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SYNOPSIS 

In recent years, many researchers have proposed different iterative learning 

controllers, which unfortunately mostly require that the plants under control be 

regular. Therefore, in order to remove this limitation, various analogue and digital 

iterative learning controllers are proposed in this thesis. 

Indeed, it is shown that analogue iterative learning controllers can be designed for 

plants with any order of irregularity using initial state shifting or initial impulsive 

action. However, such analogue controllers have to be digitalised for purpose of 

implementation. In addition, in the synthesis of their control laws, such controllers 

require some knowledge of the plants' Markov parameters. Ilerefore, new digital 

iterative learning controllers are proposed. Such digital controllers circumvent the 

need for detailed mathematical models of the plants in any form. Indeed, the 

proposed digital iterative learning controllers rely on input/output data in the 

synthesis of their control laws. It is shown that digital iterative learning controllers 

can be readily designed for multivariable plants of any order or irregularity using only 

such input/output data in the form of step-response matrices. 

The learning rates achievable in both the analogue and digital iterative learning 

control of linear multivariable plants are investigated. It is shown that the irregularity 

and stability characteristics of the plants under control impose severe constrains on the 

achievable learning rates. Indeed, it is shown that the learning parameter in the case 

of digital iterative learning controllers increases as the order of plant irregularity 

increases. This increase in the learning parameter affects the learning performance 

and the speed of convergence adversely. This discovery led to the introduction of 

compensators in the design of digital iterative learning controllers for irregular plants 
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which help to improve the learning performance and convergence by reducing the 

effective learning parameter. Since such digital iterative learning controllers use step- 

response matrices in the synthesis of their control laws and since the step-response 

characteristics can be identified in real time, it is shown in this thesis that iterative 

learning controllers can readily be rendered adaptive in case plant dynamics are 

initially unknown or time-varying. 

In order to demonstrate the applicability of these results to the control of robotic 

manipulators, both analogue and digital iterative learning controllers are designed for 

a two-link manipulator in both joint and task spaces. Finally, digital iterative 

learning controllers are designed and practically implemented in the real-time 

positional control of a dc servo actuator. 
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CHAPTERI 

1.1 INTRODUCMON 

In recent years, control has played a vital role in the progress of engineering and 

science. It has become an important part of modem manufacturing and industrial 

processes. Thus, for example, control systems are found in an sectors of industry, 

such as computer-controlled machine tools, automatic assembly lines, aerospace 

systems, power systems, robotics, and many others. In addition, developments in the 

theory and practice of control have provided improvements in the quality of products, 

decreases in the costs of production, and increases in production rates. Ilese various 

control systems are different in their design, principle, and methodology. Indeed, 

from the viewpoint of principle of operation, control systems can be classified into 

three categories as follows: 

(a) non-adaptive systems; 

(b) adaptive systems; 

(C) learning systems. 

Thus, for example, non-adaptive control systems are systems mainly associated with 

feedback control techniques, whereby the actual output of the plant is compared with 

the desired output and then an actuating error signal is formed. Ile controller then 

takes an appropriate action based on that signal so as to reduce the error and bring the 

output of the plant to a desired value. However, in order to design such controllers, 

prior knowledge of the plant dynamics is required. This is usually obtained by using 

some form of off-line identification scheme whereby the plant parameters are 

estimated. In addition, such controllers can be designed and implemented for plants 
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with either non-repetitive or repetitive tasks. However, implementing such controllers 

on plants with repetitive tasks will never progressively eliminate any error which 

might exist in the first trial. In other words, these devices do not improve their 

performance as the plant repeats its task. 

Adaptive control sytems are systems which have the ability to self-adjust by tuning 

their own parameters so as to accommodate large changes in the plant parameters and 

environment, in order to maintain optimal performance. However, designing adaptive 

controllers does not require prior knowledge of the plant dynamics. This knowledge 

is usually obtained by using some form of on-line identification scheme whereby the 

plant parameters are estimated. Thus, adaptive control is closely related to the 

problem of system identification. Indeed, an adaptive controller can be viewed as 

being composed of two parts: the first part is where some or all of the plant 

parameters under control are identified and the second part is where such identified 

parameters are used to design and form a control law. 17hus, in adaptive control 

systems, the dynamic plant characteristics must be identified at all times so that the 

controller parameters can be adjusted in order to maintain optimal performance. 17his 

means that the adaptive controller will not work without knowing the plant dynamics. 

However, even with such knowledge, adaptive controllers are in general unable to 

improve their performance as the plant repeats its task. 

Learning control systems are systems in which the controller has the ability to learn 

from past experience and accordingly improve its performance progressively, just like 

a human operator. Various intelligent control schemes have been investigated and 

implemented practically, such as fuzzy logic control, expert system control, iterative 

learning control, and most recently neural control. The feature which makes 

investigating and implementing intelligent control schemes worthwhile is that there are 

now so many industrial processes where plants cannot be well-controlled using non- 
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adaptive or adaptive control because of the absence of plant models (for instance, 

metal-cutting machines, production systems, and steel furnaces, etc (Ward et al, 

1990)). Therefore, in such cases some form of intelligent control is required. 

Moreover, modem industry requires machines to be more intelligent in order to lower 

the cost of production, improve safety standards in hazardous environments, and 

indeed increase rates of production. 

In this thesis, new iterative learning controllers are investigated and Practically 

implemented. These controllers embody iterative learning algorithms in which the 

(k+l)lh input to the plant, uk+1(t), consists of the kth input, uk(t), together with an 

increment formed from the difference between the desired output, v(t), and the k1h 

actual output of the plant Yk(t)- Thus, such controllers are designed and 

implemented for plants with repetitive tasks only. Furthermore, designing such 

controllers requires little or no information about the plant dynamics. In fact, the 

only information which might be required is input/output information concerning the 

step-response matrix of the plant under control. This step-response matrix can be 

obtained by performing an open-loop test on the plant. Thus, unlike non-adaptive 

and adaptive controllers, these iterative learning controllers have the ability to 

improve their performance progressively as the machines repeat their tasks. In 

addition, these controllers have the edge over adaptive controllers in controlling plants 

with significant non-linear characteristics. This is because adaptive control systems 

usually exhibit some delay while they are adjusting themselves in response to newly 

identified plant characteristics. This delay arises because it often takes several control 

intervals to detect and account for significant variations in the plant dynamical 

characteristics (e. g, due to nonlinearity). This results in degradation in the system 

performance because of the lack of the correct information at the right time. 

However, in the case of repetitive tasks, this heavy burden of trying to identify the 

non-linear part of the plant dynamics by the use of adaptive controllers can 



-4- 

frequently be eliminated by using iterative learning controllers. This is because such 

controllers provide excellent feedforward compensation for the plant dynamics as the 

machine repeats its motion. 

However, it might be argued that good adaptive controllers can be designed to deal 

with all types of plant dynamic variations in the case of either repetitive or 

unrepetitive tasks. But why design a very complicated and probably expensive 

adaptive controller when a simpler and cheaper iterative learning controller can 

perform even better? After all, in industry today many machines repeat their task 

over and over in cycles, so why not learn from past experience and minimise, if not 

eliminate, the error in the system performance altogether? These considerations 

motivate the study of iterative learning control. 

1.2 LITERATURE SURVEY OF ITERATIVE LEARNING CONTROLLERS 

Human beings have the ability to learn from past experience and through practice. 

Athletes improve their form of body motion by learning through repeated training, 

babies begin their course of learning from the beginning of their lives, learning how 

to talk, walk, communicate, etc, and skilled human operators master the operation of 

machines by acquiring skill in practice and gaining knowledge from experience. By 

taking all this into account, it is widely believed that humans can learn from 

experience but that machines cannot. In order to make robots and machines able to 

learn from their previous trials, such devices have to be provided with some of the 

attributes of human beings, such as sensors and memory. 17herefore, in recent years 

much attention has been devoted to the design of new controllers called 'iterative 

learning controllers' which improve their performance progressively as machines 

repeat their tasks. T'hese controllers embody iterative learning algorithms in which the 

(k+l)th input to the plant consists of the kth input together with an increment formed 
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from the difference between the pre-specified desired trajectory and k1h output from 

the plant. In this way, machines are able to improve their performance as they repeat 

their tasks without the help of human operators. 

Uchiyama (1978) was the first researcher to investigate and implement iterative 

learning control on a real mechanical arm. He realised that, at high speed, the desired 

trajectory of motion of the robotic arm cannot be obtained simply by applying the 

desired trajectory functions to the servo system as the reference input because the 

time lag in the servo system is not negligible. Uchiyama (1978) found a solution to 

this problem by applying a compensating computed torque to the servo system. 

However, it is very difficult to obtain this torque since it takes a great deal of effort 

to obtain the correct torque history in view of the difficulty of modelling the arm. 

T'herefore, Uchiyama (1978), realising that an alternative must be found to avoid this 

difficulty, discovered that by repeating a proper process of trial and correction the 

reference input which realises the desired pattern of trajectory can be obtained. 

However, in the correction scheme of Uchiyama (1978) there is no precise proof of 

convergence. In addition, the plants under control are restricted to having transfer 

function of relative order zero. 

This work was accordingly extended by Arimoto et al (1984) who gave, for the first 

time, details of a controller that improved its performance progressively. This 

controller was represented by a learning algorithm with control law of the form 

ek (t) - V(t) A (1) 

uk.,, (t) - uk(t) +r ýkw (1.2) 
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17his algorithm has proved to be effective and practically implementable. However, it 

has the following limitations: 

(a) Ile plants under control must be regular. This means that linear time- 

invariant multivariable plants must have full-rank first Markov parameters. 

Therefore, in robotic applications, velocity variables must be chosen to be 

controlled rather than position variables. 

(b) The plants under control must have known time-invariant state-space models. 

(c) The algorithm is analogue and therefore has to be digitalised for purposes of 

implementation. 

However, in addition, Arimoto et al (1985,1986) and Arimoto (1986) proposed 

different learning algorithms with control laws of the form 

I 

and 

Uk+l(t) u Uk(t) +'0 ek(t) 

jek 
(t) uk+l(t) " Uk(t) ++r 7d (10 t 

j tjek(t) Uk+l(t) ' Uk(t) ++ %P 1 dt +rd, 

Such control laws have been called P. PD, and PID iterative learning control laws, 

respectively. 

However, all these control laws have the same limitations mentioned earlier although 

they differ in their effectiveness and in their speed of convergence. Kawamura et al 

(1985) have nevertheless obtained excellent practical results using such iterative 

learning controllers in the hybrid position/force control of complicated robotic 

manipulators. However, the contribution of Kawamura et al (1985) to the theory of 
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iterative learning control is that they tried to modify the plant input for the next 

iteration by using position, velocity error or both, but not acceleration error in robotic 

control. Indeed, Kawamura (1985,1988) stated that "it may be difficult to realise the 

desired motion with high accuracy when acceleration and velocity signals are 

contaminated by noise. Moreover, Kawamura et al (1988) realised that, in the 

positional control of robotic manipulators, using only the position error signal would 

not guarantee that the error would converge to zero. In fact, it was found that using 

such modifications the position and velocity errors diverged. Various other types of 

analogue iterative learning controllers have been proposed by Furuta and Yhmakita 

(1986,1987), Atkenson and McIntyre (1986). Craig (1984), Mita et al (1984,1985). 

and Ahn and Choi (1990). These controllers are different in their design 

methodology, effectiveness, and indeed in their emphasis. Thus, for example, in all 

these researches the stability of the learning algorithm is investigated but the 

convergence rate is discussed only by Atkenson and McIntyre (1986). Ile results of 

Ahn and Choi (1990) confirm the results of Chapters 2 and 3 of this thesis with 

respect to the design of general analogue iterative learning controllers for arbitrary 

orders of irregularity. However, in the design of Ahn and Choi (1990) it is necessary 

for learning to occur that the desired trajectory is (q-1) times continuously 

differentiable, where q is the relative degree of the plant. 

Recently, Arimoto (1990,1991a, 1991b) proposed a new analogue iterative learning 

control algorithm with forgetting factor. The introduction of this forgetting factor 

helped the learning algorithm to be more robust with respect to initialisation errors, 

disturbances, and measurement noise. However, this new learning algorithm has the 

same limitations mentioned earlier. Several more analogue learning controllers were 

proposed by Messner et al (1991) and Sugie and Ono (1987), Bien and Huh (1989), 

and Oh et al (1988). In fact, Messner et al (1991) and Oh et al (1988) used adaptive 

control to identify some system parameters and some disturbance functions in order to 
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achieve good system performance and good disturbance rejection. Bien and Huh 

(1989) proposed iterative learning algorithms in which the data for several previous 

iterations have to be remembered in order to modify the control signal for the next 

iteration. In other words, the control signal at the (k+l)th iteration is formed from the 

information at the k1h iteration, together with the information at the (k-l)th iteration. 

This method, although effective, requires that many controller gains must be tuned in 

order to achieve good learning performance and speedy convergence. Furthemore, as 

a result of using information from more than one previous iteration, more memory 

space is required. 

Mita et at (1984,1985) discussed the stability of leaming algorithms in the frequency 

domain. Since the frequency-domain analysis is valid only for continuous systems 

and since, in real life, digital controllers are used to control automatic machines, the 

use of discrete-system analysis is more appropriate than either the continuous-system 

analysis or the frequency-domain analysis. Moreover, since the learning control 

scheme requires the storage of the previous iteration's data, it is rather natural from 

an implementational point of view that the control algorithm be given in the discrete- 

time domain. Thus, several digital iterative learning algorithms have been proposed 

by Togai and Yamano (1985a, 1985b, 1986), Shouresh et al (1988,1989), Ishiham et at 

(1986). and Hwang et al (1991). However, in all these algorithms (except that of 

Ishihara, et al (1986)), the state error was used to modify the control signal for the 

next iteration. It follows therefore that all the states must be observable. Moreover, a 

condition for convergence was obtained for each algorithm. 'Mus, for example, Togai 

et al (1985a) obtained a convergence condition based on an optimisation concept, 

whilst Ishihara, et al (1986) obtained a condition based on preventing excessive 

increase of the output error in the transient trial stages. 
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In order to obtain speedy convergence, the generalised inverse of the discrete-time 

input matrix must be used as a controller gain in all these proposed algorithms except 

that of Ishihara et al (1986) which uses the finite sequence of impulse responses of the 

plant to determine the controller gain. Moreover, Hwang et al (1991) used an 

identification technique to obtain the discrete-time plant and input matrices which are 

then used as important and eýSential parts of the learning algorithm. Miller et al 

(1987a, 1987b, 1990) and Kuc and Nam (1989) proposed a different form of learning 

control, where learning is based on using the TMAC' module (cerebeller model 

arithmetic computer) developed by Albus (1972). 

Finally, many researchers have implemented their learning algorithms on robotic 

manipulators, eg, Arimoto et al (1984), Togai et al (1985a), Craig (1984), and Kuc et 

at (1991). However, in these implementations the learning algorithm is used as part of 

a control system which utilises classical feedback control as well as gravity 

compensation. In addition, the gain matrices of the feedback controller must be high 

enough to bring the robot arm to the neighbourhood of the desired trajectory. In 

other words, the learning controller is used to provide compensation only for the 

unmodelled (ie, the non-linear) part of the robot dynamics. 

1.3 OBJECnVES 

In order to design highly-effective iterative learning controllers for multivariable 

plants, it is required to develop a realistic methodology that provides practical 

procedures for the on-line implementation of such controllers. Therefore, design 

algorithms for such controllers should circumvent the need for detailed mathematical 

models of complex multivariable plants in either state-space or transfer-function 

forms. Moreover, the controllers associated with the design methodology should be 

easily realised by utilising data directly obtained from input/output measurements iný 
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the time domain. Furthermore, such controllers should be easily rendered adaptive so 

that the time-varying and non-linear behaviour involved in the operation of the plants 

can be accommodated. These are the main features that represent the guidelines 

within which the required design methodology is chosen. Both analogue and digital 

iterative learning control design methodologies are proposed in this thesis, although 

the analogue design methodology does not accord with all of the guidelines mentioned 

earlier whilst the digital design methodology accords with all these guidelines. 

However, the analogue design methodology is proposed initially in order to avoid the 

most important limitation imposed by Arimoto et al (1984) and many others in that 

their iterative learning controllers can only be designed for regular plants. The 

analogue and digital design methodologies proposed in this thesis are investigated in 

order to demonstrate the effectiveness and the efficiency of these methodologies in 

designing iterative learning controllers for plants with abritrary irregularity 

characteristics. Furthermore, these newly proposed methodologies are used to design 

and implement iterative learning controllers for robotic manipulators. Ile digital 

design methodology proposed in this thesis is further illustrated by designing and 

implementing practically digital iterative learning controllers for a dc servo-actuator. 

Tlis digital design methodology is introduced for the following reasons 

(a) Ile indirect process of digitalising the analogue controllers for purposes of 

implementation is unsatisfactory since finite-difference approximations of the 

derivative action used by such analogue controllers can give rise to 

inaccuracies and instabilities. 

(b) Since the learning control scheme requires the storage of the previous 

iteratiWs data, it is rather natural and effective from an implementational 

point of view that the learning algorithm be digital. 

(c) These digital iterative learning controllers can be easily and directly designed 
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using only input/output representations in the form of the step-response 

matrices of the multivariable plants under control. Moreover, these controllers 

can easily be rendered adaptive by identifying in real time the step-response 

matrices of plant under control. 

1.4 OUTLINE OF THE THESIS 

This thesis is divided into six parts in order to explain fully the design and 

implementation of analogue and digital iterative learning controllers. Thus, Part I 

(Chapter 1) briefly introduces the control problem, presents and discusses various 

methods that exist in the field of iterative learning control, and states the objectives of 

this thesis. 

Part H (Chapters 2 and 3) is concerned with the design of analogue iterative learning 

controllers for linear multivariable plants using initial state-shifting and initial 

impulsive action, respectively, for plants with arbitrary orders of irregularity. Thus, 

this part solves the fundamental problem faced by Arimoto et al (1984) and many 

others who concluded that iterative learning controllers cannot be designed for 

irregular plants. It is shown that the introduction of initial state-shifting or initial 

impulsive action is necessary in case the plant is subject to a command with initial 

discontinuity. 

Part III (Chapters 4 and 5) is concerned with the design of non-adaptive and adaptive 

digital iterative learning controllers for linear multivariable plants. 'Mus, Chapter 4 

presents a design methodology for digital iterative learning controllers using only 

input/output data in terms of step-response matrices. In addition, this design 

methodology is significantly extended to design digital iterative learning controllers 

for plants with arbitrary orders of irregularity by the incorporation of digital 
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compensators. Chapter 5 explains how such controllers can easily be rendered 

adaptive by identifying on-line the step-response matrices of plants, thus avoiding 

performance degradation in the control of initially unknown plants. 

Part IV (Chapters 6.7, and 8) is concerned with the design of analogue and digital 

iterative learning controllers for robotic manipulators. 'Mus, Chapters 6 and 7 present 

analogue and digital model-based iterative learning controllers for robotic 

manipulators, respectively, in both Cartesian and joint spaces. The computed torque 

method is used to reduce the non-linear robot to a linear time-invariant plant, so that 

the theories developed in Chapters 2,3, and 4 can be readily implemented. 

Moreover, an actuator is used with different reduction gear ratios in order to 

investigate the effects of not knowing the full dynamical details of the robotic 

manipulator. Chapter 8 discusses the design of adaptive digital iterative learning 

controllers for robotic manipulators in both Cartesian and joint spaces. The step- 

response matrices of robotic manipulators are identified in real-time along their 

trajectories in both spaces, so that such manipulators are thus rendered amenable to 

adaptive digital iterative learning control. 

Part V (Chapter 9) is concerned with the design and practical implementation of 

digital iterative learning controllers in the real-time positional control of a dc servo- 

actuator. 

Finally, Part VI (Chapter 10) provides conclusions and recommendations for further 

work. 
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DESIGN OF ANALOGUE ITERATIVE LEARNING 

CONTROLLERS FOR LINEAR MULTIVARIABLE PLANTS 
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CHAPTER 2 

DESIGN OF ITERATIVE LEARNING CONTROLLERS USING 

INMAL STATE-SHIMNG 

2.1 INTRODUMON 

in this chapter, the design of iterative learning controllers using initial state-shifting 

for linear time-invariant mulitivariable plants is considered. it is shown that these 

controllers do not require detailed estimates of the dynamical parameters of the plants 

under control and are therefore extremely attractive for application to complex 

industrial plants. 

I 

The existing theory of iterative learning control (Arimoto et al, 1984) requires that the 

plants under control be regular. This means that linear time-invariant plants must 

have full-rank first Markov parameters, and therefore that velocity variables must be 

chosen as outputs rather than positional variables in robotic applications. In order to 

remove this limitation, iterative learning controllers with initial state-shifting were 

characterised by Porter and Mohamed (1990a) for a class of completely irregular 

linear time-invariant plants, ie, plants with null first Markov parameters but full-rank 

second Markov parameters. It was further shown by Porter and Mohamed (1991a) 

that these results can be extended so as to embrace iterative learning controllers for 

Ith-order partially irregular linear time-invariant multivariable plants, ie, plants with 

rank-defective first, second, ..., tth Markov parameter but full-rank (t+l)th Markov 

parameters (t = 1,2,3 .... ). 'Iliese theoretical results are presented in this chapter and 

their effectiveness is illustrated by the design of iterative learning controllers for 

typical first-order partially and completely irregular plants and also for a typical 

second-order completely irregular plant. , 
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2.2 ANALYSIS 

Ile linear time-invariant multivariable plants under consideration are assumed to be 

governed on the continuous-time set by state and output equations of the respective 

forms 

I(t) - Ax(t) + Bu(t) 

and 

... (2. la) 

At) - Cx(f) 
9 ... (2.1b) 

where x(t) e Ra is the state vector, 4<t) c Rm is the input vector, ><t) e Rm is the 

output vector, Ac Rnxn is the plant matrix, Bc Rnxm is the input matrix, and Cc 

Rmxn is the output matrix. In addition, it is assumed that 

rank CB -m-p... (2.2) 

and 

mnk CAB -m (2.3) 

where Pf Am] is the rank defect of the first Markov parameter CB. Such plants 

are first-order partially irregular when P>0 and therefore fail to satisfy the 

fundamental requirement of Arimoto et al, (1984) that p-0 for the existence of 

iterative learning controllers. 

However, the results presented in this chapter indicate that it is possible to control 

such first-order partially irregular plants using an appropriately generalised, iterative 

learning controller together with initial state-shifting. 
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In these controllers, the ultimate objective is to generate an input vector U<t) f Rm 

that produces a plant output vector y(t) c Rm that conicides with the desired plant 

output vector v(t) e Rm over a fixed finite time interval JO. TJ. It is assumed that 

the iterative learning process begins by subjecting the plant to an arbitrary continuous 

input vector uO(t) c Rm and by storing uO(t) c Rm on [O. TJ together with the 

resulting error vector eo(t) - v(t) - yo(t) c Rm between the desired output vector and 

the actual output vector yo(t) c Rm caused by the input vector UO(t) e Rm. The 

iterative learning process continues by adjusting the initial state vector of the plant, 

by subjecting the plant to a new input vector ul(t) e Rm formed from UOW ( Rm 

and e0(t) e Rm, and by storing ul(t) c Rm on [O. TJ together with the resulting 

error vector el(t) - v(t) - y1(t) e Rm between the desired output vector and the 

actual output vector y1(t) c Rm caused by the input vector ul(t) e Rm. 11is 

iterative process continues indefinitely thus producing a sequence of output vectors 

(YO(0, Y1(0, --Yk(0 .... ) on [0, Ttl corresponding to a sequence of initial state vectors 

(XO(0, X1(0, --Xk(0 .... ) and a sequence of input vectors (uO(t), u1(t),... 'Uk(0 .... ) on 

10. Tt I. 

In order to establish the precise conditions under which learning occurs in the case of 

plants governed by equations of the form (2.1), it is first necessary to introduce the 

following vector and matrix norms: 

Pk(Oloo 
' max 14)(t) I ... (2.4a) 

1: 5 i: s M 
and 

m 
max( Z lg(i. J) 1) (2.4b) 
i: ý-Mj. j 

In these norms, tt)(t) is the ith element of ýk(f) c Rm, and g(U) is the ijth 

element of Gc Rmxm. 
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The following fundamental result can now be proved for first-order partially irregular 

linear time-invariant multivariable plants. 

Theorem 2.1 

In the case of the plant with state and output equations 

, 
kk(t) ý AXk(t) + BUO) 

and 

Yk(t) " CXk(t) 

under the action of the control law 

Uk+l ý Uk(t) + K14(t) + K2ý k(t) 

where K, c Rmxm, K. e Rmxm and 

ek (t) ' 10) -A (t) 

assume that 

(i) uO(t) is continuous on [0, TJ and v(t), Xt) are continuously differentiable 

on [0, Tt t 

(ii) CBK2 - 0, 

(iii) xo (0) is such that yo (0) » v(0); 

(iv) xk+, (0)»xk(O)+BK2ek(0) (k-0,1,2.... ); 

Im - CBK, - CA8K2 1 
00 < 1. 



I 
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Then, 

AM "* V(t) 

uniformly in tc [O. TJ as k- oo. 

Proof 

The solution of the governing equation of the plant implies that 

cAe4tXk+1(0) + CBUk+l(t)'+ CAeA(t-f) Buk+, (r)dr 
Jo 

Hence, it follows that 

CAeAtxk+, (O) + CBuk+, (t) + 
Jo 

CAeA(t-T) Buk+, (r)dr 

This, using (iv) and substituting the control law, indicates that 

ýk+j(t) - Xt) - [CAeAtxk(O) + CAABK2ýk(O) + CBuk(t) + CBKIýk(t) 

+ CBK2k(t) + 
10' 

CAeA(t-f) BUk(r)dr + 
10' 

CAeA(t-? ) BKI ýk(r)dr 

+ 
JOCAeA(t-I)BK2k(r)dr] 
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and therefore, using (ii), that 

ýk+, (t) - i(t) - LVk(t)+CAeAtBK2ýk(O)+CBKjýk(t) + CAeA(t-)BKjýk(r)dr 
Jo 

+ 
ft 

CAeA(t-I)BK2k(r)dr] 
0 

But integration by parts indicates that 

JOCAeA(t-Y)BK2; 
k (r)dr - [CABK2ýk(t)-CAekBK2ýk(o)] + CAel4(t-v)ABK2tk(r)dr 

Jo 

so that 

-t 
4+10) - (Im - CBKI - CABK2)4(t) - 

Jo 

CAeA(t-r) (BKI + ABK2)ýk(r)dr 

Now, taking the norm of both sides of the equation indicates that 

11 ek+l(t) 11 
oo :s 11. - CBK, - CARK2 1 

00 *1 
kk(t) 1 

00 

+ sup 
10' 

11 CAeA(t-Y) (BKI + ABK2)1100 .0 dr 
0 :5t : STt 

: SPOMMoo +a SUP 16k(r) 1.0 dr 
0: 5 t :5 Tt 

Jo t 
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where 

1. - CBK, - CARK2 11�. 

and 

sup CAeAt(BKj + ABK2) I co 
0 :5t :5 Tt 

Therefore, 

oo +a1 eo dr :s pß + orßt ý5 
(p + ort)ß 

10 

where 

$up 00 0 !5t :5 Tt 
9 

ý20) PI ý10) I oo + lff 
10 

1 il (r) dr :5W 4pal)p +alo(p + (yr)Pdr 

(P2 + OrPI)p + crppt + a2L2 0< 02121 
21 p2 + 2apt + 2! j 

1ý 

(2.5) 

0............................... 0................... 0 

Iý& [pk + kpk-lot + 
k(k-1) 

.p 
k-2 ! 21 t2 + 

k(k-1)(k-2) 
p k-3 ELt s 

k(t) 
1 

21 21 31.31. 

k-4 040 
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kp crk-I lk-I + Ok tk P 
(k-l)! ! ý-t 

or in closed form, 

k 
k! k-q Oq tq 

... (2.7) k(t)loo: gfl 
T- 

q! (k-q)! ql 
q=O 

It is found that each individual term in the right-hand side of the inequality (2.7) is 

positive. Therefore, in order for 11 ýk (t) to vanish as k --+ oo, each term must 

vanish as k- oo. Indeed, the only way to make these terms vanish is by satisfying 

condition (v) of Theorem 2.1 that p<1. This can be proved by noting that 

lim k8 

for any integer s>0 provided that 1PI <I-. Ilis fact is best appreciated by 

considering the ratio of the kth term to the (k-I)th term in the series Kspk -. 

