
FROM ENGLISH TO FORMAL

SPECIFICATIONS

A thesis submitted to the University of Salford

for the degree of Doctor of Philosophy

June 1994

By

Farid MEZIANE

Department of Mathematics and Computer Science



Contents

Acknowledgements ix

Abstract xi

1 Introduction and Motivation 1

1.1 Introduction 1

1.2 A Definition of the Requirements and Specification Phases 6

1.3 Problems of Requirements 10

1.3.1 Problems of Scope 10

1.3.2 Problems of Understanding 11

1.3.3 Problems of Volatility 12

1.4 An Adequate Approach to Requirements and Specifications 12

1.5 Thesis Aims and Contents 16

2 The Logical Form Language and Logic Grammars 21

2.1 Introduction 21

2.2 Syntactic Analysis 23

2.2.1 Syntax of Noun Phrases 26

ii



2.2.2 Syntax of Verb Phrases 27

2.2.3 Prepositional Phrases 29

2.2.4 Adjective and Adverb Phrases 32

2.2.5 Embedded Structures 33

2.3 Semantic Analysis 35

2.3.1 Interpretation of Noun Phrases 37

2.3.2 Interpretation of Verbs Phrases 40

2.3.3 Interpretation of Prepositional Phrases 41

2.3.4 Interpretation of Adverbs 45

2.3.5 Interpretation of Conjunctions 46

2.3.6 Interpretation of Pronouns 47

2.4 Logic Grammars 47

2.4.1 Definite Clause Grammars 49

2.4.2 Modular Logic Grammars 54

2.5 An Illustration of the MLG Translation Process 56

3 Using LFL to Analyse Natural Language Documents 63

3.1 Introduction 63

3.2 Lexicographic Ambiguities 65

3.3 Grammatical Ambiguities 67

3.4 Textual Cohesion 68

3.4.1 References 69

3.4.2 Substitutions 72

3.4.3 Ellipsis 73

iii



3.4.4 Conjunctions 74

3.4.5 Lexical Cohesion 76

4 Identifying the Data Types 79

4.1 Introduction 79

4.2 Identifying Entities 83

4.2.1 Simple Nouns 83

4.2.2 Compound Nouns 84

4.3 Identifying Relations 85

4.3.1 Identifying Relationships within Relational Nouns 85

4.3.2 Identifying Relationships within Verb Phrases 86

4.4 Quantification and the Determination of the Degree 88

4.4.1 Identifying Implicit Quantifiers 89

4.4.2 Obtaining the Degree from the Quantifiers 95

4.4.3 Identifying Many-to-One Relationships 95

4.5 VDM Notation 98

4.6 Production of VDM Data Types from Entity Relationship

Models 103

4.6.1 Modelling One-to-Many Relationships 103

4.6.2 Modelling Many-to-One Relationships 104

5 Invariants and the Specification of Operations 108

5.1 Introduction 108

5.2 The Production of the General Form 112

5.2.1 Quantifiers in FOL 112

iv



5.2.2 The Transformation of LFL into FOL 114

5.2.3 Nested Quantifiers 117

5.2.4 The Transformation of Relational Adjectives 120

5.3 Specialisation of an Invariant 121

5.4 The Specification of Common Operations 125

6 A Case Study: A Flight Planning Data Base 132

6.1 Introduction 132

6.2 Pre-Processing of the Specification Text 134

6.3 Natural Language Analysis 136

6.4 Identification of the Entity Relationship Model 138

6.5 Identification of the VDM Data type and the Specification of

Operations 141

6.6 Summary 143

7 Related Research 145

7.1 Introduction 145

7.2 The PSL/PSA System 148

7.3 The SAFE Project 150

7.4 The SPAN System 152

7.5 The Analyst Assist 154

7.6 Comparison and Contrast 156

8 Conclusion and Future Work 161

8.1 Conclusion 161

v



8.2 Future Work 166

A The Aircraft Problem 168

B The English Grammar 172

B.1 Definition of Strong Nonterminals 173

B.2 Clause Rules 173

B.3 General Rules for Postmodifiers 180

B.4 Noun Phrase Rules 186

C The Lexicon for the Case Study 192

C.1 Determiners 192

C.2 Nouns 193

C.3 Verbs 199

C.4 Prepositions, Adverbs and Adjectives 204

D Semantic Analysis 209

E List of Entities for the Case Study 214

F List of Relations for the Case Study 217

G E-R Diagrams for the Case Study 221

H Rules of Logic 225

Bibliography 227

vi



List of Figures

1.1 Overview of the approach 18

2.1 Syntax Tree 24

2.2 Parsing the P-P-NP string 30

2.3 Parsing the P-NP-P-NP string 31

2.4 An MLG syntax tree 57

2.5 Raising a subtree 61

2.6 Reordering subtrees 62

3.1 A type hierarchy for physical objects 66

4.1 Relationships extracted 86

4.2 Verb Relations extracted 88

4.3 Modelling one-to-many relationships 104

4.4 Modelling one-to-one relationships 105

4.5 The Stock Case Study 107

5.1 Proof of Uni Nested 119

5.2 Proof of Exi Nested 119

vii



5.3 Proof of SetToSeq1 (Top to Bottom) 125

5.4 Proof of SetToSeq (Bottom to Top) 125

6.1 The ER Diagram of a simple aircraft 140

G.1 The ER Diagram of route planing system 221

G.2 The ER Diagram of a simple aircraft 222

G.3 The ER Diagram of the flight planning software package 222

G.4 The ER Diagram of a complex aircraft 223

G.5 The ER Diagram of the pilot 223

G.6 The ER Diagram of the tracks 224

G.7 The remaining diagrams 224

viii



Acknowledgements

I wish to express my deep appreciation and thanks to my supervisor Dr.

Sunil Vadera for his advice and support during the course of this research

and for his patience and understanding during the writing up process.

I am also grateful to British Aerospace Ltd for providing me with the

case study.

ix



DECLARATION

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institution of learning.

x



Abstract

Specifications provide the foundation upon which a system can be formally

developed. If a specification is wrong, then no matter what method of

design is used, or what quality assurance procedures are in place, they will

not result in a system that meets the requirements.

The specification of a system involves people of different profiles who

favour different representations. At the beginning natural language is used

because the specification document acts as a contract between the user and

the developers. Most of the time, the only representation that users under-

stand and agree on is natural language. At the other end, developers find

natural language specifications ambiguous and incomplete and may there-

fore prefer formal specifications. The transition from informal specifications

to formal ones is an error prone and time consuming process. This transition

must be supported to ensure that the formal specifications are consistent

with the informal ones.

In this research we propose an interactive approach for producing for-

mal specifications from English specifications. The approach uses research

xi



in the area of natural language understanding to analyse English specifica-

tions in order to detect ambiguities. The method used for analysing natural

language text is based on McCord’s approach. This method consists of

translating natural language sentences into a logical form language repre-

sentation. This helps to identify ambiguities present in natural language

specifications and to identify the entities and relationships. These entities

and relationships are used as a basis for producing VDM data types.

We also investigate the production of data type invariants for restricted

sentences and the production of some common specifications.

We test our approach by implementing it in Prolog-2 and apply it to an

independent case study.

xii



1

Introduction and Motivation

1.1 Introduction

Computer applications are used in all aspects of life. They vary from a

simple payroll program to a more complex rocket design system. Conse-

quently, an enormous number of applications are being developed to satisfy

the users’ demands. During the last decade, the production of software

and its maintenance has dominated the overall cost of computer systems.

Boehm [12] states that in 1985 worldwide software costs were in excess of

$140 billions and it has been predicated by Sommerville [64] that this annual

cost will exceed $435 billions by 1995.

To cope with the growing number and complexity of the software projects

being tackled, many methodologies have been developed, (e.g. [29, 32, 39,

49]). Each model presents a way of improving software development and

1



Chapter 1: Introduction and Motivation 2

design. Some of these models are:

1. Rapid prototyping [29]. This approach is used for a better understand-

ing of the user requirements. A working solution is quickly developed

and implemented prior to the requirements phase. This system is then

presented to the users for experimentation. The remarks and sugges-

tions of the users are used to obtain a better understanding of their

requirements. Once the requirements are known and well understood,

a new version of the system is implemented.

2. Exploratory programming [32]. This approach is similar to rapid pro-

totyping and aims to tackle the volatile nature of requirements. It

is developed to evolve as the user’s needs change over time. A first

version of the system is developed to satisfy the known requirements.

The initial version is modified on a continuing basis as the user re-

quirements evolve. The software is delivered when it performs in a

satisfactory and adequate way.

3. Automated software synthesis [9, 49]. This approach suggests the de-

velopment of a formal specification and its automatic transformation

into a program.

4. System assembly from reusable software [39]. The aim of this tech-

nique is to reduce the cost of software development. It suggests the

reuse of components of software that already exist. Jones [39] has

reported that of all the code written in 1983, less then 15% is new



Chapter 1: Introduction and Motivation 3

and specific to particular applications. The remaining 85% is com-

mon to most applications. The aim of this model is to standardise

this 85% of code and make it ready for use for software developers

and programmers.

5. The life cycle development methodology. The life cycle development

methodology, also called the waterfall model, was one of the first mod-

els suggested [60]. It is a process describing the different stages of

software development from the original idea to the installation of the

working system. Many versions of this model have been published and

many different names were given to each phase. Nevertheless, most of

the approaches agree on the following six phases:

(a) Requirements analysis.

(b) System specification.

(c) Software design.

(d) Implementation.

(e) System testing.

(f) Maintenance.

The requirements analysis phase is mainly concerned with the defi-

nition of the requirements for an acceptable solution to the problem.

All aspects relating to the organisation and system such as personal

needs, computer availability, cost and security must be considered in



Chapter 1: Introduction and Motivation 4

this phase. The next phase is the specification of the system. Spec-

ifications define what tasks the system is expected to perform. No

details of how these tasks will be performed are given at this stage.

In the design phase, each component of the system is described in

detail. The subsystems are defined and documented. The interfaces

between different subsystems and the data types used by each sub-

system are designed. All algorithms and procedures defined in the

design process should be translated into a programming language in

the implementation phase. With the use of high level programming

languages and the modern programming methodologies this phase is

the easiest to develop and has been mastered better than the other

phases [19]. However, all the code produced must be tested to de-

termine the behaviour of the software in its operating environment.

To ensure positive results, the test plan and data should be very de-

tailed and every known case should be tested. At the end of this

stage, the software is ready for use. The maintenance stage concerns

the amendments and changes of the software after delivery. It will

concern program modifications to satisfy new customer requirements,

diagnosing and correcting errors, verifying program performance and

updating the documentation.

A comparative study of these methodologies can be found in [22]. In

the present work we concentrate on the life cycle development methodol-

ogy. The life cycle development methodology presents many advantages



Chapter 1: Introduction and Motivation 5

[22] but its main advantage is that it shows clearly the different stages of

software development so that we can analyse each phase separately showing

where designers’ efforts should be placed and where the resources have been

consumed.

Many studies have shown that the first stages of the software life cycle

have been devoted only a small proportion of the resources allocated to the

complete life cycle [17, 19]. These studies have also shown that a consid-

erable number of errors occur in these early stages and most importantly,

these errors are the most expensive to correct if detected later in the life

cycle. It is therefore important to give more attention to the early phases to

reduce these errors and to assure that an appropriate system is developed.

Hence, this study focuses on the requirements and specification stage. In

section 1.2 of this chapter, we give a detailed definition of the requirements

and specification stage. In section 1.3, we will list the problems encountered

in the requirements phase. In section 1.4 we give the characteristics of a

good requirements document. This motivates the objectives of our research

which are given in section 1.5.



Chapter 1: Introduction and Motivation 6

1.2 A Definition of the Requirements and Specification

Phases

Most of the differences between the many versions of the life cycle devel-

opment methodology occur in the earlier phases. Some authors define one

phase which they refer to as requirements analysis and definition. This

phase is then subdivided into subphases. For example, Sommerville [64]

has subdivided this phase into three subphases where the output of each

phase is a document:

1. Requirements definition is the first document produced. It states what

the system is expected to provide. This document represents the

contract between the client and the analyst and must be understood

by both the client and the contractor. It is therefore written in natural

language.

2. Requirements specification is the second document produced. This

document is written in a more formal notation and sets in detail the

services of the system. The requirements specification represents the

contract between the analyst and the developer.

3. Software specification (also called design specification) is an abstract

description of the software design. This document serves as a basis

for the design and implementation of the software and is intended for

the software designer.



Chapter 1: Introduction and Motivation 7

Comer [19] gives a different approach. He divides the early phases into

two subphases: requirements analysis and specification. These are similar

to the requirements and specification phases described earlier in section 1.1.

Presland [57] defines the earlier stages as Comer except that the tasks to

be performed by the new computer system are included in the requirements

analysis. A document called requirement analysis, written in natural lan-

guage is produced, and forms the beginning of the specification phase. Many

other authors have followed this approach, with some differences in the re-

quirements phase. Christel [16] divides the requirements into two classes,

functional requirements and nonfunctional requirements. Functional re-

quirements concern all the tasks that the new system is going to perform.

They represent the basis for the development of the specifications. Nonfunc-

tional requirements concern all the constraints of the new system. These

include performance constraints, resources constraints, design constraints

and hardware requirements.

Some other approaches define an earlier stage prior to the requirements

stage called a feasibility study. This phase investigates if the user’s needs

are satisfiable by using existing software and hardware and if the solution

is financially realisable.

If we analyse these different approaches, we find that the tasks performed

are all the same and the order in which they are performed is identical; it

is only the names and the allocation of each task to a phase which differs.

At the beginning of the software development process, some tasks have

to be performed to state clearly the objectives and foundations for the



Chapter 1: Introduction and Motivation 8

development of a system. The role of these tasks is to investigate why

the system is to be developed, what is expected from it and under which

constraints it will be developed. These three tasks form the requirements

phase. Once acceptable answers to these questions are found, the “what is

expected from the system” part of the requirements will be elaborated in a

more detailed manner to be used for the future development.

We distinguish two main tasks in these early phases. At some stage a

document written in natural language is produced. This document contains

all the tasks the new system is expected to perform. It should be understood

by both the customer and the analyst and agreed with the customer. This

first document is usually used as a contract between the customer and the

supplier. The document is then handed to the specifier who will produce

the specification document. In this work we will refer to the first document

as the requirements specification, and to the second as system specification.

In some cases, a system specification is only a formal version of the require-

ments specification. These two stages of the specification are necessary

because the customer and the supplier have different views on what consti-

tutes an ideal specification. Natural language specifications are attractive

to the customer because they are the natural way of communication and in

most cases it is the only representation the customer can understand and

agree on. For the developers, natural language specifications are a major

source of errors and incompleteness, and an ideal specification for them

would be a formal one.



Chapter 1: Introduction and Motivation 9

Since informal specifications are desirable by users, many authors have

stated that informality will always exist in software development [7, 57].

Further, Balzer [7] has presented two advantages for informal specifications:

1. Informal specifications are more concise then formal specifications and

focus both the specifier’s and the user’s attention.

2. Informal specifications are useful in maintaining a system.

Balzer defended the first advantage by stating that informal specifica-

tions are concise because only part of them is explicit, the rest is implicit and

must be extracted from the context. So if more attention is focussed on the

implicit information this will increase the readability and understandability

of the specifications. As discussed by Presland [57], the second advantage

is only valid if there is a computer system which can transform informal

specifications to formal ones. The issue now, as presented by Balzer [7], is

whether the informal form should exist only outside a computer system and

the translation from informal specifications to formal ones done manually

or should the informal specifications be part of the computer system and

their translation done automatically?

Before answering this question, an analysis of the problems which may

occur in the requirements and specification phases is necessary to exhibit

which problems a computer system can solve.



Chapter 1: Introduction and Motivation 10

1.3 Problems of Requirements

Christel [16] groups the problems of requirements into three categories:

• Problems of scope.

• Problems of understanding.

• Problems of volatility.

We describe each of these in the following sections.

1.3.1 Problems of Scope

The requirements process must begin with a full analysis of the organisa-

tion and the context in which the system is to be developed. This analysis

should determine the boundaries of the new system to adhere completely

with the users’ or organisation’s goals. Requirements which do not address

these problems will run the risk of producing incomplete and probably un-

usable requirements. Requirements can also be overstated and concentrate

on design activities. This will result in the production of requirements that

are ambiguous and therefore may not be verifiable by the user. The finan-

cial situation of an organisation is also very important, since one cannot

develop a system that an organisation cannot afford.



Chapter 1: Introduction and Motivation 11

1.3.2 Problems of Understanding

The earlier stages of software development involve people of different back-

grounds. This may include customers, sponsors, users, requirements ana-

lysts and specifiers. This makes communication difficult and causes mis-

understandings. In fact, Christel [16] has reported the results of a study

stating that

“56% of errors in installed systems were due to poor commu-

nication between user and analyst in defining requirements and

that these types of errors were the most expensive to correct

using up to 82% of available staff time”.

Problems of understanding can be separated into three issues:

• The different background of the communities.

Information which is common and obvious for a group can be com-

pletely foreign and not understandable to another.

• The language used to express the requirements.

The language used by a group can be too formal or too informal for

the other groups.

• Structure of information.

The large amount of information gathered during requirements anal-

ysis needs to be structured. The different communities may not un-

derstand the structure equally well.



Chapter 1: Introduction and Motivation 12

1.3.3 Problems of Volatility

User needs evolve over time. It is not unusual that during the time it takes

to develop a system, the user requirements have changed. The causes of

these changes may vary from the increasing understanding of the user about

the capabilities of a computer system to some unforeseen organisational or

environmental pressures. If the changes are not accommodated, the original

requirements set will become incomplete and inconsistent with the new

situation or in the worst case useless.

After analysing the problems that may occur during the requirements

analysis phase, the next section will look at the characteristics of well formed

requirements.

1.4 An Adequate Approach to Requirements and Spec-

ifications

According to the IEEE guidelines on producing requirements [3], a good

software requirements document should have the following characteristics:

1. Unambiguous. A requirement is unambiguous if it has only one inter-

pretation.

2. Complete. A requirement is complete if it has the following qualities:



Chapter 1: Introduction and Motivation 13

• It includes all requirements whether relating to functionality, per-

formance, design constraints, attributes or external interfaces.

• Definition of the responses of the software to all realisable classes

of input data in all realisable classes of situations.

• Full labelling of tables, figures and diagrams.

3. Verifiable. A requirements document is verifiable if there is a way to

check that it satisfies the users’ needs.

4. Consistent. A requirements document is consistent if no set of indi-

vidual requirements described in it conflict.

5. Modifiable. A requirements document is modifiable if its structure

and style are such that any necessary changes can be made easily,

completely and consistently.

6. Traceable. A requirements document is traceable if any modifications

can be traced to their origin.

7. Usable during the operation and maintenance. The requirements must

address the needs of the operations and maintenance phase, including

the eventual replacement of the software.

When gathering information about the user requirements, the analyst

must be able to fully understand the user’s needs. A better understanding

of these needs will help to identify requirements that are incorrect, missing

or incomplete and ambiguous. The final requirements document presented



Chapter 1: Introduction and Motivation 14

to the specifier should be complete, consistent and error free. The specifier

can then produce adequate specifications to enable the developers to design

the correct system. During the last few years a lot of effort has been put

in to the development of the specification stage of software design. The

development of specification languages and formal methods is probably the

most important step made to improve the first stages of the software de-

velopment process. The benefits of formal methods for the development of

systems are widely recognised [17, 55, 64]. Some of these advantages are

[64, page 125]:

1. Formal methods can be used as a way of understanding the user re-

quirements and the software design.

2. When using a formal method it is possible to prove that a program

satisfies its specification.

3. Formal specifications may be automatically processed.

4. It is possible to use a formal specification as an aid to identifying

possible test cases.

A formal development life cycle begins with a formal specification. De-

sign steps can then be proved with respect to their specifications. This

verification of design steps against their specification provides the primary

benefit of formal methods – namely that design errors are detected earlier

in the life cycle and are not propagated further down the life cycle.



Chapter 1: Introduction and Motivation 15

However, formal methods have two major weaknesses. First, formal

specifications may not be consistent with the requirements written in En-

glish. Second, formal methods are based on mathematical logic making

them hard for some analysts to comprehend. There is therefore a need to

reduce these weaknesses.

The basic problem is then the transformation of a requirement speci-

fication, expressed in natural language into a system specification written

in a formal notation. Ultimately, this will make the use of formal methods

much easier to the analyst but still complete and consistent for the designer.

When developing the SAFE project [7], Balzer investigated the desirability

and feasibility of such a system. At first site, such a system may present

three disadvantages which are:

1. The informal specifications may be misunderstood by the computer.

2. The computer-based tool will decrease the reliability of the transfor-

mation to the formal specifications.

3. The required volume of interactions will abrogate the advantages of

informality.

The first disadvantage was probably a big issue when Balzer was con-

sidering such a system because of the lack of powerful natural language

understanding systems at that time (1978). Although no perfect system is

yet developed for natural language understanding, many respectable sys-

tems have been developed and tested [47, 51, 69]. Balzer acknowledges that



Chapter 1: Introduction and Motivation 16

a computer cannot match human performance in understanding informal

specifications, but it operates much more methodically. If a computer de-

tects several possible interpretations for a statement, it asks the user to

choose the intended meaning. It can record and make explicit all assump-

tions when transforming the informal specifications. With a powerful natu-

ral language understanding system, this first disadvantage can be ignored.

For the second disadvantage, the issue is again understanding rather then

reliability. If the informal specifications exist outside the computer system,

then we have to rely on a human to accurately transform the informal speci-

fications and this transformation depends upon properly understanding the

informal specifications. Balzer has stated that once the understanding is

achieved, the restatement of the informal specification involves moving in-

formation from one place to another and changing its form. Experience has

shown that these tasks are error prone and are better done by a computer

tool. Therefore, reliability would be improved rather then reduced. Balzer

did not see the third disadvantage as a major one for the SAFE project

since the interaction involved was not high.

1.5 Thesis Aims and Contents

The general aim of this research is to investigate the link between the English

specifications and the formal ones. We can summarise our approach as in



Chapter 1: Introduction and Motivation 17

figure 1.1. The English specifications are taken as input. We use the natural

language analysis part to process the text and to detect any ambiguities.

The aim of this process is to associate a unique interpretation for each

sentence. The meanings of the sentences are represented as logical forms

(this representation will be discussed in the next chapter). Such logical

forms then acts as a basis for producing data types. Further, based on the

data types there are some common operations that are encountered in the

specification of systems which can be produced automatically by the system.

The formal specifications are produced in the Vienna Development Method

(VDM) [37]. VDM is a formal language based on predicate logic. VDM

is used to produce specifications of systems and provides proof obligations

which enable a designer to establish the correctness of design steps.

As figure 1.1 shows, the approach we develop is an interactive require-

ments process. That is, we do not take the view that the initial English

text is complete.

To summarise, the aims of our approach are:

• To identify ambiguities and incompleteness in natural language re-

quirements documents.

• To aid the production of data types from natural language specifica-

tion documents.

• To accept invariants as natural language sentences and then transform

them into VDM data type invariants.



Chapter 1: Introduction and Motivation 18

�����������	
���������


�
�����

����������
�����

�
������

������������
������

���������������	
�

�������

�	
��
	

��

���������

Figure 1.1: Overview of the approach

• To produce some common specifications in the VDM language.

The raison d’être of this thesis is to show how these aims are achieved.

The following outlines the chapters of the thesis.

Chapter 2: The Logical Form Language and Logic Grammars

Our aims require the analysis of natural language specifications. Much

work has already been done to analyse English. For example, Warren

and Pereira’s [69] system for interpreting natural language queries for a

geographical data base and McCord’s [47] work for a student data base

both tackle the problems of quantification and ambiguities in English texts.

For our work, we adopt McCord’s approach to natural language processing

[43, 44, 47]. In chapter 2 the syntax and semantic analysis of the natural



Chapter 1: Introduction and Motivation 19

language text are described. The modular logic grammar formalism used

to analyse texts is also presented.

Chapter 3: Using LFL to Analyse Natural Language Documents

The main disadvantage with natural language specifications is ambiguity.

The same statement may be interpreted differently by different users. In

the first part of chapter 3 a list of ambiguities one may encounter when

analysing natural language texts is identified. The second part develops an

approach to detect these ambiguities and presents the different possibilities

that users have to correct them.

Chapter 4: Identifying the Data Types

Once the natural language text is analysed and the ambiguities resolved,

the next step is to identify the data types. Chapter 4 develops an approach

which first attempts to identify the entity relationship model. The entity

relationship model is then used as a basis for the definition of the VDM

data type.

Chapter 5: Invariants and the Specification of Operations

Data types usually have associated invariants. Invariants are truth-valued

functions used to record restrictions on data types. In chapter 5 we concen-

trate on how to produce such invariants from natural language sentences.

In addition we also show how some common specifications of operations are



Chapter 1: Introduction and Motivation 20

automatically generated.

Chapter 6: A Case Study: A Flight Planning Data Base

In chapter 6, we demonstrate the approach developed on a realistic case

study. We show how the approach works on a specification problem where

the English specification was written without prior knowledge of this work.

The different steps of the analysis are shown and the problems encountered

are presented.

Chapter 7: Related Research

Many systems have been developed with the aim of improving the require-

ments phase. In chapter 7, we outline some alternative systems and compare

our approach with them.

Chapter 8: Conclusion and Future Work

The last chapter contains the conclusions and suggestions for future work.



2

The Logical Form Language and

Logic Grammars

2.1 Introduction

The aim of a natural language understanding system is to provide an unam-

biguous interpretation of natural language texts. To understand a language,

the knowledge of words alone is not enough. One has to understand the

meaning of the words, how they are pronounced and how the words combine

to form sentences. In a way, we have to understand the structure of the

language. Allen [2] has identified six types of knowledge that are essential

to understand a language:

• Phonetic and phonological knowledge concern the sounds of words.

• Morphological knowledge concerns the construction of words.

21



Chapter 2: The Logical Form Language and Logic Grammars 22

• Syntactic knowledge concerns how words are combined to form sen-

tences.

• Semantic knowledge concerns the meaning of sentences.

• Pragmatic knowledge concerns the study of the context which gives

the meaning of sentences.

• World knowledge concerns the general knowledge a user needs to com-

municate and use a language.

An ideal natural language understanding system would be one that has

all these types of knowledge. Most natural language processing systems

use morphological knowledge, syntactic knowledge and semantic knowledge.

The phonetic knowledge is only used by automatic speech-understanding

systems. Pragmatic knowledge is used if a system is developed for a re-

stricted domain. To date, it has been difficult to utilise world knowledge. It

appears that only humans have a capability for remembering and applying

general knowledge to understand events.

A main features of natural language understanding systems is the use

of dictionaries to check the spellings and to determine the different classes

of words. This task involves the storage of a large number of words. Mor-

phological knowledge is used by some systems [57] to reduce the size of the

dictionary. Generally, a word consists of a root to which a suffix or prefix

is added. For example, the word friendly is composed of the root friend and

the suffix -ly. Many other words can be derived from the root by adding



Chapter 2: The Logical Form Language and Logic Grammars 23

other prefixes or suffixes. When using morphological knowledge, only the

roots are stored and the formation rules of words such as plural nouns,

finite verbs, adjectives and adverbs are then defined. The syntactic and

semantic components are the most important parts of a natural language

understanding system. These two components are examined in more detail

in the following sections.

