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ABSTRACT
Traditionally, cluster randomized controlled trials are analyzed with the
average intervention effect of interest. However, in populations that
contain higher degrees of heterogeneity or variation may differ across
different values of a covariate, which may not be optimal. Within
education and social science contexts, exploring the variation in
magnitude of treatment effect at different points in the population can
indicate where the intervention is most effective rather than assuming
an average effect.

Data from [Owen, K.L., et al., 2021. Implementation support improves
outcomes of a fluency-based mathematics strategy: A cluster-
randomized controlled trial. Journal of research on educational
effectiveness, 14 (3), 523–542.] were reanalyzed using three modeling
approaches: conditional mean-modeling reporting the average
treatment effect using linear mixed models, and two quantile
regression-based methods. Quantile regressions report the quantile
treatment effects at different percentiles: 10th, 25th, 50th, 75th and
90th. For the Quantile approaches, a significant intervention effect in
the median to upper quantiles was found and linear quantile mixed
model showed improved fit over the other approaches.

An improved picture of intervention effects may be apparent using
quantile regression methods when analyzing cluster randomized trials
that have heterogeneous error variance. In particular, the linear quantile
mixed model shows improved model fit allowing a multilevel
framework to include random effects. There is considerable scope to
extend this framework to incorporate more complex RCT designs.
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Introduction

In most randomized controlled trials (RCTs), the primary driver of the study is to determine whether
the average treatment effect is different from zero or an improvement on an existing intervention or
standard practice. The average treatment effect is clearly an appealing summary to show the com-
parative effectiveness of an intervention, but the presence of heterogeneity of the treatment effect
remains under-investigated when only considering the average (Angus & Chang, 2021). When
working with populations with a high degree of variability in their characteristics, the average
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may only provide a limited glimpse of the effectiveness of an intervention (Koenker et al., 2017). One
solution is to perform sub-group analyzes but, unless designed into the study, these are often under-
powered and exploratory with higher potential for type II error (Burke et al., 2015). In addition, if the
trial has been appropriately randomized, the heterogeneity of treatment effects will still be present
as the control and intervention groups should follow similar empirical distributions (Gabler et al.,
2009). More specifically, if factors included in the randomization do not account for the heterogen-
eity, then the heterogeneity issue persists in each arm of the trial. This is a particular issue in prag-
matic trials (Giraudeau et al., 2022).

|Focusing on average effects of intervention at a policy level in education and social care may not
be the optimal strategy (Huber & Wüthrich, 2019, Hohberg, Pütz, & Kneib, 2020). The average effect
could be negligible, but there may be substantial benefits at the bottom of the distribution. In such a
situation, the intervention may be especially useful for reducing inequalities. For example, suppose
we have two programs focusing on numeracy skills and one shows improvements only in the higher
performing children, whereas the second substantially benefits children with weaker numeracy skills.
Policy makers may have a particular interest in the latter finding since it could offer an opportunity to
reduce educational inequalities. However, such conclusions may be drawn typically via under-
powered sub-group analysis (Dijkman, Kooistra, & Bhandari, 2009, Burke et al., 2015, Tang et al.,
2021).

The average treatment effect calculation may underestimate an effect or even miss differential
effects of sub-groups entirely (Angus & Chang, 2021). Traditional methods for estimating interven-
tions are usually from medical trials where, arguably, the populations are more homogeneous by
design – with strict inclusion and exclusion criteria to limit variability. It is crucial to understand
the pragmatic relevance of heterogeneity when considering analysis methods for educational and
social care trials, as certain interventions may be more beneficial to certain groups within the popu-
lation (Hohberg et al., 2020). For example, when using cluster randomization for school-based inter-
ventions, the interest may not be in finding an average effect but understanding the distribution of
treatment effect at all student ability levels, with specific interest in those who are under-performing.

An alternative approach to using average treatment effects is to report quantile treatment effects
(Koenker et al., 2017). The quantile treatment effect (QTE) is the difference between particular quan-
tiles of the outcome distribution in the intervention group and the outcome distribution in the
control group (Callaway, 2019). This effectively provides an estimate of the treatment effect at
different points in the outcome distribution. For example, we might find larger treatment effects
at the extreme ends of the population, but more modest effects at the median population area.
Several accessible introductions to methods of analysis to evaluate the average treatment effect
are available in the RCT literature (see for example: Altman, 1991, Twisk et al., 2018). However, acces-
sible guides are less frequently provided for quantile treatment effects.

