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Abstract—Fuzzy predictive control integrates conventional are obtained by means of a multistage fuzzy decision making
model predictive control with techniques from fuzzy multicriteria (FDM) algorithm, as introduced by Bellman and Zadeh [5]. A
decision making, translating the goals and the constraints to pre- mixture of these two approaches constitutes the first applica-

dictive control in a transparent way. The information regarding tion in this field: aut tic trai i . i isti
the (fuzzy) goals and the (fuzzy) constraints of the control problem lon In this neld: automatic train operation using a linguistic

is combined by using a decision function from the theory of fuzzy description of the system [6]. A different approach called fuzzy
sets. This paper investigates the use of fuzzy decision makingmultiobjective optimal control is presented in [7], but it is quite
(FDM) in model predictive control (MPC), and compares the complex and difficult to implement in real time. More recently,
results to those obtained from conventional MPC. Attention is gayisficing decisions have also been used in a similar setting to
also.pa|.d to the choice qf aggregation operators for fuzzy decision design controllers [8]. A good survey on model-based approach
making in control. Experiments on a nonminimum phase, unstable 9 : g i Yy - pp
linear system, and on an air-conditioning system with nonlinear t0 fuzzy control and decision making is presented by Kacprzyk
dynamics are studied. It is shown that the performance of the [9]. However, in this book only open-loop control applications
model predictive controller can be improved by the use of fuzzy are reported. This paper undertakes to present the first step
criteria in a fuzzy decision making framework. in generalizing fuzzy predictive control as MPC with fuzzy

Index Terms—Fuzzy criteria, fuzzy decision making (FDM), decision functions, using the FDM approach to select proper
fuzzy predictive control, model predictive control (MPC). control actions. This procedure can be applied to real-time

problems with relatively small sampling times.
|. INTRODUCTION This paper begins by describing the application of FDM to

ontrol in Section Il. Fuzzy goals, fuzzy constraints, and fuzzy
ecision are presented, and an approach to solve the optimiza-
. . X ; . Bn problem for fuzzy criteria defined in different sets is pro-
opergtmg condmong for which convent|or_1al linear contr osed. Note that FDM applied to control considers multistage
ltec_hnlques ?ftEECfa'l. or can fonk:y be applied Ilocallyh F,UZZ DM. Section lll presents possible types of fuzzy objective func-
ngIC conltr(_) ( h ) is okne ? c: e most poplu ar éez nlqtl:eﬁonsforpredictivecontrol,discussing brieflythe operatorsto ag-
or trans]: a:ltlng :{rr:jan n:awe g€ tg cor;tro, and has de l|]egate fuzzy criteria. Two illustrative examples are presented in
successiully applie to a large number of consumer Produgaction IV, where the main features of fuzzy decision functions
and industrial processes [1]-[3]. Most of these applicatio ?Jplied to MPC are shown. The paper ends up with some con-

of fuzzy control use the approach introduced in the 1970s Kjding remarks about the presented approach in Section V.
Mamdani [4]. The operator’s knowledge is verbalized as a

collection of if-then control rules, which are directly translated
into a control algorithm. II. Fuzzy DECISION MAKING IN CONTROL

Besides direct fuzzy control, in which the control law is ex-

. . ; . Ithough distinct, it is common to present multistage deci-
plicitly described by if-then rules, human expertise can be use. 7 .
) . e e Sion making and FDM in control as synonymous. In fact, the
to define the design specifications. These specifications aje . . . . _
.decision problem is more general, and also multistage decision

translated to performance criteria using fuzzy sets, by defm'prgaking can be applied to other fields. This paper considers mul-

the (fuzzy) goals. and the (fu;zy) coqstramts for the SySte{igtage decision making applied to control, similar to the ap-
under control. This procedure is a particular approach of fuzgte

UMAN operators can control complex, nonlinear, ané
partially unknown systems across a wide range

model-based control, following closely the classical mod oach taken before by several authors [5], [3]. Note that while

predictive control (MPC) design approach, but it makes use 0 notation u;ed in this sect|_on IS cqnvenlent for control ap-
the fuzzy sets theory in a higher level than in FLC, where t eroac:hes, multistage FDM maintains its generality. When mul-

. . |f<,tage decision making is translated to the control environment,
fuzzy rules to control the system are given directly from exper

: : - 1he set of alternatives constitute the differeomtrol actionsthe
knowledge. In this approach, the appropriate control actions : : ; .
systermunder control is a relationship between the system inputs

and outputs (or causes and effects), and the mapping relating the
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2000. This paper was recommended by Associate Editor T. Sudkamp. themodel Moreover. fuzzy constraints are defined for sev-
J. M. da Costa Sousa is with the Department of Mechanical Engineerir%?’ ’ y

GCAR, Technical University of Lisbon, Instituto Superior Técnico, 1049-00&ral variables presented in the system, which can be “hard” or

Lisbon, Portugal (e-mail: j.sousa@dem.ist.utl.pt). “soft” constraints, and the decision criteria (fuzzy goals and con-
U. Kaymak is with Erasmus University, 3062 PA Rotterdam, The Nether- . . L

lands. straints) are the translation of the control performance criteria to
Publisher Item Identifier S 1083-4419(01)00089-9. the decision making setting.

1083-4419/01$10.00 © 2001 IEEE



SOUSA AND KAYMAK: MODEL PREDICTIVE CONTROL USING FUZZY DECISION FUNCTIONS 55

One of the main issues in MPC is the type of model of th&. Fuzzy Goals and Fuzzy Constraints in the Control
system under control [10]. In general, the most utilized types Bfwironment
models are dgtermlnlsnc, .stochastlc, apd/or fuzzy: An.othe.r |m-Let Gi.withi = 1, q, be afuzzy goal characterized by its
portant issue in FDM applied to control is the termination time : . L :

. o - . ) membership functiop, , which is a mapping from the space
which is a generalization of the prediction horizon defined for, L

: o of the goalG; to the intervall0, 1]. Let alsoC;, I = 1,...,r

MPC[11]. A short summary of the different termination time a fuzzy constraint characterized by its membership function
and possible solutions found in the literature for the the diﬁ‘eren? y y P