2.2 Syntactic Analysis

In each language there are some rules that determine which strings of words

produce structurally correct sentences. This set of rules is called the gram-

mar of the language. The process of checking that a sentence abides by

these rules is known as syntax analysis or parsing. Parsing is the process of

assigning a grammatical structure to a sentence. For example, the sentence:

A company maintains a simple system.

is composed of the noun phrase a company and the verb phrase maintains

a simple system. Further, the noun phrase is composed of the determiner

the and the noun company. The verb phrase is composed of a verb followed

by a noun phrase. Phrase structure trees [28] also called syntax trees [47]

are used to represent this analysis. The syntax tree representing the above

analysis is shown in figure 2.1.

Such grammar rules can be expressed formally. For example, we can use



Chapter 2: The Logical Form Language and Logic Grammars 24

S

NP VP

DET NOUN V NP

a company maintains
DET ADJ NOUN

a simple system

Figure 2.1: Syntax Tree

the Backus-Naur notation to define a grammar for the above example:

< sentence > : : = < noun phrase >< verb phrase >

< noun phrase > : : = < determiner >< noun >

< noun phrase > : : = < determiner >< adjective >< noun >

< verb phrase > : : = < verb >< noun phrase >

< determiner > : : = a

< noun > : : = company | system

< adjective > : : = simple

< verb > : : = maintains

Another notation used to express natural language grammars is Chom-

sky’s notation [15]. In the following parts of this chapter, this notation is

adopted. The above grammar is equivalent to the following one expressed



Chapter 2: The Logical Form Language and Logic Grammars 25

in Chomsky’s notation:

S → NP-VP

NP → DET -N

NP → DET -ADJ -N

VP → V -NP

DET → a

ADJ → simple

N → company

N → system

V → maintains

The symbols in capitals denote nonterminals, also called syntax cate-

gories. We will use NP to denote a noun phrase, VP to denote a verb

phrase, DET to denote a determiner, ADJ to denote an adjective and N

to denote a noun. In this example, the left hand side of each rule consists

of a single nonterminal. Such grammars are called context free grammars

(CFGs). In CFGs a rule such as NP → DET -N defines that a noun phrase

is composed of a determiner followed by a noun.

It is not possible to give a complete grammar for the English language.

However, many authors have considered some grammars that are acceptable

[24, 27, 54]. In the next section we will analyse the main syntax categories

of the English grammar used in our approach and a simplified structure will

be suggested for each category.



Chapter 2: The Logical Form Language and Logic Grammars 26

2.2.1 Syntax of Noun Phrases

The simplest form of a noun phrase consists of a single pronoun as in the

sentence:

He passed the exam.

or a single proper noun as in:

John passed the exam.

In all other cases, noun phrases consist of a head noun, premodifiers and/or

postmodifiers. The most common premodifiers of nouns are determiners.

Determiners are a broad but closed class of words. They can be articles,

quantifiers, possessives, demonstratives, ordinals and cardinals. An example

illustrating this case is:

The student passed the exam.

Other modifiers of nouns are adjectives and other nouns. Adjectives are

words that give attributes to nouns as in the sentence:

A unique identifier is assigned to each item.

As an example where a noun modifies another noun we have:

A company maintains a stock system.

In general, we can define the following grammar for a noun phrase:

NP → PR

NP → PN

NP → [PreMods ]-N -[PostMods ]



Chapter 2: The Logical Form Language and Logic Grammars 27

Where PR stands for pronoun, PN stands for proper noun, PreMods stands

for premodifiers and PostMods stands for postmodifiers. The square brack-

ets denote optional items.

2.2.2 Syntax of Verb Phrases

A verb phrase is a group of words where the head word is a verb. Verbs

are divided into two categories: auxiliary verbs and lexical verbs. Auxiliary

verbs include be, have, do and the modal verbs such as can and may.

Examples of sentences containing auxiliary verbs are:

The program is ready for use.

A program can be divided into several modules.

Lexical verbs are divided into two groups, transitive verbs and intransitive

verbs. Transitive verbs need an object or a complement as in the following

examples:

The student runs the program.

He was looking for the book.

Transitive verbs also allow the use of passive voice as in the example:

The program is run by the student.

Intransitive verbs do not need a complement as in:

The program crashed.



Chapter 2: The Logical Form Language and Logic Grammars 28

The above examples suggest that the structure of a verb phrase might

be:

VP → V

VP → V -NP

VP → V -PP

However a verb phrase may also take some other forms as in the examples:

(a) The student ran the program on the new computer.

(b) The teacher gave the student a high mark.

(c) The flight is planned from Blackpool to Doncaster.

In (a) the verb phrase has the structure:

VP → V -NP-PP

In (b) the structure:

VP → V -NP-NP

and in (c) the structure:

VP → V -PP-PP

Therefore, the generalised structure of a verb phrase is:

VP → V

VP → V -NP

VP → V -PP



Chapter 2: The Logical Form Language and Logic Grammars 29

VP → V -NP-PP

VP → V -NP-NP

VP → V -PP-PP

2.2.3 Prepositional Phrases

Prepositional phrases are introduced by prepositions and consist of a prepo-

sition followed by a noun phrase. This is the definition used by many authors

attempting to define or to deal with prepositions [47]. Unfortunately the

reality is far away from this assumption. As shown by Jackendoff [34] the

prepositional phrase does not take only the form:

PP → P-NP

but also the following more complex forms:

1. PP → P

2. PP → P-PP

3. PP → P-NP-PP

We discuss these forms in the following subsections.

Analysis of Intransitive Prepositions

In this category, prepositional phrases consist of a single preposition. These

prepositions are called intransitive prepositions. That is, the prepositional



Chapter 2: The Logical Form Language and Logic Grammars 30

VP

V PP

P PP

P NP

VP

V PP

P

PP

P NP

(a) (b)

Figure 2.2: Parsing the P-P-NP string

phrase does not need a noun phrase as a complement. This group of prepo-

sitions contains adverbs such as downstairs, afterwards and before which,

according to Jackendoff, are better identified as intransitive prepositions

and particles of verb-particle combination such as look up and give out.

Examples:

John put the clothes on.

John went downstairs.

Analysis of a String of the Form P-P-NP

In a string of the form P-P-NP , prepositional phrases are composed by

a combination of two prepositions followed by a noun phrase. Given the

existence of intransitive prepositions, a string of the form P-P-NP can be

analysed in the two ways given in Figure 2.2.

In (a) there is a preposition whose complement is a prepositional phrase



Chapter 2: The Logical Form Language and Logic Grammars 31

(b) (c)

VP

V PP

P NP PP

P NP

(a)

VP

V PP

P NP

DET PPN

P NP

VP

V PP

P NP

PP

P NP

Figure 2.3: Parsing the P-NP-P-NP string

and in (b) there is an intransitive preposition followed by a normal prepo-

sitional phrase. These two cases are illustrated by the following examples:

(a) The challenger ran out of time.

(b) The man raced away in a red car.

Analysis of a String of the Form P-NP-P-NP

Given the existence of the above categories of prepositional phrases, three

different structures can be obtained from a string of the form P-NP-P-NP .

Figure 2.3 gives the three possible syntax trees.

In (a) all the verb phrase except the verb can behave as a single constituent.

Example:

The flight is planned from Blackpool to Doncaster.

Structure (b) appears in sentences such as:



Chapter 2: The Logical Form Language and Logic Grammars 32

John went to the house in the woods.

Where the noun phrase of the first prepositional phrase (the house in the

woods in this case ) forms a constituent that can be used independently.

In structure (c), we have a prepositional phrase which modifies another

prepositional phrase. An example illustrating this case is:

John went to the park with Mary.

These three interpretations are produced for each sentence containing

the string P-NP-P-NP . The analyst is the one who decide which interpre-

tation is suitable for a sentence.

From the different cases illustrated above, the general structure of a

prepositional phrase is:

PP → P

PP → P-NP

PP → P-PP

PP → P-NP-PP

2.2.4 Adjective and Adverb Phrases

Adjective phrases have adjectives as their first word. Adjectives can be pre-

modified or postmodified. An adjective can be premodified only by adverbs



Chapter 2: The Logical Form Language and Logic Grammars 33

as in:

This problem is extremely difficult to resolve.

where the adjective difficult is modified by the adverb extremely. Three

postmodifications may occur in an adjectival phrase: a prepositional phrase,

an infinitive clause and a that-clause. Examples are respectively:

He is very happy about his results.

The student was happy to find a job.

The teacher was happy that all students passed the exam.

Adverbial phrases have an adverb as their first word. An adverb is the

minimal form of an adverbial phrase, but it may be premodified. An adverb

can be premodified only by an adverb as in:

He realised very quickly that he was going in the wrong direction.

where the adverb quickly is premodified by the adverb very.

2.2.5 Embedded Structures

Many sentences do not have the simple structure S → NP-VP . More

complex sentences can be built by allowing some sentences to include other

sentences or parts of sentences. For example, the following sentence:

The book that John bought yesterday is with Mary.

can be seen as composed of the two clauses: “The book is with Mary” and

“John bought a book yesterday” The second clause is used to modify the



Chapter 2: The Logical Form Language and Logic Grammars 34

noun phrase “The book”. This type of clauses are called relative clauses.

Relative clauses involve a sentence form used as a modifier in a noun phrase.

Relative clauses are introduced by relative pronouns.

Conjunctions are another type of words that can relate clauses and sen-

tences. For example, the sentence:

Each item of stock is assigned a unique identifier when it is introduced.

can be analysed as composed of the two clauses: “Each item of stock is

assigned a unique identifier” and “The item is introduced”. The two clauses

are related by the conjunction when.

To cover the embedded structures, the following syntax rules can be

included in the grammar:

NP → N -RC

RC → RP-S

S → CL-CL

CL → S

CL → CONJ -S

where RC stands for relative clause, RP stands for relative pronoun, S

stands for sentence, CL stands for clause and CONJ stands for conjunction.

Syntax analysis is the first step in a natural language understanding

system. It can detect sentences that are structurally incorrect but cannot

determine whether a sentence makes any sense. The next phase of natural

language understanding systems is to produce interpretations for sentences.



Chapter 2: The Logical Form Language and Logic Grammars 35

This phase, called semantic analysis, is described next.

2.3 Semantic Analysis

The primary aim of the semantic analysis phase is to obtain the meaning

of sentences. Hence, there is a need for a meaning representation language

(MRL) to represent the results of semantic analysis. The MRL should have

the following properties [28]:

• The statements in the MRL should be unambiguous.

• We should be able to tell which statements are valid.

• We should be able to derive mechanically new statements that follow

from a given statement.

There are several MRLs for semantic analysis. Two common represen-

tations are case frames [2, 8] and logical form language (LFL) [47, 52]. Case

frames are based on the view that a sentence has a deep structure consisting

of a verb, which represents the central component, and one or more noun

phrases. Each noun phrase is associated with the verb in a particular re-

lationship. The relationships are called cases. These cases are filled as a

sentence is analysed. Typical cases include [8]:

• Agent: The investigator of the event.



Chapter 2: The Logical Form Language and Logic Grammars 36

• Counter-Agent: the force or resistance against which the action is

carried out.

• Object: the entity that moves or changes or whose position or existence

is in consideration.

• Result: the entity that comes into existence as a result of the action.

• Instrument: the stimulus or immediate physical cause of an event.

• Source: the place from which something moves.

• Goal: the place to which something moves.

• Experiencer: The entity which receives or accepts or experiences or

undergoes the effect of an action.

As an example consider the sentence:

John opened the door with the key.

John would be the Agent of the verb opened, the door would be the Object,

and the key would be the Instrument.

For the present work, we use the LFL as an MRL. The main reason

for choosing this representation is its closeness to the formal specification

representation we are aiming to produce from the semantic interpretations.

In LFL the meanings of sentences are logical forms. The main predicates

are word senses. Each predicate of LFL takes a fixed number of arguments.

The arguments might be variables, constants or other logical forms. The

formation rules for logical forms are as follows:



Chapter 2: The Logical Form Language and Logic Grammars 37

• If P is a predicate of LFL taking n arguments, and each of x1, . . . , xn

is either a constant or a logical form or a variable then P(x1, . . . , xn)

is a logical form.

• If P and Q are logical forms then P & Q is a logical form.

• If P is a logical form and E is a variable, then P:E (read P indexed

by E) is a logical form.

The predicates and arguments are obtained from the different parts of

the sentence. Each syntactic group has a representation in LFL. The seman-

tic interpreter will combine these syntactic groups to produce the complete

interpretation of the sentence. In the next subsections, we will show how

the different syntactic groups can be represented in LFL.

2.3.1 Interpretation of Noun Phrases

In the LFL, a noun is generally represented as a 1-place predicate where

the name of the predicate is obtained from the singular form of the noun.

Examples:

stock is represented by stock(X )

company is represented by company(X )

where X is a variable and stock and company are predicates. In general,

we adopt the Prolog convention that variables begin with a capital letter.



Chapter 2: The Logical Form Language and Logic Grammars 38

There are two exceptions to the representation of nouns by 1-place pred-

icates. Some nouns, called relational nouns, take two arguments.

Example:

father is represented by father(X ,Y )

which is interpreted as X is a father of Y . Depending on the context,

some ordinary nouns may behave as relational nouns and therefore take

two arguments as in the sentence:

The company maintains a description for each item of stock.

The noun item is related to the noun stock and is represented by item(X , stock).

The other exception is the representation of proper nouns which correspond

to constants in LFL.

In LFL, noun phrases do not have isolated meanings of their own but

only contribute to the meaning of the sentence in which they appear. As

we have seen in section 2.2.1, the head noun of a noun phrase is usually

modified by premodifiers and postmodifiers. In the following subsections

we analyse the classes of noun modifiers.

Determiners

Determiners are part of a large class of modifiers called focalizers. Focalizers

are words that need a focus to determine the meaning of a sentence. In most

cases, determiners’ senses, as predicates in LFL, have two arguments which

are filled by logical forms. The first argument is called the base of the

determiner and the second is called the focus. In general a determiner is



Chapter 2: The Logical Form Language and Logic Grammars 39

represented by:

determiner(Base,Focus)

Typically, the base comes from the remainder of the noun phrase in which

the determiner appears, and the focus comes from some of the sisters of the

noun phrase. The pair (Base,Focus) is called the scope of the determiner.

An example of a sentence involving determiners and its logical forms is:

The company maintains a system.

the(company(X),ex(system(Y), maintain(X,Y)))

We can read this logical form as follows. The quantifier the has two

arguments: the base company(X ) and the focus:

ex(system(Y), maintain(X,Y))).

This denotes that there is a system Y that is maintained by the company

X . We will use logical forms like this one in the remainder of this thesis.

Adjectives

When interpreting adjectives, we distinguish between two categories: ex-

tensional adjectives and intensional adjectives. Intensional adjectives occur

in a composed noun where it is not possible to dissociate the adjective from

the other parts of the composed noun. Intensional adjectives take logical

forms as arguments. For example:

The pilot uses a moving map display.

is represented by:



Chapter 2: The Logical Form Language and Logic Grammars 40

the(pilot(X), the(moving(map(display(Y))), use(X,Y)))

which means that the moving map display is a single entity. Whereas if the

sentence is interpreted as:

the(pilot(X), the(map(display(Y)) & moving(Y), use(X,Y)))

it means that map display is an entity which is modified by the adjective

moving.

Extensional adjectives can be dissociated from the other parts of the com-

posed noun and therefore behave as nouns in having one argument. For

example:

A complex aircraft uses a radar.

is represented by:

ex(aircraft(X) & complex(X), ex(radar(Y), use(X,Y)))

2.3.2 Interpretation of Verbs Phrases

Depending on their category, verbs may be represented by predicates having

nil, one, two or three arguments. The predicate’s name is obtained from

the infinitive form of the verb which is defined in the lexicon.

Examples:

• It snows.

snow



Chapter 2: The Logical Form Language and Logic Grammars 41

• The program crashed.

the(program(X),crash(X))

• The student writes a program.

the(student(X),ex(program(Y),write(X,Y)))

• The police gave a reward to John.

the(police(X),the(reward(Y),give(X,Y,john)))

One particular property of verbs is the voice. Verbs can have an active or

a passive voice. For example the passive version of the last sentence is:

The reward was given to John by the police.

This sentence has exactly the same meaning as when the verb is in the

active voice. Therefore it should have the same interpretation. MLGs have

this ability and produce exactly the same logical form for both sentences.

2.3.3 Interpretation of Prepositional Phrases

In section 2.2.3 we described the structure of prepositional phrases. In the

following subsections we associate an interpretation for each case considered

in that section. We use the same examples cited in the syntactic analysis

to illustrate these interpretations.



Chapter 2: The Logical Form Language and Logic Grammars 42

Interpretation of a String of the Form P-NP

Considering the general form PP → P-NP , a prepositional sense is a 2-place

predicate. The first argument corresponds to the noun phrase associated

with the preposition and the second corresponds to the phrase modified by

the prepositional phrase. A prepositional phrase may modify a verb or a

noun phrase. An example where a prepositional phrase modifies a noun

phrase is:

The pilot uses an aircraft with a sophisticated system.

which is represented by:

the(pilot(X), ex(aircraft(Y),

ex(system(Z) & sophisticated(Z) & with(Y,Z), use(X,Y))))

When a prepositional phrase modifies a verb, the second argument of the

preposition predicate will be a logical form. For example the sentence:

The pilot detects the obstacles with a radar.

is represented by:

the(pilot(X),the(obstacle(Y),ex(radar(Z), with(Z,detect(X,Y)))))

Interpretation of Intransitive Prepositions

For this category of prepositional phrases, the interpretations adopted are:

1. If the preposition plays the role of an adverb, then it is treated like

an adverb as in the following example:

John went downstairs.



Chapter 2: The Logical Form Language and Logic Grammars 43

downstairs(go(john))

The preposition takes a single argument that represents the rest of the

sentence. In the above logical form, go is used since it is the infinitive

of the verb went.

2. If the preposition is a particle of a verb, then it is treated as part of

the verb as in:

John puts the clothes on.

the(cloth(X), put on(john,X))

Interpretation of a String of the Form P-P-NP

In the syntactic analysis, we showed that this string can be parsed in two

different ways. In the case where there is a preposition which has a prepo-

sitional phrase as a complement, the prepositions are combined as if they

form a single one as in:

The challenger ran out of time.

the(challenger(X),out of(time,run(X)))

out of is a constituent that acts as a unit and cannot be separated. The

previous sentence can be reformulated as:

Out of time ran the challenger.

but we cannot split the two prepositions.

When an intransitive preposition is followed by a normal prepositional

phrase, the first preposition is considered as a particle of the verb it modifies.



Chapter 2: The Logical Form Language and Logic Grammars 44

For example:

The man raced away in a red car.

the(man(X), ex(car(Y) &red(Y), in(Y, race away(X))))

Here the two prepositions can be split and we can say:

In a red car the man raced away.

Interpretation of a String of the Form P-NP-P-NP

The interpretation of the three different cases identified in the syntax phase

is performed as follows. In the first case where the whole prepositional

phrase can behave as a single constituent, the prepositions successively mod-

ify the verb phrase.

Example:

The flight is planned from Blackpool to Doncaster.

from(blackpool,to(doncaster,the(flight(X),be(X,plan(X)))))

In the second case, only the noun phrase of the first prepositional phrase

behaves as a single constituent. Therefore the noun phrase is used as a

complement of the first preposition. The following example illustrates this:

John went to the house in the woods.

the(wood(X),the(house(Y) & in(Y,X),to(Y,go(john))))



Chapter 2: The Logical Form Language and Logic Grammars 45

The third case is interpreted as two independent prepositional phrases mod-

ifying a verb phrase.

Example:

John went to the park with Mary.

the(park(X),to(X,with(mary,go(john))))

2.3.4 Interpretation of Adverbs

All adverbs take logical forms as arguments. Some adverbs take a single

argument as in the example:

John sold the car yesterday.

which is interpreted as:

yesterday(the(car(X), sell(john,X))) .

Other adverbs take two arguments. This category of adverbs is part of the

focalizer class. The adverbs have the same interpretation as determiners and

need a base and a focus to determine their scope. They have the structure:

adverb(base, focus)

This case of adverbs is used by McCord to determine which part of the

sentence is stressed. This aspect of McCord’s work is not relevant for the

current research. For more details see [46].



Chapter 2: The Logical Form Language and Logic Grammars 46

2.3.5 Interpretation of Conjunctions

A sentence can contain an infinite number of coordinating conjunctions.

This makes the analysis of such sentences very difficult. An attempt to

treat conjunctions by Dahl and McCord [20] has resulted in a system that

analyses only very simple sentences containing a maximum of two conjuncts.

For example the analysis of:

Each man ate an apple and a pear.

can result in the following logical form:

each(man(X), ex(apple(Y), eat(X,Y)) & ex(pear(Z),eat(X,Z)))

The embedding of coordinating conjunctions in a sentence makes the pro-

duction of logical forms very difficult and its interpretation ambiguous as

we will show in the next chapter.

However subordinating conjunctions are much easier to treat. In general

they involve only two clauses that are related by one conjunction as in the

example:

Each item of stock is assigned a unique identifier when it is introduced.

This is interpreted as:

all(item(X,stock), ex(identifier(Y) & unique(Y),

when(be(X,introduce(X)), be(X,assign(X,Y))))))

As we have hinted, handling coordinating conjunctions adequately in



Chapter 2: The Logical Form Language and Logic Grammars 47

general remains a difficult research problem [20]. Hence we resolve coor-

dinating conjunctions manually by splitting the conjuncts into simple sen-

tences.

2.3.6 Interpretation of Pronouns

Pronouns are another class of words which are difficult to deal with in

general [33]. An example of how some pronoun references are resolved is

shown in the following:

Bill owns a cat. He likes it.

This results in the following logical form:

ex(cat(X), own(bill,X) & like(bill,X))

Our current implementation also omits the resolution of pronoun references.

2.4 Logic Grammars

So far we have used CFGs to express natural language. It has been shown

that the CFG formalism is not powerful enough to express natural language

grammars [43, 53]. Another type of grammar is therefore necessary to effi-

ciently analyse natural language. In the early seventies, Kowalski [40] and



Chapter 2: The Logical Form Language and Logic Grammars 48

Colmerauer [18] showed that programming in logic is possible, and that nat-

ural language grammars can be expressed easily and efficiently in predicate

logic. This approach of expressing grammars, known as logical grammars,

was quickly adopted and attracted many linguists.

In a logic grammar formalism, symbols are no longer restricted to be

atomic symbols, but can be any logic term; so terminals and nonterminals

can be augmented by an indefinite number of arguments. These extra ar-

guments can be very useful when analysing natural language texts which

have so many features. Arguments such as the number of a noun phrase

or the tense of a verb phrase can be added to the grammars to give more

consistency to the analysis.

Many systems have been developed using logic grammars. Most of them

were subclasses of Colmerauer’s metamorphosis grammars [18]. Among

the developed systems, we can particularly cite Definite Clause Grammars

(DCG) [53], Extraposition Grammars (XG) [51], Modifier Structure Gram-

mars (MSG) [20] and Modular Logic Grammars (MLG) [44, 45, 46, 47]. In

the next subsections we describe the DCG formalism and show how McCord

improved it to obtain the MLG formalism that we use.



Chapter 2: The Logical Form Language and Logic Grammars 49

2.4.1 Definite Clause Grammars

The term DCGs was first used by Pereira and Warren [53], and refers to

the fact that these grammars translate into Prolog definite clauses. The

DCG formalism is seen as a natural extension of the context-free grammar.

These extensions, according to Pereira and Warren [53] are:

1. DCGs provide for context-dependency in a grammar. This means that

some sentences may depend on some particular context.

2. DCGs allow the building of arbitrary trees during the parsing process.

3. DCGs allows extra conditions to be added in the grammar rules.

In this section, we briefly describe the DCG formalism (for more details

see [47, 53]). To show how grammars can be expressed in the DCG formal-

ism, we start by defining a simple CFG which covers simple sentences such

as:

A company maintains a stock

and

Each item has a unique identifier.

Each rule of a CFG has the form:

nt → body .

where nt is a non terminal and body a sequence of nonterminals or terminal

symbols separated by commas. Each rule is terminated by a full stop. For

example, the following CFG defines a simple grammar:



Chapter 2: The Logical Form Language and Logic Grammars 50

sentence → noun phrase, verb phrase.

noun phrase → determiner , adjective, noun.

noun phrase → determiner , noun.

verb phrase → verb, noun phrase.

determiner → [a].

determiner → [each].

noun → [company ].

noun → [stock ].

noun → [item].

noun → [identifier ].

verb → [maintains ].

verb → [has ].

adjective → [unique].

The translation of these CFG rules into Prolog clauses is a relatively

simple process. We associate to each nonterminal a 2-place predicate having

the same name. The arguments of the predicate delimit the part of the string

to which the nonterminal is applied. The predicate noun phrase(S0, S1)

means that there is a noun phrase between the positions S0 and S1 of

the string of words. A terminal symbol is replaced by a 3-place predicate,

connect. The predicate connect(S1,T , S2) means that the terminal T lies

between the positions S1 and S2. The previous CFG will then be translated



Chapter 2: The Logical Form Language and Logic Grammars 51

to the following Prolog clauses (see [47, 53] for details of the translation

process):

sentence(S0, S ) : - noun phrase(S0, S1), verb phrase(S1, S ).

noun phrase(S0, S ) : - determiner(S0, S1), adjective(S1, S2), noun(S2, S ).

noun phrase(S0, S ) : - determiner(S0, S1), noun(S1, S ).

verb phrase(S0, S ) : - verb(S0, S1), noun phrase(S1, S ).

determiner(S0, S ) : - connect(S0, a, S ).

determiner(S0, S ) : - connect(S0, each, S ).

noun(S0, S ) : - connect(S0, company , S ).

noun(S0, S ) : - connect(S0, stock , S ).

noun(S0, S ) : - connect(S0, item, S ).

noun(S0, S ) : - connect(S0, identifier , S ).

verb(S0, S ) : - connect(S0,maintains , S ).

verb(S0, S ) : - connect(S0, has , S ).

adjective(S0, S ) : - connect(S0, unique, S ).

A grammar rule interpreter, which can automatically carry out this

translation, is included in most versions of Prolog.

The DCG formalism was successful, to some extent, in translating simple

sentences to logical form. However the DCG formalism has some problems

when dealing with some particular kind of sentences. These problems in-

clude:



Chapter 2: The Logical Form Language and Logic Grammars 52

• The problem of scoping with adverbs.

This problem deals with the use of adverbs as focalizers. A detailed

study of these adverbs can be found in [46]

• The definition of the priorities in the scope of the quantifiers.

For example consider the sentence:

The company maintains a description for each item of stock.

Because of its linear analysis the DCG formalism will produce the

following interpretation:

the(company(X ), ex (description(Y ), all1(item(Z ),

for(Z ,maintain(X ,Y )))))

This interpretation suggests that there is one description for all items.

Whereas the correct interpretation is:

all1(item(X ), the(company(Y ), ex (description(Z ),

for(X ,maintain(Y ,Z )))))

because the determiner each has a higher scoping than the determiner

the.

• The analysis of left-recursive constructions in noun phrases. A sen-

tence such as:

John saw each boy’s brother’s teacher.

cannot be correctly analysed by the DCG formalism because of its



Chapter 2: The Logical Form Language and Logic Grammars 53

linear analysis. The DCG will produce the following interpretation

for the last noun phrase:

boy(X , brother(Y , teacher(Z )))

which is not the intended meaning. In the next section we show

how sentences involving left-recursive constructions are analysed by

an improved version of the DCG formalism.

These problems occur primarily because the DCG formalism does not

separate syntax analysis from semantic analysis. To handle the above prob-

lems, we need to modify the DCG formalism. McCord suggested that this

could be done by separating the analysis into a component that performs

syntactic analysis and a semantic interpreter that can produce logical forms.

