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Abstract Decision-making is a very important cognitive
process in our daily life. There has been increasing interest
in the discriminability of single-trial electroencephalogram
(EEG) during decision-making. In this study, we designed a
machine learning based framework to explore the discrim-
inability of single-trial EEG corresponding to different de-
cisions. For each subject, the framework split the decision-
making trials into two parts, trained a feature model and a
classifier on the first part, and evaluated the discriminabil-
ity on the second part using the feature model and clas-
sifier. A proposed algorithm and five existing algorithms
were applied to fulfill the feature models, and the algorithm
Linear Discriminative Analysis (LDA) was used to imple-
ment the classifiers. We recruited 21 subjects to participate
in Chicken Game (CG) experiments. The results show that
there exists the discriminability of single-trial EEG between
the cooperation and aggression decisions during the CG ex-
periments, with the classification accuray of 75% (±6%),
and the discriminability is mainly from the EEG information
below 40 Hz. The further analysis indicates that the con-
tributions of different brain regions to the discriminability
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are consistent with the existing knowledge on the cognitive
mechanism of decision-making, confirming the reliability of
the conclusions. This study exhibits that it is feasible to ap-
ply machine learning methods to EEG analysis of decision-
making cognitive process.

Keywords Discriminability of single-trial EEG · Adaptive
frequency common spatial pattern · Decision-making ·
Chicken game

1 Introduction

In daily life, we always face all kinds of choices. Decision-
making is a very important cognitive process, concerning
interpersonal interactions, social activities, economics the-
ory, and so on [1–3]. The cognitive mechanism of decision-
making is a very interesting research problem. Existing re-
search revealed the associations of decision-making with
emotion, personality and motivation [1,4,5], even with psy-
chiatric disorder [6], showing its complexity. Discriminabil-
ity of brain signals during decision-making is often used by
researchers to explore neural processes that drive decision-
making [7–10]. In most cases, the discriminability of brain
signals during decision-making is observed by averaging
brain signals across trials [7–10]. Observing the single-trial
discriminability of brain signals is also very valuable for ex-
ploring neural processes during decision-making.

In recent years, Si et al [3, 11] probed the discrim-
inability of single-trial electroencephalogram (EEG) during
decision-making. Although the main aim of [3] was to re-
veal the diverse network patterns during the different deci-
sion stages using EEG, Si et al also performed the classifi-
cation of decisions by calculating the out-degree statistical
measurements of the time-varying networks built using EEG
at the hub nodes Fz and O2 within 280-300 ms. The combi-
nation of the network features with the conventional Linear
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Discriminative Analysis (LDA) resulted in 70% accuracy in
discriminating the two decisions. Si et al proposed the Dis-
criminative Spatial Network Pattern (DSNP) method to ex-
tract the features from the single-trial brain network [11].
The LDA classifiers trained on the DSNP features were then
used to predict the individual decisions trial-by-trial. The
performances achieved an accuracy of 0.88±0.09 for the
first dataset, and 0.90±0.10 for the second dataset.

In both studies [3, 11], the EEG data sets were col-
lected when the subjects were carrying out Ultimatum Game
(UG) tasks. The results show that the single-trial EEG dur-
ing decision-making in UG is discriminable. However, UG
is not a unique cognitive task used to explore the neural
mechanism of decision-making. Among various cognitive
tasks implicating decision-making, the interpersonal inter-
action Chicken Game (CG) experiment (see Appendix A
for details), which allows researchers to operate the con-
cepts such as cooperation or aggression in laboratory set-
tings [12], is also frequently employed in this type of re-
search [10, 13]. Researchers also expect to probe the dis-
criminability of single-trial EEG during decision-making in
CG.

In the view of machine learning, discriminating single-
trial EEG is a classification problem [14–16], which usu-
ally includes two sections: feature extraction and classifi-
cation. In this research, we designed a machine learning
based framework, which also includes the two sections of
feature extraction and classification, to investigate the dis-
criminability of single-trial EEG during decision-making in
CG.

