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SAMLoc: Structure-Aware Constraints With Mutil-task Distillation for
Long-term Visual Localization

Abstract— Real-time and robust long-term visual localization
is a key technology for autonomous driving. Season and
illumination variance, as well as limited computing power make
this problem more challenging. At present, most of the excellent
visual localization algorithms cannot run in real-time on devices
with limited computing power. In this paper, we propose SAM-
Loc, a self-supervised 6-DoF visual localization method with
structure-aware and multi-task distillation. We integrate the
structure-aware constraints into the hierarchical localization
network of multi-task distillation, which greatly reduces the
feature extraction time while ensuring localization accuracy,
thus achieving real-time and robust large-scene localization on
mobile devices. Our method takes both speed and accuracy into
consideration, and extensive experiments have been conducted
to validate the effectiveness of the proposed approach on
several datasets. Our network is not only lightweight but
also has excellent generalization ability, and still exhibits high
localization accuracy even with challenging datasets.

I. INTRODUCTION

Real-time large-scale visual localization is a classic prob-
lem in computer vision and one of the key steps for au-
tonomous driving. In recent years, the requirements for the
accuracy and speed of visual localization have increased with
the continuous maturity of autonomous driving technology,
especially in some challenging scenes, such as illumination,
weather, or seasonal variance. At present, the common visual
localization methods include 2D-2D, end-end, 2D-3D and
other methods. Compared with traditional visual localization
methods [1][2], deep learning-based methods [3][4][13] have
obvious advantages.

2D-2D visual localization usually adopts image retrieval
methods [4][5][6][7]. Such approaches usually build global
feature descriptors of deep learning and perform place recog-
nition. However, as a result it is difficult to determine the
exact pose of the image when the scenes are similar or
the perspective changes. Recent work [4] fused semantic
and geometric information into 2D-2D localization, and Hu
et.al [8][24] introduced domain adaptation, these methods
significantly improve the effect of localization, but fine
location accuracy still needs to be improved.
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Fig. 1. Structure-Aware With Mutil-task Distillation for Hierarchi-
cal Localization. The global and local descriptors were obtained under
structure-aware constraints, then global search was used to estimate the
approximate pose, and local feature matching was used to estimate the fine
6-DOF pose.

End-to-end methods [9][10] have obvious improvements
compared with the methods based on image retrieval, but
such methods only obtain information from the input image.
Since the process of pose estimation has no geometric
constraints, the generalization performance is usually not
strong, and it generally needs to be retrained in a new scene
to adapt to it. Additionally, in real driving environments,
ground-truth is often hard to obtain especially in challenging
outdoor scenarios.

2D-3D-based methods [11][12][13] are still the popular
approaches to visual localization, although many localization
systems [14][15][16] have emerged so far, which have good
localization accuracy. However, when the background envi-
ronment becomes very large, the process of matching can
take a long time. In edge devices with limited computing
resources, most models are limited by the huge amount of
parameters and the huge volume of calculations in the 2D-
3D matching process. Sarlin [17] proposed a hierarchical
localization paradigm and multi-task distillation model that
not only takes the model accuracy into account but also
maintains high efficiency on mobile devices.

Currently, approaches to visual localization achieve ex-
cellent accuracy, but the speed needs to be improved. The
multi-task distillation method can greatly improve the speed
of feature extraction, but there is also a loss in accuracy
to some extent. Edge features can accurately extract the
structural information in the scene [18][19][20]. In [21] edge
information is used to track camera motion to improve the
accuracy of pose estimation. Also, [22] fused edge features
with optical flow estimation to solve the boundary flow



estimation problem for consecutive frames. In [23] edge
information was also used to improve the accuracy of place
recognition employing knowledge distillation.

In this paper, we argue that the model should pay more
attention to stable structural features in the scene while
learning feature extraction. We combine the structure-aware
process with multi-task distillation, and demonstrate the ef-
fectiveness of structure-aware constraints (Fig.1). Our model
can maintain high speed, accuracy, and generalization ability
even in challenging scenarios.

Our main contributions are as follows:
• We propose SAMLoc: a self-supervised deep learning

network framework based on hierarchical localization
and multi-task distillation, using structure-aware con-
straints for long-term visual localization.