. . ; ) , mapping the space of the constrafrit to the same in-
types of models is presented in the following. A survey W'tt'écri/al [0 pll]D 19he fuzsy goalss; and the fuzzy constrainis;
complete references can be found in [9]. ’ !

can be defined for the domain of the control actions, system’s

- Fixed and predetermined specification tim€or deter- outputs, state variables, or for any other convenient domain.
ministic models, solutions using dynamic programming@\ote that fuzzy constraints are usually defined in the domain of
branch-and-bound techniques, genetic algorithms, @fe control actions, and fuzzy goals are usually defined in the
neural networks have been proposed. For stochasigmain of the state space variables. Initially, FDM in control
models two different formulations are usually employedyas applied to systems with discrete states and a finite number
maximizing the probability of satisfying fuzzy goals andf possible transitions between the states, and subsequently it
fuzzy constraints, or maximizing the expected value ¢fas been extended to systems with continuous states [13]. The
the fuzzy decision. For fuzzy models, solutions usinfuzzy goals and constraints are then all defined on the set of
dynamic programming, branch-and-bound, interpolatiwsternatives. The reasoning applied in this paper for FDM in
reasoning, and genetic algorithms have been proposedcontrol allows the combination of goals and constraints from

* Implicitly specified termination time-In these systems, different spaces.
the process terminates when the outputs reach prespecified fuzzy set in the appropriate domain characterizes both
values. Only solutions for deterministic models were prahe fuzzy goals and the fuzzy constraints. The goals and con-
posed, using graph-theoretic analysis and a branch-asttaints are defined on relevant system variables. For example, a
bound algorithm. common control goal?; is the minimization of the output error.

» Fuzzy termination time-It is sometimes useful to con- The satisfaction of this goal is represented by a membership
sider a “softer” definition of the termination time, byfunction, which is defined on the space (universe of discourse)
allowing its formulation as a fuzzy set, as it was firsbf the output error. An example is the fuzzy goal “small output
proposed by Fung [12]. For deterministic, stochastic, @rror,” defined for a SISO system and shown in Fig. 1(a). Fuzzy
fuzzy models, solutions using dynamic programming dronstraints can be defined on the universe of discolfrs#
branch-and-bound are possible. the control variables. An example is the ‘soft’ constraint “

« Infinite termination time—This type of termination time should not be substantially larger than 0.8,” whose degree of
is used for processes whose inputs vary little over a veggtisfaction can be represented by a membership function, as

long time range. Optimal control is sought for these typegiown in Fig. 1(b). Note that the “hard” constraint< « <1
of processes. is also implied by the given membership function. The given

Note that all the solutions proposed are obtained for 0pen-Io‘(?‘)E"’ImpleS of a goal and a constraint show that it is sometimes

control, which hampers the application of the proposed sol dvantageous to treat them in different ways, contrary to the

tions for low and medium levels of control in real time. For ex- eliman an.d ngeh allppr.oach [5]. .
ample, Kacprzyk [9] states The qualitative distinction between goals and constraints can

: be clarified when membership functions for a fuzzy criterion
“We consider(...) open-loop controlUnfortunately,  4re defined. In this paper, a fuzzy goal is defined in such a way
not much is known about closed-loop (feedback) control in that the membership grade is never zero, unless this is strictly
a fuzzy environment in the optimal control-typgsetting  necessary (which would imply that it is a “hard” constraint).
(.7 Therefore, the example in Fig. 1(a) uses a membership func-
This paper addresses this shortcoming in the literature, angldh of the exponential type, which never becomes zero even
considers multistage decision making (control) in a fuzzy envfthe error is quite large. On the other hand, fuzzy constraints
ronment considering any type of model in closed-loop contr@hustinclude the “hard” constraints, when they are present in the
It assumes that the termination time is fixed and is specified b&§stem. For instance, the constraint in Fig. 1(b) does not allow
forehand. As the formulation is done in an MPC environmenat the control action is outside the rar{gel], which can be
this termination time is the prediction horizon, which is shiftegl very useful concept for many real systems. Suppose that the
when time evolves. This condition is necessary to allow the agariable« in Fig. 1(b) is a valve opening, where 1 stands for
plication of multistage FDM to MPC in real time. completely open and 0 for completely closed. Hence, the defi-
In the following, Section II-A presents the definition of fuzzynition of the fuzzy constraint, as given in Fig. 1(b), takes these
goals and constraints in the control environment. The aggregiysical limitations into account. It is suggested thatzzy con-
tion of the different criteria for control applications is presentestraint should also represent the “hard” constraints when they
in Section II-B, where the set of possible alternatives is diare present in the system.fidzzy goakhould be defined so that
cretized in order to find the optimal control actions. The applthe membership function never becomes zero, indicating the al-
cation of FDM to predictive control is presented in Section II-dowable but not desirable states of the system. This procedure
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control sequence is obtained using the aggregation operators
®, @, ,andi), to combine the decision criteria, i.e.,

membership grade

Hrx = (I’L<11®g o '®gu<1q)
® (/“L<1(q+1>®c e '®CI’L<1T)

(I’ Qutput error (NCHP l®g - .®gu<Hpq)
@) ® (/“LCHp(qH)@C e '@cNCHpT) . @)