Regarding feature extraction from EEG, some com-
monly used methods in the field of pattern recognition, such
as Window Mean (WM), Principal Component Analysis
(PCA) and Independent Component Analysis (ICA), have
been extensively applied [15, 16]. Common Spatial Pattern
(CSP) [17,18], a supervised spatial filter, exhibited good per-
formances in practice [15,16]. Due to the remarkable poten-
tial discriminating EEG of different conditions, CSP has al-
ways attracted the attention of researchers and has been op-
timized in its successively developed variants [16,19–23]. In
order to apply CSP in the small-sample setting of decision-
making cognitive tasks and identify which EEG frequency
bands are associated with decision-making cognitive activi-
ties, we proposed an Adaptive Frequency Regularized Com-
mon Spatial Pattern (AFRCSP) method, which is based on
the ideas of [18,21,23–27]. In the framework, the six feature
extraction methods of AFRCSP, DSNP, WM, PCA, ICA and
CSP were incorporated.

The effectiveness of the LDA algorithm to discriminate
single-trial EEG has been confirmed by extensive research
cases of Brain-Computer Interface (BCI) [15, 16]. In our
framework, the LDA algorithm was used as the classifica-
tion method. This machine learning based study showed that

discriminating single-trial EEG during decision-making of
cooperation or aggression in the CG experiment is feasible
and the discriminability is mainly underlain by the EEG in-
formation below 40 Hz.

2 Material and Methods

2.1 Subjects

In this study, 21 right-handed university male students were
recruited. Their ages ranged from 20 to 27 (25.3±1.35).
None of them had a history of visual or neurological disor-
ders, head trauma, or any drug use that would affect nervous
system function, and they were asked to wash their hair be-
fore the experiment. This experiment was approved by the
Institutional Review Board at Fuzhou University. In accor-
dance with the Helsinki Declaration of Human Rights, in-
formed consent was obtained from all subjects before they
joined this study.

2.2 Experimental protocol

In our CG experiment, each subject and his opponent in-
dependently decided to cooperate or aggress in 100 trials.
There are four possible outcomes in each trial: both play-
ers cooperate (CC), the subject cooperates and his opponent
aggresses (CA), the subject aggresses and his opponent co-
operates (AC), both players aggress (AA). Every time, the
subject was told that a student as his opponent was playing
with him. In fact, the opponent’s choices were determined
by a pseudo-random sequence, in which the number of co-
operation choices is approximately equal to that of aggres-
sion choices. The experiment design is to ensure roughly
equal reinforcement rate for the two choices.

The procedure of our CG experiment is depicted in Fig.
1. Each trial started with the presentation of a fixation cross
on the black screen lasting a variable period of 800-1000 ms.
Then a payoff matrix was presented for 1500 ms, prompting
the subject to make a decision. In the payoff matrix, 10/10
in the CC cell means that the subject and his opponent will
both win 10 yuans if the outcome is CC, -10/30 in the CA
cell represents that the subject will lose 10 yuans and his
opponent will win 30 yuans if the outcome is CA, 30/-10 in
the AC cell indicates that the subject will win 30 yuans and
his opponent will lose 10 yuans if the outcome is AC, -30/-
30 in the AA cell means that the subject and his opponent
will both lose 30 yuans if the outcome is AA. The payoff
matrix presents a social dilemma between a prosocial motive
to maximize collective welfare and a self-interested motive
to maximize personal welfare at a cost to the other person.
The subjects made a decision of cooperation or aggression
during the 1500 ms.
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Fig. 1 Timeline of the CG experiment. Each trial includes four stages: Fixation, Decision-making, Inputting Decision and Feedback. In the
Fixation stage, a cross is presented for a variable period of 800-1000 ms to concentrate the attentions of subjects. In the Decision-making stage of
1500 ms, the subjects decide to cooperate or aggress while observing the payoff matrix on the screen. In the Inputting Decision stage of 4480-4680
ms, the subjects input their decisions into the experiment platform by brain-computer interaction. In the Feedback stage, the outcome of the current
trial is shown for 1000 ms.

Generally, subjects are guided to input their decisions
by clicking a button after decision-making. Here, consid-
ering that the neural signals related to decision-making are
possibly confounded by the neural activities related to start-
ing responses [10], we introduced Code-Modulated Visual
Evoked Potential (c-VEP) BCI [28, 29] and developed our
experiment system based on BCI2000 [30]. Using the ex-
periment system, the subjects expressed their decisions by
gazing at ‘C’ (cooperation) or ‘A’ (aggression) flashing on
the screen during the 4480-4680 ms period of inputting de-
cision, which is detailed in Appendix B.