Konstantopoulos et al. (2019) presented a general overview of quantile regression to estimate
intervention effects, and some researchers reporting RCT results using QTEs illustrate the potential
value of the approach. For example, Ohrnberger et al., (2020) discussed the effects of conditional
cash transfer programmes on mental health, finding substantial variation in the magnitude of
effect of the programme across the mental health distribution. Those with the worst mental
health profile showed a positive intervention effect approximately four times the average effect.
Chen et al. (2016) presented results from two trials of interventions in Alzheimer’s disease
showing that treatment effects appeared larger at the higher percentiles of progression but less
at the lowest percentiles.

In data with no clustering, (i.e. dependency of observations, for example, individuals within the
same school will potentially respond more similarly then their peers from another school), quantile
treatment effects can be estimated using quantile regression. Standard linear regression models the
average relationship between dependent and independent variables, whereas quantile regression
models the relationship at various sample quantiles (Yu, Lu, & Stander, 2003). Quantile regression
has some additional benefits over ordinary least squares regression. In particular, there are no
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distributional assumptions for quantile regression, so the approach is more robust to outliers, skew,
and multimodality (Koenker, 2005).

The quantile treatment effect in the presence of clustering with the data is less frequently dis-
cussed in the literature. Konstantopoulos et al. (2019) discussed the application of quantile
regression more broadly in randomized controlled trials in education and presented a specific
example of a trial with clustered data. Their approach to dealing with the clustered nature of the
data was to use corrected standard errors rather than modeling the dependence directly (Parente
& Santos-Silva, 2016). Hagemann (2017) provided an improved procedure of cluster corrected stan-
dard errors using a wild gradient bootstrap procedure when the number of clusters is small (a
common issue in other correction procedures). The comparison of cluster corrected standard
errors versus multilevel models is relatively under-explored. Cheah (2009) made direct comparison
between models calculating the average treatment effect and, more informally, Gelman (2009)
briefly discussed a preference for the multilevel approach in a blogpost. However, to our knowledge,
no direct comparison of quantile regression models with clustered data using either cluster cor-
rected standard errors or multilevel models, has been reported to date.

In this paper, we discuss and make direct comparison between two approaches to estimation of
quantile treatment effects when the data are clustered and compare the results of the quantile treat-
ment effects with original analyses reporting the average treatment effect in a cluster RCT in edu-
cation (Owen et al., 2021).

Methods

We summarize the trial reported by Owen et al. (2021). More detailed descriptions are discussed by
Owen et al. (2021), but we cover the essential elements required to understand the trial when con-
sidering the implications for comparison of statistical approaches.

Trial design and participants

The trial was delivered to schools across North Wales, and within six counties (Conwy, Denbighshire,
Flintshire, Gwynedd, Anglesey, and Wrexham). Nominated teachers from each school attended a 3-
hour training session for the mathematics intervention, Say-All-Fast-Minute-Every-Day-Shuffled
(SAFMEDS). This training was delivered prior to randomization to trial arm (intervention plus
support vs intervention with no support), so that bias was minimized, and trial differences were
subject to chance. In addition, each school selected up to 10 children to participate in the trial.

Schools in the North Wales region responded to an open advertisement for this project. Upon
expression of interest, the researchers asked them to identify children needing intervention
support to master, and build fluency in, basic arithmetic skills. Due to the children being in
different phases of their schooling, the researchers asked schools to identify children based on
the following criteria:

. 6–7 years olds (in Year 2 classes) who were working below the expected standard for their age in
mathematics and numeracy for their age required an intervention support. At this age, children in
Wales are not formally assessed using standardized measures, so the researchers allowed teachers
to make their own judgements based on experience and class test data.

. Children ≥7 years old who scored less than 100 standard points on the national numeracy pro-
cedural test undertaken at the end of the preceding academic year.

The majority children in the sample were aged 6–8 years. For supporting context, the two second-
ary schools who responded to the advertisement represent, (i) a school with Year 7 children (aged
11–12 years) who significantly underperformed on the procedural test, (ii) a special educational
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needs school that supported children aged 11–17 years working below the age-expected level in
numeracy/mathematics.