Thus, 

rk 
. 

(k) I pk 
ý 

(kk-1) 

rk-I (k-l)opk-I 

Hence, 

lim rk 

k-* oo 
'rk-1 

This means that 
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lim rk 
k-. ooo 

provided that lpl< 1. 

However, the last term of the inequality (2.7) will vanish in a different fashion, 

because the speed of the factorial function's progress is mor; rapid than the speed of 

the exponential function's progress. In other words, the denominator of (okillffl) 

increases faster than the numerator so that this term vanishes as k increases. Indeed, 

the speed at which this term disappears depends on the magnitude of the parameter, 

a. The smaller this parameter, the faster the term will disappear. 

It therefore follows from these considerations that I 4(t) I 
oo - 0, as k --+ oo which 

implies that h(t) -* Xt) uniformly in tc [O. TJ as k- oo. But 

Yk+1(0) ý CXk+1(0) 

from which it follows, using (ii) and (iv), that 

Yk+1(0) ' CXk(O) + CBK2tk(o) ' CXk(o) ' Yk(O) 

and therefore, using (iii), that 

Yk(0) » V(O) 

for all k-0,1,2 ..... It is therefore finally evident that 

Yk(t) --* 
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uniformly in tc [0, Ttj as k- oo. 

It is clear from condition (iv) of Theorem 2.1 that the state must be shifted by the 

amount given by BK2ýk(O) at the beginning of each successive iteration for learning 

to occur. (See Appendix A for more details. ) The iterative learning processes 

characterised by Theorem 2.1 are depicted in Figure 2.1. it is important to note that, 

since CB has full rank in the special case of regular plants, condition (iii) of 

Theorem 2.1 then indicates that K2 =0 so that conditions (iv) and (v) then reduce to 

the corresponding results of Arimoto et al (1984) for regular plants. 

It is evident that, although the parameter a defined in equation (2.6) is not involved 

in the sufficient conditions for learning enunciated in Theorem 2.1, the value of a 

nevertheless affects the rate at which learning occurs. This parameter is accordingly 

called the learning parameter of the plant/controller combination and its effect is 

investigated in Section 2.4. Moreover, according to equation (2.6) the value of this 

parameter depends on the stability characteristics of the plant under control because 

of the presence of eAt. 

In addition, it is clearly impossible to satisfy condition (v) of Theorem 2.1 in the case 

of plants with second- or higher-order irregularities. i. e. plants with rank-defective 

CB. CAB, ---, CA1-1B Markov parameters and full-rank CAIB Markov parameter 

(t ?: 2). In such cases, the following generalised result can be proved by means of the 

same arguments as were used in the case of Theorem 2.1. 

Theorem 2.2 

In the case of the plant with state and output equations 
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Jtk(t) - Axk(t) + Bul, (t) 

and 

AM " CXk(t) 

under the action of the control law 

1+1 
tlk+l m "k(t) + Kjeý)(t) 

where K, c Rmxm (i - 1,2,..., t+l) and 

ek(t) ' V(t) - Yk(t) 

assume that 

(2.8) 

(i) uO(t) is continuous on [0, Tj and v(t), Kt) are continuously differentiable 

on [0, Ttl 

1+1 
(ii) Y- CAI-JBKI -0 (j - 2,3...., t+l); 

i. j 
OR) xo (0) is such that yo (0) - v(O); 

41 41 
OV) Xk+1(0) ý Xk(O) + 

Z T Al-JBKie2-)(0); 

j=2 i-j 
41 

(V) CAI-IBKj 1 
, 00 < 

Then, 

Yk(t)V(t) 
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uniformly in tc [0, Tt ] as k -+ oo. 

It transpires, in the course of the proof that, 

k 
(t) 11'. 

0 :5pkE 
kl p(k-q) 

ON 

q! (k-q)! q! 
qwO 

where k>0. 

(2.9) 

It is clear by comparing the inequality (2-7) with (2.9) that both inequalities are 

identical except that in the inequality (2.9) the parameters p and a are 

f+l 
7- CAI-I B Ki 

W 

and 
41 

sup CAeAt Al-1 B Ki I co 0: 5 t :5 Tt 

17hus, I'heorem, 2.2 establishes the conditions under which the iterative learning 

controller governed by equation (2.8) generates an input vector U<t) C Rm that 

produces an output vector )<t) c Rm which coincides with the command vector 

v(t) c Rm over the time interval [0, Tj for higher-order irregular plants. 

Finally, it is important to mention that the quantity on the right-hand side of the 

inequalities (2.7) and (2.9) represents an upper bound on the rate of change of error. 

This bound can be used as a guide to show how the parameters p and a affect the 

learning rates in the case of iterative learning control with initial state shifting. 

However, this bound does not indicate how many iterations are required for the 



f 
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plant's output to coincide with the desired command over the desired time interval. 

Nevertheless, this bound does indicate whether the learning rate is rapid or not 

depending on the parameters p and a. It is worth mentioning that the inequalities 

(2.7) and (2.9) become 

oo 
ok Ik 

K! 

when p- 

(2.12) 

The rate of change of error given by equation (2.12) is investigated in Example 2.6 

with different values of a corresponding to different SISO plants. 

2.3 SYNTHESIS 

It is clear that learning will occur, in the sense that ek '-+ 0 as k --* 00 in Theorem 

2.1, provided condition (v) is satisfied, i. e. p<1. However, the speed with which the 

plant learns is determined by the values of the parameters p and a. Ile smaller 

these parameters the faster the learning rate will be (see Section 2.4). The values of 

both parameters p and a depend on the choice of the controller gain matrices; in 

addition, a depends on whether the stability characteristics of the plant under 

control. Thus, the controller gain matrices must be designed so that both parameters 

are as small as Possible. Therefore, in the case of first-order partially irregular plants, 

the controller gain matrices must be 

K, - A(CB + CABD)-l 
... (2.13) 

and 
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K2 - DKI 

where Ac R+ and Dc Rmxm. It is then clear from equation (2.5) that 

I I-AJ ... (2.15) 

which implies that the crucial condition (v) of Theorem 2.1 will be satisfied provided 

that 0<X<2. In addition, D must be chosen so that CBD -0 (see Appendix A). 

However, it is also clear from equation (2.6) that the choice of the controller gain 

matrices given by equations (2.13) and (2.14) implies that the corresponding value of 

the learning parameter is given by 

a sup IICAeAt(B+ABD)(CB+CABD)-lico 
0: 5 t: s Tt 

It is thus evident from equation (2.16) that the value of the right-hand member of 

equation (2.16) depends upon the stability characteristics of the plant under control. 

Indeed, it follows from equation (2.16) that 

or > 11 CA(B + ABD)(CB + CABD) -1 1, 
ý. 

in the case of open-loop stable plants. 

... (2.17) 

The effects of the parameters p and a on the learning rate are investigated in 

Section 2.4 for various plants with different irregularity and stability characteristics. 

Similar synthesis considerations apply in the case of plants with higher-order 

irregularities when Theorem 2.2 is used with p and a as defined in equations (2.10) 

and (2.11). 
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2.4 ILLUSTRATIVE EXAMPLES 

The use of iterative learning controllers can be conveniently illustrated by designing 

iterative controllers with initial state shifting for an open-loop stable, unstable, and 

neutrally stable first-order irregular plants. In addition, the design of such controllers 

is extended so as to embrace an open-loop stable plant with second-order irregularity 

using the control-law proposed in Theorem 2.2 Furthermore, the upper bound of the 

rate of error is investigated for different stable SISO plants. In all these examples, in 

the iteration corresponding to k-0 neither the inputs nor the outputs have been 

plotted since both are zero. 

Example 2.1 

Ile state and output equations of a linear time-invariant plant on the continuous-time 

set are 

-3 0 X, (t) 00 ul (t) 

*2(t) -2 -1 2 X2(t) +21 

-t3 
(t) 0 -2 

j 
X3(t) 3 U2 (t) 

j 

... 
(2.18a) 

and 

YI(t) 0 X, (t) 

X2 (t) 

Y2 (t) 0 X3(t) 
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In this case, the plant is asymptotically stable but first-order partially irregular since 

its first Markov parameter 

CB -[ 
0,01 

is rank defective whilst its second Markov pammeter 

26 
CAB 

2 11 ... (2.19b) 

evidently has full rank. So, the plant is first-order irregular and therefore cannot be 

controlled by the iterative learning controller of Arimoto et al (1984). 

It is required that the output vector of this plant track the command vector 

VW - 
12t ] 

(t 'E to, Tt 1) ... (2.20) 
[ 

-12t 

on the time interval [0,1] sec. 

In case 

XO(0) m0 
0 

and 
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uo (1) - 
101 

9 

the learning characteristics of the iterative learning controller with different controller 

gain matrices given by equation (2.13) and (2.14) when 

0 

0 
" -3 

�1 
... (2.23) 

so that CBD -0 are shown in Figure 2.2. Indeed, the results in Figures 2.2(a, b) 

corresponding to the choice A-1, p-0a-5 show rapid learming; those in Figures 

2.2 (c, d) to the choice A-0.8, - 0.2, a-4 show less rapid learning; and those in 

Figures 2.2 (e, f) to the choice A 0.5, p-0.5, a-2.5 show even less rapid learning. 
A. 

In all these cases, v(t) is such that 

?o (0). 
12 -, 

I 

and therefore initial state shifting is required. 

Example 2.2 

... (2.24) 

The state and output equations of a linear time-invariant plant on the continuous-time 

set are 
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JtI(t) 0 0.5 0 0 xl(t) 

-t2 0 0.1 0.75 0 X2 

-t3 -1.5 0.5 1.25 0 X3(t) 

*4 (t) JL2.5 0 -2.5 0 L X4 W 

ul (t) 

2 
+ 

3 1 

L0 0J L u2 (t) 

(2.25a) 

and 

XI(t) 
X2 (t) 

X3(') 
Y2(1) 00 

X40) 
(2.25b) 

In this case, the plant is unstable and is first-order completely irregular since its first 

Markov parameter 

0,0 
CB - 

10 

, 01 ... (2.26a) 

is clearly null whilst its second Markov parameter 
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CAB -[ 
0*5 'I] 

-7.5 , -2.5 ... (2.26b) 

evidently has full rank. T'herefore the plant is first order completely irregular and so 

cannot be controlled by the iterative learning controller of Arimoto et al (1984). 

It is required that the output vector of this plant track the command vector 

v(t) - 
12t ] 

(t c to, Tt 1) 
[ 

-12t 

on the time interval [0,1] sec. 

In case 

0 

0 

xo(0) -0 

L01 

and 

UO(t) -0 

101 

(2.27) 

... (218) 

(2.29) 

the learning characteristics of the iterative controller with different controller gain 

matrices given by equations (2.13) and (2.14) when D- 12 are shown in Figure 2.3. 
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in this case, the plant is unstable, and equation (2.16) accordingly indicates that the 

large value of a corresponds to the end of the task. The results in Figures 2.3(a, b) 

correspond to the choice A-1, p-0, a-9.58; those in Figures 2.3(c, d) to the choice 

A-0.5, p-0.5, a-4.79; and those in Figure 2.3(e, f) to the choice A-0.1, p-0.9, 

a-0.958. It is clear from these figures that. ' because of the instability of the plant 

under control, learning is slow and violent as shown in Figures 2.3(a, b) when A-1; 

that learning is slower but less violent as shown in Figures 2.3(c, d) when A-0.5; and 

that learning is even slower but even less violent as shown in Figures 2.3(e, f) when 

A-0.1. Ilese results confirm that the instability of plants under control imposes 

unavoidable limits on the learning rates achievable in the iterative learning control. In 

all these cases, v(t) is such that 

eo(0) m ... (2.30) 
12 -' 

l', 
' 

and therefore initial state shifting is required. 

Example 2.3 

The state and output equations of a linear time-invariant plant on the continuous-time 

set are 

jci (t) X, (t) 

000 x2 

-t3 0000 X3«) 

4L0000L X4 (1) j 
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ul 

J 
U2 

and 

XI(t) 
yi(t) ooo 

X2 (t) 

Y2 000 
X30) 

... (2.3 1 b) 
X4(t) 

In this case, the plant is clearly neutrally stable but first-order completely irregular 

since its first Markov parameter 

CE - 

10 

, 01 ... (2.32a) 

is clearly null whilst its second Markov parameter 

29 
CAB - 

.0 -31 ... (2.32b) 

evidently has full rank. Therefore, the plant is first order completely irregular and so 

cannot be controlled by the iterative learning controller of Arimoto et al (1984). 

It iS required that the output vector of this plant track the command vector 



-34- 

v(t) -[-, 
2t 

(t c [0, Tt 1) 
12t] 

on the time interval [0,1] sec. 

In case 

0 

0 

xo(0) -0 

0 

and 

uo (t) =09... (2.35) 

101 

the learning characteristics of the iterative controller with different controller gain 

matrices given by equations (2.13) and (2.14) are shown in Figure 2.4. 

Figures 2.4(a, b), (c, d) and (e, f) show the learning controllers when A- (1,0.5,0.2). 

p- (0,0.5,0.8) and a- (1,0.5,0.2) respectively. It is clear from these figures that, 

learning is fast but violent as shown in Figures 2.4(a, b) when A-1; that learning is 

slower but less violent as shown in Figures 2.4(c, d) when A-0.5; and that learning is 

even slower but even less violent as shown in Figures 2.4(e, f) when A-0.1. 

In all these cases, v(t) is such that 

e0 (0) « 
- 12 

' ]�0 
(2-36) 
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and therefore initial state shifting is required. 

It is evident from the previous example that plants with small learning parameters can 

be controlled best using iterative learning controllers. 11is is because good learning 

performance and rapid convergence can be obtained in controlling such plants. 

Indeed, the results of this example confirm that plants whose eigenvalues all lie at the 

origin of the s-plane produce the smallest learning parameters. 

Example 2.4 

In th e previous examples, the effects of open-loop stability characteristics on the 

learning parameter and the learning rate were investigated. In this example, the effect 

of the design parameter D in the controller gain matrices on the learning parameter 

is investigated. Ws investigation is carried out in the hope of finding ways to reduce 

the parameter a without affecting the parameter p in order to obtain better 

learning rates. 

The state and output equations of linear time-invariant plant on the continuous-time 

set are 

. kl (t) 

0 -8 -6 0 X2 

JC3 32 -3 0 X3 

jc4 JL50 -5 -6 JL X4 
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ul(t) 
2 

3 

L00JL 
U2 Wi 

and 

YI(t) 

Y2 (t) 

X, 

XI(t) 
X30) 

X40) 

(2.37a) 

(2.37b) 

In this case, the plant is asymptotically stable but first-order completely irregular 

since its first Markov parameter 

.0, 
CB in 

-0, 

is clearly null whilst its second Markov parameter 

10 
CAB 

] 

(238a) 

(2.38b) 
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evidently has full rank. 17herefore, the plant is first-order completely irregular and so 

cannot be controlled by the iterative learning controller of Arimoto, et al (1984). 

It is required that the output vector of this plant track the command vector 

V(t) - 
12t I. 

(t A Tt 1) 
[ 

-12t 

on the time interval [0,1] sec. 

In case 
0 

0 

XO(0) - 
0 

L01 

and 

uo W 
9 

... (2.39) 

(2.40) 

... (2.41) 

the learning characteristics of the iterative controller with controller gain matrices 

given by equations (2.13) and (2.14) when A-1, p-0 are shown in Figure 2.5. 

Indeed the results presented in Figures 2.5(a, b) correspond to D- -12, a- 15; those 

in Figure 2.5(c, d) correspond to D-0.1 12, a -- 8; and those in Figures 2.5(e, f) 

correspond to D- -(CA2B)-I(CAB), a=4.92. Tle last choice of D is made so that 

0 at t-0, but the largest value of a according to equation (2.6) corresponds to 

0.21 sec. In addition, all these choices of D guarantee that CBD - 0, since CB 

is null. Thus it is clear from Figure 2.5 that the best learning performance and most 
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rapid convergence is obtained when D= -(CA2B)-'(CAB) (see Figures 2.5(e, f)). 

Finally, in all these cases vQ) is such that 

eo(0) - 
12100 

... (2.42) 
[ 

-12 

and therefore initial state shifting is required. 

Example 2.5 

The state and output equations of a linear time-invariant plant on the continuous-time 

set are 

il(t) 

-t2 
(t) 

5C3 

't4 

*6 W 

-t6 
(t) 

I=I 

XI(t) 

X2(t) 
X3(t) 

I, -2 -3 -2 1, -3 X40) 

0000 -3 0 X6 M 

00000 -2 x6(t) 

0,0 

+1 

ul(l) 

U2 
(2.43a) 
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and 

X, (t) 

X20) 
yi(t) 

1 -2 ,0,0,0,0 X3(t) 

L Y2 (t) jL2,0,0,0,0 

X4(t) 

X6 (t) 

X6(t) 

(2.43b) 

In this case, the plant is asymptotically stable but second-order completely irregular, 

since its first and second Markov parameters 

Cs -[]... (2.44a) 
0,0 

and 

CAB= 
[o 

' ol 

... (2.44b) 
0,0 

are clearly null whilst its third Markov parameter 

18 16 
CA2B 

1--6 

-81 ... 
(2.44c) 

evidently has full mnk. 
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It follows therefore that such plants cannot be controlled using either the iterative 

learning controller proposed by Arimoto et al (1984), or the controller proposed in 

Theorem 2.1. However, such plants can be controlled using the iterative learning 

controller proposed in Theorem 2.2. 

It is required that the output vector of this plant track the command vector 

v(t) - 
12t 1 

(t c (0, Tt 1) 
[ 

-12t 

on the time interval [0,1] sec 

In case 
i 

0 

0 

X(O) 
0 

0 

0 

0 

and 

(2.45) 

(2.46) 

uo(t) -09... (2.47) 

101 

the learning characteristics of the iterative learning controller with the controller gain 

matrices 



-41 - 

K, -A (CB + CABD, + CA2BD2)-1 9 

K2 - DIKI 9 ... (2.48b) 

and 

K3 - D2K, ... (2.48c) 

are shown in Figure 2.6, where Ae R+ and DI, D2 e Rmxm. D, and D2 can be 

arbitrary since CB - CAB - 0, but, in this example, D, - D2 - 12 are chosen. 

The results presented in Figures 2.6(a, b), (c, d) and (e, f) correspond to A- (1,0.5,0.2). 

P- (0,0.5,0.8) and a- (6.6,3.3,1.32), respectively. 

It is clear from these figures that learning is rapid as shown in Figures 2.6(a, b) when 

A-1; that learning is less rapid as shown in Figures 2.6(c, d) when A-0.5; and that 

learning is even less rapid as shown in Figures 2.6(e, f) when A-0.2. 

Finally, in all these cases, v(f) is such that 

ko(0) - 
12 ]00... 

(2.49a) 
1-12 

and 

0 ... (2.49b) 
01 

and therefore initial state shifting is required. 
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Example 2.6 

17his example is given to illustrate the conservativeness (or otherwise) of the bound on 

the rate of change of error given by the inequality (2.7). This illustration is affected 

by considering two SISO plants governed by state and output equations of the 

respective forms 

i(t) -ax (b) +b u<t) ... (2.50a) 

and 

)(t) -c x(t) ... (2.50b) 

for which 

a -1 

bI 

C 

and 

a= -10 

bI 

CI 

respectively. 

In addition, these plants are controlled using an iterative learning controller with a 

control law of the form 
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Uk+1(1) ý Uk(t) + K, k(t) 

Since both these SISO plants are regular, this control law is obtained as a special case 

of either Theorem 2.1 or Theorem 2.2. The learning behaviour of this iterative 

controller is accordingly governed by the appropriate special cases of the inequalities 

involved in Theorems 2.1 and 2.2 (i. e. inequality (2.7) and inequality (2.9)). In 

addition, in this iterative learning controller if the controller gain matrix K, is 

chosen so that p-0, inequalities (2.7) and (2.9) will be reduced to 

IbL(-, ) Lw 
:5 

ok ik 
0 k! 

Ilerefore, it is required to investigate the relation between this inequality and 

P of the actual process for (t e [0,2] sec). 

It is clear from Figures 2.7(a, b) that the bound is non-conservative when a is small; 

on the other hand the results represented in Figures 2.7(c. d) confirm that the bound is 

loose and conservative when a is large. In addition, it is clear by comparing Figures 

2.7(b, d) that learning is slow when a is large. This is confirmed in Figures 2.7(a, c). 

2.5 CONCLUSION 

It has been shown in this chapter that iterative learning controllers with initial state 

shifting can be characterized for a class of first-order irregular linear time-invariant 

multivariable plants. In addition, these results have been extended so as to embrace 

plants with higher-orders irregularity. Furthermore, it has been shown that these 

results can be used to obtain important information concerning the learning rates 

achievable by such controllers. Indeed, it has been found that the stability 

characteristics of the plants under control impose severe constraints on these 

achievable learning rates. In addition, the upper bound of the rate of change of error 
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has been investigated. 

Finally, these general results have been illustrated by the presentation of numerical 

results for the iterative control of different linear multivariable plants with various 

stability and irregularity characteristics. 
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CHAPTER 3 

DESIGN OF 1717ERATIVE LEARNING CONTROLLERS 

USING INITIAL IMPULSIVE ACTION 

3.1 IN71RODUCTION 

In the previous chapter, the design of iterative learning controllers with initial state 

shifting was considered. Due to the possible practical difficulties of implementing 

such controllers - namely, the difficulties involved in shifting the states at the 

beginning of each successive iteration for learning to occur - such controllers perhaps 

need to be modified. it is therefore shown in this chapter that such practical 

difficulties can be circumvented using iterative learning controllers with initial 

impulsive action. However, as was the case in Chapter 2, it is shown that these 

controllers do not require detailed estimates of plant parameters and are therefore 

extremely attractive for application to complex industrial plants. Nevertheless, it is 

important to note that impulsive action must be implemented practically by using 

pulses of short duration and large amplitude. 

It was explained in Chapter 2 that the existing theory of iterative learning control 

(Arimoto et al 1984) requires that the plants under control be regular. In order to 

remove this limitation, iterative learning controllers with initial impulsive action were 

characterized by Porter and Mohamed (1990b) for a class of completely irregular 

linear time-invariant multivariable plants, i. e. plants with rank-defective first Markov 

parameters but full-rank second Markov parameters. It was also shown by Porter and 

Mohamed (1991b) that these results can be extended so as to embrace-iterative 

learning controllers for tth-order partially irregular linear time-invariant multivariable 
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plants, i. e. plant with rank-defective first, second ...... ith Markov parameters but full- 

rank (t+l)th Markov parameter, (f = 1,2,3 ). 

These theoratical results are presented in this chapter and their effectiveness is 

illustrated by the design of iterative learning controllers for typical first-order 

partially and completely irregular plants and also for a typical second-order 

completely irregular plant with various stability characteristics. 

3.2 Analysis 

The linear time-invariant multivariable plants under consideration are assumed to be 

governed on the continuous-time set by state and output equations of the respective 

forms 

i(t) - Ax(t) + B4<1) 

and 

... (3. la) 

At) c X(t) 

where x(t) C Rn is the state vector, u(t) c Rm is the input vector, )(t) e Rm is the 

output vector, Af pnxn is the plant matrix, BC Rnxm is the input matrix and 

Rnixn is the output matrix. In addition, it is assumed that 

rank CB -m-p 

and 

rank CAB -m 

(3.2) 

(3.3) 

where pe [O, m] is the rank defect of the first Markov parameter CB. Such plants 

are first-order partically irregular when p>0 and therefore fail to satisfy the 
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fundamental requirements of Arimoto et al (1984) that p=0 for the existence of 

iterative learning controllers. However, the results presented in this chapter indicate 

that it is possible to control such first-order partially irregular plants using an 

appropriately generalized iterative learning controller together with intial impulsive 

action 

In these controllers, the ultimate objective is to generate an input vector t4t) e Rm 

that produces a plant output vector )(t) c Rm that concides with the desired plant 

output vector i(t) e Rm over a fixed finite time interval [0, Tt]. It is assumed that 

the iterative learning process begins by subjecting the plant to an arbitrary continuous 

input vector uO(t) c Rm and by storing uO(t) c Rm on [0, TJ together with the 

resulting error vector e0(t) - v(t) - yo(t) e Rm between the desired output vector and 

the actual output vector yo(t) e Rm caused by the input vector uO(t) e Rm. The 

iterative learning process continues by adjusting the initial state vector of the plant, 

by subjecting the plant to a new input vector ul(t) e Rm formed from uO(t) e Rm 

and e0(t) e Rm, and by storing ul(t) c Rm on [0, Tt] together with the resulting 

error vector el(t) - v(t) - y1(t) c Rm between the desired output vector and the 

actual output vector y1(t) e Rm caused by the input vector ul(t) c Rm. This 

iterative process continues indefinitely producing a sequence of output vectors 

(YO(t)1Y1(t), 
--Yk(t),... ) on [0, Ttl corresponding to a sequence of initial state vectors 

(xO(O), x1(O),.... xk(O),... ) and a sequence of initial input vectors NO (0). 

U1(O)---Uk(O), ---) on [0, Tt]. 

In order to establish the precise conditions under which learning occurs in the case of 

plants governed by equations of the form (3.1), it is first necessary to introduce the 

vector and matrix norms 
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ooo max ... (3.4a) 
I -< i <- M 

and 

m 
JIG ll,,. max T Ig(W) I 

... (3.4b) 

:51 :5M j-1 

In these norms, ýý)(t) is the ith element of ýk(t) c Rm and g(U) is the ijth 

element of Ge Rmxm. 

Ile following fundamental result can now be proved, for first-order partially 

irregular linear time-invariant multivariable plants. 

Theorem 3.1 

In the case of plant with state and output equations 

jck(t) - Axk(t) + Buk(t) 

and 

Yk(t) ý CXk(t) 

under the action of the control law 

Uk+l(t) - uk(t) + Kjýk(t) + K2ý k(t) + K2ýk(O) 6(t) ... 
(3.5) 

where K, e Rmxm, K2 e Rmxm, 6(t) is the Dirac delta function, and 

ek (t) ' V(t) -A (1) 

assume that 
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(i) uO(I) is continuous on [0, Ttj and v(1). Xt) are continuously differentiable 

on [0, Tt]; 

(ii) CBK2 - 

(iii) xo(O) is such that yo(O) - v(O); 

GO xk+, (O)=xk(O) (k-0,1,2,... ); 

(V) 111. 
- CBKI - CABK2 1,,,. < 1. 

Then, 

V(t) 

uniformly in te [0, Tt ] as k --+ oo. IL 

Proof 

The solution of the governing equation of the plant implies that 

-t 
h+, (t) - CAeAtxk+, (O) + CBuk+, (t) + 

Jo 
CAeA(t-f) Buk+, (r)dr 

Hence, it follows that 

CAeA(t-r) Buk+, (r)dr tk+l(t) - i(t) - CAeAtxk+, (O) + CBuk+, (t) + 
JO' 

This, using (iv) and substituting the control law, indicates that 
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ýk+, (t) - i(t) - [CAeAtxk(O) + CBuk(t) + CBKI ýk(t) 

+. CBK27k (t) + CBK2 ek(0) S(t) + 
JOCAeA(t-f) 

Buk(r)dr 

tt 

+f0 CAeA(t-v) BKI ýk (, r)dr + 
JOCAeA(t-f) 

BK2 k (r)dr 

JOCAeA(t-f) 
BK2 ýk(O) S(r)dr] 

and therefore, using (ii), that 

ýk+, (t) - Xt) - [j, ý(t) + CBKIýk(t) + CAeA(t-f)BKjýk(r)dr 
Jo 

t Jo 
CAeA(t-? )BK2k(r)dr + CAeAt BK2k(O)]. 

