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ABSTRACT 

A review of the development of parallel computing is 

presented, followed by a summary of currently recognised types 

of parallel computer and a brief summary of some applications 

of parallel computing in the field of high energy physics. 

The computing requirement at the data acquisition stage 

of a particular set of high energy physics experiments is 

detailed, with reference to the computing system currently in 

use. The requirement for a parallel processor to process the 

data from these experiments is established and a possible 

computing structure put forward. 

The topology proposed consists of a set of rings of 

processors stacked to give a cylindrical arrangement, an 

analytical approach is used to verify the suitability and 

extensibility of the suggested scheme. Using simulation 

results the behaviour of rings and cylinders of processors 

using different algorithms for the movement of data within the 

system and different patterns of data input is presented and 

discussed. 

Practical hardware and software details for processing 

equipment capable of supporting such a structure as presented 

here is given, various algorithms for use with this equipment, 

e. g. program distribution, are developed and the software for 

the implementation of the cylindrical structure is presented. 



xvi 

Appendices of constructional information and all program 

listings are included. 
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CHAPTER I 

I HISTORICAL REVIEW 

1.1 History of Computing 

1.1.1 Mechanical Calculating Engines 

The earliest automatic computing engines appeared in 

europe in the early seventeenth century, and were purely 

mechanical in operation. According to Hayes[641 the earliest 

of these was one designed and built in 1623 by Wilhelm 

Schikhard, of far more influence however was the machine built 

by Blaise Pascal in 1642 though even this later machine was 

only capable of addition and subtraction. The next notable 

event was the construction in about 1671 by Gotfried Leibniz of 

a calculator capable of addition and subtraction in the manner 

of Pascal's machine and also multiplication and division. 

These machines were largely regarded as academic curiosities 

until mechanical calculators were exploited commercially in the 

19th century. 

The next major figure was Charles Babbage, he proposed 

two mechanical computers, the now famous Difference Engine 

(begun in 1823) and Analytical Engine (conceived in 1834). 

Neither machine was completed for a variety of reasons but 

probably principally because both machines were very 

adventurous and required rather better mechanical engineering 

than was available at the time. 



HISTORICAL REVIEW 2 

The difference engine of Babbage was conceived for the 

purpose of automatic computation of astronomical tables using 

only addition and subtraction by the method of finite 

differences, hence its name. Babbage had been greatly 

impressed by the number of errors in manually computed tables 

and his difference engine was intended to not only calculate 

the entries of a table but to transfer these results 

immediately to an engravers plate using steel punches. 

The Analytical Engine was conceived as performing any 

mathematical operation automatically and the final design 

exhibited many of the main elements of the electronic computers 

built over a century later. The analytical engine was to have 

two main parts: the store, a memory unit consisting of sets of 

counter wheels, corresponding to the cathode ray tubes, mercury 

delay lines And bistable electronic circuits used as memory in 

electronic computers, and the mill, corresponding to a modern 

arithmetic logic unit being capable of performing the four 

basic arithmetic functions. 

Babbage proposed to control the machine using punched 

cards not unlike those developed for use with the Jacquard 

loom. There were to be two sets of cards, operation cards, 

used to control the operation of the mill and variable cards, 

used to select the memory locations to be used as the sources 

of operands and the destination of results for a particular 

operation. One of the most significant contributions of 

Babbage's proposals was a mechanism to allow the sequences of 

operations to be changed automatically, in modern terms 

unconditional and conditional branch instructions. 
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The earliest known reference to parallelism in computer 

design is thought to be in a Sketch of the Analytical Engine 

Invented by Charles Babbage by General LF Menabrea in 1842 

according to Hockney and Jesshope[681. Though parallelism was 

not incorporated in Babbage's analytical engine he was clearly 

aware of the possibility of its application to improve 

performance over a century before the technology was available 

to make its large scale application possible. Though neither 

of Babbage's engines were constructed mechanical four function 

calculators were in widespread use from early in the nineteenth 

century until electronic calculators became widely available 

cheaply in the latter half of the 20th century. 

1.1.2 Electro-Mechanical Computing Machines 

In the 1930s and 1940s ]Konrad Zuse built several 

electro-mechanical computers, apparently unaware of the work of 

Babbage, Z3 built around 1941 is believed to be the first 

operational general purpose program controlled computer, 

however this work was interrupted by the second world war and 

had little influence on later machines. A more influential 

machine was the Harvard Mark I (originally called the Automatic 

Sequence Controlled Calculator) proposed in 1937 by Howard 

Aiken, which was completed by IBM in 1944. 

1.1.3 Electronic Computers 

The first purely electronic, as opposed to 

electro-mechanical, computers appeared in the late 1930s and 

early 1940s, the first general purpose electronic computer 
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probably being ENIAC (Electronic Numerical Integrator and 

Calculator) built at the University of Pennsylvania. Though it 

weighed 30 tons and contained 18,000 electronic valves it was 

around 1000 times faster than the Harvard Mark I, taking 3 mS 

for a 10 digit multiplication. 

The first machines employing the stored program concept 

in which program and data reside together in the same memory 

unit appeared at the end of the 1940s, with EDSAC at the 

University of Cambridge and EDVAC at the University of 

Pennsylvania. 

It is interesting that at this time the possibility of 

using serial arithmetic, with the consequent reduction in 

hardware required, was regarded as an advantage of the speed of 

electronic components over mechanical machines which had 

performed their arithmetic in parallel. 

1.1.4 Mechanisms For Introducing Parallelism 

Despite the speed advantages of electronic computers over 

mechanical and electro-mechanical machines greater processing 

rates were soon required. Though some improvement in 

processing speed was achieved through improvements in the speed 

of electronic components major improvements were achieved 

through parallelism; the fundamental techniques for introducing 

parallelism are briefly described here before their discussion 

in a historical context. 
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There are several techniques for introducing parallelism 

as listed by Sharp[1361 these are; Multiprocessors, 

Multifunction Processors, Array Processors and Pipeline 

processing. Each of these techniques involves replication of 

some or all of the computer architecture at varying levels. 

Multiprocessors 

Multiprocessors involve duplication of the entire 

computer, computers making up the machine using some 

communication scheme to coordinate their actions. A variety of 

communication schemes are the subject of current research; 

shared memory, shared bus and direct interprocessor connections 

for examples. The major problems with multiprocessors are 

those of communication and synchronisation of the processors 

and of decomposition of the task into suitable units to be 

performed in parallel. Multiprocessors are dealt with further 

in the survey of currently researched processor types in 

section 1.3. 

Multifunction Processors 

If units within a processor are replicated such as 

floating point processors, then it is possible to perform 

several operations simultaneously within a single cpu. 

Processor Arrays 

The development of processor arrays is dealt with fully 

in section 1.1.6. In a processor array a large number of 

processors are made to perform the same operations 



HISTORICAL REVIEW 6 

simultaneously but on different sets of data. Usually some 

mechanism for data exchange between the processors is provided. 

Though such machines can achieve high processing rates for the 

large number of problems that can be reformulated for such a 

processing scheme they are not efficiently applied to all 

problems. The term array processor frequently used for such 

computers is not used consistently as is illustrated in section 

1.1.7. 

Pipeline Processing 

Pipeline processing is applicable when long sequences Of 

instructions are to be repeated for different data. A 

production line type of approach can be used to overlap an 

instructions execution with the execution of the preceding 

instruction on the following item of data in the sequence. It 

is common to combine pipeline processing with one or more other 

techniques for introducing parallelism. 

1.1.5 Scalar and Vector Processors 

There are several techniques that have been used to 

achieve speed up through the implementation of parallelism. 

The development of parallelism as applied to Itraditional9 

architectures is presented. This account is based on those by 

Hockney and Jesshope[681 and Sharp[1361. 

All parallelism requires some additional hardware, 

usually in the form of replication of some part of the 

architecture already present, the level of replication and the 

way it is used varying depending upon the scheme to be 
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implemented. 

7 

The pilot ACE and the commercial machine derived from 

this, the English Electric DEUCE, first constructed in 1951 had 

several features to permit parallel operations to be carried 

out. The input/output devices (a card reader and card punch) 

could operate in parallel with the rest of the machine and also 

instructions were available to operate on all of the words in 

one of the eleven mercury delay lines with a single 

instruction, what would now be classed as vector instructions. 

During the 1950s several important advances were 

introduced, represented by the IBM commercial machines of the 

period which incorporated bit-parallel arithmetic, and later 

1/0 channels which were in essence dedicated 1/0 processors, 

these were the earliest multiprocessors. 

At about this time some consideration was given to large 

scale multiprocessor designs, however the programming of such 

systems has several problems and most of the commercial 

development was towards introducing parallelism into scalar 

computers (computers operating on data items comprising single 

values only) to achieve higher computing speeds. 

1.1.5.1 Scalar Processors 

Multiple functional units allowing arithmetic operations 

to be performed in parallel and pipelining where stages of an 

operations execution are overlapped with later stages in a 

previous operations execution (usually employed in the 

instruction fetch and decode sequence) became common in 
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computer architectures of the 1960s. A modern example of a 

processor employing multiple functional units is the 

CYBERPLUS[721. 

Multiple functional units were usually of arithmetic 

units, registers and memory, to make use of these in parallel 

some degree of lookahead was required to determine which 

operations could be performed in parallel. This lookahead 

approach allowed the overlapping of instruction decoding, 

address calculation and fetching of operands using a pipelining 

technique. A good representative example of a machine using 

such techniques is the IBM 360/91. 

1.1.5.2 Vector Processors 

The logical development from scalar machines using 

pipelining techniques to achieve high computing speeds was the 

construction of vector processors using pipelining techniques. 

Vector machines operate on vectors (an ordered group of 

numerical values) as a basic unit of data. The most famous of 

these are the CRAY machines, the CRAY-1 having regularly 

achieved 130 MFlops/sec on appropriate problems. 

This is one of the main points about departures from 

scalar machines in that the problems must be suitable for the 

machine architecture; vector machines exhibit little, if any 

improvement over purely scalar processors when performing 

purely scalar computations. This dependence upon problem 

suitability is clearly demonstrated by the benchmarks of a 

CYBER 205 vector processor and a CYBERPLUS scalar processor on 

a Monte-Carlo crystal growth model involving a large number of 
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testing and branching instructions[72). 

1.1.6 Processor Arrays 

In 1962 a paper of Slotnick et al described the SOLOMON 

computer, SOLOMON standing for Simultaneous Operation Linked 

Ordinal MOdular Network. This was one of the earliest 

references to the concept of'an array of processors, each with 

some memory, and all under the control of a central control 

stream. Though never built as originally proposed several 

important machines developed from this concept, such as the 

ILLIAC IV and ICL DAP[491. The ILLIAC IV was not a success, 

costing four times its contract figure and never coming within 

an order of magnitude of its proposed performance, when finally 

operational in 1975, it was however a very influential machine. 

ILLIAC IV was, like the engines of Babbage a century before, 

too ambitious for the technology available at the time. The 

ICL DAP was commercially viable however, the first one being 

installed in 1980, this machine had in its production form an 

array of 64 x 64 processors, each with 4096 bits of memory and 

capable of bit-serial arithmetic on the values held in this 

memory, 4096 such calculations being performed in parallel. In 

common with the processors of SOLOMON and ILLIAC IV the 

processors of the ICL DAP had connections with their nearest 

neighbours, in an array pattern from which this genre of 

machines get their name. Though these machines used physical 

hardware connections to their nearest neighbours an alternative 

is to use conceptual links, data being passed via common 

memory. In this case there is no definite structure to the 

communication pattern between processors, the system being 
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termed unstructured, the term ensemble was used for such an 

arrangement. A notable example of such a machine is the 

Burroughs Parallel Element Processor Ensemble PEPE developed in 

the mid 1970s which had 288 processing elements, each 

containing three processors (one each for input of radar 

signals, processing of data and output of control signals) 

controlled by three control units for the three types of 

processor within each processing element. When necessary 

communication between the processing elements took place via 

the memories of the control units. 

1.1.7 Array Processors 

Many special purpose computers have been produced for 

processing large amounts of data, usually in the form of 

arrays, these tend to be referred to by the generic name array 

processors though their architecture does not necessarily 

consist of an array of processors. A good example of such 

processors are the special purpose devices for Fast Fourier 

Transform (FFT) and similar algorithms frequently used in 

signal processing applications. A list of the attributes 

required of a subset of array processors, peripheral array 

processors, has been suggested by Karplus[821 though the 

generality of the term array processor is acknowledged. 

1.1.8 Orthogonal and Associative Processors 

An alternative approach to simultaneously processing all 

of the bits of a word in parallel is to do the converse and 

process the same bit of several words in parallel. In the 
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orthogonal computer described by Shooman in parallel computing 

with vertical data a 'horizontal unit' for word serial/bit 

parallel operations and a 'vertical unit' for bit serial/word 

parallel operations were both provided allowing the most 

appropriate mechanism of referencing the data to be used. 

The notion of testing all words in parallel leads to the 

idea of associative processing and content-addressable memory 

in which items are referenced by a match between the data and a 

given bit pattern or mask rather than by the address of its 

location in memory. It is usual to provide both associative 

and address reference in a processing scheme though in a purely 

associative memory there is no facility to address data by its 

position in store. 

A series of commercial machines under the name of OMEN 

(Orthogonal Mini EmbedmeNt) were produced in the early 1970s, 

these used a PDP-11 as the horizontal arithmetic unit and an 

array of 64 processing elements as the associative vertical 

arithmetic unit. 

Several machines based around the orthogonal computer 

concept have been built and machines along these lines are the 

subject of considerable present research. 

Recently a large amount of interest has been shown in 

multiprocessor computers, most commercial machines use only a 

small number of processors; the CRAY X-MP, regarded by many as 

a state of the art multiprocessor supercomputer has a maximum 

of only four processors. Some academic multiprocessors use 

rather more processing elements and these are dealt with in the 

0. 
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survey of multiprocessor types in section 1.3. 

1.2 Classification Schemes 

Several schemes have been proposed for the classification 

of multiprocessor computers, however most of these are 

inadequate to classify the wide variety of machine types 

presently recognised. 

A natural classification is by the level at which 

parallelism is implemented within the computer, Hockney and 

Jesshope[681 divide this up into four levels: 

1- Job Level 

2- Program Level 

3- Instruction Level 

4- Arithmetic and Bit Level 

at the job level separate jobs or large sections thereof 

are regarded as the units to be executed in parallel. Since 

Jobs are usually independant these can be executed in parallel 

without communication or determinacy problems arising. 

At the program level sections of a program that do not 

exhibit data dependencies may be executed in parallel on 

separate processors, a good example of this are loop constructs 

which do not require data exchanges between iterations of the 

loop. 

Pipelining of the stages of instruction fetch and 

decoding has allowed parallelism at the instruction level to 

become a commonplace feature of computer architecture. 
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At the lowest level parallelism between the operations on 

elements of instruction operands is possible, e. g. bit 

parallel arithmetic or vector arithmetic. 

The machine to be described in this thesis would reside 

at the top most level of this scheme, the duplication of the 

program being regarded as separate jobs using different data. 

A very simple taxonomy was presented by Crenshaw in a 

NATO conference paper[481 in which computer systems are 

regarded as either 'federated' or 'integrated'. In this scheme 

a federated system is one consisting of several computers each 

performing a particular task and communicating with the other 

processors through 1/0 channels. The computers making up a 

federated computer may themselves be integrated computers and 

need not be identical. An integrated system is one in which 

unrelated tasks are performed in a multiprogrammed fashion 

within a single computer. This computer may be a monoprocessor 

or a multiprocessor sharing common main storage. The key 

feature of an integrated computer system is the single job 

queue and operating system. 

In this terminology the computing structure presented in 

chapter 3 would be regarded as a federated computer made up of 

a collection of integrated computers (since it is likely that 

the nodes would be capable of multiprogramming). 

One of the most widely quoted classifications is that of 

Flynn[52,68,136,1421. Rather than describing the architecture 

of the computer Flynn's taxonomy relates the instructions and 

the data being processed. Flynn identified four cases of the 
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relationships between the instruction stream(s) and data 

stream(s): 

SISD - Single Instruction stream, Single Data stream 

SIMD - Single Instruction stream, Multiple Data stream 

MISD - Multiple Instruction stream, Single Data stream 

MIMD - Multiple Instruction stream, Multiple Data stream 

the first of these represents the serial computer 

architecture. The SIMD architecture is one in which a single 

instruction operates on multiple data, a good example being a 

vector instruction. The MISD case is on first inspection 

meaningless since it implies that multiple operations are being 

performed on a single data item simultaneously, however in a 

later paper Flynn[511 suggest that special streaming 

techniques, such as the pipeline where different instructions 

are applied to the data stream as it passes through the 

machine, are included in this group. The final group, the MIMD 

machines, includes all multiprocessor configurations, the lack 

of distinction between different types of multiprocessor being 

the main deficiency of Flynn's taxonomy. The system presented 

in chapter 3 falls in this MIMD category. 

A classification based on the organisation of the 

computer from its constituent parts was provided by 

Shore[138,68,1361 in 1973. Shore's classification provides six 

cases of processor: 

Word serial, Bit parallel 

Word parallel, Bit serial 

Orthogonal computer (Bit parallel and/or Bit slice) 
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IV - Unconnected array 

V- Connected array 

VI - Logic in memory array 

type I is the traditional serial computer architecture 

and type II is a bit slice processor. The orthogonal computer, 

type III is effectively a combination of types I an II being 

able to access data in two perpendicular directions. Type IV 

is an array of unconnected processors under the control of a 

single control unit, type V is similar except that the 

processors are connected to permit communication. Type V, the 

final type consists of memory with processing units distributed 

throughout it as in associative processors. This 

classification does not adequately cover loosely coupled 

processors such as direct connection network computers[871 of 

which the structure presented in chapter 3 is an example, these 

being regarded as multicomputers rather than a multiprocessor. 

Hockney and Jesshope[681 propose a structural notation 

not unlike that used by chemists to indicate chemical formulae 

as a means of expressing computer architecture. This provides 

a comprehensive scheme for description of computer 

architectures which is then used in the presentation of a 

computer taxonomy as a set of decision trees. Zakharov[1611 is 

critical of this scheme as being too cumbersome to be useful, 

also, as in the scheme of Shore, network computers are not 

included in the classification. 

Sharp[1361 provides four cases as an extension of the 

scheme of Flynn, these are: 
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SES - Single Processor, Scalar Data 

SEA - Single Processor, Array Data 

MES - Multiple Processors, Scalar Data 

MEA - Multiple Processors, Array Data 

the last two of these being subdivisions of Flynn9s MIMD 

group. 

Other schemes have been proposed by both Kuck and 

Schwartz, the scheme presented by Kuck is an extension of 

Flynn's taxonomy by the addition of an execution stream 

providing for 16 system types in all and that of Schwartz 

provides a taxonomic table based on 55 designs. 

None of the schemes are entirely satisfactory, since, as 

Hockney and Jesshope state, it is quite possible for computers 

to have characteristics which belong in more than one section 

of the classification. 

1.3 Current Computer Research 

1.3.1 Electronic Parallel Processors 

A large number of parallel processing architectures are 

the subject of ongoing research, most of these involve some 

form of multiprocessor. Several authors have surveyed the 

machines and architectures 

investigated[135,127,104,2,142,82,651- Implementation of 

entire machines in VLSI has been the subject of considerable 

research and an influential factor in the selection of many 

architectures such as repeated processor and switch units which 

can be configured by appropriate switch settings as in the CHiP 
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architecture[140], 

others[1331. 
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VLSI array processors[1461 and various 

1.3.1.1 Direct Networks 

In direct networks a number of processors (nodes), each 

with its own independant memory are connected to some (or in 

the case of full connection, all) of the other processors which 

comprise the system by a dedicated communication mechanism 

(links). These networks are static since the connection 

pattern is unchanging unlike indirect networks described in 

section 1.3.1.2. There is an enormous variety in the 

connection schemes currently being considered, the schemes 

usually exhibit regularity and some of the more commonly 

investigated schemes are the ring (an extension of which, the 

cylinder, is used as the connection scheme in chapter 3), tree, 

mesh (toroidal mesh), hypercube and shuffle-exchange 

networks[133,501. Such networks are easily constructed from 

identical processing nodes, such as the DIRMU multiprocessor 

node[621 or the MDP[331 or the 

TRANSPUTER[11,102,156,148,155,78,1011, though in such a case it 

is desirable for all nodes to have the same degree (number of 

links) and for this to remain constant regardless of the size 

to which the machine is expanded. This increase in the degree 

of nodes with size is one of the main disadvantages of one of 

the most widely investigated topologies, the 

hypercube[113,147,1151. A closely related architecture which 

overcomes this difficulty are the cube connected cycles and 

extended cube connected cycles topologies[133,50], in which the 

processors at the vertices of the hypercube are replaced by 

q 
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cycles (rings) of processors; such a topology can be realised 

with processors of degree three. 

Completely connected machines are rarely encountered 

owing to the high degree required of the processors making up 

such a system for large numbers of processors. The HPDM[911 

has five TRANSPUTERS completely connected and in addition uses 

shared memory to communicate with a similar number of more 

conventional CLIPPER processors which are connected together 

with a parallel bus. The HPDM may be connected to other HPDMS 

by an ETHERNET or X. 25 network. 

1.3.1.2 Indirect Networks 

Indirect or dynamic networks fall into one of three major 

classes; single stage, multistage and crossbar, Feng[501 gives 

a description of such networks and the uses to which they are 

put. Single stage networks are also called recirculating 

networks since data may have to be recirculated several times 

before it reaches its destination. They are used in cycling 

machines[1321, the GF11 supercomputer[17] uses a3 stage 

network in a cycling scheme. Multistage and crossbar networks 

are frequently used to connect processors to memory units, the 

interconnection network permitting access to any of the memory 

units by any of the processor units. 

The Remps machine[73] users a global network to allow 

memory sharing between processors but in addition uses two 

other networks, one to allow 1/0 communication mapping and the 

second, a one sided network, to allow interprocessor 

communication without memory sharing. 
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One sided networks, referred to occasionally as full 

switches, allow any of the processors attached to communicate 

with any of the other processors attached, unlike two sided 

networks which allow any of the inputs to. connect to any of the 

outputs, Almasi[2] refers to these as the 'boudoir' and 

Idancehall' arrangements respectively. The IBM RP3[731 is a 

current example of the application of a one sided network to 

interprocess communication. 

1.3.1.3 Bus Systems 

Bus systems use single or multiple parallel busses to 

permit data exchange between several units connected to the bus 

in a random access fashion. This f ree interconnection of 

devices as compared with say direct network machines readily 

allows many conceptual interconnection schemes to be mapped on 

to the parallel bus. The critical component is largely the 

bandwidth of the bus, limited by the number of physical 

connections possible. The general any to any connection 

possibility of the bus was one of the main reasons for its 

adoption to connect the vector processors of the MU6V[751. 

This general mapping allows bus connections to be applied in a 

variety of environments such as Message-Passing[126] and Data 

Flow[1501. This argument also applies to other globally shared 

medium communications such as those used in Local Area 

Communications as in the TUMULT ring[1301. 

Multiple buses lend themselves to a hierarchical scheme, 

often referred to as a cluster structure[1591 since clusters of 

processors may be grouped around a bus, these busses being 
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connected by other busses, or, as in the case of MuTeam[301 by 

serial asynchronous links. The Synapse N+1 system[1121, in 

common with many systems, uses one or more global buses (the 

synapse expansion bus in the case of synapse) to which are 

connected lower level buses. The TAMIPS multiprocessor[ 1511 

has up to eight processors connected to its local bus, this 

multiprocessor can then be attached to the multibus (IEEE-796) 

to provide for expansibility. The Flex/32[1001 multicomputer 

uses a local bus with several processors connected, the 

processors may connect to other groups of processors or 

input/output devices to provide for expansibility. There are 

several busses in use, VME, Multibus (as used in the Sequoia 

computer[981), Futurebus and others. FERMTOR[1251 uses local 

buses in a ring, the buses making up the ring being connected 

by station latches which deal with data transfers between 

devices not connected to the same bus. By varying the number 

of buses and number of devices connected to each bus this 

architecture may be 'tuned' to the data access pattern. 

1.3.1.4 Cellular Array Processors 

The array processor (SIMD) architecture in which arrays 

of very simple processors can communicate with adjacent 

processors is of considerable interest especially with a view 

towards incorporating large numbers of processors onto a single 

VLSI device. An example of such a VLSI device is the ITT 

CAP-II chip[107] which has a4X4 array of 16 processors each 

working with 16 bit words. Mishin and Sedukhin[1061 discuss 

the behaviour of such an adjacent communication cellular 

computer system and its performance for a number of problems. 
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Control for such an array of processors is generated from 

one central control mechanism with little independant activity 

by the individual processors. It is possible to transfer some 

of the centralised control to the individual processors but 

still maintain an overall central control. In such cases the 

SIMD nature of the architecture becomes less clear as the 

control tends towards completely independant operation as in 

MIMD architectures. 

1.3.1.5 Systolic and Wavefront Arrays 

The systolic array is a possible example of a halfway 

house between SIMD and MIMD operation, there being an array of 

processors, each performing computations under a global scheme 

of synchronisation and control but with each processor 

performing a distinct function not necessarily the same as that 

of the other processors. In the systolic array[1321 an array 

of processors synchronously read input data from their 

immediate neighbours, performing some computation on this data 

and writing the outputs to their neighbours. Such arrays are 

termed systolic arrays because the way the data flows within 

them is reminiscent of a heartbeat. Normally data such as 

matrices are fed into one or more parts of the array, the flows 

of data and intermediate results through the array interacting 

so as to produce the desired result which appears from the 

outputs of some or all of the processors. 