The mean age of the children attending schools in the no ongoing support trial arm was 7-years
3-months (SD = 14.34 months, range: 6-years 0-months to 9-years 2-months). The mean age across
the ongoing support trial arm (intervention) was also 7-years 3-months (SD = 14.32 months; range: 6-
years 0-months to 15-years 10-months). Consent was obtained for 575 children (N[Support] = 294, N
[NoSupport] = 281), across 60 schools (N[Support] = 31, N[NoSupport] = 29). A full summary tables of
baseline characteristics of schools and children can be found in Owen et al. (2021).

Three other measures were recorded for use as control variables in the analysis. These include:
Predominant home language – As this study is conducted in Wales, some children may predomi-

nantly speak Welsh as their home language with English as a second language, or vice versa.
Eligibility for free school meals (eFSM) – Free school meals are available in Wales for children from

families typically with lower incomes or in receipt of social security benefits. We gathered data on
whether each child was eligible to receive free school meals based on Welsh government criteria
in place at the time of the study.

Gender – reported gender of the child (male/female).

Randomization

Randomization was conducted using minimization (Altman & Bland, 2005, Kahan & Morris, 2012) and
schools were allocated to one of the two trial arms (intervention plus support vs intervention with no
support). The allocation was stratified by county and the language used predominantly for teaching
in the school (either English or Welsh). All teachers received training for the SAFMEDS intervention
prior to the children completing the baseline assessments.

Intervention

All teachers were given training in the Say-All-Fast-Minute-Every-Day-Shuffled (SAFMEDS) strategy
which aims to improve children’s fluency of basic mathematics skills (Tyler et al., 2018). Owen
et al. (2021) focused on randomizing schools to SAFMEDS with and without ongoing support to
examine whether coaching support would improve children’s numeracy outcomes (by improving
fidelity of the teacher’s implementation). The ongoing support arm of the trial received three in-
situ support visits from an experienced researcher with several years of experience of using
SAFMEDS strategies in schools. The no support arm received the same initial training in SAFMEDS
strategy at baseline, but then received no further support from the experienced researcher, with
the exception of technical issues or data input.

Analysis

The data were analysed using three different statistical methods for comparison to the original study:
General linear mixed model, quantile regression using robust standard errors and linear quantile
mixed models. The original trial (Owen et al., 2021) was analysed using a linear mixed effects
model and found a significant interaction between time and intervention which was the effect of
interest (three level model: Level 1 = time, level 2 = Children, level 3 = school). In this reanalysis,
we adjust the model specification to include two hierarchical levels, Children were nested within
schools (level 1 = children, level 2 = school). We opted to reframe the original model to allow
direct comparison to the existing quantile regression approaches that permit two-level models.
To the authors knowledge, an extension to a three-level quantile mixed models has not yet been
developed but is mentioned later in our discussion as a potential future development.

Time is not incorporated into the models’ setup. Instead, we choose to use baseline outcome as a
covariate in the model and the dependent measure becomes the outcome at study endpoint follow-
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up. Either method of analysis is permitted to assess whether the intervention shows an effect (O’Con-
nell et al., 2017). The effect of interest in this design is the main effect of intervention.

All models adjust for the multilevel nature of the data using a linear mixed effects model
structure or model with adjusted robust standard errors to account for clustering in the data.
Similarly, all models adjust for the same covariates in the model and in this respect are directly
comparable. Linear mixed-effect models partition the variance of the outcome variable into
component levels of the hierarchy (Gelman & Hill, 2007, Galecki & Burzykowski, 2013), . To cor-
respond with the original analysis from Owen et al. (2021), children’s raw scores on the Math-
ematics Fluency and Calculation Tests (MFaCTs) measures were used as standardized scores
were not available.

The linear mixed model (LMM) including the intervention indicator but without covariates can be
written as follows,

level1:Yij = b0j + b1jBaselineij + Rij
level2:b0j = g00 + g01Interventionj + U0j

b1j = g10

where b are the parameter estimates, U0j is the random intercept for schools, g01 is the intervention
main effect, and g10 is the baseline outcome. Level 1 within the LMM models contained covariates
associated with individual children: Baseline outcome, gender, predominant home language, eligi-
bility for free school meals status (eFSM), and school year group. At level 2 (school), covariates
included: school administrative county and trial arm.

The remaining two methods estimate the quantile treatment effects at the sample quantiles 10th,
25th, 50th, 75th and 90th. Essentially, the choice of quantile for the purposes of demonstration of the
method is somewhat arbitrary. Any quantile across the distribution could have been specified but for
brevity, we chose a limited selection spanning the range of the distribution. The first quantile-based
approach used linear quantile mixed models proposed by Geraci and Bottai (2014) and incorporated
a multilevel structure including random effects. A second quantile approach was included for com-
parison fitting the quantile regressions without random effects, but instead reported robust standard
errors (Parente & Santos-Silva, 2016, Konstantopoulos et al., 2019), .