0 

But integration by parts indicates that 

f 
CAeA(t-r)BK2k(r)dr -- [CABK2ýk(t)-CAe, *BK2tk(O)] 

0 

+ CAeA(t-f)ABK2ýk(r)dr 
fo 

so that 
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(I. - CBKI - CABK2)ýk(t) - CAeA(t-1)(BK, + ABK2)ýk(r)dr 
Jo 

Now, taking the norm of both sides of this equation, indicates that 

11 bk+l (t) 11 
c* :5 

11 Im - CBK, - CAEK2 1 
00 * 

11 kk (t) 9 
Co 

+ sup 
JO' 

IICAeA(t-f)(BKI+ABK2)11,;. Jj6k(i)jjwdr 

0t :5 Tt 

oo +U sup 
JO' 

(ir) dr 
0: 5 t :5 Tt 

where 

p- 11 Im - CBK, - CABK2 11 
co 9 ... (3.6) 

sup CAeAt(BKj + ABK2) ... (3.7) 
0 :5t :5 Tt 

and 

sup 11 mt) 1100 0 :5t :5 Tt 

Therefore, 

ko oo + 0,1 eo (r) dr 
10 

:5 po + apt 

(p + CrOp 
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lik2(t)Ii. : gpllkl(t)Ii. +or 

10 
11 kl (T) 11 

�. df 

(p2 + apt)p +a 
Jo(p 

+ oT)P dr 

(p, + UPOP + apfit + 
Cr2 12 

2! 

2+ 2apt +02 
t2 

p 2! 

........................................... 

00 :5 (pk + kpk-lort + 
M-1) 

p k-2 Cr2 t2 
2! 2! 

+ 
k(k- 1)(k-2) 

p k-3 0313 

1 3! 

+ 
k(k-1)(k-2)(k-3) 

p k-4 0411 
4! 4! 

ak-lik-1 ik kp (k-I)! + ! 2ýkik)ß 
9 

or, in closed form, 

k 
q k! 

p k-q ELI 
k(t) 11 

oo :5q! (k-q)! ql. 
q--O 

It is found that each term in the right-hand side of the inequality (3.8) is, positive. 

Therefore, in order for 11 tk(t) to vanish as k- oo, each term must vanish, as 

k -+ oo. Indeed, the only way to make these terms vanish is by satisfying condition 

(v) of Theorem 3.1 that 0 :5p<1. This can be proved by noting that 
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liM ko pk --+ 
k-4 oo 

for any integer s>0 provided that ýoj <I. This fact is best appreciated by 

considering the ratio of the kth term to the (k- I)Ih term in the series Kspk 

Thus, 

rk (k) 5 pk 
rk-I (k-l)lpk-I 

[)S 

. 

Hence, 

lim ým 
k--*oo rk-I 

This means that 

li? " T'k 
k. -o oo 

provided that IPI < 1. 

However, the last term of the inequality (3.8) will vanish in a different fashion, 

because the speed of the factorial function's progress is more rapid than the speed of 

the exponential functionýs progress. In other words, the denominator of (011111/k! ) 

increases faster than the numerator so that this term vanishes as k increases. 

However, the speed at which this term disappears depends on the magnitude of the 

parameter, a. The smaller the value of a the faster the term will disappeii. 
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It therefore follows from these considerations that 114 W 11 
oo - 0, as k --+ oo, 

which implies that jk(t) --+ i(t) uniformly in te [0, Tj as k -+ oo. But 

Yk+1(0) 28 CXk+1(0) 

from which it follows, using (iv), that 

yk+1(0) " CXk(O) m Yk(O) 

and therefore, using (iii), that 

Yk (0) 'm y(0) 

for all k-0,1,2,.... It is therefore finally evident that 

AM -0 V(t) 

uniformly in tc [0, Tj as k --* oo. 

The difference between the method proposed in this chapter and that proposed in 

Chapter 2 is that the iterative learning controller using initial impulsive action does 

not require that the initial state be shifted directly. Indeed, examining the conditions 

of Theorem 3.1, it is clear that xk+, (O) = xk(O) for all k. However, the initial state 

is shifted indirectly by the introduction of the initial impulsive action in the iterative 

learning controller so that the practical difficulties of implementing the iterative 

learning controllers with initial state shifting are thus circumvented. The effectiveness 

of this method can be seen clearly in the illustrative examples presented later in this 

chapter. 
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It is evident that, although the parameter a defined in equation (3.7) is not involved 

in the sufficient conditions for learning enunciated in Theorem. 3.1, the value of a 

nevertheless affects the rate at which learning occurs. This parameter is accordingly 

called the learning parameter of the plant/controller combination and its effect is 

investigated in Section 3.4. Moreover, according to equation (3.7), the value of this 

parameter depends on the stability characteristics of the plant under control because 

of the presence of eAt. 

Furthermore, as in Chapter 2, since CB has full-rank in the special case of regular 

plants, condition (ii) of Theorem 3.1 then indicates that K2 -0 so that the control- 

law and condition (v) reduce to the corresponding results of Arimoto et al (1984) for 

regular plants. However, it is clearly impossible to satisfy condition (v) of Theorem 

3.1 in the case of plants with second or higher-order irregularities, i. e. plants with 

rank defective CB, CAB, CA2B,..., CAI-'B Markov parameters and full-rank CAIB 

Markov parameter (f ?: 2). In such cases, the following generalised result can be 

proved by means of the same arguments as were used in the case of Theorem 3.1. 

Theorem 3.2 

In the case of the plant with state and output equations 

. tk(t) - Axk(t) + BUO) 

and 

AM ' CXk(t) 

under the action of the control law 
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t+l t+l 

+ K, eý-j+')(O) 60-2)(t) ... 
(3.9) llk+l(t) ý Uk(t) + Kle(k 

j=2 i=j 

where K, e Rmxm (i - 1.2,..., f+l). SO) is the Dirac delta function, and 

ek(t) ' V(t) - AM 

assume that 

(i) uO(t) is continuous on [0, Ttj and v(I), Xt) are continuously differentiable 

on [0, Ttt 

41 
(ii) Y- CAI-JBKj -0 (j - 2,3,..., t+l); 

i-j 
OR) xO(O) is such that yO(O) = v(O); 

OV) xk+, (O)-xk(O) (k-0,1,2 

41 
(v) 1,,, - CAI-I BKI 1,,. < 1. 

Then, 

(01 
, p(t) 

uniformly in tc [0, Ttj as k --+ oo. 

It transpires, in the course of the proof that, 

k 
litk(Oll. 50 

k! 
p(k-q') (3.10) 

q! (k-q)! q1. 
q--O 
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where k>0. 

It is clear by comparing the inequality (3.10) with (3.8) that both inequalities are 

identical except that, in the inequality (3.10), the parameters p and a are 

t+ 1 
P 

i= 1 

CAý'l B Ki 11 
. ... (3.11) 

and 

a sup 
0: 5 t :5 Tt 

41. 
" CAeAt AB Ki 11 

co 
i-I 

... (3.12) 

Thus, Theorem 3.2 establishes the conditions under which the iterative learning 

controller governed by equation (3.9) generates an input vector 14t) f Rm that 
k 

produces an output vector )(t) c Rm which coincides with the command vector 

v(t) e Rn' over the time interval [0, Ttj for higher-order irregular plants. 

It is clear by comparing the inequalities (3.8) and (3.10) with the inequalities (2.8) and 

(2.10), respectively, that these inequalities are pairwise identical. 11us, it follows that 

the quantity on the right hand side of the inequalities (3.8) and (3.10) is the upper 

bound of the rate of change of error. This bound, as shown in Chapter 2, can be 

used as a guide to show how the parameters p and a affect learning rates in the 

ca se of iterative learning control with initial impulsive action. 

3.3 Synthesis 

It is clear that learning Will Occur, in the sense that ek --# 0 as k -* oo in Theorems 

3.1 and 3.2, provided that condition (v) is satisfied, i. e. p<1. However, as shown in 

Chapter 2, the speed with which the plant learns is determined by the values of the 
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parameters p and a. The smaller these parameters the faster the learning rate will 

be (see Section 3.4). The values of both parameters p and a depend on the choice 

of the controller gain matrices; in addition, a depends on the stability characteristics 

of the plant under control. Thus, the controller gain matrices must be designed so 

that both parameters are as small as possible. Therefore, in the case of first-order 

partially irregular plants, the controller gain matrices must be 

K, - A(CB + CABD)-l 

and 

K2 - DKI 

where Ae R+ and De Rmxln. It is then clear from equation (3.6) that 

li-Al 

which implies that the crucial condition (v) of Theorem 3.1 will be satisfied provided 

that 0<\<2. In addition, D must be chosen so that CBD -0 (see Appendix A). 

However, it is also clear from equation (3.7) that the choice of the controller gain 

matrices given by equations (3.13) and (3.14) implies that the corresponding value of 

the learning parameter, a, is given by 

a SUP CAeAt (B + ABD)(CB + CABD)-l 
0: 5 t: S Tt 

It is thus evident from equation (3.16) that the value of the right-hand member of 

equation (3.16) depends upon the stability characteristics of the plant under control. 
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Indeed, it follows from equation (3.16) that 

CA(B + ABD)(CB + CABD) -1 11 
ý, 

in the case of open-loop stable plants. 

... (3.17) 

The effects of the parameters p and a on the learning rate are investigated in 

Section 3.4 for various plants with different irregularity and stability characteristics. 

Similar synthesis considerations apply in the case of plants with higher-order 

irregularities when Theorem 3.2 is used with p and a as defined in equations (3.11) 

and (3.12). 

3.4 Illustrative Examples 

The use of iterative learning controllers can be conveniently illustrated by designing 

iterative controllers with initial impulsive action for open-loop stable, neutrally stable, 

and unstable first-order irregular plants. In addition, the design of such controllers is 

extended so as to embrace an open-loop stable plant with second-order irregularity 

using the control law proposed in Theorem 3.2 

In all these examples, in the iteration corresponding to k-0 neither the inputs nor 

the outputs have been plotted since both are zero. 

Example 3.1 

The state and output equations of a linear time-invariant plant on the continuous-time 

set are 



-67- 

-ti(t) -3 o XI(t) oo ul(t) 

jC2 W -2 -1 2 X2(t) +21 

ýk3 WL01 -2 j X30) L13JL u2 (t) J 

... (3.18a) 

and 

YI(l) 0 xl(t) 

X2(t) 

Y2 W0oj X3 (t) 

In this case, the plant is asymptotically stable but first-order partially irregular since 

its first Markov parameter 

CB. 
... (3.19a) 00 

is mnk defective whilst its second Markov pammeter 

CAB =]... (3.19b) 

[291 

evidently has full rank. 

It is required that the output vector of this plant track the command vector' 
A 
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VW - 
12t ] 

(t f to, Tt D ... (3.20) 
[ 

-12t 

on the time interval [0,1] sec. 

In case 

xo(0) -0 

and 

uo W 
01 

the learning characteristics of the iterative learning controller with different controller 

gain matrices given by equation (3.13) and (3.14) when 

0 � -3 
0 1 , ... (3.23) 

so that CBD -0 are shown in Figure 3.1. Indeed, the results in Figures 3.1(a, b) 

correspond to the choice A-1, p-0, a-5; those in Figures 3.1(c, d) to the choice 

A-0.8, p=0.2, a-4, and those in Figures 3.1(e, f) to the choice A-0.5, p-0.5, 

2.5. 

It is clear from these figures that learning is rapid as shown in Figures 3.1(a, b) when 

A-1, that learning is less rapid as shown in Figures 3.1(c, d) when x-0.8, and that 



-69- 

learning is even less rapid as shown in Figures 3.1(e, f) when A-0.5. 

In all these cases, v(t) is such that 

12 ] [ 

-12 

(3.24) 

and therefore initial state shifting is required in the iterative learning controller of 

Chapter 2. It is thus clear that the practical difficulties involved in such initial state 

shifting are circumvented by the introduction of initial impulsive action into iterative 

learning controllers. 

Example 3.2 

Ile state and output equations of a linear time-invariant plant on the continuous-time 

set are 

. tj (1) 
11o, 

0.5 ,01 
JC2 0 0.1 0.75 

't3 -1.5 0.5 1.25 

't4 L 2.5 0 -2.5 

xl(t) 

X2 (t) 

X3(t) 

J X4 Wj 
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ul 
2 

3 

L00JL 
U2 

i 
... (3.25a) 

and 

Y, IooX, 
X2 W 

Y2 
j000 

X3 W 

... (3.25b) 
X4 Wj 

In this case, the plant is unstable and is first-order completely irregular since its first 

Markov parameter 

09 
CB m 

01 

00... (3.26a) 

is clearly null whilst its second Markov parameter 

0*51 
CAB 

-7.5 , -2.51 ... (3.26b) 

evidently has full mnk. 

It is required that the output vector of this plant track the command vector 



V(t) = 
12t ] 

(t c to, Tt 1) 
[ 

-12t 

on the time interval [0,1] sec. 

In case 

and 

0 

0 

xo(0) - 
0 

L01 

UO (t) -0 

101 
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9 

(3.27) 

(3.28) 

(3.29) 

the learning characteristics of the iterative controller with different controller gain 

matrices given by equations (3.13) and (3.14) when D- 12 are shown in Figure 3.2. 

In this case, the plant is unstable and equation (3.16) accordingly indicates that the 

large value of a corresponds to the end of the task. The results in Figures 3.2(a, b) 

correspond to the choice A=1, p-0, a=9.58; those in Figures 3.2(c, d) to the choice 

A-0.5, p-0.5, a-4.79; and those in Figures 3.2(e, f) correspond to the choice A- 

0.1. p-0.9, a-0.958. It is clear from these figures that, because of the instability of 

the plant under control, learning is slow and violent as shown in Figures 3.2(a, b) 

when A-1; that learning is slower but less violent as shown in Figures 3.2(c, d) when 

A-0.5; and that learning is even slower but even less violent as shown in Figures 

3.2(e, f) when A-0.1. These results confirm that the instability of plants under 

control imposes unavoidable limits on the learning rates achievable in the iterative 

learning control. In all these cases, v(t) is such that 
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ko (0) = 
12 -' 

1', 

... (3.30) 

so that initial state shifting is required in the iterative learning controller of Chapter 2. 

Example 3.3 

The state and output equations of a linear time-invariant plant on the continuous-time 

set are 

il (t) X, (t) 

'2 (1) 000 X2 

*3 Wo000 X3(t) 

jC4 (t) 
jL0000JL 

(x4(t)) 
i 

ul 

JL U2 

... (3.3 1 

and 
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Y, 

Y2 

X, 

X2 

X3(t) 

X4 (t) 
(3.3 1 b) 

In this case, the plant is clearly neutrally stable but first-order completely irregular 

since its first Markov parameter 

010 
CB m0,01 

... (3.32a) 

is clearly null whilst its second Markov parameter 

CAB -2, 
-91 

... (3.32b) 

[0j 

-3 

evidently has full mnk. 

It is required that the output vector of this plant track the command vector 

V(t) 
12t I, 

(t c [0, Tt ... (3.33) 
12t 

on the time interval [0,1] sec. 

In case 
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xo(0) - 
0 

and 

UO(t) - 

101 

9 

(3.34) 

(3.35) 

the learning characteristics of the iterative controller with different controller gain 

matrices given by equations (3.13) and (3.14) when D- 12 are shown in Figure 3.3. 

Figures 3.3(a, b), (c, d) and (e, f) show the learning controllers when X- (1,0.5,0.2), 

p- (0,0.5,0.8) and a- (1,0.5,0.2) respectively. It is clear from these figures that, 

learning is fast but violent as shown in Figures 3.3(a, b) when \-1; that learning is 

slower but less violent as shown in Figurez, 3.3(c, d) when X-0.5; and that learning is 

even slower but even less violent as shown in Figures 3.3(e, f) when X-0.2. As 

explained in Chapter 2, neutrally stable plants are the best to be controlled using 

iterative learning control since they produce the smallest value of a without affecting 

p. Thus, good learning performance and rapid convergence is achieved in controlling 

such plants. In all these cases, v(t) is such that 

12 
io(0) - 00 

1-121 
(3.36) 

so that initial state shifting is required in the iterative learning controller of Chapter 2. 
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Example 3.4 

in the previous examples, the effects of open-loop stability characteristics on the 

learning parameter and the learning rate were investigated. In this example, the effect 

of the design parameter D in the controller gain matrices on the learning parameter 

is investigated. This investigation is carried out in the hope of finding ways to reduce 

the parameter a without affecting the parameter p in order to obtain better 

learning rates. 

The state and output equations of a linear time-invariant plant on the continuous-time 

set are 

ic, (t) X, (t) 

jc2 0 -8 -6 0 x2 

32 -3 0 X3(t) 

(t) jL50 -5 -6 L x4 (t) i 

ul (t) 

U20) 

i 

... (3.37a) 

and 

0 
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Y, 

Y2(t) 

X, 

X2 

X, 

X4 
(3.37b) 

In this case, the plant is asymptotically stable but first-order completely irregular 

since its first Markov parameter 

CB- 
[0 

0, 

is clearly null whilst its second Markov parameter 

5 101 
CAB - 

[-15 

-5 ... (3.38b) 

evidently has full mnk. 

It is required that the output vector of this plant track the command vector 

V(t) - 
12t II 

(t f [OlTtD ... (3.39) 
[ 

-12t 

on the time interval [0,1] sec. 

In case 
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xo(0) - 
0 

and 

uo(t) - 
l', ] 

I 

(3.40) 

... (3.4 1) 

the learning characteristics of the iterative controller with controller gain matrices 

given by equations (3.13) and (3-14) when A-1, p-0 are shown in Figure 3-4. 

Indeed, the results presented in Figures 3.4(a, b) correspond to D- 12, a- 15; those 

in Figures 3.4(c, d) correspond to D-0.112, a-8; and those in Figures 3.4(e, f) 

correspond to D- -(CA2B)-1(CAB), a-4.92. The last choice of D is made so that 

a-0 at t-0, but the largest value of a according to equation (3.7) corresponds to 

t=0.21 sec. In addition, all these choices of D guarantee that CBD - 0, since CB 

is null. 11us it is clear from Figure 3.4 that the best learning performance and most 

rapid convergence is obtained when D-- (CA2B)-'(CAB) (see Figures 3.4(e, f)). 

Finally, in all these cases, v(t) is such that 

ko(0) - 
12 ]00 

12 
(3.42) 

and therefore initial state shifting is required in the iterative learning controller of 

Chapter 2. 
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Example 3.5 

The state and output equations of a linear time-invariant plant on the continuous-time 

set are 

Jci 

jC2 

jC3 

jC4 

4 (1) 
*6(1) 

= 

XI(t) 
X2 (t) 

X3(') 

X4(t) 

X5 (t) 

X6(t) 

ul 

Uz 

(3.43a) 

and 
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Y, 

-I10 
Y2(t) 

i 

xl(t) 

X20) 

X3 (t) 

X4(t) 

X6 (t) 

X6(s) 
I. (3.43b) 

In this case, the plant is asymptotically stable but second-order completely irregular, since its 

first and second Markov parameters 

CB-[o ' 01 

and 

CAB - 

10 

, 01 

are clearly null whilst its third Markov parameter 

CA2B -18 , 161 

-6 , -8 

... (3.44a) 

... (3.44b) 

... (3A4c) 

evidently has full mnk. 



r 

- so- 

It follows therefore that such plants cannot be controlled using either the learning 

controller proposed by Arimoto et al (1984). or the controller proposed in Theorem 

3.1. However, such plants can be controlled using the iterative learning controller 

proposed in Theorem 3.2. 

It is required that the output vector of this plant track the command vector 

V(t) - 
12t] 

(tejo, Tj]) 
[ 

-12t 

on the time interval [0,11 sec. 

In case 

0 

0 

0 
X(O) 

0 

0 

0 

and 

... (3.45) 

... (3.46) 

uo 
(t) 

-09... 
(3.47) 

101 

the learning characteristics of the iterative learning controller with the controller gain 
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matrices 

K, A (CB + CARD, + CA2BD2)-1 9 ... (3.48a) 

K2 - DIKI 9 ... (3.48b) 

and 

K3 = D2KI (3.48c) 

are shown in Figure 3.5, where Ac R+ and DI, D2 i Rmxln. Since CB - CAB - 0, 

D, and D2 can be arbitrary, but in this example D, - D2 - 12 are chosen. 

The results presented in Figures 3.5(a, b), (c, d), (e, f) correspond to A- (1,0.5,0.2), 

P- (0,0.5,0.8) and a= (6.6,3.3,1.32), respectively. 

It is clear from these figures that learning is rapid as shown in Figures 3.5(a, b) when 

A=1; that learning is less rapid as shown in Figures 3.5(c, d) when A-0.5; and that 

learning is even less rapid as shown in Figures 3.5(e, f) when A-0.2. 

Finally, in all these cases, v(t) is such that 

12] 
0 ko(0) - 

[ 

-12 

and 
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101 

so that initial state shifting is required in the iterative learning controller of Chapter 2. 

It is thus clear that the possible practical difficulties in such initial state shifting are 

circumvented by the introduction of initial impulsive action into iterative learning 

controllers. 

3.5 Conclusion 

It has been shown in this chapter that iterative learning controllers with initial 

impulsive action can be characterized for a class of first-order irregular linear time- 

invariant multivariable plants. In addition, these results have been extended so as to 

embrace plants with higher orders of irregularity. Thus, the possible practical 

difficulties involved in the shifting of the initial state required by the controllers of 

Chapter 2 have been circumvented. Furtnermore, it has been shown that these results 

can be used to obtain important information concerning the learning rates achievable 

by such controllers. Indeed, it has been found that the stability characteristics of the 

plants under control impose severe constraints on these achievable learning rates. 

Finally, these general results have been illustrated by the presentation of numerical 

results for the iterative learning control of different linear multivariable plants with 

various stability and irregularity characteristics. 



12 

. 0. ) 

: 3N 

looe 

xj 0-. t(s 
ct I 

oo, 
, 'oooo 

'o 
110, 

4., 

> 

4., 

t(s 

-4. 
) 

-83- 

-2k 

d% 

0 

10. 

12. 

1 2 

(b) 

e% 

A 

-b-) %. e 

B 

10 

17k.. 

t xjo-- (s 
0 

-2 

,Z 

8 

tj - '0 

10 4. "--, 
- 

VIP 

- 

S 

S 

xjo-i XI t(s t(s 

Fig. 3. l(cLyb> (rho=O. OysigmcL=5.0). 
(r-gd) (rho=0.29sigmcL=4.0, ). 
(eiP) (rho=0.59sigma=2.5). - 

K=l y ----- K=2 9 ..... K=3 

a 



A 

15 

'ooooor 
/ 'o 

10 
ol 

-84- 

ýi 01 

d% 

8 
t( s 

(CL) 

ll: ý 

Xj 
s 

20 

10- 

Z% 

. O> 

Ir 

..................... 

15- 

C14 

A 
. 6. ) 

a 

I-. 

4) 

c'l > 

4) 

c4 

................... 
xj 

s Vs 

S 

0 

a -10 
x t(sio-I 

0 -10 -- 12 ''A' * *, *0 

xjo-i s xjo-l t(s t(s 
(e) (F) 

Fig. 3.2(cýgb) (rho=O. Oysigma=9.58). 
(cyd) (rho=0.59sigma=4.79). 

(e9P) (rho=0.99sigmci=0.958). 
-o-e- K=l 9 ----- K=2 y ..... K=3 



-Rr%- 

15 

10 :I 

5f 

4. ) 

A 

vSJ ( CL ) 
.III. 

1............ 

. 0. ) 

C14 

X 

ý"' Zt!,. 

X1 cl t(sl- 

0 

4. ) 

�. 4 
> 

4. ) 

........... x 0-1 US 
0 

Xj 0 t(s 

%j 

lo* 

0 
xj 0-1 x3 0-1 t(s t(S 

(e) (F) 

Fig. 3 . 3(cL9 b) (rho=@. 0, sigmcý=l 0). 
(cyd) (rho=0.5, sigmcL=0.5). 
(e9F) (rhc)=0.89ýsigm(1=0.2). 

K=l 9 ----- K=2 9 tanze K=3 



-86- 

---:: --- 

--------- 

-2 -_____---- 

,Z 

4. ) %. 01 

---- 

---- 

- 

llý 

10 

12 

. 
Xjo-l 
s t(s 

(CL 

IOE 

,Z 

............... ... ....... ts 

a 
xj 

s Vs 

A 

............. 
Vs 

-d -ýy 

9 

I Z) 
:II, 

IiIII. Iýý. IIII 

10. 

Xj( t< s 

B 

llý 
04 
DI 

0 

10- 

xj E s t(s t(s 

Fig. 3.4(cigb) (rho=O. Oysigmcý=15.0). 
(cyd) (rho=0.07: sigma=8.0). 

(e5F) (rho=O. Oysigma=4.92). 
K=l 9 ----- K=2 5 ..... K=3 

--- 



00 

. 1,1,1, 
4 

-87- 

A 

10 

N 
N 

N1 
Vs 

CL) 

ý, III-1 141, -t61 

tp (s 

.............. 

................... 

4. ) 
%. 0 
CN 

xjo-l 
s Vs 

z 

OF 

xj( 
s t(s 

(d) 

a 

0 

........ ........ ............... 

1. 

> 

�I 

10 

12 
Xj 0-1 xj Vs t(s 

(P) 

Fig. 3.5(cxgb) (rho=O. OqsigmcL=6.6). 
(cqd) (rho=0.5ysigmcL=3.3). 

(esF) (rho=0.89sigmoL=l . 32). 
K=l 9 ----- K=2 y ..... K=3 

0 



PART III 

DESIGN OF DIGITAL ITERATIVE LEARNING 

CONTROLLERS FOR LINEAR MULTIVARIABLE PLANTS 



- 88 - 

CHAPTER 4 

DESIGN OF DIGITAL ITERATIVE LEARNING 

CONTROLLERS FOR LINEAR MULTIVARTATE PLANTS 

4.1 IN71RODUCMON 

In Chapters 2 and 3, a complete theory of analogue iterative learning controllers was 

presented. This theory provides a generalisation of the seminal results of Arimoto et 

al (1984) so as to embrace plants with arbitrary irregularity characteristics as described 

by the Markov parameters of the plants under control. 

However, all the existing theories of iterative learning control (Arimoto et at (1984) 

and, indeed, the theories of Chapters 2 and 3) are not entirely satisfactory in the 

context of practical application. This is because, in the implementation of all such 

analogue controllers, it is first necessary to digitalise these controllers. This indirect 

process of digitalisation is unsatisfactory since finite-difference approximations of 

derivative action can give rise to inaccuracies and instabilities. Furthermore, the 

state-space models of the plants must be known prior to the design of such 

controllers. Therefore, it is shown in this chapter that digital iterative learning 

controllers can be directly designed using only input/output representations of the 

multivariable plants under control. in particular, it is shown that digital iterative 

learning controllers can be designed using only the step-response matrices of such 

plants. Since such step-response matrices can be measured directly from input/output 

data, this result implies that digital iterative learning control can be applied to plants 

with unknown dynamics. 
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In this chapter, these results are stated in the form of the fundamental theorem 

presented by Porter and Mohamed (1991). In this theorem, the precise conditions 

under which learning occurs are fully established. In addition, the proof of this 

theorem leads to the introduction of an important new parameter which characterises 

the rate at which learning occurs in any plant/controller combination. "Men, using 

this parameter, it is shown that the irregularity and stability characteristics of the 

plants under control impose severe constraints on the achievable learning rates. These 

results are not only significant in their own right but also strongly motivate the 

introduction of compensators to increase the learning rates achievable in irregular 

plants. These general results are illustrated in this chapter by the presentation of 

numerical results for the digital iterative learning control of both uncompensated and 

compensated plants with different orders of irregularity. 