• We propose a structure-aware module that captures
robust features in a scene and we incorporate it into
a multi-task distillation framework and explain why it
can be robust and efficient.

• We demonstrate the effectiveness of our structure-aware
module for multi-task distillation and the excellent gen-
eralization of our model through extensive experiments
and real-time operation on mobile devices.

II. RELATED WORKS

A. Edge Feature and Structure-Aware

The edge information contains stable structural features in
the scene, it is not affected by conditions such as illumina-
tion, so it has a good ability to resist environmental changes.
In [23] edge information was used to assist the encoder
to capture stable structural information during the feature
decoupling process utilizing knowledge distillation. Inspired
by [18] and [26], [19] proposed a deep structural model
for extracting image edge information and generating thin
edges. In this method, the encoders of each main block of
the network are output separately to obtain edge information
containing different orientations, and the outputs of each
sub-block are connected to ensure that each depth block
can retain the edge features. In our method, the multi-
level edge outputs are divided into shallow and deep layers,
and integrated as local structure-aware and global structure-
aware modules, respectively, making it suitable for multi-task
distillation processes.

B. Multi-task distillation with hierarchical localization

Traditional structure-based visual localization methods
rely on the direct matching of query images to SfM models
[14][15], which are computationally expensive and difficult
to run in real-time on mobile devices. Yang et al. [13]
proposed to achieve efficient 2D-3D matching by compress-
ing the SfM model. Sarlin [17] proposed the paradigm of
hierarchical localization. This method significantly improves
the operating efficiency. Multi-task distillation [25] is also
applied to visual localization, making the model lightweight
enough to be easily deployed on mobile devices. This self-
supervised framework can greatly reduces the cost of data
training because it does not require ground-truth, which has
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Fig. 2. Local and global structure-aware constraints focus on the
detailed texture and robust features of the input image, respectively, and
obtain visualization through upsampling layers. They are output from the
output layer.

great advantages and potential. Our method incorporates
structure-aware constraints into hierarchical localization for
multi-task distillation, which greatly reduces the feature ex-
traction time for hierarchical localization while maintaining
accuracy.

III. METHOD

We design a structure-aware module for scene feature
extraction and combine it with a hierarchical localization
network based on multi-task distillation to achieve real-time
robust visual localization.

A. Structure-Aware Constraint

We are inspired by the Dexined [19] edge detection
network with multi-channel outputs. Image pixels can change
with light and seasonal factors, but the contour information
of objects such as houses and street lamps is stable and
unchanged, thus the edge information is very reliable. We
improve based on the Dexined network as shown in Fig.2.

To adapt to the multi-task distillation network, we propose
the concepts of local structure-aware constraints and global
structure-aware constraints. We divide the network into two
parts, the first part is used to acquire detailed structural
texture, and the second part is used to capture the structure
information of the scene.

Compared with the original network, our improvements
are as follows:

• We include a side structure-aware module before the
upsampling block of each side output to improve the
structure-awareness of the network. It consists of a 1×1
Conv layer and an Upsampling Block[19].

• We use the output ports of the first three blocks and
the last three blocks of the network as the output of
the structure-aware constraint through 1×1 convolution
respectively, and then obtain the local structure-aware
and global structure-aware visualization images through
the upsampling block.

• We remove the last fusion layer of the original network
because it reduces the training effect of the structure-
aware module and we modify the loss function.



We use X and Y to represent the input image and the
groundtruth of the edge, respectively. Our edge network ex-
tractor has six side output layers and each of them generates
predictions through the Upsampling Block. We use w(i) to
represent the weight of the output of the i-th layer, then
the total weight can be expressed as W = (w(1),w(2), ...w(6)).
The side output layer follows the method in [19], and the
loss function of each output layer is set as:

Li
out put(W,wi) =−δ ∑ j∈Y+ log f (y j = 1|X ;W,wi)

−(1−δ )∑ j∈Y− log f (y j = 0|X ;W,wi) (1)

For our structure-aware module, we use cross-entropy as
the local and global structure-aware loss function, thus the
final loss function is as follows:

L = (∑6
i=1 αiLi

out put(W,wi))+βCrossEntropy(Y,Ŷ l
pred)

+γCrossEntropy(Y,Ŷ g
pred) (2)

where Y+ and Y− represent edge pixels and non-edge
pixels respectively, δ = |Y−|/|Y+| , f (y j = 1|X ;W,wi) =
sigmoid(ai

j) is the activation value of the sigmoid function
at pixel j, Ŷ l

pred and Ŷ g
pred represent the prediction outputs

of local structure awareness and global structure awareness,
respectively, α , β , and γ are the hyperparameters that we use
to adjust the weights. Our structure-aware constraint module
will be added to the hierarchical localization network of
multi-task distillation for knowledge distillation which will
be mentioned in Section III-B.

The visualization results of local structure awareness and
global structure awareness are shown in the enlarged view
of Fig.2. The left side is the local structure perception
output, which extracts features from the shallow layers of the
network, thus it pays more attention to the detailed texture
of the scene. The right side is the global structure-aware
output, which has stable and robust structural information
from the deep layers of the network, so it has the charac-
teristics of good resistance to environmental changes. Our
local structure-aware constraint and global structure-aware
constraint modules are output through the output layer in
Fig.2 and added to the multi-task distillation network in
Section III-B. We demonstrate the role of structure aware
through experiments in Section IV-C.

B. Multi-task Distillation and Hierarchical Localization

We demonstrate that the majority of the time for hier-
archical localization is spent on feature extraction through
experiments in Section IV-E. In order to greatly improve
the localization speed while maintaining the localization
accuracy of the model, we adopt a scheme that combines
structure-aware multi-task distillation based on Dexined [19]
and HFNet[17]. Multi-task distillation improves efficiency by
identifying multiple objectives through sharing information,
while structure-aware constraints improve prediction accu-
racy.

Our hierarchical localization method is divided into two
parts: offline map construction and online visual localization.
First, the local and global features of the database images
are extracted through SAMLoc, and then the SfM map is
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Fig. 3. Hierarchical localization framework for structure-aware multi-
task distillation. We use structure awareness and multi-task distillation
to improve the speed and accuracy of matching based on the hierarchical
localization network.

constructed offline by using the local features, and the global
descriptors of the database images are built into a global
index. Then when we input the query image, the global
features and local features are obtained through the structure-
aware module. We use the global features to perform rough
matching through the use of KNN (K-Nearest Neighbor) and
database index matching, and then use the obtained local
features and SfM maps to perform 2D-3D matching through
RANSAC [27] and PnP methods. Finally, we obtain the 6-
DoF pose. Our network framework is shown in Fig.3.

Our encoder uses MobilenetV3-Large [28] as the back-
bone network, and as the local feature and global feature
teacher models we use Superpoint [29] and NetVLAD [6]
respectively. Fig.4 depicts our network framework.

Superpoint designed a self-supervised network model to
extract pixel-accurate feature points and descriptors simul-
taneously by using encoding and decoding, as well as a
strategy for enhancing the repeated extraction of feature
points called Homographic Adaptation, whose generalization
is proved excellent. NetVLAD is widely used in the field
of image retrieval. It takes a convolutional neural network
as the basic feature extraction structure and outputs global
descriptors through the NetVLAD layer, which has great
advantages in image retrieval. However, it has a large number
of parameters and high computational costs; it performs
well but is difficult to run in real-time on mobile devices.
Therefore, we use the knowledge distillation method to distill
the part to MobilenetV3. Although there is a loss in accuracy,
the speed can be greatly improved, which can be proved by
our experiments in Section IV-A and Section IV-E.

Our local feature extraction branch is at layer 7 of Mo-
bilenet, while global feature extraction is at layer 18 of
Mobilenet, and we add structure-aware constraints in front
of the local and global feature heads respectively. We also
add local and global structure-aware constraints to the 4th
and 11th layers of the network and keep the structure of the
backbone network unchanged, which maximizes the speed
of feature extraction.
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Fig. 4. Our backbone network used MobilenetV3. We introduced
local and global structure-aware constraints into a hierarchical localization
network with multi-task distillation. Our model can better learn features
from teacher models under structure-aware constraints.