The feedback was presented to the subjects after the ex-
periment system received the decision. For example, the
feedback is 30/-10 (Fig. 1) when the subject decides to
aggress and his opponent decides to cooperate.

2.3 EEG datasets

A 64-channel Neuroscan system, composed of a modified
10-20 system electrode cap, an amplifier and a signal ac-
quisition software, was used to acquire EEG. The elec-
trodes M2 (right mastoid) and AFz served as the reference
and ground, respectively. All electrode sites were cleaned
with alcohol, and the impedances between electrodes and
scalp were maintained below 5 kΩ. All EEG signals were
recorded using a 0.05-100 Hz bandpass filter, continuously
sampled at 1000 Hz, delivered from the signal acquisition
software to our experiment system and saved to data files by
the experiment system.

EEG signals were adjusted in order by bilateral mas-
toid re-reference, blink correction using ICA and common
average reference, which were carried out on the platform
of EEGLAB [31]. Subsequently, EEG signals were selected
from the 800 ms before the onset of the decision-making
screen to the end of the decision-making screen. Each trial
had a 2300-ms EEG segment. The EEG segments in which
EEG amplitudes exceeded a threshold of ±80 µV were ex-
cluded. Therefore, the actual number of each subject’s EEG
segments was in the range of 84 to 100. Then, the EEG seg-
ments were corrected with the 800 ms before the onset of
the decision-making screen as the baseline and labelled with
the real decisions of the subjects. Finally, the EEG segments
of each subject were randomly partitioned into three parts.
Each part and the corresponding rest parts were in turn used
to construct the test set and the training set for a subject, re-
spectively. The numbers of the EEG segments in a training
set and the corresponding test set were respectively around
60 and 30. For each subject, we built feature models and
classifiers on a training set and tested the discriminability of
single-trial EEG on the corresponding test set.

2.4 Framework based on machine learning

In order to explore the discriminability of single-trial EEG
during decision-making in CG, we designed a research
framework based on machine learning. As shown in Fig. 2,
the research framework includes two phases: training and
testing. In the training phase, a series of algorithms are ap-
plied on the training set of a subject to build feature models
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Fig. 2 The research framework based on machine learning. The ‘a’ section represents the training phase of this framework, during which the
algorithms of extracting features and building classifiers are applied to construct feature models and classifiers. The ‘b’ section represents the
testing phase of this framework, during which the feature models and classifiers are used to test the discriminability of single-trial EEG.

and classifiers. In the testing phase, the feature models and
classifiers are used to discriminate the single-trial EEG dur-
ing decision-making of cooperation or aggression.

The training phase is illustrated in Fig. 2a. A train-
ing set for a subject contains the EEG segments of N tri-
als. We can describe the training set as {Xi, li}Ni=1, where
Xi ∈ RNc×Nt represents an EEG segment, Nc and Nt are
respectively the number of the channels and the number of
the sampling points, li ∈ {+1,−1} is the label of an EEG
segment, +1 or −1 represent the subject’s decisions of co-
operation or aggression. A feature model is obtained by run-
ning a feature extraction algorithm on {Xi, li}Ni=1. The fea-
ture model transforms {Xi, li}Ni=1 into {xi, li}Ni=1, where
xi ∈ RNv represents a feature vector. A classifier is built
by applying a classification algorithm on {xi, li}Ni=1.

We use Φ : X → x and Ψ : x→ l to respectively repre-
sent a feature model and a classifier. As shown in Fig. 2b, in
the testing phase, an EEG segmentX ∈ RNc×Nt from a test
set is transformed by a feature model Φ of the corresponding
subject into a feature vector x ∈ RNv , and the feature vector
is further classified by a corresponding classifier Ψ as a la-

bel l ∈ {+1,−1}. The discriminability of single-trial EEG
during decision-making in the CG experiment is observed
by the classification performance.