4.2 ANALYSIS 

The dynamics of linear time-invariant plants governed on the continuous-time set 

T- [O+oo) by differential equations of the form 

i(t) - Ax(t) + Bu(t) 9 ... (4.1a) 

and 

)(t) -c x(t) 0 

are governed on the discrete-time set TT - (0, T,..., JT,... ) by difference equations of 

the form 

XU+ 1) = bx(i) + IF UU) 
and 

... (4.2a) 

i(j) -r x(j) ... (4.2b) 
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In equations (4.1), the state vector xc Rn, the input vector ue Rm, the output 

vector yc Rm, the plant matrix Ae Rnxn, the input matrix Be Rnxm, and the 

output matrix Ce Rmxzl, - in equations (4.2), in addition 

,o. eAT 9 ... (4.3a) 

foeAt 
B dt ... 

(4.3b) 
T 

and 

r-c 9 ... (4.3c) 

where Tc R+ is the sampling period. 

Ile step-response matrices of such plants have the form 

H(7) CeAt B dt ... (4.4) 

and describe the response of initially quiescent plants after one sampling period. Such 

step-response matrices can be measured directly from input/output data. Moreover, 

as the following theorem indicates, it is possible to design digital iterative learning 

controllers using only such step-response matrices to characterise the dynamics of 

linear multivariable plants: 

Theorem 4.1 

In the case of the plant with discrete-time governing equations 
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Xk(j+l) m OXk(j) + 'fUk(j) 

and 

Yk(j) w rXk(i) 

under the action of the digital iterative controller with control law 

uk., I(j) - uk(j) + A(ek(j+l) - ek(j)) 

where 

ek(j) m v(j) - YkU) 

and v(j) (j e [0, J]) is the desired output trajectory, assume that 

(4.5a) 

(4.5b) 

(4.6) 

... (4.7) 

t, 

111. - H(IJÄ 11 
«�, < 1; 

yk+, (0)-yk(O)»iK0) (k-0,1,2 

xk+1(0)-xk(0) (k-0,1,2, ... 
); 

Then, when jc [0, J], 

AM --* VU) 

as k --o oo. 

In this controller, the ultimate objective is to find an input U(j) that produces a plant 

output y(j) which coincides with the desired plant output v(j) over a fixed time 

interval [0, TJ where Tt - JT. This objective is achieved by producing a sequence 

Of Outputs (Y0(AY1(AY2U)----, Yk(A .... ) on [0, TJ corresponding to a sequence of 

inputs fuo(j), ul(j), u2(j),..., uk(j),... ) on [0, Tt]. 
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In order to establish the precise conditions under which learning occurs, it is first 

necessary to introduce the following vector and matrix norms: 

Aek U) 11 
oo max jAeý)(j)j 

... (4.8a) 
1: 5 M 

and 

m 
JIGII.. max jg(w) 1) 

1: 5 1: 5 M 

In these norms, Aeý)(j) is the ith element of Aek(j) c Rm and g(W) is the ijth 

element of Gc Rmxm. Then, in terms of these quantities, the proof of Theorem 4.1 

can proceed. 

Proof 

The solution of equations (4.5) implies that 

Y,.,, (j) -r oi x,,,, 

and therefore that 

j-1 
Zroi-1-1 & u,.,, (t) 
i-_o 

r v+1 x,,., (o) -r oi x,.,, (o) +r ir 

j-1 
Tr (oi-i - Uk+l(') 

i=O 

Hence, using the condition (iii) and substituting for the control law, indicates that 
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Yk+l(j+l) - Yk+l(j) 2-' Yk(j+') - yk(j) +rTA (ek(j+l) - ek(j)) 

j-1 
+7rTA (ek(i+l) - ek(i)) 

i-O 

Therefore, since 

ek+l(j+') - ek+l(j) m IV(j+') - VWI - LVk+l(j+') - Yk+l(j)l 

and 

ek(j+') - ek(j) ' IV(j+') - V(j)l - Eyk(j+l) - Yk(j)l 9 

it follows that 

j-i 
Aek+l(j) » (i. -rp A) Aek(i) -Zr (oj-i - ei-1-1) ip A äek(i) 

i-o 

where 

Aek+l(j) - ek+l(j+') - ek+l(j) 

and 
Aek(j) - ek(j+') - ek(j) 

Hence, since it follows from equations (4.3) and (4.4) that 

IV - H(7) I 

it is evident that 
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j-1 

Aek+l(j) (Im 
- H(T)A) Aek(j) -Tr oi-i - V-1-1) Tk Aek(i) 

i--o 

Now, taking the norm of both sides of this equation indicates that 

11 
c» :5 111. - H(T)Ä 11�. 

. 
11, äek(i) 11 

00 

so that 

j-1 

sup y 11 r Ir A Aek(') I co 
0<J: 5 3 i=O 

j-1 
Aek+I(J) I 

oo :5 Aek(j) I 
oo + 0' $UP Aek(i) I 

oo ... (4.9) 
O<j : sj i=O 

where 

Im - H(T)A ll,,. 

$up 
0j< 

11 r (. bj - oi-1) vAý oo 

J- TtIT 

0 

... (4.11) 

1 (4.12) 

and Tt is the duration of the fixed finite interval [O. Tt] over which tracking of the 

command vector v(j) e Rm is to occur. Now, 

j-1 
Ael(j) 11 

00 p 11 Aeo(j) 11 
00 +aZ 11 Aeo(i) 11 

00 
i=O 
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:5p+ ajp 

:5+ ai)p 

where 

sup Aeo (j) 11 
00 

0 : 51 <j 

Similarly, 

11 Ae2 U) 11 
00 :5P 11 Ael (j) 11 

o 

j-1 
g(p + aj)fl +aE 

1--o 

j-1 

i=O 

+ (Op 

:5 (P2 + paj)p + pajp + a2 fli(_i- I) 
2! 

lp 
2+ 2paj +-2! -- jp 

since 

j-1 
7i. ju- 1) 
- 2! 

i=O 

In addition, 
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j-1 

JjAe3(j) 11 
w :5p 

JjAe2U) 11 
00 +6Z JjAe2(i) 11 

00 
i=O 

22 -1, 
) 

p+a 

j-1 

2+ 2pai + d2 p+ 2poj + 2-iu- 
(P 

21 
E (P 

2! 
i_-o 

(p3 
+ 2p2aj +p a2 

JU-1) p+ p2ajp 2! 
) 

2p a2 
j(! - 1) 

p+ 03 j(j- 1)(j-2) p 21 3! 

since 

j-1 
E 
i=O 

It therefore follows that 

j-1 j-1 
712- Ti 

i-O i--o 

= 
i(i-l)(2j-l). 

_ 
j(j-l) 

62 

j(j-1)(j-2) 
3! 

Ae3(j) 3+ 3p2aj + 3p a2 
j(1-1) 

+ 03 
j(j-l)(1-2) p- 

lp 
2! 

Similarly, it follows in general that 

Aek(j) 11 
00 :5 (pk + kpk-laj + 

k(k-1) 
p k-2 Cr2 

i(I-1) 
2! 2.1 
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+ 
k(k- 1)(k-2) 

p k-3 03 
j(j-l)(-j-2) 

3! 31 

+ 
k(k-1)(k-2)(k-3) p k-4 04 

i(J-1)(1-2)(J-3) 
4! 4! 

+. 

k ok-1 -i(j- 
1)(J-2)(j-3) (-I-k+2) 

(k-l)! 

crk 
M-1)(1-2) (-I-k+l)l 

or, in closed form, 

k 
11 Aek U) 11co :5 fl Z k! 

pk-q oq 
q! (k-q)! q! (j-q)! 

q--O 

It is found, as for the inequalities of Chapters 2 and 3, that each term in the right- 

hand side of the inequality (4.13) is positive. Therefore, in order for I Aek(j) 11 
00 to 

vanish as k --i- oo, each term must vanish as k --* oo. Indeed, the only way to make 

these terms vanish is by satisfying condition (i) of Theorem 4.1 that 0 :5p<1. 

This can be proved by noting 

lim ks pk 
k-* oo 

for any integer s>0 provided that IPI <I. This fact is best appreciated by 

considering the ratio of kth term to the (k-l)th term in the series Kspk Thus, 
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rk ks pk 

rk-I (k-l)epk-I 

S 

1k) 
1rJP 

Hence, 

IiM 'rk 
. 

k--soo k-I 

for any integer s>0. This means that 

li? " rk 
k-* 00 

provided that LDI < 1. 

However, the last term of the inequality (4.13) will vanish in a different fashion 

because the speed of the factorial function's progress is higher than the speed of the 

exponential function's progres. Therefore, this term vanishes as k increases. 

However, the speed at which this term disappears depends on the size of the 

parameter a. Indeed, the smaller the value of a the faster that term will disappear. 

Hence, 

I Aek(j) I 
oo -4 

as k- oo for all jc [0, J] for any value of a and therefore 

ek(j+l) --* ek(j) 

Hence, in view of the condition (ii), it follows that 



-99- 

ek(j) -"' 

and therefore finally that 

AM --* VW 

as k- 00 for all jc [0, J], as required. 

It is evident that the parameter, a, defined in equation (4.11) is not involved in the 

sufficient conditions for learning enunciated in Theorem 4.1. However, it is equally 

evident from the inequality (4.13) that the value of a nevertheless affects the rate at 

which learning occurs. 17his parameter is accordingly called the learning parameter of 

the plant/controller combination represented by the particular choice of controller 

matrix Ac Rmx m in the control-law equation (4.6). In order to investigate 

systematically the learning rates achievable in the digital iterative learning control of 

linear multivariable plants, it is therefore convenient in equation (4.6) to choose 

A -X H-1(71 

where Ae R+. It is then clear from equation (4.10) that 

li-Al 

... (4.14) 

... (4.15) 

which implies that the crucial condition (i) of Theorem 4.1 will be satisfied provided 

that 0<A<2. However, it is also clear from equation (4.11) that the choice of 

controller matrix given by equation (4.14) implies that the corresponding value of the 

learning parameter, a, is given by 
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sup or (oi - 40-1) T H-1 (7) ... (4.16) 
A<j<i 

It is thus evident from equations (4.3) and (4.4) that the value of the right-hand 

member of equation (4.16) depends upon the stability characteristics of the plant 

under control. Indeed, it follows from equation (4.16) that 

> jr (o - 1) T H-I(T) J,. 

where 

0-I- AT +1 A2 T2 +1 As Ts ... 
(4.18a) 

26 

T- BT +1 AB T2 +1 A2 Br +... 9 ... (4.18b) 
6 

r-c ... (4.18c) 

and 

H(7) - CB T+1 CAB T2 +1 CA2 Br ... (4.18d) 
26 

Therefore, substituting from equations (4.18) into the inequality (4.17), yields as T --+ 

0 the following lower bounds for the learning parameters of plants with various 

irregularity characteristics: 

(i) Regular plants (CB full rank) 

Or 
> (4.19a) 

First-order completely irregular plants (CB null, CAB full-rank) 
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(iii) 

(4.19b) 

Second-order completely irregular plants (CB null, CAB, null. CA2B full rank) 

> 

(iv) 

(4.19c) 

fth-order completely irregular plants (CB null,..., CAI-lB null, CAfB full rank) 

jgLTL! 

q! rl 
q+r--t+l 
q>O, r>O 

(4.19d) 

These results indicate that the lower bound on a/A increases rapidly with increases in 

the order of plant irregularity. Therefore, in order to obtain reasonably rapid learning 

rates in the case of irregular plants, it is evident from the inequality (4.13) that a 

must be small by choosing Ae R+ to be small in equation (4.14). But it is then clear 

from equation (4.15) that p will increase towards unity and therefore, in view of the 

inequality (4.13), that the learning rate will be reduced. This shows that, even in the 

case of stable plants for which the lower bounds on q1A given by inequalities (4.19) 

are non-conservative, this trade-off between p and a cannot produce rapid 

learning rates in the case of irregular plants, i. e. the irregularity characteristics of 

linear multivariable plants place unavoidable limits on the learning rates achievable in 

the digital iterative learning control of such plants. These results are illustrated in 

Section 4.4 of this chapter. It follows that an alternative must be found in order to 

reduce the learning pammeter, a, without effecting the value of p so as to achieve 

rapid learning in case of plants with high orders or irregularity. Thus in Chapters 2 

and 3, it was shown that the results of Arimoto et al (1984) for regular linear 

multivariable plants can be generalised so as to embrace arbitrary irregular plants. 

11is generalisation was effected by introducing compensatort with transfer function 
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matrices of the form (Im + Ds), where De Rmxm, as pre-filters between the 

iterative learning controllers and the irregular linear multivariable plants under control 

(see Appendix A for more details). 

17his methodology for the introduction of analogue compensators in the context of 

analogue iterative learning control motivates the introduction of similar digital 

compensators in the present context of digital iterative learning control. The transfer 

function matrices of such digital compensators have the form +ýD k-1- (IM 
T Z+a), 

where DeRmxm and ct(-I, +Il, and are governed by state and output equations of 

the form 

rk(j+l) w- C' lp rk(j) + [Om-ps 1p] Wk(j) 

and 

Ilk U) 

where pc [0, m]. 

D2 

M-Pxp 

rk(i) ++ýD WkU) D4 

(lm 

T] 

PXP i 

(4.20a) 

(4.20b) 

These compensators can be introduced into digital iterative learning controllers in 

accordance with the following theorem in the case of first-order partially irregular 

linear multivariable plants: 

Theorem 4.2 

in the case of the plant with the discrete-time governing equations 

Xk(j+l) m'oXk(J) + TUJA 
... (4.21a) 



I 
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and 

AM m rXkU) 

under the action of the digital iterative controller with control law 

rk(j+l) - -a lp rk(j) + [Om_p, lpl wkU) 

. D2' 

uk(i) (l+Ct) rkU) + +gD Di 
(lm 

T) Wk(i) 

Wk+l(j) " Wk(J) +A (ekU+I) - ek(h) 

where 

ek(J) ' IQ) - YkU) 

v(j) (i c [0, J]) is the desired output trajectory, 

rank CB - m-P 

[0, M] 

rank CAB .m 

rank (CB + CABD) - 

9 

(4.21b) 

(4.22a) 

I (4.22b) 

9 ... (4.22c) 

9 

9 

I 

9 

t 
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0 D2 
D Rmxm 

0 D4 
9 

D2 C Rn'-Pxp , D4 I RPXP , mnk D4 -p9 

and 

a( (-I, +Il 

assume that: 

(i) 11. -H(II +gDÄI�<1; 
(lm 

T1 

yk+10 - yk(0) - v(0) (k - 0,1,2.... 

Xk+l(0) m Xk(0) (k 0,1,2,... ); 

rk+1(0) - rk(0) (k 0, 

Then, when jc [0,4 

AM --" qj) 

as k- oo. 

Proof 

9 

It follows from equations (4.21) and (4.22) that the overall plant shown in Figure 4.1 

(i. e. the pre-filter in cascade with the irregular plant) is governed in discrete-time by 

state and output equations of the form 

AAAA 
Xk(j) +* wk(j) (4.23a) 

and 
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AA 

Yk(j) - rXk(j) 

where 

A Xk 

Xk 

rk 

D2 

D4 

A 

lp 

2 
+ j. D 

A 

(lm 
T1 

to. lp 1 

9 

I 

9 

(4.23b) 

(4.24a) 

(4.24b) 

(4.24c) 

and 

A 
moi (424d) 

It therefore follows that Theorem 42'can be proved simply by applying the argument 

of Theorem 4.1 for uncompensated plants to the present case of compensated plants. 

It thus follows that 

k 
k! k-q aq 

A Aek U) 0 
co q! (k-q)! P 

q! (j-q)! 
i-O 

(4.25) 

where k>0, 
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AekU) - ekU+I) - ek(j) 9 

sup Aeo (j) 1 
00 0 :51 :5 

A 

p-I Im - H(7) )LI 00 ... 
(4.26) 

=AAAA... (4.27) sup or(. Dj -40-1 )41 Alloo 
O<J: sj 

J- TtIT ... (4.28) 

and Tt is the duration of the fixed finite interval [0, Tt I over which tracking of the 

command vector v(j) e Rm is to occur. In equation (4.26), 

A2 1Z71 - H(71 + jD 
(lrn 

T] 
.. . (4.29) 

is the step-response matrix of the compensated plant with uncompensated step- 

response matrix H(7). Therefore, using condition (i) of Theorem 4.2, it follows from 

the inequality (4.25) that 

11 Aek U) 11 
co -4 

as k- oo for all jc [0, J] for any value of a and therefore that 

ek(j+1) --+ ek(j) 

Hence, in view of the condition (ii) of Theorem 4.2, it follows that 
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ek U) --* 

and therefore finally that 

Yk(j) --"' VW 

as k- oo for all jc [0,4 as required. 

It is clear in the case of Theorem 4.2, that the parameter, a, defined in equation 

(4.27) is not involved in the sufficient conditions for learning enunciated in Theorem 

4.2. However, it is equally clear from the inequality (4.25) that the value of a 

nevertheless affects the rate at which learning occurs. This parameter is accordingly 

called the learning parameter of the plant/compensator/controller combination 

represented by the particular choice of compensator and controller parameters ct e 

(-I, +I], Di Rmxm, and Ae Rmxrn equation (4.22). In order to investigate 

systematically the learning rates achievable in the digital iterative learning control of 

compensated linear multivariable plants, it is therefore convenient in the last of 

equations (4.22) to choose 

A-Ä H- (T) 

where Ae R+. It is then clear from equation (4.26) that 

p- II-)I 

(4.30) 

... (4.31) 

which implies that the crucial condition (i) of Theorem 4.2 will be satisfied provided 

that 0<A<2. 
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However, it is also clear from equation (427) that the choice of controller matrix 

given by equation (4.30) implies that the corresponding value of the learning 

pammeter, a, is given by 

AAA_, 
), 

A A 
a_ oj I _1 (7) 
A sup Iroo IH... (4.32) 

0<j :5J 

Therefore, in view of equations (4.24), it is evident that 

I-a)CABDT + 
[CAB 

+ý- 21 CA2BDI 7'J +0 (2"3) 
(3 

31 

1 

I 

CB + CABD) T+ 1 CAB +1 CA2BD 72 loo 
... 

(4.33) 
(2 

3 

Thus, if no compensation is used so that D-0, this indicates as T -+ 0 that a/A k 

2 in accordance with the results of equation (4.19b) for uncompensated plants. 

However, if compensation is used so that D00 and ct = 1, this inequality indicates 

at T --+ 0 that q/A ?: 0. This dramatic reduction in the lower bound of a/A 

indicates the potential benefits obtainable by introducing compensation in order to 

increase the learning rates achievable in irregular linear multivariable plants. 

However, the choice ct I would create in the compensated plant a marginally stable 

discrete-time pole at z -1 which would cause 'ringing' to occur. This 'ringing' in 

the control effort is violent and impractical in the case of commands with initial 

discontinuities and constant first derivatives (e. g. v(M - 12jT). But it is tolerable 

and practically acceptable in the case of continuous compounds with initially zero 

first derivative ( e. g v(fl) = [4(J7)3-3(jT)4], (see Example 4.3 for illustration). 

However, for generality it is therefore necessary in practice to compromise by 

choosing ct c (-I, +I) in order to introduce only asymptotically stable discrete-time 
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poles from the compensator. Such choices of a nevertheless still lead to increased 

learning rates as compared with the learning rates achievable in the uncompensated 

case for the same value of Xe R+ in equation (4.30). It is therefore evident from 

T'heorem 4.2 that the provision of digital compensation in the case of first-order 

irregular linear multivariable plants facilitates the achievement of rapid learning rates 

by appropriate choice of (i e (-I, +I) and Dc Rmxm in addition to the choice of X 

e (0,2) available in the absence of compensation. In addition, the matrix D must be 

chosen so that CBD -0 (see Appendix A). The effect of the compensator design 

parameters ct and D on the learning rate is illustrated in Section 4.4. 

It is important to note that Theorem 42 applies only to first-order partially irregular 

linear multivariable plants. However, it is possible to obtain similar results for plants 

with higher-order irregularities simply by introducing multi-stage compensators. 

Each stage of such compensators is governed by equations like that of equations (4.20) 

so that, in the general case of the tth-order irregular plants, there are parameters aj e 

(-I, +I) and Di c Rmxm (i = 1,2,..., t) associated with the successive stages of the tth- 

stage compensator. Therefore, in the case of second-order irregular plants, two-stage 

pre-filters are required. Iliese pre-filters have transfer function matrices of the form 

+ýD, and +ý D2 Z-1 and are governed by states and output 
ITT 

j7+C, 
2 

IM ý+Clri 
) (IM 

equations of the form 

rlk(j+l) m -CII Ip r1k(j) + JI WIk(j) ... 
(4.34a) 

W2W1 - Fl rlk(i) + G, Wlk(i) 9 ... 
(4.34b) 

r2k(j+') m -C'2 lp r2k(j) + J2 W2k(j) 9 ... 
(4.34c) 

and 

Uk(j) ' F2 r2k(j) + G2 W2k(j) 
9 ... 

(4.34d) 
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respectively. In equations (4.34) J, - [0. 
-P, 

lp], G, +2D, F, 
D12 

(IM 

2 

), 

D22 
T 

(I+al) 
D 

J2 - lom-pllp I, G2 +ý D2 and F2 ('+Ct2) It 
1 

141. 

(IM 

TI D24] 

follows therefore from equations (4.21) and (4.34) that the compensated plant is 

governed on the discrete-time set by equations of the form 

x 
, (i+l) (j) + yt 

and 

Yýw -iý 

where 

Xk 

ik rlk 

r2k 

TFI TGjF2 

0 -Cli lp JIF2 

00 
-C'2 lp 

TGjG2 

J, G2 

J2 

and 

i- [r, o, oi 

9 (4.35a) 

9 (4.35b) 

I (4.36a) 

9 ... (4.36b) 

I (4.36c) 

I (4.36d) 
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with appropriate dimensions. 

It is clear from equations (4.35) that the occurrence of learning can be investigated in 

this type of plant simply by applying the arguments of Theorem 4.1 to such 

equivalent plants. It follows therefore that 

k 

'&ek (A I 
oo :5Pyk! pk-q oq q! (k-q)! q! (j-q)! 

q--O 

where k>0, and J- TtIT, Tt is the duration of the fixed finite interval [0, TJ 

over which the tracking of the command vector v(j) c Rm is to occur. 

Aek(j) - ek(j+l) - ek(j) 9 

SUP Aeo (J) 1 00 0: 5 1 :51 

Im - H(T)A ý, 
x, $ ... (4.38) 

aw sup J-i J-1 ) iA 

0 <j : 5j 

and 

, 
ý71 

- H(73 +ýD, +9 D2 
... (4.40) 

(lzn 
T) 

(lrn 
T]' 

Therefore, by satisfying the condition of 0<p<I in equation (4.38) by choosing A 

=A 
k-1(7) 

where Ae (0,2), it follows from the inequality (4.37) that 



I 
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V(j) 

as k -- oo for all je [0, J], as shown in Theorem 4.1. It is evident that, by using 

similar procedures, tth-order irregular plants together with I-stage pre-filters can be 

represented by the discrete-time equations 

where 

j7.1 

XkU+I) '0 XkU+I) + lf Wlk(j) ... 
(4.41a) 

A (D Xk W 
... 

(4.41b) 

Xk 

rlk 

r2k 

Xk 
r3k ... (4.42a) 

r& 

l> 1 VZFI 1 TG1F21 %PG1G2F3 , ...... IPGJ G2 .... Gk-1F1 

01 -Ctl'P jl F2 1 JI G2 F3 
....... J, G2 G3 .... Gk-1F1 

0,0 
9 -C'2'pl J2F3 

, ...... j2 G3 G, 4 .... Gl-, FI 

01 0,09- ot3 Ip 
...... - JS G4 G5 .... Gl-, FI 

-ctllp 
(4.42b) 
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It =I 

T GIG2 .... Gt_l 

JI G2 .... Gt-I 

J2 G3 .... Gt-I 

A G4 .... Gt-I 

it 

and 

r- [r, o, o ...... oil 

It follows that 

p- 11 Im - j7(711 1 00 
and 

sup 11 T(0-3 - All 00 0j51 

where 

I (4.42c) 

(4.42d) 

... (4.43) 

1 
(4.44) 

H(7') M H(7) 
(Im 

+ý DI) 
(I. 

+ý D2)----+ 
(Im 

+ý Dj) ... 
(4A5) 

TTT 

is the step-response matrix of the compensated plant with uncompensated step- 

response matrix H(T). It is thus possible to use'the arguments of Theorem 4.1 to 

prove the occurrence of learning for such compensated plants, providing that 

A-A 17-1(7) 
... (4.46) 
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Thus, the choice of the parameters ai and Di. in addition to the choice Ac (0.2) 

available in the absence of compensator, facilitates the achievement of rapid learning 

rates even in the case of high-order irregularities. Finally, it is important to mention 

that the quantity on the right-hand side of the inequalities (4.13), (4.25) and (4.37) 

represents an upper bound on the rate of change of error. This bound can be used as 

a guide to show how the parameters p and a affect the learning rates in the case of 

digital iterative teaming control. Thus, for example, it is evident when p-0 that 

the inequality (4.13) becomes 

oo :5P Crk j 
L! 

k! (j-k)! (4.47) 

which shows that yk(j) = v(j) when k>j. This means that, when P-0. the 

learning behaviour is propagated through the interval [0, Tj at least as rapidly as is 

implied by the sequence ek(O) - 0, ek(T) - 0, ek(27) - 0,..., ek((k-1)7) -0 (k - 

1,2,3,... ), regardless of the value of a. However, as indicated by the inequality 

(4.47), the learning behaviour when p-0 is affected by the value of a, as shown in 

Example 4.6. 

4.3 SYNTHESIS 

It is clear that learning will occur in the sense that ek -+ 0 as k -+ oo in the 

controllers proposed in this chapter provided that the condition 0 :5p<I is satisfied. 

However, the speed with which the plant learns is determined by the values of the 

parameters p and a. The values of both parameters depend on the choice of the 

controller gain matrix A; in addition, a depends on the irregularity and stability 

characteristics of the open-loop plant as shown in Section 4.2. It is also shown in 

Section 4.2 that rapid convergence can be obtained provided that p and a are very 

small. It follows, therefore, that the controller gain matrix, A, must be tuned so that 
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both p and a are as small as possible. Thus, the controller gain matrix for tIh- 

order irregular plants must be 

AmA 
[H(T) 

+ 
ýD, 

+ý D2 +ý Di ... (4.48) 
(Irn 

T] 
(Im 

T)... 
(IM 

T 

so that good learning performance and rapid convergence can be guaranteed (see 

Section 4.4 for illustration). 

4.4 Illustrative Examples 

These general results can be conveniently illustrated by designing digital iterative 

learning controllers for different linear multivariable plants with different irregularity 

and stability characteristics. In addition, the upper bound of the rate of change of 

error is investigated for different stable SISO plants. In all these examples, in the 

iteration corresponding to k-0 neither the inputs nor the outputs have been plotted 

since both are zero. 

Example 4.1 

The state and output equations of the linear time-invariant plant on the continuous- 

time set are 
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-3 0 xi W00 ul (t) 

'2 -2 2 X2 (t) +21 

-t3 
0 -2 X3(t) 13 u2 (t) 

(4.49a) 

and 

YI(t) 

Y2 W 

X, 
X2 

-J L 
X3 

(4.49b) 

I 
In this case, the plant is asymptotically stable and also regular since its first Markov 

parameter 

CB- 
] 

(4.50) 

evidently has full rank. In addition, for a sampling period T-0.1 sec, the step- 

response matrix of this plant is 

9.999XIO-3 -19.505xlo-3 H(7) - 
-9.901XIO-3 -29.702xlo-3 ... (4.51) 

It is required that the output vector of this plant track the command vector 
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VOM .[ (j 1 [0,100]) 
12iT1 

on the interval [0,1]. 