Our loss function for structure-aware and multi-task dis-
tillation is divided into local loss and global loss. Eq.(3) is
the local loss function, Eq.(4) is the global loss, and Eq.(5)
is the total loss function. The parameter e−wi in front of
the formula represents the weight of each loss, d represents
the descriptor, s represents the structure-aware constraint, the
subscript s represents the student model, t represents the
teacher model, the superscript l and g represent local and
global respectively, and k represents key points.

Llocal =ew1
∥∥∥dl

s −dl
t1

∥∥∥2

2
+

ew2
√

ew1 + ew3

∥∥∥sl
s − sl

t1

∥∥∥2

2
(3)

+ ew3CrossEntropy
(
ks,kt3

)
the local loss function (Eq.3) consists of three terms, which

are local descriptor distillation loss, local structure-aware
constraint loss, and keypoint score.

Lglobal = ew4
∥∥dg

s −dg
t1

∥∥2
2 +

ew5
√

ew1 + ew3 + ew4

∥∥sg
s − sg

t1

∥∥2
2 (4)

L = Llocal +Lglobal +
n

∑wi (5)

The global loss function (Eq.4) is divided into two cate-
gories, the global descriptor distillation loss, and the global
structure-aware constraint loss. The proposed total loss func-
tion (Eq.5) is as follows, where wi is the regularization term
for each loss.

This hierarchical localization method with structure aware-
ness and multi-task distillation is very convenient to train
since all the knowledge comes from the teacher model.
Hence, this method greatly simplifies the training task while
ensuring the structural features extracted into the network,
thus our model can balance speed and accuracy.

C. Training Process

Our model can be applied to most visual localization
datasets. In addition, our training method is simple and can
be directly applied to other datasets for testing without any
additional training, even in challenging datasets.

The following is an introduction to our training dataset
and training methods:

BIPED (Barcelona Images for Perceptual Edge Detection)
dataset is a detailed annotated edge dataset proposed by
[19]. It contains 250 outdoor images that have been carefully
verified and cross-checked by experts for accurate labeling.

MS COCO [30] dataset is a large-scale dataset with
rich image resources, including a variety of common object
categories and labeled instances. The images contain rich
object categories and rich scene features.

Google Landmarks [31] dataset is the largest landmark
recognition dataset in the world, containing over one million
images of tens of thousands of landmarks. It contains rich
daytime urban building information, which helps us to extract
robust features from buildings.

Berkeley Deep Drive [32] dataset consists of more than
100K videos with various labels, which contain rich road
information and a large amount of night scene information.
Such blurred images at night are very effective for improving
the localization of night-time scenes.

The network training is divided into two stages: structure-
aware module training and multi-task distillation. The ad-
vantage of doing this is that the training process can be
performed simultaneously, the network parameters can be
optimized quickly, and the debugging time can be greatly
shortened. Our experiments are performed using Tensorflow
[33].

For the structure-aware module, we perform data aug-
mentation on 200 images in the BIPED dataset and input
images are resized to 640 by 480 pixels. The training process
uses the Adam optimizer with Batchsize=8, learning rate of
10−4, and convergence of about 130K iterations. Our model
is trained from scratch and there is no pre-trained model;
training on a GTX 1080Ti took approximately 2 days.

For the multi-task distillation part, we selected the MS
COCO dataset of approximately 120K unlabeled images,
110K daytime city building images from the Google Land-
marks dataset, and approximately 30K blurred night scene
images from the BDD dataset were used for training. All the
images were randomly selected from the dataset and resized
to 640 by 480 pixels for the network. The local features
are trained with grayscale images, and the global features
are trained with RGB images. The training process uses
random Gaussian noise and random brightness and contrast
changes. The training time for our model on a GTX 1080Ti
is approximately 1 day. Our initial weight adopts the pre-
trained model of Imagenet [34] and we use the RMSProp
optimizer [35] with batchsize =16, and the initial learning
rate is 10−3, which is successively divided by 10 at the
iterations of 70K, 100K, and 120K.