Standard ordinary least squares regression is estimated via minimization of the sum of squares
with respect to the parameters. For example, the regression can be written as follows for an individ-
ual i,

yi = b0 + b1xi + ei

Where y is the outcome variable, x is the predictor variable, e is the residual (error term) of y and b are
the mean regression parameters. Typically, to estimate the parameter vector b, via the quadratic loss
function, r(u) = u2, given a data set of observations {xi, yi}

n
i=1 and involves minimization of the sum

of squared residuals as follows (Yu, Lu, & Stander, 2003),

min
∑N
i=1

(yi − xTi b)
2,

In contrast, quantile regression is estimated by minimization of the weighted sum of the absolute
values of the residuals for quantile q (Koenker, 2005, Koenker et al., 2017). For each sample quantile,
q, we estimated a corresponding set of parameter estimates. The corresponding linear regression for
each quantile can be written as follows,

yi = bq
0 + bq

1xi + ei

where q indicates the quantile of interest [0 , q , 1]. The corresponding loss function for quantile
regression is the absolute value, r(u) = |u| or more commonly written according to a specific quan-
tile, t, rt(u) = t|u| Furthermore, the parameter estimates from the quantile regression model are

INTERNATIONAL JOURNAL OF RESEARCH & METHOD IN EDUCATION 5



estimated by minimizing the weighted sum of the absolute values of the residuals for quantile, t (Yu
et al., 2003, Konstantopoulos et al., 2019), ,

argmin
∑N
i=1

rt(yi − xTi b)

[ ]
,

where rt is the check function, min t
∑N
i=1

|yi − xTi b
t| + (1− t)

∑N
i=1

|yi − xTi b
t|

[ ]
, and t is a quantile of

interest. Moving from a simpler quantile regression model to a linear quantile mixed model which
allows the inclusion of random effects was proposed by Geraci and Bottai (2014). The linear quantile
mixed model follows the same general framework to a standard linear mixed model and all par-
ameters are t-dependent. The model with a single random effect can be written as follows,

yij = xTiju
(t)
x + zTij ui + e(t)ij

where u(t)x is a vector of unknown fixed effects, t is the quantile of interest, ui = (ui1, . . . , uiq) are the
zero-median vector of random effects which are independent of the model error term
e(t)ij , i = 1, . . . , M and conditional on the C(t) covariance matrix (q x q). Hence, the random effects,
ui are also dependent on t viaC(t). Geraci & Bottai (2014) define the ith contribution to the marginal
likelihood by integrating out the random effects, Li(ux , s, C|yi) = �

Rq
p(yi, ui|ux , s, C)dui,

where Rqis the q-dimensional Euclidean space.
All analyses use R version 4.0.3 (2020-10-10), and R packages: linear mixed models for average

treatment effect estimation uses ‘lme4’; quantile regression using robust standard errors, ‘quantreg’
(Koenker, 2021); and linear quantile mixed models, ‘lqmm’ (Geraci, 2014). The analysis R code is avail-
able at the Open Science Framework project page (https://osf.io/jqukn/).

Results

The data from Owen et al. (2021) were reanalyzed using a linear mixed model to measure the
average treatment effect (ATE) and comparisons made with two alternative quantile regression
analysis approaches that focused on quantile treatment effects. The primary outcome data were
skewed and contained non-negative integers (see Figure 1 for both school Grades 1–2 and
Grades 3–5 assessments), so model assumptions for the linear mixed model were checked and het-
erogeneity of variance was observed (see Appendix 1). Figure 1 highlights the skew in the data indi-
cated by longer right tails in the distributions, seen in each panel when the shape of each
distribution is not reflected around the central tendency (median, horizontal bar). When fitting
the adjusted linear mixed model with baseline covariate adjustment, we found that the intervention
was not statistically significant (b = 2.81, p = .061) which differed from the reported results from
Owen et al. (2021). Important to note is that the original Owen et al. (2021) model and the baseline
adjusted model are not directly comparable as the model structure is different, but the test of the
intervention is similar in principle. Given the limitation of the current quantile models to only
permit two-levels, the two level baseline model for the average treatment effect provides the
most suitable comparison to the new quantile methods. Table 1 shows the full model output for
the ATE under the linear mixed model with baseline adjustment.

