associated a cue with two other 

stimuli. For each episode, the cue was a new picture of an animal. The stimuli could be 

pictures of either places, faces or both. Every picture was only shown once. Two seconds 

after the animal cue was presented, the associate stimuli were shown, while the animal cue 

remained on the screen. The participant was asked to create a vivid imaginary story involving 
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the cue and the two stimuli. This part of the experiment was self-paced. The task continued 

once the participant rated the plausibility of the imaginary story (plausible/implausible). 

After the encoding phase, the participant performed a distractor task to rule out working 

memory effects. During the distractor task, participants had to indicate whether a random 

number (up to two digits) that appeared serially on the screen was odd or even. After each 

response, the participant received feedback indicating a correct or incorrect response. This 

task consisted of 15 trials.  

During the retrieval phase, all cues from the previous encoding phase were presented 

sequentially in pseudorandom order.  Each animal cue was presented for two seconds and 

subjects were tasked to retrieve the corresponding images. The participant was then asked 

how many associated images they remembered (none, one, or two). Participants had as much 

time to respond as they required. If the participant indicated that they remembered one or 

two images, they then were asked to select two pictures from an array of four pictures (two 

targets and two distractors that consisted of pictures from the previous encoding block which 

were associated with a different cue). 

The experiment ended after the retrieval phase if the total runtime exceeded 40 minutes, or 

if the patient asked to abort the experiment. Otherwise, the experiment continued with the 

next encoding block. The encoding block initially consisted of 20 episodes but could be 

adjusted depending on the cognitive abilities of the patient. If the hit rate fell below 66.25%, 

fewer episodes were shown for the next block and vice versa if the hit rate surpassed 73.75%. 

The patients performed the memory task on a laptop computer (Experiment 1: Toshiba Tecra 

W50, 60 Hz refresh rate; Experiment 2: Lenovo L390 Yoga, 60.01 Hz refresh rate), while 

either seated in a chair next to their bed or their hospital bed. 

 

2.2.2 Procedure of memory Experiment 2 

The second experiment is based on the first experiment with the following adaptations: 

participants are presented with one cue image (depicting an animal/place/face) and only one 

associate image (depicting an animal/place/face). During retrieval, participants were asked 

whether they remembered the associate image and the participants had to choose the correct 

associate from an array of four pictures (one target and three distractors that consisted of 

pictures from the previous encoding block which were associated with a different cue). The 

experiment was terminated upon request or when the runtime at the end of a retrieval block 

exceeded 30 minutes. 
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2.2.3 Visual tuning task procedure 

For Experiment 2, the memory task was followed by a visual tuning task. During this tuning 

task, every image that was shown during the preceding memory task was displayed. Each 

image was shown six times in pseudorandom order on the screen for a duration of one 

second. The inter-image interval was jittered between 500ms and 550ms. To ensure 

attention, patients had to categorize the image as an animal, a place, or a face using the arrow 

keys on the keyboard. 

 

2.2.4 Participants 

For Experiment 1, eight patients were recorded in the Queen Elizabeth Hospital Birmingham 

(Birmingham, UK) (4 female; mean age: 36.25 years, from 26-49 years) and eight patients 

in the Universitätsklinikum Erlangen (Erlangen, Germany) (3 female; mean age: 36.125 

years, from 26-53 years). For Experiment 2, 14 patients were recorded in the 

Universitätsklinikum Erlangen (Erlangen, Germany) (7 female; mean age: 33.857, from 19-

58 years). 

 

2.2.5 Ethical approval 

Ethical approval was granted by the National Health Service Health Research Authority 

(15/WM/0219) and the Ethik-Kommission of the Friedrich-Alexander Universität Erlangen-

Nürnberg (142_12 B). Informed consent was obtained in accordance with the Declaration of 

Helsinki. 

 

2.2.6 Behavioural analysis  

For the analysis of the first experiment, we considered an episode a hit if the participant 

correctly identified both stimuli. We considered an episode a miss if the participant either 

indicated not to remember any stimuli or did not remember either stimulus correctly. 

Participants correctly recalled on average 68.38% (SE = 4.64%) episodes in the first 

experiment (see Table S1) and on average 65.63% (SE = 4.45%) episodes in the second 

experiment (see Table S2). This is substantially more than would be expected by chance 

(16.7% and 25% respectively). 
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2.2.7 Statistical analysis 

All statistical analyses were conducted using MATLAB R2020a on a computer running 

Windows 10 Enterprise. The significance threshold for all statistical tests was set at 0.05. 

Unless specified otherwise, all permutation tests were implemented with N = 10,000 random 

draws. 

 

2.2.8 Co-Registering 

For all but one patient, a pre-operational T1-weighted MRI scan was co-registered with a 

post-operational scan and normalized in MNI space using SPM12. For one patient, a post-

operational CT scan was used instead of a post-operational MRI scan. Each microelectrode 

was localized either within the hippocampus, within the parahippocampus, or outside of both 

brain structures through visual inspection of an (see Figure A.1.). Only activity from 

microwires in Behnke-Fried electrodes assigned to the hippocampus was analysed in the 

main analysis of the current study. Neurons in the parahippocampus were analysed in an 

independent follow-up analysis. 

 

2.2.9 Recording System and Electrodes 

Patients were implanted with one to eight (see Table S1 and S2 for an overview) depth 

electrodes of the Behnke Fried type with microwire bundles (Ad-Tech Medical Instrument 

Corporation, USA) to localize epileptic foci. The electrode location was determined by 

clinical need. These single-use electrodes are made from platinum, have a diameter of 

1.3mm and allow for simultaneous macro- and microcontact recordings. Platinum has a high 

impedance for lower frequency and a low impedance for higher frequency bands. As such it 

is suitable to pick up local extra-cellular action potentials. The micro contacts extended 

radially past the endpoint of the macro depth electrode, and each contained eight high-

impedance microwires (~40-micron diameter) and one low-impedance microwire that is 

typically used for referencing. 

The electrodes were connected to an ATLAS system (Neuralynx Inc, USA) consisting of 

CHET-10-A pre-amplifiers and a Digital Lynx NX amplifier and recorded with a sampling 

rate of either 32,000 Hz (Location: Birmingham) or 32,768 Hz (Location: Erlangen). Upon 

acquisition, an analogue bandpass filter from 0.1 Hz to 9,000 Hz was applied. In Experiment 

1, microwires were referenced against another high impedance wire in two patients to 

increase the signal quality. All other microwires in Experiment 1 and Experiment 2 were 

referenced against the local low impedance wire. 
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2.2.10 Spike detection and spike sorting 

In the following paragraph, we will outline the process used to filter the raw data, detect 

spike timestamps, extract features of the waveshape and cluster spike waveshapes into 

putative single neurons using the wave_clus toolbox. For a more in-depth description of the 

wave_clus algorithm, the reader is referred to (Chaure et al., 2018).  

The unfiltered signal included both the local field potential and the action potentials of 

individual neurons. Action potentials are characterized by a very steep and transient 

amplitude in the signal. To extract these spikes, we first applied zero-phase filtering using a 

second-order bandpass elliptic filter in the range of 300-3,000 Hz. The resulting signal 

contained the information of the so-called spike band. Next, we segmented the continuous 

filtered data into epochs of five minutes. Segmenting the continuous data into smaller epochs 

had the advantage that noise in the signal did not increase the detection threshold for the 

whole recording and instead was limited to the segment in which it occurred (Chaure et al., 

2018). Spike detection was performed separately for positive and negative deflections. Once 

a spike was identified, 64 data points around the spike maximum were extracted. This 

corresponds to a 2 ms window at a sampling rate of 32,000 Hz. The spike peak was aligned 

to the 20th sampling point. To avoid misalignment of the spike, the waveshape was first up-

sampled to 320 data points using cubic spline-interpolated waveforms and then down-

sampled again (Chaure et al., 2018). Based on the extracted spike waveform, features were 

computed using a four-scale multiresolution decomposition with a Haar wavelet. This results 

in 64-wavelet coefficients for each spike. The 10 most significant coefficients were 

identified using a Lilliefors test and used for the clustering procedure (Chaure et al., 2018). 

Nonparametric clustering in the feature space was performed using superparamagnetic 

clustering (SPC). SPC grouped spike waves into clusters based on nearest-neighbour 

interactions (Blatt et al., 1996). Template-matching in Euclidian space was performed to 

assign unclassified waveforms to one of the identified clusters. The resulting clustering 

solution was then manually inspected and further optimized by rejecting artefact clusters, 

splitting clusters that represent multi-unit activity and merging clusters that likely stem from 

the same neural source. See Figure A.5. to Figure A.7. for an overview of the spike width, 

spike height, the Fano factor and the firing rate separately for ESNs and all other single units. 
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2.2.11 Identification of Episode Specific Neurons (ESNs) 

For every single unit, we determined the number of spikes within each episode. During 

encoding, spikes from the onset of the associate images (two seconds after the cue onset i.e., 

when the whole information of the episode was present) until the end of the episode were 

considered. During the retrieval phase, spikes from cue onset until the time point at which 

participants indicated how many images they remembered were considered. We chose this 

time window because an episode could be reinstated following cue presentation, while after 

the response patients were presented with an array of images that could have potentially 

induced single-unit firing. Because the experiment was self-paced and longer episodes 

trivially contained more spikes, the firing rate (in hertz) was computed for each episode and 

single unit. In the next step, we z-scored this firing rate per single unit within all encoding 

episodes and retrieval episodes separately. Afterwards, we excluded all episodes that were 

later forgotten (for hit-ESNs) or that were later remembered (for miss-ESNs). Only sessions 

with at least eight episodes after this restriction were considered for further analysis. We 

then multiplied this standardized firing rate for encoding and retrieval episodes elementwise 

to gain an indicator for the reinstatement of firing for each episode (Figure 2.2). Alternative 

reinstatement measures are explored in the result section under 2.3.1. Identifying Episode 

Specific Neurons (ESNs), p. 28, and include (i) adding up the standardized firing rate 

between encoding and retrieval instead of multiplying them, (ii) increasing the minimum 

standardized firing rate from z = 1.645 to z = 2.6 and (iii) using a different reinstatement 

measure that normalizes the encoding and retrieval product by their absolute difference. 

To estimate a threshold at which episode-specific firing reinstatement occurs on a single-

unit level, we permuted the order of the encoding episodes and recomputed the elementwise 

product of the shuffled episode series. We repeated this permutation step 10,000 times and 

stored all output values. The 99th percentile of these pooled values was then used as a 

threshold for firing reinstatement. As an additional constraint, z-scored firing during 

encoding and retrieval each had to exceed 1.645 (≙ pright-tailed < 0.05) to make sure the 

elementwise product was not predominantly driven by a high firing rate in one of the two 

phases alone (i.e., either encoding or retrieval). This procedure is allowing us to threshold, 

but we do not have family-wise error corrected statistical significance at the single-unit level 

(there is no alpha inflation at the group level, see 2.2.12 Simulation of ESN identification, p 

24). Furthermore, we assume that single units fire independently. To ensure Concept 

Neurons tuned to the animal cue were not falsely interpreted as ESN activity, we excluded 

ESNs that showed a significant firing increase in response to the animal cue at encoding 

using the method described below under Identification of putative Concept Neurons. 
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In the second step, we calculated whether the number of ESNs (as identified in the above 

procedure) was above chance level. We did this by randomly choosing one of the 

permutations calculated in the first step for every single unit and checking whether it would 

be classified as an ESN under the same criteria outlined above. This approach is similar to a 

set-level effect in SPM (Penny et al., 2011). This process was repeated 10,000 times and the 

total number of single units which would be classified as an ESN in every single iteration of 

this process was used to build a distribution against which we compared our empirically 

discovered number of ESNs. 

 

2.2.12 Simulation of ESN identification 

We created a simulation using random pseudo-spike rates to determine whether our ESN 

analysis pipeline contains a bias towards false positive results. To create this simulation, we 

simulated the firing rate of 585 single neurons during 40 encoding and 40 retrieval trials by 

randomly drawing from a standard uniform distribution in the open interval of 0 to 1. These 

values were first multiplied by a variance factor that cycled from 2 to 5 and then z-scored 

independently for encoding and retrieval. Just as in the main ESN analysis we computed a 

reinstatement value for each trial by multiplying the two standardized synthetic firing rates. 

Next, we created a threshold by permuting the encoding and retrieval trial order 10.000 times 

while recomputing the shuffled reinstatement value. The 99th percentile was used as a 

threshold while the empirical standardized pseudo-firing rate had to be at least 1.645 during 

encoding and retrieval. If these criteria were met, we considered the neuron an ESN. 

Then we computed the second-order (group level) permutation test by drawing a random 

first-order permutation for every single neuron and contrasted these values with the single 

neuron specific threshold. If the shuffled values satisfied the criteria for ESNs (i.e., encoding 

and retrieval standardized pseudo-firing rate at or above 1.645 and a reinstatement value 

above the neuron specific threshold) we considered the single neuron an ESN under the null 

distribution. By repeating this step 10,000 times we created a distribution under the H0 

against which we could compare our initial random values. We repeated this entire process 

1,000 times for each level of variance (2 to 5). 

Because our initial pseudo-spikes were just random values, we expected 5% of all repetitions 

to yield a significant number of ESNs at any level of variance. If there was a bias, then more 

than 5% of all repetitions would contain a significant number of ESNs. As evidenced by 

Figure A.2. this was not the case for any levels of variance. 
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2.2.13 Identification of putative Concept Neurons 

We have followed the method outlined in Mormann et al. (2011; 2008) to detect significant 

single-unit responses towards images. To this end, the 1000ms period after the stimulus onset 

was divided into 19 overlapping 100ms bins. The spike counts of each bin over all 

presentations of an image were compared to the 500ms baseline periods before stimulus 

onset for all images in the session using a two-tailed Mann-Whitney U test. We used the 

Simes’ procedure to correct for multiple comparisons (Rødland, 2006). We performed this 

test twice, once with the commonly used threshold of p < 0.0005 and again with a liberal 

threshold of p = 0.05. 

 

2.2.14 Identification of temporal Episode Specific Neurons (tESNs) 

The analysis to identify neurons that showed a temporal firing reinstatement for specific 

episodes closely follows the outline described in 2.2.11 Identification of Episode Specific 

Neurons (ESNs), p. 23 – 24. For every neuron, we considered the spiking activity six seconds 

before until one second after the response during encoding and retrieval (the first and last 

second was later excluded to avoid edge artefacts). 

We then convolved each spike with a gaussian kernel (standard deviation: 

25ms/100ms/150ms, length: ± three standard deviations, peak normalized to one) creating a 

measure of instantaneous firing rate.  

The main concern is that we do not know the ground truth of at what time point within a trial 

an episode was encoded or retrieved. To solve this problem, we cross-correlated the 

instantaneous firing rate during encoding with the instantaneous firing rate during the 

corresponding retrieval trial (maximum lag of +-2.5s). The maximum value of this sequence 

served as our empirical reinstatement value. We then shuffled the encoding and retrieval 

order and recomputed this reinstatement value 1,000 times. The 99th percentile of these 

values was used as a threshold. If the empirical reinstatement value reached this threshold, 

we considered the neuron a temporal Episode Specific Neuron (tESN). In the next step, for 

each neuron we randomly drew one of the permutations we calculated previously. Neurons 

whose permuted values reached or exceeded the threshold were considered tESNs under the 

null hypothesis. We repeated this process 1,000 times to build a null distribution against 

which we compared our empirical number of tESNs. 

For Experiment 2, we further excluded all trials in which the given neuron showed a 

significant visual tuning using the methodology outlined under 2.2.13 Identification of 

putative Concept Neurons, p. 25. 
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We tested the validity of this analysis by repeating the same analysis using random spike 

times. We generated these random spike times by first rounding the empirical spike times to 

the nearest integer and then drawing an equal number of pseudorandom integer values from 

a discrete uniform distribution between the first and last empirical spike times. 