IV. EXPERIENCE

We experimentally evaluate the component modules and
the entire network of SAMLoc. All of our visual localization
tests are performed by generalization without any retraining.

A. Visual localization of season and weather changes
We evaluate our model using the CMU Season dataset [38]

and the RobotCar Season dataset [39]. Here, X+Y denotes hi-
erarchical localization with X(Y) as global(local) descriptors.



TABLE I
THE RECALL [%] AT DIFFERENT DISTANCE AND ORIENTATION THRESHOLDS, HIGHLIGHTING FOR EACH OF THEM THE BEST (RED) AND

SECOND-BEST (BLUE) METHODS ON CMU SEASON DATASET AND ROBOTCAR SEASON DATASET.

CMU Season Dataset RobotCar Season Dataset

urban suburban low sun no foliage
overcast
winter

rain dusk dawn
distance[m]
orient.[deg] 0.25/0.50/5.0

2/5/10
0.25/0.50/5.0

2/5/10
0.25/0.50/5.0

2/5/10
0.25/0.50/5.0

2/5/10
0.25/0.50/5.0

2/5/10
0.25/0.50/5.0

2/5/10
0.25/0.50/5.0

2/5/10
0.25/0.50/5.0

2/5/10
AS[14] 68.9/75.7/83.4 36.2/44.4/56.0 46.8/55.0/66.3 65.6/74.9/84.8 33.1/71.5/93.8 51.3/79.8/96.9 44.7/74.6/95.9 36.2/68.9/89.4
CSL[15] 36.7/42.0/53.1 8.6/11.7/21.1 22.6/27.4/38.8 36.5/43.2/57.5 39.5/75.9/92.3 59.9/83.1/97.6 56.6/82.7/95.9 47.2/73.3/90.1
NetVLAD[6] 17.4/40.3/93.2 7.6/21.0/80.5 10.1/25.7/77.7 11.8/29.2/82.0 2.8 /25.9/92.6 9.0/ 35.9/96.0 7.4/29.7/92.9 6.2/22.8/82.6
DISAM[8] 22.7/46.4/85.4 11.3/27.2/71.9 16.2/37.7/79.3 15.5/36.3/77.6 5.1/25.4/65.9 8.1/ 29.0/75.1 8.6/28.7/69.3 9.7/29.0/60.7
HFnet[17] 90.3/93.0/96.1 71.6/77.9/86.8 72.3/77.9/85.3 80.6/85.3/90.2 49.7/73.1/90.0 60.6/85.3/97.1 53.6/81.5/94.2 48.9/74.5/89.9
PixLoc(E2E)[10] 78.3/81.8/94.6 – – – 52.8/78.7/95.1 63.7/84.3/96.7 57.4/80.5/93.9 49.9/72.7/89.9
NV+SP(teacher) 92.0/94.7/97.9 73.8/80.5/91.0 75.3/81.6/90.1 83.7/88.5/93.6 53.6/78.5/96.2 59.6/84.8/97.1 54.8/83.0/96.2 48.4/73.5/90.1
SAMLoc(ours) 91.2/94.0/97.3 73.4/80.7/91.1 74.0/80.8/89.0 82.6/88.2/93.7 55.4/78.2/96.4 58.7/85.0/97.6 54.8/82.0/95.2 50.1/77.0/94.6

(a) NetVLAD+Superpoint (b) SAMLoc(ours)

Fig. 5. Example of hierarchical localization matching of image pairs from
the CMU season dataset (top row) and RobotCar season dataset (bottom
row). The left column is NV+SP, the right column is SAMLoc (ours)

Active Search (AS) [14] and City Scale Localization (CSL)
[15] are both 2D-3D direct matching methods. NetVLAD [6]
and DISAM [8] are image retrieval based methods. PixLoc
(E2E) [10] is an end-to-end visual localization method, and
we do not have a SfM model for the CMU dataset. HFNet
[17] and SceneSqueezer [13] are efficient 2D-3D matching
methods, the latter only has results using the Aachen Day-
Night dataset [36] so it is only compared in Section IV-
B. NV+SP is our teacher model, which uses NetVLAD for
global search and SuperPoint for local matching. SAMLoc
(Ours) achieves a level similar to the teacher model in
several aspects, but our feature extraction time is greatly
reduced, which will be discussed in Experiment IV-E. Our
localization results are shown in Tab. I. We also show the
visual localization results of our method and that of the
teacher model in Fig.5.