The array need not be planar and may possibly contain 

closed loops or be switched dynamically as in the nonplanar 

array of Aravena and Porter[lo). Unlike most systolic arrays 
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which do not store values but process values and output the 

results the OCSAMO systolic array(l] uses internal registers to 

allow values to be held and used in later stages of the 

computation. The Warp computer[51 has demonstrated practical 

application of a systolic array to a variety of problems. 

Closely related to the systolic array is the wavefront 

array, this is an asynchronous version of the systolic array. 

The wavefront array is made up of an array of processors 

connected as in the systolic approach but in the case of a 

wavefront processor the processors operate in an asynchronous 

data driven fashion[851, this has been expressed by Kung 

et al[891 as : 

Wavefront Array = Systolic Array 

Dataflow Computing 

the processors in the wavefront array only performing 

actions when all of the required data is present at its inputs. 

The name wavefront derives from the way data propagates through 

the array in waves relating to each group of data items 

supplied. 

1.3.1.6 Data Driven and Demand Driven Computing 

The dataflow[40,111] model of computing and possible 

machines using this model have received considerable attention. 

In the dataflow or data driven model of computing an 

instruction (actor) is executed when all of its required 

operands are available, the dataflow program consists of a flow 

graph with actors on the nodes and data items flowing over the 
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arcs. Data driven operation is asynchronous in that the data 

is passed on to the next actor as soon as the result is 

produced. The data driven concept is applicable at any level 

of grain, the machine presented in this thesis possibly being 

regarded as a dataflow machine with, the grain level being the 

entire processing required rather like a large grain parallel 

codeblock data flow scheme[231. A variety of machines have 

been proposed and built[ 153,61,25,150,461 and have now reached 

the stage of a commercial product[149,811. 

The principle divisions within dataflow computers are 

those of static and dynamic. In a static machine such as the 

HDFM (Hughes Data Flow Machine)(241 the dataflow graph is 

mapped onto one or more processors in a fixed (static) pattern, 

each processor being active only when one of the dataflow 

actors it has been allocated is active. In a dynamic machine 

such as the Manchester Data Flow Machine[61] any processor may 

deal with any actor that is ready for execution. 

Dataflow has been modified and combined with other 

schemes such as the combination of control and dataf low of 

Maeng and Cho[96] and the suggestion by Sowa[1411 that 

performance of a dataflow multiprocessor may be improved by 

using a program counter in a more traditional type of approach 

for the serial parts of dataflow computations. 

The demand driven model is the converse of data driven, 

the computation begin broken down into a similar flow graph but 

the execution of an instruction being initiated when its result 

is requested rather than when its operands become available. 

This request for results triggers requests for arguments on the 
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instruction input arcs, requests being passed back as necessary 

until data is available. 

1.3.1.7 Other Schemes 

There are many other multiprocessor architectures, some 

are combinations of mechanisms described above such as the 

OPSILA computer[12,131 which uses a vector processor combined 

with and driven by a scalar processor, many other architectures 

can be regarded as extensions of those presented above; in the 

logic architecture where a certain goal is unified with 

particular definitions the request of a goal initiates a search 

for the definitions necessary to obtain the results in a manner 

similar to that in demand flow[651, the processing being 

carried out by a Parallel Inference Engine[661. 

1.3.2 Digital Optical Computers 

In contrast to computing using the passage of electrons 

through conductors computing machines have been proposed and 

constructed which operate using the transmission of photons, 

usually in the form of laser light. Both digital and analogue 

computers have been designed[128] though of particular current 

interest are digital optical computers. Lohmann[951 lists four 

principle motivations for the development of digital optical 

computers: 
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Optical Subsystems 

2- Very Fast Optical Gates 

3- Immunity against electromagnetic interference 

4- Highly parallel processing with global 

interconnections 

and of these the last has been expressed as being of 

greatest importance by Wherret[1541. 

A variety of schemes have been proposed to perform 

processing on information expressed as patterns of light 

intensities, Ichioka and Tanidal[761 describe a system of 

overlapping shadow patterns that allow the sixteen possible 

logical functions of the pixels of two binary patterns to be 

generated and many systems employing some form of spatial light 

modulator (SLM) have been described, an SLM being essentially a 

mask programmable by incident light intensity allowing a wide 

variety of functions to be performed on two-dimensional data (a 

useful comparison of commercially available SLMs is to be found 

in [181). Non-linear optical devices (those in which the 

transmissive properties of the device vary with the applied 

light intensity) can be used to perform logical operations if 

the device has a threshold in the output/input transmission 

characteristic[ 711 and the combination of a non-linear element 

with positive feedback may be used to create bi-stable elements 

such as the Fabry-Perot cavity[181. These bi-stable elements 

can be used as latches and to create state machines operating 

on a large number of pixels simultaneously. 
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The ability to perform operations on two-dimensional data 

provides the highly parallel processing referred to above and 

holographic techniques permit optical interconnection or 

coordinate transforms of this two-dimensional data on an any to 

any basis without the problems of physical siting and crosstalk 

of comparable electronic interconnections. 

The advantages of optical connections in terms of 

bandwidth and the removal of the CR time constant limitation 

inherent in any electronic connection along with the global 

interconnection possibilities and non-interference of 

overlapping communication paths has stimulated investigation of 

hybrids of electronic circuits and optical interconnections; 

Goodman et al[591 discuss the possibility of using integrated 

optics and/or fibres for the distribution of clock signals and 

the use of holographic elements for global interconnections in 

a VLSI environment and Bell[181 describes various 

interprocessor connection schemes using optics, including an 

optical crossbar switch. 

Interfacing to an optical computer should be immediately 

feasible since optical storage and communication methods are 

already well established and electronically controlled optical 

switches are available, using materials which change their 

refractive index depending upon the strength of an applied 

magnetic field[1231. 
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1.3.3 Biological Computers 
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Some proposals and discussion of computers based on 

biological materials have appeared in the literature[29]. None 

of these have proceeded further than the stage of discussion 

and it has been suggested[1231 that a biological computer 

already exists in the form of the human brain and that any 

biological computers are likely to share the weaknesses of it 

that have inspired the development of other computing 

mechanisms. 

1.4 Computers in Experimental High Energy Physics 

Both theoretical and experimental physics research are 

making greater and greater demands of computer processing 

power, particularly in the field of High Energy Physics 

(HEP)[31,1621 for a variety of purposes. Mount[1091 

illustrates the need for parallel processing techniques in HEP 

particularly with respect to vector and pipeline processors and 

discusses software details for such machines and Kunz[901 

provides a brief resume of vector and parallel processing 

applied to HEP. A multimicroprocessor suitable for 

computationally intensive theoretical physics is presented by 

Christ and Terrano[26], the processor being made up of Intel 

80286/287 microprocessors and floating point vector processors 

in a planar array. Computers have also found a wide variety of 

uses in experimental work, the systems briefly surveyed here 

will be concerned mainly with data acquisition, data 

acquisition in this case being taken to include some degree of 

pre-processing. 
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Computers in experimental High Energy Physics serve 

functions of both control and data acquisition though the two 

roles are not distinct since the same communication paths are 

frequently used for both, and acquired data is often used to 

make control adjustments (ie feedback). 

Most control and data acquisition systems incorporate a 

selection of microprocessors and minicomputers in a networked 

scheme[19,91 though some complex control systems, such as those 

used for fusion experiments, require the use of a 

multiprocessor[841. Many experiments require real time 

processing for control and data acquisition with the ability to 

respond to asynchronous interrupts quickly, hierarchical 

structures utilising a central controller interacting with and 

distributing work to sub-processors have been presented for 

this type of work[6,124). 

Frequently encountered in High Energy Physics are systems 

utilising high speed front end electronics (for coincidence 

detection, thresholding etc) followed by successive levels of 

processing to filter out unwanted or Inoise9 events[7,131,281, 

the data acquisition system described in chapter2 for Daresbury 

Laboratory falls into this group. 

Though many theoretical HEP computing tasks may be 

efficiently vectorised experimental computing does not often 

run efficiently on vector or pipelined machines; however much 

of the processing is of totally independant 'events' which can 

be readily processed in parallel on separate processors leading 

to the concept of processor farms[108]. These farms take the 

form of several identical processors, an events being passed to 
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the next available processor for processing, the structure 

described in the following chapters is a structure to allow a 

multimicroprocessor to be used in the fashion of a processor 

f arm. 
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CHAPTER 2 

2 COMPUTING REQUIREMENT 

2.1 Introduction 

The computing structure that forms the basis of this 

thesis was principally intended to process experimental data 

from experiments in High Energy Physics, a field that in both 

its theoretical and experimental requirements demands ever 

increasing amounts of computation, as has been noted by 

Creutz[311. Though currently available computing hardware can 

achieve very high rates of data processing the large volumes of 

data being created from experiments in HEP take long periods of 

9number crunching' after the experiment has taken place. This 

situation is far from ideal since many of the experiments 

performed require run time adjustments to be made in the light 

of the data obtained and since the experiments are inherently 

complex and the detectors used are rather fragile immediate 

feedback of any failures, indicated by the change in the 

processed output data, would be highly desirable. 

2.2 Present Data Collection System 

The niche in which the computing system had to reside is 

illustrated by a brief description of the present computing 

facilities used for data acquisition for the NSF at Daresbury 

Laboratory. The following is a brief summary of the facilities 

for data acquisition, more detailed information being available 

in the relevant manuals [38,34,36,37,351. The main elements of 



COMPUTING REQUIREMENT 31 

the data acquisition and processing system at the NSF at 

Daresbury Laboratory are shown in fig 2.1. 
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2.2.1 Experiments and Detectors 

The experiments performed involved high energy beams of 

particles fired into various experimental arrangements as 

required by the experimentor; the principle type of data 

collected was that of particle type and energy as reaction 

products emerged from the experiment, using detectors either 

singly or in multiple arrangements [60,137] to give analogue 

signals corresponding to one or more parameters of the particle 

detected. The experiments were run on a continuous basis 

rather than as a set of discrete firings. 

The data from the analogue detectors is correlated for 

coincidence by fast electronics, non-correlated signals being 

ignored, before being converted into digital format using 

Nuclear Instrument Module (NIM) standard compatible analogue to 

digital converters (ADCs). These ADCs permit analogue windows 

to be set, pulses outside of the specified range of values 

being ignored by the ADC; this being the only hardware 

filtering of the values received from the ADCs available to the 

experimentor. Each group of* correlated data are considered 

together and termed an event. 

It is possible for data other than that from ADCs to be 

included in an event, however such data can only be taken from 

devices which are plug compatible with the ADCs and the data 

will be taken and processed as if it were from an ADC. 
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2.2.2 The Event Manager 
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The event manager (EM) is based around a state machine, 

programmable to some extent by changing values in internal 

registers, it manages the collection of data from the ADCs, the 

data being read out individually or as groups, depending upon 

the experimental set up and operating mode of the event 

manager. The EM packages up the data and passes this via a 

CAMAC network to a mainframe computer for storage processing, 

analysis and display. The event manager does no mathematical 

processing of the data only acting as an 'intelligent' 

interface between the ADCs and the CAMAC network, it is capable 

of some masking and vectoring of data depending upon the 

operating mode. 

2.2.2.1 Operating Features 

The event manager offers three principle operating 

schemes, all schemes require fast coincidence detection 

electronics to be provided by the experimentor to determine 

when an event of possible interest has occurred. - 

2.2.2.2 Singles Mode 

In the first operating scheme, 'singles' mode, a 

histogram of the values detected is produced for each of the 

ADCs connected to the event manager by a simple increment of 

the position in the spectrum indexed by the value. This is the 

simplest and fastest scheme since it requires virtually no 

processing other than a simple comparison of range of value, 

which is performed by the ADCs before conversion into digital 
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representation and therefore little improvement could be 

anticipated by the addition of computing hardware. 

2.2.2.3 Biparameter Interface 

The second scheme is an extension of singles mode in that 

an increment of a histogram is generated for each event. In 

this case however two of the values are used together to 

generate the increment, one of the values is used as an index 

to indicate which histogram to update. The principle use for 

this mode is to handle Mass-Energy events, and the description 

of this mode is in terms of such use. Two ADCs are used with 

each biparameter interface, it being possible to use more than 

one biparameter interface in an experimental set up, the two 

ADCs used for the interface must be determined to be coincident 

by the experimentors fast front end electronics. 

The mass ADC value is used to index a lookup table, the 

entry in the lookup table being a not interested' code or a 

'mass window' number, each mass window representing a spectrum, 

within which the energy ADC value is then incremented. Up to 

16 such mass windows (spectra) are permitted and it is also 

possible to set up upper and lower windows on the energy 

spectra with events having values falling outside these windows 

being rejected. 

As with singles mode, no processing other than that 

performed by the hardware is required and no real improvement 

could be achieved by the addition of computing hardware. 
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2.2.2.4 Multiparameter Event Handling 

Multiparameter events are the most general form of data 

dealt with by the event manager, each of the above schemes are 

merely a hardware implementation of a frequently used 

interpretation of the data of a multiparameter event. When a 

group of ADCs are determined to have fired in a pattern 

corresponding to a multiparameter event of interest, this being 

done by the experimentors fast front end electronics, the event 

manager takes the values from the ADCs and records these as a 

group, termed an event, which indicates their mutual 

association. It is possible for an ADC to take part in a 

multiparameter event and singles mode as part of the same 

experimental setup. 

These events are passed, via the CAMAC network, to a 

mainframe computer for processing, analysis and display. No 

processing whatsoever is applied to the data by the event 

manager, raw data being passed back to the mainframe computer. 

At the mainframe computer only a small proportion of the 

event s may be processed as they are obtained from the event 

manager (-10%) the processing of the majority of events being 

performed offline. The small number of events processed online 

are used to provide some immediate feedback of the behaviour of 

the experiment, though due to the small percentage possible 

this feedback is slow to respond to changes and is somewhat 

limited in its usefulness. 
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For this mode of operation on line processing of the data 

would allow all of the data to be processed and displayed to 

provide more responsive feedback to the experimentor and also 

would prevent unnecessary taking and storage of any data not 

regarded as interesting. This mode operation was the one for 

which the processing scheme presented in this thesis was 

intended. 

2.2.3 Limitations and Bottlenecks 

The first two of these schemes are able to provide the 

required processing of the data at an adequate data rate, what 

little processing is required being performed by the event 

manager along with data acquisition. The use of the event 

manager to collect multiparameter data leaves the data 

unprocessed and varying amounts of processing time are required 

depending upon the experiment, for many experiments this 

processing is a bottleneck. The aim of the work included in 

this thesis was to produce a design for a computing device 

capable of being used in the above environment to process data 

from the High Energy Physics experiments at a suitably high 

data rate. This 'computing engine' would be placed between the 

event manager and the mainframe computer and would be required 

to pass through data not requiring processing (in the modes 

handled sufficiently well by the event manager alone) or behave 

as a 'data filter' on the basis of some user defined function 

for those operating modes where data is not processed by the 

event manager. 
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2.2.3.1 Current Data Rates 
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The current rate of data taking is in the order of 50 000 

events per second, where an event represents all the data from 

the ADCs that were determined to be part of the event by the 

coincidence electronics. With the present event manager up to 

64 analogue to digital converters can be involved in any one 

event and the computing and communication structure must be 

able to cope with this volume of data, with a possibility of 

extension in the future. 

2.3 Design Aims 

Although the computing engine to be developed was aimed 

at a research environment and therefore the main emphasis in 

the design was one of flexibility and expansibility it was 

possible to set some initial targets and consider the 

feasibility of achieving these. It also had to be noted that 

since the event manager was a potential bottleneck this could 

be subject to replacement, possibly with some form of 

multiprocessor. 

A throughput of 100 000 events per second was set as 

initial target figure since this was the region of the limit of 

the current event manager and ADCs. In normal operation the 

filtering function applied to the data is set up before data 

taking commences and left unchanged during the experimental 

run, in some experiments tailoring of parameters of this 

function is required in the light of collected data but this is 

performed in an iterative 'stop and restart' fashion rather 

than dynamically. Considering this pattern of usage suggested 
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some form solution using a look up table in the interests of 

processing speed, the look up table being set up at the 

beginning of each experimental run. 

2.4 Processing by Look-Up Table 

A look up table of results for various input parameters 

could be calculated before the commencement of data taking and 

thereafter used to process data. This would allow a result to 

be obtained in a single memory access, a time period in the 

reqion of 200 nS. In addition to evaluation of a function 

masking, indexing and various other windowing and logical 

operations on the data are normally required, these could be 

included in a complete mapping of the input data values using a 

look up table. 

2.4.1 Estimation of Memory Requirements 

A simple calculation of the memory required, however, 

soon indicates that this approach can make unreasonable demands 

of memory size. For data of 8 bits in length and a function of 

two parameters producing an 8 bit result requires a memory size 

of 64 KBytes, in practice most of the data collected is of 

greater than 8 bits and the possibility of evaluating functions 

with more than two parameters was regarded as desirable. For 

12 bit data and a3 parameter function giving an 8 bit result 

requires a memory size of 68 000 M bytes which is obviously 

unrealistic even considering the recent advances in memory 

devices[77,861. 



COMPUTING REQUIREMENT 

2.5 Analytical Solution 
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An alternative to a direct memory map of the function to 

be evaluated would be an analytical solution of the functions 

involved, this would require a considerable amount of intensive 

calculation and be many times slower than the look up table 

approach. If some form of multiprocessor were used then it may 

be possible to achieve a sufficiently high processing rate 

while obviating the need for vast amounts of memory to process 

the functions involved. The programmable nature of a 

multiprocessor could provide a great deal of flexibility both 

in the function evaluated and the method of evaluation, where 

appropriate it would be possible to mix a look up table method 

of evaluation with other processing. 

2.5.1 Serial Nature of Data Taking 

The event data occurs and is collected in a time 

sequential fashion which would seem to contradict the concept 

of parallel processing of the data events. This 'serial part' 

(Amdahl[31) is inherent since there is only one experiment and 

one set of detectors. Experiments in High Energy Physics deal 

with events over time scales in the region of pico and nano 

seconds so the experiment itself is highly unlikely to be a 

limiting factor in the data rates achievable, producing data 

several orders of magnitude faster than it can be collected and 

processed. 
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2.5.2 Parallel Requirement of Processing 

The event manager can, on detection of an event, read out 

the required data in a matter of a few hardware cycles but the 

processing of such an event analytically can take several to 

many hardware cycles. Some overlapping (parallelism) of event 

processing would be required to bring the processing data rate 

to that of the collection of data by the event manager. This 

suggests that some form of multiprocessor could usefully be 

applied to the processing of data. 

2.5.3 Event Nature of Data 

The data in each event is entirely independant of the 

others, the events can be regarded as separate entities since 

there are no data dependencies from one event to another. 

2.5.4 Possible GranularitY of Parallelism 

From the above it would seem that some form of parallel 

processing would be required to perform an analytical solution 

of the data processing, the level at which this parallelism 

occurs is open to consideration. This, along with other 

considerations that influenced the approach to this problem is 

dealt with in chapter 3. 
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CHAPTER 3 

3 THEORETICAL CONSIDERATIONS 

3.1 Introduction 

From the previous discussion it is clear that high rates 

of data processing are required in High Energy Physics 

experiments. Though some experiments are done as discrete 

'shots' and require the processing of a large amount of related 

data to a fixed (usually short) deadline[61 before the next 

firing in the case under consideration the requirement was for 

a high average throughput of data over an appreciable period of 

time. The data from the experiments under consideration 

consisted of separate 'events', each being independent of all 

other events and there being no determinate order of arrival of 

events. The information sought in this data was principally 

the frequencies of occurrence of particular types of evefits. 

3.2 Processor Criteria 

Several criteria were drawn up as guidelines for 

consideration in the selection of a computing structure; 

I) The system should be expandable to a large degree, 

preferably infinitely, without any of the mechanisms 

involved becoming saturated. 

2) The system should have at least sufficient fault 

tolerance to allow the processed data to be recovered and 

possibly to process data at a reduced rate following a 
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f ailure. 
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3) A throughput of events in the order of 100 000 

events/second was taken as an initial target figure. 

4) The possibility of replacement of the Event Manager 

in its present form was to be considered, possibly with 

some form of multiprocessor, perhaps using a multi-write 

bus to compare detected values[941. It is possible that 

such a multi-processor could achieve a large bandwidth 

through the use of multiple output streams and a 

structure capable of accepting multiple input streams 

would be an advantage in such a case. 

Consideration of the above points does imply that a 

multiprocessor system of some form could be usefully applied, 

the alternative, a large monoprocessor is currently in use and 

is an expensive and not entirely satisfactory method of 

processing the data. 

Having established that a multiprocessor of some form is 

to be used then a further criterion may be added to the list : 

All processors should be identical in form. 

Dealing with these points in more detail; the processor 

was intended for a research environment with a consequent wide 

variety in the exact nature of the processing to be performed 

and the possibility that as experiments become more complex a 

higher degree of computing power would be required. The 

ability to expand the processor without changing the form of 

its use would allow the processor to be tailored to the 
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processing task. 
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The requirement for fault-tolerance points towards a 

system with built in redundancy, possibly with multiple busses 

or a suitable interconnection network. 

The figure of 100 OOO. events/second was taken as a target 

figure as this is approaching the maximum rate that the current 

event manager could achieve. This figure sets a lower bound on 

the number of processors required in terms of the processing 

time for each event, the number of processors is given by 

Number of Processors = rIO0 000 xT 
Pi 

where TP is the time required to process an event and rxj 

is the smallest integer not less than x. This expression 

assumes the presence of sufficient parallelism in the 

computation to keep this number of processors busy. 

Finally, if all processors are made identical then the 

design is simplified to some extent since once designed and 

tested the processors can be readily duplicated. Identical 

processors also allow for a reduction of the number of 

replacement boards required as stock. 

These criteria are comparable to the design objectives of 

the TUMULT ring network[ 129,1301, however, the ring structure 

proposed for use with TUMULT takes the form of a shared 

communication ring, in the direct connection machine[871 

proposed here the term ring reflects the nature of the direct 

connection graph formed by the interconnections of the 

processors rather than the form of the communication structure 
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to which they are connected. 

3.3 Assumptions on the Form of the Data 

The principle assumption made about the form of the data 

was that the data occurred as discrete independent events, an 

assumption also made in the scheme of Glendinning and Hey[571. 

It was assumed that these events could be processed in any 

order so long as the overall distribution of events was 

maintained and that a sufficiently high rate of processing was 

achieved. This assumption allows the grain of parallelism to 

be set at replication of the entire event processing program, 

the experiment and the event manager providing data 

sufficiently rapidly to allow a large degree of overlap of the 

processing of separate events and consequently maintain the 

required parallelism indicated above. This scheme avoids many 

decomposition and synchronisation problems associated with 

smaller grain size[120,55,21,811. 

3.4 Possible Structures 

3.4.1 Bus Connected Structures 

With these considerations in mind some form of 

multiprocessor structure and processing scheme were required, 

bus structures were not appropriate since a bus structure will 

inevitably saturate at some point, however high a bandwidth the 

bus may have. In addition, if the communication algorithm is 

not carefully selected then buses can prove prone to lockout 

and starvation of processes. It is also possible for the buses 

to fail such that data cannot be retrieved from any of the 
T 
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nodes without the implementation of multiple buses or some form 

of bus isolator which are themselves prone to failure and 

expensive to implement. 

3.4.2 Direct Network Computers 

For these reasons the mechanisms considered were message 

passing direct network computers where processors are connected 

together in a network communicating over short links between 

pairs of processors only. Such machines are often referred to 

as direct connection[87], direct network[1331 or homogeneous 

ensemble machines[561, they have several advantages over a 

shared communication medium as in a bus or lan type of 

structure. Since each processing node includes communication 

hardware as the number of processors increases the bandwidth 

for communication increases proportionately, a very important 

point[971, possible internal schemes for a node in such a 

system have been suggested by various authors[8,1221. The 

TRANSPUTER [78,102,156,148,11,1551 has been specifically 

designed for construction of direct connection machines and 

these have four serial links; to allow the possibility of using 

TRANSPUTERS to construct the machine it would be necessary to 

implement connection graphs with connectivities of less than 

four. Von Conta[152] has also observed that connectivities :54 

are regarded as advantageous for practical reasons. A 

comparison of the relative merits of different networks has 

been given by Wittie[1581. 
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3.4.2.1 Usage Pattern 
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The anticipated usage pattern of a network computer as a 

processor for High Energy Physics event processing differs from 

that of many computationally intensive tasks which use the 

communications links for interprocessor communication of 

internally generated messages; the links would be used as a 

means of distributing the externally generated (by the 

experiment and event manager) events making up the workload. 

This usage makes external communication a factor of greater 

importance than that where a computing problem is loaded and 

the results collected after a period of intensive computing. 