In accordance with the existing works [3, 11, 15, 16],
we employed the five existing feature extraction methods:
DSNP, WM, ICA, PCA and CSP, and a classifier: LDA, in
the framework. DSNP is an EEG feature extraction based
on network patterns. WM means to transform EEG seg-
ments into feature vectors by averaging EEG signals in each
time window (500 ms per window) on the concerned chan-
nels (F1, Fz, F2, CPz, PO7, PO8). Although PCA, ICA
and CSP are different, they all learn a transformation ma-
trix H ∈ RNv×Nc from a training set. H is used to map
EEG segments into Nv virtual channels by matrix multipli-
cation. Due to Nv � Nc, the transformation matrix H is
actually a filter searching the discriminability of EEG seg-
ments. For each EEG segment, the variances of each virtual
channel are taken logarithmic and concatenated into a fea-
ture vector. Eighteen features was considered after empirical
experiments using wrapper feature selection method, where
all the possible combinations of features were assessed and
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Fig. 3 The classification accuracies of AFRCSP, DSNP, WM, ICA, PCA, and CSP respectively combined with LDA on all 21 subjects

Table 1 Comparing the accuracies. The means and standard deviations of accuracies of each method and the t-test p values of comparing
AFRCSP’s accuracies with those of DSNP, WM, ICA, PCA, and CSP are are shown in the table.

AFRCSP DSNP WM ICA PCA CSP
Accuracy (mean±std%) 75±6 51±8 52±1 53±5 54±7 55±9

P value of t-test None 6.47× 10−11 2.62× 10−10 2.66× 10−13 3.35× 10−11 2.57× 10−11

the combination of these 18 features achieved the best per-
formance. To ensure the fairness of comparison, all imple-
mentations of Φ in this study transform EEG segments into
18-dimensional vectors, i.e., Nv = 18 for all feature ex-
traction methods in the framework. As an implementation
of Ψ , LDA can be expressed as l = sign(wTx + b), where
w ∈ RNv and b ∈ R are obtained by running the shrinkage
LDA algorithm [14, 32] on {xi, li}Ni=1.

2.5 Adaptive frequency regularized common spatial pattern

To explore our concern, we proposed a novel feature extrac-
tion method, called Adaptive frequency regularized com-
mon spatial pattern (AFRCSP), which is a new implemen-
tation of Φ. Essentially, AFRCSP is a combination of CSP
[18], regularization idea [21,23] and NCA [24–27]. The de-
tailed description of AFRCSP is presented in Appendix C.

In this study, every subject carried out 100 trials. During
the data preprocessing stage, a few EEG segments were ex-
cluded according to the specified threshold and only the 2/3
EEG segments were added into the training sets. This means
that the sample numbers of the training sets are around 60. In
this small-sample setting, it is difficult for the conventional
CSP training algorithm [18] to acquire good feature mod-
els. To deal with this issue, we introduced the regularization
ideas of [21, 23] to improve the conventional CSP training
algorithm.

On the other hand, the frequency band is also an impor-
tant factor in this study. Although most studies only focus
on the frequency band of 1-30 Hz, some researchers have

revealed the associations of gamma-band (30-100Hz) EEG
with cognitive functions [33–35], even with chronic psy-
chotic disorders [36]. It is necessary to take a wider fre-
quency band into account in this study. We established K
frequency bands (K=33), which are 1-3 Hz, 4-6 Hz, · · · ,
97-99 Hz, to probe the associations of the frequency bands
with decision-making cognitive activities. However, a wider
frequency band will result in a higher dimension of fea-
ture vectors, complicating feature extraction of EEG. In or-
der to effectively reduce the dimension of feature vectors,
we introduced the neighborhood component analysis (NCA)
[24–27] to filter the frequency bands without the significant
discriminability.

3 Results

AFRCSP, DSNP, WM, ICA, PCA and CSP respectively
combined with LDA were tested on the three test sets of all
21 subjects. Here, the mean accuracy, sensitivity and speci-
ficity of a method on the three test sets of a subject are called
the accuracy, sensitivity and specificity of the method on the
subject. To simplify, we use the name of a feature model to
represent the combination of the feature model with LDA.
For example, AFRCSP means the combination of AFRCSP
with LDA. The accuracies are shown in Fig. 3. Intuitively,
AFRCSP outperforms the other five methods. The t-test
was conducted to check accuracy differences of AFRCSP
with the other five methods. Table 1 shows the means and
standard deviations of accuracies for each method and the
p values of t-test of comparing AFRCSP’s accuracies re-
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Table 2 Comparing the sensitivities. The means and standard deviations of sensitivities of each method and the t-test p values of comparing
AFRCSP’s sensitivities with those of DSNP, WM, ICA, PCA, and CSP are shown in the table.