 

2.2.15 Firing rate spike convolution 

To produce the visualisations in Error! Reference source not found., we extracted spikes 

from one second before the cue onset until five seconds after cue onset for each episode. 

Binary spike times were convolved with a 251 ms Gaussian kernel (width factor: 2.5) to 

create a time-resolved signal of spike activity. We computed the average firing rate over 

time for all episodes (ep) during the baseline (BL) period 1,000 ms preceding the animal cue 

(𝑥𝐵𝐿). We then z-scored the spike activity during the episode (𝑥𝑒𝑝,𝑡) using the standard 

deviation (𝑠𝑡𝑑(𝑥𝐵𝐿)) and mean (𝑥𝐵𝐿) across all pre-cue baseline periods (see equation (1)). 

To account for instances where no spiking activity occurred during the baseline period, 0.1 

(see Ison et al., 2015) was added to the standard deviation (𝑠𝑡𝑑(𝑥𝐵𝐿)). Episodes were then 

split into reinstated and non-reinstated episodes. Firing rates for each episode type 

(reinstated/non-reinstated) were then averaged over ESNs. 

𝑧𝑒𝑝,𝑡 =
𝑥𝑒𝑝,𝑡−𝑥𝐵𝐿

𝑠𝑡𝑑(𝑥𝐵𝐿)+0.1
     (1) 

 

2.2.16 Identification of Time Cells 

We defined the beginning of an encoding block as the most salient event. Based on Umbach 

and colleagues (Umbach et al., 2020), we then extracted all spikes within each block and 

convolved them with a 251ms Gaussian kernel (width factor: 2.5). This created a block 

number x time points matrix. For our first analysis, we cut each encoding block into 40 

equally sized bins, thereby normalizing block duration. We then used a Kruskal-Wallis test 

to determine whether any of the 40 bins significantly differed from each other.  

We then performed a circular shifting permutation test to calculate whether we found a 

significant number of Time Cells. This is done by shifting a random number of values from 

the beginning of the vector to the end. This shifting was imposed on each block separately 

and repeated N = 10,000 times for every single unit. In a second test, the block length was 

determined by the longest block and shorter blocks were filled up with NaN values. This 

resulted in no normalization of time between blocks. The rest of the procedure is the same 

as described in the above paragraph.  
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2.3 Results 

We analyzed recordings from two separate experiments (Experiment 1: 585 neurons in the 

hippocampus, 16 participants, 7 female; age mean = 36.125 years, from 26-53 years; 

Experiment 2: 216 neurons in the hippocampus, 14 participants, 7 female; age mean = 

33.857 years, from 19-58 years) where patients were implanted with stereotactic Behnke-

Fried depth electrodes in the hippocampus (Figure A.1), while they performed a memory 

association task (Figure 2.1B & Figure 2.1C). 

During the encoding phase of Experiment 1 participants created a vivid mental story 

consisting of an animal cue and two associate images (two faces, two places or a face and a 

place). By contrast, Experiment 2 consisted of one cue and one associate image (both either 

an animal, face, or place). The encoding and recall phase of the experiment was interleaved 

with a short distractor task where patients had to judge whether a series of 15 numbers was 

odd or even. During the recall phase, the animal cue was presented again and participants 

were asked to retrieve the associate image(s). The experiments were self-paced and every 

episode was learned and retrieved only once. Participants correctly recalled on average 

68.38% (SE = 4.64%) episodes in the first experiment (see Supplements Table S1) and on 

average 65.63% (SE = 4.45%) episodes in the second experiment (see Supplements Table 

S2). This is substantially more than would be expected by chance (16.7% and 25% 

respectively). 

 

2.3.1 Identifying Episode Specific Neurons (ESNs) 

For every neuron, we determined the firing rate during each episode at encoding and 

retrieval. We then z-scored the firing rate across all encoding and retrieval episodes and 

excluded all later forgotten episodes. This was done independently for encoding and retrieval 

to account for general differences in firing rates. We measured episode-specific firing 

reinstatement as the product of the standardized firing rates at encoding and retrieval (Figure 

2.2A). Using a trial-shuffling procedure, we generated a distribution of reinstatement values 

expected by chance. A neuron was considered an ESN if (i) the empirical reinstatement value 

exceeded the 99th-percentile of the shuffled distribution for at least one episode and (ii) the 

standardized firing rate for encoding and retrieval of that episode each exceeded 1.645 (≙ 

pright-tailed < 0.05). The second criterion prevented the identification of ESNs which would 

excessively fire at only one phase of the task (i.e., encoding or retrieval).  

It could be argued that ESNs identified in this manner could reflect the firing of cells tuned 

to the image of the animal cue, rather than the conjunction of all elements since the cue is 
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episode-unique and presented during encoding and retrieval. To address this issue, in 

Experiment 1, we excluded neurons that showed a significant firing increase during the first 

second after the encoding of the animal cue for episodes that were later reinstated (see 

Methods). This procedure has traditionally been used to identify putative concept neurons 

(Mormann et al., 2008; Mormann et al., 2011; Quiroga et al., 2005). Using this approach, 

we identified a significant number of hippocampal ESNs in Experiment 1 (136 out of 585 

neurons ≙ 23.25%; p < 0.001; permutation test; Figure 2.2B). Comparable results are 

obtained when (i) adding up the standardized firing rate between encoding and retrieval 

instead of multiplying them (Enc & Ret >= 1.645, reinstatement: Enc + Ret) (125 ESNs; p 

< 0.001), (ii) increasing the minimum standardized firing rate from z = 1.645 to z = 2.6 (Enc 

& Ret >= 2.6, reinstatement: Enc * Ret) (29 ESNs; p < 0.001) and (iii) using a different 

reinstatement measure that normalizes the encoding and retrieval product by their absolute 

difference (Enc & Ret >= 1.645, reinstatement: (Enc * Ret) / |Enc - Ret|) (53 ESNs; p < 

0.001). This reinstatement measure has the important advantage of considering the similarity 

between the encoding and retrieval firing rates. 

In Experiment 1 117 out of 136 ESNs (≙ 86.03%) coded for a single episode. Two example 

ESNs are shown in Figure 2.3. These ESNs are unlikely to be Concept Neurons tuned to the 

animal cue as the firing rate during encoding reaches its maximum only after the presentation 

of the associate stimulus (see Error! Reference source not found.A).  

It is of note that the proportion of neurons that can be classified as ESNs is proportional to 

the number of events learned and retrieved (the same is the case for Concept Neurons). This 

is because we apply the threshold derived from the first permutation test to all episodes, 

without family-wise error correction. As such it is not suitable to determine the sparseness 

of the hippocampal code. However, the proportion of ESNs of all recorded neurons is useful 

as an estimation of how many ESNs we can expect in future analyses. 

It is crucial to understand that this alpha-level inflation does not extend to the group-level 

permutation test, where the same number of tests are applied to randomly shuffled data. We 

have added a simulation using random values as spike rates to show that there is no inflation 

of the alpha error at the group-level at which we interpret our findings (see Methods; Figure 

A.2).  

ESNs are suggested to reflect a unique coding mechanism of the hippocampus (Teyler and 

DiScenna, 1986; Teyler and Rudy, 2007). In line with this, we did not find a significant 

number of ESNs in the parahippocampus (15 out of 104 neurons, p = 0.5396; permutation 

test). However, it should be noted that all 104 parahippocampal neurons originate from only 

five different microwire bundles over 14 sessions in five different patients, and therefore 
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these results, albeit in line with the indexing theory, should be interpreted with caution. The 

second experiment did not contain a significant number of ESNs in the parahippocampus (3 

out of 25 neurons, p = 0.1199). 

To conclude, we find a significant number of ESNs in the hippocampus, but not in the 

parahippocampus. The analysis approach we use to identify ESNs is robust to deviations in 

the parameter space. 
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Figure 2.2. Analysis schematic and number of ESNs identified in experiments 1 & 2. 

(A) A schematic for identifying Episode Specific Neurons (ESNs) is shown. The diagram 

shows the z-scored firing rate on the y-axis for ten simulated episodes on the x-axis colour-

coded for encoding and retrieval (purple and orange, respectively). The transparent bars 

encompassing encoding and retrieval indicate the product of encoding and retrieval firing 
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rates, which is used as the measure of episode-specific firing reinstatement. The dotted red 

line shows the threshold (derived from a shuffling procedure, see Methods). Because of the 

way ESNs are defined, they are required to fire substantially above their average firing rate 

during encoding and retrieval, which rules out neurons that generally show an increased 

firing rate during remembered episodes. 

(B) Identified ESNs during Experiment 1. Left: The pie chart depicts the number of ESNs 

that show significant firing reinstatement to at least one episode (dark blue) and the number 

of neurons that showed no firing reinstatement (green). Right: The number of ESNs as 

expected by chance and the empirical number of ESNs (136 out of 585 neurons; p < 0.001; 

permutation test). 

(C) Same as (B) but for Experiment 2. Out of a total of 105 hippocampal neurons, we 

identified 38 ESNs (p = 0.0053; permutation test).  

 

2.3.2 ESNs do not code for the content/visual properties of the cue or associate image 

Traditionally, visually responsive neurons have been identified using the repeated 

presentation of a stimulus. In the above analysis, we only present the animal cue once, which 

is suboptimal for ruling out Concept Neurons tuned to the animal cue. To ameliorate this 

shortcoming, in Experiment 2 we added a visual tuning task (Figure 2.1C) after the memory 

association task. During the visual tuning task, images from the memory task were 

repeatedly shown in quick succession. This approach is widely used to identify putative 

Concept Neurons that respond to one of the images independently of any memory processes 

(Mormann et al., 2011; Mormann et al., 2008; Quian Quiroga et al., 2005). When excluding 

Concept Neuron activity in this independent dataset, we replicated our previous results and 

identified a significant number of ESNs (38 out of 216 neurons ≙ 17.59%; p = 0.0053; 

permutation test; Figure 2.2C). In Experiment 2 34 out of 38 ESNs (≙ 89.47%%) coded for 

a single episode. 

However, traditional Concept Neuron detection methods might be too conservative to 

identify weakly tuned Concept Neurons. To address this concern, we drastically reduced the 

threshold of what constitutes a Concept Neuron, i.e., lowering the uncorrected threshold 

from p = 0.0005 to p = 0.05, which increased the number of Concept Neurons from 58 to 

155 (out of 216 neurons). Remarkably, incorporating this liberal threshold to exclude 

potential Concept Neurons, had little effect on the number of ESNs which remained almost 

unchanged (36 out of 216 neurons ≙ 16.67%; p = 0.0025; permutation test).  
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During a typical tuning task an average of 108.7 (min: 80; max: 156) different images are 

shown and each image is tested for visual tuning. There is no correction for multiple testing 

rendering a threshold at p < 0.05 very liberal.  

It is conceivable that some images that are presented during the visual tuning task act as cues 

that reactivate some ESNs. These reactivated ESNs would then be erroneously rejected as 

Concept Neurons. However, in practice, only four potential ESNs were excluded based on 

the visual tuning task (six when lowering the Concept Neuron threshold). We suspect that 

ESNs were not reactivated during the visual tuning task because the images were shown 

only for one second. This might be sufficient to cause Concept Neuron firing, but too short 

to elicit episodic memory retrieval. Nonetheless, we cannot rule out that in some cases ESNs 

were reactivated during the visual tuning task and subsequently rejected. However, this 

would only make our analysis for identifying ESNs more conservative. 
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Figure 2.3. Firing patterns for two example Episode Specific Neurons. 

(A) Spike raster plot. Each line indicates a spike. On the x-axis is time and on the y-axis are 

the episodes. Color-coded in purple for encoding and orange for retrieval. The transparency 

is adjusted according to the reinstatement values in that specific episode. 

(B) Reinstatement values and the animal cues with the respective associate images for 

reinstated episodes (indicated by the black arrows). 

(C) Spike density plot for reinstated episodes. Note that the experiment is self-paced and 

episode length varies. 

(D) 2D histogram of the waveshape of that particular unit (Niediek et al., 2016). 

(E-H) same as (A-D) but for a different example ESN. 
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2.3.3 ESNs are limited to later remembered episodes 

We have so far demonstrated that ESNs reinstate their firing rate when remembering a 

unique episode. This reinstatement cannot be explained by the semantic content or visual 

properties of the used image, which strengthens the notion that ESNs code for memories. In 

line with this, we did not find a significant number of ESNs when limiting our analysis to 

later forgotten episodes (15 out of 585 neurons ≙ 2.56%; p = 0.4229; permutation test). 

However, this result could stem from a lower number of forgotten events (see Table S1). To 

counter this bias, we equalized event numbers between later remembered and later forgotten 

events for every neuron by randomly sampling (with replacement) later remembered events 

as many times as participants forgot an event. If any of the sampled events were later 

reinstated, we considered this neuron a miss-ESNs under the null hypothesis. By repeating 

this procedure 10,000 times we generated a distribution of how many miss-ESNs were 

expected if the number of later remembered and later forgotten events were equal. This 

analysis did not result in a significantly lower empirical number of miss-ESNs compared to 

hit-ESNs (p = 0.7032, bootstrapping test). To conclude, we did not find a significant number 

of ESNs when restricting our analysis to episodes that were forgotten. However, when 

considering that fewer episodes were forgotten than remembered there was no difference in 

the number of hit-ESNs and miss-ESNs. 

 

2.3.4 Identification of temporal Episode Specific Neurons (tESNs) 

The previous identification of ESNs relied on a rate code, i.e., the standardized mean firing 

rate during one episode at encoding and retrieval. We have adapted this analysis to identify 

neurons that reinstate a temporal pattern of firing. For every neuron, we considered the 

spiking activity six seconds before until one second after the response during encoding and 

retrieval (the first and last second was later excluded to avoid edge artefacts). 

By convolving each spike separately with different gaussian kernels (standard deviations: 

25ms/100ms/150ms, length: three standard deviations, peak normalized to 1) we created a 

measure of instantaneous firing rate. Because we do not know the exact times when an 

episode is encoded or retrieved, we cross-correlated this trial-specific instantaneous firing 

rate during encoding and retrieval and considered the maximum value as the reinstatement 

value. We repeated this process after shuffling the encoding and retrieval trial order 1,000 

times and took the 99th percentile as a threshold for the empirical reinstatement value. If the 

empirical reinstatement value reached this threshold, we considered the neuron a temporal 

Episode Specific Neuron (tESN; Figure A.4). In the next step, we randomly drew for each 
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neuron one of the previously calculated permutations. If these permuted values reached or 

exceeded the threshold the neuron was considered a tESNs under the null hypothesis. We 

repeated this process 1,000 times to build a null distribution against which we compared our 

empirical number of tESNs. We found a significant number of empirical tESNs in 

Experiment 1 when using a smoothing kernel of 25ms (292 out of 585 neurons; p < 0.001), 

100ms (280 out of 585 neurons; p < 0.001), and 150ms (280 out of 585 neurons; p < 0.001). 

For Experiment 2, we further excluded all trials in which the given neuron showed a 

significant visual tuning (see Methods). With this additional constraint, we found a 

significant number of tESN in Experiment 2 when using a smoothing kernel of 25ms (100 

out of 216 neurons; p = 0.003), 100ms (103 out of 216 neurons; p < 0.001), and 150ms (103 

out of 216 neurons; p < 0.001). 

We then tested the validity of this analysis using random spike times. We generated these 

random spike times by first rounding the empirical spike times to the nearest integer and 

then drawing an equal number of pseudorandom integer values from a discrete uniform 

distribution between the first and last empirical spikes times. Independent of the gaussian 

kernel and experiment we did not find a significant number of tESN (all p > 0.2).  