We demonstrate the strong generalization performance
of our model. Under the structure-aware constraints, our
multi-task distillation result is only approximately 1% loss
compared with the teacher model, and our method achieves
almost comparable strength to the teacher model with a
greatly reduced model (lightweight model).

B. Visual localization of day-night changes

We evaluated using the Aachen Day-Night dataset [36],
which contains 4328 Day-Night database images of the old
city contains 824 daytime and 98 nighttime query images.

TABLE II
EVALUATE DAY-NIGHT CHANGES ON THE AACHEN DATASET

distance[m]
orient.[deg]

Aachen
day night

0.25/0.50/5.0
2/5/10

0.25/0.50/5.0
2/5/10

AS[14] 57.3 / 83.7 / 96.6 28.6 / 37.8 / 51.0
CSL[15] 52.3 / 80.0 / 94.3 29.6 / 40.8 / 56.1
NetVLAD[6] 0.0 / 0.2 / 18.9 0.0 / 0.0 / 14.3
HFnet[17] 76.2 / 85.4 / 91.9 62.2 / 73.5 / 81.6
PixLoc(E2E)[10] 61.7 / 67.6 / 74.8 46.9 / 53.1 / 64.3
SceneSqueezer[13] 75.5 / 89.7 / 96.2 50.0 / 67.3 / 78.6
NV+SP(teacher) 79.6 / 87.1 / 93.8 64.3 / 75.5 / 88.8
SAMLoc(ours) 79.0 / 86.8 / 93.0 61.2 / 77.6 / 84.7

Our SfM model is reconstructed using COLMAP [37].

Our experimental results are shown in Tab.II, and DISAM
does not provide a pre-trained model for this scenario. As the
Aachen dataset contains rich features, most of the algorithms
have good results using the daytime images. Although we are
limited by the size of the model, we still show competitive
results. Using the night-time scenes, the results are not as
good as in the day-time due to the drastic change in the scene,
however the results for our method are still stable at night.
Fig.6 shows our structure-aware heatmap and visualized edge
feature map.

Fig. 6. Example of visualized structure aware from the Aachen Day-
Night Dataset. The left column is the query image and the database image,
the middle is the structure-aware heatmap, and the right is the visual edge
feature map.



TABLE III
RESULTS OF ABLATION EXPERIMENTS ON THE CMU SEASON DATASET

distance[m]
orient.[deg]

CMU Season Dataset
urban suburban park

-p -g -l
0.25/0.50/5.0

2/5/10
0.25/0.50/5.0

2/5/10
0.25/0.50/5.0

2/5/10
✕ ✕ ✕ 88.2/91.0/94.0 68.0/73.9/82.3 46.7/53.9/67.1
✕ ✕ ✓ 88.8/91.4/94.5 68.6/74.9/83.6 47.8/55.5/69.3
✕ ✓ ✕ 89.0/91.8/95.0 69.0/75.1/83.5 48.4/56.0/69.4
✕ ✓ ✓ 90.4/93.4/96.8 71.7/78.9/90.0 50.3/59.2/75.7
✓ ✕ ✕ 89.2/92.0/95.2 69.3/76.2/85.8 47.6/55.7/69.9
✓ ✓ ✕ 90.7/93.6/96.8 72.3/79.5/89.9 50.8/59.6/76.3
✓ ✕ ✓ 90.9/93.8/97.2 72.7/80.1/90.7 51.4/60.2/77.4
✓ ✓ ✓ 91.2/94.0/97.3 73.4/80.7/91.1 51.9/61.0/77.8

C. Ablation Study on Structure-Aware Constraints

Through Tab.III, we evaluate the impact of the structure-
aware modules and the pre-trained models on visual local-
ization performance, where−p means use pre-trained model,
−g means use of global structure-aware constraints, and −l
means use of local structure-aware constraints.