In case 

0 

xo(0) -0 

.0j 

and 

u0071 - 
101 

(j c [0,100]) 0 9 

(4.52) 

(4.53) 

(4.54) 

the learning characteristics of the iterative learning controller with different controller 

gain matrices 

A -A H-1(7) 

when 

6.040xlOl 

-2.030xlOl 

-3.979401 

-2.040xlOl 

... (4.55) 

... (4.56) 

are shown in Figure 4.2. Indeed, the results in Figures 4.2(a, b) correspond to the 

choice A-1, p-0a-0.00394; those in Figures 4.2(c, d) to the choice A-0.5, p- 
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0.5, a-0.0197; and those in Figures 4.2(e, f) to the choice A-0.1, p-0.9, a 

0.00039. It is clear that excellent learning behaviour is obtained in all cases but that 

the rate of learning increases as the parameter p decreases. This trend is evident 

from Figure 4.2 even though, for this asymptotically stable and regular plant, the 

learning parameter, a, increases as the parameter p decreases. However, - the 

significance of the learning parameter is discussed in greater detail in the following 

examples, where the effects on this parameter of plant instability and irregularity are 

explicitly investigated. Figure 4.3 shows the corresponding control efforts. 

Example 4.2 

The state and output equations of a linear time-invariant plant on the continuous-time 

set are 

k 
-3 o xi (t) oo ul(t) 

(t) 
-2 2 X2(t) +21 

u2 (t) 
j 

-t3 
W0 -2 X3(t) 13 

... (4.57a) 

and 

yi(t) 10$-IX, (t) 

X20) 

Y2 00 X3 (1) j ... (4.57b) 

In this case, the plant is asymptotically stable but first-order partially irregular since 
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its first Markov parameter 

-19 -3 CB m10,01 
... (2.58a) 

whilst its second Markov parameter 

CAB .[ 
'I 

... (2.58b) 
2, I 

evidently has full rank. In addition, for a sampling period T-0.01 sec, the step- 

response matrix of this plant is 

-9.901XIO-3 -0.297xlO-l H(T) 
0.990XIO-4 0.503x 10-4 ... (4.59) 

It is required that the output vector of this plant track the command vector 

12iT 
(j e [0,100]) 

12iT 

on the time interval [0,1]. 

(4.60) 

In case 



y 
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xo (0) = 

and 

u0071 -0 (j ( [0,100]) 

101 

0 

... (4.61) 

(4.62) 

the learning characteristics of the digital iterative learning controller with different 

controller gain matrices governed by equation (4.55) when 

H-1(7) 
0.205xJ02 , 121.609AO2 

... (4.63) 

_-0.405xlo2 , -40.537xlo2 

are shown in Figure 4.4. Indeed, the results in Figures 4.4(a, b) correspond to the 

choice A-1, p-0a-2.0; those in Figures 4.4(c, d) to the choice A-0.1, p-0.9, a 

- 0.2; and those in Figures 4A(e, f) to the choice A-0.01, p-0.99, a-0.02. It is 

clear from these figures that, because of the irregularity of the plant under control, 

learning is slow and violent as shown in Figures 4.4(a, b) when A-1; that learning is 

slower but less violent as shown in Figures 4.4(c, d) when A-0.1; and that learning 

is even slower but even less violent as shown in Figures 4.4(e, f) when A-0.01. 

These results confirm that the irregularity characteristics of linear multivariable plants 

place unavoidable limits on the learning rates achievable in the digital iterative 

learning control of uncompensated plants, and thus motivate the introduction of 

compensators in order to increase these rates. Figure 4.5 shows the corresponding 

control efforts. 
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Indeed, if compensation is introduced (Theorem 4.2), rapid non-violent learning can 

be achieved without reducing the value of A in order to de-tune the controller. This 

is demonstrated by the results presented in Figure 4.6 for digital iterative learning 

control in the presence of compensation with A-1, 

-3 
1 

I (4.64) 

so that CBD - 0, and different values of a. Indeed, the results in Figures 4.6(a, b) 

correspond to the choice of o: - 1, p-0, a-0.063; those in Figures 4.6(c, d) to the 

choice a=0.5, p-0, a-0.461; and those in Figures 4.6(e, f) to the choice a-0. p= 

0, a=0.962. These results confirm the beneficial effects of compensation in 

achieving rapid learning rates, which nevertheless decrease slightly as a decreases 

from I to 0. This decrease in learning is, however, accompanied by reductions in 

controller oscillations (see Figure 4.7) which are frequently attractive in practice. 

Figure 4.8 shows the learning of the digital iterative controller when a-0 and A- 

0.8,0.5,0.5. respectively. These results indicate that the learning performance when 

a-0 can be improved by de-tuning the controller gain matrix, A. Figure 4.9 show 

the corresponding control efforts in all cases. However, in case a-1, it is still 

possible to obtain good learning performance and rapid convergemce' with no 

oscillation in the control effort. This can be achieved by demanding that the output 

of the plant follows a continuous command with initially zero first derivative. This is 

demonstrated by the results presented in Figure 4.10, when it is required that the 

output follow a command vector of the form 

VOM -( 
4(J713 - 30714) 

(i c [0,100]) (4.65) 
-(4(jns - 3(j7)4) 
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on the time interval [0,1]. 

in this case, A-1, p-0, a-I and a=0.063. It is clear from Figure 4.10 that 

rapid learning rates are achieved with no significant oscillation in the control effort. 

Finally, it is important to mention that since the plant is first-order partially irregular, 

it is therefore possible to tune the controller matrix, A, using different values of A 

for each channel. Indeed, it is possible to have A=I for the regular channel and A 

<I for the irregular channel. 

Example 4.3 

The state and output equations of the linear time-invariant plant on the continuous- 

time set are 

0.5 00 xl(t) 

-k2 
(t) 0,0.1 

, 0.75 , 0. X2(t) 

m 
jC3 (t) 

-1.5 0.5 1.25 0 X3(t) 

L jc4 (t) JL2.5 0 -2.5 0JL X4 Wi 

ul (t) 

JL U2(t) i 

... (4.66a) 
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and 

XI(t) 
YI(t) Iooo 

X2 (t) 

X3(t) 
Y2 W0001 

X4 (t) ... (4.66b) 

1. J 

In this case, the plant is unstable and is first-order completely irregular since its first 

Markov parameter 

CB . 

[0 0] 

... 
(4.67a) 

0,0 

is clearly null whilst its second Markov parameter 

CAB -[ 
0*5 1. 

... 
(4.67b) 

-7.5 , -2.5] 

evidently has full rank. In addition, for a sampling period T-0.01 Sec, the step- 

response matrix of this plant is 

2.519XIO-5 5.008AO-6 
H(T) - 

_-37.657xlO-5 -12.552xlo-5. ... (4.68) 

Since this plant is first-order completely irregular. a Pre-filter in addition to the 

digital iterative controller is required. Moreover, this pre-filter is designed so that no 

oscillation in the control effort is present and rapid convergence is achieved by 
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choosing a-0 and D-I since CB is null. However, since the plant is unstable 

according to equation (4.39) the large value of a corresponds to the end of the task. 

However, in this example the largest learning parameter is a=1.021 when A-I at 

j-1, since it is required that the output vector of this plant track the command 

vector 

12iT 
VOM - (j e [0,100]) 

[- 

12jT] 

on the time interval [0,11. Therefore, de-tuning of the controller gain matrix, , is 

required. In case 

0 

0 
xo(0) - 

0 

L01... (4.69) 

and 

uo(in -0 (j ( [0,100]) 9 ... (4.70) 

1,1 

the learning of the digital iterative controller with different controller gain matrices 

governed by equation (4.48) 

[H(T) (12 
+ ý2, D -3.978xlOl -1.587xlOl 

T (4.71) 
11.936xlOl 0.798xlOl 
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are shown in Figure 4.11. It is clear from these figures that, because of the instability 

of the plant under control, learning is slow and violent as shown in Figures 4.11 (a, b) 

when A-1; that learning is slower but less violent as shown in Figures 4.11 (c, d) 

when A-0.5 and that learning is even slower but even less violent as shown in 

Figures 4.11(e, f) when A-0.1. Ilese results confirm that the instability of linear 

multivariable plants places unavoidable limits on the learning rates achievable in the 

digital iterative learning control even of compensated plants. Figure 4.12 shows the 

corresponding control efforts. 

Example 4.4 

The state and output equations of a linear time-invariant plant on the continuous-time 

set are 

. 
tl (t) 

II 

. 
k2 (t) 

i3(t) 

-t4 
(t) 

0 

0 
+ 

2 

0 

x(: ) 

X2 

X3(t) 

X4 (t) 

ul(t) 

J U2 

... (4.72a) 

and 
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X, (t) 

Y, x2 

X, S(t) 
Y2(t) 

X4(t) 
(4.72b) 

In this case, the plant is clearly neutrally stable but first-order completely irregular 

since its first Markov parameter 

09 

00... 
(4.73a) CB . 

01 

is clearly null whilst its second Markov parameter 

2 -9 CAB -[0 
-31 ... (4.73b) 

evidently has full rank. In addition, for a sampling period, T-0.01 sec, the step- 

response matrix of this plant is 

I. OXIO-4 -4.5 H(7) 
0.0 -1.5xlo-4 ... (4.74) 

In this example, two issues are investigated; firstly, the effect of the compensator 

design parameter D and, secondly, the effect of open-loop poles on the value of the 

learning parameter, a, and the learning rate. 

It is required that the output vector of this plant track the command vector 
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12i 
"(jn (j c [0,100]) 

12iT 

on the time interval [0,1]. 

In case 

0 

0 
XO(0) - 

0 

0 

and 

(4.75) 

... (4.76) UOUI) Uc to. 10011) 
0 

101 

the learning of the digital iterative learning controller with a=0. D- 100 12, and 

different controller gain matrices governed by equation (4.48) corresponding to A 

(1,0.5,0.2) when 

[H(7 
1 

(12 
+ ý2, D 

4.999xlO-l -14.999xlO-l 
T 0.0 -3.333xlO-l ... (4.77) 

are shown in Figure 4.13 and the corresponding control efforts are shown in Figure 

4.14. These choices of A and D made p (0,0.5,0.8) and a- (1,0.5.0.2) 

respectively. On the other hand the learning of the digital iterative learning controller 

with D- 12, and different controller gain matrices governed by equation (4.48) 



v 
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corresponding to A= (1.0.5,0.2) when 

4.975401 -14.92SX101 

0.0 -3.316xlOl 
(4.78) 

are shown in Figure 4.15 and the corresponding control effort in Figure 4.16. These 

choices of A and D made p- (0,0.5,0.8) and a- (1.005.0.5025,0.201), 

respectively. It is clear by comparing the results presented in Figure 4.13 with those 

presented in Figure 4.15 that the learning performance and speed of convergence with 

D- 100 12 are far better than those with D- 12. This can be best appreciated by 

comparing the values of the learning parameter, a, for both choices of D. 

However, unlike the parameter D in the analogue controllers of Chapters 2 and 3. it 

is clear that the effect of the parameter D in the digital iterative controller on the 

learning parameter a is very limited. Therefore, the choice of D must be mainly 

concerned with the satisfaction of CBD - 0. 

Finally, the second issue to be discussed is the location of the open-loop poles. 

Indeed, as in the analogue iterative learning controller of Chapters 2 and 3, it is 

interesting to investigate those plant characteristics that are most conducive to digital 

iterative learning control. Such plants characteristics can be recognised from the 

previous examples, which indicate that any plant/controller combination that produces 

a very small value of a without affecting the value of p would be the optimal 

choice. Indeed, it has been shown in the previous examples that irregular and 

unstable plants produce very large values of a. It has also been shown that regular 

stable plants produce very small values of a. Thus, through thorough investigation, it 

has been found that regular plants with all eigenvalues on the boundary of the unit 

disc produce learning parameters a-0. In the current example, all the eigenvalues 

of the plant lie on this boundary but a-2 because of the irregularity problem for 
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the uncompensated plant when A=1. However, the compensated plant produces a 

ce I when A=I and a=0 (to prevent oscillation in the control effort). Indeed, if 

such oscillation is tolerated, a-0 can be achieved when a-1, A-I and p-0. 

This confirms that the best plants to be controlled using digital iterative controller are 

neutrally stable plants. 

Example 4.5 

in the previous examples, regular and first-order irregular plants were investigated. 

In this example, therefore, a second-order completely irregular plant is investigated to 

illustrate the effectiveness of digital iterative learning controller in controlling high- 

order irregular plants. The state and output equations of the linear time-invariant 

plant on the continuous-time set are 

XI(t) 

jC2 (t) 

'3 

i4 (t) 

XI(t) 0 0 0 0 

0 0 0 0 
X20) 

-1 12 -4 2 X3(t) 

-2 -3 -2 1 -3 
X4(t) 

0 00 -3 '0 X6(t) 

0, 0,0, 0, -2 1 X6(t) 
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+1 

ul(l) 

U2 

(4.79a) 

and 

yi(t) 

Y2 Wi 

-2 � 0 � 0 � 0 � 0 

2 , 0 , 0 , 0 , 0 

X, (t) 

X2(t) 

X3(t) 

X4(t) 

X5 (t) 

X6(t) 

(4.79b) 

In this case, the plant is asymptotically stable but second-order completely irregular 

since its first and second Markov parameters 

0,0 
CB = 

10 

, 
01 (4.80a) 

and 
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00 
CAB - 

10 

, 01 ... (4.80b) 

are clearly null whilst its third Markov parameter 

CA2B. -18 , 16 

... (4.80c) 
-6 , -8 

evidently has full rank. It follows, therefore, that a two-stage pre-filter is required 

(see Section 4.2). Moreover, since CB - CAB - 0, D, and D2 can be arbitrary. 

However, the choices D, - D2 - 12 are made together with al = a2 - 0' In 

addition, for a sampling period T-0.01 sec the step-response matrix of the 

uncompensated plant is 

-3.001SX10-6 2.6500xlO-6 
H(T) 

-0.9702xlO-18 -1.3300xlO-'O 

It is required that the output vector of this plant track the command vector 

. 12iT, 
v(i7) - (j E [0,1001) 

on the time interval [0,11. 

... (4.81) 

In case 
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0 

0 

0 
X(O) 

0 

0 

0 

and 

(4.82) 

uo(i71 - (j c [0,100]) 9 ... (4.83) 
101 

the learning of the digital iterative learning controller with different controller gain 

matrices governed by equation (4.48) when 

[H(n (1ý 
+ýD+ý Dl]- 

1 
-5.0126 9 -9.9877 

T) 
(12 

T 3.6567 , -11.3256] ... (4.84) 

are shown in Figure 4.17 and the corresponding control efforts are shown in Figure 

4.18. Thus, according to the analysis of Section 4.2, the uncompensated plant with 

second-order irregularity produces a learning parameter a-6 when p- 

However, the introduction of compensators makes a-4 when ct, -%-0 and p- 

0. It is clear that this value of a is still high. Indeed, even if (il - a2 -I are 

chosen, the minimum value of the learning parameter achieved is a-2 which is still 

large. Thus, the controller gain matrix must be de-tuned with different values of A 

in order to obtain good learning performance without violence Indeed, the results 

presented in Figures 4.17(a, b) correspond to A-0.25 and hence p=0.75, a-1; 
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those in Figures 4.17 (c, d) correspond to A-0.2 and hence p-0.8, a=0.8; and 

those in Figures 4.17(e, f) correspond to A-0.1 and hence p-0.9, a=0.4. It is very 

clear, therefore, that considerable improvement in the learning performance (by 

eliminating violence) can be achieved using de-tuning. 

Example 4.6 

This example is given so as to illustrate the conservativeness (or otherwise) of the 

bound on the rate of change of error given by the inequality (4.13). This illustration 

is affected by considering two SISO plants governed by state and output equations of 

the respective forms 

. t(t) -a x(t) +b tKt) 

At) -c X(I) 

for which 

a--I 

and 

a= -10 

(4.85a) 

... (4.85b) 
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respectively. The step-response functions of these two plants when the sampling 

period T-0.01 sec are h(7) = 9.9502 x 10-3 and h(7) - 9.5163 x 10-3, 

respectively. Thus, using Ileorem 4.1, it is evident that a-9.95 x 10-3 and a- 

95.16 x 10-3, respectively, for these plants in case the digital iterative learning 

controller is designed such that p=0. Now, it is required to investigate the relation 

between the inequality (4.47) and 
Aek (j) 

of the actual process for (i c 

[0,200]). It is clear from Figures 4.19(a, b) that the bound is non-conservative when a 

is small. On the other hand, the results represented in Figures 4.19(c, d) confirm that 

the bound is loose and conservative when a is large. In addition, it is clear by 

comparing Figures 4.19(a, d) that learning is slow when a is large. This is confirmed 

in Figures 4.19(a, c). 

4.5 CONCLUSION 

in this chapter, it has been shown that digital iterative learning controllers can be 

designed for linear multivariable plants using only the step-response matrices of such 

plants. This demonstration has been effected by proving a fundamental theorem 

which establishes precise sufficient conditions under which iterative learning control is 

achieved by such digital controllers. In addition, it has been shown that these results 

can be used to obtain important information concerning the learning rates achievable 

by such controllers. Indeed, it has been found that the irregularity and stability 

characteristics of the plants under control impose severe constraints on these 

achievable learning rates. However, it has been shown that these severe constraints 

can be removed by designing digital iterative learning controllers with appropriate 

digital compensators for irregular linear multivariable plants. This demonstration has 

been effected by proving a fundamental theorem which establishes precise sufficient 

conditions under which iterative learning control is achieved by such digital 

controllers and compensators in the case of first-order irregular plants. The extension 
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of such results to higher-order irregular plants has been presented. In addition, the 

effect of the open-loop eigenvalues of plants on the learning rate has been 

investigated. Furthermore, the upper bound of the rate of change of error has been 

investigated. Finally, these general results have been illustrated by the presentation of 

numerical results for the digital iterative learning control of plants with different 

irregularity and stability characteristics. 
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CHAPTER5 

DESIGN OF ADAPTIVE DIGITAL ITERATIVE LEARNING 

CONTROLLERS FOR MULTIVARIABLE PLANTS 

5.1 INTRODUCMON 

The design of digital iterative learning controllers for linear multivariable plants was 

discussed in Chapter 4. However, although such controllers are intrinsically robust in 

the face of plant-parameter variations, some degradation in their performance will 

inevitably occur in the case of large plant-parameter variations. It is therefore the 

purpose of this chapter to design controllers that avoid such degradation by the 

inclusion of recursive estimators in digital iterative learning controllers. These 

estimators provide on-line updated step-response matrices for inclusion in the digital 

iterative learning control law in order to achieve the desired learning performance and 

rapid convergence. It is accordingly shown in this chapter that digital iterative 

learning controllers can indeed be readily rendered adaptive. Ile effectiveness of 

such adaptive digital iterative learning controllers is illustrated in this chapter by 

designing adaptive digital iterative learning controllers for various types of plant with 

various degrees of irregularity. 

5.2 ANALYSIS 

The dynamics of linear time-invariant plants governed on the continuous-time set T- 

[0, +oo) by differential equations of the form 

. t(t) = Ax(t) + B4<t) 
I ... (5.1a) 
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At) - CX(t) 9 

are governed on the discrete-time set T7. = (0, T,..., jT,.. ) by difference equations of 

the form 

XU+ I) - OX(j) + T40) 

W) - rx(j) 

where 

,o- eAT 

jT 
eAtBdt 

0 

r-c 

9 (5.2a) 

I (5.2b) 

9 
(5.3a) 

I (5.3b) 

9 (5.3c) 

and T is the sampling period. In addition, x(j) c Rn is the state vector, u(j) C Rm is 

the input vector, )(j) c Rm is the output vector, 0c Rnxn is the discrete-time plant 

matrix, Tc Rnxm is the discrete-time input matrix, and rc Rmxn is the output 

matrix. 

The step-response matrices of such plants have the form 

IT 
H(T) CeAtBdt 

... (5.4) 
0 
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and characterise the response of initially quiescent plants after one sampling period. 

Such step-response matrices can be measured directly from input/output test data. 

Therefore, and according to Theorems 4.1 and 4.2 of Chapter 4, such plants are 

amenable to the design of digital iterative learning controllers using only such step- 

response matrices to characterise the dynamics of linear time-invariant plants. 

Moreover, Theorems 4.1 and 4.2 can be readily deployed in the design of iterative 

learning controllers for multivariable plants. 

In the case of such plants whose dynamics are initially unknown or time-variant, it is 

necessary to provide updated step-response matrices for inclusion in the control-law 

design equation 

H-1(7) ... (5.5) 

Such step-response matrices can be obtained on-line by estimating the parameters of 

the autoregressive moving average (ARMA) model which is given by an Nth-order 

difference equation of the form 

Yk(A + Alyk(j-l) + A2yk(j-2) +... + ANyk(j-N) 

- B, Uk U- 1) + B2 Uk (j-2) +... + BN Uk (j-N) ... (5.6) 

in order to estimate the parameters of this ARMA model, a Recursive Least Squares 

(RLS) algorithm is utilised. This can be expressed by the equations (Borison (1979)) 

AA 
-n_, tjjnA [(j_1)71] 0 (fl) -0 [(j - 1) 71 + K(J-F) 

[); 
kr U9.. (5.7) 
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K(j-j) . p[(j-1)71ýD(j7ll,, +OT(j7)p[(j-1)71 4D(J-j)]-l ... 
(5.8) 

PUM -1 ['N(2m) - gj-r)jý%7)] p[(j-1)71 ... 
(5.9) 

in equations (5.7), (5.8) and (5.9), 

O(fl) - [-); kr[(j-1)71, -); krU-2)71,..., -); kr[U-N)I, 

TTI T[(j_N)71T e RN(2m) Uk I(j- 071, ui U-2)719-01 k 

is the vector of outputs and inputs for N previous sampling periods, E) Q-I) is the 

estimated value of the parametric matrix 

0- [A,. A21 
... 9AN9 

BI, B2,..., BN ]T c RN(2m)xm 9 
(5.11) 

RN(2m)xN(2m) is the symmetric covarlance matrix, K(JT) c RN(2m) is the 

Kalman gain vector, and -1 e (0,1] is the forgetting factor. 

Thus, at each sampling instant the estimated parameters of the ARMA model can be 

used to compute updated step-response matrices for implementation in the design 

equation (5.5). Indeed, it is clear from equation (5.10) that 

H(T) - B, ... (5.12) 

It is therefore evident that the control law described by Theorems 4.1 and 4.2 can be 

readily made adaptive by using in the iterative learning controller the current estimate 

of the SteP-Tesponse matTiX, H(T), from the parameter-estimation algorithm. ' 
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In order to achieve good learning performance and fast convergence from the 

adaptive digital iterative learning controller, it is required to have rapid and accurate 

estimation of the ARMA model from the RLS algorithm. It is clear from equations 

(5.7), (5.8), and (5.9) that, in order to evaluate the estimated parameter vector, 

O(ff), the RLS algorithm should be provided with prior estimates of 43[(j-1)71 

and P[(j-1)71. Hence, a choice of 0 (0) and P(O) should be made to start the 

RLS. Indeed, the choice of e (0) is dependent on prior information about the plant 

and in the absence of such information the choice is usually (Clarke (1981)) 

0 (0)-0 (5.13) 

Similarly, the initial choice of the covariance matrix is usually (Clarke (1981)) 

P(O) ' POIN(m+m) I 

where the value of PO is chosen to be sufficiently large to cause rapid discarding of 

the old estimated data so as to speed up convergence to the true parameters. 

Moreover, the identified parameters 0 (jT) will converge to the actual parameters 0 

only if the input to the RLS algorithm is sufficiently 'rich' or persistently exciting and 

if E) is constant (Goodwin and Sin (1984)). 

5.3 ILLUSTRATIVE EXAMPLES 

The use of adaptive digital iterative learning controllers can be conveniently illustrated 

by designing such controllers for typical multivariable regular, first-order partially 

irregular, and second-order completely irregular plants whose dynamical 

characteristics are initially unknown to these controllers. 
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Example 5.1 

The regular plant under consideration is governed by equations of the form (5.1a) and 

(5.1b) with 

-3,1,0 
A- -2, -1,2 

0,1, -2 

0, 0 

B.. 2, 1 

1, 3 

and 

Cu. _11 Ii, 
In this case, the step-response matrix is 

9.999X 10-31 -19.505xlo-3" H(7) - 
-9.90OXIO-3, -29.702xlo-3 

9 

t (5.15b) 

(5.15c) 

... (5.16) 

when the sampling period T-0.01 sec. Furthermore, the control law of Theorem 4.1 

is used in this case. 

However, the digital iterative learning controller is designed initially for a different 

plant governed by equations of the form (5.1a) and (5.1b) with 
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and 

AM 
(5.17a) 

10,01 
B. '1 2,1 I 

1,3 j�... (5.17b) 

... (5.17c) 
10,0, -10 

for which the step-response matrix is 

1.142140-1. -1.842740-1 
H(T) -IIIj,... (5.18) 

-0.852540-1. -2.8522xlO-I. 

when the sampling period T-0.01 sec. 

In addition, the RIS algorithm uses the initial condition PO 108 and the forgetting 

factor 1, and E) (0) contains the information for the plant with matrices A, B. 

and C described by equation (5.17). The numerical results shown in Figures 5.1 and 

5.2 for non-adaptive iterative learning control indicate that, when 

v(fl) - [12jT, -12j7lT and the task time Tt -I sec, the step-response matrix used 

in the controller remains fixed at the 'incorrect' value given by equation (5.18) and 

that the iterative controller learns rather slowly 
. 
as a consequence. However, the 

numerical results shown in Figures 5.3 and 5.4 for adaptive iterative learning control 

indicate that, when v(jn - [l2jT, -12j7lT and Tt -I sec, the step-response matrix 
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changes very rapidly from the 'incorrect' value given by equation (5.18) to the 

1P correct' value given by equation (5.16) and that the iterative controller learns very 

rapidly as a consequence. These results thus demonstrate the improvements in 

learning performance and convergence achievable by the introduction of adaptive 

action. It must be emphasised that when k-0 the output is zero since the assumed 

value of the input is zero initially using both non-adaptive and adaptive iterative 

learning control. In addition, the elements of the step-response matrix are fixed at 

the 'incorrect' values in both non-adaptive and adaptive iterative learning control 

when k-0 as shown in Figures 5.2 and 5.4. 

Since the values of the parameters p and a determine the learning performance and 

the convergence speed of iterative learning controllers, it is only natural to refer to the 

definitions of these parameters (page 94) in Chapter 4 at this stage. These definitions 

indicate that using the 'incorrect' step-response matrix decelerates learning whilst 

using the 'coffece step-response matrix accelerates it. Indeed, according to Chapter 4, 

both parameters must be as small as possible in order to achieve good learning 

performance and rapid convergence. However, using the 'incorrect' step-response 

matrix makes p 0.9445 and a= 4x 10-3, whilst using the 'coffect' step-response 

matrix makes p0 and a- 39.4xlo-3. Thus, it is clear by using the 'correce step- 

response matrix from the recursive identifier that the two parameters become very 

small and accordingly that the learning performance improves and the convergence 

speed increases. 

Example 5.2 

The first-order partially irregular plant under consideration is governed by equations 

of the form (5.1a) and (5.1b) with 
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and 

1� 01 
� -1 � 21 

[0�1� -2 j 
00 
21 

13... 
(5.19b) 

II 

ol ... (5.19c) 

in this case, the step-response matrix is 

-0.990099XIO-2 -0.297021xlO-l H(7) 
0.990058xlo-4 0.503238xlo-4 ... (5.20) 

when the sampling period T-0.01 sec. 