MFaCTs: grades 1–2 assessment

Table 1 presents the comparison of model parameter estimates, for the linear mixed effect model
(ATE) and both quantile-based models reporting the QTEs for grades 1–2 assessment data.
Despite the non-significance of the ATE, it appears from both quantile models that at some
points in the distribution that a statistically significant effect of treatment effect is observed. In par-
ticular, and consistently with both quantile models, the 25th, 50th, 75th and 90th quantiles show
varying levels of statistical significance. The largest observed effects are found using the linear
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quantile regression with robust standard errors (p , 0.001 at 25th and 50th quantiles; and p , 0.01
at 75th and 90th) compared to the effects estimated using the linear quantile mixed model (p , 0.05
at 25th, 50th, 75th, and 90th quantiles) which were more modest. Although control variables were
not of primary interest – and should not be interpreted with substantial meaning – we did find that
across the quantiles, certain control variables did show statistical significance, compared to the linear
mixed model (ATE). For example, eligibility for free school meals status (eFSM) was found to show a
consistent (both quantile models) and statistically significant effect in the upper quantiles (75th and
90th), but not at the lower quantiles.

Figure 2 shows the estimated coefficients at different percentiles from the quantile models and,
for reference, the average treatment effect in the corresponding linear mixed model for MFaCTs:
Grades 1–2. The red lines are the average treatment effect; the green lines are the linear quantile
mixed model; and the blue lines are the linear quantile regression with robust SEs. In general,
both quantile models show that the QTEs vary across the percentiles and are often relatively
different magnitudes depending on their location in the outcome distribution. In these data, it is
clear that the ATE does not adequately capture the full picture of effects in either intervention or
control covariates as neither quantile coefficients are parallel to their ATE equivalents across the
percentiles.

Figure 1. The pirate plots of the (Owen et al., 2021) data for Grades 1–2 and 3-5. The data are shown split by time point and trial
arm.
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Table 1. The model outputs for all models across all fitted quantiles for MFacTs: Grades 1-2.

ATE: Owen
et al. (2021)

10th 25th 50th 75th 90th

Quantile Reg
(robust SE)

Linear
Quantile

Mixed Model
Quantile Reg
(robust SE)

Linear
Quantile

Mixed Model
Quantile Reg
(robust SE)

Linear
Quantile

Mixed Model
Quantile Reg
(robust SE)

Linear
Quantile

Mixed Model
Quantile Reg
(robust SE)

Linear
Quantile

Mixed Model

Coefficient Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E

Intercept 1.89 3.48 4.41 *** 1.11 4.16 4.37 3.05 2.59 4.41 5.68 6.04 * 3.02 4.95 5.02 7.44 * 3.42 5.30 4.97 −1.67 5.36 5.47 5.10
Baseline 0.97 *** 0.06 0.56 *** 0.06 0.63 *** 0.07 0.81 *** 0.10 0.81 *** 0.12 0.99 *** 0.09 0.98 *** 0.07 1.25 *** 0.09 1.12 *** 0.10 1.25 *** 0.08 1.25 *** 0.17
Gender 0.60 0.83 −0.17 0.59 −0.05 0.79 −0.12 0.81 0.16 0.87 1.36 1.00 0.84 0.82 0.86 1.08 1.05 0.76 2.00 1.75 0.95 0.92
Predominant Home
Language

1.68 1.56 −1.20 * 0.49 −1.02 1.31 0.23 0.83 −0.31 1.62 −0.36 1.25 0.53 1.46 0.31 1.03 0.99 1.60 0.67 1.46 1.50 2.04

eFSM −1.74 0.98 −0.66 0.55 −1.47 0.94 −1.81 0.93 −2.09 1.07 −1.54 1.05 −2.04 * 0.89 −3.52
***

0.94 −2.64 ** 0.92 −4.50 * 2.29 −2.52 * 1.15

Year 1.03 0.62 0.49 0.26 0.06 1.05 −0.23 0.95 −0.11 1.40 0.32 0.74 0.42 1.41 0.53 1.27 0.94 1.61 6.00 ** 1.92 2.60 1.46
County 0.18 0.41 −0.48