In (2),&), denotes an aggregation operator for combining the
goalsé, denotes an aggregation operator for combining the
constraints, an@ denotes an aggregation operator to combine
the aggregated goals and constraints. In general, it is not neces-
sary to use the same aggregation operator for all goals and for
PP all constraints. However, using a single aggregation operator re-
Control action duces complexity, making the confluence of criteria simpler.
() Note that the aggregation operator to combine a goal and
a constraint at different time steps, i.@¢,,. 10 ¢, 1y, ¢ =
Fig. 1. Example of a fuzzy goal and a fuzzy constraint for FDM in control. 1, ..., H, — 1, is the same as the one to combine a goal and
a constraint at the same time step, i/, t0 p¢, ., ;% =
., Hy,. Various types of aggregation operations can be used
) ; ecision functions for expressing different decision strategies
membershlp funcUons, but clearly does not affect the ConflH'sing the well-known properties of these operators [14]. In fact,
ence of c_nterla. , aggregation operators and membership functions translate a lin-
Assuming as before that one considgrgoalsGy, ..., Gy guistic description of the control goals into a decision function.
andr constraintss, . ..., Cy, each fuzzy goal; and each fuzzy |, s way, various forms of aggregation can be chosen giving
constraintC; constitute adecision criterion(;, j = 1,.... T, greater flexibility for expressing the control goals. A discussion
whereT" = g + r is the total number of goals and constraintgy the influence of aggregation operators in FDM applied to
Each criterionis defined inthe domaly, j = 1,..., T, which  gntrol is given in Section I11-A.
can be any of the various domains used in control. In ordertpe translation of each goal and each constraint for a given
to solve the problem in reasonable low time, it is defined in Bolicy = to a membership value (2) avoids the specification of
discrete control space with a finite number of control alternghe criteria in a large dimensional space. The combination of cri-
tives. This limitation to digital control is however not too severeeria in different domains is done for a set of discrete alternatives,
and this methodology can still be applied to a large number @hich corresponds to different policiesthat can be applied to
control problems. Therefore, the confluence of goals and cdind the optimal control policy. The decision criteria (2) should
straints is defined in the following for discrete alternatives. Thige satisfied as much as possible, which corresponds to the max-
resulting optimization problem is also addressed. imal value of the overall decision. Thus, the optimal sequence of
control actionsr* is found by the maximization of .

membership grade

1.
distinguishes goals and constraints in the form of the definsg d

B. Aggregation of Criteria in the Control Environment
o . O arg max e 3)
Assume that a policyr is defined as a sequence of control u(k),...,u(k+Hp_1)

actions for the entire prediction horizon in MP&,,
Because the membership functions for the fuzzy criteria can

have an arbitrary shape, and because of the nonlinearity of the

r=u(k),...,u(k+H,—1), 7€ (1) decision function, the optimization problem (3) is usually non-

convex. To deal with the increasing complexity of the optimiza-

tion problem, different methods can be utilized. One possibility

where the control actions belong to a set of alternativds the is to consider only a few criteria (2), removing those not con-
general case, all the criteria must be applied at each time stepidered from the equation. This approach, however, can result

with¢ =1,...,H,. Thus, a criterior(;; denotes that the crite- in suboptimal control actions. A better method is to choose a
rion j is considered at time stép+ 4, withi = 1,..., H, and proper optimization algorithm, or to formulate the problemin a
J=1,...,T.Further, le,, denote the membership value thatvay that leads to convex optimization. One set of conditions that

represents the satisfaction of the decision criteria after applyilegd to a convex optimization problem is proposed in [15]. Else-
the control actionsi(k + ). The total number of decision cri- where, several methods to deal with nonconvex optimization
teria for the decision problem is thus givenBy= 7 - H,. The problems have been used such as sequential quadratic program-
confluence of goals and constraints can be done by aggregatimgg [16], the simplex method [17], genetic algorithms [18], or
the membership valugg;, ;. The membership valye, for the branch-and-bound [19].
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Controller A. Aggregation Operators for FDM in Control
knowledge

Process

This section presents some clues on the possible use of dif-
ferent aggregation operators, and the advantages and the disad-
vantages of their use in predictive control.

The first operator used to aggregate goals and constraints was
the minimum operator [5]. In this approach, the operat@ys
®,, and@®, are all substituted by the minimum operator (2),
leading to

Goals and
constraints

Fig. 2. Controller based on objective evaluation and FDM.

C. Fuzzy Criteria in MPC P = min(ugn,mlz, . vﬂchT> . 4)

The definition of fuzzy goals and constraints must be given b . o . .
an operator or design engineer. Therefore, when FDM in cont Irhoufgh this c:pe;rat(;rr is still largely gsedbthDM’ ;Ldoe;t n(_)t
is considered, human knowledge is involved in specifying t ow Tor _?ni/] radeo lor co:rr:pensalllont %V:};in € crt|her|a,
control objectives and constraints, rather than the control p ccause It chooses aways the smallest o ues as the

tocol itself [20], [21]. Using a process model, a FDM algorith ecision. For this reason, this operator is usually known as a

selects the control actions that best meet the specifications (§%‘:eety'f"5t orpessimisticoperator. This .d|sadvantag.e can be
Fig. 2). Hence, a control strategy can be obtained that is a jgercome by the use of ano_ti’bemorm, which ;houl_d still rans-
to push the process closer to the constraints, and that is abl a{g the aggregation as a smgltaneogs satisfaction of th_e fu_zzy
force the process to a better performance based on the goals H ria, but allows for some Interaction amongst_ the criteria.
the constraints set by the operator together with the known co 1€ .most uged aggregation operator after the minimum oper-
ditions provided by the system'’s designers. ator is possibly the productnorm

This approach is closely related to MPC. The formulation of o ) o )
the control problem as a confluence of fuzzy goals and fuzzy Hm = Hen e - " By r

constraints leads to a generalization of the objective functigiis gperator allows some interaction between the criteria, but
used in MPC [22]. For practical reasons, it is desirable to haKEeps the characteristics oforms, i.e., any low degree of

direct cor_ltro! over thg influence of the individual Componen%embership for one criterta; implies that the degree of mem-

of the objective function on the controller performance. Thuerghip,,,. is also low. When the number of criteria increases,
it is advantageous that the degree of compensation among theyenqs 1o decrease. This fact is quite realistic because the
different goals and constraints can be specified by the desigrigtyer the number of goals and constraints is, the more difficult

This additional freedom can be achieved by choosing a differgpig 4 satisfy them all. A similar conclusion can also be drawn
representation of the objective function, given by the combings, many othert-norms.