In conclusion, we show in two separate experiments a significant number of neurons that 

reinstate an event-specific temporal firing pattern during successful memory retrieval. 

 

2.3.5 ESNs do not code for time 

Recent studies in humans show that some hippocampal neurons code specific time points 

invariant across repetitions, which are referred to as Time Cells (Reddy, Zoefel et al., 2021; 

Umbach et al., 2020). We investigated whether our dataset contains such Time Cells (TC) 

using a similar method as employed by (Umbach et al., 2020). Due to the self-paced nature 

of our experiment, each encoding block varied in length. To accommodate this, we used both 

the unaltered block length, as well as a normalized block length within one recording session 

(see Methods). Of all 585 recorded cells, 12 (normalized) and 9 (non-normalized) fulfilled 

the criteria of TCs, which is below chance level (p values > 0.9; permutation test). Critically, 

there was no significant overlap between neurons that behaved like TCs and ESNs (p values 

> 0.3; permutation test) indicating that ESNs cannot be construed as TCs. 

 

2.3.6 ESNs show a wider waveshape than other neurons 

We found some evidence that spike waveshapes of ESNs are wider than those of other units 

(Figure A.5A; p = 0.0563; with data from Experiment 1 and p = 0.0121 with data from both 
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experiments; both independent samples t-test), possibly indicating that ESNs are 

physiologically different from other neurons. In the hippocampus, a wider waveshape has 

previously been associated with excitatory cells (Prestigio et al., 2019), therefore suggesting 

the ESNs are predominantly excitatory neurons. There was no significant difference in the 

spike height or Fano factor between ESNs and other neurons (unpaired t-tests; all p values 

> 0.3; Figure A.5B and A.6).  

 

2.3.7 Recorded neurons are mostly single neurons and not multi-units  

Although we tried to separate multi-units into single neurons as best as possible during the 

spike sorting procedure (see Methods), some units might still represent activity from 

multiple neurons. We thus employed the method outlined by Tankus and colleagues (Tankus 

et al., 2009) to classify units into single units and multi-units, using the inter-spike interval 

and spike waveshape variability as objective criteria. In the first experiment, 373 out of 585 

units (≙ 63.76%) were classified as single units (95/136 ESNs ≙ 69.85%), while in the 

second Experiment 132 out of 216 units (≙ 61.11%) were classified as single units (20/38 

ESNs ≙ 52.63%). If we limit our analysis to neurons that satisfy these stringent criteria for 

putative single neurons, we still find a significant number of ESNs in the first experiment 95 

out of 373 single neurons; p < 0.001), but not for the second experiment (21 out of 132 single 

neurons; p = 0.071).  

 

Figure 2.4 Firing rate of ESNs during reinstated (purple) and non-reinstated (green) 

episodes. 

(A) Firing rate of ESNs from cue onset until five seconds later during memory encoding. 

The red line marks time points where the average ESN firing rate during reinstated episodes 
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(n = 136) significantly exceeds the firing rate during average non-reinstated episodes (n = 

136; cluster permutation test; Maris & Oostenveld, 2007).  

(B) Same as (A) but for memory retrieval. The shaded areas indicate the SEM. 

 

2.4 Discussion 

Using an associative episodic memory paradigm in human epilepsy patients, we identified 

hippocampal neurons that are active during the initial encoding of a unique episode and later 

reinstate their firing rate when successfully remembering the same episode. Therefore, we 

term these neurons Episode Specific Neurons (ESNs). The activity of these neurons could 

not be explained by a firing rate increase towards specific images or time points. We verified 

these results using a number of alternative reinstatement measures and changes in the 

hyperparameter space.  

Previous studies have demonstrated that Concept Neurons increase their firing rate during 

memory retrieval when the image they are tuned to is part of the memory (Gelbard-Sagiv et 

al., 2008; Ison et al., 2015). We used two approaches to ensure that the ESNs we identified 

are not Concept Neurons that selectively respond to visual elements or semantic concepts: 

(i) in Experiment 1 we excluded ESNs that were visually responsive to the presentation of 

the animal cue at encoding. (ii) Following the episodic memory task in Experiment 2 patients 

completed a visual tuning task using all previously presented stimuli. This is a standard 

method to identify putative Concept Neurons (Ison et al., 2015; Mormann et al., 2011; 

Mormann et al., 2008; Quian Quiroga et al., 2005) and allowed us to exclude episodes where 

a neuron showed a visual tuning to either the cue or the associate image. Using this approach, 

we replicated our results from Experiment 1 in a new sample of patients and found a 

significant number of ESNs while also verifying that these neurons do not selectively 

respond to visual elements or semantic concepts. Importantly, this finding was robust even 

when dramatically reducing the threshold of what constitutes a Concept Neuron. Taken 

together these analyses reinforce the argument that ESNs are memory-related.  

The existence of ESNs does not exclude Concept Neurons from playing a role in episodic 

memory processes. Concept Neurons might code the semantic aspect of an episode (i.e., the 

general concept of "coffee shop"). However, according to the Indexing Theory (Teyler and 

DiScenna, 1986; Teyler and Rudy, 2007), hippocampal neurons that perform this indexing 

function should have no initial tuning and are allocated to a specific episode during memory 

formation (i.e., the coffee shop in a specific setting). The behaviour of ESNs would be 
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consistent with such an indexing function and may add crucial event-specific information to 

an episode, that Concept Neurons cannot encode themselves. 

We found a significant number of ESNs when excluding potential multiunits in the first 

experiment. However, we could not replicate these findings in the second experiment. This 

was likely because this restriction resulted in too few single neurons in the second 

experiment. 

Because we do not know the exact time points when episodes are encoded or retrieved, we 

used a rate code approach in the first instance for these analyses (i.e., averaging the number 

of spikes over a time of interest and encoding and retrieval). In addition, we present 

preliminary evidence for a reinstatement of a temporal firing code which we uncovered by 

shifting the instantaneous firing rate (i.e., the spike times convolved with a gaussian kernel) 

using a cross-correlation. 

The Indexing Theory proposes that this coding mechanism is unique to the hippocampus. In 

line with this, we did not find a significant number of ESNs in the parahippocampus. 

However, these findings are based on a relatively small sample size and should be considered 

preliminary. Future studies are needed to ascertain the regional specificity of ESNs to the 

hippocampus.  

We did not find a significant number of ESNs when restricting our analysis to later forgotten 

episodes. However, there was no significant difference between the number of ESNs when 

considering later remembered and later forgotten events. Hippocampal neural reinstatement 

might occur without behavioural memory retrieval. This could be due to downstream 

processing being disrupted (i.e., due to interference or selective attention). Another possible 

explanation for this finding is that in some cases during memory encoding patients created 

an episodic memory that did not incorporate the presented associate stimuli. While retrieval 

would lead to neural reinstatement, the patients would not be able to choose the correct 

associate images. 

Time Cells (TC) are neurons that invariantly fire at specific, reoccurring time points (Reddy, 

Zoefel et al., 2021; Umbach et al., 2020). We did not find a significant number of TCs in our 

study and there was no significant overlap between TCs and ESNs. This might be because 

the self-paced nature of the task introduced too much time variation between too few 

learning blocks to uncover TC dynamics. However, the absence of TCs in our paradigm 

corroborates ESNs as independent from TCs. 

We found tentative support that ESNs have a wider waveshape than other neurons. This 

suggests that ESNs are likely excitatory cells (Prestigio et al., 2019). Alternatively, it is 

possible that ESNs and neurons with a narrower waveshape are located in different 
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hippocampal subfields. Unfortunately, with the current methods, we lack the precision to 

designate neurons to individual subfields (Quiroga, 2019). 

One limitation of the current study is that every event was encoded and retrieved only once. 

However, the very nature of episodic memories is one-shot learning and the ability to 

subsequently perform mental time travel. Any neural substrate that supports this function 

must occur after a single bout of learning and subsequent retrieval of a single episode. Our 

method honours this fundamental characteristic which is the defining feature of episodic 

memory as originally stated by Endel Tulving (Tulving, 1972). Arguably, a repeated design 

would have allowed for a more reliable ESN identification. However, each memory 

reactivation leads to a transient plasticity of the memory trace until it is reconsolidated again. 

During this time window profound changes in the neurons that code for the initial memory 

trace might occur (Nader & Hardt, 2009). To avoid this potential confound, every episode is 

learned and retrieved only once in the present experiments. The stability of ESNs over 

repeated reactivations and extended periods, therefore, remains an interesting topic of 

research for future studies. 

Our results are consistent with previous studies using fMRI that have shown item-specific 

activity reinstatement in the hippocampus (Chadwick et al., 2010; Mack & Preston, 2016) 

where similar representations are associated with distinct activity patterns (Bakker et al., 

2008; Berron et al., 2016). These findings are suggestive of an episode-specific neural code, 

which is consistent with our results. However, due to the coarse resolution of fMRI, these 

previous results cannot disambiguate whether this event-specific code is driven by a 

population of event-specific concept neurons, or whether it is driven by a population of 

event-specific indexing neurons. We here provide evidence for the latter.  

Previous intracranial work has identified a multitude of different neurons that detect novelty 

or familiarity (Rutishauser et al., 2006; Rutishauser et al., 2008; Rutishauser et al., 2015) as 

well as episode boundaries and event onsets (Zheng et al., 2022). These cell types generally 

fired to many episodes, whereas the vast majority of identified ESNs in our experiments 

coded a single episode. When quantifying neural firing reinstatement between scene 

encoding and recognition, recent work relied on population activity (i.e., considering the 

activity of all recorded neurons) (Zheng et al., 2022). In contrast, we showed here that neural 

reinstatement takes place on the level of a single neuron. Importantly, we expect that an 

episode is coded by an assembly of ESNs from which we sampled only one due to the limited 

number of neurons that can be recorded with the currently available methods. These findings 

are in line with previous work showing that episodic memories in the hippocampus are coded 

in a sparse distributed way (Wixted et al., 2018; Wixted et al., 2014). However, there are 
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various reasons why we refrain from making any claims regarding sparsity in the present 

study. A neural code can be sparse in two ways (Wixted et al., 2018). A neural code can be 

population sparse, which is the case when a low percentage of neurons respond to a given 

stimulus. It can also be lifetime sparse, which refers to a low percentage of stimuli that a 

given neuron responds to. 

On the one hand, we artificially induce lifetime sparsity (and by extension population 

sparsity) because we (i) standardize the firing rate during encoding and retrieval and then 

(ii) multiply these two values. On the other hand, we drastically reduce the sparsity because 

we test for reinstatement at each episode without correcting for multiple comparisons. It is 

very important to understand that while this leads to alpha-level inflation at the level of the 

neuron, this does not extend to the group-level at which we interpret our findings. We have 

confirmed that our analysis does not have a bias towards positive findings using a simulation 

(see Figure A.2). Unfortunately, that also means that in the present study we have to refrain 

from making any claims regarding lifetime sparsity. Moreover, in the current study, the 

associated image was not shown on the screen during memory retrieval. This mental 

reinstatement is a core feature of episodic memory which is difficult to assess with 

recognition-based memory paradigms. 

In conclusion, we found neurons in the hippocampus that show firing reinstatement in 

response to a specific conjunction of elements within a unique episode. These Episode 

Specific Neurons did not fire in response to individual concepts (Concept Neurons) or to 

specific, re-occurring time points (Time Cells). We propose that during memory formation 

an assembly of ESNs acts as a pointer or index that initially binds the elements of an episode 

together, in line with the Indexing Theory (Bowman & Wyble, 2007; Teyler & DiScenna, 

1986; Teyler & Rudy, 2007). Reactivation of this pointer allows ESNs to reinstate the 

episodic memory previously encoded. Importantly, because ESNs reinstate unique episodes, 

they contain a time and content component. However, rather than reflecting the underlying 

coding mechanism, this time and content aspect necessarily emerges from the conjunctive 

code of an episode that is unique in content and time. 
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Chapter 3 

 

High frequency power reinstatement in the 

human hippocampus for specific episodic 

memories 

 

Abstract 

Previous work has identified single neurons in the human hippocampus that 

significantly increase their firing rate during the encoding and retrieval of 

specific episodic memories (Episode Specific Neurons; ESNs). High frequency 

power (40-200 Hz; HFP) in the local field potential has been used as a proxy 

for multi-unit activity. We here studied the reinstatement of HFP in the 

hippocampus of patients while they completed a memory association task. 

Consistent with earlier observations we find a significant number of microwires 

that show a reinstatement of HFP from encoding to retrieval in individual 

episodes. Importantly, this reinstatement is not driven by a content-specific 

code (i.e., population activity of Concept Neurons). This effect is limited to 

later remembered episodes and not present for later forgotten episodes. These 

findings extend the discoveries of the previous chapter from the single neuron 

level to the population activity reflected in the local field potential.
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3.1 Introduction  

Episodic memories refer to the memory of distinctive events composed of multiple, 

multimodal elements that occurred at a specific time and space (Tulving, 1972, Tulving, 

2002). In the previous chapter, we investigated the formation and retrieval of these episodic 

memories at the level of single neurons in the human hippocampus. These neurons (called 

Episode Specific Neurons; ESNs) increase their firing rate during encoding and retrieval of 

specific episodic memories. We provided compelling evidence that this episode specific 

code is separate from Concept Neurons. In this chapter, we will delve into the 

neurophysiological substrates of memory processing that is one level above individual 

neurons: the local field potential (LFP). In contrast to local neural firing, LFPs reflect the 

aggregate of a myriad of local and distant transmembrane currents (Buzsáki et al., 2012). 

We will focus on the role of high frequency power (HFP; 40-200 Hz) as a proxy of local 

synchronous spiking activity (Buzsáki et al., 2012; Manning et al., 2009; Nir et al., 2007; 

Ray et al., 2008). Most of the literature examining the relation of spiking activity and HFP 

is based on studies in monkeys in early sensory cortical areas that have a topographic 

structure (Buzsáki et al., 2012; Leszczyński et al., 2020; Ray et al., 2008; Ray & Maunsell, 

2011; Whittingstall & Logothetis, 2009), but some evidence has been reported in humans 

(Kucewicz et al., 2014; Manning et al., 2009; Miller et al., 2009; Nir et al., 2007). Although 

neighbouring neurons in the hippocampus are not structured topographically and often 

represent very different concepts (De Falco et al., 2016; Redish et al., 2001) there is some 

evidence that the HFP-spiking relationship remains intact (Manning et al., 2009). 

It is unclear if enough neurons are part of one assembly of ESNs to increase HFP, and further 

if these neurons are close enough in space and fire in synchrony. Preliminary evidence comes 

from Rutishauser and colleagues who reported that roughly 10-20% of all neurons in the 

hippocampus and amygdala responded to novel stimuli (Rutishauser et al., 2006; 

Rutishauser et al., 2008), which is likely enough to elicit HFA. However, the authors do not 

report whether these neurons respond to specific new episodes or new episodes in general 

and how many of them reinstate their firing rate during retrieval. Based on the average 

number of identified Concept Neurons, recorded neurons, and presented images, it is 

estimated that approximately one million neurons within the medial temporal lobe code for 

a given concept. This represents only 0.1% of the total number of neurons in the MTL (Quian 

Quiroga, 2012), which likely does not impact HFP. 

In conclusion, we postulate a reinstatement of power in the high frequency band from 

encoding of specific trials to their reinstatement during an episodic memory task. As Concept 
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Neurons are thought to be part of smaller assemblies (Quian Quiroga, 2012) we expected 

not to find changes in high frequency power induced by specific concepts. 

 

3.2 Materials and Methods 

3.2.1 Common methods 

For a description of the experimental procedures, the participants, ethical approval, 

behavioural analysis, co-registering of the MRIs, recording system and electrodes, spike 

detection and spike sorting, and Identification of Episode Specific Neurons (ESNs) please 

see the methods section of Chapter 2 (p. 18 – 24). 