The semantic interpreter deals with the construction of the logical forms,

and the handling of all ambiguities which will result in the production of

several logical forms for the same string of words. Some other advantages in

having a separate semantic interpreter, such as having greater modularity

in grammars, being able to construct syntactic structures and the useful-

ness of the syntactic structures for debugging large grammar, are cited by

McCord in [47]. The new formalism is called The Modular Logic Grammars

(MLG) and will be presented in the next subsection.



Chapter 2: The Logical Form Language and Logic Grammars 54

2.4.2 Modular Logic Grammars

The MLG formalism is an extension of the DCG formalism. All the ingre-

dients of the DCG formalism are present in the MLG formalism. The DCG

is extended in three ways:

1. The declaration of strong nonterminals.

The easiest way to build syntactic structures automatically is to build

syntax trees. However, in a large grammar there will be many syntac-

tic rules that are auxiliary in nature. For example the recursive rules

that find the postmodifiers of a verb. It would be undesirable for the

application of every such rule to contribute a node to the analysis tree

because:

• The tree would be large.

• The additional nodes in the tree would complicate the work of

the semantic interpretation rules.

To solve these problems, MLG distinguishes between strong nonter-

minals and weak nonterminals. A strong nonterminal is a nonterminal

that contributes nodes to analysis trees. In the grammar there is a

syntax rule that declares strong nonterminals. Every non-declared

nonterminal is considered weak.

2. The shift operator.

The shift operator is used “to shift” components of a noun phrase



Chapter 2: The Logical Form Language and Logic Grammars 55

involved in a left-recursive construction which mainly involves posses-

sive noun phrases such as in:

John saw each boy’s brother’s teacher.

which should be interpreted as:

all1(teacher(X,brother(Y,boy(Z))), see(john,X))

When analysing the phrase each boy’s brother’s teacher the shift op-

erator provides the information that brother should be on the left of

boy and that teacher should be moved to the left of both nouns. This

information is used by the semantic phase to get the correct interpre-

tation in spite of using right-recursive grammars.

3. Logical terminals.

In the MLG formalism, the body of a rule can contain a logical ter-

minal. A logical terminal has the form:

OP-LF

where the term LF is a logical form and OP is a logical operator.

The logical operator is used by the semantic interpreter to combine

LF with the other logical forms obtained from the analysis of other

parts of the sentence.

As with DCGs, MLGs are translated to Prolog clauses by adding some

extra parameters holding the different information obtained from the anal-

ysis. Each nonterminal gets two extra arguments holding the difference



Chapter 2: The Logical Form Language and Logic Grammars 56

list 1 that represents the part of the sentence (a word string) analysed by

the nonterminal. In addition, the nonterminals get some other arguments

representing analysis structures such as the syntax tree and the associated

logical operators. This translation is implemented by defining → as a macro

in Prolog-2 and is described in appendix B.

At the end of the syntactic analysis a syntax tree is obtained. This

syntax tree is then used by the semantic interpreter to produce logical forms.

2.5 An Illustration of the MLG Translation Process

In this chapter we have described the syntax and semantic interpretation

phases that we have adopted. In section 2.3, we described the logical form

language that we use as our meaning representation language and in sec-

tion 2.4 we described logical grammars. In this section, we present an illus-

tration of the approach to give a deeper appreciation of the transformations

that are carried out. This illustration is given mainly for completeness and

may be skipped without affecting the rest of the thesis.

Let us consider the following sentence:

The company maintains a description for each item of stock.

The syntax analysis phase produces two syntax trees for this sentence. One

of these takes the form given in figure 2.4.

1A difference list is simply a representation of a list by the difference of two lists. See
[65] for a tutorial account.



Chapter 2: The Logical Form Language and Logic Grammars 57

S
:[]

np
:(

X
:c

om
pa

ny
_t

):
sg

:e
x2

de
t:(

X
:c

om
pa

ny
_t

):
sg

:e
x2

F
1/

B
1-

th
e(

B
1,

F
1)

l-c
om

pa
ny

(X
)

l-m
ai

nt
ai

n(
(X

:c
om

pa
ny

_t
):

sg
,

(Y
:d

es
cr

ip
tio

n)
:s

g:
ex

2)
pp

:P

@
P

-f
or

((
Z

:it
em

_t
):

S
g:

al
l1

,P
)

np
:(

Z
:it

em
_t

):
sg

:a
ll1

de
t:(

Z
:it

em
_t

):
sg

:a
ll1

l-i
te

m
(Z

,s
to

ck
)

np
:s

to
ck

F
3/

B
3-

al
l(B

3,
F

3)

np
:(

Y
:d

es
cr

ip
tio

n_
t)

:
sg

:e
x2

de
t:(

Y
:d

es
cr

ip
tio

n_
t)

:
sg

:e
x2

l-d
es

cr
ip

tio
n(

Y
)

F
2/

B
2-

ex
(B

2,
F

2)

Figure 2.4: An MLG syntax tree



Chapter 2: The Logical Form Language and Logic Grammars 58

In general, the nodes of such a syntax tree are either labels or semantic

items in the following form:

• Label is of the form Pred :A where Pred is the principal functor of a

strong nonterminal NT and A is either the first argument of NT or [ ]

if NT has no arguments.

• Semantic items are terms of the form OP-LF where OP is a logical

operator (also called a modification operator) and LF is a logical form.

Semantic items only appear as leaf nodes.

The aim of the semantic interpretation phase is to produce a logical form

from such syntax trees. This is done by constructing augmented semantic

items that take the form:

sem(Label ,Op,LF )

where Label is a node label, OP a logical operator, and LF is a logical form.

The augmented semantic item for a syntax tree is produced in the following

recursive manner:

1. A terminal (or leaf) node OP-LF results in an augmented semantic

item: sem(terminal ,OP ,LF ).

2. For a nonterminal (or non-leaf) node we first obtain an augmented

semantic item for each of its daughters. These augmented semantic

items are then used to modify the augmented semantic item:

sem(Label , id , t)



Chapter 2: The Logical Form Language and Logic Grammars 59

where Label is the label of the node, id is a special logical operator

that is the identity operator, and t is simply the logical form true.

An important part of the second step of this procedure is the modifica-

tion of an augmented semantic item by other items. The kind of modifica-

tions made depend on the logical operators and include:

• Modification by the identity operator id .

• Modification by the left conjoin operator l .

• Modification by the operator F/B .

We illustrate these in the following example and give all the operators

in appendix D.

Example:

Let us consider the left subtree of figure 2.4 which represents the noun

phrase The company. The semantic analyser first produces the augmented

semantic items for each subtree of the noun phrase node. The augmented

semantic items produced are:

sem(det ,F1/B1, the(B1,F1))

sem(terminal , l , company(X ))

The semantic analyser will then produce an augmented semantic item for

the parent node of the daughters, which in this case is:

sem(np, id , t)



Chapter 2: The Logical Form Language and Logic Grammars 60

The augmented semantic items of the daughters will then modify the aug-

mented semantic item of the parent node. The modification of

sem(np, id , t)

by

sem(terminal , l , company(X ))

results in the augmented semantic item:

sem(np, l , company(X ))

Since, by definition, the identity operator has no effect on the logical form.

The modification of the augmented semantic item

sem(np, l , company(X ))

by

sem(det ,F1/B1, the(B1,F1))

results in the following augmented semantic item:

sem(np,@P,the(company(X),P))

The operator F1/B1 uses the logical form company(X ) to fill the first argu-

ment of the logical form the(B1,F1). The logical operator of the resulting

augmented semantic item is @P . This operator will later use any logical

form produced by the remaining subtrees of the sentence to fill the second

argument of the logical form the(company(X ),P)).

In addition to these modifications, the semantic interpretation phase

may also involve reshaping. There are two kinds of movement in reshaping:



Chapter 2: The Logical Form Language and Logic Grammars 61

S:[]

np:(X:company_t):
sg:ex2

det:(X:company_t):
sg:ex2

F1/B1-the(B1,F1)

l-company(X)

pp:P

@P-for(Z:item_t):
sg:all1,P)

@P-for((Z:item_t):
Sg:all1,P)

np:(Z:item_t):
sg:all1

det:(Z:item_t):
sg:all1

l-item(Z,stock) np:stock

F3/B3-all(B3,F3)

… …

Figure 2.5: Raising a subtree

• Raising promotes daughters of a node to be left sisters of the node.

• Reordering rearranges subtrees within a given level.

As an example of these two movements, consider again the syntax tree

given in figure 2.4. First we describe why raising is needed and then give

the transformation that is performed. The noun phrase each item of stock

is quantified by the determiner each which has a higher precedence than

the quantifiers of the other noun phrases of the sentence. Hence, this noun

phrase is promoted to be the left sister of the prepositional phrase. This

puts the noun phrase at the same level as the other two noun phrases.

Figure 2.5 gives the resulting tree.

Reordering is among subtrees at the same level. Here again, the noun



Chapter 2: The Logical Form Language and Logic Grammars 62

S:[]

pp:P

@P-for(Z:item_t):
sg:all1,P)

@P-for((Z:item_t):
Sg:all1,P)

np:(Z:item_t):
sg:all1

det:(Z:item_t):
sg:all1

l-item(Z,stock) np:stock

F3/B3-all(B3,F3)

… … …

Figure 2.6: Reordering subtrees

phrase each item of stock is found to have a higher precedence quantifier. It

is therefore put first in the list of augmented semantic items to be analysed.

In terms of the syntax tree, figure 2.6 gives the reshaped tree.

In this section we have illustrated the kind of transformations made by

the semantic interpretation phase. The appendices give the implementation

which gives further details.



3

Using LFL to Analyse Natural

Language Documents

3.1 Introduction

The main disadvantage in using natural language to write specifications is

the potential for ambiguities. In any specification document written in nat-

ural language, it is essential to remove any ambiguity before proceeding to

any further analysis. This leads to two major problems. The first prob-

lem is the detection of the ambiguities that are present and the second is

the resolution of these ambiguities. Many studies have attempted to de-

fine the kind of problems that exist in natural language texts [35, 48, 57].

For example Meyer [48] has identified seven classes of deficiencies in natu-

ral language specification texts. Meyer called them “the seven sins of the

63



Chapter 3: Using LFL to Analyse Natural Language Documents 64

specifier”. These seven sins are:

• Noise: The presence in the text of an element that does not carry

information relevant to any feature of the problem.

• Silence: The existence of a feature of the problem that is not covered

by any element of the text.

• Overspecification: The presence in the text of an element that corre-

sponds not to a feature of the problem but to features of a possible

solution.

• Contradiction: The presence in the text of two or more elements that

define a feature of the system in an incompatible way.

• Ambiguity: The presence in the text of an element that makes it

possible to interpret a feature of the problem in at least two different

ways.

• Forward reference: The presence in the text of an element that uses

features of the problem not defined until later in the text.

• Wishful thinking: The presence in the text of an element that defines a

feature of the problem in such a way that a candidate solution cannot

realistically be validated with respect to this feature.

It is claimed [57] that humans are bad at detecting ambiguities, but

are very good at resolving the ambiguities. In this chapter we show how



Chapter 3: Using LFL to Analyse Natural Language Documents 65

ambiguities and incompleteness can be detected. These ambiguities and

incompleteness are categorised as:

• Lexicographic ambiguities.

• Grammatical ambiguities.

• Textual cohesion

We consider each of these in the following sections.

3.2 Lexicographic Ambiguities

Many words in English have different meanings. The resolution of these

ambiguities requires the selection of the exact definition for each word.

The logical form language uses semantic types to resolve these ambigui-

ties. These types can be used as a set of some general classes as defined

by McCord [47, page 387], and Allen [2, page 195]. For example Allen has

used the type hierarchy given in figure 3.1 to classify entities.

Objects in the world are classified into groups and each object has its

specific characteristics. One of the most fundamental characteristics of any

object is its type. The use of types can sometimes unambiguously identify

these objects. As shown in figure 3.1, this decomposition is exhaustive for

some entities, for example each physical object (physobj) is either living



Chapter 3: Using LFL to Analyse Natural Language Documents 66

PHYSOBJ

LIVING

NON-LIVING

ANIMATE VEGETATIVE

ROCK CAR BUILDING

HUMAN DOG CAT TREE PLANT

HOUSE APARTMENT

Figure 3.1: A type hierarchy for physical objects

or nonliving. Similarly every living object is either animate or veg-

etative. But this decompositions is not exhaustive for other entities, for

example there are more classes of animate objects then just human, cat

and dog. Depending on the context and the kind of object that are ma-

nipulated, each organisation or system may need a different classification.

Another category of lexicographic ambiguities is when a word belongs

to more then one syntactic category. For example “flies” may be the plural

of the noun “fly” or the present, singular third person of the verb “to fly”.

These ambiguities are easily identified when the syntactic category of the

word is identified. For example, in the sentence:

The pilot flies over the town.

Once the category of the word “flies” is identified as a verb, the ambiguity

is resolved. When using LFL most of the lexicographic ambiguities can be

resolved using this approach.



Chapter 3: Using LFL to Analyse Natural Language Documents 67

3.3 Grammatical Ambiguities

A grammatical ambiguity occurs when there is more than one possible pars-

ing for a sentence or part of a sentence. The different parsings will lead to

different interpretations and different meanings. The sentence:

The pilot draws the tracks of the route on the map.

has three different parsings which lead to the following interpretations.

1. The pilot draws (the tracks of the route) on the map.

That is, the information is drawn on the map.

2. The pilot draws (the tracks of the route on the map).

That is, the tracks are already on the map and the drawing is done

somewhere else.

3. The pilot draws the tracks of (the route on the map).

That is, the route is given on the map and its tracks are drawn some-

where else.

The location where the drawing takes place is different according to

which interpretation we choose. Finding the proper place to attach the

preposition phrase needs prior knowledge of the event. In general, a nat-

ural language understanding system, cannot decide which interpretation is

meant. It can however highlight the ambiguity and produce all possible

interpretations and it is the role of the analyst to choose the desired inter-

pretation.



Chapter 3: Using LFL to Analyse Natural Language Documents 68

Ambiguities may also occur within parts of a sentence. This ambiguity

occurs mainly in noun phrases. For example the sentence:

A complex aircraft uses a moving map display.

will have two different parsings, according to whether moving is interpreted

as an adjective modifying the noun map display or as part of the noun moving

map display.

This ambiguity may occur also in the interpretation of nominalisations

– where the ing form of a verb plays the role of a noun – such as in the

following sentence:

The shooting of the hunters is disgraceful.

If The shooting of the hunters is interpreted as a subject then the shooting

is done by the hunters, but if it is interpreted as an object then the hunters

have been shot.

3.4 Textual Cohesion

When writing texts, many techniques are used to ensure that the different

parts of the text are connected correctly and to ensure a smooth transition

from one idea to another. These techniques are called textual cohesion.

The connected sentences will define the context in which they have to be

interpreted. Therefore it will be difficult to take a sentence out of context



Chapter 3: Using LFL to Analyse Natural Language Documents 69

and try to interpret it. Each sentence is linked to the others. Jackson [35]

has identified five types of textual cohesion.

1. Reference

2. Substitution

3. Ellipsis

4. Conjunction

5. Lexical cohesion

Unfortunately, textual cohesion is a source of ambiguities and incomplete-

ness. In most specifications, the authors attempt to avoid the use of am-

biguous textual cohesion. However, it is hard to find a realistic specification

without ambiguities or incompleteness. In the next subsections we will look

at each type of textual cohesion and when possible give examples of speci-

fications containing these deficiencies.

3.4.1 References

References involve items that cannot have their own interpretation but make

reference to something else for their interpretation. The interpretation of

a reference requires the identification of the item from which it gets its in-

terpretation. There are two types or references, exophoric references and



Chapter 3: Using LFL to Analyse Natural Language Documents 70

endophoric references. An exophoric reference is a reference to an item

which is outside the considered text. An endophoric reference is a refer-

ence to an item within the text. In this research, we only concentrate on

endophoric references.

There are three categories of endophoric references: personal, demon-

strative and comparative. A personal reference is achieved by personal pro-

nouns, possessive pronouns and possessive identifiers. According to Jackson

[35], the third person pronouns are nearly always endophoric, but the first

and second person pronouns may often be exophoric references. Sometimes

a pronoun, particularly it, will refer not to a noun or a noun phrase, but

to a longer stretch. An example of a pronoun reference can be seen in the

following specification contained in [38, page 339]:

“A graphics device displays images in a number of colours. It

may be capable of depicting thousands of colours, a range from

black to white, or possibly just two colours.”

In the second sentence, it refers to the noun phrase “A graphic device”. In

this particular case the reference is contained in an independent sentence. In

general it may refer to any noun phrase already mentioned in the text. It is

only our background knowledge that enables us to find the item referenced.

Without background knowledge it is generally very difficult to resolve a

pronoun reference. In our approach a sentence containing a pronoun is

considered ambiguous, the system therefore detects the ambiguity and asks

the user to rephrase the sentence and resolve the reference.



Chapter 3: Using LFL to Analyse Natural Language Documents 71

A demonstrative reference is achieved by the demonstratives, the definite

article the, and the adverbs here, there, now and then. For example, consider

the following two sentences taken from the specification of the case study

used in chapter 6:

“The navigation system of a simple aircraft can be considered

to comprise the pilot’s map and route plan, a heading indicator

and a pilot’s visual sense. This system contrasts with that of a

more complex aircraft.”

In the second sentence This refers to The navigation system of a simple

aircraft and that replaces the navigation system. The second sentence also

refers to The navigation system of a complex aircraft which has not yet been

described in the text. This kind of forward reference is called a cataphoric

reference and a backward reference is called an anaphoric reference. Here

again, the reference should be resolved before the natural language processor

analyses the sentence.

A comparative reference can be either general, expressing the identity,

similarity or difference between things; or particular, expressing a qualita-

tive or quantitative comparison. For example, in:

“The pilot of a simple aircraft with no sophisticated electronic

navigation system, would be cleared to undertake such a flight

in good visibility”

the such refers to A flight in a simple aircraft without a sophisticated electronic

navigation system.



Chapter 3: Using LFL to Analyse Natural Language Documents 72

3.4.2 Substitutions

A substitution is defined by Jackson [35] as:

“ A grammatical relation, where one linguistic item substitutes

for a longer one”

The substituted item is therefore interpretable only by reference to the

original longer one. There are three types of substitutions: nominal, verbal

and clausal. A nominal substitution occurs when a head noun of a noun

phrase is replaced by one or ones, or the whole noun phrase is replaced by

the same. A verbal substitution occurs when the verb do substitutes the

lexical verb of the sentence. A clausal substitution occurs when the word

so is used to substitute a positive clause or when not is used to substitute

a negative clause as in the example [57, page 193]:

“The program reads all client records and checks each record to

determine if a premium is due notice or a cancellation (i.e., past

due) notice should be issued and if so, prints the appropriate

notice”

In this sentence the word so has been substituted for the clause “a

premium notice or a cancellation notice should be issued.”



Chapter 3: Using LFL to Analyse Natural Language Documents 73

3.4.3 Ellipsis

Ellipsis is a particular case of substitution. it occurs when certain words

or phrases, which have been mentioned earlier in the text, are omitted.

A structural gap therefore occurs and can only be filled by reference to a

previous sentence. As for substitutions, there are three types of ellipsis:

nominal, verbal and clausal. Nominal ellipsis involves the omission of the

head of a noun phrase, sometimes together with some modifiers. Let us

consider the following specification which is analysed in [37, page 200]:

“ A program is required to process a stream of telegrams. This

stream is available as a sequence of letters, digits and blanks on

some device and can be transferred in sections of predetermined

size into a buffer area where it is to be processed.”

In the first sentence, the concept of a stream of telegrams is introduced.

In the second sentence, this concept is referred to only by this stream. It is

well understood from the text that the author is talking about the stream

of telegrams. In this ellipsis only part of the noun phrase is omitted. In

this case ellipsis are easily recoverable if a list of entities is kept. The

entity stream is already identified in the first sentence, when encountered

in the second sentence it is related with the previous one. In the second

part of the second sentence: can be transferred in sections of predetermined

size, the subject stream is completely omitted. Here the omission is easily

recoverable because it concerns the syntactic subject. In general this type



Chapter 3: Using LFL to Analyse Natural Language Documents 74

of ellipsis should be resolved before the analysis proceeds. This is done

manually in the current implementation of our approach.

Verbal ellipsis involve the omission of the lexical verb from the verb

phrase. For example:

“Does a patient suffering from cancer always die? He may or he

may not.”

In the answer given in the second sentence the verb “to die” was omitted.

The omitted verb phrase is recoverable from the previous verb phrase. Here

again the resolution is done manually for the current implementation of the

approach.

Clausal ellipsis occur when a large part of a clause is omitted as in the

following example:

“Some classifications that determine the types of objects are

exhaustive. Every physical is either living or nonliving. Others

are not exhaustive.”

In the last sentence, others replaces “some classifications that determine

the types of objects”.

3.4.4 Conjunctions

Let us consider the following example [57, page 90]:



Chapter 3: Using LFL to Analyse Natural Language Documents 75

“Packages which are being sent abroad and weigh less then 20

kg or are marked urgent are to be sent airmail”

In this kind of sentence, the scope of the conjunction is not defined. If

we consider a domestic parcel weighing 10 kg and marked urgent, then

according to the interpretation given to the above statement, it may or may

not be sent by airmail. If the scope of the conjunction “and” includes both

the following adjectival phrases then the parcel is not sent airmail. If the

scope includes only the first adjectival phrase, then it is sent airmail. In

general, the conjunctions “and”, “or” and “not” are sources of ambiguity

when more than one of them appear in a sentence. In our approach we have

adopted to split conjunctions whenever possible. For example the sentence:

The company maintains a description, a unit cost, a quantity in stock

and a minimum reorder level for each item of stock.

is split into four small sentences which are:

• The company maintains a description for each item of stock.

• The company maintains a unit cost for each item of stock.

• The company maintains a quantity in stock for each item of stock.

• The company maintains a minimum reorder level for each item of

stock.

Nevertheless, when the sentence is not ambiguous then there is no need

for splitting as in the following example:

Each item of stock is assigned a unique identifier when it is introduced.



Chapter 3: Using LFL to Analyse Natural Language Documents 76

3.4.5 Lexical Cohesion

Lexical cohesion refers to the replacement of a word by its synonym or a

related word in successive sentences. The later occurrence of such words

refer to and link up with previous occurrences. There are two types of

lexical cohesion: reiteration and collocation. Collocations refer to the ha-

bitual company which words keep. For example the word book implies other

words such as page, title, shelf, library, ... etc. The next sentence of the

specification reported in subsection 3.4.3 is:

“The words in the telegrams are separated by sequences of blanks

and each telegram is delimited by the word “ZZZZ”.

It is obvious that a telegram is composed of words but for a natural language

processing system a link is missing between the telegram and the words. A

sentence such as:

A telegram is composed of words.

may need to be added before the introduction of the previous sentence to

resolve this incompleteness.

Reiteration may be of four types:

1. The same word may be repeated in successive, though not necessarily

contiguous sentences. As we will see, this problem is solved by our

approach because we keep a list of the entities encountered in the

documents.



Chapter 3: Using LFL to Analyse Natural Language Documents 77

2. A synonym or near-synonym of a word may appear in a following

sentence. This problem may be reduced by using semantic types. All

words having the same meaning will be classified as being of the same

semantic type.

3. A word may be replaced in a following sentence by another which

is semantically superordinate to it. For example if we use the word

“Porsche” in one sentence and in another sentence we refer to it by

“The car”. This kind of problem can be resolved by using the semantic

types. The semantic type of “Porsche” will be for example “car” which

is the same as the type defined for the word “car”.

4. A word may be replaced in a following sentence by a “general word”

which describes a general class of objects.

The word “person” may replace a human, and the word “toy” may

replace a toy that is mentioned before. Depending on the semantic

types defined, this ambiguity may or may not be detected. For ex-

ample, consider a sentence where the word “ball” is used and later

referred to as “the toy”. This ambiguity is resolved if ball and toy

have the same semantic type.

To summarize, in this chapter we have shown the kind of ambiguities

that could be present in natural language specifications and have given

appropriate examples from specifications already present in the literature.



Chapter 3: Using LFL to Analyse Natural Language Documents 78

Where appropriate, we have also described how they are detected and re-

solved by our approach.



4

Identifying the Data Types

4.1 Introduction

In this chapter we describe how we identify and produce VDM data types

from a natural language specification. Our approach proceeds in two stages:

1. We first aim to identify an entity relationship model (ERM)

2. Then we present a translation of the ERM to VDM.

In section 4.2 we show how the entities are identified. In section 4.3 we

show how the relations are identified and finally in section 4.4 we show how

the degrees of the relations are identified.

The first task in identifying an ERM is to obtain the list of entities in

the specification and the relationships between the entities. There is no

clear definition of what constitutes an entity. In SSADM for example [4],

79



Chapter 4: Identifying the Data Types 80

an entity is defined as something of importance to the system about which

information can be held. The same definition is also used by Bowers [14],

who further suggests that entities can be:

• Objects: Person, car.

• Events: Birth, scoring a goal.

• Activities: Production, playing.

• Associations: Marriage ( X is married with Y).

Grammatically speaking, the above list gives types which define entities

that are related. They all belong to the same grammar category of nouns.

Several authors have reported that nouns denote entities [4, 26].

Entities have relationships with other entities. In a bank system, for

example, there is a relationship between the entities “Customer” and “Ac-

count”. These two entities are related by an ownership relation which will

probably be described in the various documents by the verb “have”. We

therefore believe that relations are described by verbs. This view is also

supported by others [4, 26].

We base our identification process on the view that entities are denoted

by nouns and relationships by verbs. For example, in the following sen-

tences:

1. The pilot chooses the waypoints from the air.

2. A complex aircraft uses a radar.



Chapter 4: Identifying the Data Types 81

The nouns suggest the entities:

{pilot ,waypoint , complex aircraft , radar , air}

and the verbs the relations:

{choose, use}

However, as we mentioned in the previous chapter, noise exists in specifi-

cations and this can lead to the presence of irrelevant entities and relations

in such lists. For example, in the following sentences:

1. An example route is planned for a flight from Blackpool to Doncaster.

2. The pilot may have unnecessarily flown through a storm.

In the first sentence, the verb planned does not describe any process but just

a statement. In the second sentence, the entity storm may be not important

to the specification of a flight database.

Bearing in mind that we aim to develop an interactive tool, this defi-

ciency can be circumvented by requiring the analyst to remove those nouns

and verbs that are not important when they are detected. We therefore ex-

pect that an analyst should filter such a list of entities and relations before

proceeding.



Chapter 4: Identifying the Data Types 82

We can, of course, obtain a list of nouns and verbs by simply scanning

the text. However, this approach has several deficiencies and does not help

one to:

1. Find the relationships between entities. For example in the sentence:

A company maintains a description for each item of stock.

although we can list the nouns as company, description, item and stock,

we do not obtain any relationships between these entities.

2. Identify the degree of the relationships between the identified entities.

3. Extract compound nouns without ambiguity. For example consider

the two sentences:

• A computer-assisted flight planning system is used by a complex

aircraft.

• A pilot planning a risky flight needs special training.

In the first sentence, “planning” is a part of the compound noun

“computer-assisted flight planning system” whose form must be pre-

served. In the second sentence, planning is part of the participial verb

phrase “planning a risky flight” and is not part of a compound noun.

The following subsections show how the use of logical form helps us to

overcome these problems.



Chapter 4: Identifying the Data Types 83

4.2 Identifying Entities

The nouns form the basic list of entities. Below, we see how entities can be

extracted from sentences that contain simple and compound nouns.

4.2.1 Simple Nouns

Simple nouns are extracted from noun phrases containing just one noun.

The sentence:

The aircraft may hit an obstacle.

contains two noun phrases: The aircraft and an obstacle. Each noun phrase

is composed of a unique noun and each noun is extracted as an entity with

its associated quantifier.