tion of fuzzy goals and fuzzy constraiqts, as in the FD_M apP- The presented aggregation operators assume that the
proach. In _the MPC environment, a polieywith the possmle importance of different criteria is equal. The attribution of
control actionsu(k), ..., u(k + H, — 1) can be defined (1). yitterent weights for different criteria can be made by using the
The objective function using fuzzy criteria is defined (2). Th@eighted-sum in a similar way as it is usually done for classical
closed-loop control configuration is now discussed in more dgjteria in predictive control, as will be presented (8). Another
tail, in aspects concerning the criteria and the aggregation Opﬁé'ssibility is to use the approach presented by Yager [26],
ator(s) used to combine them. where each criterion has a different weight, € [0, 1], re-
flecting a different importance in the global criterion (2). Other
weighted aggregation methods can also be used [14], [27]. In
this paper the weights of the aggregation of fuzzy goals and
Fuzzy criteria play a main role in FDM. When FDM is ap-constraints are not used because the systems used as examples
plied to control, the fuzzy goals and the fuzzy constraints mud® not have a clear hierarchy related to the importance of the
be a translation of the (fuzzy) performance criteria defined fdlifferent fuzzy criteria. Moreover, the weights can be difficult
the system. The definition of performance criteria in the tim® tune, especially if a large number of criteria is considered,
domain has shown to be quite powerful, especially for nomithough they provide additional flexibility to a controller if a
linear systems [23] and in the MPC framework [24]. This segood set of tuned weight factors are determined [28].
tion investigates the use of fuzzy performance criteria in pre- A different approach can be followed by usipgrametric
dictive control and compares the results to those obtained fremorms, which can generalize a large numbet-obrms, and
conventional MPC. This section is an extension of an introducentrol the degree of compensation between the different goals
tory study of this subject presented by the authors [25]. Firstnd constraints. Usually, parametticmorms depend only on
the aspects concerning the aggregation operator(s) combinimg parameter, which makes them much easier to tune when
the criteria are briefly presented in Section IlI-A. Next, contratompared to weightethorms. On the other hand, they are not
criteria and decision functions are discussed in Section IlI-Bp general as the weighted approaches. For the examples pre-
where classical objective functions and a proposed fuzzy objesented in this paper, paramettinorms revealed good control
tive function are presented. performances. Several paramettinoorms can be considered,

Ill. Fuzzy CRITERIA FORFDM IN CONTROL
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such as the ones introduced in [29]-[31] and [32]. The Yager * The control goals are explicitly expressed in the objective

t-norm, for instance, is given by

H, l/wy

T
Jr=max| 0,1 — ZZ (1 — ucij)wy

i=1 j=1

(6)

with wy- > 0. This operator covers the entire range-oforms,
i.e., it goes from the drastic intersection to the minimum oper-
ator.

There is a large range of fuzzy operators between-ti@ms
ands-norms which can sometimes be advantageously utilized in
the confluence of fuzzy criteria for control applications. Exam-
ples are the aggregation operator introduced by Zimmermann
[33], or the generalized mean [34], [35]. This last operator is
given by

1/wg

1T
Hm = ?ZZNCE ?

i=1 j=1

wy € R.

)

It reduces to the harmonic, geometric, arithmetic, and quadratic
mean when the parameterds, = —1, w, — 0, w, = 1,
andw, = 2, respectively. Moreover, whew, — —oo the

function. This method leads usually to long term predic-
tions of the behavior of the system, using a large prediction
horizonH,,. From these predictions, quantities such as the
overshoot or the rise time can be determined. In order to
have accurate predictions, this method requires a highly
accurate process model, which may not be available, and
a lot of computation.

 Only short-term predictions (a few steps ahead) are used

in the objective function. This method is usually applied
in predictive control when the available model of the
system is not very accurate, and cannot predict outputs
for a large number of steps ahead. Despite this inaccuracy
of the model, it still can lead to high-performance control,
provided that the overall control goals can be translated
into the short-term goals, which are then represented in
the objective function. This translation is, however, not
unique, and it is application dependent. Therefore, tuning
some parameters in the objective function is usually
required. This method is especially suitable for nonlinear
systems, where a compromise between computational
time to derive the control actions and accuracy of the
predictions must be made except for special cases, as

generalized mean approaches the minimum operator, and when when input-output (1/0) feedback linearization is utilized
w, — +oco itapproaches the maximum operator. Thus, thisop-  [36]. When using fuzzy criteria, the task of defining the
erator fuffills the complete range from minimum to maximum  goals becomes easier, as it will be shown in this section.
whenw, ranges from—oc t0 +oc. When a large number of 1y classical Objective FunctionsConventional MPC
criteria is present and some tradeoff between the different aiininly utilizes sum-quadratic functions as the objective
teria is a!lowed, this operator can have some advantages oyg{ction [11], [37], [38]. The main motivation for its use is
aggregation operators described#yorms. It should be em- 4t such an objective function has an analytical solution for
phasized, however, that the use of this operator may lead {0 fi3@ar systems without constraints. In the presence of crisp and
violation of *hard” constraints, when they are defined as in Segpnyex constraints, the optimization problem remains convex
tion II-A. Therefore, when this operator is used, the optimal &fp; jinear systems, and can still be solved in polynomial time.
ternative found should be checked afterwards in order to asspj§yever. the presence of nonconvex constraints and/or the
that no *hard” constraints are violated. However, this proceduf@asence of nonlinearities in the system often lead to nonconvex
can cost precious optimization time. A solution is to use the geflstimization problems. In these cases, the sum-quadratic ob-
eralized mean only for the general confluence ope@ipand  jective function does not have any advantages over other more
at-norm lior the remainin@ and®,.. This choice assures thatcomplex objective functions that can possibly describe better
the “hard” constraints are not violated but can hamper the agls, (fuzzy) performance criteria for a broad class of control
vantages of using the generalized mean. problems.

This paper uses parameterized operators, and their choice ifg the overall control goals for the time domain be stated as
strongly recommended because they allow for different degregshieving a fast system response while reducing the overshoot

of compensation between criteria. Moreover, the change 0bq the control effort. For SISO systems these goals can be rep-
single parameter results in the use of different operators, allgsented by the objective function

viating the tuning phase, always present in predictive control.
Section IV-B presents a simple, though illustrative example,
showing the application of three different aggregation operators.