 

3.2.1 Statistical analysis 

All statistical analyses were conducted using MATLAB R2020a on a computer running 

Windows 10 Enterprise. The significance threshold for all statistical tests was set at 0.05. 

Unless specified otherwise, all permutation tests were implemented with N = 1,000 random 

draws. 

 

3.2.2 LFP pre-processing 

We downsampled the LFP data from microwires that contained neurons in the hippocampus 

to 1,000 Hz and applied a fourth-order Butterworth bandstop filter with a centre frequency 

of 50 Hz (± 1 Hz) and its harmonics up to 300 Hz, to remove line noise.  

 

3.2.3 LFP Artefact Rejection 

For each microwire, we computed the bandpass-filtered signal between 40 Hz and 200 Hz 

using a first-order Butterworth filter. We identified any data points exceeding five standard 

deviations from the mean of this signal as artefacts and excluded the one-second intervals 

preceding and following them. 

 

3.2.4 Identification of Episode Specific Microwires (ESWs) 

We considered neural activity from the onset of the associated image to the patient's response 

in encoding trials, and from the cue onset to the response onset in retrieval trials. To account 

for edge artefacts, we extended these trial definitions by 100ms on each side. We then 

performed a wavelet analysis using wavelets from 40 Hz to 200 Hz in steps of 5 Hz and a 
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width of 7 cycles, on the linenoise-removed broadband signal. After removing all artefacts 

(see 3.2.3 LFP Artefact Rejection, p. 45), we computed the mean power over all frequencies.  

Trials that consisted of 50% or more artefacts during encoding or retrieval were excluded, 

and if fewer than nine trials remained, the microwire was not considered for further analysis. 

We z-scored the remaining HFA power values independently for encoding and retrieval, and 

afterwards excluded later forgotten trials. Finally, we defined the element-wise product of 

the encoding and retrieval standardized HFA power as a proxy for episode-specific 

reinstatement. To calculate a threshold for this episode-specific firing reinstatement we 

permuted the order of the encoding and retrieval episodes and recomputed the reinstatement 

value. We repeated this step 1,000 times and took the 99th percentile as a threshold against 

which we compared the empirical reinstatement value. If the empirical reinstatement 

exceeded the threshold and its standardized power at encoding and retrieval was at least 

1.645 (≙ pright-tailed < 0.05), we considered this microwire an Episode Specific Microwire 

(ESW). This procedure allows for thresholding but does not correct for multiple comparisons 

on the level of a microwire. To determine whether there was a significant number of 

microwires that showed an episode-specific power reinstatement, we randomly drew one of 

the previously calculated permutations for each microwire and determined whether it would 

be classified as an ESW under the same criteria as before. In each of the 1,000 permutations, 

we summed up the number of shuffled ESW which we then used to create a null distribution 

against which we compared the empirically determined number of ESW. To generate Figure 

3.3, we repeated the time-frequency analysis in the range of 3 Hz and 200 Hz in 50 

logarithmically spaced steps for all microwires that exhibited a HFP reinstatement in at least 

one episode. For each ESW we calculated the mean HFP during reinstated and non-

reinstated episodes and then averaged the respective power spectra across all ESW. To 

determine the statistical significance of the results, we used a cluster-based permutation test 

(Maris & Oostenveld, 2007). 

 

3.2.5 Identification of putative Concept Specific Microwires (CSWs) 

We have adapted the method created by Mormann and colleagues (Mormann et al., 2008; 

2011) for detecting Concept Neurons to identify microwires whose HFP was reliably 

increased following the presentation of a specific image. For each microwire, we divided the 

local field potential of the 1000ms interval post-stimulus into 19 100ms overlapping bins, 

with the 500ms preceding stimulus onset as the baseline period. To prevent edge artefacts, 

we extended the testing and baseline intervals by 100ms on either side. We performed a 

time-frequency analysis using wavelets in the range of 40 Hz to 200 Hz (stepsize: 5 Hz) and 
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a width of 7 cycles, allowing us to estimate the time-resolved power. We then averaged the 

power over all frequencies and within each time bin. If more than one of any of the six 

repetitions of an image contained over 50% artefacts that time bin was discarded for all 

repetitions. We then compared the mean HFA power in the remaining 19 bins across all six 

presentations of an image with the mean HFA power of all baseline periods in the session 

using a Mann-Whitney U test. We corrected for multiple comparisons using the Simes’ 

procedure (Rødland, 2006). To test whether our dataset has a significant number of CSWs 

for each microwire we shuffled the trial order and recomputed the CSW detection pipeline. 

We repeated this step 1,000 times to generate a distribution of how many CSW to expect 

under the null hypothesis. 

 

3.2.6 Correlation between HFP and spiking activity 

After pre-processing the LFP of the microwire on which a neuron was recorded (see 3.2.2 

LFP pre-processing, p. 45) we segmented the data into later remembered episodes. During 

memory encoding the time of interest started at the onset of the associate image(s) and ended 

when the patient gave their response. In contrast, during memory retrieval, the time of 

interest started at the cue onset and ended when the patient gave their response. We added 

100ms on each side to account for edge artefacts. Then, we performed a wavelet analysis 

between 40 Hz and 200 Hz in steps of 5 Hz and a width of 7 cycles, and averaged the power 

across frequencies. We then normalized the HFP across time, using a z-transformation, and 

concatenated this standardized power values across all episodes. To compute the 

instantaneous firing rate of the corresponding neuron, we convolved the firing times with a 

Gaussian kernel (kernel parameters: mu = 0, standard deviation = 50ms, length = 300ms, 

normalized peak to 1). We then z-scored this instantaneous firing rate and concatenated all 

episodes. Subsequently, we performed a linear correlation between the concatenated 

standardized HFP and the concatenated standardized instantaneous firing activity, separately 

for encoding and retrieval. To assess the statistical significance of the correlation we shuffled 

the data circularly and recomputed the correlation with this shuffled data. We repeated this 

step N = 10,000 times and compared the empirical correlation coefficient with the resulting 

null distribution of shuffled correlation coefficients. We performed this analysis twice: once 

for neural activity during reinstated episodes and once for all other episodes. 
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3.3 Results 

We conducted two different experiments in which patients implanted with stereotactic 

Behnke-Fried depth electrodes completed a memory association task (see Figure 2.1) In 

Experiment 1 we recorded from 1011 microwires and 585 neurons in the hippocampus (16 

participants, 7 female; average age = 36.13 years, from 26-53 years) and in Experiment 2 

we recorded from 344 microwires and 216 neurons in the hippocampus (14 participants, 7 

female; average age = 33.86 years, from 19-58 years). During the encoding phase of 

Experiment 1 patients were instructed to mentally form a vivid story containing an animal 

cue and two associated images (two faces, two places, or one of each). Experiment 2 only 

had one associate image and either cue or associate could be a face, a place or an animal. 

After the encoding phase a short distractor task commenced during which patients had to 

determine whether a series of 15 numbers were odd or even. During the retrieval phase, the 

cue image was presented and the patient was asked to retrieve the associated image(s). Each 

episode was learned and retrieved once and the experiment was completed at the participants' 

own speed. 

 

3.3.1 Reinstatement of high frequency power 

To investigate high frequency power reinstatement, we calculated the average power within 

a range of 40 Hz to 200 Hz in steps of 5 Hz for every microwire. During encoding we 

considered neural activity from the time point the associated image was presented until the 

patient gave their response. During retrieval the time of interest stretched from the cue onset 

to the response. We z-scored the power values independently for encoding and retrieval and 

subsequently excluded episodes that were later forgotten. We defined the element-wise 

product of the standardized encoding and retrieval power values as a measure of episode-

specific reinstatement. Using a trial-shuffle procedure we re-computed these reinstatement 

values 1,000 times. If any empirical reinstatement value exceeded the 99th percentile of 

these permuted values and if the standardized power at encoding and retrieval during that 

episode exceeded a value of at least 1.645 we considered this microwire an Episode Specific 

Microwire (ESW; see Figure 3.1 for an example). To estimate how many ESW we can 

expect by chance we then randomly drew one of the previously calculated permutations for 

each microwire and applied the same thresholding technique to these shuffled reinstatement 

values. This allowed us to create a distribution of ESW under the null hypothesis against 

which we could compare the number of empirically identified ESW. Using this approach, 

we found a significant number of ESW in Experiment 1 (n = 144 out of 1010 microwires, p 
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= 0.0310; permutation test; see Figure 3.2). However, there was no significant number of 

ESW when limiting the analyses to later forgotten episodes (p = 0.305; permutation test). 

We subsequently contrasted the power spectra of reinstated episodes with non-reinstated 

episodes from 3 Hz to 200 Hz using 50 log-spaced frequency points. A cluster-based 

permutation test revealed that during reinstated trials, the power was significantly increased 

from 9.9 Hz to 200 Hz (p < 0.001) at encoding and from 15.3 Hz to 200 Hz (p < 0.001) at 

retrieval (see Figure 3.3).  

 

 

Figure 3.1. Example Episode Specific Microwire (ESW). 

(A) The bar plots show the z-scored HFP on the y-axis for 23 episodes on the x-axis colour 

coded for encoding (blue) and retrieval (orange). The transparent bar encompassing the 

standardized HFP represent their element wise product, which is used as a measurement for 

episodic memory reinstatement. The dotted line represents the threshold which is calculated 

based on a permutation test. 

(B) The time resolved HFP (y-axis) during memory encoding with the time in seconds (x-

axis) starting from the associate image onset for reinstated episodes (purple) and non-

reinstated episodes (green). The shaded area represents the SEM. 

(C) Same as (B), but during retrieval and starting at the cue onset. 
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Figure 3.2. Number of reinstated episodes and number of ESW expected under the null 

hypothesis. 

(A) Pie chart showing the number of episodes each neuron reinstated during Experiment 1 

(zero episodes: 598 microwires; one episode: 345 ESWs; two episodes: 60 ESWs; three 

episodes: 7 ESWs; four episodes: 1 ESWs).  

(B) Same as (A), but for Experiment 2 (zero episodes: 224 microwires; one episode: 97 

ESWs; two episodes: 15 ESWs; three episodes: 3 ESWs).  

(C) Distribution of the number of ESWs expected by chance and the number of empirically 

found ESW (red line) in Experiment 1.  

(D) Same as (C) but for Experiment 2. 
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Figure 3.3. Power spectra for reinstated episodes (purple) and non-reinstated episodes 

(green) during (A) encoding and (B) retrieval. 

The x-axis displays the frequency, ranging from 3 Hz to 200 Hz in 50 logarithmically spaced 

increments. The y-axis displays the power on a logarithmic scale to enhance editorvisibility. 

The shaded regions show the SEM. The grey rectangles specify frequencies at which the 

power during reinstated episodes significantly exceed the power of non-reinstated episodes 

(Maris & Oostenveld, 2007). 

 

3.3.2 HFP reinstatement is not content dependent 

The second experiment included a visual tuning task, during which the same images that 

were used in the preceding memory task were presented repeatedly without an episodic 

memory component.  This approach has been traditionally used to detect neurons responding 

to specific concepts or categories (Mormann et al., 2008; Quian Quiroga et al., 2005) and 

allowed us to exclude all episodes that contained an image which reliably evoked a HFP 

increase during a visual tuning task. We defined Concept Specific Microwires (CSW) as any 

microwire with a significant increase of HFP in any of 19 overlapping 100ms time bins 

following the image presentation across all six repetitions in comparison to a 500ms pre-

stimulus baseline period using a Mann-Whitney U test (see Methods). We carried out the 

analysis twice, once with the typically used cut-off threshold of p = 0.0005 and again with a 

more liberal cut-off threshold of p = 0.05. Note that no corrections were made for testing 

multiple images for tunings, thus making a threshold of p = 0.05 very liberal. No CSWs were 

detected at p = 0.0005; however, when the threshold was lowered to p = 0.05, we found a 
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significant number of CSWs (86 out of 344 microwires, p = 0.005, permutation test). 

Because no CSWs were detected at a cut-off of p = 0.0005, no episodes were excluded in 

the ESW analysis. In Experiment 2 we replicated our prior results and found a significant 

number of ESWs (n = 52 out of 344 microwires, p = 0.003). We then repeated the ESW 

analysis, this time excluding episodes with significant CSW activity at a threshold of p = 

0.05. Despite this threshold change, we identified a significant number of ESWs (n = 50 out 

of 344 microwires, p = 0.001). Of note, although the more liberal CSW threshold led to the 

identification of fewer ESWs the resultant p-value is lower. This is because the reduced 

threshold is also applied when determining the number of permuted ESWs (i.e., ESWs 

expected by under the null hypothesis). 

In summary, we discovered a memory code in the form of a HFP reinstatement between 

encoding and retrieval of individual episodes across two independent experiments. Although 

we were unable to detect any CSW activity using the traditionally used threshold, we 

detected a significant number of CSWs with a more liberal threshold. Importantly, our 

findings could not be accounted for by a content-specific code (i.e., CSWs). 

 

3.3.3 HFP correlates with ESN and single neuron firing 

Next, we examined the correlation between HFP and single neuron firing in our sample. We 

first determined the instantaneous firing rate of each ESN during reinstated episodes. In a 

separate analysis we calculated the instantaneous firing rate during non-reinstated episodes. 

We segmented the LFP data into later remembered episodes and performed a wavelet 

analysis from 40-200 Hz. For each episode we averaged the power in that frequency range. 

We then z-scored the instantaneous firing rate and the HFP estimate across time. Finally, we 

concatenated each episode separately for encoding and retrieval. We performed a linear 

correlation between the standardized HFP and the standardized instantaneous firing rate and 

assessed the statistical significance by comparing it with the correlation values that we 

obtained through circular shuffling. In Experiment 1, HFP and ESN firing during reinstated 

episodes correlated with r = 0.132 during encoding (r² = 0.017, p < 0.001; permutation test) 

and r = 0.120 during retrieval (r² = 0.014, p < 0.001; permutation test). Firing during non-

reinstated episodes significantly correlated with HFP during encoding (r = 0.110, r² = 0.012 

p < 0.001; permutation test) and during retrieval (r = 0.083, r² = 0.007, p < 0.001; 

permutation test). A similar relationship was found in Experiment 2, where HFP and firing 

during reinstated episodes correlated with r = 0.140 at encoding (r² = 0.020, p < 0.001; 

permutation test) and r = 0.135 during retrieval (r² = 0.018, p < 0.001; permutation test). 

Firing during non-reinstated episodes correlated with HFP with r = 0.072 during encoding 
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(r² = 0.005, p < 0.001; permutation test) and r = 0.063 during retrieval (r² = 0.004, p < 

0.001; permutation test). 

 

3.4 Discussion 

Episodic memories refer to distinctive events that occurred at a specific time and space. 

These memories are composed of multiple components. In Chapter 1 we identified how the 

human hippocampus processes these episodic memories. These neurons (called Episode 

Specific Neurons; ESNs) increase their firing rate during encoding and retrieval of specific 

episodic memories. In the present chapter, we extended these findings from single neurons 

to the population level by investigating the local field potential (LFP) as a proxy of multi-

unit activity. We analysed two independent datasets that were collected using 

microelectrodes located in the human hippocampus while patients performed a memory 

association task. Power in the high frequency band (40-200 Hz) on a significant number of 

microwires was reinstated from encoding to retrieval of specific episodes. These findings 

cannot be explained by a content code (i.e., HFP induced by the presence of particular 

concepts). Applying the traditional criterion used to detect Concept Neurons seems to be too 

conservative to detect significant increases in the HFP. However, when lowering this 

threshold, we found a significant number of microwires that show a consistent HFP increase 

when presenting specific concepts (CSW) despite the relatively small assembly size of 

Concept Neurons (Quian Quiroga, 2012). Importantly, the same threshold was also lowered 

for the group-level permutation test, which we used to determine the number of CSW 

expected under the null hypothesis. Concept Neuron activity might be reflected in the HFP 

due to the spatial clustering of Concept Neurons within the vicinity of a microwire (but see 

De Falco et al., 2016; Redish et al., 2001). Alternatively, multiple Concept Neurons coding 

the same concept might be active within a short delay, leading to a higher deflection in the 

LFP. The development of new electrodes (such as Durand et al., 2022; Dutta et al., 2019; 

Jun et al., 2017; Paulk et al., 2022) that enable the recording of multiple neurons that code 

the same concept at more precisely known locations might offer an answer to this question.  