3.4.2.2 Tree Structures 

tree structure made up of such processors would be 

infinitely expansible and for some applications may present a 

reasonable solution[20,22] though the communication bandwidth 

can become a limitation particularly through the root of the 

tree[871. Some modifications to tree structures have been 

proposed to overcome its disadvantages [42,103,691. The nodes 

may be made identical in such a structure but there is no 

inherent fault tolerance since a tree is a separable graph (it 

has a vertex connectivity of one) and the failure of a single 

node or link disconnects the related sub-trees which can 

isolate one or more nodes completely from the rest of the 

system. 
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3.4.2.3 Pyramid Structures 
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Since there is only one source of data, ie the event 

manager, a pyramid structure with data fed to its apex may be 

appropriate. If the network is built up from pyramids with the 

base nodes being connected to the apexes of other pyramids, as 

shown in fig 3.1, then the connectivity of the nodes is very 

likely to become excessive. In addition there is no 

possibility of feeding the structure simply at several 

different points to allow for improvements in the event manager 

unless the pyramid is fed from the base. In this case, as in 

that of the tree structure, the bandwidth through the apex 

nodes may prove to be a limiting factor. 

EVENT 
MANAGER 

FIG. 3-1 PYRAMID STRUCTURE. 
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3.4.2.4 Ring Structure 
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A ring structure may be expanded infinitely though as the 

number of processors increases the bandwidth required for 

communication between processors would also increase and may 

lead to saturation of the communication links. The nodes of 

such a ring may be made identical in form during normal 

operation though a single fault may prevent proper functioning 

of the ring. In the case of one fault the state and processed 

data could be retrieved by a modified communication algorithm, 

this would require the processors in the ring "knowing' that a 

fault had occurred, it is also possible that two faults could 

occur in such a way as to isolate part of the ring completely. 

Despite its disadvantages the basic ring structure 

appeared to be worthy of further study. 

3.4.2.5 Cylindrical Structures 

A cylindrical structure, ie one or more rings of 

processors connected vertically in addition to the horizontal 

connections of the ring structure, overcomes many of the 

problems of the simple ring; this structure does not appear to 

have previously been investigated in the literature. The shape 

of the cylinder thus formed, ie its height/width ratio, may be 

varied to tailor the nature of the structure to the 

application. The nodes of a cylinder may be identical though 

an additional two communication links are required compared to 

those of the simple ring structure, the edge connectivity is 

four as compared to two for a ring (as far as 

processor-processor connections are concerned). The vertex 
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connectivity of a cylinder will vary with the shape of the 

cylinder but would still be greater than two, the vertex 

connectivity of a ring. 

3.4.2.5.1 Feed Mechanism 

Though in this analysis the data items are assumed to 

require uniform processing it is possible and indeed likely 

that some types of data may be processed more rapidly than 

others. If the input data streams are entirely independent 

this could result in an imbalance of data taken in at these 

points and consequently disturb the event distribution. If the 

data is generated from one experiment and one set of front-end 

electronics then the distribution of events processed will 

ultimately be the same as that collected by the electronics 

though some types of events may be slower to be processed and 

counted. If the data input streams originate from separate 

sources it is possible to preserve their arrival distribution 

by simply gating together the status of the input streams of 

the fed nodes, if any one node cannot accept more data then the 

others should be prevented from accepting data, this would 

ensure that those input streams that cleared faster were held 

back to match the rate at which other data items were dealt 

with. 

With the event manager presently in use, and possibly any 

future event manager, data occurs as only one output stream. 

It would seem therefore illogical to consider multiple input 

arrangements. By a similar argument to that for the 

requirement for a multiprocessor in section 2.5.2 if an event 
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manager is available that is capable of collecting event data 

at extremely high data rates it would be beneficial to be able 

to divert this along the multiple lower bandwidth paths 

(restricted by both hardware cost and any routing algorithm 

software required) to allow full use to be made of the event 

manager's bandwidth. This splitting of the data stream would 

require no processing since any routing could be performed by 

the computing system itself allowing a simple autonomous 

mechanism to perform the splitting and consequently maintain a 

high throughput. This would be an ideal point to perform the 

required gating of the input streams of data but could be a 

possible single point failure, the likelihood of such failure 

is reduced by the simple nature of such a device, the event 

manager itself being more likely to fail. 

3.4.2.6 Distinct Node Flow Models 

Most study of communication structures has concentrated 

on the performance of structures for mutual communication 

between processors engaged in a computation; properties of the 

interconnection graph such as diameter, total bandwidth and 

various path related properties have been proposed as 

indicators of performance though their value has been 

questioned[93). Since the pattern of usage of the structure 

proposed here was to be one of distribution of events rather 

than mutual communication a rather different criterion, the 

mean throughput of events has been used as the indicator of 

performance. 
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The usual methods for modelling of multiprocessor systems 

are Markov models, some form of Petri Net technique[92] or 

Queueing networks[991. Modelling of ring structures has been 

carried out using queuing networks, the approximate model 

developed by Zablotski et al[1601 serving the same purpose as 

the model developed here, permitting structural variations of 

multiprocessors to be evaluated quickly, Protopapas and 

Denenberg[1191 have developed a modelling technique for delays 

in multicomputer networks. Housheng[70] has demonstrated the 

superiority of a buffer insertion ring (of which the ring 

described below may be regarded as an example) over slotted and 

token rings using a simple queuing model. 

In this case however simple static flow models were 

developed, the flow model having a direct correspondence with 

the important criterion, mean throughput of events. A rather 

abstract approach was taken, the model being at the processor 

level[641 as it was not intended to model the system behaviour 

with a pre-conceived design and operation assumptions but 

rather to find some indication of the characteristics required 

of processors to work efficiently in such a structure. 

Simple models of both rings and cylinders were developed, 

based on flow characteristics. This does not model the 

detailed internal workings of a computing system but models the 

overall behaviour at an abstract level. This model is 

particularly relevant to asynchronous processors which, if used 

with suitable buffering should correspond well with such a 

scheme. In common with other mathematical modelling techniques 

the system being modelled is very complex and the mathematical 
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model must be a simplified approximation to the real system. 

3.4.2.6.1 Single Ring 

The first case considered was that of a ring of 

processors with data being fed into only one of the processing 

nodes. Assuming that each processor can process input data at 

a rate of Pn/R (where An is the bandwidth of new data into the 

fed processors and R is the number of processors in the ring) 

then the problem becomes trivial. Data rates around the ring 

decrease in steps of P. /R until the originating node is reached 

as shown in fig 3.2. This particular model applies to the case 

where the data must be routed to a particular node for 

processing (an even distribution is assumed) and also the case 

where any data can be processed in any node. 

Bn 

1-2) 
R 

FIG. 3-2 DATA RATES AROUND A RING 

FED AT A SINGLE NODE. 
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This assumes of course that the processing of all data 

items is identical and that the amount of additional bandwidth 

required for retrieval of the accumulated spectra is small. In 

a well buffered system the deviation of processing time of 

events from the mean values should be largely smoothed out to a 

constant mean value which is assumed to be reasonably similar 

for each processor. The accumulated data could be read out of 

the nodes at relatively infrequent intervals or, if 

bi-directional links are used, be sent in the reverse direction 

to the incoming data allowing the bandwidth required for the 

retrieval of the accumulated spectra to be small. 

Bn 

r=Bn(R-1) 
2- 

FIG. 3-3 DATA RATES AROUND A RING 
FED AT ALL NODES. 

A ring structure with a single entry point has a total 

data input bandwidth equal to that of the feed link, which does 

not meet the requirement of expansibility. The next structure 

considered was a ring structure, as above, but with data being 

fed into all of the nodes in the ring simultaneously, this is 
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shown in fig 3.3. 
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Again, P. is the bandwidth into one node from the data 

source and of is the bandwidth forwarded along a link in the 

ring and R is the number of processors in the ring. 

The assumption that the retrieval of processed data was 

not significant could be made in this case by the same argument 

as above. The situation modelled was for distinct processing 

nodes where data items had to be processed in particular nodes 

depending upon some parameter of the data. It was assumed that 

the distribution of processing of such data was uniform across 

the nodes. 

In the alternative case where any data may be processed 

at any node each processor would process the data fed into it, 

with possibly a small amount of data passed to other nodes to 

even out variations in data rates and processing rates around 

the ring. 

In the case of processor distinct processing 

on data arrives at each node from outside the ring. 

An/R data is processed at the node that it is fed into. 

Of data must be forwarded onto other nodes. 

Considering one of the links in the ring, since 1/R th of 

the data passed on from any one node is removed at each 

successive node the data from the rth node through the link 

under consideration will be 
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(R-r) 
An 0 

R 

and the total data through this link will be 

R 
(R-r) 

Of on 
R 

r=l 

which can be simplified to 

(R-1) 
ßf = 
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This relationship is fixed by the distribution of the 

processing of data throughout the processing system and still 

applies in the case of saturation of one of the communication 

links, the bandwidth of data being passed through the other 

links being restricted in proportion. This result differs from 

the value of N/2 (R/2) obtained for the mean message density of 

a one-way ring by Wittie[1581 because of the assumption that 

nodes do not generate messages for themselves, in the model 

presented here however 1/R th of the data is destined for the 

node at which it originally arrives which is effectively a self 

generated message. 

All nodes in such a processing ring are identical so the 

data flows within only one node need be considered. A simple 

diagram of the data flows within the node is shown in fig 3.4. 

In this simple model On is the bandwidth of new data 

taken in at the node, of is the bandwidth of data forwarded to 

the next node in the ring and pc is the bandwidth of the 

processing of the data items. 
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If no communication links saturate then the input data 

bandwidth is the same as the bandwidth of computation. 

K on PC Acmax 
r*(Pn 

+ Od 

where #cmax is the processing bandwidth if no data 

movement has to be performed by the processor and the term 

Kr*(On + Of) represents the amount of processing bandwidth used 

to either pass on data items or to take data from the data 

streams for processing. The lost computing bandwidth is 

assumed to be some proportion, Krs of the data dealt with. 

For the case where the communication links are not 

saturated total processing bandwidth is given by 

Total Processing = R-#c 

= Repcmax - R-Kr*(Pn + Od 

Since on = AC 

and Of - Pn-(R-1)/2 

FIG. 3-4 DATA FLOWS WITHIN A 
PROCESSING NODE OF A RING. 
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this can be re-written as 

R*)3c = R-Ocmax - R-Kr*Pc*(' 

re-arranging this gives 

Oc + gc*Kr(l + (R-1)/2) = ACmax 

and 

R-Acmax 
Total Processing = 

(I + Kr* (1 + (R-1)/2) 

58 

- (ii) 

R 
ocmax 01+ 

Kr + Kr*R/2 - Kr/2 

Graphs of this function are shown in fig 3.5 and. fig 3.6 

for Acmax '3 1 and values of 0: ýKr: ýl and 1: MM. When Kr m 01 ie 

no processing is required for routing, a linear speedup with 

additional processors is achieved. 

With this model a processor may be described by the three 

parameters, Acmax, Kr, and Ophys* 

If one or more of the processor links saturate then 

Of = Ophys 

or On = Ophys 

0.... being the maximum physical transmission rate of data. 

The other term may be determined from M above. For the 

optimum use of the bandwidth of the communication links On and 

of should both reach Ophy, simultaneously. 

I 
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FIG. 3-6 TOTAL PROCESSING FOR DIFFERENT RING SIZES AT 
VARIOUS VALUES OF Kr : Z=TOTAL PROCESSING (EVENTS/TIME). 
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#I = On 

0f (R-1 

On 2 

R3 is the optimum size of ring. 

The total bandwidth into the system #tot = R. A.. For RO 

the total input bandwidth is limited to R-PPY, but for R>3 the 

total input bandwidth is limited by pf reaching PP, 
Y, to a 

value of 

Atot R-On Reg 
phys* 

2/(R-1) 

as R- Atot 2-0 
phys 

The case where On = Of is also the case where the total 

communication bandwidth input is greatest, the total input 

bandwidth being 3-# 
phys* 

3.4.2.6.2 Cylinder 

The same approach can be extended to a structure where 

rings of processors are stacked vertically producing a 

cylindrical arrangement. This arrangement is shown in fig 3-7. 

Considering the data flows within such a structure when 

processors are distinct and data must be routed to appropriate 

processor to be processed the bandwidth relationships derived 

above may be applied. The model of the data flows within a 

processor of such a system are shown in fig 3.8. 
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Bf 1 
Bc 

3f 1 
ji 

Bn2) 

FIG. 3-1 DATA FLOWS THROUGH A CYLINDER 
FED AT ALL NODES. 

Bn 

Bd 

Bf 

62 

FIG. 3-8 DATA FLOWS WITHIN A PROCESSING 
NODE OF A CYLINDER. 
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In addition to the three links of the node model used in 

the ring a fourth link is added to allow the vertical 

connection. The bandwidth transmitted through this link is 

indicated by Od' The model of this cylindrical arrangement 

makes the same assumption about the fact that retrieval of 

spectra from the processors requires little overhead, it also 

assumes that the processing of all data items takes a similar 

amount of time. As with the model of the ring the spectra may 

be read out at infrequent intervals or, if bidirectional links 

are used, be sent in the reverse direction to incoming data 

allowing the overhead for retrieval of spectra to be ignored. 

The situation where processing nodes were distinct was 

modelled, the mapping of processing of the data over the 

structure being assumed to be uniform and data being forwarded 

to the appropriate node to be processed. Routing of the data 

was assumed to take place vertically first and then 

horizontally as is the case in the derivation of the message 

switching capacity for a square grid by Horowitz and Zarat(691. 

The structure was assumed to consist of L layers of R 

processing nodes, with the R nodes of the uppermost layer (1-1) 

receiving incoming data. 

On, is the bandwidth fed into the Ith layer, 0.1 being 

the data bandwidth fed into the top layer of nodes in the 

cylinder. Each layer of the cylinder can be regarded as a 

separate ring. Each layer of the structure will receive data 

given by 
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Onl -= Oni - Oni *(1-1)/L 

and the bandwidth of data to be processed by a layer is given 

by 

P: Ll - Pi(, +, ) = Pil/L 

It is worth noting at this point that the vertical links 

of the lower levels should never saturate since 0, (, +, ) is 

always less than Oil and P., has a maximum value of Aphya* 

Since the data input bandwidth of a layer of the cylinder 

cannot be greater than P, 1/L the optimum value for R (ie the 

value of R such that the horizontal links saturate as the data 

input bandwidth reaches its maximum value) is not 3 as in the 

case of the single ring. a 

From the bandwidth relationships determined for the ring 

structure it can be shown that 

Afl - 

Anl 

L 

(R-1) 

2 
(iii) 

as in the case of the ring model this relationship applies 

regardless of one of the data flows reaching its maximum since 

the other data flow will be correspondingly restricted. 

If no communication links saturate then the input data 

bandwidth is the same as the bandwidth of computation. 

An, ý Lopemean and A 
cl '-- (Pcmax -K r*(Pnl 

+ Ofl)) 

where the term Kr*(, 6nl + 6f. 1). represents the amount of 

processing bandwidth used to either pass on data items or to 

take data from the data streams for processing. As in the case 
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of the ring model the lost computing bandwidth is assumed to be 

some proportion, Kr, of the data dealt with. 

Similarly to the case of the ring 

Total Processing = R-Ani 

R*(Acmax - kr*(Pnl + Pfl)) 
1=1 

since Pni /L =#C 

and Of, = Onl/L 

On, = On, - On, -(1-1)/L 

this can be re-written as 

L 
(1-1) Oni (R-1) 

R-0 
ni = R- 

I#cmax 

- Kro[Oni - Pnl 0L+L 

1=1 

(R-1) (L-1) 
R-L-P 

cmax - R-L-gn, *Kr*[ 1+---I 
2L 2L 

rearranging gives 

Oni (R-1) (L-1) 

1 fjn, *K I11+---I= 
Acmax 

L 2L 2L 
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Total processing = 
R- i6c max 

(R-1) (L-1) 
+ Kr- 

[I+---I 

L 2L 2L 

R-L-0 
cmax 

I+ Kro[ 
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As a check of the consistency of this equation with the 

ring model it may be observed that for L=1 this equation 

becomes identical to that for the ring model. Graphs of this 

function are shown in fig 3.9 - 3.11 for Acmax m1 and values 

Of Kr = 0.0,0.5 and 1.0 with values of 1: Mý. 10 and 1! MK10. As 

in the case of the ring when Kr = 01 ie no processing is 

required for routing, a linear speedup with additional 

processors is achieved. These graphs demonstrate clearly that 

even a relatively small value of Kr can result in a serious 

degradation of the processing throughput. In this model a 

processor may be described by the parameters, Pcmaxt Kr and 

flPhYS* 

If of, or On, reaches the maximum value of O. hy, then the 

other term will be correspondingly restricted, that is if 

ßfl = ßphys 

or ß., u-- ßphys 

then saturation of one of the communication paths has occurred. 

The other bandwidths involved may be determined from (iii) 

above. For the optimum use of the bandwidth of the 

communication links 0., and Of, should both reach A 
phys 

simultaneously. 
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FIG. 3-9 TOTAL PROCESSING FOR DISTINCT NODE CYLINDERS 
WITH Kr=O : Z=TOTAL PROCESSING (EVENTS/TIME). 
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FIG. 3-11 TOTAL PROCESSING FOR DISTINCT NODE CYLINDERS 
WITH Kr=i : Z=TOTAL PROCESSING (EVENTS/TIME). 
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ßfi = ß', 
(R-1) 

2L 

-R- 2L +1 is the optimum shape of the cylinder 

The total bandwidth into the system #tot - R*Onl' For 

RM +1 the total input bandwidth is limited to R*P 
phy a 

but 

for RM +1 the total input bandwidth is limited by Of, 

reaching flphy, to a value of 

2L 
#tot '0 R-Oni m R-Ophys 

(R-1) 

as r -* - Ptot -o 2L*# 
phys 

The case where 0,1 - P., is also the case where the total 

communication bandwidth is greatest, the total input bandwidth 

being (2L + 1). 0 
phys* 

From the analysis above several observations can be made. 

If the processing time of data items is long compared with the 

time to communicate data, ie PC << PPhyS9 then the 

communication links will not saturate and processing bandwidth 

will be entirely dependant upon the number of processors and 

not dependant upon the size of the ring structure or the shape 

of the cylinder, with some possibly small effect due to the 

changing value of the term Kr*(Pnl + Pfl)' If #c approaches 

P., /L the processing bandwidth will tend to be limited by Ophys 

at some point in the communication structure and the optimum 

shape allows the total input bandwidth to be maximised. In 

this case the number of input links may be matched to the 

number of input sources by suitable selection of the shape of 
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the cylinder. 

71 

The model of distinct processors may be appropriate for 

I some types of processing, perhaps for cases where the storage 

requirement for spectra is large and it is desirable to store 

different regions of the spectra in separate nodes or different 

types of data may require routing to specific nodes for 

particular types of processing; or possibly in a case where an 

analytical solution was too slow to be performed, even by a 

large number of processors and a look up type of approach had 

to be adopted (see sections 2.4 and 2.5) with a large look up 

table distributed throughout the processing nodes. If this 

latter scheme were implemented then the routing would reduce to 

a simple comparison of the data with the limits of the bounds 

of the array held at that particular node to test for the data 

having found the node in which its solution resides. 

There are some disadvantages with this computing scheme, 

one of the most significant being the need to identify which 

node data is to be processed at, which is likely to involve 

some pre-processing of the data each time it is routed (with a 

corresponding high value of Kd' Considering this, it would 

seem more efficient to process each event to completion in 

whichever node it found itself and then possibly route the 

processed data to a particular node for storage. The need to 

route data to particular nodes also carries with it the penalty 

that a large amount of data shuffling is performed occupying a 

correspondingly large amount of communication bandwidth. 
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The logical conclusion of this discussion is to consider 

instead a system in which an event is processed to completion 

in the first node that is not already busy and no un-necessary 

data movement takes place. This system results in 

simplification of several aspects of the computing structure, 

notably the routing algorithm and the implementation of fault 

tolerance. 

3.4.2.7 Homogeneous Flow Model 

3.4.2.7.1 Cylinder 

An alternative to the above processor distinct scheme is 

a truly homogeneous machine where any of the data items may be 

processed at any one of the processing nodes. In this case not 

only are the hardware units identical but the software may also 

be made identical. This allows the programming of the 

processing system to be simplified considerably, as is 

discussed more fully in section 6.2, only one program being 

required rather than several programs. It is likely that this 

single program would be longer than the individual programs of 

the previous case but not much more so since the processing for 

routing may be considerably simplified and may even be fixed 

and retained in firmware rather than down-line loaded since 

this part of the program is not dependant upon the type of 

data. This homogeneous scheme does not require events to be 

routed to specific destinations, unlike most schemes[141 a very 

simple "if there's room send it" type of approach may be 

applied since data may be processed in any order. Similarly 

the problem of mapping a system of interacting processes onto 
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the machine[1431 is avoided. 
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In the case where the system is homogeneous and all of 

the top ring are fed with data the system will tend towards a 

state where only vertical communication takes place as data is 

passed downwards. However, the horizontal links are useful in 

that if processing times of events are not equal or if not all 

of the nodes of the top ring are fed with data they can be used 

to share the data amongst the processors, they also provide 

path redundancy making some degree of fault tolerance possible. 

Considering a homogeneous cylinder, since 0 
nI -K Pphys the 

lower layers should never saturate since for every source of 

data to a ring there is a corresponding processor and at least 

one communication link along which data may be sent. However, 

the further that data is sent before being processed the more 

processing is lost to forwarding data rather than completion of 

the processing of events. This should not be taken to imply 

that processing of events should be performed to the exclusion 

of forwarding data as this leads to a situation where only 

those processors directly fed with data perform any useful 

work, as has been shown by the simulation described in chapter 

4 section 4.10. 

Since there is no prescribed node to which data should be 

sent in the case of the homogeneous processor the flow of the 

data throughout the structure and the consequent behaviour of 

the structure cannot be modelled in the same way as the case of 

distinct processors. However, some general statements can be 

made without reference to the particular algorithm adopted. 
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Ignoring the computational bandwidth lost due to data 

requiring forwarding 

if PC > Ophys /L 

then #tot ,,, R-P 
phys 

ie the communication mechanisms would be the main limitation on 

throughput, as noted earlier, saturation of the lower levels 

will not take place and this limitation will be due to the 

bandwidth of data into the uppermost nodes of the system. 

if Oc < Ophys/L 

then Otot ý R-Looc 

ie the processing mechanisms would be the main limitation on 

throughput. 

Data is only forwarded a limited distance within the 

system, the distance being dependant upon the amount of 

processing required for each event. As processors are situated 

further from the fed nodes they receive a proportionately lower 

bandwidth of data to deal with. This carries the important 

implication that there is a limit to the size of the cylinder 

beyond which processors will never be supplied with data to 

process. 

The processors were described by the same parameters, 

Pcmaxs Ophys and Kr as in the distinct node model and the 

processing bandwidth was assumed to take the same form: 

ße m ßcinax - Kr*(ßn + ßt) 
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as in the model for the distinct node processor. 

The data flows in the homogeneous model are largely 

algorithm dependant and not predictable in the way that they 

are in the non-homogeneous scheme making prediction of the 

processing bandwidth spent towards movement of data and the 

remaining processing bandwidth considerably more difficult. 

If all processors are fed with data the simplifying 

assumption that processing of events is sufficiently similar 

for Pf to be insignificant or to have a cancelling effect with 

of of adjacent nodes and that each column behaves largely 

independently is made. Only one of such columns of processors 

need be considered. 

The computing bandwidth at the processor 1 in the column 

is given by the equation 

Pcl m Ocmax - 1ýr*flnl 

and the bandwidth of data sent down to the next layer (Od) is 

given by 

ßd Z* ßn1 - ßel 

The bandwidth into any layer of the column is given by 

L-1 
(Pcmax - Kr. A. 1) 

1-1 

the recursive nature of this relationship does not allow a 

general equation for a maximum value of P., in terms of L, 

Pcmaz and Kr to be readily found, the values of On, may be 

calculated recursively from #nil Kr and A 
Cmax, 

It is also 
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possible to calculate Pnj recursively in terms of L, Kr and 

Pcmaxg a plot of total input bandwidth for values of R-1, 

': ýL: M, 0: ýKr-: ýl and Pcmaz m1 is shown in fig 3.12; this shows 

clearly that, like the distinct node processor case, relatively 

small values of Kr give rise to serious degradation of the 

processing throughput. 

The values of P., at maximum loading may be obtained by 

considering first a single processor. The computing bandwidth 

is given by 

Acl . Pcmax - Kr*Pnl 

and since no data is sent on to another processor P 
nImOcl 80 

the maximum processing bandwidth is given by 

Ocl - 

Pcmax 

1+Kr 

Considering next a processor above the one just 

considered, in this case the processing bandwidth is given by 

#C(1-1) = Pcm&x - 

and on(I-1) = oc(1-1) 

= Oc(1-1) + Onl 

combining these gives 

oc(I-1) = Acmax - Kr*Pc(I-1) - KroOnl 

Pc(, 
-, )*(l, 'Kr) w Ocmax - Kr*Pnl 

Ocmax - Kr"Pnl 

1+Kr 
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Pcmax - Kr*Pnl 

- #jnI 
1+K 

r 

Applying this equation recursively allows the maximum 

value of P. 
1 to be obtained. Achieving this maximum flow 

through the processors is very much dependant upon the 

algorithm used for communication. 
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FIG. 3-12 INPUT BANDWIDTH FOR A HOMOGENEOUS COLUMN 
OF PROCESSORS Z=MAXIMUM BANDWIDTH (EVENTS/TIME). 
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This model describes the behaviour of one column of 

processors within a homogeneous cylinder of processors fed with 

data at all of the processors in the top most layer of the 

cylinder. One of the advantages of the homogeneous cylinder is 

the ability to feed data into the system at any or all points 

as desired though this flexibility makes useful performance 

predictions rather more difficult. 