T2 3D el 02+ 3 Ak + )

1=mq 1=my
. . .. . n3
B. Control Criteria and Decision Functions 1 Z i (Auk + i — 1)) 8)
When a control system is designed, performance criteria must i=mg

be specified. In the time domain, these criteria are usually de- ) ) ) )
fined in terms of a desired steady-state error between the reféperec(k + i) denotes the predicted errors given by the differ-
ence and the output, rise time, overshoot, settling time, etc., rEpc€ Petween the referencand the output of the systemi.e.,

resenting the goals of the control system. In MPC, these goals

must be translated into an objective function. This function is ek +d) =r(k+1) =gk +i). ©)
maximized (or minimized) over the prediction horizon, giveRrhe change of the predicted outphg is defined as

the desired control actions. The translation of the (fuzzy) goals

into an objective function can be done in two different ways. Agk+i)=gk+¢) —glk+¢—1) (10)
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T
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2(k+i) APk Aukti-1)

Fig. 3. Membership functions that represent the satisfaction of decision criteria for the error, change in output, and change in the control action.

and is equal to the change in the errdx8(k + ¢), when the é(k +¢) = r(k +¢) — 4(k + <), for the change in the pre-
reference to be followed is constant. The change in the contdi¢ted outputAg(k+¢), and for the change in the control action

actions is defined in a similar way as Au(k+¢—1),withi=1,...,H,.
‘ . . In this example, the minimization of the output enQ(é(k+
Au(k + 1) =u(k +4) —uw(k +i—1). (11) 4))isrepresented by an exponential membership function, given

The parameters,, 3;, and~; are weighting terms that are ap-by o
plication dependent. The parametets, n1, mz, n2, ms, and eXp(e(I’;—J_’Z)) , —o<ék+i)<0
ns must be selected appropriately depending on the application, e = ézk-i—i) . p
and they must satisfy < m; < n; < H,, i € {1,2,3}. eXp(_T) » 0 é(k+i) <o
Usually, m1, mo, andmg are chosen equal to one; andng  This well-known function has the nice property of being tangent
equal toH,,, andn; equal toH.. Note that the weighting terms to the triangular membership function defined using the param-
o, 3;, andv; must reflect the difference of magnitude betweeaters K- and K (see Fig. 3). Another interesting feature of
the different inputs and/or outputs of the system at various tinttés exponential membership function is that it never reaches
instants. If this is not the case, and the weights are chosenth# value zero, and the membership value is still quite consid-
equal, for instance, the optimization automatically weights diérable, 0.37, for an error df - or K} magnitude. Therefore,
ferent variables, which is not desirable, and it leads to poor cahis criterion is considered to be a fuzzy goal, as explained in
trol performance. Section II-A. This definition of membership function allows for
The objective function (8) can be interpreted as follows. Thhe comparison of the error parameteis, andK T, to the pa-
term containing the predicted errors indicates that these shorddheters defined for other fuzzy criteria such as the change in
be minimized, while the term containing the change in the coautput and the change in control actions.
trol actions indicates that the control effort should be reduced.The change in the output can be represented, for example, by
Finally, the term containing the change in the outputs indicatasrapezoidal membership functipp(Ag(k + 7)), as shown in
that the system’s output should not suffer sudden changes dfid, 3. The system can vary with no limitations in the interval
thus, it helps to improve the smoothness of the response. For st&p, S;]. Outside this interval, physical limitations can be de-
references, the change of the output s also equal to the chandéied such that the change in the output can not go beigw
the respective output errors except for the discontinuities in tbeabovek . This fuzzy constraint can be seen as a fuzzy goal
reference signal. Hence, minimizing the output errors and tHao physical limitations are present in the system, and it is not
change of output errors can be regarded as forcing the systssmpulsory that the membership value is zero outside a given
to the origin (steady-state solution) in thex Ac phase space. interval. Note that if this is the casé; andK; can play the
The parameters containing the weights, 3;, and~;, can be same role a¥(; and K in the membership function defined
changed so that the objective function is modified in order for the error in (12). Thus, outside the interya]; , Sj] expo-
lead to a desired system response. Notice that these parametengial membership functions as the one defined for the error
have two functions: 1) they normalize the different outputs aridk + ¢) can also be used.
inputs of the system and 2) they vary the importance of the thre€The control effortu.,,(Au(k 4+ ¢ — 1)) is, in this case, repre-
different terms in the objective function (8) over the time stepsented by a triangular membership function around zero, which
2) Fuzzy Objective FunctionsWhen fuzzy multicriteriade- is considered a fuzzy constraint. The crisp rate constraints
cision making is applied to determine the objective function, adn Aw representing the maximum and the minimum allowed
ditional flexibility is introduced. Each criteriogy; is described in the system are given hif; and H;, respectively. These
by a fuzzy set, where = 1,..., H,, stands for the time step constraints are related to physical limitations of the system.
k+i,andj = 1,...,7T are the different criteria defined for The membership degree should be zero outside the interval
the considered variables at the same time step. Fuzzy critdfif, , H,[|. The parameters defining the range of the triangular
can be described in different ways. The most straightforwandembership function ar&; and K;F. Note that membership
and easy way is just to adapt the criteria defined for classidahction y.,,(Au(k + ¢ — 1)) does not have to be symmetrical.
objective functions. A SISO system with a control actigik) Sometimes itis convenientto mak&; = H, andK = H,
and an outpuy(k) is considered. Fig. 3 shows examples abut other systems may require bigger membership values for
general membership functions that can be used for the ertoe points in the intervdH -, H;f], as in Fig. 3. Furthey;,, can

12)
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be defined as a trapezoidal membership function in a simile '3[

way to the one defined for the change in the output. X
In principle, different criteria can be defined at each time in- Lr
stantk 44,4 = 1,..., H,. This example ha¥" = 3 decision
criteria (fore, Au andAy), and the total number of criteria in 0.5t
afuzzy MPC problem is, thus, given bree - H,,. Beyond the
possibility of defining different criteria for different time steps,
it is possible to skip some criteria at certain steps. An exampl
of different criteria at different time steps can be the spread ¢ 4}
the membership function defined for the error, which can be na
rowed as the time approach&s, i.e., it is more important to

Imag Axis

achieve the goal of small error close to the prediction horizor ) <
This corresponds to a decreasing valugfin Fig. 3. Some- .
times it is also advantageous to consider some criteria just af "':51,5 1 -o.'s 0 0.5 |
particular time step. One example is the variation of the cor Real Axis

trol action, which can be quite small for steady-states, but it

should change quite significantly for different situations, e.glfig. 4. Position of the poles and zeros of the linear system given by (13).
when a step response must be followed. The designer should, S _ )

thus, choose carefully the criteria at each time step, regardififar system and 2) a simplified nonlinear model of an air-con-
the desired performance criteria of the system under control.#ioning system, which is derived from real data of a test cell
general, all the parameters of the different membership furkSing fuzzy modeling techniques. The following sections de-

tions are application dependent. However, it is possible to der%rib(.e these systems in more detail. In order to concentrate on
some tuning guidelines, as will be described in Section IV. the differences between the two control schemes, model-plant