Since the plant is first-order partially irregular, a pre-filter with discrete-time transfer 

function 

(+ýD 
Z-' IM 

T z+CCI 

must be used in cascade with the plant in order to remove this irregularity, as shown 

in Chapter 4. In other words, the control law of Theorem 4.2 must be used in this 

case. The choice of D and ct must be made so that CBD -0 and so that no 
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switching is present in the control action. Hence, 

D- 
[0 

-3 
] 

0. I 

and a-0. Therefore, the step-response matrix of the overall plant is 

A -0.990099XIO-2 -2.95379xlo-2 H(n - H(n 
(Im 

+ý D) - T 
0.990058xlo-4 . -4.92883xlo-2 ' _(5.21) 

However, the digital iterative learning controller is initially designed for a different 

plant governed by equations of the form (5.1a) and (5.1b) with 

-30 10 0 

A -20 -10 20 

0 10 -20 ... (5.22a) 

00 

B-2 

3 ... (5.22b) 

and 

11 0 � � 

ciiil 
Li 0 0 � � 

I ... (5.22c) 

for which the step-response matrix is 
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-0.90929xlo-2 -0.2720740-1 
H(7) - 

0.90562xlo-3 0.52463xlo-3 ... (5.23) 

when the sampling period T-0.01 sec. 

This plant is also first-order partially irregular and therefore a pre-filter must be used 

to remove this irregularity. The tuning parameters D and a of this filter have been 

chosen as before, ie, 

0 

0 

1 

Ii 

and ci - 0. Therefore, the step-response matrix of the overall plant is 

A -0.90929x 10-2 -0.12844x10-1 2 H (21 - H(II 
(l. 

+ j, D T 
0.90562x10-3 -0.43792 ... (5.24) 

In addition, the RIS algorithm uses the initial condition Po - 108, the forgetting 

factor q-1, and E) (0) contains the information for the plant with the matrices A, 

B, and C described by equation (5.22). 

The numerical results shown in Figures 5.5 and 5.6 for non-adaptive iterative learning 

control indicate that, when v(j-. r) - [l2jT, -12jf71T and the task time Tt -I Sec, the 

step-response matrix used in the controller remains fixed at the 'incorrece value given 

by equation (5.23) and that the iterative controller learns rather slowly as a 

consequence. However, the numerical results shown in Figures 5.7 and 5.8 for 

adaptive iterative learning control indicate that, when V(jT) - jl2JT, -l2J7jT and 

Tt -I sec, the step-response matrix changes very rapidly from the 'incoffecf value 
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given by equation (5.23) and that the iterative controllers learn very rapidly as a 

conseciuence. These results thus demonstrate the improvements in learning 

performance and convergence achievable by the introduction of adaptive action. 

It must be emphasised that when k-0 the output is zero since the assumed value of 

the input is zero initially, using both non-adaptive and adaptive iterative learning 

control. In addition, the elements of the step-response matrix are fixed at the 

'incorrect' values in both non-adaptive and adaptive iterative learning control when 

k-0, as shown in Figures 5.6 and 5.8. 

The reason for the slow learning rate using the 'incorrect' step-response matrix is the 

same as in Example 5.1, since using the 'incorrect' step-response matrix makes 

p-0.8877 and a-0.1175 whilst using the 'correct' step-response matrix makes 

p-0 and a-0.9623. Therefore, the learning performance has improved and the 

convergence speed has increased as a result of using the 'correct' step-response matrix 

obtained from the recursive identifier. 

Example 5.3 

The second-order completely irregular plant under consideration is governed by 

equations of the form (5.1a) and (5.1b) with 

0 
0 

0 
0 0 

0 
1 

0 
0 

0 
0 

-4 -1 1 2 -4 2 
1 -2 -3 -2 1 -3 0 
0 

0 
0 

0 
0 

0 
0 

-3 
0 

0 
-2 ... (5.25a) 

J 
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00 
00 

B00 
00 
30... (5.25b) 
02j 

and 

19 

In this case, the step-response matrix is 

. 
-3.004788xlO-6 2.649985xlO-6 

H(n =. 
-9.701972xlo-7 -1.329962xlO-61 

... (5.26) 

when the sampling period T-0.01 sec. 

Since the plant is second-order completely irregular, a two-stage pre-filter with 

discrete-time transfer functions 

(+ýD, Z-1 IM T i+- -ot 
] 

and 

(Irn 
+ý D2 Z-' 1 

T Z+a2 j 

must be used in cascade with the plant in order to remove this irregularity, as shown 
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in Chapter 4. Since CB -CAB, = 0, the choice D, = D2 = Im and the'choice 

ct, = a2 =0 is made in order to prevent switching in the control actions. Therefore, 

the step-response matrix of the overall plant is 

il (71 - H(71 +ýD, 
-0.1214,010711 

... (5.27) 
(l'n 

T 
)' 

-[ 
-0.0392, -0.0537 

However, initially the digital iterative learning controller is designed for a different 

plant governed by equations of the form (5.1a) and (5.1b) with 

0 0 2 0 0 0 
0 0 0 2 0 0 

-8 -2 2 4 -8 4 
2 -4 -6 -4 2 -6 0 0 0 0 -6 0 

... (5.28a) 0 0 0 0 0 -4 

10 0 1 � 

0 0 
B=I 

� 

0�0 I 0�0 
1 0 3 � 

0 2 � 

and 

-2, 0, 0, 0, 0 
cm ,, "; ý, , ', -- 

- 
1, 2, 0, 0, 0, 0. 

for which the step-response matrix is 

I (5.28b) 

9 
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-0.12040xlo-4 0.10530xlo-4 
H(T) - 

-0.37630xlO-5 -0.53060xlO-5 

when the sampling period T-0.01 sec. 

This plant is also second-order completely irregular so that a two-stage pre-filter is 

required to remove this irregularity. The tuning parameters of these pre-filters are 

chosen as before so that D, - D2 - 1. and al - C12 = 0. Therefore, the step- 

response matrix of the overall plant is 

2 
-4.8629x10-1 4.2555x10-1 

H (T) m H(71 + i2. D, - T1 
-1.5204x10-1 , -2.1437 . ... (5.30) 

In this example, the control gain matrix A is chosen in the case of both non-adaptive 

and adaptive iterative learning control with the tuning parameter A-0.25 so that 

A-0.25 k -1 

This choice is made in order to achieve a -balance between the two most important 

parameters in learning control (ie, p and a). 

In addition, the RLS algorithm uses the initial condition PO - 108, the forgetting 

factor -1 - 1, and 0 (0) contains the information for the plant with the matrices A, 

B. and C described by equation (5.28). 

The numerical results shown in Figures 5.9 an& 5.10 for 'non-adaptive iterative 

learning control indicate that, when V(j7) = [12jT, -12j71T and the task time Tt -I 

Sec, the step-response matrix used in the controller remains fixed at the 'incorrect' 
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value given by equation (5.29) and that the iterative controller learns rather slowly as 

a consequence. However, the numerical results shown in Figures 5.11 and 5.12 for 

adaptive iterative learning control indicate that, when v(J"I) - [12jT, -12j T and 

Tt -I sec, the step-response matrix changes very rapidly from the 'incorrect' value 

given by equation (5.29) to the 'correct' value given by equation (5.26) and that the 

iterative controllers learn very rapidly as a consequence. These results thus 

demonstrate the improvements in learning performance and convergence achievable 

by the introduction of adaptive action. 

It must be emphasised that when k-0 the output is zero since the assumed value of 

the input is zero initially, using both non-adaptive and adaptive iterative learning 

control. In addition, the elements of the step-response matrix are fixed at the 

'incoffecf values in the case of both non-adaptive and adaptive iterative learning 

control when k-0, as shown in Figures 5.10 and 5.12. 

The reason for the slow learning rate using the 'incorrect' step-response matrix is the 

same as in Example 5.1, since using the 'incorrect' step-response matrix makes 

p-0.938 and a-0.2526 whilst using the 'correct' step-response matrix makes 

p-0.75 and a-1.0. Therefore, the learning performance has improved and the 

convergence speed has increased as a result of using the 'correct' step-response matrix 

obtained from the recursive identifier. 

5.4 CONCLUSION 

In Chapter 4, it was shown that digital iterative learning controllers can be directly 

designed using only input/output models of plants in the form of step-response 

matrices. Therefore, since the step-response matrices of plants can be readily 

identified in real time, it has been shown in this chapter that performance degradation 
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in digital iterative learning control due to initially unknown dynamical characteristics 

can be avoided by deploying on-line recursive identifiers. Such identifiers, which 

employ the recursive least squares (RLS) method of identification, provide updated 

step-response matrices for inclusion in the digital iterative learning controllers 

introduced in Chapter 4. Moreover, it has been shown that these identifiers are rapid 

and accurate, so that learning performance and convergence rates are greatly 

improved. 17hese theoretical results have been illustrated by the presentation of 

numerical results for the adaptive iterative learning control of regular, first-order 

partially irregular, and second-order completely irregular plants whose dynamical 

characteristics are initially unknown to the controllers. 
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CHAPTER 6 

DESIGN OF ANALOGUE MODEL-BASED ITERATIVE 

LEARNING CONTROLLERS FOR ROBOTIC MANIPULATORS 

6.1 INTRODUCMON 

In Chapters 2,3, and 4, analogue and digital iterative learning control design 

methodologies were proposed for linear time-invariant multivariable plants of 

arbitrary orders of irregularity. These methodologies proved to be effective in 

designing iterative learning controllers for such plants in the case of repetitive tasks. 

The most common example of plants with repetitive tasks is the industrial robotic 

manipulator. Indeed, the vast majority of such manipulators at work in factories 

repeat their motions over and over in cycles. Unfortunately, whatever errors that may 

exist in following a trajectory are also repeated from cycle to cycle in the absence of 

learning control. Therefore, it is important to attempt to design a control scheme that 

will improve the performance of such manipulators as their actions are repeated. 

However, these robotic manipulators are highly -coupled non-linear devices and 

therefore the controllers referred to in Chapters 2,3, and 4 are not directly applicable. 

Therefore, in order to apply these controllers to robotic manipulators, the influence of 

the non-linearities associated with these manipulators must be removed first. It is 

shown in this chapter that non-linear robotic manipulators can be reduced to linear 

time-invariant plants under the action of computed-torque control. -Moreover, it is 

shown that such robotic manpulators give rise to completely irregular plants under the 

action of computed-torque control in both joint and task, space co-ordinates. It is 

therefore evident that the results of Arimoto et al (1984) for the iterative learning 

control of regular plants are inapplicable in such cases. Indeed, Arimoto et al (1984) 
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stated that, "it is impossible to choose the positional variables as outputs in robotic 

applications and the velocity variables must be chosen instead". This is because 

choosing the position variables as output in robotic systems will render the resulting 

linear plants irregular. However, the results of Chapters 2,3, and 4 are immediately 

applicable to the design of iterative learning controllers for irregular linear time- 

invariant plants. In this chapter. because of the practical difficulties possibly involved 

in implementing the controllers of Chapter 2 (in which the initial states must be 

shifted at the beginning of each iteration for learning to occur), the controllers of 

Chapter 3 are chosen for use. In such controllers, the practical difficulties possibly 

involved in shifting initial states are circumvented by the introduction of initial 

impulsive action into the iterative learning process. 

The practical relevance of these theoretical results is illustrated in this chapter by 

designing a model-based iterative learning controller with initial impulsive action for 

a two-degree-of-freedom robotic manipulator with gravity compensation in both joint 

and task space co-ordinates. It is also shown that such model-based iterative learning 

controllers are robust in the sense that rapid learning behaviour is obtained even when 

crude dynamical models are used. In particular, it is shown that fixed model-based 

iterative controllers exhibit excellent learning characteristics which emulate those of 

more complex exact model-based iterative controllers as reduction gear ratios increase. 

6.2 ANALYSIS 

The dynamics of n-link non-redundant robotic manipulators, driven by armature- 

controlled DC motors through reduction gearing, are governed by non-linear vector 

differential equations of the form (Arimoto and Miyazaki (1985)) - 
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[Jo + H(q)] j+ [Bo + k(q)] OT 
+ g(q) - Ko r aq 

In this equation, qc Rn is the vector of joint angles, H(q) e Rnxn is the inertia 

matrix of the manipulator, T-1 jH(q) 4e Rn is the kinetic energy, g(q) C Rn is 
2 

the vector of gravitational torques, re Rn is the vector of voltage inputs to the 

armature circuits. In addition, BO - K2/v2R e Rnxn, jo - jý. /V2 c Rnxn, and KO - 

KIvR e Rnxn are diagonal matrices associated with actuators, where Jm is the motor 

inertia, R is the motor resistance, K is the torque constant of the motor, and v is 

the gear ratio. In order to control such manipulators when their dynamical models are 

well known, it is possible to implement computed-torque (or inverse dynamics) 

control laws (Spong and Vidyasagar (1989)) of the form 

Kor - [Jo + H(q)] u+ [Bo +k(q)] 4- E- 
+ g(q) ... 

(6.2) 
aq 

where ue Rn is the vector of new inputs. Then, since the inertia matrix is 

invertible, it follows from equations (6.1) und (6.2) that 

ju (6.3) 

This equation indicates that non-linear robotic manipulators become linear time- 

invariant systems under the action of computed-torque control. Indeed, equation (6.3) 

is obviously a double-integrator system in joint space. 

Similarly, a double-integrator system can also be obtained in task space. Thus, 

equation (6.1) can be written directly in terms of the end-effector co-ordinates by 

introducing the relationship between the vector of the end-effector co-ordinates, 11, 

and the vector of joint co-ordinates, q, in the form 
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(I - II(q) 

where the function II(q) represents the forward kinematic equations. In general, this 

function can only be determined uniquely in a region free from kinematic 

singularities.. Then, taking the first and second derivatives of (6.4) yields 

and 

h- J(q) 4 ... (6.5) 

h- J(q) j+ý4... (6.6) 

where J(q) is the manipulator Jacobian . But it follows from equation (6-1) that 

(JO + H(q))-l 
[Kor 

- (BO + k(q))4 + '9T - g(q) ... (6.7) 
aq 

and therefore from equation (6.6) that 

J(q) (Jo + H(q))- I 
[Kor 

- (Bo + k(q)) + ! ýT 
- g(q) + Y(q) 

aq 

... (6.8) 

Equation (6.8) can now be re-written concisely as 

where 

M(11) ?I+h (fl, h) =F... (6.9) 

F= (JT(q))-l Kor ... (6.10a) 

M(fl) - (JT(q))-l [Jo + H(q)] (J(q))-l 
... 

(6.10b) 

and 
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h(f), h) - (JT(q))-l Bo + il(q))4 cIT + g(q) 
1( 

aq 
I 

(JT(q))-l [jo + H(q)] (J(q))-l Y(q) (J(q))-l il 
... (6.10c) 

Now, to obtain the double-integrator system in task space, F may be written as 

F- M(fl)u + h(f), h) 

Substituting (6.11) in (6.9) then yields 

... (6.12) 

where uc Rn is the vector of new inputs. Equation (6.12) is obviously a double- 

integrator system in task space. 

It is thus evident that any technique for the design of controllers for linear time- 

invariant plants can be applied to 'equivalent' systems governed by equations of the 

form (6.3) or (6.12) in both joint and task space co-ordinates, respectively. In 

particular, the theory of iterative learning control for linear time-invariant plants can 

be used. Indeed, equations (6.3) and (6.12) can obviously be expressed in the state- 

space form 

0 In q(t) 0 

(t) oo+ In 
U(t) ... (6.13a) 

q(t) 
y(1) - [In s 01 (6.13b) 

1 

q(t) 

1- 
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and 

ü(t) 0, In n(t) 
in UM 9 ... (6.14a) 

In(t) 1- 10 

, 01 

Ihm« 

+ 
l"i 

t) 
y(t) - [In, 01 

h(1) 9 ... (6.14b) ["( 1 

respectively. It is therefore evident from equations (6.13) and (6.14) that the first and 

second Markov parameters of both systems are, respectively, 

0 
[1., 01 'o 0 

and 

0 In 0 

M2 ' [In, 01 
0,0 In 

- In 
... (6.15b) 

These results indicate that robotic manipulators give rise to completely irregular linear 

time-invariant plants under the action of computed-torque control in both joint and 

task spaces. This implies immediately that the results of Arimoto et at (1984) for the 

iterative learning control of regular plants are inapplicable in such cases. 

However, the results of Chapter 3 are directly applicable to the design of iterative 

learning controllers for irregular linear time-invariant plants. The precise conditions 

under which learning occurs in such1terative controllers are established in Chapter 3. 

Theorem 3.1, which is re-stated here for convenience. In the following Tt is the 

duration of the tasý_- 
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Theorem 

in the case of the plant with state and output equations 

. 
kk(t) -- Axk(t) +B uk(t) 

and 

(t) wC Xk 

under the action of the control law 

Uk+l(t) ý Uk(t) + Kjj (t) + K2i k(t) + K2ýk(O) 6(f) 

where 6(t) is the Dirac delta function and 

ek (t) ý V(t) -A (t) 

assume that 

(6.16a) 

9 (6.16b) 

... (6.17) 

9 

(i) uO(I) is continuous on [0, T, ] and v(t), - Xt) are continuously differentiable 

on [0, Ttj 

(ii) CBK2 - 0; 111-II 

(iii) xO(O) issuchthat yo(O)-v(O); 

OV) Xk+1(0) - xk(O) (k - 0.1,2 .... ); 

(v) In - CBKI - CABK2 11 
00 < 1. 

Then, 

AM --* qt) 
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uniformly in tc [0, Tt ] as k --,, oo. 

Hence, it follows from this analysis that the control law for robotic manipulators 

consists of two parts. The first part is the model-based controller which is governed 

by equations (6.2) and (6.11) in joint and task spaces, respectively-, and the second 

part is the iterative learning controller which is governed by equation (6.17). Thus, in 

the case of robotic manipulators under the action of computed-torque control, it is 

immediately evident from equations (6.13) and (6.14) for both joint and task spaces, 

respectively, that iterative learning controllers with any KI c Rftxn and K2 In 

satisfy this theorem in the sense that CBK2 -0 and 11 In - CBKI - CABK2 11 
00 

0. 

Therefore, if these values of KI and K2 are used in equation (6.17) to determine 

Uk, it follows from equation (6.12) that iterative learning control of robotic 

manipulators occurs in joint space when the vector of voltage inputs are given by 

Ko rk - (Jo + H(q)) uk + (Bo + k(q)) 4-E+ g(q) aq 

in the kth itemtion. 

This equation governs the behaviour of exact model-based controllers which are 

clearly devices with complex time-varying non-linear characteristics. However, the 

introduction of reduction gearing makes it possible to implement approximate model- 

based controllers with simpler time-invariant, linear characteristics governed by 

equations of the form 

Kork=Jouk+Bo4k 

These approximate model-based controllers emerge as a result of increasing the 

reduction gear ratio which makes JO and BO - more dominant than H(q) andk(q), 
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respectively. Moreover, it is clear from equation (6.19) that the torques due to gravity 

and kinetic energy are neglected in this case. The robustness of these approximate 

controllers governed by equation (6.19) when the reduction gear ratio increases is 

investigated in detail in Section 6.3. 

Similarly, with the same choice of K, and K2. it follows from equation (6.11) that 

iterative learning control occurs in task space when the inputs are governed by 

a 

Fk '-- M(flk) Uk + h(nk A) (6.20) 

in the kth iteration. This equation, as in joint space, governs the behaviour of exact 

model-based controllers. However, as the reduction gear ratio increases, it is possible 

to implement approximate model-based controllers which are much simpler than those 

governed by equation (6.20) in order to control robotic manipulators in task space. 

Such approximate model-based controllers are governed by equations of the form 

Fk = (JT(q))-l [Jo(j(q))-l uk + Bo 4+ JO(J(q))" ý(&] 
- 

These approximate model-based controllers emerge as a result of the domination of 

JO and BO over H(q) and k(q) in equations (6.10b) and (6.10c), respectively, as 

the reduction gear ratio increases. Moreover, it is clear from equation (6.21) that the 

torques due to gravity and kinetic energy are neglected in this case. 

The robustness of these approximate controllers governed by equation (6.21) when the 

reduction gear ratio increases is investigated in detail in Section 6.3. However, when 

robotic manipulators are direct-drive devices with no reduction gearing, their full 

dynamics in joint or task space must be used in exact model-based controllers (ie, 

control-law equation of the form (6.18) or (6.20) must be used). 
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6.3 ILLUSTRATIVE EXAMPLES 

These theoretical results can be conveniently illustrated by considering the iterative 

learning control of the planar motions of a two-link manipulator in both joint and 

task space. In addition, armature-controlled dc motors with reduction gearing and 

direct-drive servo motors are used to drive the robot arm. The dc motor in use for 

both joints is such that J. - 6.204xlO-4 Kg. M2 is the motor inertia, R-2.7 ohm is 

the motor resistance, and K-0.23033 N. mlamp is the torque constant of the motor. 

Moreover, the inductance of the motor is ignored and the gear ratio for both joints is 

v- nlln2 - Cdoutput/Winput. These dc motors with gearing are used in order to make 

the task of the iterative learning controller as easy as possible by attenuating the effect 

of the manipulator's non-linearities as the reduction gear ratio increases. On the other 

hand, direct-drive servo motors are used in order to make the task of the iterative 

learning controller as difficult as possible by not attenuating the effects of the 

manipulator's non-linearities by the introduction of reduction gearing. In addition, 

the two-link manipulator under investigation has 11 - 12 - 0.432 m, m, - 15.91 Kg 

and M2 - 11.36 Kg where (tl, t2) are the lengths and (MI 9 M2) are the masses of 

links I and 2, respectively. These values correspond to links 2 and 3 of the 

Unimation PUMA 560 manipulator (Seraji (1986)). 
,ý 

The behaviour of the manipulator is governed by the non-linear vector differential 

equation 

H(q) + k(q) E+ 
g(q) aq 

where 
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JI+J2 (1+3 q2) +3 J2q Cosq2, 

H(q) - 
jI+ý 17 Cos q2 22 

'12(l +ýq Cos q2 
2 

J2 

m2 12 g cos (ql+q2) +I MI + M2 Jjg cos q, 
(2 

g(q) 

L m2 t2 g cos (ql+q2) 

and 

-3 J2 tj 1+ 4,42 sin q2 

clT 

14 

aq 
3 

Lý 
J2 17 41 sin q2 

I 

I 

(6.23) 

(6.24) 

... (6.25) 

in which J, - (1/3) m14, J2 - (1/3) m2 4. q-I, /t2, and g-9.8. In Examples 

6.1 and 6.2, the application of a model-based iterative controller to a robotic 

manipulator in joint space is considered. Similarly, in Examples 6.3 and 6.4 the 

application of such a controller to a robotic manip - ulator in task space is considered. 

Example 6.1 

In this example, direct-drive servo motors are used. It follows therefore that the 

model-based controller in the kth iteration is 

rk - H(q) uk + il(q) E+ 
g'(q) aq (6.26) 

In this case, it is desired that the joint angles perform the motions 
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4(t3 - t4 4 

V(t) 
Ir I+4 

(t3 - t4 

in 1.0 sec. In addition, the initial input vector is 

uo (I) - 
101 

9 

(6.27) 

(6.28) 

and the matrices used in the iterative learning controller are 

1,0 
K1- 

0,1 

and 

K2-[l ' 

... (6.29) 

(6.30) 

The rapid learning of the iterative learning controller is shown in Figures 6.1(a, b). It 

is clear that the actual motions of the two arms of the robotic manipulator are 

indistinguishable from the desired motions specified in equation (6.27) after three 

iterations. Figures 6.1(c, d) show the corresponding control efforts. 

Example 6.2 

In this example, dc motors with reduction gearing are used. It follows therefore that 

the model-based controller can be either the exact or the approximate controller 

governed by equation (6.18) or (6.19), respectively. In addition, in equations (6.18) 
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and (6.19). JO - Jm/v2, KO - KIvR, and BO ý K21v2R are all constant diagonal 

matrices. 

In this case, it is desired that the joint angles perform the motions 

ir 
- 4(13 - j4 4 

V(t) 
+4 (ts - 14) 

in 1.0 sec. In addition, the initial input vector is 

UO(t) - 
0 

101 

9 

... (6.31) 

(6.32) 

and the matrices used in the iterative learning controller are 

[i 
�o 

K1 - 
[0 � 

and 

K2 -[ 

... (6.33) 

(6.34) 

The rapid learning of the exact model-based iterative learning controller is shown for 

each of the two joint angles in Figures 6.2(a, b), from which it is c lear that the actual 

motions are indistinguishable from the desired motions after three iterations. 

However, it is also evident from Figures 6.2(c, d), (e, f) and (g, h) that similarly rapid 

learning is obtained when approximate, model-based iterative learning controllers are 

used. Furthermore, it is evident that the characteristics of these approximate model- 
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based controllers rapidly approach those of the exact model-based controller as the 

reduction gear ratio (assumed identical for each joint) increases. Figure 6.3 shows the 

corresponding control efforts in all cases. 

Example 6.3 

In this example, direct-drive servomotors are used. It follows therefore that the 

model-based controller in the kth iteration is 

fk m (JT(q))-l 
[H(q)J-I(q) 

uk + k(q)4 
-E+ g(q) - H(q) J-I(q) ý(q) (6.35) 

aq 41 ... 

where 

J(q) 
41 sinq, - f2 sin (ql+q2) 42 sin(ql+q2) 

... (6.36) tj cosq, + t2 cos(ql+q2) t2 cos(ql+q2) 

In this case, it is desired that the end-effector perform the following rectilinear 

motions in the plane of cartesian co-ordinates 

(i) moves between R(O. 7375, -0.3055) m and, Q (0.7, --0.25) m in 0.15 sec with 

equal periods of acceleration, cruise, and deceleration from rest to 669.398 x 

10-3 mls and back to rest ; 

GO then moves immediately between Q(0.7, -0.25) m and R(O. 7375, -0.3055) m 
in 0.15 sec with equal periods of acceleration, cruise, and deceleration from 

rest to 669.398 x 10-3 mls and back to rest. 

The initial input vector is 
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uo W0... (6.37) 
0 

and the matrices used in the iterative learning controller are 

19 01 

and 

(6.38) 

K2 - 
'I 

... (6.39) 
01 

The rapid learning of the iterative learning controller is shown in Figures 6.4(a, b). It 

is clear that the actual motions of the two arms of the robotic manipulator are 

indistinguishable from the desired motions specified in step (i) and (ii) after three 

iterations. Figures 6.4(c, d) show the corresponding control effects. 

Example 6.4 

In this example, dc motors with reduction gearing are used. - It follows therefore that 

the model-based controller can either be the exact or the approximate controller 

governed by equation (6.20) or (6.21), respectively. In addition, in equations (6.20) 

and (6.21), JO - Jm/v2, KO - KIvR, and BO - K2/OR are all constant diagonal 

matrices. 

In this case, it is desired that the end-effector perform the motions of Example 6.3 in 

the plane of cartesian co-ordinates. The initial input vector is 
., 
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UO 

[0 

and the matrices used in the iterative learning controller are 

1"i �0 

K1 - 
10 � 

and 

K2 m[] 

(6.40) 

... (6.41) 

... (6.42) 

The rapid learning of the exact model-based iterative learning controller is shown in 

Figures 6.5(a, b), from which it is clear that the actual motions are indistinguishable 

from the desired motions after three iterations. However, it is also evident from 

Figures 6.5(c, d), (e, f) and (g, h) that similarly rapid learning is obtained when 

approximate model-based iterative learning controllers are used. Furthermore, it is 

evident that the characteristics of these approximate model-based controllers rapidly 

approach those of the exact model-based controller as the reduction gear ratio 

(assumed identical for both joints) increases. Figure 6.6 shows the corresponding 

control efforts in all cases. 