Our analyses revealed that the power differences between reinstated and non-reinstated 

episodes exceeded the frequency range of 40-200 Hz that we used to differentiate the two. 

Reinstated episodes were characterized by an increased power from 10 Hz (during encoding) 

and 15 Hz (during retrieval), implying that the distinction between reinstated and non-

reinstated episodes may not be limited to 40-200 Hz, but could be attributed to either an 

offset or a spectral tilt of the 1/f power spectrum. Future studies will need to carefully 
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disentangle the individual contributions of oscillatory changes, a power offset, and a spectral 

tilt between reinstated and non-reinstated trials.  

The range of high frequency activity (40-200 Hz) overlaps with the so-called ripple band 

(80-120 Hz). Excitatory input from CA3 induces ripple activity in CA1, which is 

characterized by highly synchronized neural firing (Buzsáki, 2015). Ripple activity has been 

linked to memory consolidation and replay of previous experiences (Jadhav et al., 2012; 

Roux et al., 2017; Vaz et al., 2019). For example, research by Vaz and colleagues (Vaz et 

al., 2019), has implicated coupled ripple activity to coordinate the information flow between 

the MTL and the temporal cortex (also see Ngo et al., 2020). Considering this, future studies 

should investigate the extent to which the here reported HFP memory reinstatement effect is 

driven by activity in the ripple range. Here we reported a significant correlation between 

neural firing and the HFP on the microwire on which the neurons were recorded. The 

correlation coefficient was low, explaining roughly 0.4-2% of the variance. It is important 

to note, that we correlated the firing rate of individual neurons with the HFP, which includes 

the activity from disproportionally more neurons with heterogeneous firing rates. We, 

therefore, expect a higher correlation when analysing more neurons. Moreover, it is 

conceivable that different microwires from the same bundle may be better suited to pick up 

transmembrane currents from nearby neurons. Additionally, there is substantial variance in 

the literature on which frequency range constitutes the high frequency band (Ray et al., 2008: 

60-200 Hz; Whittingstall & Logothetis, 2009: 30-100 Hz; Leszczynski et al., 2020: 70-150 

Hz; Nir et al., 2007: 40-130 Hz). Future studies should aim to identify which frequencies are 

most indicative of single neuron firing taking into consideration differences between neuron 

types (excitatory or inhibitory cells). Furthermore, a computational model suggested that 

synchronous firing is more influential in increasing HFP compared to firing alone (Ray et 

al., 2008). Unfortunately, due to the limited number of single neurons that can be recorded 

using currently available microwires we cannot resolve this question. Recording more 

neurons using newer electrodes may enable us to disentangle the roles of synchrony and 

firing in relation to HFP in the future. A larger brain coverage would also allow the 

investigation of what role the recorded brain area plays in moderating the relationship 

between neural firing and HFP (Leszczyński et al., 2020). 

To conclude the present chapter, we identified a significant number of microwires which 

show a HFP reinstatement during encoding and retrieval of specific memories (ESW) 

consistently across two independent datasets. This HFP activity showed a low, but 

significant correlation with neural firing of ESNs and single neurons during encoding and 

retrieval. Although we did not find reliable HFP increases to specific concepts using the 
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traditionally used threshold, we identified a significant number of concept coding 

microwires using a more liberal threshold (CSW). Importantly, the HFP reinstatement for 

specific memories could not be attributed to this content code. Taken together the present 

work extends findings from the level of the single neuron and provides a potential link to 

surface EEG recordings  (Buzsáki et al., 2012). 
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Chapter 4 

 

Absence of periodic theta increase and no theta 

spike-field coupling in the human hippocampus 

during episodic memory processing 

 

Abstract 

Theta oscillations play a central role in memory processing. Recent findings 

point towards there being not one dominant theta frequency in the human 

hippocampus, but rather two: a slow theta (2-5 Hz) and a fast theta (5-9 Hz) 

oscillation. It has been suggested that successful memory processing is 

reflected in a narrowband theta increase as well as a ‘tilt’ in the aperiodic power 

spectrum, where lower frequencies are diminished and higher frequencies 

increased. Furthermore, according to an influential theory memory encoding 

and retrieval occurs in opposite theta phases so newly encoded memories do 

not cause catastrophic interference with older memories.  

We investigated these hypotheses in two independent samples of intracranial 

microwire recordings. Contrary to previously reported findings, our results 

provide inconclusive evidence regarding narrowband slow and fast theta power 

and an aperiodic tilt. Our research did not reveal consistent evidence that 

neurons that increase their firing rate during encoding and retrieval of specific 

episodes (Episode Specific Neurons; ESNs) or other non-tuned neurons fire at 

a distinct theta phase during encoding and retrieval. Likewise, we found no 

significant theta phase difference between neurons firing at encoding and 

retrieval. 
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4.1 Introduction  

In the preceding chapters, we found evidence of an episode specific neurophysiological 

marker at both the single-neuron level and in the high frequency power of the microwire 

local field potential (LFP). Next, we will explore another prominent frequency range in the 

hippocampus, the theta oscillation, and investigate how it relates to single-neuron spiking. 

Research in the role of theta oscillations on learning on memory go back to the late 70s 

(Berry & Thompson, 1978; Winson, 1978). Winson (Winson, 1978) showed that lesioning 

the medium septum caused a reduced hippocampal theta rhythm along with an impaired 

spatial memory. In line with this, higher theta power in rabbits was associated with 

augmented learning (Berry & Thompson, 1978). Since then, evidence regarding the role of 

theta oscillations in episodic memories has been contradictory. While most studies 

employing surface EEG report increases in theta power, most iEEG studies report a memory 

induced theta power decrease (Herweg et al., 2020). Herweg and colleagues (Herweg et al., 

2020) suggested that this might be because studies frequently contrast later remembered with 

later forgotten memories and therefore conflate domain-general cognitive processes, such as 

attention and perception, with memory-specific processes. Because domain-general 

cognitive processes are assumed to lead to a spectral tilt (i.e., less low frequency power and 

more high frequency power), a narrow band theta power increase induced by memory 

processing might be obscured.  To ameliorate this shortcoming researchers should not 

contrast successful memory with unsuccessful memory but instead should compare strength 

of memory (e.g., retrieval confidence, amount of detail in contextual retrieval, retrieved 

spatial distance to encoded location in a navigational task; Herweg et al., 2020) . Another 

reason how surface EEG might show a theta power increase, although the LFP shows a 

decrease is if theta over larger areas synchronizes but decreases in amplitude. The decrease 

is truthfully reflected in the LFP, but activity on the scalp is integrated over larger areas and 

thus more synchronous theta could lead to higher scalp theta power (Herweg et al., 2020). 

Taken together these considerations imply theta activity as an integral part of memory 

processing and suggest that conflicting evidence arises due to different recording methods 

(EEG/iEEG), memory contrasts (success vs success or vs failure) and frequency ranges 

(broadband vs narrowband). 

An increased narrowband theta activity is in line with the prediction from a computational 

model and theoretical considerations that theta synchronization in the hippocampus is 

necessary for memory processing (Hanslmayr et al., 2016; Parish et al., 2018). More recent 

findings in humans demonstrated that behavioural response times in memory tasks are 
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modulated by theta oscillations (ter Wal et al., 2021) and that theta binds together the 

multiple elements within an episode (Clouter et al., 2017; Griffiths et al., 2021; Roux et al., 

2022). 

A central requirement of the hippocampus is the ability to encode new information without 

interfering with related previous experiences. Hasselmo and colleagues developed a 

computational model that solves this conundrum by moving encoding and retrieval 

processes to opposing phases in the theta rhythm (Hasselmo et al., 2002). Empirical support 

for this 180° shift between memory encoding and retrieval has been recently found by Kerrén 

and collegues (Kerrén et al., 2018; Kerrén et al., 2022). The relation between single neuron 

firing and ongoing theta oscillation contains more information than the neural firing alone 

(Huxter et al., 2003; Jacobs et al., 2007). Place cells in the hippocampus are neurons that 

code for specific spatial locations. As rodents move towards a location, a place cell fires at 

increasingly earlier phases of the ongoing theta oscillation. One can therefore decode the 

position of the rodent in relation to a place by combining the theta phase and the neural firing 

(O'Keefe & Recce, 1993). In humans, a stronger spike-theta coupling (Rutishauser et al., 

2010) as well as neurons locking to faster theta oscillations (Roux et al., 2022) predicts 

successful memory. Importantly, recent findings suggest that there are two distinct theta 

rhythms governing the human hippocampus: a slow (2-5 Hz) and a fast (5-9 Hz) oscillation 

(Goyal et al., 2020; Kota et al., 2020; Lega et al., 2012). 

We therefore hypothesized that (i) later remembered episodes show a shift in the aperiodic 

power spectrum and an accompanying increase in oscillatory fast and slow theta power in 

comparison to later forgotten episodes. (ii) We also expected this change in aperiodic and 

periodic activity to manifest when comparing episodes in which ESNs reinstate their firing 

rate (as described in Chapter 2) and episodes which are not reinstated. (iii) We hypothesized 

that neurons, particularly ESNs, fire at distinct slow and fast theta phases during the 

encoding and retrieval of episodic memories, and that there is a substantial phase offset 

between encoding and retrieval. 

 

4.2 Materials and Methods 

4.2.1 Shared Methods 

For a description of the experimental procedures, the participants, ethical approval, 

behavioural analysis, co-registering of the MRIs, recording system and electrodes, spike 

detection and spike sorting, and Identification of Episode Specific Neurons (ESNs) please 

see the methods section of Chapter 2 (p. 18 – 24). 
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4.2.2 Statistical analysis 

All statistical analyses were conducted using MATLAB R2020a on a computer running 

Windows 10 Enterprise. The significance threshold for all statistical tests was set at 0.05. 

Unless specified otherwise, all permutation tests were implemented with N = 1,000 random 

draws. 

 

4.2.3 Periodic and aperiodic theta analysis 

To investigate periodic (i.e., oscillatory) and aperiodic activity (i.e., 1/f activity), we first 

downsampled the LFP in every microwire to 1000 Hz and bandpassed the signal using a 

fourth order Butterworth filter at 50 Hz ±1 Hz and harmonics up to 300 Hz. An episode was 

labelled as reinstated if any neuron on the respective microwire contained a single neuron 

that showed a significant firing increase during encoding and retrieval (i.e., an ESN; see 

Chapter 1). We defined the time of interest as the period two seconds prior to the response 

at memory encoding and retrieval. In Experiment 1, an episode was considered correctly 

remembered if the patient correctly chose two out of two associate images and labelled as 

forgotten if the patient indicated they do not remember any associates or if they chose no 

correct associate.  

For each episode, we extracted the periodic and aperiodic part of the signal using the FOOOF 

implementation (Donoghue et al., 2020) in Fieldtrip (Oostenveld et al., 2011) in a frequency 

range from 1 Hz to 200 Hz. We analysed two contrasts of the periodic and aperiodic activity: 

(i) reinstated episodes against non-reinstated episodes in microwires with ESNs, and (ii) 

correctly remembered episodes against forgotten episodes (excluding reinstated episodes).  

For the periodic analysis, we averaged activity within the slow (2-5 Hz) and fast (5-9 Hz) 

theta bands and then conducted paired-sample t-tests to compare oscillatory activity between 

contrasts and one-sample t-tests to test for significant oscillatory activity. For the aperiodic 

analysis we performed paired-sample t-tests between contrasts, with the offset and tilt as 

dependent variables. 

 

4.2.4 Theta components and pre-processing 

As a first step, we downsampled the microwire signal to 100 Hz. Because we do not know 

the relative position of the recorded neurons to the microwires within a bundle of electrodes 

by extension we do not know if the microwire on which the neuron was recorded best 

represents the neural input into the neuron. For this reason, we took into consideration all 
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eight microwires and generated two theta components using generalized 

eigendecomposition (Cohen, 2017). The generalization of the eigendecomposition extends 

the eigendecomposition to a case with two square matrices. For an eigenvalue decomposition 

with a singular square matrix, the eigenvector with the highest eigenvalue accounts for the 

maximal variance in the underlying square matrix and is pairwise orthogonal to the other 

eigenvectors. In contrast, the eigenvector with the highest eigenvalue in a generalized 

eigendecomposition can be understood as the filter that maximizes the difference between 

the two input matrices. The eigenvectors in a GED are independent, but not orthogonal. In 

practice when applied to two covariance matrices where one matrix represents the broadband 

activity and the other matrix is generated using a narrowband signal the first eigenvector 

yields a spatial weighting that maximizes the narrowband activity and minimizes the 

broadband activity. This eigenvector can be applied to the narrowband filtered multichannel 

data to generate a narrowband component (Cohen, 2017; see Figure 4.1 for a five second 

data segment). 

Based on previous literature (Goyal et al., 2020; Kota et al., 2020; Lega et al., 2012) we 

computed a slower theta component in the frequency range of 2 Hz to 5 Hz and a second, 

faster component in the range of 5 Hz and 9 Hz. To generate these components, we first 

applied a first order Butterworth filter to bandpass the broadband signal in all eight 

microwire channels between 2 Hz and 5 Hz (slow theta component) or 5 Hz and 9 Hz (fast 

theta component). We then demeaned the signal and computed a covariance matrix using 

this narrowband signal, which we divided by the number of samples. Next, we computed a 

second covariance matrix using the entire broadband signal. We computed the generalized 

eigendecomposition of these two covariance matrices and used the eigenvector with the 

highest eigenvalue as a spatial filter for the narrowband filtered signal to generate a 

narrowband component. We then applied the Hilbert transform to the narrowband 

component to get the analytic signal. 



Chapter 4: Absence of periodic theta increase and no theta spike-field coupling 

58 

 

 

Figure 4.1. Five second data snippet showing activity in the slow (2-5 Hz; A) and fast 

(5-9 Hz; B) components. 

Components were generated by taking a weighted average of the narrowband signal of all 

microwires within a bundle. The weighted average was calculated using a generalized 

eigendecomposition of the broadband and narrowband covariance matrices. 

 

4.2.5 Spike-field coupling to slow and fast theta 

We considered the spikes of neurons up to two seconds preceding the patient’s response 

during the encoding and retrieval of later remembered episodes. Each neuron had to contain 

at least 11 spikes within the time of interest to be included for further analysis. We confined 

all spike-field analyses to spikes and LFPs that were recorded on the same Behnke-Fried 

electrode. We first wanted to estimate phase preference during encoding and retrieval 

independently. To do this we identified the complex value at the time of each spike. We 

subsequently normalized each complex value and averaged across spikes. For each neuron 

with spikes within the time of interest we computed the preferred phase by computing the 

angle of this average complex number. To estimate phase preference across neurons we 

performed a Rayleigh test. We next investigated whether there was a significant difference 

in the phase of the narrowband signal between spikes during encoding and retrieval for (i) 

Episode Specific Neurons in trials that were later reinstated (rESN), (ii) for Episode Specific 

neurons in trials that were later not reinstated (nESN) and (iii) all other neurons (SU). To 

this end, we computed the cosine similarity between the complex value of each spike at 

encoding with the complex value of each spike at retrieval. We then averaged these similarity 

values across spikes for each eligible neuron. We determined the statistical significance of 
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these difference scores using a one sample test for a mean angle of 0°, which we 

implemented using the function circ_mtest from the Circular Statistics Toolbox v1.21.0.0). 