The membership functiong., quantify how much the mismatch, and the implementational aspects are not considered.
(%)

system satisfies the criteria given a particular control sequencel) Linear System:A linear system has been selected for the
bringing various quantities into a unified domain. The use of t{ESt Set of experiments in order to be able to compare the con-
membership functions introduces additional flexibility for extTo! results when classical and fuzzy criteria are applied. The
pressing the control goals, and it leads to increased transparetigcted system is described by the transfer function

as it becomes possible to specify explicitly what type of system G(s) = s—1 . (13)
response is desired. For instance, it becomes easier to penalize s34+ s2+s+2
errors that are larger than a specified threshold more severgliis is a nonminimum phase system and it has two complex
Note that there is no need to scale the several parameferspoles in the right-half plane (unstable in open-loop). The poles
Bi, and~y; as in (8) when fuzzy objective functions are usedind zero placement are given in Fig. 4. The system, proceeded
because the use of membership functions introduce directly tea zero-order-hold circuit, has been discretized with a sample
normalization required. For this particular aspect, this featutitne of one s.
reduces the effort on designing MPC with fuzzy objective 2) Air Conditioning SystemA heating, ventilating, and air
functions, when compared to classical objective functions. conditioning (HVAC) system consists of a number of heat ex-
After the membership functions have been defined, theypangers, pipes or dampers which supply hot water, steam or
are combined by using a decision function, such as a pashilled water to a heating or cooling unit responsible for the con-
metric aggregation operator from the fuzzy sets theory (seiioning of a space. Fig. 5(a) shows the HVAC system that is
Section IlI-A). used in this study. Hot water at 6& is supplied to a coil which
exchanges the heat between the hot water and the surrounding
air. A valve controls the amount of hot water that flows through
IV." APPLICATION EXAMPLES the coil. A fan is responsible for the ventilation and it supplies

This section presents two simulation examples showing tH¥¢ hot air coming from the coil to the test-cell (room). The
influence of the conventional and the fuzzy objective functiorfioPal control goalis to keep the room at a reference temper-
in predictive control. After the description of the systems, th&ure while assuring sufficient ventilation. The fan can be set
choice of aggregation operators is discussed for one of the sisthree different velocities: low, medium, and high. A return
tems. Next, classical and fuzzy objective functions are applied4g™MPer controls the amount of recycled air from the room, while
the systems, and a discussion over the obtained results is m&afe2utside damper controls the amount of fresh air coming from

Other applications of some aspects of the presented approfgffoors. The supply temperatiifg measured after the coil is
can be found in [22] and [28]. controlled with the heating valve. A SISO model of the system

is determined from I/0O measurements made with a sampling pe-
riod of 30 s. The temperature can be described as a nonlinear,
first-order dynamic systefi, (k + 1) = f(T(k), u(k)), where

The influence of conventional and fuzzy objective functions(k) € [0.4, 1] is the valve opening anf, (k) € [30,60] is the
in predictive control has been studied using two different sygemperature in degrees celcius at time instanf Mamdani
tems: 1) a simulated nonminimum phase, open-loop unstablezy model with singleton consequents is obtained using the

A. Description of the Simulated Systems
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test cell

[T} heating

= valve
R

} 3

-1 - outside damper
N .
N
N

L2l return damper

@

Fig. 6. Membership functions for the antecedent variables of the fuzzy model.

TABLE |
RULE BASE FOR THEFUzzY MODEL OF THEHVAC PROCESS

Temperature

Valve Opening | Low Medium Medium high High

Small 30.3 439 52.6 56.4
Medium small | 30.0 438 542 57.6
Medium high | 32.8 47.4 55.6 59.7
04 30 High 355 473 55.1 60.3

u(k) T(k)
(b)

Fig. 5. Air conditioning system: (a) schematic representation and (b) deriviil the right-half plane (unstable in open loop). Only the mini-
model. mization of the predicted output error is used as optimization

criterion in order to keep the optimization problem transparent

identification method described in [39]. Fig. 6 shows the triarﬁp“-nd to unde_rstand clearly t_he i_nfluer_lce_of the decision function
gular membership functions that are determined for the tempgp— the SQIUt'On' The_opt|m|zat|on criterion Is represe_nted _by a
atureT, (k) and the valve opening(k). Note that the universe symmetric exponential membership function which is defined
of discourse for the valve opening is the interjégdl, 1] because around zero output error as

the valve shows a dead-zone behavior between 0 and 0.4, when \e(k + )|

the system is considered to be a SISO system. The fuzzy rule He = eXP<—T)

base that describes the model is given in Table I. An example of
a rule for this Singleton model, e.g., the first rule, i (k) is  wherer is the reference angl is the predicted model output.
Smalland 75 (k) is Low, then 7', (k + 1) = 30.3.” This function is a particular case of (12) fai" = — K- = 30.

Fig. 5(b) depicts the piecewise linear mapping that is dé crisp constrainjAw| = 0.5 is imposed on the rate of the
scribed by the fuzzy model. The fuzzy model is used for simgentrol action, and it is represented by a membership function
lating the system and developing predictive controllers. that is defined om\w.