A cylinder fed with data is likely to feed the larger 

part of its data downwards, with minimal horizontal 

communication, giving a total input bandwidth close to R times 

the input bandwidth for a single column calculated above. 

If the cylinder is fed at less than R of the processors 

the balance of communications assumed above would be broken. 

The bandwidth calculations above are related to the path length 

of the data, the total bandwidth of the cylinder not fed at R 

nodes will be dependant upon the mean path length of the data 

through the system. The mean path length could possibly be 

used in place of L to provide an estimate of the maximum 

computational bandwidth. 

3.5 Relationship To other Topologies 

The topology proposed is that of a cylinder of processors 

connected as a direct connection network computer. The 

cylinder can be regarded as a rectangular array with additional 

connections to produce rings in only one direction. These 

cyclic connections give an advantage over a rectangular array 

(or a tree) in that data will not reach a $dead end" if not 

accepted by a processor but will cycle round the ring until 
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either accepted by a processor or sent to another ring, similar 

design considerations have been outlined by Hyvýrinen[741. 

This development could be taken a stage further, with 

connections from the top of the cylinder to the bottom to give 

a toroidal surface[1521. However this arrangement, though 

having cyclic paths both vertically and horizontally, would 

require nodes to be fed with data to have four communication 

links plus a link to fed data into the node. Though an 

additional link would not be technically unfeasible, for all 

nodes to be identical in physical construction and not feed 

data in at all nodes could leave something approaching 20% of 

the communication hardware redundant, resulting in reduced cost 

effectiveness. 

Inspection of the way that the cylindrical arrangement is 

used, with the decreasing bandwidth fed to the lower nodes, 

would perhaps suggest that an inverted pyramid structure would 

provide a better mapping to the problem. Though this is 

probably true to some extent this would leave some nodes with 

links unused if the intended identical nodes were used to 

construct the system, with a consequent loss of path redundancy 

and no additional processing could be anticipated. 

3.6 Relationship to other Systems 

The distinct node scheme presented uses similar 

processing nodes and operating system mechanisms to that 

described by Ansade et al[81, the asynchronous operation of 

separate processors being common to both. Many of the 

synchronisation and similar problems studied by Ansade and his 

u. 
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colleagues are avoided by the homogeneous processing scheme. 

The homogeneous processing scheme is similar in many 

respects to the scheme used by Glendinning and Hey[571, in this 

scheme a 'reserve$ of TRANSPUTERS are used to process events 

independently, either for theoretical simulation or for data 

processing, using the same program in each processor operating 

on different and independent data. The communication structure 

used in this work was a simple chain of processors in a linear 

arrangement and also involved a distinct master TRANSPUTER and, 

unlike the homogeneous scheme presented here, does not offer 

any fault tolerance. 

Both the distinct node and homogeneous schemes are driven 

by the arrival of data to process and are in essence a large 

grain dataflow computer[40,111,811, the grain being set at the 

level of the entire program and the parallelism being 

introduced through replication of the dataflow graph. Many of 

the problems even of macrodataflow[581 are circumvented by this 

choice of grain size. 

3.7 Fault Tolerant Nature of a Cylinder 

3.7.1 Path Redundancy 

The cylindrical structure proposed has a considerable 

amount of path redundancy, for any data that would have been 

sent through a failed link may be sent down to a lower ring and 

for any failed vertical link data may be passed around the ring 

to a node with a functioning vertical link before being passed 

down. Though some links must carry additional data traffic as 

II 
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a result of this re-direction the lower layers will not be 

heavily loaded unless this has specifically been arranged'to be 

the case and alternatively it is possible to ensure that links 

are slightly underloaded to permit re-direction of data without 

causing saturation. 

3.7.2 Link Failure 

3.7.2.1 Distinct Node Case 

In the case of distinct processing nodes the failure of a 

link must cause re-direction and the communication algorithm 

must permit data (as opposed to results) to be sent both up and 

down in the vertical direction, involving the mixing of data 

and results (this may allow-deadlock situations to be created). 

3.7.2.2 Homogeneous Node Case 

In the case of a homogeneous processor the processor to 

which data is sent is of no consequence, however if a 

horizontal link fails this could produce a processing 'shadow' 

where the following processors in the same ring do not receive 

any data, this effect should not be evident if all of the 

uppermost processors are fed with data and may be simply 

overcome by allowing data to be sent upwards as well as 

downwards, again this would involve mixing data and results 

though there should be no attendant problems of deadlock as 

events are completely independent and may be routed round 

queues of data and results. 
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3.7.3 Processor Failure 
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Failure of a processing node such that is does nothing 

would be identical to failure of the four links connected to 

it*. If a fed node fails then no data will be fed to the system 

at that point and if only one node is f ed with data then this 

is a possible single point failure of the system. 

3.7.3.1 Data Sink Failure 

There are three other principal cases of failure of a 

processing node. A processor may fail such that it will accept 

data and not t. ake any corresponding action, acting as a sink 

for data. This situation would not produce any symptoms 

readily detectable by the other processors, however this could 

be dealt with by using suitable error detection software 

mechanisms[4]. This could ensure that if a processor were not 

providing finished results then no further data items would be 

accepted. 

3.7.3.2 Data Source Failure 

A processor may also fail such that it generates output 

data that is not the result of processing input data items, 

this could take two forms; a random stream of 'noise' data or a 

stream of correctly formed processed events but carrying 

meaningless values. The former may be detected and dealt with 

(simply ignoring the 'noise' would be an effective remedy) by 

requiring valid data to be framed correctly ie with an 

appropriate header and correct checksum etc, the probability of 

a valid frame being generated being very small. The latter 
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case is somewhat more difficult to deal with since no readily 

detectable symptoms are produced as far as the other processors 

are concerned. The erroneous behaviour of a processor may be 

detected and dealt with using suitable software error detection 

mechanisms within the failed processor[4]. This could ensure 

that if a processor were producing unwarranted output data then 

the processor would shut itself down or take some other action. 

In this case, as in that where data is accepted without 

producing a corresponding output, a simple count of data items 

accepted as compared with results produced with appropriate 

action being taken if an unacceptably large discrepancy arises 

could be used to detect erroneous behaviour. 

3.7.3.3 Faulty Processing Failure 

The final and most difficult form of processor 

misbehaviour to detect is that where data items are accepted 

for processing and the results sent on correctly but the actual 

processing performed is erroneous. This could be dealt with 

using N Modular Redundancy (NMR)[41, this would require either 

N processors at each node or a rigidly defined communication 

and interaction scheme between N processors of the system, both 

methods involving a reduction in processing 'power' by a factor 

of approximately N as compared with a system not implementing 

NMR. Having the N processors at one node would be a more 

efficient solution as it would avoid the use of the network to 

compare results with the attendant problems of network loading 

and routing. Having all N processors in one node allows a 

simple comparison of the results, results over which there is a 

disagreement may simply be destroyed avoiding the need for 
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rollback[4,801, this loss being small in comparison to the 

total number of events processed. However, this situation 

cannot be left to continue unabated as if the processor 

continually destroys results it will become a 'sink' for data 

as in section 3.7.3.1 above. in the case of the homogeneous 

processor the action taken on detecting an error by the NMR 

implementation may simply be to shut the processor down, 

because of the inherent fault tolerance of the network no 

action would be necessary to maintain the function of the 

system. This would result in the destruction of an event, 

however at a processing rate of 10 000 events per second (an 

order of magnitude less than that targetted which may or may 

not be regarded as significant depending upon the experiment) 

the resulting error after 1 second would be 0.01% of the total. 

In such a situation where a result is not essential following a 

failure, only the detection of failure, 2 Modular Redundancy 

could be applied with a consequent minimising of cost. 

3.7.4 No-Action Resilience to Faults 

In the case of distinct processors the NMR error 

detection mechanism could be used to provide corrective action, 

because of the mapping of event processing onto the system a 

processor cannot simply be shut down without preventing the 

processing of a particular group of events. 

For a homogeneous processor however, provided that the 

processing nodes can be relied upon not to misbehave in one of 

the ways mentioned above then the network would ensure graceful 

degradation of the processing performed without the system or 
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the user having to perform any corrective or reconfiguration 

action, unlike most fault tolerant schemes which require the 

system to repair itself after a fault[4,15,53,141. In f act 

only the node that has sustained failure need be 'aware' that a 

fault has occurred; an inactive processor would appear to any 

processor that attempted to send it an event as already busy, 

if this were the case then the sending processor would simply 

send the data along the alternative output link and the data 

would pass around the fault through neighbouring processors, 

this mechanism could lead to a processing 'shadow' as mentioned 

above. 

This graceful degradation would not continue indefinitely 

as the failed processors and links could soon form a cut-set 

within the topology and isolate a possibly large section of the 

network. For this reason it would be desirable to allow for 

the provision of replacement of faulty processing nodes within 

the system with the system running. 

3.7.5 On-Line Replacement of Processors 

3.7.5.1 Reprogramming 

For a system consisting of distinct processing nodes a 

replaced processor would require reprogramming with its 

location within the network and the routing and processing 

programs for the data it would be intended to deal with. 

Unless each processor were to store the programs for its 

immediate neighbours, considerably increasing the memory 

requirements, the programmming information would have to be 

sent through the network interfering with its normal operation. 
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In this instance, with the implementation of NMR, replacement 

of processors should rarely be required and re-initialisation 

of the system following processor replacement would probably be 

the most cost effective strategy. 

For a homogeneous processor many of these problems would 

not exist or would be significantly reduced in complexity. 

Since all processors execute exactly the same program no 

additional memory is required for storage of neighbour nodes 

programs as this is inherent in the nature of the system. All 

that would be required would be the facility for processors to 

request a copy of the program from one of their nearest 

neighbours. 

3.7.5.2 Hardware Requirement 

Both of these schemes require specific capabilities of 

the hardware not provided for by all communication schemes. 

When a processor is replaced the adjacent processors must be 

informed of the availability of the replaced processor, this is 

easily achieved at the software level. Problems may arise with 

some types of hardware communication protocol however, simple 

handshake lines present no problem but protocols that implement 

an acknowledge mechanism at the hardware level using 

transmitted acknowledge packets [78,10611095671 require both 

communicating nodes to be restarted if one the the nodes 

suffers a failure as otherwise one of the nodes could possibly 

have lost an acknowledgement and be left unable to send data. 

If the facility is not available to restart individual 

communication circuits within a processing node then all 
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communication must be restarted and this will have a knock-on 

effect ultimately requiring restarting the entire system. This 

problem does not arise at the software level since the state of 

any part of the software mechanism can be independently set as 

appropriate. 

3.8 Distributed Depth First Search 

Several situations arise where it is desirable to 

interrogate all of the processors of the network in turn, for 

testing of the processing nodes or to verify that the 

connection topology is correct. An algorithm was required to 

enable this to be carried out in a systematic fashion. Two 

principle established algorithms for searching of graphs exist, 

these are the depth first search (DFS) and the breadth first 

search (BFS)[132,411, though others do exist. Both of these 

algorithms are well known for searching graphs using a 

monoprocessor and both create a spanning arborescence of the 

graph, algorithms also exist for searching of such graphs in 

parallel[671. Neither of these were what was required, this 

being for the algorithm itself to be reproduced at all vertices 

of a graph and for the active node to progress through the 

graph as the node under consideration would in the case of the 

monoprocessor algorithm. The data exchanges within the 

monoprocessor algorithm would have to be replaced with transfer 

of data across the network making up the graph. The depth 

first search was developed into a distributed algorithm though 

the same approach could be applied to the breadth first search 

algorithm. Additional data exchanges were added. to the 

algorithm to provide a more complete description of the 
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interconnection graph than a spanning arborescence. 

3.8.1 Development of the DDFS Algorithm 

The starting point for the development of the algorithm 

was the algorithm as quoted by Sedgewick[1321. 

procedure dfs; 
var now, k: integer; 

val: array[l.. maxV]of integer; 
procedure visit(k: integer); 

var t: link; 
begin 
now: =now+l; val[kl: =now; 
t: =adj[k]; 
while t0z do 

begin 
if val[tA. v]=O then visit(t-. v); 
t: =t*"*. next; 
end 

end; 

begin 
now: =O; 
for k: =l to V do val[kl: =O; 
for k: =l to V do 

if val[K]=O then visit(k); 
end; 

This algorithm is intended to scan an adjacency list held 

in a monoprocessor and a great deal of the detail is specific 

to the representation. The important details are the 

initiating call to visit(k) (in the algorithm above all of the 

nodes stored are tested to allow non-connected graphs to be 

scanned), the tests of vallt-. vl for all of the nodes to which 

the node being scanned is connected and the resulting visit to 

the connected node. 

The distributed algorithm is not required to visit its 

connected nodes until it is visited by another node, the 

initial visit being generated by an external driver. The 

initialisation of the assigned values was performed by each 
I- 
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node declaring itself as unvisited on commencement of the 

program. The procedure visit is recursive the calls of the 

procedure being replaced by interactions between processors, 

the procedure visit was split into two parts, visit call and 

visit answer, a call to visit being represented by the 

interaction between the procedure visit call of one node and 

visit answer of the next. Since vertices of connectivity : ý4 

were under consideration the links t were represented as the 

integers I to 4. These changes give a first outline for the 

modified algorithm. 

procedure ddfs; 
var now, val: integer; 

procedure visit-call(t: link); 
begin 
send now to visited node; 
while waiting 

if val - requested then 
send val to requesting link; 

receive new now from visited node; 
end; 

procedure visit answer(t: link); 
begin 
receive value of now; 
for t: =l to 4 do 

begin 
if valreq(t) =0 then 

visit call(t); 
end; 

return new value of now; 
end; 

begin 
repeat 

begin 
wait for something; 
if visited then 

visit answer; 
if val_requested then 

send val to requesting link; 
end 

until forever; 
end; 
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The function valreq is one to return the value of the 

node (if any) connected to link t. This would involve some 

interaction between the two processors in addition to visit 

call and visit answer interactions. 

3.8.2 Circuits and Self-Loops 

Inspection of the behaviour of the algorithm reveals an 

inability to cope with some cyclic graphs where the node that 

is next to be visited is already part of the visit call/answer 

chain. Unless the algorithm can respond to val requests while 

engaged waiting for the response from its visit call cyclic 

graphs cannot be scanned correctly, this is the purpose of the 

code to respond to val requests in the visit-call section of 

the algorithm though this still does not permit self-loops to 

be scanned. 

3.8.3 Use of Multi-Programming 

With the increasing availability of multiprocessing 

systems it was possible to consider an algorithm using such a 

facility, a separate process could be set up to respond to val 

requests at any time allowing all graphs to be scanned 

correctly. With this modification the algorithm written in a 

pseudo parallel pascal using parbegin/parend to indicate 

parallel execution[441 becomes: 
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procedure depth first search; 
var now, val: integer; 

procedure valresponse 
begin 
wait for a request for val; 
send val to the appropriate link; 
end; 

procedure ddfs; 

procedure visit call(t: link); 
begin 
send now to visited node; 
receive new now from visited node; 
end; 

procedure visit answer(t: link); 
begin 
receive value of now; 
for t: =1 to 4 do 

begin 
if valreq(t)=O then 

visit call(t); 
end; 

return new value of now; 
end; 

begin 
wait for something; 
if visited then 

visit answer(t); 
end; 

parbegin 
valresponse; 
ddfs; 
parend; 
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All that the system needs to function is a visit call to 

one of the nodes. 

3.8.4 Use of DDFS for testing 

The algorithm above provides little useful information, 

to be useful some additions need to be made to return some 

information to the interrogating node. To allow the connection 

pattern to be tested the link connections must be added to the 

information passed back with the new value of now, with the 
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recursive nature of the visit call/answer this information will 

ultimately be passed back to the interrogating node. if 

testing of the processors is required this can be performed as 

part of the DDFS, the test results may be passed back to the 

interrogating node with the assigned value and 'the link 

connection information. This assumes of course that the 

processing nodes are actually capable of running the test 

programs, if not then the node will not appear in the graph 

returned, a result that itself indicates a fault. A large 

amount of work on fault detection schemes in the presence of 

faulty nodes has been done[ 118,16,32,63,27,1051 and such a 

scheme could be used to test the system. The purpose for which 

the search algorithm was principally developed was to allow the 

initial correct connection pattern of the network to be 

verified since a simple 'patch panel' type of construction was 

envisaged in the interests of flexibility and ease of 

replacement of processors. The implementation of the algorithm 

is explored more fully in chapter 6. 

I 
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CHAPTER 4 

SIMULATION OF PROCESSING STRUCTURES 

4.1 ]Introduction 

The ring and cylindrical structures considered in the 

previous chapter were based on regarding the system purely as a 

set of data flows. This chapter describes simulations of such 

structures which were undertaken as a precursor to hardware 

development to explore various aspects of the behaviour and 

performance of the computing structures proposed. 

The first stage involved the simulation of a single ring, 

experience gained with the ring was then applied to the 

selection and design of simulations of cylinders of processors. 

The programs used for the simulations are to be found in 

appendices 1- 

4.2 Processing Element Model 

The processing elements of the computer structure under 

simulation were modelled as a sequential machine[411, with the 

state diagram show in fig 4.1. 

Initially the state of a processor would be zero, this 

state being used to indicate that the processor is idle and 

waiting to accept further data. The sequential machine is then 

set to a state when it commences processing of an event, the 

state assigned representing the complexity of the computational 

task, as the event is processed the processor takes a 
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progressively lower state until the state zero is reached, i. e. 

the processor is idle once again and can accept a further event 

to be processed. 

BUSY IDLE 

N-1 ) 23- N-2 1- -- e2)1) 

PROCESSING ACCEPT TASK----ý 

FIG. 4-1 STATE DIAGRAM OF THE PROCESSOR MODEL 
USED FOR SIMULATION. 

4.3 Communication Hardware Model 

The communication structure supporting these processors 

was modelled at the register transfer level[1211 as a set of 

input or output buffers within each processor, these being 

connected to the appropriate buffer in a separate node by a 

communication link. The action of the communication hardware 

was represented by a transfer of data from the output buffer of 

one processor to the input buffer of another, with necessary 

changes to internal flags to indicate the state of the buffers. 

4.4 Iterative Nature of the Simulation 

The action of the communication mechanism and the 

processing elements were simulated in an iterative fashion, 

each iteration representing a time unit (Equitemporal 
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Iteration[1211). This approach produced a system model that 

would operate with globally synchronised communication and 

computation, this could allow some undesirable aspect of the 

real system's behaviour to be overlooked. 

4.5 Communication 

There were two stages to each iteration, the first 

involving the transfer of data from the output buffers to input 

buffers, this being carried out in accordance with the 

connection pattern of the ring or cylindrical structure. 

4.6 Data Input Mechanism 

At this stage fresh data was placed in the upper input 

buffers of the nodes of the ring which were empty, this 

achieved the function of the data input mechanism. Data was 

placed into any input buffers that were empty so that buffers 

were filled as fast as they were emptied, this allowed the 

computing structure behaviour to be simulated without 

interference from the effects of the input device. 

Several different schemes of inputting data were 

implemented depending upon the simulation being carried out. 

In the distinct node set of simulations the data represented 

the node in which the event would be processed and the 

processing task incurred by the processor on receipt of this 

event would either be a user defined constant or one of a range 

of randomly selected values, the distribution of the random 

numbers used for these simulations is shown in fig 4.2. 



Lli 
T, 

r--" 
ui cn 
(f) Lli 

ci: > 
LLJ 
(ri LLJ 

LL 
L3 Lli 

LD 
1--4 

M f-4 

cr <1 

Cf) :: D 

0i 

XZ 

co 

SIMULATION OF PROCESSING STRUCTURES 

00 CD 000 
0 CC) 0 Cu 
ýl 

3, TlVA H3V3 -ýO S33N3umm 
-ýo H39NnN 

CD 
CD 
ýl 

0 
CD 

(D 
LD 

CD 
Iq 

0 
cu 

0 

LLJ 

97 



SIMULATION OF PROCESSING STRUCTURES 98 

The required processing effort to completely deal with the data 

is referred to as the data type in the discussion that follows. 

In the homogeneous set of simulations performed the data simply 

represented the amount of processing required to complete the 

event, provision was made to supply differing types of either 

fixed or random complexity to each node. Data having a 

randomly distributed type was notated as having a type of Rn 

where n is the maximum value of the data type and given a 

negative value rather than a positive value as for constant 

type. 

A count of the total number of events supplied to each 

node was maintained and this was included as part of the 

results for possible use as a performance indicator. 

4.7 Computation 

The second stage of each iteration was the simulation of 

the action of each processing node, there being two actions 

carried out by the processing node, the routing of data and the 

processing of data. These two actions could be performed by 

distinct parts of a processor in a practical implementation as 

in the asynchronous cells studied by Ansade et al[81 or by 

separate concurrent processes within a processor. Several 

different routing algorithms were tested in this scheme. A 

fixed amount of 'processing effort' was available in each 

iteration and for each data transfer carried out within a node 

some of this processing effort was consumed. The action of 

processing was simulated by decrementing the state of the 

processor by the amount of 'processing effort' available 
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remaining after the communication had been performed. On 

completion of the processing of an event, indicated by the 

processor entering state zero, a count of the total number of 

events of each type was incremented as appropriate, to provide 

an indication of performance in terms of completed events. In 

all of the simulation discussions that follow the value taken 

as the maximum 'processing effort' was 4 units per iteration 

with one unit deducted for each data transfer performed. The 

amount of processing consumed was perhaps rather high, this was 

made so deliberately to exacerbate any potentially serious 

communication effects and to make such effects show up more 

readily and clearly in any of the simulations performed. 

4.8 Performance Indicators 

In addition to the counts of events taken into the system 

and completed events as performance indicators a 'Weighted 

Total Processed' was kept. This was the sum of events of each 

type processed with a weighting applied to each type according 

to the processing time required for completion of that event 

type. This is effectively the total usefully applied number of 

processor cycles and takes into account variations in 

processing time for different types of data. 

4.9 Startup Effects 

On commencement of the simulation all of the nodes were 

in an empty state as a real machine would be immediately after 

having been programmed. It would have been possible to 

initialise all of the nodes to some form of 2steady state" 
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value to allow simulation of the steady state flow within the 

system without interference from any other effects, it was 

however considered undesirable to do this; this would avoid any 

tendency to influence the outcome of the simulation by 

initialisation of the system into an artificial state that 

perhaps would not occur in practice and would also determine 

that no untoward conditions arose during initialisation as data 

percolated through the various systems under study. For these 

reasons the simulated systems were started up from an empty 

state, for simulation intended to observe the steady state 

throughput of the system, as most of them were, this would 

produce an apparent lowering of the throughput of the system as 

some processing cycles would be required simply to fill the 

system with data. This would be particularly pronounced for 

extremely large systems and small numbers of iterations. The 

larger part of the simulations were carried out over 1000 

iterations, this was considered to be large enough to make the 

initialisation insignificant for most of the systems 

investigated. For a 100 node system this would require 

something in the region of 20-200 iterations (dependant on the 

diameter of the interconnection graph and the number of nodes 

fed with data. ) to fill the buffers and would produce -20% 

error. It is possible that this is a pessimistic estimate as 

some processing would be performed during these initialisation 

cycles and most of the systems simulated were of a size 

considerably less than 100 nodes. The figure of 1000 

iterations proved to be something of a practical limit since 

the time taken to run these simulations on a Pr1me 9955 

minicomputer took several minutes for each simulation with a 
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particular system shape and data type. 

4.10 Preferential Communication Algorithms 

Communication was given preference in the computing 

scheme implemented, this decision is readily justified by 

considering the converse case. If 'processing effort' were 

directed towards completion of the current event then 

communication would only take place, if at all, when the 

processor was idle. In any situation other than. that where all 

processors were fed with data individually this would 

inevitably lead to processors remaining idle while data was 

waiting to be processed. One simulation of this type of 

algorithm was carried out and performance was equal to that of 

a single processor regardless of the number of processors 

available. Following this result this line of investigation 

was not pursued further. 

4.11 Distinct Node Simulations 

The first set of simulations carried out were a 

simulation of the scheme developed where data types were to be 

routed to particular nodes for processing. Initially rings 

were simulated, since the cylindrical structure was a 

development from the ring and it was believed that experience 

gained with the ring simulation could provide indications of 

areas of interest with the cylindrical structure. 
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4.11.1 Data Routing Information 

In all of these schemes the data supplied to the system 

was the address at which the data should be processed and was 

passed around until the data reached the correct processor. In 

the case of the ring structure this address was simply the 

number of the processor around the ring, in the case of the 

cylinder the address was the value: number round the ring + 

(100 x layer number) which allowed the layer and ring values to 

be sent as one integer value. The data was passed around the 

ring until the address of the data matched the 'identifier' of 

the processor node, once this situation occurred the data had 

been routed to the correct node and the processor was allocated 

a fixed amount of processing work to perform. All of the data 

packets in this scheme effectively had a fixed type. This 

fixed type could be changed by the user and if a negative value 

were used for the data type this would produce a random type, 

evenly distributed up to the value indicated. 