Relational nouns are also extracted in a similar fashion. For example

the sentence:

The system of an aircraft comprises the plan of the pilot.

results in the entities:

{system, aircraft , plan, pilot}.

Proper nouns identify particular objects and therefore do not normally con-

stitute entities. Hence in a sentence like:

An example route is planned for a flight from Blackpool to Doncaster.

Blackpool and Doncaster do not constitute entities.



Chapter 4: Identifying the Data Types 84

4.2.2 Compound Nouns

Compound nouns are nouns which are composed of two or more nouns or a

combination of nouns and adjectives. For example, the following sentences:

1. A complex aircraft uses a computer-assisted flight planning.

2. The flight planning software package calculates the route tracks.

will have respectively the following logical forms:

1. ex(aircraft(X) & complex(X),

ex(computer-assisted(flight(planning(Y))),use(X,Y)))

2. the(flight(planning(software(package(X)))),the(route(track(Y)),

calculate(X,Y)))

In the first sentence, the noun phrase a computer-assisted flight planning

composed of four nouns. In the second, the noun phrase The flight planning

software package is composed of four nouns. As we can see from the above

logical forms we can easily extract the entities. The entities identified are:

computer-assisted flight planning and flight planning software package.

Identifying entities by using just the head noun may, of course, lead to

confusion. For example, in a specification of an aircraft system (see the case

study in chapter 6), both the description of a simple aircraft and a complex

aircraft may occur.



Chapter 4: Identifying the Data Types 85

4.3 Identifying Relations

As we have seen in section 4.1, a natural way of identifying relationships is

to use verbs and relational nouns.

4.3.1 Identifying Relationships within Relational Nouns

Relational nouns always define relationships between nouns. The sentences:

1. The company maintains a description for each item of stock.

2. The system of a simple aircraft comprises the plan of the pilot.

will produce respectively the following logical forms:

1. all1(item(X,stock),the(company(Y),ex(description(Z),

for(X,maintain(Y,Z)))))

2. ex(aircraft(X)& simple(X),the(system(Y,X), the(pilot(Z),

the(plan(T,Z), (comprise(Y,T)))))

The logical forms show clearly the relations defined by relational nouns.

In the first sentence there is a relation between item and stock and this

is shown by item(X,stock). In the second, there are two relations. The

first relation is between simple aircraft and system and the second relation

is between plan and pilot. These two relations are respectively shown by



Chapter 4: Identifying the Data Types 86

Pilot

Plan

Simple Aircraft

System

Stock

Item

of of of

Figure 4.1: Relationships extracted

system(Y,Z) and plan(T,Z). The direction of the relation is from the

second entity to the first and we use of to name the relationship. The

relations extracted for the above examples are shown in figure 4.1.

4.3.2 Identifying Relationships within Verb Phrases

Verbs generally refer to actions, events and processes [35]. In the case of

transitive verbs, the verb defines a relation between two entities. Let us

consider the sentences:

1. The pilot chooses the waypoints from the air.

2. The system of a simple aircraft is considered to comprise the plan of the

pilot.

In the first sentence, the verb chooses relates the entities pilot and way-

points. This information is readily available from the logical form of the

first sentence:



Chapter 4: Identifying the Data Types 87

the(pilot(X ), the(waypoint(Y ), the(air(Z ), from(Z , choose(X ,Y )))))

where choose relates the variables X and Y which are defined in the logical

form to be of type pilot and waypoint .

The second sentence has two verbs, making it a little more complex to

analyse. The logical form produced for this example is:

ex (aircraft(X )&simple(X ), the(system(Y ,X ), the(pilot(Z ), the(plan(T ,Z ),

be(Y , consider(Y , comprise(Y ,T ))))))

The verb comprise introduces the main action (which is represented in

natural language as an infinite complement of the verb consider), and is

therefore extracted as the relationship between the system of a simple aircraft

and the plan of the pilot. The verb consider plays a subsidiary role and does

not relate any entities. Again this information is ready to extract from the

logical form. In cases where the logical form contains more then one verb,

the inner verb phrase identifies the relationships between the entities. The

relations extracted for the above sentences are given in figure 4.2.

The next step is to identify the degree of the relationships. The next

subsection shows how the degree of a relation can sometimes be determined

from the logical form of a sentence containing the relationship.



Chapter 4: Identifying the Data Types 88

Pilot

Waypoint

System

Plan

Choose Comprise

Figure 4.2: Verb Relations extracted

4.4 Quantification and the Determination of the De-

gree

Early attempts at natural language analysis assumed that quantifiers oc-

curred explicitly in the text. Thus it was assumed that the presence of a

universal quantifier was always indicated by words like “every” and “all”,

and the presence of an existential quantifier was indicated by words like

“some” [31]. However, many sentences are implicitly quantified by articles.

In this section we first examine how such implicit quantifiers can be

identified and then show how quantified LFL statements can sometimes aid

the identification of the degree.



Chapter 4: Identifying the Data Types 89

4.4.1 Identifying Implicit Quantifiers

Most studies of quantification identify quantifiers from the articles present in

the sentences [2, 31]. Initial studies of quantification regarded both definite

and indefinite articles as existential quantifiers, with some additional infor-

mation in the case of definite articles [31]. More recent studies have shown

various problems with this assumption and have shown how the indefinite

article and the definite article can also lead to a universal quantifier.

Below we show the problems of identifying quantifiers from the articles

“the” and “a” and our approach to these problems.

The Definite Article “the”

Russell [61] gives the following example to illustrate the meaning of the

definite article “the”:

The president of France is bald.

Russell argues that this should be interpreted as:

∃X · president of france(X ) ∧
¬(∃Y · president of france(Y ) ∧ X 6= Y ) ∧ bald(X )

The “additional information” given for the interpretation of the definite

article is given in the statement that Y is the one and only president of

France.

McCord recognises that this interpretation is inadequate in general but

suggests that in some applications it is correct to translate “the” into the



Chapter 4: Identifying the Data Types 90

unique existence. However, he does not give any guidance to when the

usual existential quantifier should be used instead of the unique existential

quantifier. In the case of obtaining the meaning of sentences in a require-

ments document, we cannot assume that one of these holds throughout the

application. For instance, consider the sentences:

The students passed the exams.

The student passed the exams.

The first sentence does not suggest the unique existential quantifier, while

the second does not suggest the normal existential quantifier.

As we will see later, obtaining appropriate quantifiers is an important

prerequisite for our approach to identifying the degree of relationships be-

tween entities. Hence, we have attempted to improve upon McCord’s ap-

proach to this problem.

In our approach, we do not simply translate “the” into the unique exis-

tence – instead we use the singularity or plurality of the noun to determine if

it should be translated to the unique existence or normal existence. That is,

if the quantified noun is singular, we adopt the unique existence, otherwise

we interpret it as a normal existential quantifier. Again this information is

available from the LF of the sentence.

We concede that there remain sentences for which these approaches re-

main inadequate. For instance, the following examples given by Hess [31]

are not covered:

1. The unicorn is a mythical creature.



Chapter 4: Identifying the Data Types 91

2. The lion is a dangerous animal.

In the first sentence we do not presuppose the existence of unicorns,

but the sentence nevertheless makes perfect sense. This kind of sentences

are unlikely to appear in requirements documents because specification of

systems are normally about concepts and objects that exist. The second

sentence shows that depending on the context, “the” could be interpreted

as a universal quantifier, or a unique existential quantifier.

The Indefinite Article “a”

The use of the indefinite article as a quantifier is always a source of ambigu-

ity [2]. The indefinite article can sometimes be translated to the existential

quantifier and sometimes to a universal quantifier. In this subsection, we

investigate when the indefinite article is interpreted as an existential quan-

tifier and when it is interpreted as a universal quantifier.

According to Hess [31] the most important way to determine the quan-

tification of a sentence is through the choice of the verb. For example,

consider the following sentences:

1. A text editor makes modifications to a text file.

2. A text editor is making modifications to a text file.

3. A text editor made modifications to a text file.

4. A text editor has made modifications to a text file.



Chapter 4: Identifying the Data Types 92

The present tense is used in example (1) to say that a text editor makes

modifications to a text file in general. The main use of the present tense is

to express habitual actions. In examples (2) to (4) we say that there is, or

was, a case of a text editor making modifications to a text file. Therefore,

Hess suggested that because the present tense is used in the first sentence,

text editor must be universally quantified. Likewise, because of the tenses

used in the other sentences, text editor must be existentially quantified in

the remaining sentences.

In some cases the future is preferred over the present tense for general

statements as in the following example:

A man who loves a woman will stroke her.

Dynamic verbs, such as to stroke, seem to call for the future tense, whereas

static verbs such as to respect seem to go better with the present tense.

Hence, Hess formulated the following rules:

• Rule 1:

The subject of a sentence is existentially quantified if the VP is:

1. in the past tense.

2. in the progressive aspect, or

3. in the perfective aspect.

• Rule 2:

Otherwise the subject is universally quantified, in particular if it is:

1. in the present tense or



Chapter 4: Identifying the Data Types 93

2. in the future tense.

Once we have determined the quantification of the subject of the sen-

tence, we have to do the same thing to the other components of the sentence.

Let us consider the following examples:

1. A man who loves a woman is happy.

2. A man that loves a woman respects her.

Intuitively, we can see that woman should be existentially quantified in

the first sentence and universally quantified in the second sentence. To

observe the difference, Let us consider the logical forms of these sentences:

1. all(man(X),ex(woman(Y)&love(X,Y),happy(X)))

2. all(man(X),all(woman(Y)&love(X,Y),respect(X,Y)))

The main verb of the first sentence is happy and does not refer to the noun

phrase woman. In the second sentence the main verb respects refers to the

noun phrase woman. This is the reason why the noun phrase “woman”

should be existentially quantified in the first sentence and universally quan-

tified in the second. Hence, Hess suggested a third rule which is:

• Rule 3:

In a restrictive noun phrase those arguments that are referred to by the

main verb are universally quantified and those that are not referred

to by the main verb are existentially quantified.



Chapter 4: Identifying the Data Types 94

This rule now enables the correct interpretation of the above sentences.

However, it does not hold for non-restrictive noun phrases. In particular,

when a noun phrase appears at the right of a verb, the kind of sentences we

have encountered suggest that the indefinite article should be interpreted

as an existential quantifier. For example in the sentence:

A complex aircraft uses a radar.

The second indefinite article is interpreted as the existential quantifier and

not as the universal quantifier.

There are two exceptions to the above rules which are analysed in the

following cases:

• As an exception to rule 2, the past tense can express a universally

quantified assertion, as in the following example:

A student read books when I was young.

This universal quantification is possible because the main verb (read)

requires a spatial or temporal postmodifier(when).

• As an exception to rule 1, the progressive aspect can express universal

quantification as in:

John is always coming late

This is only possible when the verb is modified by expressions such as

“always”, “in general”, “regularly”.

To cover these exceptions, we can suggest the following fourth rule which

takes precedence over rules 1 and 2.



Chapter 4: Identifying the Data Types 95

• Rule 4:

1. The past tense can express a universally quantified assertion if

the main verb requires a spatial or a temporal postmodifier.

2. The progressive aspect can express a universal quantification if

the verb is modified by expressions such as “always”, “in general”

and “regularly”.

4.4.2 Obtaining the Degree from the Quantifiers

In the last subsection we saw how we could obtain quantified logical forms.

In this subsection we show how the quantifiers associated with each entity

can be used to determine the degree of a relationship between the entities.

It is not always possible to determine the degree of a relation from the

quantifiers. However, we describe how our system gives a default degree for

some cases. Of course, the user is allowed to override the system determined

degrees.

4.4.3 Identifying Many-to-One Relationships

Consider the following examples and their logical forms:



Chapter 4: Identifying the Data Types 96

1. A complex aircraft uses the radar.

all(aircraft(X) & complex(X), the(radar(Y), use(X,Y)))

2. A student passed the exam.

ex(student(X), the(exam(Y), pass(X,Y)))

3. The students passed the exam.

the(student(X), the(exam(Y), pass(X,Y)))

4. The company maintains a description for each item of stock.

all1(item(X,stock), the(company(Y), ex(description(Z),

for(X,maintain(Y,Z)))))

In the first example, The first entity in the relation is quantified by the

universal quantifier and the second by the unique existential quantifier (the

definite article quantifying a singular noun). Then, by definition, we have a

many-to-one relationship from the first entity to the second. In the second

and third examples, the first entity is quantified by the normal existential

quantifier and the second by the unique existential quantifier. Based on

our current experience, in such cases we interpret the existential quantifier

as referring to more than one occurrence of the first entity. That is many

occurrences of the first variable are related to only one occurrence of the

second variable. Then by definition, we have a many-to-one relation between

the entities student and exam.

In the fourth example, we consider the relation between item and decrip-

tion. The entity item is quantified by the universal quantifier and the entity



Chapter 4: Identifying the Data Types 97

description is quantified by the existential quantifier. Based on the different

examples we have analysed, we infer a many-to-one relation between item

and description.

Notice that the degrees given by default by this approach to the last

three examples are not as strong as the one given to the first example. The

analyst, is ofcourse, allowed to override the degrees identified by the system.

Some one-to-many relationships can also be detected by the system. For

example consider the following sentences and their logical forms:

1. The company maintains a description for each item of stock.

all1(item(X,stock), the(company(Y), ex(description(Z),

for(X,maintain(Y,Z)))))

2. The student passed all exams.

the(student(X), all2(exam(Y), pass(X,Y)))

Logical form language distinguishes between its different quantifiers by

associating different predicates. For example LFL associates the predicate

all1 for the determiner each, all2 for the determiner all and the predicate

all for the interpretation of the indefinite article as a universal quantifier.

These different predicates are used to determine the priorities between the

quantifiers. These differences also help in the interpretation of the sentences.

Hence, in the first sentence, the phrase each item of stock suggests that we

are talking about one stock system that contains many items (i.e., a one-

to-many relation between the entities stock and item).



Chapter 4: Identifying the Data Types 98

Sentences where the first entity is singular and quantified by the definite

article define one-to-many relationships. The second sentence is a typical

example. An exception to this rule occurs when the second entity is also

quantified by “the” and is singular. In this case, we infer a one-to-one

relationship between the entities.

We have now given several cases in which we can identify the degree of

a relationship. In other cases, when it is difficult to predict the degree of a

relation, we let the user decide it.

At this stage we should have a list of entities, relations and the degrees

of the relations and therefore the entity relationship model. The aim of

our approach is to translate these entity relationship models to VDM data

types. The translations are described in section 4.6. In the next section, we

summarise the VDM notation that we use.

4.5 VDM Notation

VDM provides data types for sets, sequence, maps and composite objects.

We describe each of these below.



Chapter 4: Identifying the Data Types 99

Set Notation

We use the following set notation:

• We denote the empty set by { }.

• A binary predicate a ∈ s is true iff a occurs in the set s .

• The set A-set denotes the set of all finite subsets of A.

• The function card s denotes the number of elements in the set s .

• The expression s1∪ s2 denotes the union of the sets s1 and s2. Thus

for example:

{a, b} ∪ {b, d , e} = {a, b, d , e}.

• The expression s1∩ s2 denotes the intersection of the sets s1 and s2.

Thus, for example:

{a, b, c} ∩ {b, c, d} = {b, c}.

Sequence Notation

A sequence is an ordered collection of elements. Sequences differ from sets

in that duplicates and the order of elements are significant. We use the

following sequence notation:



Chapter 4: Identifying the Data Types 100

• The notation A∗ denotes the set of all finite sequences whose elements

are obtained from the set A.

• We denote the empty sequence by [ ].

• The function elems s denotes the set of elements in the sequence s .

For example:

elems [1, 2, 3, 1] = {1, 2, 3}.

• The function len s denotes the length of the sequence s .

• The expression s1_̀ s2 denotes the concatenation of the sequences s1

and s2. For example:

[1, 2, 3] _̀ [1, 3, 4] = [1, 2, 3, 1, 3, 4].

Map Notation

A map defines a many to one mapping from one set, called the domain, to

another called the range. The notation dom m returns the elements in the

domain of a map, and rng m returns the elements in the range of a map.

For example,

dom {a 7→ 1, b 7→ 2} = {a, b} and rng {a 7→ 1, b 7→ 2} = {1, 2}.

We can add new maplets to a map by using the union operator. We can



Chapter 4: Identifying the Data Types 101

overwrite a maplet by using the overwrite operator †. For example, given:

m = {a 7→ 1, b 7→ 2, c 7→ 3}

we can overwrite the second maplet by:

m † {b 7→ 3}

to obtain a map:

m = {a 7→ 1, b 7→ 3, c 7→ 3}

We can also delete a maplet by using the operator −¢. For example, with

the above map m:

{b} −¢ m = {a 7→ 1, c 7→ 3}

Composite Objects

Composite objects are record like objects that have fields. A composite

object type can be defined by using the notation:

Cobject :: selector1 : Type1

selector2 : Type2,

...

selectorn : Typen

The values of fields can be selected by applying the field name to the

composite object. For example, given a composite object named v of the

above type Cobject , we can select the second field by:



Chapter 4: Identifying the Data Types 102

selector2(v).

Composite objects can be created by using an appropriate constructor

function. These constructor functions are obtained by pre-fixing the name

of the composite object type by mk-. For example, an object of type Cobject

can be created by:

mk-Cobject(value1, value2, ...valuen)

where the arguments are of the appropriate type.

We can change a component of a composite object by using the µ func-

tion. For example, if we want to change the value of the second field of a

composite object co of type Cobject we would write:

µ(co, selector2 7→ new value)

where new value is the required new value.

Function Definition

In VDM the symbol 4 is used as the function definition symbol. VDM

functions can be recursive and can use IF and CASE statements in the

usual manner.



Chapter 4: Identifying the Data Types 103

4.6 Production of VDM Data Types from Entity Re-

lationship Models

In general, the entity relationship model produced by the above process

will be quite complex. As an example appendix G contains the diagram

obtained for a problem that we illustrate in chapter 6. As the diagram

shows, we may have several sub-models. The diagrams may contain many-

to-many relationships as well as one-to-one, many-to-one, and one-to-many

relationships.

We can model one-to-one relationship as a one-to-one map in VDM.

Many-to-many relationships can be modelled as a set of pairs. However, as

with SSADM [4] we require the user to have resolved one-to-one and many-

to-many relationships so that our entity relationship diagram only contains

one-to-many and many-to-one relationships. It is shown in SSADM that

many-to-many relations can always be decomposed into two or several one-

to-many relations. One-to-one relations can be merged. We now examine

how the remaining relationships can be modelled in VDM.

4.6.1 Modelling One-to-Many Relationships

Figure 4.3 gives a typical one-to-many relationship which defines that there

are many items in a stock system. We can model such relationships in VDM



Chapter 4: Identifying the Data Types 104

Stock

Item

Figure 4.3: Modelling one-to-many relationships

in several different ways including the following three:

1. As a set of items: Stock = Item-set

2. As a sequence of items: Stock = Item∗

3. As a map from item identifiers to items: Stock = Item-ID -→m Item

Notice that for the map data type we only use the many part of the

relation. Based on the examples in the literature (e.g. [37, 68]), we prefer

the third approach since VDM’s map data type appears to be more natural

for modelling this kind of relationship. However, when the user specifies

that the order of the items is significant, the second option is adopted.

4.6.2 Modelling Many-to-One Relationships

Figure 4.4 gives a typical many-to-one relationship between the entities

teacher and course. We can model this using a VDM map. For this example



Chapter 4: Identifying the Data Types 105

Teacher

Course

Figure 4.4: Modelling one-to-one relationships

the type would be:

State :: sm : System

tm : Teachers

System = Teacher-Id -→m Course

Teachers = Teacher-Id -→m Teacher-Infos

Teacher-Infos :: Name : Text

Qualification : Text

...etc

With the following invariant:

inv-State(mk-State(sm, tm)) 4 dom sm = dom tm

In addition, we may also have the situation shown in figure 4.5 where

there is a many-to-one mapping to leaf entities. Benyon [11] states that

if an entity has no attributes apart from its identifier, has a one-to-many

relationship with another entity and that the relation between the entities



Chapter 4: Identifying the Data Types 106

is obligatory then it can probably become an attribute of the other entity.

Hence, the attributes of an entity have a one-to-many relationships with

that entity. In such situations we use a composite object to model such

relationships. For the following example (based on a past undergraduate

exam question) :

1- A company maintains a simple stock system.

2- The company maintains a description for each item of stock.

3- The company maintains a unit cost for each item of stock.

4- The company maintains a minimum reorder level for each item

of stock.

5- The company maintains a quantity in stock for each item of

stock.

6- Each item of stock is assigned a unique identifier when it

is introduced.

Our approach results in the ER diagram of figure 4.5. The subtree for item

is then translated to the following composite object type:

Item :: description : Description t

unit-cost : Cost t

quantity : Quantity t

reorder level : Level t

where we obtain the names of the selectors from the nouns that identified

the entities.



Chapter 4: Identifying the Data Types 107

Stock

Item

Description Unit Cost Quantity Reorder Level

Figure 4.5: The Stock Case Study



5

Invariants and the Specification of

Operations

5.1 Introduction

Data types usually have associated invariants. Invariants are truth-valued

functions which can be used to record restrictions on data types. Invariants

are very important in the definition of data types because it is only after

their definition that we can proceed to specify functions and operations. For

example, in a banking system the opening of some accounts are conditional

upon the amount of money one has to invest. Let us say for example that

the opening of a diamond reserve account requires a minimum of £5000. If

we model an account as the following composite object:

108



Chapter 5: Invariants and the Specification of Operations 109

Diam Acc :: Account Number : Ident

Customer Name : Name

Customer Address : Address

Balance : Balance

The invariant that restricts the balance of the account to be greater than

or equal to £5000 is defined as:

inv-Diam Acc(mk-Diam Acc(an, cn, ca, ba)) 4 ba ≥ 5000

After the definition of the invariant, the valid objects of Diam Acc

are those that belong to the composite object type and also satisfy inv-

Diam Acc. The invariant cuts out those elements which do not arise in

reality. This is the typical way in which invariants arise and also their

simplest form.

Invariants can be complex; particularly when they are on data types that

are defined recursively. For example, an ordered binary tree that represents

a set of natural numbers can be defined as:

• has two (possibly nil) branches and a number at each node;

• all the numbers in the left branch of a node are less than the number

in the node;

• all the numbers in the right branch of a node are greater than the

number in the node.

The first line can be modelled by the following VDM data type [37]:



Chapter 5: Invariants and the Specification of Operations 110

Setrep = [Node]

Node :: lt : Setrep

v : N

rt : Setrep

The second and third lines express an invariant property. If retrns is a

function which retrieves the set of numbers in a tree and is defined by:

retrns : Setrep → N-set

retrns(bt) 4

cases bt of

nil → {}
mk-Node(lt , v , rt)→ retrns(lt) ∪ retrns(rt) ∪ {v}
end

then we can define an invariant for the Setrep data type as:

inv(mk-Node(lt , n, rt)) 4

∀ln ∈ retrns(lt) · ln < n ∧ ∀rn ∈ retrns(rt) · rn > n

The function retrns has to be recursive to apply to all elements of the

tree. As the above example shows, the representation of recursive invariants

can be very complex. In general it is not possible to generate an invariant

from an English sentence. This work is not intended to resolve the problem

of invariants completely. However, in this chapter, we show that in some

cases, it is possible to provide an invariant as an English sentence and

then automatically produce a VDM form of this invariant. To produce this



Chapter 5: Invariants and the Specification of Operations 111

invariant we proceed in two stages:

1. First a general form of this invariant is produced;

2. The invariant is then specialised to the particular data type that is

obtained.

The invariant is provided as an English sentence. The first stage is the

translation of this English sentence into an LFL expression. This transfor-

mation is done in the manner described in chapter 2. The LFL expression is

then translated into a first order logic (FOL) expression. The latter trans-

formation is done in two stages because LFL differs from first order logic.

These differences are:

1. First FOL uses only two primary quantifiers, the universal quanti-

fier and the existential quantifier. The existential quantifier also has a

variant called the unique existential quantifier. LFL uses many quanti-

fiers. A correspondence between LFL quantifiers and FOL quantifiers

is therefore needed.

2. The second difference occurs in some relations introduced by some

adjectives that we will call relational adjectives. Examples of such

adjectives are adjacent and different. The action of adjacency or dif-

ference involves at least two elements. These relations are represented

as unary relations in LFL. In FOL these elements need to be explicitly

quantified.



Chapter 5: Invariants and the Specification of Operations 112

The following sections describe the different stages needed for the pro-

duction of the invariant.

5.2 The Production of the General Form

The first task in producing invariants is to identify the quantifiers. The

quantifiers are obtained from the LFL expressions. As shown in chapter

2, LFL is a powerful tool for quantifying the different entities occuring

in natural language sentences. In this section we start by analysing FOL

quantifiers and then show how they can be obtained from LFL quantifiers.

5.2.1 Quantifiers in FOL

FOL quantifiers extend the power of the logical notation and are motivated

as abbreviations. For example, the disjunction:

is prime(7) ∨ is prime(8) ∨ is prime(9)

can be written as:

∃i ∈ {7, 8, 9} · is prime(i)

This quantified expression can be read as:



Chapter 5: Invariants and the Specification of Operations 113

“There exists a value in the set {7,8,9} which satisfies the truth-

valued function is prime.”

Vice versa, for finite sets, an existentially quantified expression can be ex-

panded into a disjunction. Thus,

∃i ∈ {11, 12, 13} · is odd(i)

is true because:

is odd(11) ∨ is odd(12) ∨ is odd(13)

In the case of infinite sets, it is impossible to represent such disjunctions.

The reason why quantifiers extend the expressive power of a logic is that

the sets in the constraint of a quantified expression can be infinite.

Let us consider now the following disjunction:

is odd(11) ∨ is odd(12) ∨ is odd(14)

This is true and differs from the previous expression in that there is one

and only one value in the set {11,12,14} that satisfies the function is odd.

When quantifying such expressions we use the unique existential quantifier

∃!. The above expression is then represented as:

∃! i ∈ {11, 12, 14} · is odd(i)

A conjunction such as:

is even(2) ∧ is even(4) ∧ is even(6)



Chapter 5: Invariants and the Specification of Operations 114

can be written as a universally quantified expression:

∀i ∈ {2, 4, 6} · is even(i)

This expression can be read as:

“All values in the set {2,4,6} satisfy the truth-valued function

is even.”

5.2.2 The Transformation of LFL into FOL

As we have seen in chapter 4, the determiners all, each and every are always

translated to the universal quantifier. The determiners a and an, are some-

times translated to the universal quantifier and sometimes to the existential

quantifier. The determiner the when quantifying a plural noun, is translated

to the existential quantifier and when quantifying a singular noun is trans-

lated to the unique existential quantifier. In the following subsection we

present the transformation of LFL quantifiers into FOL quantifiers.

The Universal Quantifier

The standard universal quantifier in FOL has two operands.

∀X · P(X )



Chapter 5: Invariants and the Specification of Operations 115

which specifies a single variable X to quantify over and the proposition P

is supposed to hold for every value of X . The single form P is the scope of

the quantifier. As defined in chapter 2, in LFL the scope of the quantifier

is split into two parts, the base and the focus, so we write

all(P(X ),Q(X ))

which means that for all X : if P holds than Q holds.