6.4 CONCLUSION 

It has been shown in this chapter that robotic manipulators give rise to completely 

irregular linear time-invariant plants under the action of computed-torque control in 

both joint and task spaces. It follows, therefore, that the results of Arimoto et al 

(1984) for the iterative learning control of regular plants are inapplicable in such 

cases. However, it has also been shown that the results of Chapters 2 and 3 for the 
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iterative learning control of irregular plants are directly applicable to the design of 

model-based learning controllers for robotic manipulators. The practical relevance of 

these theoretical results to the design of model-based iterative controllers for robotic 

manipulators has been illustrated by the presentation of numerical results for the 

iterative learning control of a typical two-degree-of-freedom robotic manipulator in 

both joint and task spaces using power transmission with either direct-drive or 

reduction gearing characteristics. These results have indicated that such model-based 

iterative learning controllers are robust in the sense that rapid learning behaviour is 

obtained even when crude dynamical models are used. 
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CHAPTER 7 

DESIGN OF DIGITAL MODEL-BASED IT*ERATIVE 

LEARNING CONTROLLERS FOR ROBOTIC MANIPULATORS 

7.1 INTRODUMON 

The design and application of analogue model-based iterative learning controllers with 

initial impulsive action were considered in Chapter 6. Such controllers proved to be 

robust and effective in controlling robotic manipulators in both joint and task space 

co-ordinates. However, these controllers were analogue and were digitalised for 

purposes of implementation. This indirect process of digitalisation is unsatisfactory 

since finite-difference approximations of derivative , action can give rise to 

inaccuracies and instabilities. Moreover, these controllers use impulsive action when 

the desired trajectory has initial discontinuities and this use of impulsive action is 

undesirable practically. Therefore, digital iterative learning controllers are required in 

order to remove these limitations in connection with , the , control , of robotic 

manipulators. Indeed, it was shown in Chapter, 4 that such digital iterative learning 

controllers can be designed for linear time-invariant multivariables plants of any 

orders of irregularity, using only input/output models of the plants in the form of 

step-response matrices. Moreover, it was, also shown in Chapter 6 that non-linear 

robotic manipulators can be reduced to linear time-invariant plants under the action 

of computed-torque control. Therefore, such robotic manipulators under the action 

of computed-torque control are amenable to digital iterative learning control. 

I 

It is accordingly shown in this chapter that digital model-based iterative learning 

controllers can be readily designed and implemented for robotic manipulators. 
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Furthermore, the effectiveness of such controllers is illustrated by designing a digital 

iterative learning controller for a two -degree-of-freedom robotic manipulator with 

gravity compensation in both joint and task space co-ordinates. It is also shown that 

such digital model-based iterative learning controllers are robust in the sense that 

rapid learning behaviour is obtained even when crude dynamical models are used. In 

particular, it is shown that simple fixed digital model-based iterative learning 

controllers exhibit excellent learning characteristics which emulate those of more 

complex exact model-based controllers as reduction gear ratios increase. 

7.2 ANALYSIS 

The dynamics of n-link non-redundant robotic manipulators, driven by armature- 

controlled dc motors through reduction gearing, are as in Chapter 6 governed by non- 

linear vector differential equations of the form Arimoto and Miyazaki (1989) 

T [jo + H(q)] j+ [Bo + h(q)] 4-K+ g(q) = Kor 
aq - 

In this equation, q( Rn is the vector of joint angles, H(q) C Rnxn is the inertia 

matrix of the manipulator, T-1j H(q) 4 e'Rn is the kinetic energy, g(q) c Rn iS 
2 

the vector of gravitational torques, ri Rn is the vector of voltage inputs to the 

armature circuits, and BO e Rnxn. jo c Rnxn and KO e Rnxn are diagonal matrices 

associated with the actuators when gearing is used. However, according to the 

analysis in section 6.2 of Chapter 6, such non-linear robotic manipulators become 

linear time-invariant plants under the action of computed-torque control. Such linear 

time-invariant plants are governed by the equations 

iW- W) I ... (7.2) 

and 
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rl W- h(l) (7.3) 

in joint and task space co-ordinates, respectively. In these equations, ue Rn is the 

vector of new inputs in joint and task space co-ordinates, respectively, and r) c Rn is 

the vector of end-effector co-ordinates. Equations (7.2) and (7.3) are known as 

double-integrator equations as they obviously represent n uncoupled double 

integrators. 

Furthermore, in Chapter 6 these equations were expressed in the standard state-space 

form 

i(l) = Ax(t) +B u<t) ... (7.4a) 

and 

At) - CX(t) ... (7.4b) 

with 

X(t) 

[q] 

or c R2n 
q 

0 In 
Ac R2nx2n 

... 
(7.5b) 

00 

0 
Bc R2nxn 

... (7.5c) 
In 

and C- [1,, , 01 c Rnx2n 
... (7.5d) 

where y can either be the vector of joint angles or end-effector co-ordinates 

depending on which co-ordinates are being used. 
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But the dynamics of linear plants governed on the continuous-time set by differential 

equations of the form (7.4) are governed on the discrete-time set by difference 

equations of the form 

XU+ I) - -bx(i) +T 14i) 
and 

y(j) -r x(j) 

where 

0- eAT 

T Jo 
eAt B dt 

r-c 

and T is the sampling period. 

The step-response matrices of such plants have the form 

IT 
H(T) C eAt B dt 

0 

0 

9 

I 
(7.7a) 

9 
(7.7b) 

9 

(7.8) 

and characterise the responses of initially quiescent plants after one sampling period. 

Such step-response matrices can evidently be measured directly from input/output 

data. 

It is clear from equations (7.5b), (7.5c) and (7.5d) that robotic manipulators give rise 

to completely irregular linear time-invariant plants'under the action of computed- 
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torque control in both joint and task spaces. This implies, as shown in Chapter 6, that 

the results of Arimoto et al (1984) for the iterative learning control of regular plants 

are inapplicable in such cases. However, the results of Chapter 4 and in particular of 

Theorem 4.2 are directly applicable to the design of digital iterative learning 

controllers for irregular linear time-invariant plants. Ibis theorem is accordingly re- 

stated here for convenience. 

Theorem 

In the case of the completely irregular plant with discrete-time governing equations 

Xk(j+l) 12 OXk(j) +*"I Uk(j) 

and 

r x, (i) 
I 

under the action of the control law 

2 
uk(j) (I +ct) D Zk(j) +D Sk(j) (7.9a) 

(in 
T) 

Zk(j+') C' Zk(j) + Sk(j) ... 
(7.9b) 

Sk+l(j) m Sk(j) +A (ek(j+l) - ek (A) 
... 

(7.9c) 

where ct(- 1, + 11, Dc Rnx n, and ek U) VW - yk (j), assume that 

+ 
ýDj]-I; 

[H(T) ('n 
T 
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Yk4-1 (0) 'A (0) V(O) (k - 0.1,2,... ) 

Then, when jc [0, J], 

AM --" VU) 

as k- oo. 

It follows, therefore, that the control law consists of two parts. The first part is the 

model-based controller which is governed by equations (6.2) and (6.11) in joint and 

task spaces, respectively, (see Chapter 6); and the second part is the iterative learning 

controller which is governed by equations (7.9). 

7.3 ILLUSTRATIVE EXAMPLES 

These theoretical results can be conveniently illustrated by considering the digital 

iterative learning control of the planar motions of a two-link manipulator in both 

joint and task space co-ordinates. In addition, armature-controlled dc'motors with 

gearing or direct drive servo motors are used to drive the robot arm. These dc motors 

have the same specifications as those of Chapter 6. Furthermore, JO - J. 1V2, KO - 

KIvR, BO = K2/P2R, and v is the gear ratio as described in Chapter 6. In addition, 

the two-link manipulator under investigation has the same specifications as that of 

Chapter 6. Moreover, the non-linear dynamics of the two-link manipulator are 

governed by equation (6.23) together with equations (6.24), (6.25) and (6.26). 

Examples 7.1 and 7.2 consider the application of model-based iterative learning 

controllers for a robotic manipulator in joint space; Examples 7.3 and 7.4 consider the 

application of such controllers in task space. '- 
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In all of these examples, the step response matrix H(T) of the linear multivariable 

plants governed by equation (7.6) when the sampling time T=0.01 sec is 

0.5xlo-4 0 
H(7) 

0 0.5xlo-4 ... (7.10) 

This step-response matrix is used to obtain the controller gain matrix, A. In addition, 

since CB is null, D can be arbitrary (since CBD - 0). Therefore, D-I,, is 

chosen. It follows from condition (i) of Theorem 4.2 that 

1 99.5025 ,0 
0,99.50251 

in all the Examples. 

Example 7.1 

... (7.11) 

In this example, direct-drive servomotors are used. -' It follows therefore that the 

torque developed by the model-based controller in the kth iteration 4 that given by 

equation (6.26). 

In this case, it is desired that the joint angles perform the motions 

44 [(j7)3 - (J714] 

VU) - 
ir 

(7.12) 
+4 [(jT)3 - (j7)41 

in 1.0 sec. In addition, the initial input vector is, 
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SO 

101 

9 (7.13) 

the parameter cr -I is chosen so that rapid convergence is obtained, and the 

controller gain matrix A is as specified in equation (7.11). In this case, as in 

Example 6.1 of Chapter 6, the rapid learning of the digital iterative learning controller 

is shown in Figures 7.1(a, b). It is also clear that the actual motions of the two arms of 

the robotic manipulator are indistinguishable from the desired motions after three 

iterations. Figures 7.1(c, d) show the corresponding control efforts. 

Example 7.2 

In this example, dc motors with reduction gearing are used. It follows therefore that 

the model-based controller can be either the exact or the approximate controller 

governed by equation (6.18) or (6.19), respectively. Such an approximate controller is 

obtained when the reduction gear ratio is Increased as explained in Chapter 6. 

In this case, it is desired that the joint angles perform the motions 

7r 
-4 [(jT)s - (jT)4] 

VU) - 

+4 [(jT)3 - (j7)41 
L 

in 1.0 sec. In addition, the initial input vector is 

... (7.14) 

SO (J"j) 
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the parameter ct -I is chosen so that rapid convergence is obtained, and the 

controller gain matrix A is that of equation (7.11). In this case, as in Example 6.2 of 

Chapter 6, the rapid learning of the exact model-based iterative controller is shown 

for each of the two joint angles in Figures 7.2(a, b), from which it is-clear that the 

actual motions are indistinguishable from the desired motions after three iterations. 

Similarly rapid learning is achieved when , approximate model-based iterative 

controllers are used (see Figures 7.2(c, d), (e, f) and (g, h)). It is evident that the 

characteristics of these approximate model-based controllers rapidly approach those of 

the exact model-based controllers as the reduction gear ratio increases. Figure 7.3 

shows the corresponding control efforts in all cases. 

Example 7.3 

In this example, direct-drive servomotors are'used. It follows therefore that the force 

developed by the model-based controller in the kth iteration is that given by equation 

(6.35) 

In this case, it is required that the end-effector perform the following rectilinear 

motions in the plane of cartesian co-ordinates* 

(i) moves between R(O. 7375, -0.3055)m and Q(0.7, -0.25)m in 0.15 sec with 

equal periods of acceleration, cruise, and deceleration from rest to 669.398 x 
10-3 mls and back to rest 

then moves immediately between Q(0.7, -0.25)m and R(O. 7375, -0.3055)m in 

0.15 sec with equal periods of acceleration, cruise and deceleration from rest 

to 669.398 x 10-3 mls and back to rest. 
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lie initial input vector is 

SO 

the parameter o: -I is chosen so that rapid convergence is obtained, and the 

controller gain matrix A is as specified in equation (7.11). 

The rapid learning of the digital iterative learning controller is shown in Figures 

7.4(a, b), and the corresponding control effort is shown in Figures 7.4(c, d). 

Example 7.4 

In this example, dc motors with reduction gearing are used. It follows therefore that 

the model-based controller can be either the exact or the approximate controller 

governed by equation (6.20) or (6.21) in Chapter 6, respectively., Such an approximate 

controller is obtained when the reduction gear ratio increases as explained in Chapter 

6. In addition, in equations (6.20) and (6.21), JO Jm/v2, KO, - kIVR, and, BO - 

Vlv2R are all constant diagonal matrices. 

In this case, it is desired that the end-effector perform the motions of Example 7.3 in 

the plane of cartesian co-ordinates. 

The initial input vector is 

SO (jn m0 

101 

, (7.17) 
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the parameter a=I is chosen so that rapid convergence is obtained, and the 

controller gain matrix A is as specified in equation (7.11). 

The rapid learning of the exact model-based iterative controller is shown in Figures 

7.5(a, b). It is also clear from Figures 7.5(c, d), (e, f) and (g, h) that, by using the 

approximate model-based iteraiive controller, rapid learning can be obtained as the 

reduction gear ratios increase. Figure 7.6 shows the corresponding control efforts in 

all cases. 

7.4 CONCLUSION 

It has been shown that the results of Chapter 4 for the digital iterative learning 

control of irregular plants are directly applicable to the design of iterative learning 

controllers for robotic manipulators, since such manipulators become irregular linear 

time-invariant plants under the action of computed-torque control in both joint and 

task spaces as shown in Chapter 6. The practical relev - anc .e of these theoretical results 

to the design of model-based iterative controllers for robotic 'Manipulators has been 

illustrated by the presentation of numerical results for the iterative learning control of 

a typical two-degree-of- freedom robotic manipulator in both joint and task spaces 

using dc motors with reduction gearing or direct-drive servomotors. These results 

have indicated that such model-based iterative controllers are robust in the sense that 

rapid learning is obtained even when crude dynamical models are used following the 

introduction of reduction gearing. The digital controllers proposed in this chapter 

circumvent the need for the approximations involved in digitalising the analogue 

controllers discussed in Chapter 6. 
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CHAPTER 8, 

DESIGN OF ADAPTIVE DIGITAL ITERATIVE 

LEARNING CONTROLLERS FOR ROBOTIC MANIPULATORS 

8.1 INTRODUMON 

The model-based computed-torque method together with iterative learning control 

was introduced in Chapter 6 and 7 as a method of using the dynamic model of a 

manipulator explicitly in control law formulations in both joint and task spaces. Such 

an approach yields a controller that supresses disturbances and tracks desired 

trajectories uniformly in all configurations of the manipulator. However, any 

mismatch between the values of the plant parameters used in the control law and the 

actual plant parameters could lead to a degradation in the learning performance and to 

a reduction in the convergence speed. Ttwas therefore shown in Chapters 6 and 7 

that this problem can be overcome by the use of an actuator with gearing to drive the 

robotic manipulator. In this case, it was found that the inertia of the motor dominates 

that of the manipulator as the reduction gear ratio increasesl and as a result that good 

learning performance and rapid convergence were achieved. , 
However, it was, also 

found that the reduction gear ratio cannot 
The 

increased too much, because that. will 

increase the size of the gear box so that it becomes impractical. Therefore, an 

alternative must be found whereby no prior'knowledge of the robotic dynamics is 

required in order to design a controller. This alternative lies in the use of adaptive 

digital iterative learning controllers. It was shown in Chapter 5 that such adaptive 

digital iterative learning controllers can be designed by introducing recursive 

estimators to provide the updated step-response matrices which are required for 

designing such controllers. Furthermore, it was shown that this estimation technique 
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is capable of providing these identified matrices accurately in a few sampling periods. 

It is shown in this chapter that robotic manipulators are amenable to adaptive digital 

iterative learning control, by identifying the step-response matrices of such 

manipulators along their trajectories. In this way, the need for dynamical models of 

robotic manipulators is diminished. These general results are illustrated in this chapter 

by the presentation of numerical results for the adaptive digital iterative learning 

control of a two-link robotic manipulator in both joint- and task-space co-ordinates. 

8.2 ANALYSIS 

The dynamics of n-link non-redundant manipulators are governed on the continuous- 

time set by a non-linear differential equation of the form 

M(q) j+ N(q, 4) + g(q) -E9 (8.1) 

where qe Rn is the vector of joint angles, M(q) e Rnxn is the inertia matrix, 

N(q, 4) c Rn is the vector of coriolis torques, g(q) is the vector of gravitational 

torques, and Se Rn is the vector of joint torques. ' It-is well known that the 

linearised dynamics of such manipulators in the neighbourhood of an operating point 
AA 

P- (q, E) are governed on the continuous-time set by linear differential equations of 

the form 

L2 i+L, k+ Lo q, - C (8.2) 

AA 

where q- q+ tZ, S- S+ ý, and 
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A 

L2 - M(q) c Rnxn ... (8.3a) 

L, - 
M- 

( lZnxn ... (8.3b) 
a4 

and 

Lo - 
2N- +EC lZnxn aq aq 

AA 
In all cases, these equations are evaluated at the operating point P (q, 

ne output equation in task space is 

(I - IT(q) 9 ... 
(8.4) 

where II(q) ( Rn is the vector of forward kinimatic relationships and [I c Rn is the 

vector of end-effector co-ordinates. Thus, after linearisation around the operating 

point P, the output equation becomes 

A 
wn J q, (8.5) 

AA 

where 0 il +w and Jc Rnx n is the Jacobian matrix evaluated at the operating 

point. 

Now the end-effector force Fc Rn is related to the joint torque Si Rn by the 

equation 

2- JT (q) F 

so that 

(8.6) 

A 
ý. JT f 

... (8.7) 



-227 - 
AA 

where F-F+f and F is the end-effector force at the operating point P. It 

therefore follows from equations (8.2), (8.5) and (8.7) that the linearised dynamics of 

robotic manipulators in task space are governed on the continuous-time set by linear 

differential equations of the form 

+(A j T)-1 L, J -1 JT)-1L0J-1 (j T)-1 L2 J -1 Zy (0+( 

Such equations can obviously be expressed in the standard state space form 

i(t) - Ax(t) + Bf(t) ... (8.9a) 

and 

c4t) - Cx(t) 
I 

with 

le-ol Ic 
R2n 

9 ... 
(8.10a) 

In 

R2nx2n 
1 ... 

(8.10b) 

-J L2" Lo JA -J Lil L, J 

0 

R2nxn 
AA 
J Lil jT 

and 

C- [In , 011 R"x2" 

I (8.10c) 

(8.10d) 
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Similarly, equation (8.2) representing the linearised dynamics of robotic manipulators 

in joint space can be expressed in the standard state-space form 

. k(t) - Ax(t) + BC(t) 

and 

dt) - Cx(t) 

where 

x(t) - q4,1 c R2n 
114, 

0 in 
R2nx2n 

-Lil Lo -Lil Ll 

0 
B R2nxn 

L" 2 

and 

(8.11 

1 (8.11 

% (8.12a) 

9 

9 

C- [In 
, 

0] C Rnx2n 

But the dynamics of linear plants governed on the continuous-time - set by differential 

equations of the form (8.9) or (8.11) are'governed on the discrete-time set'ýy 

difference equations of the form 

x(j+1) - 4ý X(j) +T 14j) 

and 
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w) -r x(j) 

where 

.0- eAT 

JoeAt 
B dt 

T 

and 

r-c 

The step response matrices of such plants have the form 

H(71 - 
JOC 

e& B dt 
T 

9 (8.13b) 

9 

9 (8.14b) 

(8.14c) 

- ... (8.15) 

and characterise the response of initially quiescent plants after one sampling period. 

Such step-response matrices can evidently be measured directly from input/output 

data. 

It is clear from equations (8.10b), (8.10c) and (8.10d) and equations (8.12b), (8.12c) 

and (8.12d) in both task and joint spaces, respectively, that robotic manipulators give 

rise in the neighbourhood of an operating point to linearised plants with null first 

Markov parameters but full-rank second Markov parameters.., Such plants are 

therefore completely irregular and it is accordingly immediately possible to use 

Theorem 4.2 of Chapter 4 to design digital iterative, learning controllers for. small 

motions of robotic manipulators in the neighbourhood of an operating point. 
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However, in order to design iterative learning controllers for large motions of robotic 

manipulators it is necessary to render such controllers adaptive by identifying the 

step-response matrices of such manipulators along the appropriate trajectories 

emanating from an operating point. Such step-response matrices can be obtained on- 

line by estimating the parameters of an appropriate autoregressive moving average 

ARMA model using the RIS algorithm which is given by equations (5.7), (5.8), (5.9) 

and (5.10) in Chapter 5. T'hus, at each sampling interval, the estimated parameters of 

the ARMA model can be used to compute updated step-response, matrices for 

implmentation in the design equation 

[H(7) 
+ýD 

-I ('m 
T 

)] 

Indeed, it was shown in Chapter 5 (in particular, in equation (5.12)) that H(T) - B1, 

and therefore that the control-law of Theorem 4.2 in Chapter 4 can be readily made 

adaptive. It was also shown in Chapter 5 that, in order to start the identification 

process, the RLS algorithm must be initialized; in particular, initial values must be 
A 

given to E) (0) and P(O). Moreover, ' the initial values -of the elements of the 

covariance matrix P(O) must be large enough to cause rapid discarding of the old 

estimated data so as to speed up the convergence process to the true parameters. 

However, as time increases, the covariance matrix will 'wind down' to a very small 

value and the norm of the Kalman gain vector will tend to zero. ' Therefore, if, a 

change occurs, the identifier will lose its ability to detect this unexpected change as it 

will be limited by the small size of the elements of the covariance matrix. Many 

techniques have accordingly been proposed to enhance the response of the RLS to any 

plant-parameter changes. These techniques are focussed on ways'to increase, the 

covariance matrix and to prevent the 'winding down' phenomenon'occurrin - g, either 
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by resetting the covariance matrix to a pre-specified value (Goodwin and Sin (1984)) 

or by changing the forgetting factor -1 (Astr6m. et al (1977)), Fortesque et al (1981) 

and (Sailed and Foss (1983)). It must also be emphasized that, due to the non- 

linearities of robotic manipulators, the RLS performance will be degraded and as a 

result the learning performance of the digital iterative learning controller will be 

degraded too. 17herefore, a method eliminating such an undesirable phenomenon is 

required and was found by Petropoulakis (1986). In this solution of Petropoulakis 

(1986). the non-linearities of the robot dynamics were considered as disturbances and 

accordingly the RLS algorithm was modified ý to accommodate these non-linearities. 

This modification entailed expressing the governing equations of new process models 

in the form 

yk(j) + Alyk(j-l) + A2yk(j-2) +... + ANAU-N) m 

B, Uk(j-') + B2Uk(j-2) +... + BNuk(j-N) + h, -, -1 ý-,.... (8.16) 

where he Rm is a vector incorporating unknown and varying_ non-linearities. 

Therefore, in such circumstances equations (5.10) and (5.11) of Chapter 5 are 

modified so as to assume the respective forms 

-)7k [(j-2)71,... $* -)7k [(J-N)71; 

uTk [(j-I)n uTk [(j-2)71,..., UT [(j_N)71 I ]T ki RN(2m)+l (8.17) 

and 

e [Al9A2,..., AN; RllB2, 
---, 

BN hIT RN(2m)+Ixzn 

This modification also involves an increase in the dimensions of the covariance 

matrix, P, and the Kalman gain, K to [N(2m+l)] x [N(2m+l)] and [N(2m)+Ilxl, 
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respectively. More details of this approach are given by Petropoulakis (1986). 

It is finally important to note from equations (8.6) and (8.7) that the actual vector of 

joint torques applied to the robotic manipulator in the kth iteration is 

-Ek(J) ý2+ Uk(J) ... (8.19) 

where, according to equation (8.11). 11k(j) 22 4(j) - JT(q) fk(j). Therefore, this new 

input uk(j) is provided by the iterative learning controller proposed in Theorem 4.2 

of Chapter 4, where je [0, J], J- Tt IT and Tt is the total task time. 

8.3 ILLUSTRATIVE EXAMPLES 

These general results can be conveniently illustrated by considering the adaptive 

iterative learning control of a two-link robotic manipulator in both task and joint 

space co-ordinates. The dynamics of his manipulator operating in a gravity-free 

environment are governed on the continuous-time set by the non-linear differential 

equations 

JI+J2 (1+3 172) +3 J2q cosq2, J2 + tj cos q2 2qI 

2 J2 
(I 

+q cos q2 -J2 

-3 J2 2 
42 sin q + 

3 ý2 
22q 

42, sin q, 
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where 11 and t2 are the lengths of the links, m, and M2 are the masses of the 

links, J, = (1/3) m, f2j, J2 - (1/3) M2 4, and q- il/12. In case this manipulator 

corresponds to the second and third links of the Unimation PUMA 560 robot, 11 m t2 

- 0.432m, m, - 15.91 Kg and mj - 11.36 Kg. 

Example 8.1 

In this example, the adaptive iterative learning control of the two-link manipulator in 

task space is considered where the outputs are ý governed by forward kinematic 

equations of the form 

X cos q, + t2 cos (ql+q2) 

(12 Y. 11 sin q, + t2 sin (ql+q2) 

it is desired that the end-effector perform the following rectilinear motions in the 

plane of Cartesian co-ordinates : 

moves between R(O. 7375, -0.3055)m and Q(0.7. -O. 25)m in 1.5 sec With equal 

periods of acceleration, cruise and deceleration from rest to 66.939 x 10-3 MIS 

and back to rest; 

(ii) then moves immediately between Q(0.7, -0.25)m and R(O. 7375, -0.3055)m in 

1.5 sec with equal periods of acceleration, cruise and deceleration from rest to 

66.939 x 10-3 mls and back to rest. 

T'he RLS algorithm is initialized with EKO) having the correct information' about the 

robot dynamics at the starting point R, the forgetting factor 1. and PO 100. 

This initialization process is repeated at the beginning of each successive iteration. 'In 

order to improve the performance of the identifier, the covariance resetting technique 
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is used. 11us, whenever the value of its trace goes below a specified threshold, the 

covariance matrix will be set to its initial value. In addition, a random noise signal of 

zero mean and 0.01 standard deviation is added to the control effort in order to 

improve the identification of the system parameters using the RLS algorithm. 

However, the amount of noise added to the control effort must not be excessive, 

because otherwise the identification will be improved at the cost of degrading the 

performance of the learning controller. 

Ile control-law of T'heorem 42 is used. In addition, the choice of the parameters D 

and a is made so that CBD -0 and fast convergence is achieved. Indeed, since 

CB is null, according to equations (8.10c, d) D can be arbitrary. Thus, 

D19 -'1 * 
M 

01 

0. I 

is chosen, and or - 1, with a sampling time of T-0.01 sec. 

In Figure 8.1, the desired trajectories of the end effector are shown together with the 

torques acting on the joints and also with the corresponding variations of the elements 

of the step-response matrix. 

The rapid learning of the adaptive iterative controller is indicated in Figures 8.2-8.5. 

These figures show the actual trajectories of the end-effector under adaptive iterative 

learning control. together with the identified elements of the step-response matrix. of 

the manipulator after 0,1,5 and 9 iterations. It can be seen by comparing Figures 

8.1-8.5(a, b) that the adaptive iterative learning controller rapidly generates the. desired 

trajectories of the end-effector in task space and, by comparing Figures 8.1-8.5(e-h), 

that the recursive-least-squares identifier, obtains reasonably. accurate estimates of the 



-235 - 

step-response matrix of the manipulator. 

However, by comparing Figures 8.1-8.5(c, d) it is also clear that the actual torque 

acting on the joints suffers from high-frequency oscillation. T'hus, although the 

learning performance is excellent, this high-frequency oscillation is undesirable from 

a practical view point. It has been found that this is not due to the controller or the 

choice of its design parameters but to the identification process as Figure 8.1(c, d) 

suggest. However, this issue is open to further investigation. The results plotted in 

Figure 8.6 show the switching in the trace due to the resetting of the covariance 

matrix for k-0,1,5 and 9. 

Example 8.2 

In this example, the adaptive iterative learning control of the two-link manipulator in 

joint space is considered, where the outputs are the joint angles q, and q2, 

respectively. It is desired that the joint angles perform the motions 

qm -. 
V107), 

='0.1125 
(1 - cos 27r j7) ]", 

-... 
(8.22) 

V2 07) -0.1125 (1 - Cos 2r jT) 

in 1.0 sec. 

The RLS algorithm is initialized with 8(0) having the'correct information about the 

robot dynamics at the starting point when q, q2 -0 and PO 1011. This 

initialization process is repeated at the beginning of each successive iteration. In the 

previous example, covariance resetting'was used to improve the performance of the 

identifier. However, in the present example a different technique is used to improve 

the identification of the system parameters by keeping the forgetting factor I-0.7 
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all the time during the task time. It is found thst this technique, is better than the 

previous one in identifying manipulator parameters in joint-space co-ordinates. 