4.11.2 Ring Simulation 

4.11.2.1 Algorithms Investigated 

The possible algorithms for movement of data within such 

a processing system were restricted only by the designers 

imagination and creativity. Algorithms where data were 

processed in preference to communication being performed were 

excluded from study for the reasons stated above in section 

4.10. Two out of the many possibilities were selected as cases 

for study. 
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The algorithm was split into two sections of code, one 

taking data from one of the data streams for processing and the 

other taking data from one of the data streams and forwarding 

this on to the next node. These sections of code had a similar 

structure in both algorithms, if the space to which the data 

was to be sent was ready to accept more data then first one 

possible source and then the other was tested for the presence 

of data, any data found being passed on. This produced two 

algorithms, in one preference was given to new data coming in 

from above and in the second preference was given to data from 

the ring. 

This essentially simple scheme would not suffice in the 

distinct processor system, some tests for a match between the 

data and the identity of the processor being required. This 

complicates the algorithm but not excessively so, data destined 

for processing at that particular node must not be sent past 

and data not destined for processing at that node must not be 

accepted for processing. 

The algorithms as they appear in the programs (which are 

to be found in appendix 1) are shown below, short procedures 

and functions for common facilities have been written allowing 

this algorithmic style of program. 

4 



SIMULATION OF PROCESSING STRUCTURES 104 

begin (* COMMS1 *) begin (* COMMS2 *) 
if processor - 

idle then if processor idle then 
- data then if new ta then if ring_da 

data right then - if new if ring_data_right then 
- take 
- 

newjata take ring_data 
- 

else else 
if ring_data then if new data then 

right then data if ring if new data right then 
- _ _ take 

- 
ring_data newjata take 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

else else 
if ring_data then if new data then 

right then data if ring if new 
- 

data_right then 
_ _ data ring take take new-data 

- _ _ else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

if ring_ready then if ring_ready then 
data then if new if ring_data then 

- if not new 
- 

data_right then if not ring_data_right then 
new 

- 
data_on ring_data_on 

else else 
data then if ring if new 

- 
data then 

_ data right if not ring then if not new 
- 

data-right then 
_ _ ring_data_on new-data_on 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

else else 
data then if ring if new 

- 
data then 

_ if not ring_data_right then if not new 
- 

data right then 
ring_data_on new-data_on 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

end; (* COMMS1 end; A* COMMS2 

4.11.2.2 Performance of the Algorithmn 

The two ring communication algorithms were tested with a 

variety of input data types (see section 4.6) ranging from 1 to 

50 inclusive, ie from purely communication bound through to a 

situation where the processing was computation bound, in 
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addition to constant data types similar simulations were 

carried out using data of even random distribution (see section 

4.6). It was thought that any tendency for the processors to 

become Isynchronised' due to the regularity of the data would 

be avoided, obviously this could not be done for data of type 1 

since only one value of the data type was possible. 

4.11.2.2.1 Communication Bound 

Taking the data types dealt with in order, fig 4.3 shows 

the variation in weighted total processing (WTP) achieved with 

different sizes of ring fed with data of type 1. For a ring 

fed with data requiring so little processing Pcmax can be taken 

to be 1 (since only one event may be accepted to be processed 

at each iteration in the simulation model) and Kr may be taken 

to be zero as regardless of the number of data transfers made 

within a node sufficient processing remains to process the 

event to completion. The value of P 
phys would be 1 as only one 

event may be passed along each link in one direction. The 

bandwidths are all in events/iteration and Kr is a 

dimensionless constant. In the graph line 1 represents the 

behaviour of algorithm 1, line 2 represents the behaviour of 

algorithm 2 and line 3 shows the values predicted by the flow 

model of section 3.4.2.6.1. The most obvious feature of the 

graph is the behaviour of line 2, up to a2 processor network 

the algorithm processes as much data as algorithm 1, however, 

beyond a ring size of 2 processors the processing drops * to a0 

very low level. Running the simulation for large numbers of 

iterations has shown that what is occurring is not merely 

process starvation, but total lockout or deadlock. 
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In fact what is believed to happen is that a situation builds 

up where all of the processors buffers are full with data that 

cannot be processed at that node (the output buffer can only 

contain data that cannot be processed at that node) for all 

processors. In this situation no data may be passed on since 

the buffer is full and the buffer cannot empty because the 

following processor is in a similar situation. This situation 

where all buffers are filled with data not for the processor in 

which it resides arises out of the priority with which input 

data is dealt with, preferentially more data is accepted into 

the system, this causes a chain of unprocessed and 

I unprocessable (by the node in which it resides) data to build 

up behind each processor, any processable data being sifted out 

of the chain by the processor. This rapidly produces the 

deadlock situation above. 

When this algorithm is used in a ring fed with data with 

a randomly distributed processing time this effect is still 

present lending credence to the idea that this effect is 

produced as a result of the algorithm used rather than some 

effect due to the uniformity of the data. 

The behaviour of algorithm 2 (line 2) shows no signs of 

the deadlock of algorithm 1, such a situation is prevented by 

the preference given to data from previous nodes in the ring, 

this prevents the backlog of data which could cause deadlock. 

The curve tends towards a value for weighted total 

processing (WTP) of approximately 2000 which is consistent with 

the predictions made in section 3.4.2.6.1 which suggests that 

the asymptotic value of the total bandwidth as R -+ - is 2*AP,. 
Y, 
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events/iteration for events of type 1 and over 1000 iterations 

gives a total processed value of 2000 'processing units'. 

Another main feature of this curve is the shifting of the peak 

from the predicted position at R=3 to a position nearer to R-5. 

Consideration of the factors that should induce such a peak, ie 

that of a balance between the bandwidth of data passed around 

the ring and the bandwidth of data fed into the ring such that 

the maximum input flow is obtained without causing saturation 

of one before the other, implies that there is a tendency for 

there to be a greater bandwidth of data transmitted around the 

ring rather than into it with a consequently larger ring size 

being achievable before both bandwidths reach a simultaneous 

limit. A ring size of 5 would imply that the bandwidth around 

the ring is twice that of the bandwidth into the ring, ie 

Af=2-Pn from (i) of section 3.4.2.6.1. Considering the values 

of processing bandwidth allows further insight into the systems 

behaviour to be gained. The peak value, ie total processing at 

R=5, is almost 2500, that is a mean value of 0.5 

events /iteration supplied to each vertical link, which is the 

value which will produce saturation (Pf=Aphy. ) of the 

horizontal links. The total processing when R=3 is -2000 which 

is a mean value of 0.66 events /iteration supplied to each 

vertical link, producing a mean flow of approximately 0.66 

events/iteration in the horizontal links. This behaviour 

occurs as a result of the algorithms inherent priority for 

communication in the horizontal direction. The algorithm will 

transfer an event from the horizontal input to the horizontal 

output of a node in preference to accepting new data and 

transferring this to the horizontal output. Of course if data 
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arrives at the node at which it is to be processed it will be 

taken for processing as soon as the processor become free for 

reasons outlined in section 4.10, though even in this case 

preference would be given to data arriving from other nodes in 

the ring. This behaviour of the algorithm forces data at the 

vertical input links to wait until there is no data at the 

horizontal input link or that the data at this link is not to 

be processed at that node. Despite the rather crude buffering 

scheme of the simulation the flow model is a reasonably good 

predictor of the form of behaviour exhibited by the system 

though the particular values are influenced by the details of 

the algorithm involved. In the experimental environment in 

which processing is to be performed the actual values need not 

be precise since the processing time for events will vary from 

one experimental set up to another as will the importance of 

processing time. 

4.11.2.2.2 Intermediate Data Types 

Two simulations of the ring were carried out with 

intermediate data types, data of types of 5 and 10 and randomly 

distributed data with mean values of 5 and 10 were used. 

The simulation using data of type 5 had values of 

Pcmaz m 1/2, Kr m 1/4 and Pp, 
y, m 1, the bandwidths being in 

events/iteration and Kr being a dimensionless constant. 

Examining the behaviour of the algorithms shown in fig 4.4, 

lines 1 and 3 show the behaviour of algorithm 1 and lines 2 and 

4 show the behaviour of algorithm 2. 
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The first of each pair of lines shows the behaviour when fed 

with data of constant type 5 and the second line of each pair 

shows the behaviour of the algorithm when fed with randomly 

distributed data with a mean value of 5. Line 5 shows the 

values predicted by the flow model of section 3.4.2.6.1. 

Immediately obvious is the deadlock that occurs with 

algorithm 1, again no deadlock occurs using this algorithm for 

values of R: ý2. 

The value of Kr selected, 1/4, stems directly from the 

simulation, the value for Acmax would appear to be 

appropriately set at 4/5 events/iteration, however since 

processing remaining after completion of an event may not be 

usefully applied to the next event this 'lost' processing 

effectively becomes part of the processing required for an 

event so that two full iterations of processing are required to 

complete an event. Hence Pcmax = 1/rs/, tl events/iteration 

(where rxi is the smallest integer not less than x) was used, 

giving P 
cmaz = 1/2. 

This inconsistency between the model which assumes a well 

buffered uniform flow and the simulation which consists of 

discrete iterations and minimal buffering results in a lower 

throughput of events, which can be taken into consideration to 

some extent with the changes in Acmax outlined above. This 

change in Pcmax also requires some adjustment in the expected 

corresponding weighted total processing as only those 

processing units actually used for processing an event will 

form part of this total whereas all of the processing units 

used towards an event (including idling) would be included in 
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the calculated total processing. What is required is an 

adjustment of the value used to convert events into processing 

units, an event's type must become 

type' = type + idling units (processing units) 

however this cannot be assigned a constant value as the number 

of idling units are not a fixed part of the event and will vary 

depending upon the number of data transfers made while the 

event is being processed. For this reason this effect was not 

taken account of in the predictions made. Its effect would 

amount to a maximum of three processing units per event 

processed and with large data types this effect rapidly becomes 

insignificant. 

In the light of predictions made with these values there 

is a good correlation between predicted and simulated values. 

The processing predicted is 0.4 events/iteration which 

corresponds to a weighted total processing of 2000. It can be 

seen that the simulation value is close to this predicted 

value. The asymptotic value for large R. is again 2-P 
phys 

events/iteration which corresponds to a value of 10 000 

processing units, only slightly greater than the value obtained 

from simulation. 

The shape of the curve bears a strong resemblance to that 

of the theoretical predictions. With 0 
C<Pphy, 

the effect of 

any bias in the routing algorithm is largely masked. 

The same approach can be applied to inspecting the 

results of simulations using data of type 10, again the 

behaviour of both algorithms is shown on the graph fig 4.5. 
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As in the previous graph lines I and 3 show the behaviour of 

algorithm 1 with both constant and randomly distributed data 

respectively, lines 2 and 4 show the behaviour of algorithm 2 

with both constant and randomly distributed data and line 5 

shows the values predicted by the flow model. The most 

prominent feature is again the deadlock condition arising with 

algorithm 1 for values of R2! 3. The same value of Krs 1/4, was 

chosen to model the behaviour of the system and by similar 

reasoning to the case for data of type 5, 

'Scmax , 1/rio/*i = 1/3 events/iteration. With these values 

there is a good correlation between the predictions using the 

flow model and the values obtained by simulation. 

4.11.2.2.3 Computation Bound 

Fig 4.6 shows the results of simulation using data of 

type 50. The same format is used as in the previous graphs, 

the four lines representing algorithm 1 with both constant and 

randomly distributed data and algorithm 2 with both constant 

and randomly distributed data. For this data 

Pcmaz 2-- 1/r50/*l = 1/13 events/iteration and Krý 1/4. 

Again algorithm 1 exhibits deadlock, but in addition to 

this the randomly distributed data type for both algorithms 

produces a very poor computing throughput when compared with 

the behaviour of these algorithms with data of constant type. 

This is probably due to the extremely wide spread of the random 

numbers used (see fig 4.2) in addition to the longer processing 

times approaching the time taken to cross the network. 
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Due to the rather simple buffering scheme implemented it is 

likely that events with short processing times will be held up 

behind some of those with longer processing times. Unlike the 

case where processors will spend a considerable amount of time 

processing once an event has been received some events will 

require barely any processing and the processor is likely to 

remain idle for a considerable amount of time in such 

circumstances. 

The curve for algorithm 2 fed with data of constant type 

follows the predicted curve well and exhibits a fairly linear 

if not ideal speedup with additional processors. 

4.11.3 Cylinder Simulation 

4.11.3.1 Algorithms Investigated 

The approach to the distinct node simulations of 

cylinders was very similar to that for distinct node rings. In 

this case three sections of code were used, one for the 

processor and one for each of the output links, these taking 

data from either of the input link and passing it on to the 

relevant data sink. 

The address of the processor at which processing was 

required to take place was 'encoded' in the data in a similar 

fashion to that for the rings but to uniquely identify a 

processor in a cylinder two values were required. These were 

combined to form one value that could be passed around the 

simulated topology; since it was slightly 'easier, to generate 

the encoded' value than to perform the reverse process and 
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generate the values of R and L from the encoded value the test 

for a match of the processor identity and the data was 

performed by generating the 'encoded' identity of the processor 

and comparing this with the data. 

Only one algorithm was tested fully in this 

configuration, the algorithm giving priority to taking new data 

into the system in preference to dealing with data already 

within the ring structure was found to produce apparent 

deadlock situations and could not be used therefore in the 

cylindrical arrangement. 
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begin (* COMMS1 *) begin (* COMMS2 *) 
if processor - 

idle then if processor idle then 
if new-data then if ring data then 

if new 
- 

data_right then _ if ring_data_right then 
take__ýnew-data take_ring_data 

else else 
if ring_data then if new 

- 
data then 

if ring_data_right then if new data right then 
- take ring_data ýata 
ýnew_ take 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

else else 
if ring_data then if new data then 

if ring_data_right then if new-data-right then 
take 

- 
ring_data take 

- 
new-data 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

if ring_ready then if ring_ready then 
if new 

- 
data then if ring_ý. data then 

if level 
- 

right_data and if level_right_ring and 
not column_right-data then not column_right_ring then 

new 
- 

data_on ring-data_on 
else else 

if ring 
- 

data then if new-data then 
if level_right_ring and if level_right_data and 

not column 
- 

right_ring then not column_right_data then 
ring 

- 
data_on new-data_on 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

else else 
if ring_data then if new 

- 
data then 

if level 
- 

right_ring and if level_right-data and 
not column_right_ring then not column - 

right_data then 
ring_data_on new-data_on 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

if down_ready then if down 
- ready then 

if new 
- 

data then if ring_data then 
if not level_right_data the n if not level_right_ring then 

new 
- 

data_down ring-data_down 
else else 

if ring_data then if new data then 
if not level_right_ring - then if not level right data then 

ring - 
data-down _ _ new data down 

else _ - else 
(* NULL (* NULL 
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else else 
(* NULL (* NULL 

else else 
if ring_data then if new - 

data then 
if not level_right_ring then if not level_right_data then 

ring_data_down new-data_down 
else else 

(* NULL (* NULL 
else else 

(* NULL (* NULL 
else 

(* NULL 
end; (* COMMS1 

else 
(* NULL 

end; (* COMMS2 

4.11.3.2 Performance of the Algorithms 

Communication Bound 

A few sample runs were tried using a development of the 

first communication algorithm and as expected processing very 

quickly produced an apparent deadlock condition. This 

condition was assumed to take the same form as the deadlock of 

the ring structure and this scheme was not investigated 

further, the following results are for a system using the 

second algorithm presented. 

In the case of a system fed with data of type 1 the 

system will be entirely communication bound, this is directly 

comparable to the communication bound ring structure (section 

4.11.2.2.1). By similar reasoning to the case of the ring 

structure values of Kr"31/4 and P 
Cmax ý1 were used to model this 

situation. The results of the simulated total processing are 

shown in fig 4.7. 

The curve along the line L=1 is, as expected, the same as 

that for the case of the ring with a maximum reached at 

approximately R=5 and an asymptotic value of 2 events/iteration 

as R becomes large. 
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For values of R=l and increasing L there is no 

improvement in throughput as there is only one source of data. 

There is a broad ridge in the surface, the top of which tends 

to follow the R=2L +I optimum shape predicted by the model of 

section 3.4.2.6.2. 

Fig 4.8 shows the weighted total processing - the number 

of nodes in the system, this gives the mean processing applied 

towards event processing per node and does not have any 

component from the processing required for routing data. From 

this surface the most $efficient' arrangement would appear to 

be a single processor however this is also the arrangement with 

the lowest throughput. The peak value of this surface is 1000 

events/iteration/node and the surface decays down to a value of 

less than 100 which corresponds to less than 0.1 

events /iteration per processor. Though this may sound poor 

this is the best that could be achieved since with Pn=1 and 

L-10 each processor would receive 1/10 events /iteration to 

process. 

4.11.3.3 Larger Data Types 

Figs 4.9 - fig 20 show the simulation results of distinct 

node cylinders with varying input data and the corresponding 

plots of processing per node. The surfaces of weighted total 

processing show all of the main features of the theoretically 

derived graphs of weighted total processing, figs 3.9 - 3.11. 

There is a slight asymmetry in the results from the 

simulations when compared to those of the theoretical model in 

that the weighted total processing increases more linearly with 
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s 

R, at large L than predicted by the model and the increase with 

L at large R shows a more distinct rounding. This can be 

attributed to a combination of the number of events required to 

fill the cylinder on startup increasing with L (see section 

4.9) and some degree of bias towards horizontal rather than 

vertical communication being present in the communication 

algorithm. 

Comparing the peak values of the surfaces (ie at the 

point R=L=10) with the corresponding values of the theoretical 

model. The value of total processing in events per unit time 

(iteration) in the flow model is given by 

Total Processing = 
R-L-Ocmax 

1+ Kro[ 

which for a value of K -ý r'-1/4 gives 

Total Processing = 28.57 X Ocmax events/iteration 

For the cylinder fed with data of type 5, (giving Pcmax = 

1/ r5 /41 1/2) this gives a peak value of 14.29 

events /iteration which represents a value of 71430 units of 

total processing over 1000 iterations. However the number of 

events presented to the system cannot exceed 10 000 (R X 

Iterations) giving a maximum total processing of 50 000, 

clearly this is the main factor constraining the system 

throughput. 
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This is still considerably greater than the 42 500 obtained by 

the simulation the results for which are shown in fig 4.9, 

obviously some effects other than included in the model have an 

influence on the processing. The simulation fed with randomly 

distributed data with a mean value of 5 produced a similar 

performance to the constant data type case, these results are 

shown in fig 4.10. The discrepancy between the calculated and 

simulated result is probably due to some processors remaining 

idle while the system initially fills with data. 

Comparing the modellsimulation discrepancy for 

simulations of data types requiring larger amount of processing 

shows an improvement in the model/ simulation correlation for 

these data types. 

Repeating the calculations for simulation performed for a 

system fed with data of type 10 gives a predicted throughput of 

76 923 processing units over the simulation, this compares well 

with the 76 000 processing units achieved by the simulation 

(see fig 4.13). The simulation fed with randomly distributed 

data with mean value of 10 produced a similar performance to 

the constant data type case. This is shown in fig 4.14. 
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With data of type 50 the value of total processing for R=L=10 

over 1000 iterations predicted from the model is 2.198 X 50 x 

1000 - 110 000 events which is a reasonably close value (within 

5%) of the performance achieved by the simulation (see fig 

4.17). The simulation using randomly distributed data of mean 

value 50 showed a similar behaviour to that of the ring 

structure in that a very poor throughput was achieved with 

random data of large type and this was again attributed to wide 

range of the random numbers used and the simple buffering 

scheme of the simulation. The effect is not as serious as that 

in the case of the ring, because there are two output links to 

each node reducing the probability of data being help up by a 

busy node. Separating the queues of data to be processed and 

data to be forwarded to allow data to move through the system 

without being hindered by data awaiting processing would 

probably remove this effect. In the homogeneous cylindrical 

processor this effect does not occur as data is not held up by 

data awaiting processing. These simulations with large data 

type do not show the rounding off as L increases, the effect of 

the start up and algorithmic effects being less significant. 

All of the plots of mean weighted total processing per 

node have the same form, the highest value being for a single 

processor, the plot decaying rapidly at first and then steadily 

as the number of processors is increased and the processing is 

distributed over a greater number of processors. 
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4.12 Homogeneous Processing Simulation 

4.12.1 King Simulation 

4.12.1.1 Algorithms investigated 

As with the case of distinct processing nodes a large 

number of possible communication schemes exist, these were 

reduced to two principle algorithms. The two algorithms used 

were essentially the same as those of the distinct node 

processing ring simulated, the statements required to compare 

the data with the identity of the processor could be omitted, 

providing a considerable simplification. 

The two algorithms as they appear in the programs (which 

are to be found in appendix 3) are shown below, the same method 

of using short procedures and functions to allow an algorithmic 

style of programming was implemented. 
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(* COMMS1 *) 
if processor - 

idle then 
if new-data then 

take 
- new-data 

else 
if ring_data then 

take 
- ring_data 

else 
(* NULL 

else 
(* NULL 

if ring_output_re * ady then 
if new data then 

new - 
ýata_on 

else 
if ring_data then 

ring_data_on 
else 

(* NULL 
else 

(* NULL 
COMMS1 

(* COMMS2 *) 
if processor - 

idle then 
if ring_data then 

take_ring_data 
else 

if new data then 
take_new-data 

else 
(* NULL 

else 
(* NULL 

if ring_output_ready then 
if ring_data then 

ring_data_on 
else 

if new data then 
new - 

data-on 
else 

(* NULL 
else 

(* NULL 
COMMS2 

4.12.1.2 Performance of the Algorithms 

139 

The nature of the homogeneous rings allowed the effect of 

different schemes of feeding data into the system such as only 

feeding a subset of the nodes with data and/or feeding 

different types of data into different nodes. 

Simulations using data of type 1 were not performed as in 

the homogeneous ring data may be processed at any node that is 

free and data requiring such little processing as type 1 would 

be proce ed in the node to which it were fed immediately. For 
ýfs 

a ring where all nodes are fed with data the processing would 

be proportional to the number of fed processors in the ring. 

In the case of a ring fed at a single point only one processor 

would be kept busy and all but one of the nodes in the ring 

would remain idle, (this can be compared to the lower layers 

remaining idle in the case of a cylinder fed with data of type 

1 as described in section 4.12.2.2). 



SIMULATION OF PROCESSING STRUCTURES 140 

Fig 4.21 shows the performance of a homogeneous ring of 

processing nodes fed at all nodes with data of type 10. Lines 

1 and 2 show the behaviour of communication algorithms 1 and 2 

fed with data of constant type 10 respectively and lines 3 and 

4 show the behaviour of communication algorithms 1 and 2 fed 

with randomly distributed data with a mean value of 10 

respectively. For such data, as for the distinct node 

simulations 

Ocmax m 1/F10/41 = 1/3 

and Kr '= 1/4 

from the discussion in chapter 3 of such a processing scheme 

the processing bandwidth is given by 

R-9 
cmax Total Processing = R-#c =- 

1+K 
r 

-RX0.266 events/iteration 

-RX2.66 processing units/iteration 

there is reasonably good agreement between this and the values 

in fig 4.21. The values for randomly distributed data being 

almost identical to those for data with uniform processing 

requirements illustrating some validity in the assumption made 

that horizontal communication is either insignificant or 

mutually cancelling. 
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Fig 4.22 shows the processing achieved by a ring of up to 5 

processors fed at only one of the processing nodes with input 

data of type 10; lines 1 and 2 show the behaviour of 

communication algorithms 1 and 2 fed with data of constant type 

10 respectively and lines 3 and 4 show the behaviour of 

communication algorithms I and 2 fed with randomly distributed 

data with a mean value of 10 respectively. This arrangement is 

effectively a column of up to 5 processors. The values agree 

well with the values predicted from the model presented in 

section 3.4.2.7, the values for randomly distributed data are 

very nearly identical to those with data of constant type. 

There is a rounding of the curve as the computational bandwidth 

approaches the maximum input bandwidth (Octot -* Ophys ) as R 

increases. 

Both sets of results exhibit a lower throughput for 

algorithm 2; this is the algorithm which forwards data already 

within the ring in preference to taking in new data. This lead 

to un-necessary $data shuffling' which wastes computing and 

communication bandwidth. 