Hence from this definition, we can translate the quantifier all to the following

equivalent FOL expression:

∀X · P(X ) ⇒ Q(X )

For example the following sentence:

Each man knows Bill.

has the following logical form representation:

all1(man(X),know(X,bill))

The translation of this LF into FOL is:

∀X ·man(X ) ⇒ know(X , bill)

After this first translation we need to transform the FOL expression

into a typed FOL expression. Hence, if man is considered to be a type in

the previous example, then man(X ) can be replaced by a constraint and

the implication removed. The above FOL expression becomes the following

typed FOL expression:



Chapter 5: Invariants and the Specification of Operations 116

∀X :man · know(X , bill)

As another example, the following sentence:

Each overdraft account is closed

will have the following LF representation:

all1(account(X)&overdraft(X),close(X))

and will be translated into the following FOL expression:

∀X · account(X ) ∧ overdraft(X ) ⇒ close(X )

If account is used as a type for the variable X then the typed FOL expression

is:

∀X : account · overdraft(X ) ⇒ close(X )

As this example shows, in general the implication cannot always be removed.

The Existential Quantifier

In LFL the existential quantifier is represented by

ex (P(X ),Q(X ))

which means that there exists a variable X such that P(X ) and Q(X )

hold. Hence, we can translate such an LFL expression to the following FOL

expression:

∃X · P(X ) ∧Q(X )

For example the sentence:



Chapter 5: Invariants and the Specification of Operations 117

A company maintained a stock.

has the following representation in LFL:

ex(company(X),ex(stock(Y),maintain(X,Y))

and the translation of the LFL into FOL is:

∃X · company(X ) ∧ ∃Y · stock(Y ) ∧maintain(X ,Y )

If company and stock are used as types for the variables X and Y then

the ∧ symbols can be removed so that we obtain the following typed FOL

expression:

∃X : company · ∃Y : stock ·maintain(X ,Y )

Expressions containing the unique existential quantifier are translated

in the same manner.

5.2.3 Nested Quantifiers

Logical form expressions can also result in quantifiers nested deep in an

expression. For example consider the following sentences, their logical forms

and their typed FOL expressions:

• Each new student passed every test.

all1(student(X)&new(X), all(test(Y), pass(X,Y)))

∀X : student · new(X ) ⇒ ∀Y : test · pass(X ,Y )



Chapter 5: Invariants and the Specification of Operations 118

• A small company maintained a simple stock.

ex(company(X)&small(X),ex(stock(Y)&simple(Y),maintain(X,Y)))

∃X : company · small(X ) ∧ ∃Y : stock · simple(Y ) ∧maintain(X ,Y )

Although such expressions are well-formed formulae of predicate calcu-

lus, a better representation of each of these is:

∀X : student ,Y : test · new(X ) ⇒ pass(X ,Y )

∃X : company ,Y : stock · small(X ) ∧ simple(Y ) ∧maintain(X ,Y )

This representation is widely used and preferred because it is more readable.

Hence, we use the following rules to obtain the desired representations.

Uni Nested
∀x :X · p(x ) ⇒ ∀y :Y · g(x , y)

∀x :X , y :Y · p(X ) ⇒ g(x , y)

Exi Nested
∃x :X · p(x ) ∧ ∃y :Y · g(x , y)

∃x :X , y :Y · p(x ) ∧ g(x , y)

Invariants are defined on all elements of the data type. Hence we assume

that an invariant is a total predicate. Therefore, in the following proofs we

assume that p is a total predicate. The proof for Uni Nested is given in

figure 5.1 and the proof for Exi Nested is given in figure 5.2.

We use the natural deduction style of proof presentation used in Jones

[37]. In this style, hypothesis are prefixed with a from and conclusions

are prefixed with an infer. Subproofs are presented in an indented fashion.

Lines are numbered in dewy decimal manner. Proof lines are justified by

giving the inference rule used on the right together with the line numbers



Chapter 5: Invariants and the Specification of Operations 119

from ∀x :X · p(x ) ⇒ ∀y :Y · g(x , y)
1 from a:X
1.1 p(a) ⇒ ∀y :Y · g(a, y) ∀-E (h,h1)
1.2 from b:Y
1.2.1 δ(p(a)) p total
1.2.2 from p(a)
1.2.2.1 ∀y :Y · g(a, y) ⇒ -E (1.1,h1.2.2)

infer g(a, b) ∀-E (1.2.2.1,h1.2)
infer p(a) ⇒ g(a, b) ⇒ -I (1.2.2,1.2.1)

infer ∀y :Y · p(a) ⇒ g(a, y) ∀-I (1.2)
infer ∀x :X , y :Y · p(x ) ⇒ g(x , y) ∀-I (1)

Figure 5.1: Proof of Uni Nested

from ∃x :X · p(x ) ∧ ∃y :Y · g(x , y)
1 from a:X , p(a) ∧ ∃y ∈ Y · g(a, y)
1.1 p(a) ∧-E (h1)
1.2 ∃y :Y · g(a, y) ∧-E (h1)
1.3 from b:Y , g(a, b)
1.3.1 g(a, b) h1.3
1.3.2 p(a) ∧ g(a, b) ∧-I (1.1,1.3.1)

infer ∃y :Y · p(a) ∧ g(a, y) ∃-I (h1.3,1.3.2)
1.4 ∃y :Y · p(a) ∧ g(a, y) ∃-E (1.2,1.3)

infer ∃x :X · ∃y :Y · p(x ) ∧ g(x , y) ∃-I (h1,1.4)
infer ∃x :X , y :Y · p(x ) ∧ g(x , y) ∃-E (h,1)

Figure 5.2: Proof of Exi Nested

of the expressions to which the rule is applied. A line number with a prefix

‘h’ refers to the hypothesis of the line. The inference rules that we use are

based on [37] and are given in appendix H.



Chapter 5: Invariants and the Specification of Operations 120

5.2.4 The Transformation of Relational Adjectives

In this section we describe a pecular problem that occurs when translating

relational adjectives. In this case we give the complete LFL representation

that is produced (including the type of the variables). Consider the sentence:

All adjacent waypoints are different.

This results in the following LFL expression:

all(waypoint(X )&adjacent(X :waypoint t),

be(X :waypoint t , different(X :waypoint t)))

Both adjacent(X ) and different(X ) are within the scope of the quantifier

all . That is, all waypoints must have the given characteristics. In FOL

this representation is not satisfactory since the relations of adjacency and

difference are normally between two variables. An appropriate translation

of the above LFL expression into a FOL expression would be:

∀waypoint1:waypoint t ,waypoint2:waypoint t ·
adjacent(waypoint1,waypoint2) ⇒ different(waypoint1,waypoint2)

Two different variables of the same type as the one defined in the LFL

expression must be defined. These two variables will replace all the occur-

rences of the unique variable in the LFL expression. Whenever a relational

adjective is encountered in LFL this kind of transformation is required.

The FOL expression represents the general case of the invariant. How-

ever, the invariants are defined for a particular problem, and therefore for



Chapter 5: Invariants and the Specification of Operations 121

a particular data type modelling the problem. In the next section we will

show how the invariant is specialised for a particular data type.

5.3 Specialisation of an Invariant

The general form of the invariant produced by the above process provides

no context for its application. Since a VDM data type is required, our aim

is to transform the general invariant so that it applies to a particular data

type. The specialisation is performed in two stages. The first stage consists

of the identification of the variables involved in the FOL expression. The

second stage is to relate these variables to their occurrences in the definition

of the data type. These variables are likely to match because the data type

is defined from the specification text and the invariant is related to the text.

We will consider the data type defined for the stock problem in section

4.6.2 to illustrate these two points. The data type identified by our approach

and system to model the stock problem is:

Stock t = Item ID -→m Item t

Item t :: description : Description t

unit cost : Cost t

quantity : Quantity t

minimum reorder-level : Level t

If we apply the following invariant to this data type:



Chapter 5: Invariants and the Specification of Operations 122

The quantity in stock is greater than the minimum reorder level.

we obtain the following FOL expression which represents the general form

of the invariant.

∀quantity : quantity t · ∀minimum reorder level : level t ·
is greater than(quantity ,minimum reorder level)

The variables of this expression are: quantity with its associated type

quantity t and minimum reorder level with its type level t. The next stage

is to check if these variables can be associated with the defined data type.

The matching is obtained either by using the types of the variables or their

names if there are several variables of the same type.

The specialisation is carried out by first scanning the data types pro-

duced. We notice that the previous variables corresponds to the field se-

lectors of the composite object of type Item t . Hence, the general form of

the invariant is applied to the set of composite objects of type Item t . We

define a variable of type Item t and the invariant is now applied to the ap-

propriate fields by using the field selectors. Hence, the form of the invariant

becomes:

∀item: Item t ·
is greater than(quantity(item),minimum reorder level(item))

The invariant is now restricted to the set of composite objects of type Item

t . Further, scanning shows that Item t is used in defining the type Stock t :

Stock t = Item ID -→m Item t



Chapter 5: Invariants and the Specification of Operations 123

The approach now aims to specialise the invariant so that it applies to

Stock t . Given a map stock of type Stock t , we can obtain a compos-

ite object by applying the map to an index. Hence we can carry out the

specialisation by replacing the composite object by stock(i) in the above ex-

pression. In addition, the constraint part of the expression now quantifies

over the domain of the map. The new form of the invariant is:

∀i ∈ dom stock ·
is greater than(quantity(stock(i)),minimum reorder level(stock(i)))

There is no data type containing the type Stock t . We say that we have

reached the top level of the data type, and we conclude that this is the final

form of the invariant.

This example illustrates the transformation of a general invariant to an

invariant that is applied to a map type. In general the invariant may have

the following form:

∀x :Xt , y :Yt · p(x , y)

We can transform such invariants so that they apply to a map M of type:Dom

-→m Ran where in general, Ran may be a composite object. Using the nota-

tion si(c) to denote the selector si of the composite object c, we can present

the transformation as the following rule:

SetToMap1
∀c:X · p(s1(c), s2(c))

∀i ∈ dom M · p(s1(M (i)), s2(M (i)))

In the case of sequences, given a sequence of composite objects S , the

rule takes the form:



Chapter 5: Invariants and the Specification of Operations 124

SetToSeq1
∀c:X · p(s1(c), s2(c))

∀i ∈ inds S · p(s1(S (i)), s1(S (i)))

Below we show that the transformations carried out are valid. The

proofs are only produced for a sequence because the proofs for maps are

similar. The rules need to be proved in both directions because we need

to show that if an element is not a member of the considered set, than it

cannot contribute to a relation with the sequence.

Given a composite object type D with selectors s1 and s2, we assume

the following hypotheses:

1. X :D-set

2. ∀x ∈ X · p(s1(x ), s2(x ))

3. X ′:D∗,X = elems X ′

Substituting 3 in 2, we obtain:

∀x ∈ elems X ′ · p(s1(x ), s2(x ))

Now proceeding from this gives the proof in figure 5.3 and figure 5.4

gives the proof in the other direction.

We have proved that the transformations carried out on the invariant

are valid. Given simple English invariants, we can use these transformations

to produce appropriate VDM invariants. We however, accept that there are

invariants that are difficult to translate. For example the invariant described

in section 5.1, is difficult to produce from a simple English sentence.



Chapter 5: Invariants and the Specification of Operations 125

from ∀x ∈ elems X ′ · p(s1(x ), s2(x ))
1. from i ∈ inds X ′

1.1 X ′(i) ∈ elems X ′ elems ,h1
infer p(s1(X

′(i)), s2(X
′(i))) ∀-E (h,1.1)

infer ∀i ∈ inds X ′ · p(s1(X
′(i)), s2(X

′(i))) ∀-I (1)

Figure 5.3: Proof of SetToSeq1 (Top to Bottom)

from ∀i ∈ inds X ′ · p(s1(X
′(i)), s2(X

′(i)))
1. from x ∈ elems X ′

1.1 ∃k ∈ inds X ′ · X ′(k) = x elems ,h1
1.2 from j ∈ inds X ′,X ′(j ) = x
1.2.1 p(s1(X

′(j )), s2(X
′(j ))) ∀-E (h,h1.2)

infer p(s1(x ), s2(x )) =subs(h1.2,1.2.1)
infer p(s1(x ), s2(x )) ∃-E (1.2,1.1)

infer ∀x ∈ elems X ′ · p(s1(x ), s2(x )) ∀-I (1)

Figure 5.4: Proof of SetToSeq (Bottom to Top)

5.4 The Specification of Common Operations

The development of specifications in VDM can be very complex. It is not

our intention to develop a tool that produces all possible specifications, this

is beyond the current research. However, there are several specifications

that are common across applications. These include the specification of

operations that add items, delete items and list items that satisfy require-

ments. In this section we describe how such specifications are generated

once the preceding step has identified the data types.

The general format of an operation specification in VDM is as follows:



Chapter 5: Invariants and the Specification of Operations 126

OPER (input : In t) output :Out t

ext . . .

pre ...input ...

post ...input ...output ...

The first line, where OPER is the name of the operation, is called the

signature of the operation. The signature is composed of the name of the

operation, a list of input parameters and their types and a list of results

and their types. The second line records those state variables to which an

operation has external access. These state variables can be read only (rd)

or read and write (wr) and the name of each variable is followed by its type.

The pre-condition of an operation records assumptions about the arguments

and state variables to which it is to be applied. The post-condition is an

assertion that is required to hold after the operation is applied.

We can view this format as a template that needs to be filled to obtain

a specification. In general, the template used is dependent on the operation

required and the data type identified. Thus for adding an item to a map

we provide a template which specifies that:

• there is one input argument (the item to be added), and one output

argument (the identifier of the item added),

• a state variable with write access (the map),

• no precondition,

• a postcondition that records the requirement that the identifier of the



Chapter 5: Invariants and the Specification of Operations 127

added item is new and that the map has been updated appropriately.

The information required for naming the arguments and the types are

readily available as a result of the previous phase that identifies the types.

Thus for the data type defined in section 5.3 and for convenience repeated

here:

Stock t = Item ID -→m Item t

Item t :: description : Description t

unit cost : Cost t

quantity : Quantity t

reorder-level : Level t

we describe how the required information is extracted knowing that we want

to specify an operation that adds an item to a map.

• The name of the operation is obtained by the kind of function (add,

delete, update), concatenated to the item on which the operation is

carried out. In this example we want to specify an operation that adds

an item to a stock map. Hence the operation is named: ADD-ITEM .

• There is only one input argument which should be of the same type

as the range of the map. We use the first three letters of the name of

the data type to generate a name for the argument.

• There is only one output argument and this should be of the same

type as the domain of the map.



Chapter 5: Invariants and the Specification of Operations 128

• There is a state variable with write access to the map (Stock).

• There is no precondition.

• As postcondition, we check that the identifier of the added item (the

output argument) is not a member of the domain of the map and

update the map by adding the new element (the input argument).

Hence, the template can be filled to obtain the following specification

for adding an item into a stock system:

ADD-ITEM (ite: Item t) r : Item-ID

ext wr stock : Stock t

pre true

post r 6∈ dom
↼−−
stock ∧ stock =

↼−−
stock ∪ {r 7→ ite}

where a hook over a state variable that has write access denotes the prior

value of the variable. For example,
↼−−
stock denotes the map before the item

is added.

Specifying the same operation for a sequence or a set does not differ too

much from that for a map. The other category of common operations are

updating and selection of elements. The specification of these operations

differs from the previous ones in that the user has to supply extra infor-

mation to specify the operations. For example to select a list of elements

we need to know the condition for selection. This condition is supplied by

the user as an English sentence which is translated into LFL. For the stock

problem a condition such as:



Chapter 5: Invariants and the Specification of Operations 129

Which items are to be reordered.

is first transformed to logical form:

wh(X&item(X),be(X,reorder(X)))

Then the condition reorder(X ) can be extracted from the focus of the logical

form and used to construct the following post-condition.

r = {iteide 7→ stock(iteide) | iteide ∈ dom stock ∧ reorder(stock(iteide))}

As this example shows, there is no guarantee that the condition gener-

ated is fully defined. In this case the user has to define the function reorder .

If instead the user had typed:

The quantity in stock is less than or equal to the reorder level.

The system would have produced the logical form:

the(quantity(X , stock), the(reorder(level(Y )),

is less then or equal(X ,Y )))

which leads to the post-condition:

r = {iteide 7→ stock(iteide) | iteide ∈ dom stock ∧
is less than or equal to(quantity(stock(iteide)), level(stock(iteide)))}

Notice that in this example the user provided enough information for the

system to generate a complete post-condition. In general, the template that

generates the specification that lists specific items of a map specifies that:

• There is no input argument. The output argument is a map of the

same type,



Chapter 5: Invariants and the Specification of Operations 130

• a state variable with read access is used,

• there are no preconditions,

• a postcondition that ensures that the output variable consists of those

items that belong to the map and which satisfy the given condition

for selection.

Hence, the specification of the operation that lists the items of stock whose

quantity in stock is less than or equal to the minimum reorder level is:

LIST -ITEM () r : Stock t

ext rd stock : Stock t

pre true

post r = {iteide 7→ stock(iteide) | iteide ∈ dom stock ∧
is less than or equal

to(quantity(stock(iteide)), level(stock(iteide)))}

The template that generates the specifications of an operations that

deletes an item from a map specifies that:

• There is one input argument which represents the identifier of the

item to be removed from the map.

• A state variable with write access containing the map.

• A precondition that requires that the identifier of the item to be re-

moved should be a member of the domain of the map.



Chapter 5: Invariants and the Specification of Operations 131

• A postcondition that ensures that the new value of the state variable

reflects the deletion made.

Hence the specification of an operation that removes an item from the stock

is:

DELETE -ITEM (i : Item ID)

ext wr stock : Stock t

pre i ∈ dom
↼−−
stock

post stock = {i} −¢ ↼−−
stock

We also adopt a similar template based approach to obtain specifications

for sequences. The specifications of operations for a sequence will be given

in the case study presented in the next chapter.



6

A Case Study: A Flight Planning

Data Base

6.1 Introduction

So far, the thesis has presented an approach based on natural language

analysis that aims to:

1. Detect ambiguities and incompleteness in natural language require-

ments.

2. Produce an entity relationship diagram from the requirements.

3. Produce a VDM data type from the entity relationship model.

4. Produce formal specifications for some common operations.

132



Chapter 6: A Case Study: The Flight Planning Data Base 133

The technique and approach developed have mainly been justified on the-

oretical grounds. In this chapter, we describe how the approach works in

practice. The approach is implemented in Prolog-2 [23] and we use a case

study to illustrate the kind of problem the approach is currently able to

handle.

It would be easy to “cheat” and concoct a toy example for which our ap-

proach appears to work. Hence, we have used a case study that was written

without prior knowledge of this work and was written independently from

us. The case study was provided by the Department of Systems Computing

of British Aerospace Ltd [30]. It concerns the planning of a route for a flight

from one point to another. The route is planned as a number of waypoints.

Each waypoint is identified by a number and a grid reference. Each grid

reference contains the longitude and latitude of the waypoint. The original

text is given at the end of this thesis.

It is worth repeating that the approach has the following phases:

1. Natural language analysis.

2. Identification of the entity relationship diagrams.

3. Development of the VDM data type.

4. Definition of invariants and the specification of operations.

In the next section we describe some pre-processing that is necessary. We

then describe the manner in which the implemented system proceeds through

each of these phases when it is presented with the case study.



Chapter 6: A Case Study: The Flight Planning Data Base 134

6.2 Pre-Processing of the Specification Text

Bearing in mind that the current implementation does not handle conjunc-

tions and pronoun references, we resolve these two problems manually. Each

sentence containing a conjunction is decomposed into simple sentences and

each pronoun reference is resolved before proceeding to the automatic anal-

ysis of the text.

For example, the following sentence of the original text:

As such the navigation system of a simple aircraft can be considered to

comprise:

• the pilot’s / navigator’s map and route plan,

• a heading indicator,

• the pilot’s / navigator’s visual sense.

is decomposed into the following simple sentences:

1. The system of a simple aircraft can be considered to comprise the map

of the pilot.

2. The system of a simple aircraft can be considered to comprise the plan

of the pilot.

3. The system of a simple aircraft can be considered to comprise a heading

indicator.



Chapter 6: A Case Study: The Flight Planning Data Base 135

4. The system of a simple aircraft can be considered to comprise the visual

sense of the pilot.

As another example, the following sentence:

This information is used as input to a flight planning software package

which calculates route tracks, distance between waypoints, heading for given

wind conditions, non-violation of controlled airspace, etc.

is decomposed into:

1. The information is used as input to a flight planning software package.

2. The flight planning software package calculates the route tracks.

3. The flight planning software package calculates the distance between way-

points.

4. The flight planning software package calculates the heading for the wind

conditions.

5. The flight planning software package calculates the non-violation of a

controlled airspace.

Another problem that our system cannot deal with at the moment is the

analysis of tables. In the current specification, some information is given in

a tabular format. This table is replaced by text which describes the table.

Once these transformations are done, the text is ready for analysis. The

transformed text together with an indication of the transformations is given

in appendix A.



Chapter 6: A Case Study: The Flight Planning Data Base 136

6.3 Natural Language Analysis

The aim of the natural language analysis module is to detect sentences that

are ambiguous or incomplete. These deficiencies are either detected during

this phase or during the construction of the entity relationship diagrams.

The text is analysed sentence by sentence. Some sentences may be ambigu-

ous and therefore produce several interpretations. For example the following

sentence:

The pilot draws the tracks of the route on the map.

produces three different logical forms which correspond to the following

different meanings:

1. “The pilot draws (the tracks of the route) on the map”. That is, the

information is drawn on the map.

2. “The pilot draws (the tracks of the route on the map)”. That is, the

tracks are already on the map and the drawing is done somewhere

else.

3. “The pilot draws the tracks of (the route on the map)”. That is, the

route is given on the map and its tracks are drawn somewhere.

The sentence:

An example route is planned for a flight from Blackpool to Doncaster

also produces three different logical forms which correspond to the three dif-

ferent interpretations of the string P-NP-P-NP described in section 2.3.3.



Chapter 6: A Case Study: The Flight Planning Data Base 137

At the end of the analysis phase, each sentence is associated with a

unique interpretation. That is, a unique logical form is associated with

each English sentence. When several interpretations are produced for a

sentence, the user is asked to remove the ambiguity by choosing the correct

interpretation.

In this case study, out of the 41 sentences analysed:

• Twenty one are not ambiguous.

• Eleven sentences produced two interpretations because they contain

a preposition.

• Nine sentences produced more than two interpretations.

Of the nine sentences that produced more than two interpretations, the

system produces reasonable interpretations for seven of them. However,

two of the sentences resulted in unexpected interpretations. These sentences

are:

1. The planned tracks will assure the safe arrival of the aircraft over don-

caster when they are flown in correct order by the aircraft.

2. The pilot chooses the waypoints from Blackpool to Doncaster in a com-

plex aircraft.

The first sentence resulted in 32 interpretations and the second sentence

resulted in 12 interpretations. If we analyse the first sentence, we find that

it is composed of two conjuncts, three prepositional phrases and “by” which



Chapter 6: A Case Study: The Flight Planning Data Base 138

is also interpreted as a preposition. The parser produces 32 different syntax

trees and each syntax tree results in a logical form. The same scenario occurs

in the second sentence where the presence of three prepositional phrases

produces 12 syntax trees and each syntax tree is translated to a logical

form. These two examples clearly demonstrate that the use of multiple

prepositions can lead to sentences that are difficult to interpret by a natural

language understanding system. Not surprisingly, such sentences are also

difficult for a human reader. Indeed, style checkers, like the one employed

by Grammatik discourage the use of multiple prepositions. In our approach

we could encourage the user to reformulate those sentences that have more

than five interpretations. The next phase concerns the identification of the

entity relationship models.

6.4 Identification of the Entity Relationship Model

The identification of the entity relationship model is achieved in three stages.

As a reminder, these three stages are:

1. Identification of the list of entities;

2. Identification of a list of relations involving the entities previously

identified;

3. The different relations are combined to form the entity relationship



Chapter 6: A Case Study: The Flight Planning Data Base 139

model.

Given the logical forms of the sentences, the system produces a list of

entities. For the current case study, the system identifies 55 entities. The

complete list of entities is given in appendix E. In general, this list may

include “noisy” entities. Such noisy entities are detected and removed by

the analyst by using problem dependent knowledge.

The next stage is the identification of the relations between the entities.

In this case study, 52 relations are identified and the complete list of these

relations is given in appendix F. These relations are binary relations. Some

degrees are identified automatically by the system. For the present case

study, the system successfully identifies the degrees of 37 relations. The

remaining degrees are identified by the analyst. In general, during the

identification of an entity relationship model, an entity may be related to

many other entities. For example, in this case study the entity “System”

of a simple aircraft is related to the entities: “Map”, “Plan”, “Heading

Indicator” and “Visual Sense”. By combining these relations we obtain

the entity relationship diagram given in figure ??. The complete entity

relationship diagrams are shown in appendix G.

At this stage, the user may notice incomplete parts. For example, ex-

pected relations may not be identified by the system. In this case study the

initial entity relationship model produced does not show a relation between

the entity route and the entity waypoint. From the given text we under-

stand that a route is composed of waypoints but there is no explicit sentence



Chapter 6: A Case Study: The Flight Planning Data Base 140

Simple Aircraft

Map

Pilot System

Visual SensePlan Heading Indicator

use

comprise

Figure 6.1: The ER Diagram of a simple aircraft

giving this relationship. Hence, we could add the following sentence:

The route is composed of waypoints

which would reduce the incompleteness of the specifications as well as the

entity relationship model.

Another important observation is that the system produces an entity

relationship model that is broad. Indeed as appendix G shows, there are

several independent entity relationship models produced for the case study.

We believe that this broad view, also encouraged by approaches like Multi-

view [5], is an important benefit of our approach. For instance in this case

study, the analyst has to consider which part of the system he wants to

translate into formal specifications.



Chapter 6: A Case Study: The Flight Planning Data Base 141

6.5 Identification of the VDM Data type and the Spec-

ification of Operations

In this case study suppose we are interested in modelling the route planning

system. We need to select this diagram by giving the name of its root

entity, “Route” in this case. The diagram is a one-to-many relationship

between the entity “Route” and the entity “waypoint”. This relation can

be modelled either as a map from waypoint identifier to waypoint or as a

sequence of waypoints. Therefore there is a need to check if the order in

which the waypoints are defined is important. Here, suppose that the user

confirms that the order is important, then the “Route” is modelled as a

sequence of waypoints and the following data type is produced:

Route t = Waypoint t∗

The system will now prompt the user to provide any invariant that is

associated with the data type. Given the following sentence as an invariant:

All adjacent waypoints are different

The following invariant is produced:

inv-Route t(route) 4

∀i1 ∈ inds route · ∀i2 ∈ inds route ·
adjacent(i1, i2) ⇒ different(route(i1), route(i2))

The specification of the functions adjacent and different should be pro-

vided by the user. The last stage of the approach is the specification of the



Chapter 6: A Case Study: The Flight Planning Data Base 142

operations. The templates defined result in the following specifications:

(a) Adding a Waypoint

ADD-WAYPOINT (way :Waypoint t)

ext wr route : Route t

pre true

post route =
↼−−−
route _̀ [way ]



Chapter 6: A Case Study: The Flight Planning Data Base 143

(b) Deleting a Waypoint

DELETE -WAYPOINT (i :N)

ext wr route : Route t

pre i ∈ inds (
↼−−−
route)

post ∃route1:Route t · ∃route2:Route t ·
↼−−−
route = route1 _̀ [route(i)] _̀ route2 ∧

route = route1 _̀ route2

(c) Updating a Waypoint

UPDATE -WAYPOINT (way :Waypoint t , i :N)

ext wr route : Route t

pre i ∈ inds
↼−−−
route

post route(i) = way ∧ ∀j ∈ inds (
↼−−−
route) · i 6= j

⇒ route(j ) =
↼−−−
route(j )

6.6 Summary

The case study shows the kind of problems that the current implementation

of the system can handle. The system has helped to:



Chapter 6: A Case Study: The Flight Planning Data Base 144

• Identify sentences that are ambiguous. Out of 41 sentences, 20 sen-

tences are considered to be ambiguous by the system. All sentences

but two have produced expected interpretations.