AFRCSP DSNP WM ICA PCA CSP
Sensitivity (mean±std) 0.72±0.11 0.51±0.17 0.41±0.36 0.54±0.14 0.54±0.14 0.57±0.17

P value of t-test None 6.81× 10−7 2.56× 10−4 3.17× 10−5 1.23× 10−7 3.16× 10−5

Table 3 Comparing the specificities. The means and standard deviations of specificities of each method and the t-test p values of comparing
AFRCSP’s specificities with those of DSNP, WM, ICA, PCA, and CSP are shown in the table.

AFRCSP DSNP WM ICA PCA CSP
Specificity (mean±std) 0.73±0.15 0.47±0.15 0.58±0.37 0.49±0.14 0.52±0.15 0.51±0.18

P value of t-test None 3.54× 10−10 2.36× 10−2 5.1× 10−8 2.13× 10−7 7.47× 10−7

Fig. 4 The accuracy comparison of AFRCSP on 9 frequency bands
versus on 3 frequency bands. The Y axis represents accuracy of
AFRCSP on 9 frequency bands. The X axis represents accuracy of
AFRCSP on 3 frequency bands. A point presents an accuracy com-
parison of AFRCSP on 9 frequency bands versus on 3 frequency bands
for a subject.

spectively with those of DSNP, WM, ICA, PCA and CSP.
Furthermore, the means and standard deviations of sensi-
tivities for each method and the t-test p values of compar-
ing AFRCSP’s sensitivities with those of DSNP, WM, ICA,
PCA and CSP are shown in Table 2, and the means and
standard deviations of specificities and the t-test p values
of comparing specificities are also presented in Table 3 in
same way. The t-test p values of AFRCSP versus DSNP,
AFRCSP versus WM, AFRCSP versus ICA, AFRCSP ver-
sus PCA and AFRCSP versus CSP are far less than 0.05. At
the significant level of 0.05, the accuracies, sensitivities and
specificities of AFRCSP are different from those of DSNP,
WM, ICA, PCA and CSP. The mean accuracy, sensitivity
and specificity of AFRCSP are significantly greater than the
counterparters of the other five methods. All statistical infer-
ences on the performance data support the intuitive judge-

Fig. 5 The frequency bands selected by AFRCSP. The Y axis repre-
sents subjects. The X axis represents frequency bands. The frequency
bands 1, 2, · · · , 33 indicate 1-3 Hz, 4-6 Hz, · · · , 97-99 Hz. The three
blue squares in each row represent the three most discriminative fre-
quency bands selected by AFRCSP for the subject.

ment that AFRCSP is clearly superior to DSNP, WM, PCA,
ICA and CSP. The classification performance of AFRCSP
shows that the discriminability of single-trial EEG during
decision-making in chicken game really exists.

Fig. 4 presents the accuracy comparison of AFRCSP on
9 frequency bands versus on 3 frequency bands. In Fig. 4,
most points approach the diagonal, showing that the accu-
racies of AFRCSP on 9 frequency bands are approximately
equal to those of AFRCSP on 3 frequency bands for most
subjects. The t-test was carried out to check accuracy dif-
ferences of AFRCSP on 9 frequency bands versus on 3 fre-
quency bands. The p value is 1.44×10−2. At the significant
level of 0.01, no significant accuracy difference of AFRCSP
on 9 frequency bands versus on 3 frequency bands is discov-
ered.

The three most discriminative frequency bands selected
by AFRCSP for each subject are shown in Fig. 5. For most
subjects, the three most discriminative frequency bands are
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Fig. 6 The brain maps of the 21 subjects: S1, S2, · · · , S21. The intensity represented by the color in the brain maps indicates the contribution of
the brain region to the discriminablity discovered by AFRCSP.

below 40 Hz. Only the subjects 1, 2, 3, 6, 9, 10, 11 and 20
have the discriminative frequency bands above 40 Hz. Even
so, nearly all of them have the discriminative frequency
bands below 40 Hz.