Step responses of the system have been studied. The con-
o : . oller is implemented in the incremental form and the opti-
B. Application of Aggregation Operators to the Linear SySterI‘rﬁ]ization is performed in the discretizelh, space. This con-

In this section, several issues such as interaction amontyst space is divided into 11 discrete levels and an enumerative
criteria, the influence of the types of decision functions argearch scheme has been used for determining the best control
their parameters are studied using the simulated linear systagtion. The control horizo#,. is chosen as small as possible
given in (13). The membership functions for the fuzzy goafer keeping the search space small. A value of two is found to
and the constraints are assumed to be given. Remember tesatisfactory. Similarly, the prediction horizéf) is kept rela-
this system is nonminimum phase and has two complex potasly small to a value of 6. The minimum operator (14), the gen-
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Fig. 7. Response of a fuzzy predictive controller using the generalized mearrés 8.  Response of a fuzzy predictive controller using the Yagerm as the
the decision function. Dashed, = —1, solid:w, = 1, dash-dottedw, = 3.  decision function. Dashetby = 2, solid:wy, = 2.8, dash-dottedw, = 4.

eralized minimum (15), and the Yagenorm (16) are chosen step response is even faster than the response thatis obtained with

as possible decision functions

the arithmetic mean as the decision operator. Fig. 8 shows the step
response for several valuesw{-. The parametew,, (or simi-

Hm = i:il,if.l,lH,,(”Z(C(k +i) (14) larly the parametetyy) can be interpreted as a speed indicator
| B 1w, forthe response. For small valuesgf, small control actions are
_J - (a1 4 Y\ preferred and the system response slows down. Large values of
o H, ; Hi(e(k +19)) - wp € R(15) w, favor a faster decrease of the error and, thus, larger control
- Ly actions are favored. Thus, the system response can be tuned by
Hy using the parameter of the decision functions as an extra degree
pr =max | 0,1 — Z(ﬁv‘,(é(k + 1)) (16) of freedom. Additional objectives such as the rising time and the
i=1 overshoot could also be controlled with this single parameter.

whereg;(é(k+4)) = 1 _“i(é(k"'i))’ .e., Za‘?'eh’s fu;zy COM- ¢ Application of a Fuzzy Objective Function
plement. The responses with the parametric decision functions ) ) .
have been calculated for several values of the parameters.  MPCs have been designed for the systems described in Sec-

Itis known that the minimum operator does not allow interaélon IV-A by using both the conventional objective function (8)
tion amongst criteria. It optimizes the worst action in the contrgind & fuzzy objective function. Anorm is used for the aggre-
sequence and makes sure that it is as good as possible. Howd@jon, since the decision goal is formulated as the simultaneous
because the system has nonminimum phase behavior, the mftisfaction of all th_e decision criteria. The aggregatlon.opera—
imum operator cannot be used for optimization because evéS®; ®., and®,, in (2) are taken as the Yagenorm, which
control action except for zero will result in an (initial) increas€9Mbines the control criteria presented in Fig. 3, and is given by
of the error, decreasing the valuggf. Hence, the “best” control ny no
action will be zero, and the controller will not select another con- ji.» = Z (e (e(k+14))) + Z (i, (AG(k 4+ )Y
trol action. For this reason, a decision function that allows for in-
teraction amongst criteria is required for this type of system. For
the generalized averaging operator (15), whertis chosen very
large, the system tries to reach the reference value as soon as pos-
sible and shows an overshoot. The system slows down for small;, . = max (0, 1— Njf{wY) . wy >0
values ofw,, . Afastresponse withoutan overshootis obtained for
w, equal to one (arithmetic mean). Fig. 7 shows the responsendiere the parameters; andn,, ¢ € {1,2,3} are defined (8),
the controlled system for several values of the paramefer and Zadeh's complement is defined (16). The parameter

Unlike the generalized mean, the system shows fast respoallews for the choice of differerttnorms (see Section IlI-A).
for small values of the parametes- when the Yaget-norm is The response of the controllers is studied using simulations
used. Being &-norm, this operator tries to achieve a simultaef the systems. Given (17) as an aggregation operator, the mem-
neous satisfaction of all the criteria. The parametershould bership functions and the parameters of the objective functions
not be chosen very small as the simultaneous satisfaction of e been chosen in such a way that they lead to fast response
criteria may then be unfeasible. Wheg is around 2.8, the con- while avoiding excessive oscillations and overshoot within the
trolled system shows a very fast response without overshoot. Werking range of the controller. The prediction horizon is kept

1=m1 1=mso

+ Z (Ru(Du(k +i — 1))

1=ms3

17
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as small as possible, since in practice the model-plant misma
hampers the use of long horizons.

In this study, the control space is discretized and the optirr
control sequence is determined by an enumerative search. "
control horizon is chosen equal to two in order to keep the col
putational load low. To further reduce the computational load,
two-step optimization approach is used, where a rough soluti  _, i i i i i i i
is found by using a coarse discretization of the control space, f 0 5 100 190 Time?‘;‘]’ 20 300 80
lowed by the calculation of a finer solution around the rough s
lution. Other optimization techniques for nonconvex problem
such as the branch-and-bound or genetic algorithms can alsc g ©
used [40], [41]. B

1) Linear System:The predictive control scheme is appliecs _4
to the linear system given by (13) without any constraints ¢ &
the system. Both the conventional criteria and the fuzzy critel ~ -6
are then able to control the system with a fast'step response -8 = 0 = P Y 0 50
no overshoot. However, when a rate constraint/ef| < 0.5 Time [s]
is imposed on the system, the influence of the fuzzy criteria on
the control problem becomes more dominant. For these expéﬁl— 9. Step responses for the linear system using the conventional objective
ments H, = 2andH, = 6. Itis required that the controller can™"""
bring the system to any level in the intenjal3, 3]. Using the
output error and the change in the output with = m3 = 1 4 : : :
andn; = ns = H, was found to be sufficient for controlling the
system. The following parameters are used for the conventior
objective functionia; = 1, 5; = 0, v = 3,4 = 1,..., Hp.
These values are chosen following the general guidelines p3 1
sented in [11] and [24], and by trial and error until a reasonab
response of the system is found. The paramgtevas a com-
promise between fast response (for smaller values) and s © 50 100 150 200 250 300 350