4.12.2 Cylinder Simulation 

4.12.2.1 Algorithms investigated 

Four principle cases of the homogeneous cylinder were 

identified, there being two sinks for data (the processor 

itself was assumed to take priority and was not included as one 

of the permutations) and two sources for data. in keeping with 

the distinct node case three sections of code were used, 

corresponding to the three data sinks. 
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The same algorithmic style of programming as before was 

used, in addition to the two cases explored for the distinct 

node cylinder the effect of changing the order in which the 

sections of code to send data to the two output sinks (the 

downward and horizontal outputs) were placed was examined. The 

four algorithms thus defined are shown below, as they appear in 

the simulation programs, copies of which appear in appendix 4. 

begin (* COMMSI *) begin (* COMMS2 *) 
if processor 

- 
idle then if processor_idle then 

if new - 
data then if ring_data then 

take_new-data take_ring_data 
else else 

if ring - 
data then if new-data then 

take_ring_ýdata take_new-data 
else else 

(* NULL (* NULL 
else else 

(* NULL (* NULL 
if ring_ready then if ring_ready then 

if new data then if ring_data then 
new - 

ýata_on ring_data_on 
else else 

if ring data then if new data then 
ring_jata_on new_; iata_on 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

if down 
- ready then if down_ready then 

if new data then if ring_data then 
down new - 

aata ring data down 
_ else _ _ else 

if ring data then if new data then 
ring_jata_down new-aata_down 

else else 
(* NULL (* NULL 

else else 
(* NULL (* NULL 

end; (* Commsl end; (* COMMS2 
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begin (* COMMS3 *) 
if processor - 

idle then 
if new data then 

take-new-data 
else 

if ring_data then 
take 

- 
ring_data 

else 
(* NULL 

else 
(* NULL 

if down 
- 

ready then 
if new data then 

new 
- 

ýata_down 

else 
if ring-data then 

ring_data_down 
else 

(* NULL 
else 

(* NULL 
if ring_ready then 

if new data then 
new 

- 
ýata_on 

else 
if ring data then 

ring_jata_on 
else 

(* NULL 
else 

(* NULL 
end; (* COMMS3 

begin (* COMMS4 *) 
if processor_idle then 

if ring_data then 
take_ring_data 

else 
if new data then 

take_new-data 
else 

(* NULL 
else 

(* NULL 
if down_ready then 

if ring_data then 
ring_data_down 

else 
if new data then 

new 
- 

aata_down 

else 
(* NULL 

else 
(* NULL 

if ring_ready then 
if ring_data then 

ring_data_on 
else 

if new data then 
new 

- 
ýata_on 

else 
(* NULL 

else 
(* NULL 

end; (* COMMS4 

4.12.2.2 Performance of the Algorithms 

4.12.2.2.1 Processing Throughput 

145 

The overall pattern of behaviour of these algorithms with 

different data types was found to take the same form, the 

performance of the system when fed with randomly distributed 

data was almost identical to that of the constant data type 

case and the behaviour of algorithms 1 and 2 was found to 

correspond strongly with that of algorithms 3 and 4 

respectively; therefore, in the interests of brevity only a few 

illustrative cases will be discussed here and a complete set of 

simulation results are to be found in appendix 5. 
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The performance of a cylinder fed at all of its uppermost 

nodes with data of type 10 shown in fig 4.23 clearly shows that 

there is a maximum useful value of L beyond which no 

improvement (in the absence of faults) is achieved with 

additional processors; once L has reached this value the 

performance improves with increasing R (apparently 

indefinitely). The performance of this system agrees well with 

that predicted from the model of section 3.4.2.7, there is a 

slightly lower throughput using algorithm 2 (and similarly 

algorithm 4 c. f. appendix 5) as a result of the algorithms 

preference for horizontal communication producing a tendency 

towards un-necessary 'data shuffling'. This lower processing 

throughput is also shown in fig 4.25, the weighted total 

processing per processor for the two systems, though other 

details are similar. As R increases there is no decrease of 

processing throughput as in the distinct processor case (see 

fig 4.15) because there is no corresponding increase in the 

distance data must travel as R increases. There is a slight 

decrease in processing per node, due to the effect of Kr, as L 

increases up to the maximum useful value followed by a steep 

decline when this value is exceeded. 

The performance of a cylinder fed at only one point with 

data of type 10 shows the effect of saturation of the point at 

which data is fed into the system. There is a limited number 

of nodes (in this case 4) that can be usefully employed. For a 

linear chain of processors the methods described in section 

3.4.2.7 may be directly applied and the system exhibits 

generally good agreement with these values. The corresponding 

results using data of type 50 shown in fig 4.27 exhibit a 
J 
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similar overall behaviour, however the processing values do not 

correspond very well with those predicted from the model. This 

occurs as a result of the 'quantisation' of the simulation; 

with data of type 50 very few events will require 

re-transmission by a node while it is processing an event, 

though processing effort would be consumed for each action 

there is a likelihood in a large number of cases of the number 

of iterations required to finish the event remaining unchanged 

with a consequent reduction in the apparent value of Kr- The 

predicted and obtained values differ approximately by a factor 

of 2 and only a small change in the effective value of Kr could 

easily produce such a change in the predicted value. 
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4.12.2.2.2 Fault Tolerance 

One of the expected advantages of the homogeneous 

cylinder, as with the ring but with a greater path redundancy, 

was that of fault tolerance. It should be noted that in 

contrast to fault tolerance achieved through the system 

patching itself up following a fault[4,15,53,141 the system 

carries on regardless with a reduced throughput. A discussion 

of the possible failures and the preventative mechanisms and 

methods required are discussed in chapter 3, section 3.7. An 

abstract simulation of failure of processors within the system 

was carried out using the simulation model. A facility was 

provided of specifying at the commencement of a simulation run 

whether any processors had failed and if so, which ones. 

Failed processors were simply simulated as 'doing nothing 

gracefully', it was assumed that. either some suitable fault 

detection was incorporated within the processing nodes to cope 

with the source, sink and faulty processing scenarios described 

in section 3.7 or that such conditions were highly unlikely. 

Two principle cases were studied using the simulation 

model, the first was a cylinder of processors with R=L=10 fed 

with data of type 50 at only one of the nodes of the top layer 

and the second case was a similar cylinder again with R=L=10 

f ed with data of type 50 but at all of the nodes of the top 

layer. 

Figs 4.28-4.31 show the processing achieved by a cylinder 

of processors using the four communication algorithms when up 

to 3 randomly chosen faults were introduced. Four runs were 

carried out for each algorithm, each using a different seed for 
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the random number generator used to determine the faulty nodes. 

The graphs show clearly the effect of the failure of the 

node to which the data is f ed in line 2. The other lines 

however show a negligible change in processing despite the 

introduction of faults. Bearing in mind that only one node is 

fed with data and that this will restrict the number of nodes 

usefully applied, some of the faults introduced will cause an 

already idle processor to fail with no consequent effect on the 

total processing. 
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Figs 4.32-4.35 show the results of similar simulation 

runs for a cylinder of size R=L=10 fed at all of the uppermost 

processors with data of type 50. 

Without the introduction of faults the previously 

observed performance was repeated. The algorithms showed 

reasonably benign behaviour as faults were introduced, 

curiously the algorithms giving preference to horizontal 

communication actually showed some improvement as faults were 

introduced, this improvement is produced as horizontal rings 

are broken preventing the tendency of these algorithms to 

'shuffle' data unnecessarily. It is worth noting again that 

this data shuffling (and the consequent degradation of 

processing throughput) is avoided using an algorithm that gives 

preference to vertical communication, an algorithm that would 

encourage deadlock in the distinct node processor simulated 

above. The algorithms that give preference to vertical 

communication behaved extremely well with increasing faults, up 

to the small number investigated, and so long as the number of 

failures are such that the probability of a cut set that 

isolates a large part of the system occurring is low then this 

behaviour could be expected to continue. 
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CHAPTER 5 

5 PRACTICAL METHODOLOGY 

5.1 Introduction 

The theoretical and rather abstract discussion in chapter 

3 required some form of physical implementation. This chapter 

describes the development of computing hardware capable of 

supporting the computing structures proposed and the 

construction and programming techniques associated with this 

development. 

5.2 Hardware Overview 

To reflect the nature of the computing structure under 

consideration the hardware was to take the form of separate 

identical processor boards, each with four communication links. 

Four links were sufficient for the topology proposed and are 

also the minimum number of links capable of supporting a3 

dimensional computing structure (in a tetrahedral arrangement). 

To allow the configuration of the arrangement to be changed the 

processors were to be on separate boards with plug connectors 

so that the desired topology could be created using flying 

leads. The main design decisions to be made were; processor 

type, the amount of memory (both RAM and ROM) to be contained 

on each board and the communication mechanism to be available 

between the processor boards. The main design aim was 

obviously to be able to support the topology proposed but also 

to have as flexible a hardware structure as possible to allow 
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the boards to be used as a general tool for investigating 

multiprocessor topologies. 

5.2.1 Processor Memory Configuration 

The processor chosen was a Z-80[1631 since these are 

cheap, plentiful and quite versatile. A great deal of software 

and hardware support already exists for these devices. A 32k X 

8 bit RAM space was decided upon since this was available in a 

single package and use of this device would keep the component 

count low whilst providing sufficient memory space for most 

envisaged applications also leaving half of the Z-80 addressing 

space for ROM. A U. V. erasable 8k X8 bit EPROM was decided 

upon for the Read Only Memory. Use of single devices for the 

RAM and ROM requirements of the processor greatly reduced the 

memory decoding requirement of the system. The type of 

inter-processor communication could take one of many different 

forms. The communication protocol had to be ihdependant of the 

processor to allow the possibility of connecting different 

types of processor, a serial protocol was selected to keep the 

number of interconnections to a minimum since with a large 

number of processors, each with several connections, the number 

of interconnections, with their associated problems of 

crosstalk, noise and physical placement, can easily become 

excessive if each interconnection itself requires a large 

number of wires such as in the case of a parallel communication 

protocol. 
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5.2.2 Communication Protocol Selection 

The protocol developed by INMOS for use with the 

TRANSPUTER[78,102,156,148,11,1551 was adopted since it met all 

of the original design considerations and also offered the 

possibility of direction connection with the TRANSPUTER which 

has been designed specifically for construction of network 

computers. The TRANSPUTER protocol also has the advantage that 

communication and handshaking is carried out using only two 

wires, reducing the number of connections required by a factor 

of 2 as compared to one of the more conventional serial 

protocols. Buf f ering in the f orm of 16 bytes of FIFO memory 

both in the transmit and receive data paths of each link were 

provided (giving a total of 32 bytes of buffering in each 

direction). This scheme is similar in many respects to that in 

the hypercube of Tuazon et al[1471, using a fifo memory between 

processors. 

5.2.3 Additional Input/Output Facilities 

Though not used in this particular application the 

processor cards also included a parallel input/output device 

(PIO). Since the emphasis in the design of the hardware was on 

flexibility the possibility of passing data in and out of each 

node individually and the ability to simulate a bus 

interconnection was considered a worthwhile addition to the 

design. 
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5.2.4 Power Supply and Physical Support 

The multiprocessor hardware was built into a card frame 

with an STE backplane. The STE backplane was used to provide 

the power requirements of the boards only, since the 

communication between the cards was to be by flying leads to 

allow a wide range of connection topologies to be realised. 

5.2.5 External Communication Interface 

To allow the computer to receive data and programming 

information from, and return data to, the outside world 

interfaces from the TRANSPUTER protocol to a more conventional 

and widely available protocol were required. Boards to convert 

from the TRANSPUTER protocol to a standard 8 bit serial 

protocol at RS-232C voltage levels at 9600 baud were 

constructed. These boards were used to prototype the 

TRANSPUTER compatible link circuit before construction of the 

processor boards was undertaken. 

5.3 Interface Board Design 

Since the interface boards were constructed before the 

processor boards in order to prototype the serial link circuit 

the design of the former will be used to illustrate the design 

of the link circuit. 

5.3.1 Serial Communication Protocol 

The serial protocol selected, for reasons outlined above, 

was that selected for use by INMOS with their TRANSPUTER. The 
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protocol involves a two-wire physical connection between the 

links as shown in fig 5.1(a). There are two types of 'packet' 

that can be sent, an acknowledge 9packet9 and a data 'packet, 

as shown in fig 5.1(b), these packets are sent at a rate of 

10 Mbits/sec. Handshaking is achieved through the use of the 

acknowledge packet, the transmitter sends a data packet and 

cannot then send another data packet until it has received an 

acknowledge packet. The TRANSPUTER, and the links designed 

here, allow an acknowledge packet to be send during the 

reception of data so that continuous data transmission is 

possible. During bi-directional communication acknowledge 

packets and data packets are mixed. 

LINK 1 
R 

I 
LINK 2 

b 
ccknowýedge 

F-T-7 
b 

dm a 

12- 
0 

0) 
12 'j 4561 

FIG. 5-1 TRANSPUTER COMMUNICATION SCHEME. 
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5.3.2 Availability of Suitable Devices 

The aim of the link circuit was to produce a serial link 

capable of connecting to virtually any parallel bus, though 

INMOS had a device to perform this function under development, 

this was not available initially and when released was 

prohibitively expensive. This coupled with the considerable 

number required made the development of a cheap alternative 

viable. 

5.3.3 Transmit Receive Synchronisation 

The circuit developed is shown in fig 5.2. The circuit 

has three main elements, the receive shift register, the 

transmit register and the control logic. The handling of the 

acknowledge mechanism was achieved by the use of two flip 

flops, one indicating that an acknowledge was required before 

any more data could be sent, (Acknowledge ReQuireD) and the 

other indicating that data had just arrived (Data Detected). 

The ARQD flip flop was set by the control logic on 

sending data and the transmission of any further data would 

then be deferred until the flip flop had been reset by the 

detection of an incoming acknowledge packet. 
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The Data Detected flip flop was set whenever the 

beginning of a data packet was detected in the input stream. 

If the receiver was capable of receiving more data then the 

control logic would send an acknowledge packet as soon as 

possible, if not then the transmission of an acknowledge would 

occur when the receive part of the circuit indicated that it 

was ready to receive more data. This flip flop was reset on 

the transmission of an acknowledge packet. 

Using these flip flops the correct handshaking was 

achieved. The control logic referred to above consisted of a 

state machine contained within a Programmable Logic Array (type- 

PAL16R4) named Commstat. The state diagram had sequences of 

states to send a data packet and an acknowledge packet with 

conditional states to invoke these sequences as appropriate. 

The 'cycles' were invoked according to the state of various 

inputs, including the flip flop outputs, the complete program 

of the device is shown in Appendix 10. 

5.3.4 Receive Circuit 

The shift registers are all of a usual arrangement, the 

synchronisation of the receive clock to the incoming data 

stream was achieved using an edge detector resetting the clock 

circuit to a known state. 

An incoming data packet would be clocked into the receive 

shift register until the two leading start bits were detected 

by an AND gate which would then hold the contents of the shift 

register until they are loaded into the fifo buffer. The 

'hold' signal was used to load the data into the buffer. The 
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change of the Data Input Ready (DIR) flag of the buffer was 

used to clear the shift register. The transfer of data occurs 

within the stop bit of the incoming data packet to allow 

continuous data transfer. 

A second shift register was maintained for the purpose of 

detecting the headers of acknowledge and data packets. This 

shift register is required to differentiate between-the genuine 

headers and similar bit patterns occurring within data packets, 

the necessary logic functions being contained within a 

Programmable Logic Array (type PAL16L8) given the name commrx. 

To ensure that the two bits used to detect the header bit 

pattern arrive after the other outputs of the shift register 

the last two bits of the shift register were subjected to 

feedback within the PAL. This technique has, perhaps rather 

surprisingly, proved reliable effective and reproducable. The 

program for this device can be found in appendix 10. 

5.3.5 Transmit Circuit 

The transmit shift register had to be capable of sending 

data packets, with a suitable pair of start bits, or an 

acknowledge packet. This was achieved on loading the shift 

register by ensuring that a Ill was always loaded into the 

leading bit of the shift register and loading the second bit of 

the shift register with a value dependant upon the type of 

packet to be sent. (101 for and acknowledge packet and Ill for 

a data packet). To avoid spurious data appearing in the output 

stream when an acknowledge packet was to be sent the data 

inputs to the shift register were held low by pull down 
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resistors and the output from the buffer disabled, the signal 

to disable the buffer also being used to generate the 

appropriate value for the second bit of the header. 

5.3.6 Interface to RS-232 C 

The TRANSPUTER link circuit described above is easily 

connected to virtually any parallel bus, decoding for 

connection to a Z-80 bus was achieved using a single PAL (type 

16L8) named decodel the design of which can be found in 

appendix 10. The arrangement is shown in fig 5.3. Since only 

three control lines are required by the link circuit two such 

links can be controlled by a single decoding PAL. 

ro-R 

Z-80 

Z-80 
AO. .A 
7-Rn i 

FIG. 5-3 DECODING OF THE Z-80 BUS TO CONNECT TO 
THE LINK CIRCUIT OF FIG. 5-2. 
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To prototype the link circuit and decoding and to produce 

an RS-232C to TRANSPUTER interface a means of producing a 

pseudo Z-80 bus from a serial connection was required. The 

circuit to fulfill this function is shown in fig 5.4. 

5.3.6.1 Parallel Bus simulation 

Conversion to and from serial data was performed by an 

industry standard Universal Asynchronous Receiver Transmitter 

(type 6402), this was controlled by a state machine to produce 

simulated Read and Write Input/Output cycles of a Z-80. The 

parallel inputs and outputs of the UART were linked together so 

that by the use of suitable control signals the operation of a 

parallel bus could be reproduced. 

5.3.6.2 Control Logic 

The control logic was made up of a PAL (type 16R6) named 

Simml to generate the state sequences required subject to the 

inputs, and a second PAL (type 16L8) named Simmz80 to produce 

the various control lines of the Z-80 from these. It was 

assumed that in a real Z-80 system handshaking would be 

performed by software and tests of the status of the various 

devices, the control logic simulated this using simple 

connections to the status flags of the buffers concerned. The 

control logic produced read and write Input/Output cycles, to 

avoid locking out of either type of cycle a read cycle was 

generated at the end of every write cycle, if possible subject 

to the state of the buffers, and vice versa. 
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Though the Z-80 control signals could not be generated in 

precise time relationship the overall form of the cycles could 

be produced easily. The programs for the PALs used for the 

control logic can be found in appendix 10. 

5.3.6.3 Clock Generation 

The clock circuit was based on a single 20 MHz 

oscillator, this was used to generate the clock signals for the 

TRANSPUTER compatible link, the clock signal for the UART and 

the clock for the simulation control logic. The 10 MHz and 

phase adjusted 10 MHz clock signals required for the link were 

easily derived from the 20 MHZ starting clock. Both a 5MHz and 

a 10 MHz clock were provided for the simulation circuit to 

allow a Z-80 running at either 5 MHz or 2.5 MHz to be simulated 

depending upon the connection made to the clock circuit. The 

clock signal of 153.6 KHz required by the UART was generated 

using a 14 bit binary counter which was reset on reaching and 

appropriate value, the repeating reset signal was used to 

toggle a flip flop and thus generate the required square wave 

clock signal. The counter reaching the required value was 

detected by the PAL Simmz8O. 

5.4 Processor Board Design 

The interface board provided a useful test of the link 

circuit before designing the processor boards. The processor 

board was based around a Z-80 microprocessor, 32 Kilobytes of 

Read/Write memory in the form of a single 32k x8 bit static 

RAM and 8 kilobytes of Read Only Memory in the form of a single 
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8k x8 bit Erasable Programmable ROM. A Z-80 parallel Input 

Output (PIO) device was also included on each board. 

The circuit of the processor board is shown in fig 5.5. 

Three of the link circuits have been omitted for brevity since 

their connection to the circuit is identical to the one shown. 

The link circuits are addressed as part of the Input/Output 

memory map, the decoding being performed by two PALs (type 

16L8), Decodela and Decodelb, the complete programs for these 

devices are shown in appendix 10. These decoders also decode 

the signals for input latches for the buffer status signals. 

5.4.1 Link Status Latches 

Two input latches provided two Input/Output mapped ports 

to allow the programmer to read the state of the buffers of the 

link circuits, one port giving the Data Input Ready signals for 

all of the buff ers and the other giving the Data Output Ready 

signals for all of the buffers. The latches have the following 

bit patterns : 

DOR Latch 

Bit 234567 

DOR RxA RxB RxC RxD TxA TxB TxC TxD 

DIR Latch 

Bit 2 

DIR TxA TxB TxC TxD RxA RxB RxC RxD 
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To simplify the decoding requirements of the Input/Output it 

was not regarded as essential that all devices should have only 

one address, only that it should be possible to address devices 

individually as and when required. 

5.4.2 PIO Addressing 

The address line a7 was used to select the PIO, when low 

the PIO would be active, otherwise the PIO would not be 

selected. When selected the address lines a5 and a6 were used 

to select which of the registers of the PIO were to be 

addressed. 

5.4.3 Link Addressing 

With the address line a7 high the PIO would be disabled 

allowing the other devices to be selected. There were 

insufficient address remaining to allow the use of a single 

address line for each device. Address line a4 was used to 

select between addressing the link circuits and addressing the 

buffer status latches. With address line a4 low the link 

circuit could then be addressed each with one of the address 

lines aO, al, a2, a3 and with address line a4 high the two 

buffer status latches could be addressed each with one of 

address lines aO, al. 
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The mapping of the links to the address lines is: 

Link A aO 

Link B al 

Link C a2 

Link D a3 

which corresponds to the mapping of the bits used for the 

buffer status latches, this allows the address of a link to be 

used to mask the data from the buffer status latch to extract 

the buffer status using simple logical operations. The 

Input/Output addressing scheme chosen allowed the decoding to 

be performed by only two devices and also allows more than one 

device to be addressed simultaneously should this be required, 

though this is only meaningful on write cycles (e. g. output to 

more than one link circuit simultaneously). 

5.4.4 Memory Decoding 

The memory decoding was similarly designed to that of the 

Input/Output in that reflections of regions of memory were 

considered acceptable in order to minimise the decoding 

requirements. Memory address decoding was performed by a 

single PAL (type PAL16L8) named Decode2, the complete program 

for this device can be found in appendix 10. The RAM was 

enabled with address line a15 high, the ROM was enabled with 

address line a15 low. The scheme was very easy to implement 

and gives the memory map shown in fig 5.6. Decode2 also 

provided the interrupt acknowledge signal required by the 
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interrupt generator circuit which is described below in 

connection with the clock circuit. 

FFFF 

RAM 

8000 16 
ýFFF 16 

000016 ROM 
8 BITS 

FIG. 5-6 MEMORY MAP OF THE Z-80 SYSTEM. 

5.4.5 Clock Generation 

The clock circuit of the processor board had several 

functions to perform, it had to provide; the clock signal for 

the microprocessor, the 10 MHz clock signal for the link 

circuits transmit side, the phase adjusted 1OMHz clock signal 

for the link circuits receive side and an interrupt signal for 

the microprocessor. The clocks were derived from one of a 

20MHz or a 4MHz starting clock frequency. The clock circuit is 

shown in fig 5.7, this also provides 2,4 and 5 MHz clock 

signals for the microprocessor, selectable by DIL switches on 

the processor board. The interrupt signals were generated from 

a counter, the period between interrupts being selectable by 

DIL switches from frequencies of the microprocessor clock 
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4678 frequency divided by one of 2,2 , 25,2 ,2,2,29,210, 

211,212,2 13,21*. 
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FIG. 5-ý CLOCK GENERATION CIRCUIT FOR 
THE PROCESSOR BOARD. 

5.5 Hardware Construction 

The design outlined above presented the problem of 

requiring a large number of devices and a consequently large 

number of interconnections, a fairly high component density had 

to be achieved to allow the processor boards to be kept to a 

reasonable size. Printed circuit techniques were considered 

but were rejected since an extremely expensive multi-layer 

board would be required. Wire wrap construction was considered 



PRACTICAL METHODOLOGY 188 

and had the advantage that the components could be mounted 

adjacent to each other; however, wire wrap is extremely 

laborious to construct however and is rather prone to human 

error which may produce faults in the circuit board which would 

be time consuming to find and correct. 

A compromise was sought and found in a hybrid form of 

construction. A relatively cheap double sided printed circuit 

was made up, this carried the power supplies to all of the 

devices, additionally as many 9easy to route9 connections as 

possible were added to the printed circuit design. Wire wrap 

sockets were then soldered into place and the remaining 

connections made with wire wrap. once the printed circuit 

design had been debugged all of the devices were assured of a 

low impedance supply and the reduction in the number of 

connections made using wire wrap reduced the probability of 

wiring error correspondingly. The printed circuit designs for 

the boards used and the wire wrap connections required to 

complete the circuit are to be found in appendix 6. 

5.6 Software Overview 

5.6.1 Programming Languages 

The microprocessor system was programmed using a 

combination of Z-80 assembly code[163) and the C programming 

language[83,117,471. The C compiler used produced Z-80 

assembly language as an intermediate stage of compilation 

allowing easy interception and modification of the compiled 

assembly code if desired. The stages involved in producing a 

binary file suitable for down line loading are shown in the 
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form of t (translation) diagrams in fig 5.8. 

COMMUNICAT10N 
FUNCTIONS 

COMPILATION ASSEMBLY I LINKING CONVERSION 
CC Z-80 1 Z-80 Z-80 Z-80 Z-80 1 Z-80 Z-80 LOAD C 

1L. 0 G *. MAL -CREL *. REL 4. COM -X. COM COM *. BIN FILE TO 
80 OAD 

FI 

tL ýEL 

L-80 

L 
PROCESSORS 

0 
2 

-0 M-60 -80 BIN L 80 Go BIN 

FIG. 5-8 TRANSLATIONS REQUIRED TO PRODUCE A FILE 
SUITABLE FOR DOWN LOADING. 

A scheme of concurrent execution of programs within each 

processor was created, loosely based on the Communicating 

Sequential Processes (CSP) model of Hoare[67] which has been 

developed by INMOS to give the programming language 

OCCAM[79,1571 used to program concurrent systems using the 

TRANSPUTER[78,102,156,148,11,1551. In the CSP model 

communication between processes takes place only when both 

processes are ready to communicate, the processes waiting if 

required. In the model created here a process sending a value 

may send its value and proceed independant of the state of the 

receiving process, the CSP style interaction may be simulated; 

using acknowledgement sent in the reverse direction it is 

possible to ensure that the sending process is forced to wait 

if this is required. 
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The mechanisms used to provide the fundamental functions 

required for the concurrent execution of programs are described 

here, the development of various algorithms using these 

facilities as a basis are left for a later chapter. The 

mechanisms for loading the program into the machine are not 

described here but dealt with in section 6.2. 