However, if only few neurons are sensitive to the ongoing theta phase an encoding-retrieval 

phase offset in this small number might be overshadowed by other neurons whose activity 

is not theta modulated. To address this, we repeated the above phase difference analysis 

using only neurons whose spikes showed a significant coupling to the theta phase at 

encoding and retrieval, as evidenced by a Rayleigh test. We proceeded with this analysis 

only if there were at least 11 eligible neurons. 

 

4.3 Results 

We studied recordings from two different experiments (Experiment 1: 585 neurons and 1011 

microwires in the hippocampus, 16 participants, 7 female; average age = 36.13 years, from 

26-53 years; Experiment 2: 216 neurons and 339 microwires in the hippocampus, 14 

participants, 7 female; average age = 33.86 years, from 19-58 years). Patients were implanted 

with stereotactic Behnke-Fried depth electrodes while completing a memory association task 

(see Figure 2.1). During the encoding phase of Experiment 1 patients were instructed to 

mentally create a vivid story consisting of an animal cue and two associate images (two 

faces, two places, or a face and a place). There was only one associate image in Experiment 

2 and cue and associate could be either a face, a place, or an animal. Following a short 

distractor task where patients had to indicate whether a series of 15 numbers were odd or 

even the retrieval phase begun. During the retrieval phase the cue image was presented and 

the patient had to recall the associate image(s). Each episode was learned and retrieved only 

once, and the experiment was self-paced. 

 

4.3.1 Periodic and aperiodic theta activity during correctly remembered and forgotten 

episodes 

The power spectrum can be separated into periodic and aperiodic components. The periodic 

components reflect true oscillations, while the aperiodic component is also referred to as 1/f 

and is assumed to reflect general excitability (Gao et al., 2017). We separated periodic and 

aperiodic components in the microwire LFP using the FOOOF (Donoghue et al., 2020) 

implementation available in FieldTrip (Oostenveld et al., 2011) over a range of 1 Hz to 200 

Hz and contrasted activity of later remembered with later forgotten episodes during encoding 

and retrieval (Figure 4.2). We found no significant differences in the aperiodic offset during 
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encoding in Experiment 1 (all p > 0.54) or Experiment 2 (all p > 0.55). However, during 

retrieval there was a significantly larger offset and steepness in the aperiodic signal for later 

forgotten episodes in both Experiment 1 (offset: toffset (341) = 3.13, meanremembered = 2.23 (s.e. 

= 0.047), 

meanforgotten 

= 2.25 (s.e. 

= 0.050), 

poffset = 

0.002; 

steepness: 

ttilt (341) = 

3.36, 

meanremembered = 1.83 (s.e. = 0.020), meanforgotten = 1.84 (s.e. = 0.021), ptilt < 0.001) and 

Experiment 2 (offset. toffset (114) = 3.00, meanremembered = 2.04 (s.e. = 0.084), meanforgotten = 

2.08 (s.e. = 0.088), poffset = 0.003; steepness: ttilt (114) = 3.37, meanremembered = 1.59 (s.e. = 

0.038), meanforgotten = 1.61 (s.e. = 0.039), ptilt = 0.001). We next compared the periodic theta 

activity between remembered and forgotten episodes. In Experiment 1, there was no 

difference in oscillatory slow or fast theta activity between the types of episodes during 

either encoding or retrieval (all p > 0.059). However, in Experiment 2 a difference in periodic 

fast theta activity during encoding emerged (t(114) = 2.68, p = 0.008; all other p > 0.065) 

where later forgotten episodes showed an increase in periodic power (meanremembered = 14.75 

(s.e. = 2.082); meanforgotten = 18.42 (s.e. = 2.98).  

We found consistent evidence across experiments and experiment phase (i.e., 

encoding/retrieval) for periodic fast theta activity in remembered and forgotten episodes (all 

p < 0.001; see  

Table 4.1). In both experiments, forgotten trials contained significant slow theta activity 

during retrieval (p < 0.009) but not encoding (p > 0.07). Remembered episodes showed slow 

theta activity inconsistently across experiments. There was significant periodic activity 

during encoding and retrieval in Experiment 2 (p < 0.001), but not Experiment 1 (pencoding = 

0.6 and pretrieval = 0.025).  

To conclude, we observed an increased aperiodic offset and steepness for forgotten episodes 

compared to remembered episodes during retrieval, but not during encoding. There was no 

coherent difference in periodic slow or fast theta power between forgotten and remembered 

 Contrast Remembered vs forgotten episodes 

Phase Encoding 

(exp 1) 

Encoding 

(exp 2) 

Retrieval 

(exp 1) 

Retrieval 

 (exp 2) 

Slow 

theta 

Remembered 

episodes 

p = 0.603 p < 0.001 

t(114) = 6.79 

p = 0.025 p < 0.001 

t(114) = 9.13 

Forgotten 

episodes 

p = 0.076 p = 0.113 p = 0.009 

t(341) = 2.61 

p < 0.001 

t(114) = 5.38 

Fast 

theta 

Remembered 

episodes 

p < 0.001 

t(365) = 7.41 

p < 0.001 

t(114) = 7.09 

p = < 0.001 

t(365) = 8.19 

p < 0.001 

t(114) = 6.61 

Forgotten 

episodes 

p < 0.001 

t(341) = 6.05 

p < 0.001 

t(114) = 6.18 

p < 0.001 

t(341) = 3.76 

p < 0.001 

t(114) = 6.51 
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episodes across experiments. We found reliable evidence for fast theta oscillations, whereas 

slow theta oscillations showed less clear results. 

 

Figure 4.2. Aperiodic and oscillatory fast and slow theta activity during encoding and 

retrieval of remembered (purple) and forgotten (green) episodes. Green and purple 

shaded areas represented the SEM. Red and grey shaded areas represent the slow and fast 

theta frequency ranges respectively.  

(A) Aperiodic power during encoding. Both axes are log-scaled. The x-axis shows 

frequencies from 1 to 200 Hz. The y-axis depicts the power at the respective frequency. 

(B) Same as (A) but for retrieval 

(C) Oscillatory activity in the slow theta range (2 Hz and 5 Hz) at encoding 

(D) Oscillatory activity in the fast theta range (5 Hz and 9 Hz) at encoding 

(E-F) Same as (C-D) but for retrieval. 

 

4.3.2 Periodic and aperiodic theta activity during reinstated and non-reinstated 

episodes 

We next contrasted periodic and aperiodic activity of reinstated against non-reinstated 

episodes on microwires that contained ESNs (Figure 4.3). We found no significant 

difference in the offset or steepness of the aperiodic component during encoding or retrieval 

in Experiment 1 (all p > 0.3) or Experiment 2 (all p > 0.5).  

We then contrasted oscillatory activity in the slow and fast theta range between reinstated 

and non-reinstated episodes but found no significant differences during either encoding or 
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retrieval in Experiment 1 (all p > 0.16) or Experiment 2 (all p > 0.09). We found evidence 

for fast theta oscillations in reinstated and non-reinstated episodes during encoding and 

retrieval across both experiments (p < 0.001; see Table 4.2). There was no reliable pattern 

of slow theta oscillations across experiments when contrasting reinstated and non-reinstated 

episodes (see Table 4.2). 

To conclude, despite finding evidence for the existence of theta oscillations, we did not find 

evidence for a difference in oscillatory power between reinstated and non-reinstated trials 

during encoding or retrieval. Likewise, there was no difference in aperiodic offset or 

steepness between later reinstated trials and non-reinstated trials during encoding or 

retrieval. 

 

 

Figure 4.3. Aperiodic and oscillatory fast and slow theta activity during encoding and 

retrieval of reinstated (purple) and non-reinstated (green) episodes. Green and purple 

shaded areas represented the SEM. Red and grey shaded areas represent the slow and fast 

theta frequency ranges respectively. 

(A) Aperiodic power during encoding. Both axes are log-scaled. The x-axis shows 

frequencies from 1 to 200 Hz. The y-axis depicts the power at the respective frequency. 

(B) Same as (A) but for retrieval 

(C) Oscillatory activity in the slow theta range (2 Hz and 5 Hz) at encoding 

(D) Oscillatory activity in the fast theta range (5 Hz and 9 Hz) at encoding 

(E-F) Same as (C-D) but for retrieval. 
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4.3.3 Single neuron firing to specific theta phases during memory encoding and 

retrieval 

We next investigated whether single neuron firing would preferably occur within a specific 

theta phase during encoding and retrieval of episodic memories and whether there was a 

neuron specific phase offset between firing during the encoding and retrieval phases.  

Based on previous literature no single theta frequency dominates the human hippocampus. 

Instead, there is a slower theta oscillation (2-5 Hz) and a faster theta oscillation (5-9 Hz) 

(Goyal et al., 2020; Kota et al., 2020). 

We do not know which microwire best represents the dendritic input into a single neuron, so 

we computed theta components using a weighted average of all microwires within a 

microwire bundle. This was based on the generalized eigendecomposition of the narrowband 

theta covariance matrix and the broadband covariance matrix (see 4.2.4 Theta components 

and pre-processing, p. 62). We distinguished three different categories of activity: spikes of 

ESN that occurred during reinstated trials (rESN; Figure 4.4), spikes of ESN during non-

reinstated trials (nESN), and spikes of single units (SU; Figure 4.5). After excluding neurons 

with an insufficient number of spikes these analyses were based on nrESN = 36, nnESN = 116, 

and nSU = 380 neurons in Experiment 1 and nrESN = 13, nnESN = 34, and nSU = 136 neurons in 

Experiment 2. We first computed the preferred mean phase during encoding and retrieval 

for each neuron. To determine a general phase preference, we pooled this preferred phase 

value over all neurons within a category of neurons (rESN, nESN, SU) and used a Rayleigh 

test to determine statistically significant deviations from a uniform phase distribution. In 

Experiment 1, only the SU category showed a phase preference for the slow theta component 

during encoding (θ = 197.5°, p = 0.048) and retrieval (θ = 181.9°, p = 0.004). After adjusting 

for multiple comparisons for two tests (slow and fast theta) SU only showed a slow theta 

phase preference during retrieval (pencoding adj. = 0.096; pretrieval adj. = 0.008; Bonferroni 

corrected). Neither rESN nor nESN showed any slow or fast theta phase preference during 

encoding or retrieval (all p > 0.28). 

In Experiment 2 the SU category showed a phase preference in the slow theta component 

during encoding (θ = 287.2°, p = 0.002) but not during retrieval (p = 0.633; all other p > 

0.10). There was a statistically significant phase preference of rESN for the slow theta 

component during retrieval (θ = 201.3°, p = 0.048), however, after controlling for multiple 

comparisons (slow and fast theta), the effect was no longer significant (padj. = 0.096).  

It is possible that despite an absence of phase preference during encoding and retrieval, 

neurons show a reliable offset between encoding and retrieval (a representative example of 
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a 10° offset with four neurons: encoding: 0°, 90°, 180°, 270°; retrieval: 10°, 100°, 190°, 

280°). To determine if there was a significant theta phase difference between neurons firing 

at encoding and at retrieval, we computed the mean cosine similarity of the complex value 

for each neuron for all spikes during encoding with all spikes during retrieval. We 

determined the statistical significance of the encoding-retrieval phase offset separately for 

each neuron type (rESN, nESN, SU) using a one-sample test with a mean angle of 0° (i.e., 

no phase difference between encoding and retrieval). This one-sample test is the circular 

equivalent of a one-sample t-test with continuous data (we used the function circ_mtest from 

the Circular Statistics Toolbox v1.21.0.0). In Experiment 1 this approach yielded no 

significant encoding-retrieval phase differences for any category of neurons (rESN, nESN, 

SU) or theta components (slow, fast) (all p > 0.26). Likewise, no encoding-retrieval phase 

differences were found in Experiment 2 (all p > 0.4). 

It is conceivable that theta activity modulates only some neurons. In this case a small 

proportion of theta-sensitive neurons might show a consistent phase difference between their 

firing at encoding and retrieval, but due to their small number this effect might be obscured. 

To circumvent this, we repeated the above phase difference analysis for neurons whose firing 

rate showed a phase coupling at encoding and retrieval using a Rayleigh test. Using this 

approach, we identified a significant phase offset between SU firing at encoding and retrieval 

in Experiment 1 (θ = 14°, puncorrected = 0.048) that was no longer significant after correcting 

for multiple comparisons (pcorrected = 0.096; Experiment 1 all other p > 0.39; Experiment 2 

all p > 0.435).  

To conclude, we found a slow theta phase preference for SU during encoding in Experiment 

2 and retrieval in Experiment 1. However, no neuron type (rESN, nESN, SU) showed a 

significant encoding-retrieval theta phase offset, which was also the case when limiting the 

theta phase offset analysis to neurons that showed a significant phase coupling at encoding 

and retrieval. 
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Figure 4.4. Polar histogram showing the phase offset between encoding and retrieval 

and the phase distribution during encoding and retrieval in ESNs during reinstated 

episodes. 

(A) Preferred phase during encoding across all neurons for slow theta (2 Hz – 5 Hz) 

(B) Preferred phase during retrieval across all neurons for slow theta (2 Hz – 5 Hz) 

(C) Phase offset between encoding and retrieval across all neurons for slow theta (2 Hz – 5 

Hz) 

(D) Insufficient neurons (< 11) to analyse phase offset between encoding and retrieval in 

neurons showing significant theta coupling at encoding and at retrieval for slow theta (2 Hz 

– 5 Hz) 

(E-H) Same as (A-D) but for fast theta (5 Hz – 9 Hz) 



Chapter 4: Absence of periodic theta increase and no theta spike-field coupling 

66 

 

Figure 4.5. Polar histogram showing the phase offset between encoding and retrieval 

and the phase distribution during encoding and retrieval in non-ESN single neurons. 

(A) Preferred phase during encoding across all neurons for slow theta (2 Hz – 5 Hz) 

(B) Preferred phase during retrieval across all neurons for slow theta (2 Hz – 5 Hz) 

(C) Phase offset between encoding and retrieval across all neurons for slow theta (2 Hz – 5 

Hz) 

(D) Phase offset between encoding and retrieval in neurons that showed a significant theta 

coupling at encoding and at retrieval for slow theta (2 Hz – 5 Hz) 

(E-H) Same as (A-D) but for fast theta (5 Hz – 9 Hz) 
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 Contrast Remembered vs forgotten episodes 

Phase Encoding 

(exp 1) 

Encoding 

(exp 2) 

Retrieval 

(exp 1) 

Retrieval 

 (exp 2) 

Slow 

theta 

Remembered 

episodes 

p = 0.603 p < 0.001 

t(114) = 6.79 

p = 0.025 p < 0.001 

t(114) = 9.13 

Forgotten 

episodes 

p = 0.076 p = 0.113 p = 0.009 

t(341) = 2.61 

p < 0.001 

t(114) = 5.38 

Fast 

theta 

Remembered 

episodes 

p < 0.001 

t(365) = 7.41 

p < 0.001 

t(114) = 7.09 

p = < 0.001 

t(365) = 8.19 

p < 0.001 

t(114) = 6.61 

Forgotten 

episodes 

p < 0.001 

t(341) = 6.05 

p < 0.001 

t(114) = 6.18 

p < 0.001 

t(341) = 3.76 

p < 0.001 

t(114) = 6.51 

Table 4.1. Overview of evidence for periodic fast and slow theta activity during encoding and 

retrieval of (later) remembered and (later) forgotten episodes in Experiment 1 and 

Experiment 2. 
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Table 4.2. Overview of evidence for periodic fast and slow theta activity during encoding 

and retrieval of (later) reinstated or (later) non-reinstated episodes in Experiment 1 and 

Experiment 2. 