• Identify incomplete aspects of the original text. In this case study

only one incompleteness was identified, but in other examples many

others may be present.

• Produce a list of entities and a list of relations of the case study.

Fifty-five entities and 52 relations were identified.

• Identify the degrees of relations. The degrees of 37 relations were

identified by the system. The user helped to identify the remaining.

• Associate an appropriate VDM data type with the route entity rela-

tionship diagram.

• Translate an invariant written in English into an acceptable data type

invariant.

• Produce the specifications of the some operations.

In summary, the results obtained for the case study are encouraging and

most of the objectives set for the current system have been illustrated by

the case study.



7

Related Research

7.1 Introduction

A number of systems have been developed in order to improve and give

a rational method for requirements engineering. In this chapter, we de-

scribe several approaches to requirements engineering and contrast them

with our approach. We first begin by providing the context in which these

approaches are based. Then we define the characteristics of the require-

ments engineering process that will form the ground for comparing the

different approaches. The requirements engineering process is composed of

three distinct activities that are [56]:

• requirements elicitation and capture,

• agreement,

145



Chapter 7: Related Research 146

• requirements representation.

The elicitation and capturing phase concerns the identification of all

parties that are sources of requirements, gathering a “wish list” of each party

and the documentation and refinement of the wish lists. The integration of

the different wish lists may raise some conflicts. In the agreement phase,

one attempts to remove the conflicts. In practice, an absolute agreement

is rarely reached, and one talks about the degree of agreement that may

be reached. At the beginning of the requirements process, each person

involved has his own view of the system. Some requirements may be shared

among the team, but others may not be shared. The aim of the agreement

phase becomes one of increasing the common system requirements and to

find a compromise for the remaining requirements so that a consistent set

of requirements is identified. Even if a consistent set of requirements is

not identified, this process aids our understandings of the problem. The

third activity is the representation of the requirements. There are three

categories of representations: informal representations such as arbitrary

graphics and natural language, semi-formal languages such as SADT, JSD

and ER diagrams and formal languages such as VDM and Z.

Most of the systems for requirements engineering concentrate on the

representation phase. Some systems take the form of languages devel-

oped to represent the requirements. Examples of these systems are the

PSL/PSA system [66], the structured analysis language (SA) [59] and the

SREM project [1, 10].



Chapter 7: Related Research 147

Another category of systems attempt to automatically analyse natural

language requirements. Among these systems are the SAFE project [7, 6],

the SPAN system [57], Williams’ work [70] and Comer’s work [19].

Some other systems aim to transform semi-formal representations to

formal ones [?, 25, 63]. Most recent systems use artificial intelligence tech-

niques such as knowledge based systems to analyse requirements [13, 42,

36, 58].

Thus, there are several different approaches to requirements engineering,

each addressing a different aspect of the requirements engineering problem.

To give a reasonably broad view of the approaches, in the next section we

summarise the following four systems:

• The PSL/PSA system.

• The SAFE project.

• The SPAN project.

• The Analyst Assist system.

Thus, the PSL/PSA system addresses issues of documentation and the cir-

culation of information during the requirements phase. The SAFE project

was among the first systems to suggest the use of a computer tool for the

transformation of informal requirements into formal ones. The SPAN sys-

tem deals with the analysis of natural language requirements documents.

Finally, the Analyst Assist system raises issues of requirements elicitation.



Chapter 7: Related Research 148

In the last section we compare and contrast these four systems with the

approach proposed in this thesis.

7.2 The PSL/PSA System

When developing a system, it is necessary to record the changes made as it

evolves through the different phases. Teichroew [66] argued that in practice

the emphasis in documentation is on describing the final form of the sys-

tem to help its maintenance instead of documenting each phase. Teichroew

stated that this deficiency occurs because the communications from one

activity to another are accomplished either by the same person, by oral

communication between the project developers or by notes which are dis-

carded after their use. The Problem Statement Language/Problem State-

ment Analyser (PSL/PSA) system developed by Teichroew and Hearshey

[66] therefore has the following aims:

1. The results of each activity in the system development process are

recorded in a computer processable format as they are produced.

2. A computerised data base is used to maintain all the basic data about

the system.

3. The computer is used to produce hard copy documentation when re-

quired.



Chapter 7: Related Research 149

PSL is a text language which is used for describing processes, data flow

diagrams and the hierarchical decomposition of processes and data. PSL is

based on a model of a general system. This model can then be specialised

for a particular class of systems. The model of a general system states that

a system consists of things which are called objects (not to be confused with

the objects in Object Oriented Design). These objects may have properties

and each of these properties may have property values. The objects may be

connected and the connections are called relationships. The general model

is specialised for an information system by allowing the use of only a limited

number of predefined objects, properties and relationships.

The objective of PSL is to be able to express the information which

commonly appears in system definition reports in a syntactically analysable

form. The PSL statements are input into PSA which store all the statements

in an internal form in a data base. The stored requirements can be modified,

updated and deleted. PSA uses the stored information to generate a variety

of reports and documents including:

• Data dictionaries.

• Data flow diagrams.

• Data flow inconsistency reports. These concern the information gen-

erated but not used or information used but not generated.

• Data base modification reports. These constitute a record of changes

that have been made.



Chapter 7: Related Research 150

• Reference reports. These present the information in the data base

in various formats. The reference report gives the summaries of all

processes referencing an item of information.

• Analysis reports. These present a summary of information.

The PSL/PSA system has received a lot of attention and has undertaken

further development. PSL/PSA was also used in more then 140 projects in-

cluding numerous large systems [21]. Davis [21] reported that unfortunately

the PSL/PSA system was often used for only design, mainly the decomposi-

tion of software into its actual subcomponents, rather than for requirements

analysis. PSL/PSA provides no help with requirements elicitation or with

the transformation of informal requirements to formal representations.

7.3 The SAFE Project

The SAFE project was one of the earliest systems to suggest the idea of

analysing requirements written in natural language. The goal of the system

was to create a formal operational specification from the informal input.

The input text was manually transformed into a parenthesized form to

avoid syntactic parsing problems.

To generate an operational specification the SAFE system first needs

to identify a complete specification. In general, the sentences provided by



Chapter 7: Related Research 151

a user will be incomplete and will only contain part of the information

required to construct an operational specification.

To obtain a complete specification, SAFE generates all possible com-

pletions for each sentence. This is done by using the information in the

parsed sentences to identify additional information from a predefined do-

main model. In general this can result in several possible complete versions

for each sentence. SAFE then associates one completion with each sentence

so that it is able to generate the ‘complete’ specification. This is done by

using a depth first searching strategy. That is, the first completion of the

first sentence is considered; then the first completion of the second sentence

is brought into consideration. If these are not consistent, then the second

completion of the second sentence is considered and so on. If none of the

completions of the second sentence are consistent with the first completion

of the first sentence then SAFE backtracks and considers the second com-

pletion of the first sentence. This process continues until it manages to find

consistent completions for all sentences.

The completions of the sentences are then used to produce specifica-

tions in a language called AP2. The AP2 language, which is developed by

the authors, is based on structured English and has loops and conditions.

Specifications written in the AP2 language behave as programs and are

executable.

The successful use of the SAFE system is dependent on the predefined

domain model and the process of obtaining the completions. In general, the

completion process, can be computationally expensive since it employs a



Chapter 7: Related Research 152

blind search strategy. It is therefore not surprising that the largest specifi-

cation analysed by SAFE consists of twelve sentences. Further, the authors

do not give details of:

• how partial descriptions were detected,

• how the decisions to complete the partial descriptions are taken,

• the format of the knowledge base for the domain model,

• how the knowledge base is updated by the informal specifications,

• how it handles contradictory sentences.

In summary the SAFE project has not considered the problem of re-

quirements elicitation but has tackled the problem of interpreting natural

language requirements with an attempt to resolve partial descriptions and

presented a tool to help the production of specifications from natural lan-

guage specifications.

7.4 The SPAN System

The SPAN system was developed at the University of Liverpool by Man-

der and was reported in Presland’s work [57]. This system was aimed at

analysing English sentences provided by a user. The system is composed of

three parts: a dictionary, a preparation program and an analysis program.



Chapter 7: Related Research 153

The dictionary contains the definitions of words. The preparation pro-

gram is used to check if the root of a word is contained in the dictionary.

The system is intended to minimise the number of words stored in the dic-

tionary, so only roots of words are used as entries in the dictionary. Once

the specifications are prepared, the analysis program will check if the sen-

tences are grammatically correct with respect to the grammar developed

and attempts to find ambiguities.

The primary mechanism for detecting ambiguities is to use specific rules

based on experience. For example, one rule states that each sentence con-

taining a preposition is ambiguous.

This research brought two new features compared to previous attempts.

First, it used free format English text as input and produced the analysis

without any context knowledge. This makes it a general approach and if

the dictionary is complete enough, there is nothing to add if a new problem

is tackled. Second, the SPAN system aimed to detect system structure by

identifying the actions and entities present in a specification.

The approach used by SPAN is limited to the analysis of natural lan-

guage requirements. The result of the analysis is the production of case

frames for requirements documents. The approach has not considered the

production of formal specification from the case frames and has not consid-

ered the problem of requirements elicitation.



Chapter 7: Related Research 154

7.5 The Analyst Assist

The Analyst Assist (AA) system developed by Loucoupoulos and Champion

[41, 42] is aimed to:

• capture informal requirements and improve the transition from infor-

mal requirements capture to a semi-formal representation.

• specify and document requirements using the JSD method.

• validate the specification by prototyping and animating the specifica-

tion.

The authors argue that knowledge of the application domain is very

important to build the specification of a system. The analyst has to ex-

press clearly the domain’s properties and constraints that, with some non-

functional requirements will form the complete requirements specification.

The approach developed is based on the behaviour of an experienced ana-

lyst. An experienced analyst is able to make analogical reasoning, manage

the hypothesis, plan, set goals and strategies [67]. It has been proposed

that these skills are supported by some knowledge bases which fall under

the following categories:

• Organisation knowledge.

• Functional domain knowledge.

• Application domain knowledge.



Chapter 7: Related Research 155

• Development method knowledge.

The AA system is composed of a domain knowledge base, a user fact

base, a JSD knowledge base and a JSD specification base. The user fact

base is used to store concepts of the application before they are translated

into a JSD specification. This data base is populated using a fact input

tool. This tool is guided by an elicitation dialogue formulator which makes

use of the domain base and the current state of the user fact base. The

JSD specification base holds an evolving system specification represented in

JSD. A JSD method advisor acts as an assistant to the translation of the

concepts to a JSD specification and provides consistency checking on the

evolving JSD specification.

Requirements elicitation in AA is based on the premise that an analyst

should be able to define anything of the modelled application domain as a

potential concept of interest and allow an analyst to reason with all infor-

mation that is perceived to be relevant so that a system specification can

be constructed.

AA provides three tools for fact gathering, a text analyser, a hierarchy

editor and the elicitation dialogue formulator. The text analyser allows

the user to highlight keywords and phrases from a document. Single words

are stored in the user fact base as concepts and the phrases are used to

record relations between concepts. These concepts include those identified

by the analyst and those known from the system from the domain knowledge

base. The concepts known to the system are described in terms of their



Chapter 7: Related Research 156

relationships with other concepts and are arranged in a concept hierarchy.

The hierarchy editor allows an analyst to classify concepts by placing them

directly in the hierarchy, thus by-passing the text editor. In situations

where more information about a concept is needed, and cannot be obtained

by using the previous tools, the elicitation dialogue formulator asks the user

some questions to elicit the information.

The AA system has considered the problem of requirements elicitation.

However, the AA system has not considered the analysis of informal re-

quirements and the detection of ambiguities or the development of formal

specifications.

7.6 Comparison and Contrast

So how do these four systems compare with our approach? First it should

be clear that they all emphasise different aspects of the requirements pro-

cess and tackle different problems. Bearing this in mind, we contrast the

approaches by placing their contribution in the overall context of the re-

quirements engineering process. That is, we place the contributions in the

context of: requirements elicitation and capture, agreement, and require-

ments representation.



Chapter 7: Related Research 157

Requirements Elicitation

The Analyst Assist system brought a significant contribution to the require-

ments elicitation activity by using a domain knowledge base. This knowl-

edge base guides the analyst through the requirements process prompting

him with questions that will give important information and also helping

him to obtain a better understanding of the organisation. Among the four

systems we have analysed, AA is the only system which significantly con-

tributes to this activity.

The primary contribution of the PSL/PSA system is its ability to keep

track of the history of changes. Although this contribution may appear

minor, in our opinion this is a very important aspect of requirements engi-

neering and was a significant contribution given today’s quality assurance

standards [62].

Our own approach is not aimed primarily at the elicitation stage and has

not duplicated these existing contributions. However, using our approach

can help an analyst gain a better understanding of the overall system and

as illustrated in the case study, can help to identify incompleteness.



Chapter 7: Related Research 158

Agreement

The aim of the agreement activity is to reach a consistent, unambiguous

specification that is agreed by all parties. None of the reviewed systems

appear to tackle this aspect of requirements engineering. Apart from pro-

totyping, the subproblem of reaching agreement between the informal re-

quirements and the semi-formal requirements or formal requirements have

only been partially addressed by the SAFE system.

The primary contribution of SAFE was to suggest the possibility of

analysing natural language text. However it had several deficiencies includ-

ing:

• the absence of a syntax analyser,

• the method adopted to resolve partial descriptions is inadequate for

large specifications.

The SPAN system also aimed to identify ambiguities in natural lan-

guage specifications. Unlike SAFE, it did attempt to automatically parse

sentences. However, it detects ambiguities by using specific rules based on

experience. These rules are based on the syntax of the sentences and do not

consider the meaning of the sentences.

Our approach improves upon these two systems. It is a more general

way of detecting ambiguities. Unlike SPAN, we do not use specific rules

but instead produce different logical forms for ambiguous sentences. This

enables an analyst to resolve any ambiguities at the semantic level. Our



Chapter 7: Related Research 159

approach also produces entity relationship models and formal specifications

which may be useful to an analyst.

Requirements Representation

The last activity of the requirements phase is the transformation of infor-

mal requirements to formal or semi-formal representations. The PSL/PSA

system and the SPAN systems do not consider this issue.

The AA system transforms the informal requirements into a semi-formal

specification represented in JSD. A text analyser allows an analyst to high-

light keywords and phrases which may form the concepts and relations be-

tween the concepts. A JSD method advisor helps to produce a JSD speci-

fication from the concepts and the relationships identified.

Our approach proceeds in two stage. First it produces an entity rela-

tionships model by detecting the entities and relationships between them.

Second the entity relationship model is translated into a VDM data type.

Our approach is the only one to produce formal data types. Our approach

also produces the specifications of some common operations in VDM. We

view the specification of operations as templates that need to be filled. The

information used to fill the templates is obtained from the definition of the

data types and the nature of the operations.

The SAFE project also tried to produce specifications from English ones.



Chapter 7: Related Research 160

The language defined by the authors (AP2) results in executable specifi-

cations, and is not based on first order logic or any other mathematical

formalism. It is a language which combines structured English with the

characteristics of a programming language. The specification language used

is therefore not like today’s formal specification languages. In contrast, our

approach generates specifications in VDM.



8

Conclusion and Future Work

8.1 Conclusion

Requirements specifications provide the foundation upon which a system

should be developed. Failure to provide a specification that accurately re-

flects the requirements of a system will result in the development of the

wrong system. Further, errors such as ambiguities, that occurr during the

requirements phase are the most expensive to correct. The requirements

analysis phase also involves groups of people with different backgrounds.

Communication between these groups may be difficult and misunderstand-

ings and ambiguities may arise. Different representations are preferred by

both the users and the developers. Therefore much attention should be

paid to the requirements phase in order to reduce the number of errors and

161



Chapter 8: Conclusions and Future Work 162

to ensure a correct transition from one representation to another. This re-

search aims to support some activities carried out during the requirements

specification phase. In particular, the objectives of the approach taken in

this thesis are:

• To identify ambiguities in natural language documents.

• To produce entity relationship models from the analysed natural lan-

guage specifications.

• To produce VDM data types together with their invariants.

• To produce some common specification in the VDM language.

Our approach utilises the results achieved in natural language under-

standing to analyse requirements written in natural language. We use Mc-

Cord’s approach to natural language processing. This approach proceeds

in two phases. First, it produces an analysis based on the grammar rules

of the language, and then uses a semantic analysis phase to produce state-

ments in a meaning representation language called logical form language.

We have successfully used this approach to detect ambiguities present in

English text. An ambiguous sentence results in several interpretations and

logical forms. An analyst is therefore made aware of ambiguous sentences

and given the alternative possible interpretations. To utilise McCord’s ap-

proach we needed to improve its interpretation of the definite articles and

the indefinite articles. Our improvement enables these articles to be trans-

lated to more appropriate quantifiers.



Chapter 8: Conclusions and Future Work 163

The result of this analysis forms the basis for the development of the

remaining parts of our approach. An entity relationship model is first pro-

duced which is then translated to a VDM data type. The first step in

producing an entity relationship model is to identify a list of entities and

the relationships between them. We base our identification process on the

view that entities are described by nouns and relations by verbs. Our ap-

proach identifies a list of entities with their relations. The verbs are used as

names for the relations. The quantifiers associated with the nouns help to

determine the degrees of the relations. The list of relationships is filtered by

an analyst to remove noisy entities. The analyst also has to provide the de-

grees for relations if they are not successfully identified by the system. The

combination of the entities and relationships form the entity relationship

model.

Our approach then translates the entity relationship model into a VDM

data type. If the system has identified one-to-one or many-to-many rela-

tionships, then we require the simplifications of these relationships before

we proceed to their translation into a VDM data type. One-to-many rela-

tions can be modelled by representing the many part by a set, a sequence, or

a map. The last representation is preferred by many authors, so by default

our system selects the map representation. However, if the analyst specifies

that the order of the elements is important then the sequence representation

is adopted. Many-to-one relationships are modelled as maps.

The definition of VDM data types is usually followed by the definition

of their invariants. We have developed an approach that generates some



Chapter 8: Conclusions and Future Work 164

invariants which are provided as English sentences. A general form is pro-

duced as a first order logic expression. The system then specialises the

general form so that it applies to the specified data type.

Once invariants are defined, our approach generates the specification of

some common operations. The approach views the specification of an oper-

ation in VDM as a template that needs to be filled to obtain a specification.

The template used is dependent on the operation required and the data

types identified. Hence, a template used to generate an operation to add

an item into a map differs from a template that generates the removal of

an item from a sequence.

To test our approach, we have implemented it in Prolog-2 and tested

it on a case study. The case study was written without prior knowledge

of this work and was written independently from us. The case study was

provided by British Aerospace Ltd and concerns the planning of a route for

a flight. The case study brought out the kind of problem that the current

implementation of the system can handle. The system helps to:

• Identify sentences that are ambiguous.

• Identify incomplete aspects of the original text.

• Produce a list of entities and relationships that gives a broad view.

• Identify the degrees of relations.

• Associate an appropriate VDM data type to the route entity relation-

ship diagram.



Chapter 8: Conclusions and Future Work 165

• Translate an invariant written in English into an acceptable VDM

data type invariant.

• Produce the specifications of some operations.

We have contrasted our approach with other contributions to require-

ments analysis. Most systems have contributed to the representation and

tracking of requirements. Such systems enable an analyst to develop a spec-

ification in a consistent manner with the aid of existing (predefined) knowl-

edge. In contrast, our contribution has been to provide an approach that

could take written requirements as input and produce formal specifications

in VDM.

In comparison to other systems that also take natural language text

as input, we have developed a more general approach and have utilised

natural language analysis techniques better. For example in comparison to

Presland’s work:

1. The production of the different interpretations of an ambiguous sen-

tence using logical forms is a more general process. In Presland’s work

specific rules are defined to detect ambiguities at the syntactic level.

2. The use of the quantifiers helps to determine the degrees of relations.

In addition, Presland’s work does not produce formal data types or tackle

the problem of invariants.

To conclude, the approach proposed in this thesis is a significant con-

tribution to research in the area of requirements analysis. It contributes



Chapter 8: Conclusions and Future Work 166

to two main activities. First, it helps to improve requirements and helps

to identify ambiguities. Second our approach helps the transition from one

specification representation to another. The first transition is from informal

requirements to semi-formal ones (English to ER diagrams), the second from

semi-formal representations to formal ones (ER diagrams to VDM specifi-

cation). Based on our initial case studies, the approach proposed is very

promising. However, to experiment with a broader range of specifications

our implementation needs to be improved. In the next section we suggest

some improvement to the current implementation.

8.2 Future Work

Several aspects of the current implementation of the approach can be im-

proved:

1. To handle a wider range of sentences the natural language analyser

should be improved so that it can handle pronoun identification and

conjunction properly. Dahl’s system for treating coordinations [20]

and Paskiewicz’s work on anaphoric pronouns [50] may provide a basis

for solving these problems.

2. The resolution of conjunctions in the natural language analyser will

also help with the production of exclusive relationships in the entity



Chapter 8: Conclusions and Future Work 167

relationship diagrams.

3. Our system needs to improve in order to handle a wider range of

specifications. For example, specifications involving time have not

been addressed by the approach presented in this thesis.



A

The Aircraft Problem

In this appendix, we present the input text to the natural language analyser.

A key is associated to some sentences to show how they are obtained from

the original text. The explanation of these keys is:

Ci : All the sentences referred by Ci are the result of the split of the

the same conjunct.

T : The sentence is added to replace a table.

PR : A pronoun reference is encountered and resolved.

The text is:

1- An example route is planned for a flight from blackpool to

doncaster.

2- The route is planned as a number of the discrete tracks

between the intermediate waypoints.

3- The planned tracks will assure the safe arrival of the

168



Appendix A: The Aircraft Problem 169

aircraft over doncaster when they are flown in correct order

by the aircraft.

4- The pilot may have unnecessarily flown through a storm.(C1)

5- The pilot may have unnecessarily flown through a controlled

airspace.(C1)

6- The aircraft may hit an obstacle. (C2)

7- The aircraft may hit another aircraft.(C2)

8- The pilot of a simple aircraft without a sophisticated

electronic navigation system would be cleared to undertake a

risky flight.

9- The pilot chooses the visible waypoints from the air.

10- The pilot draws the tracks of the route on the map.

11- The pilot steers a heading giving the required tracks along

the ground.

12- The pilot scans the ground for the visible features.(PR)

13- The pilot verifies the visible features against the map.

14- The system of a simple aircraft can be considered to

comprise the map of the pilot.(C3)

15- The system of a simple aircraft can be considered to

comprise the plan of the pilot.(C3)

16- The system of a simple aircraft can be considered to

comprise a heading indicator.(C3)

17- The system of a simple aircraft can be considered to

comprise the visual sense of the pilot.(C3)



Appendix A: The Aircraft Problem 170

18- The system of a simple aircraft contrasts with the system of

a complex aircraft.

19- A complex aircraft uses a whole range of the electronic

equipment to support the navigation.

20- A complex aircraft uses a computer-assisted flight

planning.(C4)

21- A complex aircraft uses an inertial navigation system.(C4)

22- A complex aircraft uses a radar.(C4)

23- A complex aircraft uses a moving map display.(C4)

24- A complex aircraft uses a route display.(C4)

25- A complex aircraft uses a waypoint display.(C4)

26- A complex aircraft uses an autopilot.(C4)

27- The pilot chooses the waypoints from blackpool to doncaster

in a complex aircraft.

28- The pilot identifies each waypoint with a number. (C5)

29- The pilot identifies each waypoint with a grid reference.(C5)

30- The grid reference contains the latitude.(T)

31- The grid reference contains the longitude.(T)

32- The information is used as input to a flight planning

software package.

33- The flight planning software package calculates the route

tracks.(C6)

34- The flight planning software package calculates the distance

between waypoints.(C6)



Appendix A: The Aircraft Problem 171

35- The flight planning software package calculates the heading

for the wind conditions.(C6)

36- The flight planning software package calculates the

non-violation of a controlled airspace. (C6)

37- The derived information may be listed for the pilot to record

on the map.(C7)

38- The derived information may be transferred to a cassette

tape.(C7)

39- The cassette tape is used to load the navigation database on

the aircraft.

40- The autopilot uses the data to fly the aircraft according to

the plan of the pilot.

41- The route is composed of waypoints.(T)



B

The English Grammar

In this appendix, we present the implementation of the syntax analyser.

In the first section, we describe the syntax analyser module. The syntax

module is composed of six parts which are:

1. Definition of strong terminals.

2. Clause rules.

3. General rules of postmodifiers.

4. Verb modifiers.

5. Noun phrase rules.

6. Noun modifiers.

In the following subsections, we list each of these rules.

172



Appendix B: The English Grammar 173

B.1 Definition of Strong Nonterminals

/* definition of strong nonterminals */

strongterminal(s).

strongterminal(np).

strongterminal(det).

strongterminal(relclause1).

strongterminal(compclause1).

strongterminal(verbph).

strongterminal(avp).

strongterminal(pp).

strongterminal(subclause1).

strongterminal(sentcomp).

B.2 Clause Rules

This subsections contains the general rules of the English grammar used for

the current implementation. In general, a grammar rule has the following

form:

rule_head --> rule_body1:rule_body2.



Appendix B: The English Grammar 174

The arrow operator is used to separate a rule head from a rule body. The

colon operator is used to represent the left-to-right sequencing, and it can

be read as “followed by”. The mlgtrans module described below will trans-

form these grammar rules into Prolog clauses. In general each rule of the

grammar will be augmented by a number of parameters when translated to

Prolog clauses. A term preceded by the + (which always represent a call to

a terminal) means that the terminal should be removed from the list rep-

resenting the sentence. A term preceded by the % symbol means that the

clause is not augmented by parameters when translated to a Prolog clause.

The complete list of rules used for the current implementation together with

the module mlgtrans are listed below.

\* *\

\* mlgtrans module *\

\* *\

\* The general procedure gtrans will transform a grammar rule

into a Prolog term. The procedure gtrans will first transform

the head of the grammar rule by calling the procedure

mlgtransh, than it will call the procedure mlgtransb which

transforms the body of the grammar rule. *\

gtrans(A-->B,Clause) :- !,

mlgtransh(A,Head,Syn0,Syn,Mods1,Mods2,X,Y),



Appendix B: The English Grammar 175

mlgtransb(B,Body,Syn0,Syn,Mods1,Mods2,X,Y).

gtrans(Clause,Clause).

\* transforms the head of a grammar rule *\

mlgtransh(A,Head,syn(Pred:Arg1,Mods),Syn,Mods,[],X,Y) :-

cons([Pred|Args],A) ,

strongterminal(Pred) ,!,

(Args=[Arg1|_],! ; Arg1=[]) ,

append(Args,[Syn,X,Y],Args1) ,

cons([Pred|Args1],Head).

mlgtransh(A,Head,Syn0,Syn,Mods1,Mods2,X,Y) :-

cons([Pred|Args],A) ,

append(Args,[Syn0,Syn,Mods1,Mods2,X,Y],Args1) ,

cons([Pred|Args1],Head).

\* different rules to transform the body of a grammar rule *\

mlgtransb(B1:B2,(C1,C2),S0,S2,M,N,X,Y) :- ! ,

mlgtransb(B1,C1,S0,S1,M,P,X,Z) ,

mlgtransb(B2,C2,S1,S2,P,N,Z,Y).

mlgtransb(+T,true,S,S,M,M,[T|X],X) :- !.