***
0.14 −0.28 0.35 0.08 0.25 0.15 0.43 0.08 0.29 0.00 0.31 0.28 0.27 0.38 0.55 0.33 0.59 −0.04 0.72

Intervention 2.81 1.46 0.84 0.51 2.26 1.38 3.85 *** 1.03 3.10 * 1.33 3.65 *** 1.01 3.22 ** 1.16 3.36 ** 1.04 3.35 * 1.44 4.50 ** 1.38 3.79 * 1.88
Random Effects
σ2 72.06
τ00 19.37sch 1.53 7.74 6.75 10.35 21.84
ICC 0.21
N 56sch 55 sch 55 sch 55 sch 55 sch 55 sch

Observations 464 464 464 464 464 464 464 464 464 464 464
Marginal R2/
Conditional R2

0.447/0.564 −0.438 0.135 0.434 0.270 −0.850

*p < 0.05; **p < 0.01; ***p < 0.001.

8
P.TH

O
M
PSO

N
ET

A
L.



Table 2 presents the comparison of model fit indices [AIC; Akaike (1973)] for both quantile
models when fitted to the MFaCTs: Grades 1–2 data. The models are nested, so can be directly
compared to each other using the fit indices. The linear mixed model fit indices are not
included as they are not directly comparable to the quantile models given that they are
fitted at different points in the distribution. The linear quantile mixed model shows a clear
improvement in fit over the linear quantile regression with robust SEs as all AIC values are
lower and at a magnitude that suggests that there is very strong evidence to favour the
linear quantile mixed model.

Figure 2. The estimated quantile regression coefficients at different percentiles and their corresponding ATEs from the linear
mixed model for the MFaCTs: Grades 1–2 data.

Table 2. The AIC model fit indices for each quantile regression model at the 10th, 25th, 50th, 75th, and 90th quantiles for MFaCTs:
Grades 1-2.

Model 10th 25th 50th 75th 90th

Linear Quantile Mixed Model 3,425.429 3,363.589 3,358.200 3,477.126 3,641.768
Quantile regression with robust SE 3,430.998 3,397.948 3,392.291 3,509.247 3,728.225
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MFaCTs: grades 3–5 assessments

The data from the MFaCTs: Grades 3–5 assessment presents a slightly different set of results to the
previous Grades 1–2. Table 3 presents the comparison of model parameter estimates, for the linear
mixed effect model (ATE) and both quantile-based models reporting the QTEs for the Grades 3–5
assessments data. We find that the average treatment effect is again statistically non-significant com-
pared with the results reported in Owen et al. (2021), but there is less consistency between the two
quantile regression approaches. The linear quantile regression with robust SEs indicated statistically
significant effects of intervention at the 25th, 50th and 75th quantiles (b0.25 = 2.77, p = < .001; b0.5 =
2.46, p = .001; and b0.75 = 2.86, p = .008 respectively). However, the linear quantile mixed model
showedmore modest effects for the intervention across the distribution but did additionally indicate
that the 90th percentile showed differences (b0.25 = 2.31, p = .064; b0.5 = 2.41, p = .033; b0.75 = 2.32, p
= .012; and b0.90 = 2.87, p = .018 respectively).

Figure 3 shows the estimated coefficients at different percentiles from the quantile models and,
for reference, the average treatment effect in the corresponding linear mixed model for MFaCTs:
Grades 3–5. The red lines are the average treatment effect; the green lines are the linear quantile
mixed model; and the blue lines are the linear quantile regression with robust SEs. Again, both quan-
tile models show that the QTEs vary across the percentiles and are often relatively different

Figure 3. The estimated quantile regression coefficients at different percentiles and their corresponding ATEs from the linear
mixed model for the Grade 3–5 data.
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Table 3. The model outputs for all models across all fitted quantiles for MFaCTs: Grades 3-5.

ATE: Owen
et al. (2021)

10th 25th 50th 75th 90th

Quantile Reg
(Robust SE)

Linear
Quantile

Mixed Model
Quantile Reg
(Robust SE)

Linear
Quantile

Mixed Model
Quantile Reg
(Robust SE)

Linear
Quantile

Mixed Model
Quantile Reg
(Robust SE)

Linear
Quantile

Mixed Model
Quantile Reg
(Robust SE)