For each subject, the row vectors of the transformation
matrices of AFRCSP in the three most discriminative fre-
quency bands were taken absolute values, normalized to
[0,1] and then averaged to an intensity vector, each dimen-
sion of which corresponds to a channel. The brain maps in
Fig. 6 were drawn using the subjects’ own intensity vectors.
The intensity represented by the color in Fig. 6 indicates
the contribution of the brain region to the discriminablity
discovered by AFRCSP. In Fig. 6, the significant intensities
exist in the medial prefrontal regions of S1, S3, S4, S6, S7,
S12, S13, S14, S15, S16, S17, S18, and S19, in the dorsolat-
eral prefrontal regions of S1, S2, S3, S4, S5, S6, S7, S8, S9,
S10, S11, S13, S14, S15, S16, S17, S18, and S19, in the or-
bitofrontal regions of S1, S3, S5, S6, S7, S8, S10, S11, S12,
S13, S15, S16, S17, S18, and S19, in the middle intrapari-
etal regions of S1, S3, S4, S5, S7, S8, S9, S11, S12, S13,
S14, S15, S16, and S19, and in the occipital regions of all
subjects except S9, S10, S11, S20.

4 Disccusion

The results of Fig. 3 and Table 1-3 show two points: 1. the
discriminability of single-trial EEG between the two deci-
sions in our CG experiments really exists and 2. the dis-
criminability can be clearly revealed by AFRCSP. In order
to explore which frequency bands and brain regions con-
tribute to the discriminability, we further analysed the results
of AFRCSP.

Firstly, we compared the classification accuracies of
AFRCSP on 9 frequency bands versus on 3 frequency bands.
The comparison is presented by Fig. 4, and the t-test re-
sult shows that no significant classification accuracy differ-
ence exists between the two situations. This means that the
single-trial EEG discriminability revealed in this study is
mainly attributed to the three most discriminative frequency
bands selected by AFRCSP. Therefore, we can concentrate
on the three most discriminative frequency bands selected
by AFRCSP to probe the impacts of frequency bands on the
discriminability.

As shown in Fig. 5, among the 21 subjects, the three
most discriminative frequency bands of 14 subjects are all
below 40 Hz, the other seven subjects also have the dis-
criminative frequency bands below 40 Hz although a few
of their discriminative frequency bands lie in the range be-
tween 40 Hz and 99 Hz. This means that the single-trial EEG
discriminability originates mainly from the frequency range
of 1-40 hz. The studies [33–36] show that the gamma-band
of EEG is also associated with cognitive functions. Maybe,
due to filtering of skull or instable measurement conditions
on scalp, the associations are not frequently observed.

Secondly, we explored the contributions of different
brain regions to the discriminability.

The existing studies [1–3] show that the brain regions
involving decision-making commonly include the dorsolat-
eral prefrontal cortex, medial prefrontal cortex, orbitofrontal
cortex, superior temporal sulcus, middle intraparietal sulcus,
insula, anterior cingulate cortex, posterior cingulate cortex,
ventral striatum, and amygdala. During decision-making in
the CG experiment, the differences of cognitive activities
in the brain functional areas are probably reflected by the
EEG difference in the corresponding regions. Fig. 6 shows
that AFRCSP discovered the contributions to single-trial
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EEG discriminability in the medial prefrontal regions, in the
dorsolateral prefrontal regions, in the orbitofrontal regions
and in the middle intraparietal regions. The discoveries of
AFRCSP are in agreement with the existing knowledge on
the cognitive mechanism of decision-making [1–3].

AFRCSP also discovered the single-trial EEG discrim-
inability in the occipital regions. We believe that the dis-
criminability in the occipital regions embodies the partici-
pation of the subjects’ visual function during the ‘Decision-
making’ stage shown in Fig. 1. This finding of AFRCSP is
consistent with our experimental scenario.