Appendix B: The English Grammar 176

mlgtransb(Op-LF,true,S,S,[(Op-LF)|M],M,X,X) :- !.

mlgtransb([],true,S,S,M,M,X,X) :- !.

mlgtransb(%P,P,S,S,M,M,X,X) :- !.

mlgtransb(!,!,X,X,X,X,X,X) :- !.

mlgtransb(NT,NT1,S,S,[Syn|M],M,X,Y) :-

cons([Pred|Args],NT) ,

strongterminal(Pred) ,!,

append(Args,[Syn,X,Y],Args1) ,

cons([Pred|Args1],NT1).

mlgtransb(NT,NT1,Syn0,Syn1,M,N,X,Y) :-

cons([Pred|Args],NT) ,

append(Args,[Syn0,Syn1,M,N,X,Y],Args1) ,

cons([Pred|Args1],NT1).

mlgtransb(Lab^NT,NT1,Syn0,Syn,M,M,X,Y) :-

cons([Pred|Args],NT) ,

Syn0 = syn(Lab0,Mods0),

ShiftSyn = syn(Lab0,[syn(Lab,Mods)|Mods]),

append(Args,[ShiftSyn,Syn,Mods,[],X,Y],Args1) ,

cons([Pred|Args1],NT1).

cons([Term],Term) :- atomic(Term),! .

cons(List,Term) :- Term=..List.



Appendix B: The English Grammar 177

append([],X,X).

append([X|Y],Z,[X|Z1]) :- append(Y,Z,Z1).

/* */

/* Clause rules */

/* */

/* A sentence does not always start by a noun phrase.

To deal with the different beginnings of a sentence

a general procedure called topic is defined. The

procedure clause1 deals with the verb phrase of the

sentence. *\

s --> topic(Topsubj,Qaux,Topic):

clause1(Topsubj,Qaux,Topic).

topic(Topsubj,Qaux,hold(X)) --> np(X):

topic1(Topsubj,Qaux,X).

topic(Topsubj,Qaux,hold(X)) --> there(X):

topic1(Topsubj,Qaux,X).

topic(Topsubj,Qaux,[]) --> adverbial:

topic1(Topsubj,Qaux,Top).



Appendix B: The English Grammar 178

topic(t,pre(V),hold(X)) --> +V:

%finiteaux(V):

np(X):

( B << F)-yesno(B,F).

topic1(Topsubj,Qaux,Top) --> mood(Top,Mood):

qaux(Mood,Topsubj,Qaux).

mood(_:_:wh,wh) --> [].

mood(_,dcl) --> [].

qaux(dcl,_,[]) --> [].

qaux(wh,f,pre(V)) --> +V : %finiteaux(V).

qaux(wh,t,[]) --> [] .

clause1(Topsubj,Qaux,T) -->

subject(X:Num:_,Topsubj,T,T1):

vp(fin(_,Num,_),active,_,X:Num,Qaux,T1).

subject(X,t,hold(X),[]) --> [].

subject(X,f,T,T) --> np(X).

vp(Infl,Voice,E,X,Qaux,T) -->

v_premods(E):



Appendix B: The English Grammar 179

vhead(Qaux,Infl,E,Y,Slots):

%voice(Voice,Infl,X,Y,Slots,Slots1):

%theme(X,Slots,Z):

postmods(vp,Slots1,State,E,Z,T,[]).

vhead(Qaux,Infl,E,X,Slots) --> getverb(Qaux,V):

%verbf(V,Vinf,Infl):

verb(Vinf,Pred,E,X,Slots):

l-Pred.

getverb([],V) --> +V .

getverb(pre(V),V) --> [].

voice(active,_,X,X,Slots,Slots) :- !.

voice(passive,en,X,Y,Slots,Slots2):- choose(Slot:X,Slots,Slots1),

pfill(Slot),

append(Slots1,[actor:Y],Slots2).

theme(X,Slots,Y) :- member(obj:Y,Slots),!.

theme(X,Slots,Y) :- member(pobj(_):Y,Slots),!.

theme(X,Slots,X).



Appendix B: The English Grammar 180

B.3 General Rules for Postmodifiers

A word may have more than one postmodifier. The filling of the slots for

modifiers is not always done sequentially. Some slots have higher priority

than others and are filled first as in the following two examples:

John gave the book to Mary.

John gave Mary the book

The slot filling of the verb give is:

[obj , iobj ]

In the first sentence the object “the book” appears before the indirect object

“Mary” but in the second sentence, the indirect object appears before the

direct object. The predicate associated with verb give is:

give(john, book ,mary)

To fill the direct object before the indirect object we need to give the direct

object a higher priority over the indirect object. McCord used the notion

of states to determine the priority of fillers. A slot having a higher state

is filled first. The degree of priority is determined by the number of the

symbols # that is associated with the slot filling.

/* */

/* General rules for postmodifiers */

/* */



Appendix B: The English Grammar 181

postmods(Cat,Slots,State,E,Y,T,T2) -->

%choose(Slot:X,Slots,Slots1):

filler(Slot,State,X,Y,T,T1):

%precede(State,State1):

postmods(Cat,Slots1,State1,E,Y,T1,T2).

postmods(Cat,Slots,State,E,Y,T,T1) -->

adjunct(Cat,State,E,Y):

%precede(State,State1):

postmods(Cat,Slots,State1,E,Y,T,T1).

postmods(_,Slots,_,_,_,T,T) --> %satisfied(Slots).

choose(X,[X|L],L).

choose(X,[Y|L],[Y|L1]) :- choose(X,L,L1).

satisfied([Slot:X|T]) :- opt(Slot), satisfied(T) .

satisfied([]):- !.

precede(0,_) :- !.

precede(#X,#Y) :- precede(X,Y) .

/* general filling */



Appendix B: The English Grammar 182

filler(Slot,State,X,Y,Topic,Topic) --> fill(Slot,State,X).

/* virtual filling */

filler(Slot,State,X,_,hold(X),[]) --> vfill(Slot,State,X).

/* for the filling that needs the passing of */

/* the topics T1 and T2 */

filler(Slot,State,X,Y,T,T1) --> tfill(Slot,State,X,Y,T,T1).

/* */

/* The following rules are the verb modifiers */

/* They fill the arguments of the verb predicate */

v_premods(_) --> [].

v_premods(E) --> avp(E).

\* rules for filling an object *\

pfill(obj).

vfill(obj,0,X) --> [].

tfill(obj,# # 0,X,_,T,T) --> np(X).

\* rules for filling an indirect object *\

pfill(iobj).

fill(iobj,# 0,X) --> np(X).



Appendix B: The English Grammar 183

fill(iobj,# # 0,X)--> +to:np(X).

vfill(iobj,# # # 0,X) --> +to.

\* rules for filling a verb in a passive voice *\

opt(actor).

fill(actor,# # 0,X) --> +by : np(X).

vfill(actor,# # # 0,X) --> +by.

tfill(pass, # 0,X,Y,T,T) --> verbph(en,passive,X,Y,T).

\* rules for filling a prepositional phrase *\

fill(pobj(Prep),# # 0,X) --> +Prep :np(X).

vfill(pobj(Prep),# # # 0,X) --> +Prep.

\* rule for filling an infinite complement *\

tfill(infcomp,# # 0,X,Y,T,[]) --> +to:verbph(inf,active,X,Y,T).

\* rule for filling a finite complement *\

tfill(fincomp,# # 0,X,Y,T,[]) --> compclause1(X,T).



Appendix B: The English Grammar 184

\* remaining rules *\

tfill(con(Conj),# # 0,X,_,T,[])-->+Conj:%conj(Conj,_,_,_):s.

tfill(auxcomp,# # 0,X,Y,T,T) --> verbph(Infl,active,X,Y,T).

fill(indcmp,# 0,X,_,T,T) --> np(X).

tfill(scomp, # # 0,X,_,T,T) --> sentcomp(X).

tfill(sta, # # 0,X,_,T,T) --> st(X).

st(X) --> +State:

%sta(State,X,Pred,Op,L):

Op-Pred.

adjunct(vp,# # 0,E,_) --> pp(P ,@P).

adjunct(vp,# # 0,E,_) --> avp(E).

adjunct(vp,# # 0,E,X) --> subclause1(X,P,@P).

subclause1(Sub:_,X,Op) --> +Conj:

%conj(Conj,Pred,Y,X):

Op-Pred:

verbph(Infl,Voice,Y,Sub,T).

subclause1(Sub:_,X,Op) --> +Conj:



Appendix B: The English Grammar 185

%conj(Conj,Pred,Y,X):

+PNoun:

%defpron(PNoun,_,_,_,_):

Op-Pred:

verbph(Infl,Voice,Y,Sub,T).

sentcomp(X) --> subst(X)-t:s.

verbph(Infl,Voice,X,Y,T) --> subst(X)-t:

vp(Infl,Voice,E,Y,[],T).

compclause1(X:_,T) --> subst(X)-t :

binder(Topsubj):

clause1(Topsubj,[],T).

avp(E) --> qualifiers(E):

+Adv:

%adv(Adv,Pred,Op,E):

Op - Pred.

qualifiers(_) --> [].

binder(f) --> +that.

binder(f) --> +whether .



Appendix B: The English Grammar 186

binder(t) --> [].

B.4 Noun Phrase Rules

/* */

/* The following rules define noun phrases */

/* */

np(Feas) --> propernoun(X0,Num):

np2(X0,Num,def,[],Feas).

np(Feas) --> pronoun(X0,Num,DType):

np2(X0,Num,DType,[],Feas).

np(Feas) --> det(DFeas):

np1([],DFeas,Feas).

np1(X0,X1:Num:DType,Feas) --> n_premods(X1):

nhead(Num,X1,Slots):

%prefill(Slots,X0,Slots1):

np2(X1,Num,DType,Slots1,Feas).



Appendix B: The English Grammar 187

np2(X0,Num,DType,_,Feas) --> poss:

(np:X0:Num:DType)^np1(X0,_:_:DType,Feas).

np2(X,Num,DType,Slots,X:Num:DType) -->

postmods(np,Slots,State,Num,X,[],[]).

np(X) --> n_premods(X):

n_compl(X).

np(X) --> n_compl(X).

n_compl(Nsg) --> +Noun:

%nounf(Noun,Nsg,Num):

%noun(Nsg,Pred,X,Slots).

det(X:Num:DType) --> +D : dt(D,B,F,P,X,Num,DType):

F/B-P.

propernoun(X:Type,Num) --> +Noun:

%propern(Noun,Noun0,Num,Type):



Appendix B: The English Grammar 188

l - (X = Noun0).

pronoun(X,Num,DType) --> +PNoun :

%defpron(PNoun,Pred,X,Num,DType):

l - Pred.

pronoun(X,Num,DType) -->

+PNoun:

%indefpron(PNoun,Op-LF,Pred,X,Num,DType): Op - LF:

l-Pred.

nhead(Num,X,Slots) --> +Noun:

%nounf(Noun,Nsg,Num):

%noun(Nsg,Pred,X,Slots):

l-Pred.

prefill(Slots,[],Slots).

prefill([(Slot:X)|Slots],S,Slots).

/* */

/* The following rules are define the fillers for */

/* noun phrases */



Appendix B: The English Grammar 189

n_premods(X) --> [].

n_premods(X) --> adjph(X,_,_) : n_premods(X).

adjunct(np,_,_,X) --> pp(X,r).

adjunct(np,_,_,X) --> partvp(X).

adjunct(np,_,Num,X) --> relclause1(X,Num).

adjunct(np,State,E,X) --> adjph(X,State,E).

pp(X,Op) --> +Prep:

prep(Prep,Pred,Y,X):

Op-Pred:

np(Y).

partvp(X) --> vp(ing,active,_,X,[],[]).

partvp(X) --> vp(en,passive,_,X,[],[]).

relclause1(X,Num) --> relpron(Topsubj).

clause1(Topsubj,[],hold(X:Num:wh)).

relpron(_) --> +who.



Appendix B: The English Grammar 190

relpron(_) --> +that.

relpron(_) --> +which.

relpron(f) --> +whom.

relpron(f) --> +[].

adjph(X,State,E) --> adjective(X,Slots,E):

postmods(adjph,Slots,State,E,X,[],[]).

adjective(X,Slots,E) --> +Adj:

%intenadj(Adj,_,P,Op,Rel,Slots):

Op-P.

adjective(X,Slots,E) --> +Adj:

%extenadj(Adj,X,P,Op,Rel,Slots):

Op-P.

tfill(nobj,# # 0,X,Y,T,[]) --> +of:np(X).

vfill(nobj,# # 0,X,Y,T,[]) --> +of.

opt(npobj(Prep)).

tfill(npobj(Prep),# # 0,X,Y,T,[]) --> +Prep:np(X).

vfill(npobj(Prep),_,X) --> +Prep.



Appendix B: The English Grammar 191

tfill(nfincomp,# # 0,X,Y,T,[]) --> compclause1(X,T).

tfill(nouncomp,# # 0,X,Y,T,[]) --> np(X).



C

The Lexicon for the Case Study

C.1 Determiners

Determiners have the following format:

dt(D ,B ,F ,P ,X ,Num,DType)

Where D denotes the determiner, B and F means that this determiners

needs a base and a focus. P is the predicate associated with the determiner.

X is the marker variable associated with the determiner and finally DType

is the type of the determiner. A list of the determiners used in our approach

is given below.

dt(a,B,F,ex(B,F),_,sg,ex2) --> [].

dt(all,B,F,all2(B,F),_,pl,all2) --> [].

dt(an,B,F,ex(B,F),_,sg,ex2) --> [].

192



Appendix C: The lexicon for the Case Study 193

dt(another,B,F,another(B,F),_,_,ex2) --> [].

dt(any,B,F,all1(B,F),_,_,all1) --> [].

dt(each,B,F,all1(B,F),_,sg,all1) --> [].

dt(how,B,F,how_many(X,B&F),X:_,_,wh) --> + many .

dt(some,B,F,ex(B,F),_,_,ex2) --> [].

dt(the,B,F,the(B,F),_,_,ex1) --> [].

dt(this,B,F,the(B&point_to(B),F),_,_,ex1) --> [].

dt(these,B,F,the(B,F),_,pl,ex2) --> [].

dt(which,B,F,wh(X,B&F),X:_,_,wh) --> [].

C.2 Nouns

A noun has two entries to the lexicon:

1. The first entry has the following form:

nounf (Noun1,Noun,Number)

The argument Noun1 indicates the form under which the noun ap-

pears in the text. The argument Noun2 indicate the singular form of

the noun. The argument Number indicates the number of the noun

(singular or plural).

2. The second entry has the following form:

noun(Noun,Pred ,Type,Postmods)



Appendix C: The lexicon for the Case Study 194

The argument Noun is obtained from the previous entry. The ar-

gument Pred is the predicate associated with the noun. The third

argument determines the Type of the noun and the fourth argument

represents the list of the noun postmodifiers.

The entries used for the case study are:

nounf(air,air,sg).

nounf(aircraft,aircraft,sg).

nounf(airspace,airspace,sg).

nounf(arrival,arrival,sg).

nounf(autopilot,autopilot,sg).

nounf(conditions,condition,pl).

nounf(data,data,sg).

nounf(database,database,sg).

nounf(device,device,sg).

nounf(display,display,sg).

nounf(distance,distance,sg).

nounf(diversion,diversion,sg).

nounf(emergency,emergency,sg).

nounf(equipment,equipment,sg).

nounf(event,event,sg).

nounf(features,feature,sg).

nounf(flight,flight,sg).



Appendix C: The lexicon for the Case Study 195

nounf(ground,ground,sg).

nounf(indicator,indicator,sg).

nounf(information,information,_).

nounf(input,input,sg).

nounf(latitude,latitude,sg).

nounf(level,level,sg).

nounf(longitude,longitude,sg).

nounf(map,map,sg).

nounf(message,message,sg).

nounf(navigation,navigation,sg).

nounf(’non-violation’,’non-violation’,sg).

nounf(number,number,sg).

nounf(obstacle,obstacle,sg).

nounf(occurence,occurence,sg).

nounf(package,package,sg).

nounf(pilot,pilot,sg).

nounf(plan,plan,sg).

nounf(planning,planning,sg).

nounf(processing,processing,sg).

nounf(program,program,sg).

nounf(radar,radar,sg).

nounf(range,range,sg).

nounf(record,record,sg).

nounf(reference,reference,sg).



Appendix C: The lexicon for the Case Study 196

nounf(result,result,sg).

nounf(route,route,sg).

nounf(’route-points’,’route-point’,pl).

nounf(sens,sens,sg).

nounf(store,store,sg).

nounf(storm,storm,sg).

nounf(stream,stream,sg).

nounf(system,system,sg).

nounf(tape,tape,sg).

nounf(track,track,sg).

nounf(tracks,track,pl).

nounf(visibility,visibility,sg).

nounf(waypoint,waypoint,sg).

nounf(waypoints,waypoint,pl).

nounf(wind,wind,sg).

noun(air,air(X),X:air_t,[]).

noun(aircraft,aircraft(X),X:aircraft_t,[]).

noun(airspace,airspace(X),X:airspace_t,[]).

noun(arrival,arrival(X,P),X:arrival_t,[nobj:P]).

noun(autopilot,autopilot(X),X:autopilot_t,[]).

noun(condition,condition(X),X:condition_t,[]).

noun(data,data(X),X:data_t,[]).

noun(database,database(X),X:database_t,[]).



Appendix C: The lexicon for the Case Study 197

noun(device,device(X),X:device,[]).

noun(display,display(X),X:display_t,[]).

noun(distance,distance(X),X:distance_t,[]).

noun(diversion,diversion(X),X:diversion_t,[]).

noun(emergency,emergency(X),X:emergency_t,[]).

noun(equipment,equipment(X),X:equipment_t,[]).

noun(event,event(X,P),X:event_t,[nobj:P]).

noun(feature,feature(X),X:feature_t,[]).

noun(flight,flight(X),X:flight_t,[]).

noun(ground,ground(X),X:ground_t,[]).

noun(heading,heading(X),X:heading_t,[]).

noun(identifier,identifier(X),X:identifier_t,[]).

noun(indicator,indicator(X),X:indicator_t,[]).

noun(information,information(X),X:information_t,[]).

noun(input,input(X),X:input_t,[]).

noun(latitude,latitude(X),X:latitude_t,[]).

noun(longitude,longitude(X),X:longitude_t,[]).

noun(map,map(X,P),X:map_t,[nobj:P]).

noun(map,map(X),X:map_t,[]).

noun(navigation,navigation(X),X:navigation_t,[]).

noun(’non-violation’,’non-violation’(X,P),X:violation_t,[nobj:P]).

noun(number,number(X,P),X:identifier_t,[nobj:P]).

noun(number,number(X),X:identifier_t,[]).

noun(obstacle,obstacle(X),X:obstacle_t,[]).



Appendix C: The lexicon for the Case Study 198

noun(package,package(X),X:package_t,[]).

noun(pilot,pilot(X,P),X:pilot_t,[nobj:P]).

noun(pilot,pilot(X),X:pilot_t,[]).

noun(plan,plan(X,P),X:plan_t,[nobj:P]).

noun(planning,planning(X),X:planning_t,[]).

noun(program,program(X),X:program_t,[]).

noun(radar,radar(X),X:radar_t,[]).

noun(range,range(X,P),X:range_t,[nobj:P]).

noun(record,record(X),X:record_t,[]).

noun(route,route(X),X:route_t,[]).

noun(’route-point’,’route-point’(X),X:route-pt_t,[]).

noun(sens,sens(X,P),X:sens_t,[nobj:P]).

noun(store,store(X),X:store_t,[]).

noun(storm,storm(X),X:storm_t,[]).

noun(system,system(X,P),X:system_t,[nobj:P]).

noun(system,system(X),X:system_t,[]).

noun(tape,tape(X),X:tape_t,[]).

noun(track,track(X,P),X:track_t,[nobj:P]).

noun(track,track(X),X:track_t,[]).

noun(visibility,visibility(X),X:visibility_t,[]).

noun(waypoint,waypoint(X),X:waypoint_t,[]).

Proper nouns have the following entries:

propern(Noun,Noun0,Num,Type)



Appendix C: The lexicon for the Case Study 199

Where Noun is the form under which the proper noun appear in the text,

Noun0 is the predicate associated with the proper noun. Num and Type

determine respectively the number and the type of the proper noun. The

entries for the case study are:

propern(blackpool,blackpool,_,_).

propern(doncaster,doncaster,_,_).

Definite pronouns have the following entries:

defpron(PNoun,Pred ,X ,Num,Type)

Where PNoun is the pronoun, Pred is the predicate associated with the

pronoun. X is the marker variable and Num and Type are respectively the

number and the type of the pronoun.

defpron(he,he(X),X:male,sg,def).

defpron(i,i(X),X:human,sg,pers1).

defpron(it,it(X),X:_,sg,def).

defpron(they,they(X),X:_,pl,pers3).

C.3 Verbs

Verbs have the following two entries in the lexicon :

1. The first entry has the form:

verbf (Form, Infinitive, Inflection)



Appendix C: The lexicon for the Case Study 200

Where Form is the form under which the verb appears in the text.

The Infinitive is the infinitive form of the verb and Inflexion inflection

of the verb.

2. The second entry has the form:

verb(Infinitive,Predicate,Type, Subject marker , Slots)

The first argument is obtained from the first entry. The argument,

Predicate determines the predicate associated with the verb and Type

is the type of the verb. The argument subject marker determines the

marker of the subject associated with the verb. Slots is the list of

verb post modifiers.

The entries for the case study are:

verbf(arrive,arrive,fin(_,_,pres)).

verbf(are,be,fin(_,_,pres)).

verbf(assure,assure,inf).

verbf(be,be,fin(_,_,_)).

verbf(calculates,calculate,fin(pers3,sg,pres)).

verbf(choose,choose,fin(pers3,sg,pres)).

verbf(chooses,choose,fin(pers3,sg,pres)).

verbf(cleared,clear,fin(_,_,past)).

verbf(composed,compose,fin(pers3,pl,pres)).

verbf(comprise,comprise,inf).

verbf(considered,consider,fin(_,_,past)).



Appendix C: The lexicon for the Case Study 201

verbf(contains,contain,fin(pers3,sg,pres)).

verbf(contrasts,contrast,fin(pers3,sg,pres)).

verbf(draw,draw,inf).

verbf(draws,draw,fin(pers3,sg,pres)).

verbf(flown,fly,en).

verbf(fly,fly,inf).

verbf(hit,hit,fin(_,_,pres)).

verbf(identified,identify,en).

verbf(identifies,identify,fin(pers3,sg,pres)).

verbf(is,be,fin(pers3,sg,pres)).

verbf(listed,list,fin(_,_,past)).

verbf(load,load,inf).

verbf(plans,plan,fin(pers3,sg,past)).

verbf(planned,plan,fin(_,_,past)).

verbf(planning,plan,ing).

verbf(record,record,inf).

verbf(required,require,fin(_,_,past)).

verbf(scans,scan,fin(pers3,sg,pres)).

verbf(specified,specify,fin(_,_,past)).

verbf(steers,steer,fin(pers3,sg,pres)).

verbf(support,support,inf).

verbf(transferred,transfer,fin(_,_,past)).

verbf(undertake,undertake,inf).

verbf(updated,update,en).



Appendix C: The lexicon for the Case Study 202

verbf(used,use,en).

verbf(used,use,fin(_,_,past)).

verbf(uses,use,fin(pers3,sg,pres)).

verbf(verifies,verify,fin(pers3,sg,pres)).

verb(arrive,arrive_at(X,Y),_,X,[obj:Y]) --> +at.

verb(assure,assure(X,Y),_,X,[obj:Y]) --> [].

verb(be,be(X,Y),-,x,[obj:Y]) --> [].

verb(be,be(X,P,Q),_,X,[auxcomp:P,infcomp:Q]) --> [].

verb(be,be(X,P),_,X,[auxcomp:P]) --> [].

verb(be,be_passive(X,P),_,X,[pass:P]) --> [].

verb(be,is_available_as(X,Y),_,X,[obj:Y]) --> +available: +as.

verb(be,be(X,P,Q),_,X,[fincomp:P,infcomp:Q]) --> [].

verb(be,be(X),_,X,[sta:X]) --> [].

verb(calculate,calculate(X,Y),_,X,[obj:Y]) --> [].

verb(choose,choose(X,Y),_,X,[obj:Y]) --> [].

verb(clear,clear(X,P),_,X,[infcomp:P]) --> [].

verb(compose,compose_by(X,Y),_,X,[obj:Y]) --> +by.

verb(comprise,comprise(X,Y),_,X,[obj:Y]) --> [].

verb(consider,consider(X,P),_,X,[infcomp:P]) --> [].

verb(contain,contain(X,Y),_,X,[obj:Y]) --> [].

verb(contrast,contrast_with(X,Y),_,X,[obj:Y]) --> +with .

verb(draw,draw(X,Y),_,X,[obj:Y]) --> [].

verb(fly,fly(X,Y),_,X,[obj:Y]) --> [].



Appendix C: The lexicon for the Case Study 203

verb(fly,fly(X,Y,P),_,X,[obj:Y,pobj(in):P]) --> [].

verb(fly,fly_through(X,P),_,X,[obj:P]) --> +through .

verb(help,help(X,P),_,X,[obj:Y,infcomp:P]) --> [].

verb(hit,hit(X,Y),_,X,[obj:Y]) --> [].

verb(identify,identify(X,Y),_,X,[obj:Y]) --> [].

verb(list,list_for(X,Y,P),_,X,[obj:Y,infcomp:P]) --> +for .

verb(load,load(X,Y),_,X,[obj:Y]) --> [].

verb(plan,plan(X,Y),_,X,[obj:Y]) --> [].

verb(plan,plan(X,Y),_,X,[pobj(for):Y]) --> [].

verb(plan,plan_as(X,Y),_,X,[obj:Y]) --> +as.

verb(record,record(X,P),_,X,[scomp:P]) --> [].

verb(require,require(X,P),_,X,[infcomp:P]) --> [].

verb(record,record_on(X,P),_,X,[obj:P]) --> +on .

verb(scan,scan(X,Y),_,X,[obj:Y]) --> [].

verb(steer,steer(X,Y),_,X,[obj:Y]) --> [].

verb(support,support(X,Y),_,X,[obj:Y]) --> [].

verb(transfer,transfer(X),_,X,[]) --> [].

verb(undertake,undertake(X,Y),_,X,[obj:Y]) --> [].

verb(update,update(X,Y),_,X,[obj:Y]) --> [].

verb(use,use(X,P),_,X,[obj:P]) --> [] .

verb(use,use(X,P),_,X,[infcomp:P]) --> [] .

verb(use,use_as(X,Y),_,X,[obj:Y]) --> +as .

verb(use,use(X,Y,P),_,X,[obj:Y,infcomp:P]) --> [].

verb(verify,verify(X,Y),_,X,[obj:Y]) --> [].



Appendix C: The lexicon for the Case Study 204

C.4 Prepositions, Adverbs and Adjectives

Prepositions have the following entries:

prep(Prep,Pred ,X ,Y )

Where Prep is the preposition, Pred is the predicate associated with the

preposition. X and Y are respectively the first and second argument of the

preposition. The entries for the case study are:

prep(according,according_to(X,P),X,P) --> +to.

prep(against,against(X,P),X,P) --> [].

prep(along,along(X,P),X,P) --> [].

prep(by,by(X,P),X,P) --> [].

prep(between,between(X,P),X,P) --> [].

prep(during,during(X,P),X,P) --> [].

prep(for,for(X,P),X,P) --> [].

prep(from,from(X,Q),X,Q) --> [].

prep(in,in(P,Q),P,Q) --> [].

prep(on,on(P,Q),P,Q) --> [].

prep(over,over(X,P),X,P) --> [].

prep(to,to(X,Q),X,Q) --> [].