Linear
Quantile

Mixed Model

Coefficient Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E Estimates S.E

Intercept 5.59 3.06 1.53 2.66 6.57 5.19 6.22 *** 1.81 7.09 5.06 5.15 * 2.19 7.44 5.31 6.03 3.74 7.55 5.12 7.20 3.73 8.08 4.26
Baseline 1.03 *** 0.07 0.62 *** 0.16 0.83 *** 0.13 0.98 *** 0.08 0.95 *** 0.08 1.16 *** 0.10 1.13 *** 0.11 1.31 *** 0.13 1.28 *** 0.14 1.28 *** 0.15 1.32 *** 0.16
Gender 1.18 0.73 −0.13 0.81 −0.15 0.76 −0.13 0.66 0.56 0.64 1.30 0.69 1.13 0.81 0.31 1.06 1.16 1.09 3.12 1.67 1.31 1.01
Predominant Home
Language

−0.05 1.37 −1.03 0.73 −1.64 1.55 −0.97 0.79 −0.85 1.26 0.18 0.70 −0.31 1.38 0.76 1.39 0.14 1.38 −0.60 1.24 0.72 1.36

eFSM −1.39 0.86 0.38 0.80 −0.85 0.91 −0.99 0.66 −1.23 0.92 −1.21 0.92 −1.35 1.20 −0.21 1.27 −1.56 1.02 −1.84 1.49 −1.64 1.07
Year 0.93 0.54 0.57 0.97 −0.39 1.42 −0.20 0.40 −0.28 1.41 0.34 0.78 0.03 1.54 0.87 1.04 0.66 1.93 3.72 * 1.53 1.90 1.89
County −0.11 0.36 −0.03 0.19 −0.20 0.29 −0.29 0.16 −0.40 0.30 −0.31 0.21 −0.27 0.31 0.21 0.37 0.27 0.45 −0.04 0.32 0.04 0.55
Intervention 2.31 1.29 1.62 1.13 1.84 1.11 2.77 *** 0.65 2.31 1.30 2.46 *** 0.74 2.41 * 0.99 2.86 ** 1.08 2.32 * 1.13 1.80 1.51 2.87 ** 1.04
Random Effects
σ2 55.09
τ00 15.15 sch 7.15 4.44 4.53 15.28 17.34
ICC 0.22
N 56 sch 55 sch 55 sch 55 sch 55 sch 55 sch

Observations 460 460 460 460 460 460 460 460 460 460 460
Marginal R2/
Conditional R2

0.411/0.538 −0.516 0.168 0.398 0.193 −0.777

*p < 0.05; **p < 0.01; ***p < 0.001.
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magnitudes depending on their location in the outcome distribution. In these data, it is clear that the
ATE does not adequately capture the full picture of effects in either intervention or control covariates
as neither quantile coefficients are parallel to their ATE equivalents across the percentiles.

Table 4 presents the comparison of model fit indices [AIC; Akaike (1973)] for both quantile models
for MFaCTs: Grades 3-5. Similar to the Grades 1–2 results, the linear quantile mixed model shows a
clear improvement in fit over the linear quantile regression with robust SEs as all AIC values are lower
and at a magnitude that suggests that there is very strong evidence to favour the linear quantile
mixed model.

Discussion

In this paper, we demonstrate through reanalysis of educational trial data the potential benefits of
reporting quantile treatment effects rather than focusing on ATE. We have presented two different
quantile regression methods that permit estimation of QTEs and showed the comparison to a typi-
cally reported ATE analysis using linear mixed models. Both linear quantile models’ approaches do
not have the same distributional assumptions as the linear mixed models, so have more flexibility to
model outcomes with different distributional forms. Specifically, the standard errors when hetero-
geneity in error variance is present may be poorly estimated. In addition, the effects of different
levels of covariates can be seen on the outcome at the different percentiles providing a more com-
plete picture of the relationships among outcome and predictors (Koenker, 2005). This may show
that certain covariates have different effects at different levels in the outcome distribution which
would not be apparent through conventional average treatment effect approaches.

A further benefit is that a conventional sub-group analysis would require using a portion of the
full dataset and reduction of the sample size, which may increase the chance of type I and II errors
and a reduced ability to include all covariates. A quantile approach does not require reduction in the
data as it fits the model at specified quantiles using the full dataset, so statistical power is not com-
promised. In addition, a quantile approach has reduced statistical assumptions so may in fact have
improved statistical power (Tarr, 2012, Petscher & Logan, 2014, Howard, 2018). Formal sample size
calculations could also be conducted via Monte Carlo simulation as the gold standard approach
in more complex models (Kumle et al., 2021). Given that this was existing data, we omitted a
formal calculation to avoid criticism in the same vein as Hoenig and Heisey (2001). Future work
using simulations would be necessary to fully understand and incorporate the multilevel nature
of these quantile models in a sample size calculation.