Conclusions

In the studies on the cognitive mechanism of decision-
making, researchers often probe the neural activities that
drive decision-making by observing the discriminability of
EEG during decision-making. Usually, the discriminability
is observed by averaging EEG signals across trials. While
observing the discriminability of single-trial EEG is also
very valuable, but it is rarely carried out owing to its diffi-
culty. This study explored the discriminability of single-trial
EEG during decision making of cooperation or aggression
using a specific machine learning framework. The classifica-
tion accuracy of around 75% is achieved in the differencia-
tion of single-trial EEG between the cooperation and aggres-
sion decisions during the CG experiments. Results demon-
strate that it is feasible to apply machine learning to assess-
ing the discriminability of single-trial EEG.

This study can conclude that: 1. the discriminability
of single-trial EEG during decision-making in the chicken
game really exists, and 2. the discriminability originates
mainly from the EEG information below 40 Hz. The brain-
region analysis based on the AFRCSP features shows that
the contributions of different brain regions to single-trial
EEG discriminability are consistent with the existing knowl-
edge on the cognitive mechanism of decision-making. This
further confirms the reliability of our conclusions. The find-
ings in the study can be used to develop new BCI paradigms,
in which subjects’ decisions can be recognized online.
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A Chicken game

The CG experimental task aims to study the mechanisms underlying
cooperative and aggressive behaviors. In this game, two players inde-
pendently decide to cooperate or aggress. Every time, the payoff for
each player depends on the combination of two players’ decisions. The
payoffs of mutual cooperation and mutual aggression are represented
with ‘R’ and ‘P’, respectively. If one player cooperates while his/her
opponent aggresses, the payoffs of the player and his/her opponent are
represented with ‘S’ and ‘T’, respectively. The payoffs are arranged
such that T>R>S>P and 2R≥T+S. The players make their decisions
in a social dilemma when they are conducting the CG experimental
task.

B The period of inputting decision

Fig. 7 Inputting decision by brain-computer interaction

During the period of inputting decision, the subjects expressed
their decisions by a c-VEP BCI. The procedure is shown in Fig. 7.
The ‘Rest’ screen guides subjects to rest for 1000-1200 ms. The ‘Cue’
screen prompts subjects to get ready to input their decisions. The
‘Gaze’ screen represents the brain-computer interaction lasting 3000
ms. On the screen, the ‘A’ and ‘C’ rectangles means ‘aggress’ and ‘co-
operate’, respectively. The subjects are instructed to gaze at one of the
two rectangles according to their own decisions. The two rectangles
flash in a pseudorandom pattern specified respectively by 15-bit m-
sequence ‘000010100110111’ and its shift ‘110111000010100’. Each
bit of m-sequence corresponds to 40 ms, meaning on by 1 or off by
0 and the flashes of 15-bit m-sequence are repeated 5 times. For each
trial, the EEG signals recorded from the electrodes of O1, Oz, O2,
PO7, POz, and PO8 during the 3000 ms are transformed to a feature
vector, which is further recognised as the subject’s decision by a linear
discriminant analysis classifier.

C The description of AFRCSP

AFRCSP establishes a feature modelΦ based on the K frequency bands
for a subject (target subject) using not only his own training set but also
the training sets of other subjects (source subjects). Firstly, AFRCSP
filters all EEG segments of each training set with the K bandpass fil-
ters. Secondly, AFRCSP processes each frequency band in same way
to obtain a transformation model for each frequency band. Thirdly,
AFRCSP selects the most informative frequency bands for a subject.
Finally, AFRCSP integrates the transformation models of the selected
frequency bands into a feature model of the subject.

For the simplicity, we still use Xi to represent the EEG segment
of a trial in a frequency band. The procedure of AFRCSP processing a
frequency band for a targrt subject can be depicted as follows.

Step-1 calculates the regularized covariance matrices. The covari-
ance matrix of a trial is obtained according to Eq. 1,

Ci =
XiXTi

tr(XiXTi )
, i ∈ [1, N ] (1)
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where tr(·) represents solving the trace of a matix. The covariance ma-
trices of cooperation and aggression are calculated according to Eqs. 2
and 3,

Cc =
1

Mc

∑
i∈Tc

Ci (2)

Ca =
1

Ma

∑
i∈Ta

Ci (3)

where Tc and Ta respectively represents all trials of the coopera-
tion decision and all trials of the aggression decision and Mc =
|Tc|, Ma = |Ta|. For each source subject, the covariance matrices
of cooperation and aggression can be calculated in the same way. We
notate the mean covariance matrices of cooperation and aggression for
all source subjects as C̄c and C̄a. Then, we define the regularized co-
variance matrices of the target subject as C̆c, C̆a and C̆ by Eqs. 4-8