 Contrast Reinstated vs non-reinstated episodes 

Phase Encoding (exp 

1) 

Encoding  

(exp 2) 

Retrieval 

(exp 1) 

Retrieval 

(exp 2) 

Slow 

theta 

Reinstated 

episodes 

p = 0.318 p = 0.003 

t(32) = 3.16 

p = 0.495 p < 0.001 

t(32) = 3.81 

Non-

reinstated 

episodes 

p = 0.196 p < 0.001 

t(32) = 5.00 

p = 0.1814 p < 0.001 

t(32) = 3.48 

Fast 

theta 

Reinstated 

episodes 

p < 0.001 

t(122) = 3.42 

p < 0.001 

t(32) = 3.75 

p < 0.001 

t(122) = 4.65 

p = 0.007 

t(32) = 2.86 

Non-

reinstated 

episodes 

p < 0.001 

t(122) = 3.82 

p < 0.001 

t(32) = 3.92 

p < 0.001 

t(122) = 4.52 

p = 0.002 

t(32) = 3.48 
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4.4 Discussion 

Episodic memories consist of various multimodal elements and are embedded in a distinct 

temporal and spatial context (Tulving, 1972; Tulving, 2002). The neurophysiological 

markers of episodic memory processing are still subject to debate, but a considerable body 

of literature exists that emphasizes the importance of theta oscillations for memory 

processing (Clouter et al., 2017; Griffiths et al., 2021; Hanslmayr et al., 2016; Hasselmo et 

al., 2002; Kerrén et al., 2018; Parish et al., 2021; Roux et al., 2022; ter Wal et al., 2021; 

Winson, 1978). We analysed the activity of single neurons relative to the ongoing theta 

activity in two independent intracranially recorded datasets that were collected using 

microelectrodes located in the human hippocampus while patients performed a memory 

association task.  

In a recent review Herweg and colleagues (Herweg et al., 2020) suggested that memory 

processing is reflected in a steeper aperiodic component and an increase in periodic theta 

activity. Furthermore, studies have revealed that there is not one dominant theta frequency 

in the human hippocampus, but rather two distinct oscillations – a slow (2-5 Hz) and a fast 

(5-9 Hz) theta oscillation (Goyal et al., 2020; Kota et al., 2020). We first compared the 

aperiodic and periodic slow and fast theta components between remembered and forgotten 

episodes. In a second analysis we repeated the analysis but contrasted episodes during which 

the neural firing rate of ESNs is reinstated with episodes without neural firing reinstatement. 

In line with the hypothesis proposed by Herweg and colleagues (Herweg et al., 2020) we 

found a higher offset and 1/f tilt during retrieval of forgotten episodes. However, this 

aperiodic difference was absent during memory encoding, and we found no aperiodic 

differences between reinstated and non-reinstated episodes. We did not find any consistent 

differences in oscillatory slow and fast theta power for remembered vs forgotten episodes or 

reinstated vs non-reinstated episodes. We found periodic theta activity in both contrasts and 

during encoding and retrieval, although this evidence was more reliable in the fast theta 

band.  

To conclude, evidence regarding the offset and steepness of the aperiodic component was 

inconclusive and we found no evidence of periodic theta power being involved in memory 

processing. There were no significant periodic or aperiodic differences between two 

categories of successful memory events (i.e., between reinstated and non-reinstated 

episodes). One possible reason may be that each successfully encoded memory is 

represented by an assembly of ESNs. As we recorded only from a small subgroup of the 

ones close to the microwires, the non-reinstated episodes would only differ insofar as we 

would not record their respective ESNs, because the LFP reflects a larger area than the area 
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in which spikes are recorded. However, there is a deeper problem with the argument 

presented by Herweg and colleagues (Herweg et al., 2020). They recommend contrasting the 

strength of two successful memories (e.g., how many contextual details are remembered 

when retrieving an episode). The idea behind that is that in both cases domain-general 

processes, reflected in the steepness of the aperiodic component, would be present and any 

differences would be driven by the memory strength. The problem with this is that it 

implicitly assumes that processes like task engagement, effort, perception and attention are 

binary. However, a more vividly remembered episode might have a shallower aperiodic 

component because the patient has paid more attention during the episode and not because 

of memory processing. 

It should be noted that methods to separate periodic and aperiodic activity are far from 

perfect. Especially the large negative deflection in periodic activity e.g., at around 2 Hz in 

Figure 4.3C casts doubt on the validity of the aperiodic power estimation. Thus, oscillatory 

activity at the faster theta range may not reflect true periodicity but instead a poor 1/f fit. 

One might then argue that the lack of a consistent theta phase preference and no encoding-

retrieval phase offset might be due to the absence of substantial periodic theta power in 

microwires. It is possible that macrowires instead integrate over larger areas and show more 

robust periodic theta activity (unless a bipolar reference is used; see Herweg et al., 2020). 

However, previous studies have shown spike-field-coupling in the theta range using 

microwires (Jacobs et al., 2007; Reddy, Zoefel et al., 2021; Roux et al., 2022; Rutishauser 

et al., 2010) and spikes can couple to the phase of aperiodic components (Bush & Burgess, 

2020). 

One influential theoretical model proposed that encoding and retrieval of memories occur in 

opposite phases of the theta oscillation thereby avoiding that encoding new information 

causes catastrophic interference of older memories (Hasselmo et al., 2002). We investigated 

how the firing activity of different previously identified neuron types relates to the phase of 

the ongoing theta oscillations during memory encoding and retrieval. We distinguished 

between spikes from ESNs during reinstated (rESN), non-reinstated episodes (nESN) and 

spikes from other single neurons (SU). Although we found some rudimentary evidence that 

SU show a slow theta (2-5 Hz) phase preference during encoding and retrieval, this finding 

was not consistent across the two experiments. Apart from that we did not detect any 

significant encoding or retrieval theta phase preference for neural firing across experiments. 

We also found no significant encoding-retrieval phase offset across all neurons, nor when 

limiting our analysis to neurons that showed significant theta phase coupling during 

encoding and retrieval.  
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These unexpected results could be due to various reasons. Many of our recorded neurons 

may not have been involved in active memory processing and thus did not show any 

modulation induced by memory encoding and retrieval. However, this does not explain our 

null findings for rESN, which are, by definition, coding for that specific episode. In this case, 

our results may be attributed to an insufficient number of eligible neurons or the two seconds 

preceding the patient’s response may be a suboptimal time window for investigating spike-

field coupling. Moreover, we did not differentiate between interneurons and pyramidal 

neurons, which are known to fire at different theta phases thus introducing more variance 

(Csicsvari et al., 1999). 

Most neurons seem to maintain a preferred theta phase between encoding and retrieval. It is 

tempting to suggest that there is no theta phase preference during encoding and retrieval and 

that across the population of physiologically differently excitable neurons the entire theta 

cycle is covered leading to a uniform phase histogram at encoding and retrieval. However, 

we employed a frequentist approach when analyzing our data; thus, while we did not find 

compelling evidence to reject the null hypothesis (i.e., no theta phase difference between 

spikes at encoding and retrieval), this should not be interpreted as evidence for the null 

hypothesis (Dienes, 2014). To further investigate this, future studies should use a Bayesian 

framework and use a larger sample size. 

To conclude the present chapter, in line with our hypothesis we find that forgotten when 

compared to remembered episodes have a higher aperiodic offset and a steeper gradient. 

Contrary to our hypotheses, we found no such pattern during memory encoding and no 

periodic theta increase for correctly remembered episodes. Likewise, we did not find 

evidence of neural firing in specific phases during encoding and retrieval, or a phase 

difference between encoding and retrieval in two independent datasets. 
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Chapter 5 

 

General Discussion 

 

Abstract 

Throughout this thesis, I have investigated the neural underpinnings of episodic 

memory processing in the human hippocampus. In the second chapter, I 

approached this enigma on the level of single neurons. In the third chapter I 

examined it on the level of population activity as reflected in activity in the 

high frequency band. Finally, in the fourth chapter I examined the firing 

patterns of the previously identified neurons in relation to the phase of 

oscillatory theta activity. In this last chapter, I will summarize and integrate 

these findings, outline possible future experiments and discuss avenues for 

translational research. 

 

 

 

 



Chapter 5: General Discussion 

74 

 

5.1 Summary of findings 

In the first chapter, I presented evidence of single neurons in the human hippocampus that 

reinstate their firing rate during the retrieval of specific episodes, both based on a rate code 

and a temporal code. These neurons, referred to as Episode Specific Neurons (ESNs), are 

distinct from neurons that are tuned to specific concepts (Concept Neurons; Mormann et al., 

2008; Quian Quiroga et al., 2005) or reoccurring time points (Time Cells; Reddy, Zoefel et 

al., 2021; Umbach et al., 2020). Preliminary evidence indicates that these ESNs do not exist 

in the parahippocampus, although our coverage in that area is sparser than in the 

hippocampus. Additionally, initial evidence suggests that ESNs are likely to be excitatory 

pyramidal neurons.  

In chapter 2, we extended these findings to the high frequency band in the local field 

potential. Although no consensus has been reached in the literature yet, it is generally agreed 

upon that an increase in high frequency power reflects an increase in local neural firing 

(Buzsáki et al., 2012; Manning et al., 2009; Nir et al., 2007; Ray et al., 2008). In line with 

this, we found a significant, albeit low, correlation between single neuron firing and high 

frequency power. In parallel to our earlier findings, we demonstrated that power in the high 

frequency band (40-200 Hz) was reinstated for particular episodes in a significant number 

of microwires. This finding was limited to later remembered episodes and did not emerge 

for later forgotten episodes. Although we did find stimulus dependent high frequency power 

(HFP) modulations akin to the firing rate increases in Concept Neurons, these HFP changes 

were not responsible for the HFP memory reinstatements in ESWs. Unexpectedly, the 

relative power increases in reinstated episodes extended past our frequency range of interest 

(until ~10 Hz during memory encoding and ~15 Hz during memory retrieval). Future studies 

should differentiate whether this finding is driven by a power offset, an aperiodic 1/f shift, 

or oscillatory components.  

Ample research points towards a central role of theta oscillations in episodic memory 

processing. Recent work has shown that hippocampal theta oscillations in humans is divided 

between a slow (2-5 Hz) and fast (5-9 Hz) theta oscillation. However, the exact role of theta 

remains elusive. Herweg and colleagues (Herweg et al., 2020) proposed that successful 

memory is reflected in a power shift towards higher frequencies and a circumscribed narrow-

band periodic theta increase. In the third chapter we tested this hypothesis in two intracranial 

datasets but did not find consistent evidence to support it. Based on influential theoretical 

work by Hasselmo and colleagues (Hasselmo et al., 2002), we expected non-ESN single 

neurons and ESNs to lock onto different phases of theta. Contrary to our hypothesis, we were 
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unable to identify a consistent phase preference during encoding or retrieval of episodic 

memories across the two independent datasets. We also did not find evidence for a theta 

phase offset between encoding and retrieval. Indeed, many neurons might not be involved 

in processing a given memory, which provides a possible reason for our findings. However, 

this does not apply to ESNs which, by definition, code for a specific memory as reflected in 

their increased firing rates for that memory. The absence of a theta phase effect in this case 

may be attributed to the low number of ESNs leading to insufficient power to detect an effect. 

Although a complete absence of theta phase preference goes against previous findings, 

neurons reportedly lock to a large range of theta phases (Jacobs et al., 2007; Reddy, Self et 

al., 2021; Roux et al., 2022; Rutishauser et al., 2010). 

To conclude, we found a single neuron basis of memory processing and extended these 

findings to activity in a greater population of neurons reflected in the local field potential. 

While many exciting open questions remain, we hope to have laid a foundation for future 

work. In the following text we sketch some of these questions. 

 

5.2 ESNs and Index Neurons 

Although our research, which culminated in compelling evidence for ESNs, was inspired by 

what Teyler and DiScenna (Teyler & DiScenna, 1986) called Index Neurons, we did not call 

them such. This is because there are features ascribed to Index Neurons that we cannot test 

using the two available datasets. Upon presentation of a partial input present at memory 

encoding the Index Neuron assembly in CA3 is pattern completed. We cannot test this, 

because we always use the same memory cue for encoding and retrieval in both of our 

experiments. Nevertheless, we predict that using varying memory cues from the same 

memory should reinstate the same ESNs. Having access to multiple neurons that are 

allocated to the same episode would create the opportunity to ask more nuanced questions. 

If a cue does not initiate memory retrieval, do some neurons reinstate their firing activity, 

but the activation is not sufficient to pattern complete the entire assembly? Is there a 

relationship between the strength of assembly reinstatement and the detail of episodic 

retrieval? Is there a specific reactivation order based on the memory cue, which would 

indicate that within an assembly, individual neurons are responsible for specific features 

within the episode? It is conceivable that depending on the hippocampal subfield these 

answers differ. As we lack sufficient coverage to record multiple neurons of one assembly 

that codes an episode, we cannot currently investigate these questions. Conversely, pattern 

separation should allow the distinction of highly similar, but different episodes by assigning 
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them to different Index Neuron ensembles. We are unable to verify this using the current 

experiments because the images used in each episode do not overlap.  

Another important question is the stability of the ESN code over time and multiple retrievals. 

We expect ESNs to generally reinstate their firing pattern on all subsequent retrievals. 

However, some ESNs may drop out of the assembly that is allocated to a given episode, 

which would lead to some variance. Patients in our studies retrieved every episode only once, 

so we cannot investigate this question. We are currently running an experiment where each 

episode is retrieved multiple times but will not have a complete dataset in the foreseeable 

future. An interesting, related endeavour is exploring the stability of ESNs over time. Are 

memory traces, as evidenced by ESN firing and HFP increases, systematically reactivated 

during the periods of (extended) consolidation? In this context, sleep is of particular interest 

as numerous studies suggest it has a role in memory consolidation by reactivating previous 

experiences (Born et al., 2006; Kolibius et al., 2020; Schreiner et al., 2021). Do ESNs 

reliably reinstate a memory days and weeks after memory encoding? Note, that it is a 

separate question whether the hippocampus in general stays involved in older memories 

(Nadel & Moscovitch, 1997) or not (McClelland et al., 1995; Squire & Alvarez, 1995). This 

is because it is conceivable that the original memory trace is transformed during the 

consolidation period between encoding and retrieval, meaning the initially allocated neurons 

are replaced by other neurons or pruned. It is easy in this case to erroneously infer that the 

hippocampus becomes redundant in retrieving a distant episodic memory when in reality the 

hippocampal memory trace persists in an altered form (i.e., consisting of fewer or other 

neurons). In light of this, being able to record more single neurons or even multiple ESNs 

that reinstate the same episode would be especially insightful. In absence of this possibility, 

our findings that episode reinstatement concurs with HFP increases could be used to 

investigate the stability of a memory code and the continuous involvement of the 

hippocampus in episodic memories. As a proxy of much broader neural firing, HFP is likely 

robust to a drop out of some of the initially allocated neurons. 