When re-analysing these data potential improvements to the analysis given the features of the
primary outcome measures, MFaCTs at grades 1–2 and 3-5, were potentially possible. The primary
outcome was bounded at zero, contained positive integer responses and was skewed, so applying
a model technique that does not require certain distributional assumptions, and is less affected by
outliers and extreme data, improves the estimates standard errors. It should be noted that if all
model assumptions are met in linear mixed effects models, then quantile regressions may be less
efficient (i.e. when the error distribution follows a normal distribution and without heteroscedasti-
city; Koenker & Bassett-Jr, 1978).

The reanalysis of the trial data from Owen et al. (2021) highlighted several potential improve-
ments to standard practice in analysing cluster randomized trial data when heteroscedasticity of
intervention effect is suspected. This is particularly apparent in populations that are largely

Table 4. The AIC model fit indices for each quantile regression model at the 10th, 25th, 50th, 75th, and 90th quantiles for grades
3-5.

Model 10th 25th 50th 75th 90th

Linear Quantile Mixed Model 3,245.461 3,194.719 3,207.521 3,310.57 3,457.473
Quantile Regression with robust SE 3,317.495 3,216.214 3,229.804 3,370.43 3,556.412
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heterogeneous such as in educational contexts or in individuals with developmental disorders that
may manifest highly variable range of abilities, needs, or comorbidity of conditions. The quantile
regression approach permits a more flexible framework with reduced assumptions and removing
focus from the average to explore factors that may be important determinants in distinguishing
interventions that can be targeted at different sub-groups (Lê Cook & Manning, 2013).

In the Owen et al. (2021) report, the conclusion based on the data analysis was that adding in a
coaching element to a numeracy intervention overall improved child numeracy outcomes. A key
question is whether the current analyses make a practical difference; do they lead to different con-
clusions? The answer is clearly yes. Data at both grades 1–2 and 3–5 in the current analysis shows
that intervention effect differs according to the point in the distribution at which it is assessed.
Across both assessments, those children in the higher percentiles are benefiting from the interven-
tion more than those at the lower percentiles. The current version of the intervention may not then
help to reduce mathematical education inequalities (if the findings were replicated). Similarly, we
also found that some control covariates differed in magnitude of effect across the different percen-
tiles of the outcome distribution, in particular the status of eligibility for free school meals was high-
lighted as showing a statistically significant reduction in the outcome in the higher percentiles but
not at the lower percentiles. This could potentially be informative for future intervention design as
the intervention could be adapted to permit an adjusted version for different sub-groups of individ-
uals (for example, varying amounts of contact time in the intervention).

When implementing quantile regression methods in cluster randomized trials consideration must
be given to the dependence within clusters and how this can be incorporated into the analysis pro-
cedure. We present twomethods to permit analysis of quantile treatment effects in cluster trials, with
a subtle but key difference in how the variance at level 2 is incorporated into the model. The first
method follows work by Konstantopoulos et al. (2019) who did not directly model the level 2 var-
iance, but adjusted the model estimated standard errors to be robust. We have presented an alterna-
tive approach that directly models the level 2 variance and permits improved fit to the data. The
model framework can also be expanded to include further levels, for example permitting nesting
of children within classroom, and classroom within schools. This will be considered in future work
as currently the statistical basis for more than two-level quantile mixed models does not exist
despite being theoretically possible. Hence, we believe this provides further flexibility to researchers
when analysing trials with more complex structures and with an interest in heterogeneous effects of
intervention. In any study conducting confirmatory research, researchers should be encouraged to
prespecify transparent analysis plans. Our recommendation for adopting the linear quantile mixed
model method in RCT is conditional on the specific study design and population of interest. If
researchers suspect a heterogeneous sample, then prespecification of the quantile method as a sec-
ondary analysis would advisable and retain the average treatment effect method as a primary analy-
sis to permit consistency in standard RCT reporting and meta analyses across studies.
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Appendix 1: Plots indicating heterogeneity in residual variance.

MFaCTs: Grades 1-2 assessment

Figure A1 shows the Pearson residuals against fitted value. A clear funnel shaped pattern is present in the residual
distribution indicating that residual variance is non-constant (heterogenious).
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MFaCTs: Grades 3-4 assessment

Figure A2 shows the Pearson residuals against fitted value. Again a clear funnel shaped pattern is present in the residual
distribution indicating that residual variance is non-constant (heterogenious).
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