Ĉc = (1− β)Cc + βC̄c (4)

Ĉa = (1− β)Ca + βC̄a (5)

C̆c = (1− γ)Ĉc +
γ

Nc
tr(Ĉc)I (6)

C̆a = (1− γ)Ĉa +
γ

Nc
tr(Ĉa)I (7)

C̆ = C̆c + C̆a (8)

where the parameters β, γ ∈ [0, 1] are determined by cross-validation
during the implementation, I is a Nc ×Nc identity matrix, tr(·) rep-
resents the operation of the trace of a matrix.

Step-2 conducts the Eigendecomposition of C̆ (Eq. 9),

C̆ = BλBT (9)

where λ is the diagonal matrix of eigenvalues of C̆ and B is a ma-
trix composed of normalized eigenvectors of C̆. We then get a matrix
W by W = λ−1/2BT , and transform C̆c and C̆a to Sc and Sa by
Sc = WC̆cWT and Sa = WC̆aWT . In accordance with [17, 18],
we know that Sc and Sa have the same eigenvectors. This can be de-
scribed as Eqs. 10 and 11,

Sc = UψcU
T (10)

Sa = UψaU
T (11)

where U is the common eigenvector matrix of Sc and Sa, ψc and ψa
are diagonal matrices of eigenvalues of Sc and Sa respectively, and
the sum of ψc and ψa is an identity matrix.

Step-3 computes the transformation matrix P by Eq. 12,

P = (~(U))TW (12)

where ~(·) represents selecting the first and last columns of U after
sorting the eigenvectors in descending order of the eigenvalues.

We use k ∈ {1, · · · ,K} to represent a frequency band and then
can represent the transformation matrices and EEG segments of the K
frequency bands with Pk ∈ R2×Nc and Xki ∈ RNc×Nt . Further-
more, for all i ∈ {1, · · · , N}, k ∈ {1, · · · ,K}, Y ki ∈ R2×Nt and
hki ∈ R2 are obtained respectively by Eq. 13 and by Eq. 14.

Y ki = PkX
k
i (13)

hki = ln
diag(Y ki (Y ki )T )

tr(Y ki (Y ki )T )
(14)

As the counterpart of Xi, hi is obtained by concatenating all hki for
k ∈ {1, · · · ,K}. But, hi ∈ R2K are not yet the appropriate feature
vectors ofXi, since the information from the frequency bands in which
no significant discriminability exists is included in hi.

The NCA [24–27] is used for further feature selections. We define
a weight vector w ∈ R2K , and denote the weighted distance between
hi and hj by Eq. 15.

Dw(hi, hj) =

2K∑
k=1

w2
k|hik − hjk| (15)

The probability of hi selecting hj as its reference point is defined as
Eq. 16,

pij =

{
κ(Dw(hi,hj))∑
k 6=i κ(Dw(hi,hk))

, if i 6= j

0, if i = j
(16)

where κ(z) = exp(−z/σ) is a kernel function with a parameter σ.
Then, the objective function is obtained by Eq. 17,

ξ(w) =

N∑
i=1

N∑
j=1

lijpij − α
2K∑
k=1

w2
k (17)

where lij = 1 if and only if li = lj , or lij = 0 otherwise; α > 0
is a regularization parameter which is set to 1/N here. Our goal is
to maximize ξ(w) with respect to w. In the process of solving this
problem, the regularization term drives many of the weights in w to
0. After obtaining the solution w, we notate the subscript set of the
weights in w that are much greater than 0 as L = {k |wk � 0}
and construct xi, the feature vector of Xi, by selecting the features
{hik|k ∈ L} and concatenating them.

The above descriptions are the implementation of AFRCSP to
Φ. As a combination of CSP, regularization idea and NCA, AFRCSP
meets our need to probe the discriminability of EEG segments in a
broad frequency range and in small-sample setting.

D The results of SVM and KNN

A reviewer thinks that the results of Support Vector Machine (SVM)
and K-Nearest Neighbors (KNN) should be reported in the paper. We
show them in Table 4.
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