. L Time [s]
or no overshoot (for bigger values). For the fuzzy criteria, th
following membership function parameters are found by tunir 2 ; . . . :
Ktr=-K =1Kf=-K;, =1S5f=-5=05and _,
wy = 2for the Yager-norm. The way to tune the Yager param~§ Sl
eteris discussed in Section Ill-A. The membership functions ft‘_;‘
the error and change in error are chosen to have equal ma¢s -4
tude by choosing(t = Kf = 1, and by takingk” andk; S
symmetrical toK " and K, respectively. Note that the choice , , ‘ ,
of these four parameters requires only the tuning of one of the  © 50 100 150 Time 2[25’ 250 300 850
because they are all related. Finally, the paramagrandsgj
are chosen such that the system can move freely to a certainr@-10. Step responses for the linear system using the fuzzy objective
gree, and is penalized outside these limits. The criterion on tHgction.
change of the control action is not considered because it does
not introduce any improvement in the control performance of 2) Air-Conditioning SystemThe air-conditioning system
this system. The responses of the system for several steps u@rgmulated and a rate constraintafi| < 0.1 isimposed on
classical and fuzzy criteria are shown in Figs. 9 and 10, respélze system in these experiments. In this systémis chosen
tively. It is clear that the predictive controller with fuzzy cri-equal to two, and,, is chosen equal to three. These horizons
teria can improve the speed of the response considerably, whéeealed to be sufficient for controlling the system. It is re-
avoiding overshoots. The response of the controller with coguired that the controller can bring the system to any level in
ventional criteria can be made faster by changing the valuestioé interval [30°C, 60 °C], which is the interval where the
~;, but this occurs at the expense of amplifying the oscillatiotemperatures usually range for this system. The output error
due to the nonminimum phase behavior. Another solution caith m; = n; = 3, the change in the control action with
be found by extending the prediction horizon. However, a conzz = ns = 2 and the change in the output withy = n3 = 3
siderable increase of the prediction horizon is required, and this used for specifying the objective function. The second change
is in general undesired. Hence, this system benefits clearly framthe control action, chosen by, = n, = 2, can be considered
the additional flexibility introduced by the fuzzy criteria. More-as agradual transition between the control horizon and the predic-
over, the prediction horizon can be reduced when fuzzy obje@n horizon. The first elementin the control horizon is allowed to
tive functions are used, without deteriorating the control perfothange freely within the crisp constraintAm, while the change
mance, when proper fuzzy objectives are designed. is zero outside the control horizon. Including the second termin

2 . ; ! ! : —~ ,
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the objective function imposes a soft constraint on the change
the second control action, which reduces the oscillations of t _ ‘
control signal without slowing down the response of the syste|850 ] |
The output error and the change in output are just considered % ,‘
the final stepk + H,,, because it requires less control effort ir iw_
the system. Moreover, the use of the two first steps deteriora g
the control performance due to the severe nonminimum phz ~
behavior detected at some regions of the system’sresponse. %% 500 1000 1500 2000 2500 3000 3500
The following parameters are used for the conventional o Time [s]
jective function:aes = 1, g2 = 500, and~ys = 50. The rest of ]
the parameters are zero. The parametierand-y; are chosen
to make a tradeoff between the several criteria, and to scale &
different terms: error, change in control action and change in t§
output. Note that the fuzzy objective function does not requi ;
this scaling due to the normalization introduced by the fuzzg o6r
sets. For the fuzzy criteria, the following membership functio
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parameters are usef’y = —K_ =30, Kf = —-K, =3, 04 500 1000 1500 . 2000 2500 3000 3500
Sy =-S5, =1 K} =—-K, =06, andwy = 2. Although Time [s]

nine parameters are present, only five must be tuned bec
the others are related to them. The paraméigris chosen as gpieciive function.

Se . I . .
aHg. 11. Step responses for the air-conditioning system using the conventional

the maximum error allowed for the system’; is the max-
imum change allowed in the outplﬁj must be smaller than
K;, and this is the region where the temperature can char
without being penalized. The paramet€} is chosen such that ©
the valve can change almost freely (the total range is the i gso‘
terval [0, 1]), because the valve in the real system can chang
in this way, and the constraint in this valve is made for ener¢ £40
saving and stability reasons. Finally, the parameter for the Ya¢ £
t-norm,wy = 2, allows for a good compromise between fas 30, . v T
response and small overshoot, see Section IlI-A. The respon Time [s]
of the air-conditioning system for several steps using classic
and fuzzy criteria are shown in Figs. 11 and 12, respective
The controller with the fuzzy criteria is more able to use the fuz
range of control actions, and the response of this controller iSg %8
general faster, especially for references close to the limits of t&
range within which they can vary. Further, some overshoots trii 0.6
are noticeable with the conventional criteria are reduced.  ~
Summarizing, for the studied systems, the use of fuzzy ¢ o4 w ; : w w x
teria improves the response of the predictive controller whent ~ ° 50 1000 1500Time2[os%0 2000 3000 3500
parameters of the objective functions are tuned in order to obtain
fast system response without overshoot. Despite the additioRigl 12. Step responses for the air-conditioning system using the fuzzy
number of parameters, tuning the fuzzy criteria is not more t@ective function.
dious than tuning the conventional objective function because . ] o
of a better understanding of the influence of the various paraRidblications in FDM, this paper makes a clear distinction be-
eters. The main disadvantage of the MPC with fuzzy criterf¢/€en the representation of goals and the representation of con-

is that the optimization problem often becomes nonconvex, iptraints. In this way, exponential curves are used for representing
creasing then the computational load. fuzzy goals, while triangular membership functions with their

bounded support are used to represent fuzzy constraints. The
advantage of this approach is that the “hard” constraints of the
control problem are guaranteed to be satisfied. The choice of the

The application of FDM to predictive control in closed-looprediction horizon is addressed, and the generalization of clas-
control systems is considered in this paper. FDM in contrsical objective functions to fuzzy objective functions in MPC is
has two main design problems, which are the choice of the gmesented. This generalization brings additional flexibility to the
gregation operators and the choice of fuzzy criteria. The udefinition of the objective functions, as shown by two examples.
of parameterized aggregation operators has some advantagihese examples also show the improvements of the controller
because these parameters can influence several criteria atréisponse by using fuzzy objective functions in MPC. However,
same time. The relation amongst various performance critetige optimization problem is nonconvex with the known disad-
such as the rise time, the settling time or the overshoot ceantages. In this way, the computational time grows exponen-
then be adapted with only one parameter. Contrary to matigily with the control horizon and the number of variables.
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V. CONCLUDING REMARKS
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Future research must consider the generalization of the fuzzye]
objective function in order to include weights and hierarchical
fuzzy criteria. The methods dealing with the nonconvex optip?]
mization problem to be solved at each step in MPC need to
be computationally efficient. Such methods should be devel-
oped and tested in the future, including, e.g., genetic algorithmﬁgl
branch-and-bound, allowing the application of fuzzy MPC to

systems with smaller sampling times.
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