5.6.2 Process Scheduling Mechanism 

The software system was based around the Ecosoft Eco-C 

compiler[471 which produces Z-80 assembly code which can be 

intercepted and if necessary modified before use. The time 

slice mechanism and the functions to interact with the 

Input/Output devices were the 'only additions to the standard 

compiler output, the programs used to make up the 

multiprocessing system are to be found in appendix 11. The 

start address of the functions to be executed concurrently as 

processes were easily accessed at the stage of linking the 

program, allowing them to be incorporated into the concurrent 

execution scheme. It proved possible to make all of the 

necessary additions at the compilation (by inclusion of 

suitable data definitions) and linking (by linking with hand 

written code) stages avoiding the need to edit the assembly 

code produced by the compiler from the program source code. 

Program and data reside in separate segments of memory, the 

layout created within memory is shown in fig 5.9. The process 

scheduling was simple preemptive scheduling on a Round Robin 

(RR) basis[39,1441. The data structure created for use with 

the time slice generation mechanism is shown in fig 5.10, the 

first two bytes indicate which process is currently running and 
a 
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the number of the highest numbered process respectively. Pairs 

of bytes are then used to store 16 bit addresses, these being 

the value contained in the stack pointer for each process. 

FFFF 16 

800016 

STACK 1 

STACK 2 

STACK 3 

PROGRAM 
CODE 

STITIC UARIABLES 
LINK 

TABLES 
PROCESS SOITCH 

TABLE 

FIG. 5-9 MEMORY USAGE BY 
THE MULTIPROCESSING SYSTEM. 

SP3H 

SP3, 
- 

SP2, 

SP2, 
_ 

Sp lH 

Sp 1L 

NPROC 

RUNNING 

FIG. 5-10 PROCESS SWITCH TABLE. 
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When an interrupt occurred the state of the processor was 

saved on the stack associated with that process, the stack 

pointer was then saved in the appropriate place in the list of 

stack pointers. The next stack pointer would then be restored, 

the state of the processor restored from this stack and a 

return made to the process that suffered' an interrupt 

previously. A pseudo clock was implemented by using this 

interrupt routine to increment a memory location. 

5.6.3 Communication Data Structures 

The other data structures added were for communication 

between processes in a similar manner to their communication 

with the outside world. Two versions of this software were 

created, a version where only single bytes could be passed 

between processes with no buffering (see appendix 12) and a 

second version including a fifo buffer between processes to 

allow more loosely coupled operation (see appendix 13). The 

functions to access these communication mechanisms were written 

to appear identical in operation to the programmer for both 

communication mechanisms allowing the use of either mechanism 

with no change in the users software. For each process to be 

run a 'link table' (see figs 5.11 and 5.12) was created, using 

static variable declarations in the C code, this was arranged 

to reside immediately following the list of stack pointers but 

choice of this location was merely a matter of convenience. 

The important detail was that all such link tables were 

contiguous and that they would reside in a location known to 

the linker used, and would therefore be accessible to the 

functions, written in assembly code, for the transfer of data. 



PRACTICAL METHODOLOGY 193 

Since the 'link tables' were created using static variable 

declarations within the C program they would also be available 

to the C programmer if desired. 

5.6.4 Communication Functions 

For both the fifo buffered and single byte communication 

mechanisms the functions provided to access these link tables 

were : 

void swbyte(proc, link, value); 

value rwbyte(proc, link); 

report stbyte(proc, link, value); 

report rtbyte(proc, link); 

where proc is the number of the process to be accessed (in 

reality this refers to which link table is accessed and the use 

of other than one link table for a process will change the 

mapping of proc to the process to be communicated With) and 

link is the particular link in the process's link table that is 

to be accessed; value refers to the returned value and report 

refers to a success or failure indication depending upon the 

state of the data stream being written to or read. from. These 

functions perform similar operations to the ? and I operators 

of CSP[67] and OCCAM[791. The functions send wait byte and 

receive wait byte do not return until their service has been 

performed. The functions send test byte and receive test byte 

both perform their service immediately if- possible and if not 

return with an indication of failure (in practice a report 

value greater than 255). 
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5.6.5 Inter-Process Communication Addressing 

In keeping with the style of the flags from the external 

links the flags indicated DIR, that is when the bit was set 

there was no valid byte in the table and a byte could be 

written. The addressing of the links within a table is also in 

keeping with the style of the external links in that the links 

were addressed by particular bits of the value of the link, the 

nth link being addressed by a value of 2n (0: ýnO). With the 

internal links however, unlike the external links, simultaneous 

access to more than one link is not possible with the functions 

provided. 

The functions used for internal transfers were also used 

for transfers of data to and from external links with a value 

for proc of zero being used to indicate external rather than 

internal links. 

5.6.6 Link Table Structure 

The structure of a link table for un-buffered 

communication is shown in fig 5.11. The first byte of the 

table was a set of flags used to indicate the presence of valid 

data in the link buffers. Each bit of the flag byte was used 

to indicate the presence of a valid byte in one of the link 

buffers, up to a maximum of 8. Though this scheme may appear 

to limit the total number of links to a process the absence of 

protection mechanisms in the simple environment constructed 

here permit more than one link table for each process and even 

access to tables used by other processes. 
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LINK128 

LINK64 

LINK32 

LINK16 

LINK8 

LINK4 

LlNK2 

LINK1 

FLAGS 

FIG. 5-11 LINK TABLE FOR BYTE 
BUFFERED COMMUNICATION FUNCTIONS. 
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Fifo-buffered communications while offering a reduced 

computing overhead by the avoidance of un-necessary process 

switching requires a greater amount of memory in its 

implementation of the link table. The structure created is 

shown in fig 5.12, the first byte of the structure indicates 

the number of such buffers associated with the process, for 

each of these buffers there is then a pair of bytes holding the 

head and tail values for the queue and then follows one area of 

memory set aside for the queue. This whole structure is 

repeated for each process. 
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HEAD 

TAIL 
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FIG. 5-12 LINK TABLE FOR FIFO 
BUFFERED COMMUNICATION FUNCTIONS. 
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The hardware and software outlined in this chapter 

describe the basis upon which the concurrent processing scheme 

was mounted, as stated above the mechanisms for programming, in 

the sense of getting compiled programs into the memory of the 

individual processors, are described later in chapter 6 section 

6.2. This chapter has only given the philosophy behind the 

concurrent operating system, the details of implementation in 

the form of listings of the component parts are to be found in 

appendices 11 through to 14. 
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CHAPTER 6 

6 PRACTICAL IMPLEMENTATION 

6.1 Introduction 

This chapter deals with both the abstract and the more 

tangible elements of placing a program within the processing 

elements of the computing structure under discussion. This 

chapter also includes some practical details of software 

required to implement the concepts presented previously and, in 

addition, the implementation of various algorithms for use in 

such a multiprocessing environment. 

6.2 Programming Methods 

6.2.1 Circuit Switching 

The initial method of passing the program to the machine 

that was considered was to use steerable data streams, similar 

to the steerable packets used to program the Cosmic Cube(1341 

but using a circuit switching technique rather than packet 

switching. This method would require that the structure and 

the connection point to the structure be known to the loading 

program. There are two well established methods of traversing 

graphs, depth first search and breadth first search[132,411, 

and either of these could be used as the basis of an algorithm 

for programming the computing structure proposed. 
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For each of these methods the program required could be 

sent down a single link to the computing structure, the node 

currently being addressed changing either according to a depth 

first search or breadth first search pattern with the 

programming circuit being switched to suit. 

6.2.1.1 Storage Requirements 

This method of programming would allow all of the 

processing nodes to be programmed individually though this 

would require copies of all of the programs of the individual 

nodes to be retained by the programming source. This would 

involve having a very large amount of storage capacity at the 

programming source to hold all of the programs. If large 

programs were required to be loaded into processing nodes then 

this could possibly lead to a restriction on the number of 

nodes in the system, however for a 64 Kilobyte 9program9 to be 

down loaded to 1000 processing nodes this still only requires 

64 Megabytes of storage which, though large, is not an 

un-realistic figure, especially since not all of the data has 

to reside in memory simultaneously. Also of some significance 

is the time required to complete the programming of the nodes. 

6.2.1.2 Programming Time 

In the case of circuit switching, and also packet 

switched programming techniques, where a distinct progam is 

required to be loaded into each processing node only one node 

may be subject to programming at any instant. Considering 

again the case of 64 Kilobyte programs to be loaded into 1000 



PRACTICAL IMPLEMENTATION 199 

processing nodes down links of 10 Megabit/second capacity (this 

figure is marginally better then the transmission speed of the 

serial links used with the transputer[78]). The time taken to 

program all of the nodes would be approximately 

1000 x8X 64 x 103 seconds 
10 X 106 

that is 51.2 seconds. This is quite a long period if 

programming has to be performed frequently and it should also 

be borne in mind that this is an absolute minimum figure and 

would almost certainly be increased through the use of any 

routing information, error correcting redundancy etc. 

6.2.2 Identical Mutual Programming 

Though for many applications processing nodes are 

required to have distinct programs running in separate nodes 

the homogeneous processing scheme under investigation required 

the same processing to be applied to all incoming data. This 

allowed all of the processing nodes to run the same program, 

which suggested the possibility of having processing nodes pass 

the program between each other. 

Using this method only one node would require programming 

initially and this node could then go on to program its 

immediate neighbours which would then program their immediate 

neighbours and so on until all of the processing nodes had been 

programmed. 
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6.2.2.1 Storage Requirements 

This method has advantages in the amount of storage 

required for the programming source* in that only one copy of 

the program would be required by the programming source with a 

consequent reduction in the amount of storage space required. 

6.2.2.2 Programming Time 

The time required to program a network computer by mutual 

programming will depend upon the connection graph of the 

computer. The worst case would be where processors were 

arranged in a linear arrangement and the program supplied to 

one end as in fig 6.1a. In this case only one processor would 

be undergoing programming at any one time and the time taken to 

program the network would be almost the same as that taken in 

the case of circuit or packet switching of distinct programs. 

An improvement in the programming time could be achieved, 

without changing the structure, simply by supplying the program 

to one of the processors other than the end one, as in f ig 

6.1b. The 'program front' will then proceed in both directions 

away from the originating node simultaneously. 

The time to program the system obviously depends upon the 

graph of the interconnection pattern of the nodes as seen by 

the program source. If the processing nodes encountered by the 

program have a high degree then the program will be distributed 

more rapidly throughout the system than if nodes of a low 

degree are encountered. However, if the graph contains one or 

more circuits then in some cases the nodes to which the program 

is offered will already be programmed. In such a case the 
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processor offering the 
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FIG. 6-1 PROPAGATION OF PROGRAM FRONTS 
FOR TWO PROGRAM SUPPLY POINTS. 
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program would appear, as far as the propagation of the 

programming front is concerned, as though it had a lower degree 

than it actually has within the graph. As a result of this 

behaviour the program is never passed around a circuit so the 

program is distributed along one of the spanning trees of the 

graph, the particular spanning tree being dependant upon the 

time taken for processors to program each other and the 

consequent speed of propagation of the program down the 

different sub-trees. 

6.2.2.3 Simultaneous Programming 

Using the hardware described in chapter 5 it would be 

possible to send data down one or more links truly 

simultaneously. This capability opens up the possibility of 

sending a copy of the program to all of the nearest neighbour 



PRACTICAL IMPLEMENTATION 202 

un-programmed nodes simultaneously with a consequently more 

rapid dispersion of the program throughout the system. This 

mechanism was not implemented in practice because the 

simultaneous write facility is not generally available and also 

because during such a programming action the insertion of a 

verification of correct program transmission based upon some 

form of acknowledgement mechanism would be difficult to 

implement. 

6.2.2.4 Error Correction Nechanisins 

Since the program has to pass through D (where D is the 

diameter of the graph of the interconnection scheme of the 

processing nodes), and possibly more, serial links to reach 

some of the processing nodes the possibility of corruption of 

the program becomes significant. The program may also be 

corrupted while residing within the memory of a processing 

node, however this is considerably less likely than the 

corruption during transmission and may be dealt with using a 

suitable memory arrangement, e. g. a ninth parity bit on RAM 

devices. 

Some form of error detection and correction of the 

transmission of program material down the serial links would be 

desirable. There are two main possibilities, error detection 

and re-transmission or error correction using redundant 

information or possibly a combination of both techniques, 

depending upon the degree of security required and the overhead 

that is acceptable. 
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One point to note it that error correcting codes, e. g. 

parity words, could easily be applied in the simultaneous 

program transmission scheme mentioned above, the same 

information being sent to all nodes being programmed, however 

because the interaction between the nodes is not on a one to 

one basis the nodes being programmed cannot easily request 

re-transmission of sections of the program without interfering 

with the programming of the other nodes. 

6.2.2.5 Programming Algorithm Adopted 

Bearing in mind the preceding points a programming 

mechanism was implemented on the Z-80 based system described in 

chapter 5. The programming system consisted of two main parts, 

the program loader residing in each processing node and the 

software required to send a program to the processor network in 

the correct form, the latter being merely a special case of the 

program loader, there being only output to deal with. 

Since the system to be programmed was initially to be 

only small error detection and correction mechanisms were not 

implemented, however they could easily be inserted into the 

algorithm when the system reached such proportions that they 

were required. As mentioned above, the ability to send program 

material simultaneously to more than one link was not used as 

this is not a general feature of such processor schemes and the 

increased speed of programming was not required in the small 

scale system initially developed. 
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The algorithm used within the processing nodes written in 

'pseudo code' was : 

wait until the offer of a program copy is received; 

send an acknowledgement; 

receive the program; 

for all links other than the source link do 
begin 
send an offer of a program copy; 
awaittimeout; 
if acknowledgement received then 

send the program; 
end; 

enter the program; 

Clearly some information other than just program material 

had to be sent to processors and this had to be distinguishable 

from the program material itself. A system of $escape' codes 

were used, in this application the value FF16 was used as an 

escape value, however, the particular value chosen is 

unimportant. When a value of FF 16 occurred in the program 

material this would be sent as FF 16 FF 16 which would allow 

distinction between this and one of the escape codes and would 

be correctly interpreted by the receiving processor, all single 

occurrences of FF 16 indicating an escape sequence. 

.6 
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The codes used were: 

FF 
16 

FF 
16 : Indicates a value of FF 16 

205 

FF 16 
00 

16 AddrL AddrH 
I 

Sets the address to load data into 

and sets redirection to the memory 

FF 16 01 16 (SP-2) (SP-1): Pushes a value onto the stack 

FF 16 02 16 SPL SPH : Loads the Stack Pointer with a value 

FF 16 03 16 LINK 16 
Sets the link to send data to 

and sets redirection to that link 

FF16 0416 : Performs a RETurn instruction 

FF16 0516 Exits from the programming loop 

(Marks end of program) 

FF 16 06 16 AddrL AddrH Set the highest address required to 

forward to the next processor 

FF 26 0716 AddrL AddrH : Sets the lowest address required to 

forward to the next processor 
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The loading program was designed to have two modes of 

operation, one in which incoming bytes were stored in 

contiguous memory with the address to which the bytes were sent 

being incremented automatically and an alternative where all 

incoming data was sent to one of the serial links. Setting of 

the address or link to which data should be sent was performed 

using the sequences FF 16 00 16 and FF 16 03 16 respectively 

followed by the required data. The sequence FF 16 01 16 
followed 

by a 16 bit value pushed a value onto the stack, this in 

combination with the sequence FF, 6 04 16 could be used to jump 

to a particular location, also, when the program loop had been 

lef t and any neighbour processors programmed a RETurn would 

automatically be made to the address on the top of the stack. 

The sequence FF, 6 0216 followed by a 16 bit value would 

position the stack pointer where required. The sequences FF, 6 

06,6 and FF. 6 07.6 followed by a 16 bit address indicated the 

top and bottom respectively of the region of memory that must 

be sent on to any processors requiring a copy of the program. 

6.2.2.6 Differing Processor Functions 

The technique of mutual programming is considerably more 

convenient than programming each node individually and it would 

be desirable to apply this same technique to the case where 

different functions are to be carried out by different 

processing nodes. To some extent it is possible to do this. 

The programs executed in the nodes may be made to be dependant 

upon the position of the processing node within the computing 

structure. This can be achieved by sending the same program to 

all of the processing nodes but upon commencement of execution 
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of the program having the program perform interactive 

'enquiries' of its neighbours (if any) to determine the type of 

situation in which it finds itself, possibly determining if any 

special devices are connected (e. g. disc units) in the 

process. Depending upon the results of this then going on to 

initialise and execute the appropriate section of code within 

the program. For example, in the cylindrical arrangement of 

stacked rings proposed in this thesis the processing nodes 

could perform a simple test to determine whether the node lies 

at the bottom of the stack (in which case no data should be 

sent further down) or at the top of the stack and if so whether 

any input of output devices are connected or not (and 

consequently enable or disable the sections of code to input or 

output data as appropriate). 

A very simple example of such a program could be : 

enquire_lower_ýnode; 
enquire 

- upper - node; 
if not lower_node and not upper_node then 

single_ring_code; 
if lower_node and upper_node then 

inside_layer_code; 
if lower_node and not upper_node then 

top_layer_code; 
if not lower 

- node and upper_node then 
bottom-layer_code; 

6.3 Data Processing 

The four algorithms for the use of the cylindrical stack 

of processors for processing of event data in a homogeneous 

fashion, the study of which by simulation has been described in 

chapter 4, were implemented on the hardware described in 

chapter 5. Four separate event processing programs were used, 

these were supplied with data by driver programs serving the 
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function of the supply of data by an event manager, the 

programs involved are to be found in appendix 15. Only three 

processors were available and it was only possible to supply 

data at one point. Though this did limit the extent to which 

the behaviour of the system for differing shapes could be 

explored it did allow the correct operation of such a system to 

be verified or denied. Since the simulations carried out used 

a globally synchronised communication scheme it -would be 

possible for a deadlock condition or unreasonable behaviour of 

a completely asynchronous system to have been overlooked. 

6.3.1 Data Format 

Data from an 'event, was encoded in a simple packet 

structure utilising a header value, followed by the length of 

the data, followed by the data itself, a simple example being 

shown in fig 6.2. The same structure was also used to carry 

results in the reverse direction. 

F-LýEýN 

FIG. 6-2 EVENT PACKET STRUCTURE. 

This 'packaging' offers no fault detection or recovery 

J 
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but for the purposes of verifying the operation of the 

homogeneous computing structure has proved satisfactory. it 

may in a more complete implementation be advantageous to 

distinguish between incoming data packets and outgoing results 

packets but due to the policy of sending results in the reverse 

direction to data the type of packet may be determined from its 

direction of travel within the structure. 

6.3.2 Data Supply 

Data was supplied to the system by a driver program 

serving the functions of both the event manager and the 

mainframe used for the accumulation of data. A simple scheme 

was used, the characters 'a' to Ig9 being sent as raw events 

and the uppercase characters 'A' to 9GI returned as processed 

events. The selection of printable characters for the data 

made for easier debugging during the initial testing stages. 

Events were supplied to the processor as fast as the processor 

would accept them, not only to determine the maximum processing 

rate but to illustrate the behaviour of the system under heavy 

loading, particularly with regard to deadlock or under 

utilisation of any of the processors. 

6.3.3 Data Display 

During debugging a very simple data display consisting of 

the characters returned by the processor was presented on the 

screen of the machine accumulating the results. The continuous 

transfer of characters in this fashion was a potential 

bottleneck so a system of storing counts of the results 
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received and displaying the cumulative values at infrequent 

intervals was also implemented. This is distinctly different 

from the accumulation of results within the processing nodes 

before returning cumulative values. 

6.3.4 Processing Behaviour 

The results indicate the behaviour of a homogeneous 

processing scheme and allowed the relative behaviour of the 

four communication algorithms tested to be evaluated. 

Though no formal proof of the liveness of the processors 

was undertaken no deadlock was observed in the implementation 

described here and the behaviour of the four algorithms tested 

was found to be virtually identical. This behavioural 

equivalence was due to the continuous cycling of the program 

masking any apparent priority. 

6.3.4.1 Distribution Preservation 

One of the programs tested gave a significant weighting 

of processing speed to one type of event as compared with other 

events (see appendix 15), the events sent to the processor were 

evenly distributed and for the processed data to be meaningful 

in a real implementation the distribution of supplied events 

must be preserved regardless of differing processing times of 

events. The distribution of processed events was indeed 

observed to be uniform despite the bias toward some types of 

event in all of the topologies examined verifying the validity 

of this approach to processing event data. 
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6.3.4.2 Processing Speedup 

The rate of processing in events per second was measured 

over 5000 events for a variety of structures made up of the 

three processors available. It should be noted that events 

with a fairly long processing time were represented and that 

the processing rates do not relate to the target figure of 

100 000 events/second aimed for in a final implementation but 

indicate that speedup is achieved and that processors will 

distribute the workload amongst themselves. Algorithm 1 

produced a comparatively poor throughput, this probably results 

from the statement order giving some weighting to horizontal 

communication producing the 'data shuffling' effect where data 

circulating around the ring interferes with the intake of data, 

wasting computing cycles, as was observed in the simulations. 

6.3.4.2.1 Ring 

Fig 6.3 shows the processing rates of homogeneous rings 

of processors. The graph shows clearly speedup with each 

additional processor and very little difference in processing 

rate between the four communication algorithms tested. 
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6.3.4.2.2 Column 
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Fig 6.4 shows the processing rates of homogeneous columns 

of processors. The graph again shows clearly speedup with each 

additional processor and again very little difference in 

processing rate between the four communication algorithms 

tested. All of the algorithms exhibited marginally better 

performance in this configuration than in the ring, possibly 

due to data circulating around the ring interfering with the 

incoming data stream a situation apparently avoided when there 

is only one processor in each ring, the superior performance of 

algorithm 1 tends to support this view. 
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6.3.4.2.3 ILI Structures 
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The three possible ILI shaped structures utilising three 

processors were tested and showed processing rates comparable 

to the ring and columns consisting of three processors. The 

three ILI shaped structures tested are shown in fig 6.5, the 

corresponding processing rates when running the four 

communication programs are shown in table 6.1. 

R R R 

ABC 

FIG. 6-5 'L' SHAPED STRUCTURES TESTED. 

TABLE 6-1 PROCESSING RATES FOR THE THREE STRUCTURES ILLUSTRATED 

IN FIG 6-5 RUNNING THE FOUR ALGORITHMS TESTED. 

Communication Algorithm 

L Shape 1 2 34 

A 740 794 671 721 

B 949 937 931 934 

C 600 630 714 636 

Mean 763 787 772 763 
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The processing rates are very similar for all of the 

algorithms, the algorithms being largely equivalent. The 

processing rate is affected by the number of data transfers 

required for data to reach particular processors (related to 

the diameter of the interconnection graph) configuration B in 

which data need only undergo one forwarding operation provides 

a greater processing throughput than the other configurations. 

Configuration C has the lowest throughput, believed to be due 

to data circulating around the ring interfering with vertical 

communication to some extent. The algorithm showing the best 

mean performance in these three structures is algorithm 2 

suggesting that adoption of an algorithm with similar 

characteristics as regards the priorities and relative latency 

of communication in the possible directions as this algorithm 

would produce the greatest throughput. 

6.3.4.3 Fault Tolerance 

The occurrence of faults within the system was tested 

very simply by removing links from the system while running. 

No timings were taken though processing rates similar to those 

of one of the structures described above would be expected., 

The possibility of communication in the reverse direction upon 

the occurrence of a fault was not explored and as such 

isolation of processors from the supply of data was readily 

achieved with only three processors. In the case of the 

column, the ring and the three ILI shaped structures it was 

found that those processors remaining connected so as to 

receive data as links were removed would contribute processing 

power to the system. 
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6.3.4.4 Lost Events 

On initiation of the data supply some events were lost, 

these were events sent to un-connected lines of a processor or 

results of processed events sent to un-connected lines of a 

processor. After the initial loss, which can be avoided by 

incorporating a test for un-connected lines before processing 

commences in the communication scheme, no further lost events 

were observed; the events were believed to be lost on the 

removal of a link in the demonstration of faults tolerance but 

due to the difficulty of making observations in the environment 

of ongoing processing no observations of these were made. 

6.4 Distributed Depth First Search Algorithm 

6.4.1 Initial Implementation 

The depth first search algorithm developed in chapter 3 

was expressed in 9pseudo code' as : 
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procedure ddfs; 
var now, val: integer; 

procedure visit_call(t: link); 
begin 
send now to visited node; 
while waiting 

if val_requested then 
send val to requesting link; 

receive new now from visited node; 
end; 

procedure visit answer(t: link); 
begin 
receive value of now; ' 
for t: =1 to 4 do 

begin 
if valreq(t) =0 then 

visit call(t); 
end; 

return new value of now; 
end; 

begin 
repeat 

begin 
wait for something; 
if visited then 

visit answer; 
if val 

- 
requested then 

send val to requesting link; 
end 

until forever; 
end-, 
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This algorithm had to be coded in a form suitable for 

down loading into the processors available, in the modified C 

programming language developed. Since bytewise communication 

was used in the programming system this limited the number of 

processing nodes that the implementation of the algorithm could 

correctly scan, this maximum was further reduced by the need to 

allocate some of the 256 values as special codes. Though the 

actual number of processing nodes possible was limited this 

does not invalidate the test of the depth first search 

algorithm as longer messages carrying larger values could be 

simply incorporated into this framework. 
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For the algorithm to produce output more amenable to 

debugging and testing printable characters were used as the 

special codes and values. The 'values' of the visited nodes 

were represented by lower case characters 'a' (unvisited) 

through to IzI (maximum) giving a maximum number of nodes of 

25. The values of the links were sent as the characters 111, 

121,141 and 181 these representing the actual addresses of the 

links within the processing node. 