 

5.3 Information flow between hippocampus and neocortex 

A central part of the Indexing Theory is that ongoing cortical activation is bound by neurons 

in the hippocampus which project back and reactivate the initial cortical pattern during 

successful retrieval (Teyler & DiScenna, 1986; Teyler & Rudy, 2007). There are several 

hurdles in showing this empirically. One is a low spatial coverage of implanted electrodes, 

which, on top of that, is different for each patient as not all patients have electrodes in the 
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same part of the hippocampus or neocortex. Apart from that, the number of ESNs per patient 

is low. These concerns should not deter the curious reader, but merely caution to the 

difficulty of the task. A persisting problem has been discerning periods of memory 

reinstatement from background activity. One approach to this problem might be combining 

high frequency activity with concurrent ESN firing, which could serve as a more accurate 

indicator of memory reinstatement. A second approach is to correlate the instantaneous firing 

rate of ESNs or HFP with the output of a classifier (e.g., a linear discriminant analysis), 

which represents a retrieved memory in the neocortex. This is preferable over computing the 

classifier evidence at each individual spike which would assume that each spike leads to 

memory reinstatement. Especially in neurons that spike frequently each spike might only 

reflect baseline firing. Furthermore, focusing on each individual spike effectively smoothes 

the evidence for memory retrieval which makes it difficult to compare ESNs with different 

firing rates. A larger increase in instantaneous firing rate would also be easier to discern 

from baseline firing using a thresholding procedure and could be used as a marker for 

memory reinstatement. A third way to detect memory reinstatement would be to apply a 

time-based causality measure (e.g., Granger causality, Granger, 1969; Phase Slope Index, 

Nolte et al., 2008) on shorter data segments during the retrieval phase, when information is 

thought to flow from the hippocampus to the neocortex (Lifanov et al., 2022; Linde-

Domingo et al., 2019). Segments in which activity in one area predicts the activity in the 

other are likely timepoints at which memory retrieval occurs. A fourth way would be to 

identify memory reinstatement in the neocortex through a classifier and reverse engineer the 

hippocampal activity pattern that induced it (e.g., looking at the neural activity one second 

prior). Finally, a fifth way would be applying a classifier to the hippocampal and cortical 

recordings separately and cross-correlate the two outputs or apply a causality test. In this 

case one would not focus on the transfer of the signal as raw data, but rather the transfer of 

evidence for content that represents that memory. To complicate things further one may wish 

to use the instantaneous firing rate and/or data within the high frequency band instead of the 

unfiltered raw micro-/macrowire recordings as inputs to these analyses. To conclude, only 

future studies using other experimental designs and/or more advanced hardware will be able 

to ascertain whether ESNs are indeed Index Neurons. Until then, we must be satisfied to see 

a reinstatement of neural firing as an indicator of memory processing. 
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5.4 On the origin of Concept Neurons 

Recent times have seen an explosion in neuron types. We find cells that code for spatial 

locations, such as place cells (O'Keefe & Dostrovsky, 1971), grid cells (Hafting et al., 2005), 

head-direction cells (Taube et al., 1990), or egocentric bearing cells (Kunz et al., 2021). In 

humans, neurons that code for specific concepts, so called Concept Neurons have been found 

consistently (Mormann et al., 2008; Quian Quiroga et al., 2005). Recent additions include 

novelty cells and familiarity cells (Rutishauser et al., 2006; Rutishauser et al., 2008; 

Rutishauser et al., 2015) as well border and event cells (Zheng et al., 2022). In this work we 

introduced Episode Specific Neurons and added to this veritable embarras de richesse. I do 

not believe that each of these neurons represent a physiologically distinct neuron type that 

earns its label through a separate coding mechanism. I would like to therefore muse on the 

open question how CN initially develop their tuning. One possibility is that over repeated 

reconsolidation CNs evolve from ESNs. Imagine you meet your best friend in a coffee shop. 

This coffee shop episode will initially be represented by an assembly of ESNs. A few days 

later you meet with the same friend in a park and you remember the last time you met in the 

coffee shop. This reactivates the ESNs coding for the coffee shop episode. Engram literature 

suggests that recently active and more excitable neurons are preferentially bound to a new 

episode (Frankland & Josselyn, 2015; Josselyn, 2010). This makes it likely that some of the 

ESNs that coded the coffee episode now also code the park episode. The common element 

between those two episodes is your best friend. It is conceivable that over many such 

episodes a proportion of the ESNs that initially coded the coffee shop episode would become 

"semanticized", i.e., develop a tuning for your best friend. A Concept Neuron is born. In line 

with the hypothesis that Concept Neurons have been shown to change their tuning based on 

statistical regularities in the environment (Ison et al., 2015). In this way ESNs can be likened 

to variables in a computer program to which arbitrary information is bound. In the case of 

episodic memory, this arbitrary information would be the complete set of features that make 

up an episode. Alternatively, CN and ESNs might be located in different hippocampal 

subfields. 

 

5.5 More advanced electrodes 

The yield of neurons using the currently available electrodes is about a dozen per microwire 

bundle. In comparison, electrodes developed more recently yield hundreds of well localized 

neurons. Virtually all analyses described in this thesis would benefit from more neurons and 
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I have mentioned this throughout the manuscript when appropriate. Not in all cases can this 

difference in neuron yield be made up by recording more participants or sessions. For 

instance, recording hundreds of neurons in one patient would enable the analysis of between-

cell interactions, such as the detection of assemblies of Episode Specific Neurons. 

Something that is not feasible when recording few neurons. Beyond this, between area 

interactions could be investigated (Durand et al., 2022). One concrete example would be a 

reinstatement of neocortical neurons that represent a memory and their interaction with 

hippocampal ESNs. During encoding one would assume that the neocortical neurons drive 

ESNs, while during retrieval the neocortex lags behind the hippocampus (Lifanov et al., 

2022; Linde-Domingo et al., 2019). 

 

5.6 Microwire stimulation 

As I am writing this Neuralynx (Neuralynx Inc, USA) is seeking CE and FDA approval for 

microwire stimulation in patients (personal communication). If successful, microwire 

stimulation could provide causal evidence for an ESN based memory code. If ESNs are 

allocated based on excitability, as predicted by experiments in rodents, stimulating the 

neurons in the vicinity of a microwire should increase the probability that they are allocated 

to an episode. In other words, through electric stimulation hippocampal neurons may be 

galvanized - at the push of a button - into coding for a particular episode. Apart from 

shedding light on the mechanism by which ESNs are allocated this would also greatly 

increase the yield of ESNs per patient. Using this method, one could test the hypothesis that 

CN develop from ESNs by stimulating on a microwire during multiple episodes that share a 

common element (e.g., Jennifer Aniston in Pisa, Jennifer Aniston in Paris, …). If the 

stimulation causes neurons to be co-allocated to these episodes it is conceivable that some 

of the “tagged” neurons exhibit neural firing akin to Concept Neurons tuned to Jennifer 

Aniston (as she is the common element in these episodes). Likewise reactivating the 

previously assigned neurons through electrical stimulation should increase the probability 

the memory is retrieved or even induce memory retrieval in the absence of a retrieval cue. 

Conversely, depending on the effect of the stimulation protocol, memory retrieval may be 

prohibited. 
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5.7 Translational applications 

In our everyday lives, we constantly generate and retrieve episodic memories - a marvellous 

ability we usually don’t think about. This makes it even more painful and disruptive when 

memory processing becomes dysfunctional. Alzheimer's disease is a progressive 

degenerative disorder that causes atrophy of neurons resulting in one of its most recognizable 

symptoms - memory loss (World Health Organization, 2019, 2022). Alzheimer’s is the most 

common form of dementia and was the 7th leading cause of death in the USA in 2020 

(Murphy et al., 2021). Worldwide around 55 million people have dementia, a number which 

is expected to rise to 78 million by 2030 (World Health Organization, 2022). I am hopeful 

that our research can contribute to alleviate some of the burden that comes with Alzheimer's, 

although a cure requires a more targeted understanding of the disease. However, it might 

prove fruitful to electrically stimulate parts of the hippocampus during the early phases of 

the disease. This could help with the recruitment of ESNs to new memories or reinstate 

existing memories and thereby temporarily increase their quality of life. Early advances in 

developing a hippocampal neural prosthetic have shown great promise (Hampson et al., 

2018).  

Another disorder characterized by dysfunctional memories is the Post Traumatic Stress 

Disorder (PTSD). Its symptoms include vivid intrusive memories or flashbacks that can be 

triggered by cues reminiscent of the traumatising event. Re-experiencing the traumatic 

memory can cause intense physical and strong emotional reactions (World Health 

Organization, 2019). Although PTSD patients often suffer from deficits in declarative 

memory (Samuelson, 2011), a core issue is the pathological remembering of a disturbing 

event. Studies in rodents suggest that the size of the hippocampal engram does not increase 

with the intensity of the memory (Choi et al., 2018; Rao-Ruiz et al., 2019). This raises the 

question whether it may be possible to interact with the hippocampal memory trace that 

represents a traumatic experience. Is it possible to downregulate the engram on demand, or 

even ablate it? The latter raises an important ethical concern - does erasing an entire 

experience also abolish the consequences of the experience or does it simply get rid of the 

conscious perception leaving the visceral reaction intact? Of course, the idea of simply 

"switching off" a memory as a treatment simplifies the underlying syndrome of PTSD. 

Nonetheless, the idea is that through basic research such as the work presented here we gain 

a better understanding of how memories are processed in humans and that this insight helps 

translational applications further down the road. 
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Appendix: Supplementary Material for Chapter 1 

 

 

 

 

Figure A.1. Visualisation of the hippocampus and electrode positions for Experiment 

1 and Experiment 2. 

(A) Outline of the hippocampus within a whole brain mesh.  

(B). Normalized right hippocampus. The yellow spheres represent the estimated position of 

microwire bundles that contain ESNs. The green spheres represent the estimated position 

of microwire bundles that do not contain ESNs. Only bundles where single-unit activity 

was recorded are shown.  

(C) Same as (B), but for the left hippocampus. 
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Figure A.2. Simulation of ESN identification. 

We created a simulation using random pseudo spike rates to determine whether our ESN 

analysis pipeline contains a bias towards significant results over multiple levels of variance 

(x-Axis). For each level of variance, we repeated this step 1,000 times and calculated the 

proportion of iterations that yield a significant result (y-axis; p <= 0.05). The dotted red line 

represents the 5%-level, and the straight black line represents the results from the 

stimulation. 
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Figure A.3. Firing patterns for two example putative Concept Neurons that were 

identified using a visual tuning task in Experiment 2. 

(A) Each during the memory task previously shown image (either an animal, a face or a 

place) is shown six times during the visual tuning task. 

(B) Spike raster plot. Each line indicates a spike. On the x-axis is time (locked to image 

presentation) and on the y-axis are the six trials during which the above image is shown on 

the screen. Color-coded in purple for tuned images and green for non-tuned images. The 

grey area indicates the activation period that is considered for identifying Concept Neurons. 

(C) Spike density plot (mean instantaneous firing rate over all six trials). 

(D) 2D histogram of the waveshape of that particular unit (Niediek et al., 2016). 

(E-H) same as (A-D) but for a different example ESN. 
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Figure A.4. Example of a trial reinstated by an example temporal Episode Specific 

Neuron (tESN). 

(A) The original instantaneous firing rate during encoding (blue) and retrieval (orange) 

5000ms before the response. 

(B) Same as (A), but with the retrieval firing rate shifted according to the peak in the cross-

correlation. 
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Figure A.5. 

(A) Distribution of spike widths for neurons of the first experiment. 

(B) Same as (A) but for neurons of the first and second experiment combined. 

(C) distribution of spike height of ESNs (purple) and single units (green). 
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Figure A.6. 

(A) Distribution of Fano factors of ESNs (purple) and single units (green) during  

encoding and during  

(B) retrieval. 
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Figure A.7. 

Firing rate in hertz of ESNs (purple) during  

(A) encoding and  

(B) retrieval of reinstated episodes.  

Firing rate of ESNs and other single units (green) during  

(C) encoding and  

(D) retrieval of non-reinstated episodes.  
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Table A.1. Overview of electrode implantation and memory performance in 

Experiment 1. 

a Each number stands for the mean over all experimental sessions with the standard error 

across sessions in brackets. b SUs: Single Units (including ESNs).c ESNs: Episode Specific 

Neurons   

Patient 

ID 

Number 

of 

sessions 

Number of 

bundles in 

hippocampus 

Trial  

numbera 

 

Hitsa Hipp. 

bundles 

with SUsa,b 

Number 

of hipp. 

SUsa,b 

Number 

of ESNsa,c 

0002 7 6 49.4 (0.4) 43.6 (1.3) 2.6 (0.3) 12.3 (2.9) 2.7 (0.64) 

0004 3 3 49 (0) 33.7 (0.7) 2 (0) 7.3 (2) 1 (0.58) 

0005 4 6 49 (0) 41.5 (2.7) 3.3 (0.3) 10.3 (1.5) 3.8 (0.63) 

0007 3 4 94.3 (1.7) 86.7 (4.9) 4 (0) 16.7 (4.9) 8.7 (2.6) 

0008 4 4 68.8 (2.3) 39.3 (3.9) 1.8 (0.3) 8.3 (1.6) 1.5 (0.29) 

0009 3 5 84.3 (7.3) 56.3 (7.3) 4 (0) 17 (1.2) 2.7 (1.2) 

0012 4 6 53.8 (8.1) 32.5 (6.9) 4 (0.4) 21.5 (4.1) 4.5 (0.87) 

0013 6 5 76.2 (6.3) 45.3 (8.6) 2.8 (0.3) 17.2 (1.6) 3.7 (1.3) 

1003 4 1 52.5 (2.4) 46.3 (4.9) 1 (0) 6.3 (0.5) 1.5 (0.87) 

1004 2 2 84.5 (11.5) 75 (11) 1 (0) 1 (0) 1 (0) 

1005 4 2 73 (13.9) 33.3 (7) 1.5 (0.3) 3.5 (1) 0.5 (0.29) 

1007 5 1 49.6 (8.5) 31 (6.3) 1 (0) 4.4 (0.5) 0.8 (0.37) 

1008 3 1 85 (9.5) 22.3 (6.8) 1 (0) 1.7 (0.7) 0 (0) 

1009 2 1 82.5 (13.5) 67.5 (12.5) 1 (0) 2.5 (0.5) 0 (0) 

1011 2 2 51 (10) 38 (5) 1.5 (0.5) 8.5 (0.5) 1.5 (1.5) 

1012 3 2 39.7 (11.6) 21 (4.9) 1 (0) 7.7 (0.7) 0.67 (0.67) 



Appendix 

90 

 

Table A.2. Overview of electrode implantation and memory performance in 

Experiment 2. 

a Each number stands for the mean over all experimental sessions with the standard error 

across sessions in brackets. b SUs: Single Units (including ESNs). c ESNs: Episode Specific 

Neurons. 

 

 

 

 

Patient 

ID 

Number 

of 

sessions 

Number of 

bundles in 

hippocampus 

with SUs  

Trial 

numbera 

 

Hitsa Number 

of hipp. 

SUsa,b 

Number 

of 

ESNsa,c 

1013 1 1 49 (0) 37 (0) 16 (0) 3 (0) 

1014 1 1 70 (0) 28 (0) 1 (0) 0 (0) 

1015 3 1.7 62 (0.6) 28 (1.8) 9 (0.6) 2.3 (0.3) 

1016 3 2 

46.7 

(4.1) 31.3 (3.8) 17.3 (1.5) 3.3 (0.3) 

1017 2 1.5 62 (2) 38.5 (0.5) 2 (1) 0 (0) 

1018 2 3 56 (9) 31 (5) 16 (1) 1.5 (0.5) 

1019 1 2 64 (0) 49 (0) 12 (0) 5 (0) 

1020 1 2 51 (0) 27 (0) 22 (0) 2 (0) 

1021 1 2 54 (0) 38 (0) 15 (0) 1 (0) 

1022 1 2 62 (0) 28 (0) 10 (0) 2 (0) 

1024 1 1 78 (0) 70 (0) 3 (0) 1 (0) 

1026 1 2 49 (0) 38 (0) 15 (0) 3 (0) 

1027 1 2 52 (0) 34 (0) 3 (0) 0 (0) 

1028 1 1 45 (0) 43 (0) 4 (0) 1 (0) 
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