Appendix C: The lexicon for the Case Study 205

prep(through,through(P,Q),_,_) --> [].

prep(with,with(P,Q),P,Q) --> [].

prep(without,without(P,Q),P,Q) --> [].

Adverbs have the following entries:

adv(Adv ,Pred ,Op,Type)

Where Adv is the adverb, Pred is the predicate associated with the adverb.

Op is the logical operator associated with the adverb and Type is the type

of the adverb. The entries for the case study are:

adv(can,can(P),@P,_).

adv(may,may(P),@P,_).

adv(not,not(P),@P,negation).

adv(still,still(P),@P,_).

adv(unnecessarily,unnecessarily(P),@P,_).

adv(would,would(P),@P,_).

Intensional adjectives have the following entries:

intenadj(Adj,X,Pred,@X,Type,Mods)

Where Adj is the adjective, X is the variable marker. Pred id the predicate

associated with the adjective. @X is the logical operator associated with

the adjective, note here it is fixed because an intensional adjective always

fill a slot of a noun. Type is the type of the adjective and Mods is the list

of the adjective postmodifiers. The entries for the case study are:



Appendix C: The lexicon for the Case Study 206

intenadj(adjacent,X,adjacent(X),@X,binary,[]).

intenadj(’computer-assisted’,X,’computer-assisted’(X),@X,nr,[]).

intenadj(discrete,X,discrete(X), @X,nr,[]).

intenadj(electronic,X,electronic(X),@X,nr,[]).

intenadj(flight,X,flight(X),@X,nr,[]).

intenadj(grid,X,grid(X),@X,nr,[]).

intenadj(heading,X,heading(X),@X,nr,[]).

intenadj(inertial,X,inertial(X),@X,nr,[]).

intenadj(information,X,information(X),@X,nr,[]).

intenadj(intermediate,X,intermediate(X),@X,nr,[]).

intenadj(map,X,map(X),@X,nr,[]).

intenadj(minimum,X,minimum(X),@X,nr,[]).

intenadj(moving,X,moving(X),@X,nr,[]).

intenadj(navigation,X,navigation(X),@X,nr,[]).

intenadj(navigated,X,navigated(X),@X,nr,[]).

intenadj(planning,X,planning(X),@X,nr,[]).

intenadj(route,X,route(X),@X,nr,[]).

intenadj(software,X,software(X),@X,nr,[]).

intenadj(sophisticated,X,sophisticated(X),@X,nr,[]).

intenadj(visual,X,visual(X),@X,nr,[]).

intenadj(waypoint,X,waypoint(X),@X,nr,[]).

intenadj(wind,X,wind(X),@X,nr,[]).

Extensional adjectives have the following entries:



Appendix C: The lexicon for the Case Study 207

intenadj(Adj,X,Pred,r,Type,Mods)

Where Adj is the adjective, X is the variable marker. Pred id the predicate

associated with the adjective. r is the logical operator associated with the

adjective, note here it is fixed because an intensional adjective always right

conjoined to a noun. Type is the type of the adjective and Mods is the list

of the adjective postmodifiers. The entries for the case study are:

extenadj(complex,X,complex(X),r,nr,[]).

extenadj(controlled,X,controlled(X),r,nr,[]).

extenadj(derived,X,derived(X),r,nr,[]).

extenadj(electronic,X,electronic(X),r,nr,[]).

extenadj(example,X,example(X),r,nr,[]).

extenadj(good,X,good(X),r,nr,[]).

extenadj(planned,X,planned(X),r,nr,[]).

extenadj(required,X,required(X),r,nr,[]).

extenadj(risky,X,risky(X),r,nr,[]).

extenadj(safe,X,safe(X),r,nr,[]).

extenadj(simple,X,simple(X),r,nr,[]).

extenadj(unique,X,unique(X),r,nr,[]).

extenadj(visible,X,visible(X),r,nr,[]).

extenadj(whole,X,whole(X),r,nr,[]).

extenadj(wrong,X,wrong(X),r,nr,[]).

Conjunctions have the following entries:

conj (Conj ,Pred ,X ,Y )



Appendix C: The lexicon for the Case Study 208

Where Conj is the conjunction, Pred is the predicate associated with the

conjunction. X and Y are respectively the first and second argument of

the conjunction.

conj(and,Q\&P,P,Q).

conj(but,but(P,Q),P,Q).

conj(when,when(P,Q),P,Q).

sta(different,X,different(X),@X,[]).



D

Semantic Analysis

/* */

/* semantic interpretation */

/* ------------------------ */

/* A call to synsem will associate an augmented semantic item

(ASI) to a syntactic element. This operation is done in

three stages. First a recursive interpretation of the

daughters is performed. Then synsem calls the procedure

reorder which will get a permutation of the ASIs. A set of

ASI is reordered if the surface order does not to the

intended logical order dictated by the quantifiers. The

last call of synsem is made to the procedure modlist

which will combine the elements of the ASIs with one

another through the processes of modification and reshaping */

209



Appendix D: Semantic Analysis 210

synsem(syn(Label,Mods),Sems2,Sems3) :-

synsemlist(Mods,Sems),

reorder(Sems,Sems1),

modlist(Sems1,sem(Label,id,t),Sem,Sems2,[Sem|Sems3]).

synsemlist([syn(Label,Mods0)|Mods],Sems1) :-

synsem(syn(Label,Mods0),Sems1,Sems2),

synsemlist(Mods,Sems2).

synsemlist([(Op-LF)|Mods],[sem(terminal,Op,LF)|Sems]) :-

synsemlist(Mods,Sems).

synsemlist([],[]).

/* */

/* reorder procedure */

/* ----------------- */

reorder([X|L],R1) :-

reorder(L,R),

insert(X,R,R1).

reorder([],[]).



Appendix D: Semantic Analysis 211

insert(X,[Y|L],[Y|L1]) :-

prec(X,PX),

prec(Y,PY),

( PY > PX),!,

insert(X,L,L1).

insert(X,L,[X|L]) .

prec(Sem,N) :- dtype(Sem,DT),dtprec(DT,N),!.

prec(Sem,1).

dtype(sem(np:_:_:DT,_,_),DT) :- !.

dtype(sem(det:_:_:DT,_,_),DT):- !.

dtype(sem(_,_,t),t) :- ! .

dtype(sem(_,_,dcl(_,_)),dcl) :- !.

dtype(sem(_,_,yesno(_,_)),yesno) :- !.

dtype(sem(Cat:_,_,_),Cat).

dtype(sem(terminal,_,_),terminal).

dtprec(t,10).

dtprec(wh,10).

dtprec(ex1,4).

dtprec(dcl,6).

dtprec(yesno,6).

dtprec(all1,6).



Appendix D: Semantic Analysis 212

dtprec(def,6).

dtprec(all2,4).

dtprec(ex2,4).

dtprec(terminal,2).

dtprec(avp,3).

dtprec(pp,4).

dtprec(subclause1,3).

modlist([Sem|Sems],Sem0,Sem2,Sems1,Sems3):-

modlist(Sems,Sem0,Sem1,Sems2,Sems3),

modify(Sem,Sem1,Sem2,Sems1,Sems2).

modlist([],Sem,Sem,Sems,Sems).

modify(Sem,Sem1,Sem1,[Sem2|Sems],Sems) :-

raise(Sem,Sem1,Sem2),!.

modify(sem(_,Op,LF),sem(Label,Op1,LF1),sem(Label,Op2,LF2),Sems,Sems) :- mod(Op-LF,Op1-LF1,Op2-LF2).

mod(focal(B,P,Op)-B,Sem1,Sem2) :- !,

mod(Op-P,Sem1,Sem2).

mod(Sem,id-_,Sem) :-!.

mod((B1<F1)-P1,focal(P1,P2,Op)-F1,focal(B1,P2,Op)-t) :-!.

mod(((B:E)<F)-P , @ E-F,focal(B,P,l)-t) :- ! .

mod((B<F)-P,Op-F,focal(B,P,Op)-t) :- !.

mod(@P-Q,focal(B,P,Op)-B,Op-Q) :- !.

mod(Op-P,focal(B,Q,Op1)-P1,focal(B,Q,Op2)-P2) :- !,



Appendix D: Semantic Analysis 213

mod(Op-P,Op1-P1 , Op2-P2).

mod(id-P,Sem,Sem).

mod(l-P,Op-Q,Op-(P&Q)).

mod(r-P,Op-Q,Op-(Q&P)).

mod(P/Q-R,Op-Q,@P-R).

mod(@P-Q,Op-P,Op-Q).

mod(subst(P)-t,Op-P,l-t).

mod((P<<Q)-R,Op-Q,focal(P,R,Op)-t) :- !.

mod((P<<Q)-R,focal(B,Q,Op)-B,focal(P,S,Op)-t) :-!.

raise(Sem,Sem1,Sem) :-

label(Sem,L),

label(Sem1,L1),

(L = np,(L1 = np ; L1 = pp ) ;

not(L = terminal) , L1 = verbph ;

L = verbph , L1 = subclause ).

raise(sem(Label,l,poss),sem(np:_,_,_),sem(Label,P/Q,the(Q,P))).

label(sem(L:_,_,_),L).



E

List of Entities for the Case Study

The produced entities have the following form:

(entity(List-of -modifiers):Type)

Where entity is the entity, List-ofmodifiers is the list of the entity modifiers.

This list contains the adjectives and nouns that modifies the entity. Type

is the type of the entity. The list of entities produced for the case study is:

(route(example):route_t)

(flight:flight_t)

(route:route_t)

(track(discrete):track_t)

(number:identifier_t)

(waypoint(intermediate):waypoint_t)

(waypoint:waypoint_t)

(track(planned):track_t)

214



Appendix E: List of Entities for the Case Study 215

(arrival(safe):arrival_t)

(aircraft:aircraft_t)

(airspace(controlled):airspace_t)

(obstacle:obstacle_t)

(system(sophisticated,electronic,navigation):system_t)

(aircraft(simple):aircraft_t)

(flight(risky):flight_t)

(waypoint(visible):waypoint_t)

(air:air_t)

(track:track_t)

(map:map_t)

(track(required):track_t)

(heading:heading_t)

(ground:ground_t)

(feature(visible):feature_t)

(system:system_t)

(plan:plan_t)

(indicator(heading):indicator_t)

(sense(visual):sens_t)

(aircraft(complex):aircraft_t)

(equipment(electronic):equipment_t)

(range(whole):range_t)

(navigation:navigation_t)

(planning(computer-assisted,flight):planning_t)



Appendix E: List of Entities for the Case Study 216

(system(inertial,navigation):system_t)

(radar:radar_t)

(display(moving,map):display_t)

(display(route):display_t)

(display(waypoint):display_t)

(autopilot:autopilot_t)

(number:identifier_t)

(reference(grid):reference_t)

(latitude:latitude_t)

(longitude:longitude_t)

(information:information_t)

(package(flight,planning,software):package_t)

(track(route):track_t)

(distance:distance_t)

(heading:heading_t)

(condition(wind):condition_t)

(airspace(controlled):airspace_t)

(non-violation:violation_t)

(information(derived):information_t)

(tape(cassette):tape_t)

(database(navigation):database_t)

(data:data_t)

(pilot:pilot_t)



F

List of Relations for the Case Study

Each relation has the following format:

d(entity1, entity2, degree), relation name

where entity1 and entity2 are the entities that are related, degree is the

degree of the relation and relation name is the name of the relation.

d(track(discrete):track_t,number:identifier_t,n:1),of

d(route:route_t,number:identifier_t,1:1),plan_as

d(route:route_t,waypoint:waypoint_t,1:n),compose_by

d(aircraft:aircraft_t,arrival(safe):arrival_t,1:1),of

d(track(planned):track_t,arrival(safe):arrival_t,n:1),assure

d(aircraft:aircraft_t,track(planned):track_t,1:n),fly

d(pilot:pilot_t,storm:storm_t,1:1),fly_through

d(pilot:pilot_t,airspace(controlled):airspace_t,1:1),fly_through

d(aircraft:aircraft_t,obstacle:obstacle_t,1:1),hit

217



Appendix F: List of Relations for the Case Study 218

d(aircraft1:aircraft_t,aircraft2:aircraft_t,1:n),hit

d(aircraft(simple):aircraft_t,pilot:pilot_t,1:1),of

d(pilot:pilot_t,flight(risky):flight_t,1:1),undertake

d(pilot:pilot_t,waypoint(visible):waypoint_t,1:n),choose

d(route:route_t,track:track_t,1:n),of

d(pilot:pilot_t,track:track_t,1:n),draw

d(pilot:pilot_t,heading:heading_t,1:1),steer

d(feature(visible):feature_t,ground:ground_t,n:1),scan

d(pilot:pilot_t,feature(visible):feature_t,1:n),verify

d(aircraft(simple):aircraft_t,system:system_t,1:1),of

d(pilot:pilot_t,map:map_t,1:1),of

d(pilot:pilot_t,plan:plan_t,1:1),of

d(system:system_t,plan:plan_t,1:1),comprise

d(system:system_t,indicator(heading):indicator_t,1:1),comprise

d(pilot:pilot_t,sens(visual):sens_t,1:1),of

d(system:system_t,sens(visual):sens_t,1:1),comprise

d(system1:system_t,system2:system_t,1:1),contrast_with

d(equipment(electronic):equipment_t,range(whole):range_t,1:n),of

d(aircraft(complex):aircraft_t,range(whole):range_t,1:1),use

d(aircraft(complex):aircraft_t,

planning(computer-assisted,flight):planning_t,n:1),use

d(aircraft(complex):aircraft_t,

system(inertial,navigation):system_t,n:1),use

d(aircraft(complex):aircraft_t,radar:radar_t,n:1),use



Appendix F: List of Relations for the Case Study 219

d(aircraft(complex):aircraft_t,

display(moving,map):display_t,n:1),use

d(aircraft(complex):aircraft_t,

display(route):display_t,n:1),use

d(aircraft(complex):aircraft_t,

display(waypoint):display_t,n:1),use

d(aircraft(complex):aircraft_t,autopilot:autopilot_t,n:1),use

d(pilot:pilot_t,waypoint:waypoint_t,1:n),choose

d(waypoint:waypoint_t,number:identifier_t,1:1),identify

d(waypoint:waypoint_t,reference(grid):reference_t,n:1),identify

d(reference(grid):reference_t,latitude:latitude_t,1:1),contain

d(reference(grid):reference_t,longitude:longitude_t,1:1),contain

d(package(flight,planning,software):package_t,

track(route):track_t,1:n),calculate

d(package(flight,planning,software):package_t,

distance:distance_t,1:1),calculate

d(condition(wind):condition_t,

heading:heading_t,1:1),calculate

d(airspace(controlled):airspace_t,non-violation:violation_t,1:1),of

d(package(flight,planning,software):package_t,

non-violation:violation_t,1:1),calculate

d(information(derived):information_t,pilot:pilot_t,1:1),list_for

d(tape(cassette):tape_t,database(navigation):database_t,1:1),load

d(autopilot:autopilot_t,data:data_t,1:1),use



Appendix F: List of Relations for the Case Study 220



G

E-R Diagrams for the Case Study

Route

Number

Discrete Tracks

LatitudeLongitude

Waypoints Track

Number Gride Reference

plan_as compose_of of

of

identify identify

contain contain

Figure G.1: The ER Diagram of route planing system

221



Appendix G: E-R Diagrams for the Aircraft Problem 222

Simple Aircraft

Map

Pilot System

Visual SensePlan Heading Indicator

use

comprise

Figure G.2: The ER Diagram of a simple aircraft

F.P.S.P

Route Track

Controlled Airspace

Distance Non Violation

calculate

of

Figure G.3: The ER Diagram of the flight planning software package



Appendix G: E-R Diagrams for the Aircraft Problem 223

Complex Aircraft

I.N. System

Whole Range

Autopilot Data

Map Waypoint Display

G.A.F.P

Radar

Route Display

use

Moving Map Display

use

of

Figure G.4: The ER Diagram of a complex aircraft

Pilot

Waypoint

Heading

Visual Feature

Ground

Map Controlled Airspace

Storm

Visible waypoint

Risky flight

use

Derived Information

Plan

Visual Sense

Track

list-for

steer

choose

verify

scan
draw

of

of

of fly through

fly through

choose

undertake

Figure G.5: The ER Diagram of the pilot



Appendix G: E-R Diagrams for the Aircraft Problem 224

Aircraft Planned Track

Safe Arrival
Obstacle

assure of

fly hit

hit

Figure G.6: The ER Diagram of the tracks

Wind Condition

Heading

Cassette Tape

DB Navigation

Example Route

Flight

calculate load plan

Figure G.7: The remaining diagrams



H

Rules of Logic

∧-I
Ei

E1 ∨ . . . ∨ En

⇒ -I
E1 ` E2; δ(E1)

E1 ⇒ E2

∃-I
s ∈ X ;E (s/x )

∃x ∈ X · E (x )

∀-I
x ∈ XE (x ) `
∀x ∈ X · E (x )

∧-E
E1 ∧ . . . ∧ En

Ei

225



Appendix H: Rules of Logic 226

⇒ -E
E1 ⇒ E2;E1

E2

∃-E
∃x ∈ X · E (x ); y ∈ X ,E (y/x ) ` E1

E1

∀-E
∀x ∈ X · E (X )

E (s/x )



Bibliography

[1] M.W. Alford. A requirements engineering methodology for real-time

processing requirements. IEEE Transactions on Software Engineering,

SE-3(1):60–69, 1977.

[2] J. Allen. Natural language understanding. The Benjamin/Cummings

Publishing Company, Inc, 1987.

[3] ANSI/IEEE. IEEE guide to software requirements specifications, 1984.

[4] C. Ashworth and M. Goodland. SSADM: A practical approach.

McGraw-Hill Book company, 1990.

[5] D.E. Avison and A.T. Wood-Harper. MULTIVIEW: An exploration in

information systems development. Blackweel Scientific Publication, 2

edition, 1990.

[6] R. Balzer. A 15 year perspective on automatic programming. IEEE

Transactions on Software Engineering, SE-11(11):1257–1268, 1985.

227



BIBLIOGRAPHY 228

[7] R. Balzer, N. Goldman, and D. Wile. Informality in program specifi-

cation. IEEE Transactions on Software Engineering, SE-4(2):94–103,

1978.

[8] A. Barr and E. A. Feigenbaum, editors. Understanding Natural Lan-

guage, volume 1 of The Handbook of A.I. Pitman, 1981.

[9] D.R. Barstow. Knowledge-Based program construction. North Holland,

1979.

[10] T.E. Bell, D.C. Bixler, and M.E. Dyer. An extendable approach to

computer-aided software requirements. IEEE Transactions on Software

Engineering, SE-3(1):49–60, 1977.

[11] D. Benyon. Information and data modelling. Blackwell Scientific Pub-

lications, 1990.

[12] B.W. Boehem. Improving software productivity. IEEE Computer,

20(9):43–58, 1987.

[13] A. Borgida, S. Greenspan, and J. Mylopoulos. Knowledge represen-

tation as the basis for requirements specifications. IEEE Computer,

18(4):82–90, 1985.

[14] D.S. Bowers. From data to data base. Van Nostrand reinhold (U.K)

Co. Ltd, 1988.

[15] N. Chomsky. Aspects of the theory of syntax. Cambridge, MA:MIT

Press, 1965.



BIBLIOGRAPHY 229

[16] M.G. Christel and K.C. Kang. Issues in requirements elicitation. Tech-

nical Report CMU/SEI-92-TR-12 ESC-TR-92-012, Software Engineer-

ing institute, Carnegie Mellon University Pittsburgh, Pennsylvania

15213, September 1992.

[17] B. Cohen. Justification of formal methods for system specification.

Software Engineering Journal, 4(1):26–35, January 1989.

[18] A. Colmerauer. Metamorphosis grammars. In L. Bolc, editor, Natural

Language Communication With Computers. New York Springer-Verlag,

1978.

[19] J.R. Comer. An experimental natural language processor for generating

data type specifications. PhD thesis, Texas A & M University, 1979.

[20] V. Dahl and M. McCord. Treating coordination in logic grammars.

American Journal of Computational linguistics, 9(2):69–91, 1983.

[21] A.M. Davis. Software requirements objects, functions and states. Pren-

tice Hall International, Inc, 1993.

[22] A.M. Davis, E.H. Bersoff, and E.R. Comer. A strategy for comparing

alternative software development life cycle models. IEEE Transactions

on Software Engineering, SE-14(10):1453–1461, 1988.

[23] T. Dodd. An Advanced Logic Programming Language- Prolog-2 User

Guide, volume 1. Intellect, 1990.



BIBLIOGRAPHY 230

[24] D.R. Dowty, L. Karttunen, and A.M. Zwicky. Natural language parsing.

Cambridge University Press, 1985.

[25] R.B. France. Semantically extended data flow diagrams: A formal spec-

ification tool. IEEE Transactions on Software Engineering, 18(4):329–

346, 1992.

[26] C. Gane and T. Sarson. Structured System Analysis. Prentice-hall

Software series, 1979.

[27] Gazdar, Klein, Pullum, and Sag. Generalized phrase structure gram-

mar. Basil Blackwell, 1985.

[28] G. Gazdar and C. Mellish. Natural language processing in PROLOG An

introduction to computational linguistics. Addison-Wesley Publishing

Company, 1989.

[29] H. Gomma and D. Scott. Prototyping as a tool in the specification of

user requirements. In 5th IEEE international Conference on software

engineering, pages 333–342, 1981.

[30] B. Hepworth. An introduction to Z. Technical Report BAe-WIT-RP-

GEN-SWE-152, Systems Computing Department, British Aerospace

Ltd, February 1988.

[31] M. Hess. How does natural language quantify? In Second Conference of

the European Chapter of the association for Computational Linguistics,

pages 8–15, 1985.



BIBLIOGRAPHY 231

[32] E. Hirsch. Evolutionary acquisition of command and control systems.

Program Manager, pages 18–22, Nov-Dec 1985.

[33] J. Hobbs. Resolving pronouns references. LINGUA, 44(4):311–338,

1978.

[34] R.S. Jackendoff. The base rules for prepositional phrases. In

P. Keparsky Stephane R. Anderson, editor, A festschrift for Morris

Hall New York, pages 345–356. Holt, Rinehart and Winston, 1973.

[35] H. Jackson. Analysing English. Pergman Press, 1982.

[36] W.L. Johnson, M.S. Feather, and D.R. Harris. Representation and pre-

sentation of requirements knowledge. IEEE Transactions on Software

Engineering, 18(10):853–869, 1992.

[37] C.B. Jones. Systematic Software development using VDM. Prentice

Hall International, 1990.

[38] C.B. Jones and R.C. Shaw. Case studies in systematic software devel-

opment. Prentice Hall International, 1990.

[39] T. C. Jones. Reusability in programming: A survey of the state of the

art. IEEE Transactions on Software Engineering, SE-10(5):488–494,

1984.

[40] R. A. Kowalski. Logic for problem solving. North-Holland, 1979.



BIBLIOGRAPHY 232

[41] P. Loucopoulos and R.E.M. Champion. Knowledge-based support

for requirements engineering. Information and software technology,

31(3):123–135, April 1989.

[42] P. Loucopoulos and R.E.M. Champion. Concept acquisition and

analysis for requirement specification. Software Engineering Journal,

5(2):116–124, March 1990.

[43] M. McCord. Slot grammars. American Journal of Computational Lin-

guistics, 6(1):31–43, 1980.

[44] M. McCord. Using slot and modifiers in logic grammars. Artificial

Intelligence, 18:327–367, 1982.

[45] M. McCord. Modular logic grammars. In Proceedings of the 23rd An-

nual Meeting of The Association for Computational Linguistics, pages

104–117, Chicago, 1985.

[46] M. McCord. Focalizers, the scoping problem, and semantic interpreta-

tion rules in logic grammars. In Michael van Canengham and David

H. D. Warren, editors, Logic programming and its applications, pages

223–243. Alex publishing corporation Norwood, New Jersey, 1986.

[47] M. McCord. Natural language processing in Prolog. In Walker Adrian,

editor, A logical approach to expert systems and natural language pro-

cessing Knowledge systems and PROLOG, pages 391–402. Addison-

Wesley Publishing company, 1990.



BIBLIOGRAPHY 233

[48] B. Meyer. On formalism in specifications. IEEE Software, pages 6–26,

January 1985.

[49] H. Partsh and R. Steinbruggen. Program transformation systems. ACM

Computer surveys, 15(3):199–236, 1983.

[50] T.M. Paskiewicz. Anaphoric pronouns. Master’s thesis, UMIST, 1989.

[51] F.C.N. Pereira. Extraposition grammars. American Journal of Com-

putational Linguistics, 7(4):243–256, 1980.

[52] F.C.N. Pereira and S.M. Shieber. PROLOG and natural language anal-

ysis. CSLI, 1987.

[53] F.C.N. Pereira and D.H.D Warren. Definite clause grammars for lan-

guage analysis: A survey of the formalism and a comparison with aug-

mented transition networks. Artificial Intelligence, 13:231–278, 1980.

[54] J.D. Phillips and H.S. Thompson. GPSGP a parser for generalized

phrase structure grammars. Linguistics, 23:245–261, 1985.

[55] P.Nico, J.V. Katwijk, and T. Hans. Applications and benefits of for-

mal methods in software development. Software Engineering Journal,

7(5):335–346, September 1992.

[56] K. Pohl. The three dimensions of requirements engineering. Informatik

V, RWTH-Aachen, Ahornstr. 55, 5100 Aachen,Holland.



BIBLIOGRAPHY 234

[57] S.G. Presland. The analysis of natural language requirements docu-

ments. PhD thesis, University of Liverpool, 1986.

[58] H.B. Reubenstein and R.C. Walters. The requirements apprentice:

automated assistance for requirements acquisition. IEEE Transactions

on Software Engineering, 17(3):226–240, 1991.

[59] D.T. Ross and JR K. E Schoman. Structures analysis for requirements

definition. IEEE Transactions on Software Engineering, SE-3(1):6–15,

1977.

[60] W. W. Royce. Managing the development of large software systems:

concepts and techniques. In Proceedings of WESCON, pages 1–9, Los

Angeles, 1970.

[61] B. Russell. On denoting. In Mind, pages 479–493. NS,14, 1905.

[62] G. G. Schulmeyer and J. I McManus, editors. Handbook of software

qualite assurance. Van Nostrand Reinhold, New York, 1987.

[63] L.T. Semmens, R.B. France, and T.W.G Docker. Integrated struc-

tured analysis and formal specification tools. The Computer Journal,

35(6):600–610, 1992.

[64] I. Sommerville. Software Engineering. Addison-Wesley Publishing

Company, 1992.

[65] L. Sterling and E. Shapiro. The art of Prolog. MIT Press, 1986.



BIBLIOGRAPHY 235

[66] D. Teichroew and E.A. Hershey. PSL/PSA: A computer-aided tech-

nique for structured documentation and analysis of information pro-

cessing system. IEEE Transactions on Software Engineering, SE-

3(1):41–48, 1977.

[67] N.P. Vitalari and G.W. Dickson. Problem solving for effective systems

analysis: an experimental exploration. CACM, 26(11):948–956, 1983.

[68] A. Walshe. NDB: The formal specification and rigorous design of

a single-user database system. In Prentice Hall International Series

in Computer Science, editor, Case Studies in Systematic Software De-

velopment, pages 11–45. Jones Cliff B and Shaw R.C., 1990.

[69] D.H.D. Warren and F.C.N. Pereira. An efficient easily adaptable sys-

tem for interpreting natural language queries. American Journal of

Computational Linguistics, 8(3-4):110–122, 1982.

[70] E.E. Williams. Computer interpretation of narrative descriptions in

conceptual data-modelling. Master’s thesis, UMIST, 1987.