However, as in the previous example, a random noise signal of zero mean and 0.1 

standard deviation is added to the control effort in order to improve the identification 

of the system parameters using the RLS algorithm. Again, the amount of noise added 

to the control effort must not be excessive, because otherwise the identification will 

be improved at the cost of degrading the performance of the learning controller. The 

control-law of Theorem 4.2 is used. In addition, the choice of the parameters -D and 

ct is made so that CBD -0 and fast convergence is achieved. Indeed, since CB is 

null, according to equations (8.10c, d), D can be arbitrary. Thus, 

1 
9 0 1 

1 

is chosen, and a-0.8, with a sampling time of T-0.01 sec. 

In Figure 8.7, the desired trajectories of the joint angles are shown together with the 

torques acting on the joints and also with correspondingyariations of the elements of 

the step-response matrix. The rapid learning of the adaptive iterative controller is 

indicated in Figures 8.8-8.11. These figures show the actual trajectories of the joint 

angles under adaptive iterative learning control, together with the identified elements 

of the step-response matrix of the manipulator 
_after 

0,1.5 and 9 iterations. It can be 

seen by comparing Figures 8.7-8.11(a, b) that the adaptive iterative learning controller 

rapidly generates the desired trajectories of the joint angles in joint space and, by 

comparing Figures 8.7-8.11(e-h), that the recursive-least-squares identifier obtains 

reasonably accurate estimates of the step-response matrix of the manipulator. 



- 237 - 

However, as in the previous example, it is - also clear by, comparing Figures 

8.7-8.11(c, d) that the actual torque acting on the joints suffers from high-frequency 

oscillation. However. the oscillation in the present example is not as impractical as 

that in the previous example. The reason for this high-frequency, oscillation is, as 

stated earlier, the identification process as Figures 8.7(c, d) suggest. 

Figure 8.12 shows the changes in the trace of the covariance matrix that occur 

through keeping the forgetting factor -1 = 0.7 at all times for k-0,1,5, and 9. 

However, since Figure 8.12 does not give a clear picture of the behaviour of the trace, 

the logarithmic value of the trace is plotted against time in Figure 8.13. 

8.4 CONCLUSION 

It has been shown in this chapter that linearized models of robot dynamics give rise to 

completely irregular plants in both task and joint space co-ordinates. Ther efore, the 

results of Chapter 4 (and in particular of Theorem 4.2) are readily. applicable to the 

design of controllers that are suitable for the control of such plants. It was shown in 

Chapter 5 that the control law of Theorem 4.2 can be made adaptive by identifying in 

real time the step-response matrices of such plants. In similar fashion, it has been 

shown in this chapter that the results of Chapter 5 can be used to identify the step- 

response matrices of robotic manipulators along their trajectories in both task and 

joint spaces, thus indicating that such manipulators are amenable to iterative learning 

control. 

In this chapter, a modification of the identification algorithm has been used to ensure 

good estimating features in the presence of disturbances in the form of non-ý 

linearities. Different techniques have been tried to make sure that the 'wind down' 
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phenomenon of the covariance matrix will not occur and as a result that the 

identification of the plant parameters will be good. Also, noise signals have been 

introduced to ensure that the inputs to the RLS algorithm are always rich and 

sufficiently exciting in order to help the RLS deliver good identification. These 

general results have been illustrated by the presentation of numerical results for the 

adaptive iterative learning control in both task and joint spaces of ýa two-link 

manipulator operating in a gravity-free environment. 
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CHAPTER 9 

DIGITAL ITERATIVE LEARNING CONTROL 

OF A DC SERVO-ACTUATOR 

9.1 INTRODUMON 

in previous chapters, theories and numerical examples were given in order to 

demonstrate the effectiveness of analogue and digital iterative learning controllers. In 

this chapter. the real-time positional control of a laboratory dc servo-actuator, using 

digital iterative learning control, is investigated experimentally in order to provide a 

more practical emphasis. 

This dc servo-actuator comprises an inertia and a viscous load driven, via a gear box, 

by a dc motor. The motor velocity is sensed by a tachogenerator and the angular 

position of the output is derived from a potentiometer, as illustrated in Figure 9.1. 

The unit incorporates an eddy-current damper which can be adjusted to provide 

varying levels of damping. Figure 9.2 represents the mimic panel where the 

configuration of the motor, gear box, tacho, and output potentiometer and the points 

at which the output velocity and displacement signals appear. In addition, this mimic 

panel provides the power to drive the motor. 

In this work, a linear time-invariant model of the dc servo actuator is first obtained in 

order to provide the necessary step-response fuction which is used in the design of 

the digital iterative learning controller. In addition, the conditions under which 

learning occurs and the procedure to implement such controllers are investigated in 

this chapter. Finally, the effectiveness of implementing such digital iterative learning 

controllers in the case of the dc servo-actuator is illustrated in Section 9.3 of this 

chapter. 



-253 - 

9.2 DESCRIPTION OF EXPERIMENTAL SYSTEM 

9.2.1 Analysis 

In order to obtain an accurate and reliable model of the dc servo-actuator, it is first 

necessary to identify the components and the stages that comprise the forward path of 

Figure 9.2. Indeed, by investigating Figure 9.2, it is clear that the forward path - as 

far as the position q(t) is concerned - consists of a control amplifier, power 

amplifier, loaded motor, gear box, and finally an integrator. This can be illustrated in 

Figure 9.3, where Kp and KA are the proportional gain constants of the control 

amplifier and the power amplifier, respectively, G, ý (s) is the transfer function of the 

motor llv. 1, is the reduction gear ratio, and finally Ils is the integrator transfer 

function. 

The transfer function G. (s) of the motor can be obtained following a standard 

procedure (for details see the manufacturer's manual "Introduction To Analogue 

Control Of ES151"). In this way, it is found that 

4(s) 
-- 

where K. = 
KT 

rn 
Ra Jm 

R. is the armature resistance, J. is RaF+KTKv' R, F+KTK, ' 

moment of inertia, K,, is the motor emf constant, KT is the torque constant, and F 

is the viscous friction coefficient. I 

Finally, the overall transfer function of the forward path is 
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K,, KA K,, 

G(s) 
Va (S) &(I+rs)s 

Then, in a more simplified form, 

q(s) K 
V. (S) - s(l+rs) 

where 
Kv K Km A 

v 

... (9.2) 

(9.3) 

The two paramaters K and r of the transfer function G(s) were estimated by 

carrying out open-loop response tests on the dc servo actuator (for details see 

manufacturer's manual). These values were thus found to be K- 480 deglseclvolt 

and r-0.25 sec for a value of Kp - 1. 
el 

The governing equations of the system represented by equation (9.3) can obviously be 

expressed in the standard state-space form 

IQ) - Ax(t) +B u<t) ... (9.4a) 

and 

Cx... (9.4b) 

with 

X 

[q] 

R 2xl 

A R2x2 
.... (9.5b) 

00 41-, 

L 

00 
Bw 

K 1920 
R2xl 

... (9.5c) 

r 
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and 

C- [1,0] cR 1X2 (9.5d) 

But the dynamics of linear plants governed on the continuous-time set by differential 

equations of the form (9.4) are governed on the discrete-time set by difference 

equations of the form 

x U+I) -0x U) +TU U) ... (9.6a) 

and 

y (j) -rx (j) ... (9.6b) 

where 

4D . eAT ... (9.7a) 

T- 
JOeAt 

B dt ... (9.7b) 
T 

r-c ... (9.7c) 

and T is the sampling period. The step-Tesponse matrices of such plants have the 

form 

IT 
H(T) C eAt B dt ... (9.8) 

0 

and characterise the responses of initially quiescent plants to unit step inputs after one 

sampling period. Such step-response matrices can evidently be measured directly from 

input/output data. 
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it is clear from equations (9.5b), (9.5c), and (9.5d) that the linearised model of the dc 

servo-actuator gives rise to a linear time-invariant plant with a null first Markov 

parameter but a full-rank second Markov parameter. Such a plant is therefore 

completely irregular and it is accordingly immediately possible to use the results of 

Chapter 4. Ilese imply the following result for such plants: 

Theorem 

In the case of the completely irregular plant with discrete-time governing equations 

xk U+ 1) -0 xk U) +T uk U) 

and 

(j) -rx, (j) 

under the action of the control law 

2 
u, t (jl j. (1 +a) D rt (j) ++ 

ý'D (IM' 
T)s ku) 

rkU+I) w-C, rku) + Sk(i) 

sk+, (j) w sk(j) +A (ek(j+l) - ek(j)) 

where ac (-I, +I], Dc R"x" and ek(j) v(j) - yt(jl, '-assume'- that 

A-A 
[H(71 (I. 

+ý D)] T 

9 
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xi ., (0) - xi (0) (k = 0,1,2 ); 

yi (0) - v(0) (k - 0,1,2,... ) . 

Then, when je [0, J], 

yk U) - VU) 

as k -a. oo. I 

9.2.2, Implementation Procedure 

In the implementation of the digital iterative learning controller, the following items 

of hardware were required. 

0) an MIA pc or any compatible system; 11 ýIIIýI 
a 12-bit A/D and D/A interface card for high-performance data conversion; 

a user-friendly computer program; 

(iv) an electronic scaling circuit, so that the voltages of the overall system are 

compatible; 

(V) a dc power supply, supplying a bias voltage between t15 volt to the scaling 

circuit; I 

(vi) a digital voltmeter to ensure that the initial position and velocity are the same 

at the beginning of each successive iteration; 

(vii) a dc servo-actuator unit plus the drive power unit (see Figures 9.1 and 9.2). 

The A/D and D/A conversion was done using a high-performance data conversion 

card operating at a 12-bit resolution for an IBM pc or any compatible system. The 
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card operates with one channel for 12-bit data transfer from digital to analogue form 

in either unipolar or bipolar operation, and sixteen unipolar channels for 12-bit 

analogue to digital data conversion. The computer used was an Elonex 286 machine 

with VGA colour screen. 

The program was written in PASCAL . It gives the user a coloured graphics 

representation of the output signal on the screen, and allows the output signal to be 

stored in a file for further manipulation if required. Finally, this program was 

written so that the user could complete as many iterations as desired. Moreover, at 

the end of each iteration, the program execution halts, so that the user has time to 

return the output rotor at rest to its initial position. This was done in order to satisfy 

condition (ii) of the theorem for learning to occur. 

In this apparatus, the electronic scaling circuit, was used so that'the overall system 

voltages were compatible. This circuit is necessary because the A/D and D/A card 

accepts an input between 0-9 volt and produces an output between 0-9 volt, while the 

dc servo-actuator produces a range of voltages between :; 15 volt depending on the 

direction of rotation. 

The T15 volt output from the dc servo-actuator comes from the potentiometer. This 

potentiometer has a constant of 0.1 volildeg. This value was found by carrying out a 

simple test on the dc servo-actuator (for details see the manufacturees manual). It 

was also found that this potentiometer has linear characteristics between TISO degree. 

Therefore, the scaling was done for the A/D convertor as follows: 

(i) voltages between (0-15) volt scaled to (4.5-9) -volt; 

(ii) voltages between (0- -15) volt scaled to (4.5-0) volt. 



-259- 

The output of the D/A converter was scaled in a reverse manner, namely. 

(iii) voltages between (4.5-9) volt scaled to (0-15) volt; 

(iv) voltages between (4.5-0) volt scaled to (0- -15) volt. 

Ile procedure for carrying out the experiment was as follows: 

(i) turn on all the devices; 

(ii) position the brake clear of the output disc; 

use the digital voltmeter to ensure that the position at the beginning of each 

successive iteration is the same; 

OV) run the computer program to start the iterative learning process. 

A block diagram of the overall system is shown in Figure 9.4. Figure 9.5 shows the 

de servo-actuator on its own. Figure 9.6 shows the power drive unit with its front 

panel mimicking the actuator, together with the actual dc servo-actuator. Finally, 

Figure 9.7 shows the layout of all the devices used in this experiment. 

9.3 EXPERIMENTAL RESULTS 

In order to illustrate the effectiveness of digital iterative learning controllers, three 

experiments were performed. The experimental results thus obtained were interpreted 

in the light of the theoretical results obtained earlier in this thesis. 

In all three experiments, it is desired that the output disc follow the trajectory 

v(j) - 28.41 (1 - Cos JT (21.486)) (9.9) 
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in 6.48 sec (or J- 540, since T- 12 msec). This sampling time was determined 

according to the time required to perform one cycle of calculation. In addition, the 

step-response function is 

Hm -r qi - 136.05 x 10-3 

in view of equations (9.7b) and (9.7c). 

Experiment 9.1 

... (9.10) 

in this experiment, the controller parameter D, ot and A were chosen to be 0.0, and 

1, respectively, Le, no compensator was used and the controller was not de-tuned. It 

therefore follows that p-0 and a-1.937 using their definitions in Chapter 4. 

Indeed, 

POhm(T)IIoo 

H(7) +ýDA 
[ý1(7) (1, 

D)] 
(1 

TT,, 
I- 

- 11 
- xI .0 

and 
AAAA 

$up r (. b TA 
O<J<i 

... (9.11) 

... (9.12) 

-1.937 

The experimental results obtained in this case are plotted in Figure 9.8. It is evident 
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from this figure that, as expected from the theoretical results of Chapter 4, the 

learning is slow and violent because p is small and a is relatively large. 

Experiment 9.2 

in this experiment, the controller parameters D, ct and A were chosen to be 0,0, 

and 0.1 respectively, Le no compensator was used but the controller was strongly de- 

tuned. It therefore follows that p-0.9 and a-0.1937 using equation (9.13) and 

(9.14), respectively. Ile experimental results obtained in this case are plotted in 

Figure 9.9. It is evident from this figure that, as expected from the theoretical results 

of Chapter 4, the learning is slower than in experiment 9.1 but non-violent because p 

is large and a is relatively small. 

Experiment 9.3 

in this experiment, the controller parameters D, a and A were chosen to be 

0.01,0.01 and 0.3, respectively, Le a compensator was used but the controller was 

moderately de-tuned. It therefore follows that p-0.7 and a-0.3918 using equation 

(9.13) and (9.14), respectively. The experimental results obtained in this case are 

plotted in Figure 9.10. It is evident from this figure that, as expected from the 

theoretical results of Chapter 4, the learning is faster than in experiment 9.2 but still 

non-violent because p is small and a is still relatively small. 

9.4 CONCLUSION 

It has been shown in this chapter that digital iterative learning controllers for irregular 

plants can be designed and implemented Practically. Their effectiveness has been 

illustrated by implementing such controllers in the real-time positional control of a dc 
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servo-actuator. The experimental results thus obtained confirm the theoretical 

predictions of Chapter 4 regarding the effects of compensation and controller tuning 

on the speed and smoothness of the learning behaviour. 
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Fig. 9.5: DC Servo-Actuator. 
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

10.1 CONCLUSIONS 

In the last decade, much attention has been devoted to controllers that improve their 

performance progressively in tracking pre-specified ý trajectories, have simple 

structure, and involve simple algorithms. 'These controllers are so-called iterative 

learning controllers. The pioneer in designing and applying such controllers was 

ArimOto (1984,1985) who gave, for the first time, details of a controller that improves 

its performance progressively thus causing machines to learn without the help of 

human operators. 

Unfortunately, this controller like many others has many limitations and, in particular, 

requires that the plant under control be regular. This means that linear time-invariant 

plants must have full-rank first Markov parameters -and therefore that velocity 

variables must be chosen as output rather than positional variables in robotic 

applications. In addition, the plants under control must have known time-invariant 

state-space models. Finally, the methodology of Arimoto (1984,1985) yields analogue 

controllers which must then be digitalised for purpose of implementation. Ilierefore, 

the objective of this research was to eliminate all these limitations. 

In order to achieve this objective, this research has proposed different new design 

methodologies. The methodologies proposed in Chapters 2 and 3 illustrate clearly the 

fact that analogue iterative learning controllers can be designed for plants with any 

order of irregularity, using initial state shifting or init ial impulsive action. These 

proposed methodologies rely only on the Markov parameters of the state-space model 
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in the synthesis of their control laws. However, although the irregularity problem was 

solved using such controllers, two other problems remained. These are the need for 

the explicit state-space model of the plants under control in the synthesis of the 

control law, and also the need for the digitalisation of such controllers for the purpose 

of implementation. 

In Chapter 4, a new design methodology has accordingly been proposed for the design 

of digital iterative learning controllers that - circumvents - the need for detailed 

mathematical models in state-space form. The proposed methodology relies only on 

input/output data in the synthesis of the control law. I It has thus been shown that 

digital iterative learning controllers can be readily designed for multivariable plants of 

any order of irregularity using such input/output data in the form of step-response 

matrices. 

In these studies of analogue and digital, iterative learning controllers, two very 

important parameters have emerged, namely, p and a. Thus, it has been found that 

the parameter p dictates whether learning occurs or not, whilst both parameters p 

and a dictate the quality of the learning performance and the speed of convergence. 

Indeed, it has been shown that keeping both parameters at very small values achieves 

good learning performance and rapid convergence. However, the relation between 

these two parameters is unfortunately inversely proportional. Therefore, if one 

parameter is increased the other must be decreased and as a result the learning 

performance and convergence are affected positively or negatively depending on the 

values of these two parameters. It has been found, in the case of irregular plants. that 

the value of a is high compared with -that 
for regular plants and that this value 

increases as the order of irregularity increases. This discovery has led to the 

introduction of compensators in the design of digital iterative learning controllers for 

irregular plants. These compensators help to reduce the value -of the learning 
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parameter, a, without having to increase the value of p and so both the learning 

performance and convergence of irregular plants are improved. In addition, it has 

been found that the required number of compensators increases as the order of 

irregularity increases. 

Since digital iterative learning controllers -use step-response matrices in the synthesis 

of their control laws and since the'step-response characteristics of plants can be 

identified in real time, it has been shown in this thesis that iterative learning 

controllers can readily be rendered adaptive. In these adaptive controllers, recursive 

least square (RLS) parameter estimators have been used to estimate the elements of 

the step-response matrices for inclusion in the digital control laws. It has been shown 

that such identifiers are rapid and accurate, and'Ahat the resulting adaptive digital 

iterative learning controllers are highly effective in preventing performance 

degradation due to unknown dynamical charactersitics of the model. 

The effectiveness of all these "analogue and digital iterative learning controllers in 

providing high-quality performance has been 'demonstrated through comprehensive 

simulation studies. Furthermore, 'design studies have been presented in order to 

demonstrate the applicability to robotics of the design methodologies'described in this 

thesis. This demonstration has been effected by designing both analogue and digital 

model-based iterative learning controllers for a typical two-link manipulator in both 

Cartesian and joint spaces. These studies have indicated that' such, model-based 

iterative learning controllers are robust in the sense that rapid learning behaviour is 

obtained even when crude models are used, as a result of large reduction gear ratios. 

Moreover, these design studies include designing adaptive digital iterative learning 

controllers for the two-link manipulator in' both, Cartesian, and -joint spaces. By 

identifying the step-response -matrices* of such ý robotic -manipulators along their 

trajectories in both Cartesian and joint 'spaces' respectively, -it has-been'shown that 
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such manipulators are amenable to adaptive iterative learning control. 

Finally, it has been shown in this thesis that digital iterative learning controllers can 

be implemented practically. Their effectiveness has been illustrated by implementing 

such controllers in the real-time positional control of a dc servo-actuator, which is a 

typical completely irregular plant. Therefore, it can be concluded that the research 

objectives set out at the beginning of this thesis have been achieved. 

10.2 RECOMMENDATIONS FOR FURTHER WORK 

The strength and power of the proposed iterative learning controllers presented in this 

thesis can be considered as a step forward in achieving, highly effective and 

sophisticated intelligent machinery. However, the proposed iterative learning 

controllers still need to be investigated further., 

'Mus, the issue of robustness of such iterative learning controllers with respect to the 

existence of initialisation errors should be investigated. At the moment, the algorithms 

assume that the initial states are - regulated precisely at the beginning of each 

successive iteration. Moreover, the robustness of such controllers with respect to the 

existence of measurement noise and disturbances needs to be investigated. In 

particular, the solution to this problem suggested by Arimoto (1991a, 1991b) (by 

introducing a forgetting factor in the iterative learning algorithm) warrants close 

scrutiny. 

The introduction of compensators in the case of high-order irregularity plants did not 

significantly reduce the parameter a, and the trade-off technique therefore had to be 

used to achieve such reductions. This has been proven to be undesirable, since the 

learning rate will be adversely affected. Therefore, a solution to this problem must be 
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found. In addition, there is a need to investigate whether a compensator can be found 

so that the learning parameter, a, can be reduced without producing 'ringing 

phenomene in the control signal. 

In addition, it has been shown that the smallest values of or can be achieved if all the 

eigenvalues of the open-loop plant are located at the origin of the s-domain. So, if a 

mechanism could be found to shift all the open-loop eigenvalues of plants to the 

origin prior to the implementation of iterative learning controllers, very good learning 

performance and rapid convergence would then be expected. Furthermore, the 

proposed digital and analogue are restricted to operate in a finite time interval (0, T, ) 

and it is not clear how such controllers will operate over (0,00). Therefore, it is 

important to determine whether this information obtained over (0, T, ) for a specific 

trajectory can be used to learn the other trajectories over larger periods. There is also 

a need to investigate whether the bounds of the rate of change of error obtained in 

this thesis can be made less conservative, so that qualitative and quantitative 

information can be obtained more easily from such bounds. Finally, the practical 

implementation of such controllers in the real-time positional and velocity control of 

robotic manipulators would be a real step forward towards making such machines 

more intelligent. 
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APPENDIX A 

In this appendix, three issues are explained in connection with the analogue iterative 

learning controllers of Chapters 2 and 3. This explanation can conveniently be given 

by answering the following three questions: 

(i) how do such analogue iterative learning controllers emerge? 

(ii) why is initial state shifting necessary for learning to occur? 

(iii) why is the choice of the design parameter 
_D 

so specific? 

In order to answer question (i), it is worth recalling that Arimoto, et al in (1984) 

proposed iterative learning controllers with control laws of the form 

Wk+l(t) ý Wk(t) +r ýkw 
, 

in connection with plants governed by state and output equations of the respective 

forms 

i(f) = Ax(f) + Buýt) 

and 

At) - Cx(t) 

(A. 2a) 

(A. 2b) 

In such cases, Arimoto et al (1984) stated that "it is impossible to choose the positional 

variable as an output" if the plant governed by equation (A. 2) is irregular, i. e. the 

plant has a rank defective first Markov parameter CB. - This limitation was removed 
in the present thesis by introducing compensators with transfer function matrices of 

the form (Im + Ds), where D c, Rmxm, 'as pre-filters between the iterative learning 
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controller of equation (A. 1) and the plant under control. Figure A. 1 shows how such 

pre-filters can be introduced in cascade with the plant when the plant under control is 

first-order irregular. 

................. * ......... ----------- * ........... ......... 

Im Ds Irregular Plant 
yiao 

............................................................ 

Figure A. 1 Irregular plant in cascade with a pre-filter. 

Thus, 

uk+, (t) - (f. + Ds) wk+, (t) 

where uk+, (t) is the new input to the plant and Wk+l(t) is given by equation (A. 1). 

It is therefore evident from equation (A. 3) that 

Uk+l(t) m Wk+l(t) +D 

Now, substituting equation (A. 1) in (A. 4) gives 

Uk+I(t) w Wk+I(t) +r ýkw +D 4ý(t) +Dr k(t) 
... (A. 5) 

But, according to equation (A. 4), it follows that 

+r+Dr 
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or 

Uk+l(t) ' Uk(t) + K, ýk(t) + K2 k(t) 

where 

and 

K2 -Dr ... (A. 8b) 

Thus, the iterative learning controller of Chapter 2 has emerged. Similar procedures 

must be followed in case the plant under control has higher-order irregularity. In 

such cases, the pre-filter must have a transfer function matrix of the form 

+gD2 .+ 
9D1 (lm (lm 

T 

where f is the order of the irregularity awl Di c Rmxm (i - 1,2,..., t). 

In order to answer question (ii) regarding the introduction of initial state shifting in 

the controller of Chapter 2, it is necessary to re-examine Figure A. I. This indicates 

that the overall time-invariant linear multivariable plant is governed by a state 

equation of the form 

. k(t) = Ax(t) + Bvqt) + BD -4(t) (A. 9) 

which is clearly not in the standard state-space form. However, the state equation of 

such a plant can be represented in the standard state-space form according to Porter 

and Bradshaw (1972a, 1972b, 1972c). Thus, introducing in equation (A. 9) the state 
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X(t) - x(t) - BD i4<t) ... (A. 10) 

of the equivalent plant, it follows immediately that 

i(t) -A X(t) + (B + ABD) wýt) ... (A. 11) 

This is the differential equation of the overall plant in the standard state-space form. 

Now, for learning to occur in the (k+l)th iteration in such plants, it follows from the 

results of Chapter 2 that 

Xk+I(O)mXk(O) , 
(kmO, 1.29... 

But equation (A. 10) at the kth and (k+l)th iterations indicates that 

Xk+l(t) ý Xk+1(1) - BD wk+, (t) 

and 

... (A. 13) 

Xk(t) - xk(t) - BD wk(t) 

It therefore follows from equations (A. 12), (A. 13) and (A. 14) that 

xk+, (O) - BD Wk+1(0) Xk(O) - BD Wk(O) 

so that 

xk+, (O) xk(O) + BD (Wk+1(0) Wk(O)) 

Therefore, according to equation (A. 1), it is evident that 

... (A. 1 5) 

... (A. 16) 
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xk+, (O) m xk(O) +B K2 ýk(O) 

since, according to equation (A. 9). 

K. -Dr 

... (A. 17) 

Thus, equation (A. 17) indicates that the initial state of the irregular plant must be 

shifted at the beginning of each successive iteration by the amount B K2 tk(O) for 

learning to occur. Similar procedures must be followed to determine by how much 

the initial state must be shifted in the case of plants with higher-order irregularity 

characteristics for learning to occur. 

Finally, in order to answer question (iii) regarding the choice of the design parameter 

D, it is worth noting that the transfer function matrix of the overall plant shown in 

Figure A. 1 is 

(C(sl - A)-IB) (I + Ds) 

LB 
+ 

CAR 
+ 

CA2B (I + Ds) 
s S2 S3 

CB 
+ 

CAR 
+ 

CA2B 
s S2 S3 

+ CBD + 
CABD 

+ 
CA2BD 

s S2 

CBD + 
(CB+CABD) 

+ 
(CAB+CA2BD), 

s S2 ... (A. 18) 

Therefore, the design parameter D must be chosen so that CBD -0 in order to 

make the compensated plant proper. Then, according to equation (A. 18), the matrix 
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(CB+CABD) is the first Markov parameter of the equivalent plant which can be made 

full-rank if the plant is first-order irregular. Similar procedures must be followed if 

the plant under control has higher-order irregularity characteristics. Thus, for 

example, if the plant is second-order irregular, a two-stage pre-filter is required to 

cure this irregularity problem. Then, the transfer function matrix of the overall plant 

is 

(I + Dis) (I + D2s) 

CB 
+ 

CAB 
+ 

CA2B 
+ 

CA3B 11 + (D, +D2)S + D, D2 S2] s s2 S3 S4 

- CB (Dj + DO + CAB D, D2 + CB DID2. S 

+ 
[CB + CAB(DI + D2) + (CA2BDID2)] 

+ 
[CAB + CA2B(D, +D2) + CAS BDID21 

S2 

(A. 19) 

Thus, it is clear that D, and D2' must be chosen so that CBDjD2 -0 and 

CB(D, +D2) + CABDID2 -0 in order to make the compensated plant proper. Then, 

according to equation (A. 19), the matrix [CB+CAB(D, +D2)+(CA2BDID2)] is the first 

Markov parameter of the equivalent plant which can be made full-rank if the plant is 

second-order irregular. 
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