We evaluate the effect of the added structure-aware module
on the localization effect, and the effect of the pre-trained
model on the network results. We can see that adding global
and local awareness modules and using pre-trained models
are optimal. Using the CMU dataset, it can be seen that
the effect is the best in the urban scene, and the overall
performance is relatively low in the park. This is because
the increase in structural features, such as stable houses and
roads, increases the effect of structural perception and the
positioning accuracy. In addition, the pre-training model is
also helpful for the positioning accuracy, and the network
effect using the pre-training model is better.

D. Quantitative assessment of multi-task distillation

Tab.IV examines the effectiveness of our structure-aware
approach for multi-task distillation. We evaluated the impact
of different predictors within the hierarchical localization
framework with the Aachen dataset. We separately compare
the effect of using our teacher model NV+SP and our
network SAMLoc, and we demonstrate the effect of our
structure-aware with multi-task distillation network replace-
ments between hierarchical localization components.

By comparing the night-time scenes of NV+SP and SAM-
Loc+SP, we can see that the latter is better than the former,
indicating that our global structure-aware distillation method

TABLE IV
QUANTITATIVE EXPERIMENTS ON THE EFFECT OF MULTI-TASK

DISTILLATION USING THE AACHEN DATASET

distance[m]
orient.[deg]

Aachen
day night

0.25/0.50/5.0
2/5/10

0.25/0.50/5.0
2/5/10

NV+SP 79.6/87.1/93.8 64.3/75.5/88.8
NV+SAMLoc 78.6/86.2/93.2 64.3/77.6/88.8
SAMLoc+SP 77.9/86.5/92.2 69.4/78.6/85.7
SAMLoc+SAMLoc 79.0/86.8/92.2 61.2/77.6/84.7

has better resistance to illumination variance. By comparing
NV+SAMLoc and NV+SP, it can be seen that our local
feature extraction achieves a similar effect to SuperPoint.
This may be because the scene itself has rich features, but
we are limited by the size of the network model, so it is
slightly lower than the teacher model.

E. Runtime Evaluation

Both our training and evaluation devices use an Intel Core
i7-11700 CPU, 32GB RAM, and a GTX1080Ti. We com-
pared the runtime of the 2D-3D and end-to-end approaches.
As can be seen from Tab.V, the hierarchical localization
method is very efficient, but it is still difficult to run in
real time on mobile devices. The pre-trained model of
SceneSqueezer is not available, so we do not provide a
comparison with it here. CSL takes three orders of magnitude
more time than our approach, hence it is not included.

TABLE V
RESULTS OF RUNNING TIME(MS) ON AACHEN DATASET

Aachen Daytime
distance[m]
orient.[deg]

feature extraction localization totalglobal local global Covis. local pnp
AS -234- - - -104- 338
PixLoc(E2E) - 1955 - 1955
HFNet 15 7 4 9 9 44
NV+SP 110 50 7 4 9 9 189
SAMLoc 20 7 4 9 9 49

Aachen Nighttime
AS -236- - - -118- 354
PixLoc(E2E) - 2062 - 2062
HFNet 15 7 4 9 9 44
NV+SP 110 50 7 4 9 9 189
SAMLoc 20 7 4 9 9 49

We maximize the improved localization accuracy based on
real-time localization through a structure-aware multi-task
distillation scheme. Compared with the teacher model, we
speed up feature extraction by a factor of 7 with extremely
low loss of feature extraction accuracy. Experiments show
that both our method and HFNet achieve real-time local-
ization in resource-constrained devices, but our localization
accuracy is superior by comparison.

V. CONCLUSION

In this paper, we propose a self-supervised structure-aware
constraints with multi-task distillation visual localization
method. Our method introduces structural information into
the multi-task distillation process to constrain the network to
learn robust information in the scene. We explain why and
how to introduce structure-aware constraints, and demon-
strate through experiments that our method generalizes well
even in challenging scenarios. Through this multi-task distil-
lation method, we can even achieve better localization accu-
racy than the teacher model in some parts while increasing
the feature extraction speed by 7 times. In future work,
we will further consider reducing feature extraction time as
well as compressing map models to achieve more efficient
matching.
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