A driver program to send the required codes to initiate 

the depth first search and to collect the resulting data and 

print this as an adjacency matrix was written in C. This 

program and the depth first search programs are to be found in 

appendix 16. 

Though only three processing nodes were available for 

testing the algorithm this was sufficient to test the 

propagation of the algorithm through the processing system and 

the correct functioning of the algorithm with various 

connection patterns. Some connection patterns tested and their 

resulting labels and adjacency matrix are shown below in fig 

6.6, the latter of these is obviously spurious data due to the 

incorrect scanning of a self-loop. 
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DFSDRIVER 
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Total Number of Connected Nodes 2 

FROM 
0123456789 

TO 
00400000000 
100 82 0000000 
20 18 00000000 
30000000000 
40000000000 
50000000000 
60000000000 
70000000000 
80000000000 
90000000000 

Note: Vertex 0 represents the connection point to the graph 
The numbers indicate which link forms the connection(s) 

FIG. 6-6a PROCESSOR INTERCONNECTION PATTERN AND THE RESULTING 

ADJACENCY MATRIX USING THE DDFS ALGORITHM. 
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Total Number of Connected Nodes =1 

I VER 

FROM 
0123456789 

221 

TO 
00100000000 
14000000000 
20000000000 
30000000000 
40000000000 
50000000000 
60000000000 
70000000000 
80000000000 
90000000000 

Note: Vertex 0 represents the connection point to the graph 
The numbers indicate which link forms the connection(s) 

FIG. 6-6b PROCESSOR INTERCONNECTION PATTERN AND THE 

RESULTING ADJACENCY MATRIX USING THE DDFS ALGORITHM. 
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6.4.2 Multiprocessing Implementation 

The depth first search algorithm itself is inherently 

simple, being extended to a distributed form merely by 

separating visit calls and visit answers into separate 

processors and initiating appropriate data exchanges between 

processors as would be exchanged in a procedure call and return 

of a depth first search program running on a single processor. 

However the requirement for one processor to be able to 

interrogate a processor as to whether it has been visited or 

not, and its consequently assigned identity, regardless of its 

state complicates matters somewhat in that provision must be 

made to respond to such requests at all times. This ability to 

respond is essential to allow both circuits and self-loops 

within graphs to be dealt with correctly. 

To retain the simplicity of the depth first search and 

avoid the complication of responding to the requests for the 

processor identity it would be possible, using the message 

passing multiprocessing system developed to separate these two 

functions. This could be achieved by intercepting the requests 

for identity and responding to them without involving the depth 

first search program. To achieve this a process would be 

required to Ifilter9 all incoming data streams to intercept the 

Value Request Codes and a process would be required to combine 

the responses to Value Request Codes and the data streams from 

the depth first search program. These processes are shown in 

fig 6.7. 
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The C multiprocessing program represented in this diagram 

is to be found in appendix 16. The program was tested in the 

same fashion as the previously discussed depth first search 

program and was found to function in the same way, however it 

produced the correct output on encountering self-loops, as 

shown in fig 6.8. 

1 

2 

4 

8 

FIG. 6-ý PROCESS MODEL OF THE MULTIPROCESSING 
DEPTH FIRST SEARCH. 
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Total Number of Connected Nodes 2 

FROM 
0123456789 

TO 
00400000000 
100 82 0000000 
20 18 00000000 
30000000000 
40000000000 
50000000000 
60000000000 
70000000000 
80000000000 
90000000000 

Note: Vertex 0 represents the connection point to the graph 
The numbers indicate which link forms the connection(s) 

FIG. 6-8a PROCESSOR INTERCONNECTION PATTERN AND THE RESULTING 

ADJACENCY MATRIX USING THE DDFS (MULTIPROCESSING) ALGORITHM. 
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Total Number of Connected Nodes =3 
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FROM 
0123456789 

TO 
00100000000 
10 48 40000000 
20202000000 
3002 18 000000 
40000000000 
50000000000 
60000000000 
70000000000 
80000000000 
90000000000 

Note: Vertex 0 represents the connection point to the graph 
The numbers indicate which link forms the connection(s) 

FIG. 6-8b PROCESSOR INTERCONNECTION PATTERN AND THE RESULTING 

ADJACENCY MATRIX USING THE DDFS (MULTIPROCESSING) ALGORITHM. 
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CHAPTER 7 

7 EVALUATION AND CONCLUSIONS 

7.1 Summary 

This thesis presents a possible computing scheme for 

processing of data from High Energy Physics. Chapter 3 

presented an abstract consideration for a cylindrical 

arrangement of processors as a possible solution to the problem 

of achieving a sufficiently high processing rate. The theory 

developed as a predictor of behaviour is of an extremely simple 

nature and possible rather crude; however, as the nature of the 

processing to be performed was not rigidly defined, varying 

depending upon the experimentor's requirements, the development 

of a more exact model was not readily justified. The structure 

proposed was that of a cylindrical connection of processors 

communicating asynchronously in a data driven scheme. 

Simulations were carried out using a state machine model of the 

processors which showed generally good agreement with the 

behaviour predicted from the model. 

Two schemes of use for this structure were proposed, a 

non-homogeneous scheme in which data would be processed at a 

particular node and a homogeneous scheme in which data would be 

processed at any node. The homogeneous scheme was demonstrated 

to avoid many of the mapping and routing problems of the 

non-homogeneous scheme and hence was taken as the subject of 

further development. 
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Processor hardware and software support sufficient to 

test the correct functioning of the homogeneous scheme 

developed is described in chapter 5 and its use to test the 

above processing scheme and also an algorithm for determining 

the interconnection pattern of the processors derived from 

depth first search is described in chapter 6. 

7.2 Evaluation 

The variable nature of the amount of processing to be 

performed meant that the final throughput in events/second 

would be dependant upon the processing required by the 

experimentor, so no final figure of throughput could be 

obtained. However, the general behaviour of the system has 

been demonstrated for various conditions of input data by 

simulation and it has also been shown that the throughput of 

the system can be predicted to a reasonable degree of accuracy 

from the model developed in chapter 3 provided that some basic 

parameters of the processors making up the system are known. 

The correct functioning of the system with respect to producing 

results that correctly represented the distribution of data 

events and the ability to continue processing at a reduced rate 

despite faults has been demonstrated both by simulation and, 

for a small number of processors, in a hardware implementation. 

In addition to the above a 'distributed depth first search' 

algorithm has been developed to allow the connection topology 

to be verified and possibly perform some testing of the 

processors. The algorithm has been stated in a very general 

style facilitating coding in a variety of programming 

languages. 
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7.3 Further Research 

This thesis presents the concepts behind a computing 

structure and illustrates some verification that the structure 

is functionally correct. There remains a considerable amount 

of research and development work before a final design could be 

realised. 

7.3.1 Processor Selection 

The computing scheme may be realised utilising one or 

more of the large number of microprocessors available today and 

some investigation into the relative merits of the 

microprocessors for this application would be required before 

selection could be made. Zanella[1621 suggests that the HEP 

community have informally adopted the following 

microprocessors; 6809 for control applications and the 68000 

series of microprocessors for more compute intensive tasks. 

These processors could prove suitable and their adoption would 

be in keeping with the informally adopted standard. The 

structure is tetravalent and suitable for implementation using 

TRANSPUTERS, their high speed and multiprocessing system 

support makes them a strong candidate for the construction of 

the system. The high price (1988) must be borne in mind and a 

more cost effective solution may be found through the use of a 

greater number of slower but cheaper microprocessors; this 

approach may also offer improved fault tolerance through a 

greater division of the workload and greater path redundancy in 

the interconnection pattern. Development of methods of 

estimating or measuring the values of Ocmaxq Kr and Ophy, for 

Ot ý11- 
. 
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various node designs would be important to allow the model to 

be used to make predictions of performance and behaviour. 

7.3.2 Node Structure 

Closely related to the selection of a microprocessor from 

which to construct the system would be the design of the 

internal structure of each processing node. The dual 

functionality of a node, ie the routing and the processing of 

data suggests a node with two distinct communicating sections, 

perhaps utilising both the 6809 and 68000 series of 

microprocessors. Since a large part of the software is 

independant of the application, such as the loading and routing 

software this could be retained in EPROM leaving only the 

experimentor's processing algorithm to be loaded. An element 

of the consideration of node structure would possibly include 

the requirement and possibility of incorporating fault 

detection hardware into the processing nodes. 

7.3.3 Data Supply 

The feeding of data into the system has not been fully 

considered, if a single data source is to be fed into the 

system it would be possible to use a multiplexer to divide a 

high bandwidth data stream into several low bandwidth links. 

If one of the data links has a sufficiently high bandwidth to 

take all of the data the use of a multiplexer may be avoided, 

the communication links being used to distribute data through 

the system. The possible use and design of such a multiplexer 

may be the subject of further research. 

0 
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7.3.4 Data Retrieval 
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One aspect not thoroughly explored here is the retrieval 

of processed data from the computing structure. Though an 

algorithm has been presented, this being the reverse of the 

algorithm for the un-processed data the possibility of grouping 

processed events into 'bundles' to reduce the results traffic 

has not been explored. The inter-relationship between the 

factors of node storage requirement, results traffic, the 

possibility of large numbers of lost events should a node fail 

before a 'bundle' contained therein is transmitted and possible 

(temporary) distortion of the displayed spectra if large 

numbers of similar events are awaiting transmission would 

require investigation. 

7.3.5 Programming Error Correction 

The possibility of mutual identical programming has been 

demonstrated, however no error correction was incorporated. As 

any transmission errors would propagate to any further 

processors programmed and since any errors would be compounded 

a strong error correction mechanism would be desirable in this 

context. 

7.3.6 Algorithm Development 

Four communication algorithms have been isolated and 

utilised in both simulation and a hardware implementation, 

other algorithms could be developed with a view to improved 

behaviour, especially as regards fault-tolerance. In relation 

to this work the occurrence of 'processing shadows' behind 
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faulty nodes could be usefully evaluated, a Petri-Net technique 

would be useful to prove the correctness of the processor 

interactions and the development of a recoverable interaction 

scheme and reprogramming mechanism would be required to allow 

on-line replacement of faulty nodes. The algorithms used in 

the processing of events would be determined largely by the 

requirements of the experimentor though some consideration of 

general strategies (e. g. look-up table evaluation) would be 

desirable. 

7.4 Final Implementation 

The implementation of the computing structure as a real 

system would require the development of a considerable amount 

of hardware and software, not just for the computing engine 

itself but for interfaces device drivers etc. The loading 

algorithms and node communication programs would have to be 

written in an appropriate language. A user interface to the 

system would be required though this could be largely derived 

from that already in use since the use of the system would be 

unlikely to change. 

7.5 Conclusions 

The feasibility of using a multimicroprocessor to process 

data from High Energy Physics has been demonstrated. There 

remains considerable further work to be done býefore a final 

implementation could be realised. 
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That is the theory that I have and which 

is mine and what it is too. 

232 

Anne Elk (Miss) (circa 1970). 
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APPENDIX 1 

1 Simulation Programs of Distinct Node Rings 

program distringl(input, output, distdata, distrecord); 
const 

CONSTANTS FOR RANDOM NUMBER GENERATION 
m=100000000; ml=10000; b=31415821; 

type 
PROCESSING NODE TYPE 

proc_ptr=ýproc_type; 
proc_type=record 

proc_id: integer; 
ring_input: integer; 
ring_output: integer; 
input_full: boolean; 
output_full: boolean; 
data_input: integer; 
data_full: boolean; 
p_type: integer; 
p_state: integer; 
next: proc_ptr; 
end; 

var 
a: integer; 
pconst: integer; 
distdata, distrecord: text; 
ring: proc_ptr; 
processing: array[l.. 1001 of integer; 
processed data: array[l.. 100] of integer; 
consumed - 

jata: array[l.. 100] of integer; 
largen, iterations, procs: integer; 

function mult(p, q: integer): integer; 
(* EXTENDED MULTIPLICATION 
var pl, pO, ql, qO: integer; 
begin 
pl: =p div ml; pO: =p mod ml; 
ql: =q div ml; qO: =q mod ml; 
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m; 
end; 

function random: real; 
RANDOM NUMBER GENERATOR 
PG37 - ALGORITHMS - SEDGEWICK 
ADDISON - WESLEY 1984 

begin 
a: =(mult(a, b)+l)mod m; 
random: =a/m; 
end; 

procedure input_parameters; 
INITIALISE INPUT AND OUTPUT FILES 
READ IN THE PARAMETERS OF THE RING TO MODEL 

var 
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n: integer; 
begin (* INPUT_PARAMETERS 
reset(distdata); rewrite(distrecord); 
writeln(distrecord, ldistringll); 
writeln(distrecord, 'Ring State record for simulation using : -I); 

READ IN THE NUMBER OF PROCESSORS 
readln(distdata, procs); 
writeln(distrecord, $Number of processors = l, procs: 3); 
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM 
readln(distdata, largen); 
writeln(distrecord, 'Number of iterations performed 
(* READ IN THE AMOUNT OF PROCESSING REQUIRED PER DATA 
readln(distdata, pconst); 
writeln(distrecord, 'Processing required per data item 
writeln(distrecord); 
end; (* INPUT_PARAMETERS 

, largen: 3); 
ITEM *) 

= l, peonst: 3,1 units') 

procedure initial 
- 

states; 
SETS UP THE INITIAL STATE OF THE RING DATA STRUCTURE 
AND PRINTS A HEADING TO FILE RINGRECORD 

var 
p: proc_ptr; 
n: integer; 

procedure set 
- 

vars; 
begin (* SET 

I 
VARS *) 

p-. input 
- 

full: =false; 
P-. Output 

- 
full: =false; 

p-. data_full: =false; 
pA. p_type: =O; 
p, ". p_state: =O; 
end; (* SET_VARS 

begin (* INITIAL_STATES 
write(distrecord, l 
new(ring); 
p: =ring; 
p-. proc_id: =l; 
write(distrecord, ' l, p"*. proc_id: 3); 
set_vars; 
for n: =l to (procs-1) do 

begin 
new(pA. next); 

p: =p*"I. next; 

p-. proc_id: =(n+l); 
write(distrecord, l l, p"'. proc_id: 3); 

set-vars; 
end; 

p-. next: =ring; 
writeln(distrecord); 
for n: =l to 100 do 

begin 
processing[n]: =O; 
processed_data[nl: =O; 
consumed_data[nl: =O; 
end; 

end; INITIAL_STATES 
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procedure communicate; 
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE 
var 

p: proc_ptr; 
begin (* COMMUNICATE 
p: =ring; 
repeat 

begin 
if (pA. output_full and not(p*",. next1ý. input_full)) then 

begin 

p^. next-. ring_input: =pý. ring_output; 
p'ý. nextý. input_full: =true; 
p-*,. output_full: =false; 
end; 

p: =p"'. next; 
end; 

until (p=ring); 

end; (* COMMUNICATE 

procedure create - new_data; 
(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM 
var 

p: proc_ptr; 

begin (* CREATE_NEW_DATA 
p: =ring; 
repeat 

begin 
if (not(p-. data_full)) then 

begin 
p*",. data_input: =l+trunc(random*(procs-0.0001)); 
consumed_data[p-. data_input]: =consumed_datalp-. data_inputl+l; 
P-. data_full: =true; 
end; 

p: =p*ý. next; 
end; 

until (p=ring); 
end; (* CREATE_NEW-DATA 

procedure compute; 
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT 
var 

p: proc_ptr; 

procedure computing_algorithm; 
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN 
THE PROCESSOR 

var 
time_unit: integer; 

procedure comms; 
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS 

function processor_idle: boolean; 
begin 
processor_idle: -(pý. p_state<=O); 
end; 
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function ring-data: boolean; 
begin 
ring_data: =p-. input_full; 
end; 

function new-data: boolean; 
begin 
new_data: =p**,. data-full; 
end; 

function new-data_right: boolean; 
begin 
new-data_right: =(p-. data_input=p-. proc_id); 
end; 

function ring_data_right: boolean; 
begin 
ring_data_right: =(p^. ring_input=p-. proc_id); 
end; 

function ring_ready: boolean; 
begin 
ring_ready: =not(p-. output_full); 
end; 

procedure take_ring_data; 
begin 
if (pconst<O) then 

pA. p_state: =trunc(random*(-pconst)) 
else 

pý. p_state: =pconst; 
p-. p_type: =pý. p_state; 
p-. input_full: =false; 
time_unit: =time_unit-1; 
end; 

procedure take_new-data; 
begin 
if (pconst<O) then 

pA. p_state: =trunc(random*(-pconst)) 
else 

p*''*. p_state: =pconst; 
p-. p_type: =p-. p_state; 
p-. data_full: =false; 
time__unit: =time_ýunit-1; 
end; 

procedure ring_data_on; 
begin 
pý. ring_output: =pý. ring_input; 
p-. input_full: =false; 
p-. output_full: =true; 
time_unit: =time_unit-1; 
end; 

procedure new-data_on; 
begin 
pl**. ring_output: =pA. data_input; 
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P-. data_full: =false; 
pý. output_full: =true; 
time_unit: =time_unit-1; 
end; 

begin (* COMMS1 *) 
if processor 

- 
idle then 

if new data then 
if new 

- 
data right then 

take_jiewjata 
else 

if ring_data then 
if ring_data_right then 

take 
- 

ring_data 
else 

(* NULL 
else 

(* NULL 
else 

if ring_data then 
if ring_data_right then 

take 
- 

ring_data 
else 

(* NULL 
else 

(* NULL 
else 

(* NULL 
if ring_ready then 

if new data then 
if not new - 

data-right then 
new - 

data_on 
else 

if ring_data then 
if not ring_data_right then 

ring_data_on 
else 

(* NULL 
else 

(* NULL 
else 

if ring_data then 
if not ring_data_right then 

ring_data_on 
else 

(* NULL 
else 

(* NULL 
else 

(* NULL 
end; (* COMMS1 

procedure process(units: integer); 
(* PERFORMS THE ACTIVITIES OF THE PROCESSING PROCESS 
begin (* PROCESS *) 
pý. p_state: =pý. p_state-units; 
if (p-. p_state<=O) then 

begin 
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if (p-. p_type>O) then 
begin 
processed 

- 
data[p**,. p_typel: =processed_data[p^. p_typel+l; 

processing[p-. proc_idl: =processing[p^. proc_idl+l; 
end; 

p^. p_type: =O; 
p"'. p-state: =O; 
end; 

end; PROCESS 

begin (* COMPUTING_ALGORITHM 
time 

- 
unit: =4; 

TOTAL PROCESSING EFFORT AVAILABLE 
PER ITERATION 

comms; 
(* COMMS USES UP SOME PROCESSING EFFORT 
process(time - 

unit); 
end; (* COMPUTING_ALGORITHM 

begin (* COMPUTE 
p: =ring; 
repeat 

begin 
computing_algorithm; 
p: =p'ý. next; 
end; 

until (p=ring); 
end; (* COMPUTE 

procedure print_state; 
(* PRINTS THE STATE OF THE RING AFTER THE LAST ITERATION 
var p: proc_ptr; 
begin (* PRINT 

- 
STATE 

write(distrecord, 'I=l 
p: =ring; 
repeat 

begin 

write(distrecord, l 
p: =p^. next; 
end; 

until (p=ring); 

writeln(distrecord); 
end; (* PRINT_STATE 

, iterations: 3); 

, p^. p_state: 3); 

procedure print_results; 
var 

n, totalproc, totalcons, wtotproc: integer; 
begin (* PRINT 

- 
RESULTS *) 

totalproc: =O; totalcons: =O; wtotproc: =O; 
writeln(distrecord); writeln(distrecord); 
writeln(distrecord, 'Data Consumed. and Processed'); 
writeln(distrecord, l ---- -------- --- ------9); writeln(distrecord); 
for n: =l to procs do 

begin 
totalcons: =totalcons+consumed_data[n]; 
totalproc: =totalproc+processing[n]; 
write(distrecord, lP. E.: l, n: 3,1 number consumed: 1, consumed data[n]: 3); 
writeln(distrecord, ' number processed: ', processing[nl: 3); - 
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end; 
writeln(distrecord); writeln(distrecord); 
writeln(distrecord, 'Types Processed9); 
writeln(distrecord, l ----- --------- 1); writeln(distrecord); 
for n: =1 to 50 do 

begin 
wtotproc: =wtotproc+processed_data[n]*n; 
writeln(distrecord, 'Type: ', n: 3,1 number processed: ', processed_datalnl: 3); 
end; 

write(distrecord, 'Total: 1,1 number consumed: ', totalcons: 3); 
writeln(distrecord, l number processed: $, totalproc: 3); 
writeln(distrecord, 'Total: 9.1 Weighted Total Processed: ', wtotproc: 5); 
end; (* PRINT_RESULTS *) 

begin (* DISTRING1 
a: =1234567; 
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR 
input_parameters; 
writeln(9Parameters inPut9); 
initial 

- 
states; 

writeln('Initial state set up'); 
writeln(IStarting Computation'); 
for iterations: =1 to largen do 

begin 
communicate; 
create_new-data; 
compute; 
print 

- 
state; 

end; 
writeln(IFinished Computation9); 
writeln('Printing Results9); 
print - results; 
end. (* DISTRINGI 
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program distring2(input, output, distdata, distrecord); 
const 

CONSTANTS FOR RANDOM NUMBER GENERATION 
m=100000000; ml=10000; b=31415821; 

type 
(* PROCESSING NODE TYPE 

proc_ptr=^proc_type; 
proc_type=record 

proc 
- 

id: integer; 
ring_input: integer; 
ring_output: integer; 
input_full: boolean; 
output_full: boolean; 
data_input: integer; 
data full: boolean; 
p_type: integer; 
p-state: integer; 
next: proc_ptr; 
end; 

var 
a: integer; 
pconst: integer; 
distdata, distrecord: text; 
ring: proc_ptr; 
processing: array[l.. 1001 of integer; 
processed - 

data: array[l.. 1001 of integer; 
consumed - 

data: array[l.. 1001 of integer; 
largen, iterations, procs: integer; 

function mult(p, q: integer): integer; 
(* EXTENDED MULTIPLICATION 
var pl, pO, ql, qO: integer; 
begin 
pl: =p div ml; pO: =p mod ml; 
ql: =q div ml; qO: =q mod ml; 
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m; 
end; 

function random: real; 
RANDOM NUMBER GENERATOR 
PG37 - ALGORITHMS - SEDGEWICK 
ADDISON - WESLEY 1984 

begin 
a: =(mult(a, b)+l)mod m; 
random: =a/m; 
end; 

procedure input_parameters; 
INITIALISE INPUT AND OUTPUT FILES 
READ IN THE PARAMETERS OF THE RING TO MODEL 

var 
n: integer; 

begin (* INPUT PARAMETERS 
reset(distdataT; rewrite(distrecord); 
writeln(distrecord, ldistring2l); 
writeln(distrecord, 'Ring State record for simulation using : -1); (* READ IN THE NUMBER OF PROCESSORS *) 
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readln(distdata, procs); 
writeln(distrecord, 'Number of processors = l, procs: 3); 
(* READ IN THE DATATYPE (PROCESSING TIME) FOR EACH PROCESSOR 
readln(distdata, largen); 
writeln(distrecord, $Number of iterations performed 
(* READ IN THE AMOUNT OF PROCESSING REQUIRED PER DATA 
readln(distdata, pconst); 
writeln(distrecord, 'Processing required per data item 
writeln(distrecord); 
end; (* INPUT_PARAMETERS 

g, largen: 3); 
ITEM *) 

=9 
, pconst: 3,9 units'); 

procedure initial 
- 

states; 
SETS UP THE INITIAL STATE OF THE RING DATA STRUCTURE 
AND PRINTS A HEADING TO FILE RINGRECORD 

var 
p: proc_ptr; 
n: integer; 

procedure set_vars; 
begin (* SET 

I 
VARS *) 

p***. input-full: =false; 
pA. oUtpUt 

- 
full: =false; 

p^. data_full: =false; 
p^. p_type: =O; 
pA. p_state: =O; 
end; (* SET_VARS 

begin (* INITIAL_STATES 
write(distrecord, l 
new(ring); 
p: =ring; 
p-. proc_id: =l; 
write(distrecord. 1 l, p-. proc_id: 3); 
set_vars; 
for n: =l to (procs-1) do 

begin 
new(p-. next); 
p: =pA. next; 
p-. proc_id: =(n+l); 
write(distrecord, l l, pA. proc_id: 3); 
set_vars; 
end; 

pA. next: =ring; 
writeln(distrecord); 
for n: =l to 100 do 

begin 
processing[nl: =O; 
processed - 

data[nl: =O; 
consumed_data[nl: =O; 
end; 

end; INITIAL_STATES 

procedure communicate; 
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE 
var 

p: proc_ptr; 
begin (* COMMUNICATE 
p: =ring; 
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repeat 
begin 
if (p-. output_full and not(pý. next". input_full)) then 

begin 
pý. nextA. ring_input: =p-. ring_output; 
pý. next"Anput_full: =true; 
p"*. output-full: =false; 
end-, 

p: =pý. next; 
end; 

until (p=ring); 
end; (* COMMUNICATE 

procedure create - new - 
data; 

(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM 
var 

p: proc_ptr; 

begin (* CREATE_NEW-DATA 
p: =ring; 
repeat 

begin 
if (not(p-. data_full)) then 

begin 
p-. data_input: =l+trunc(random*(procs-0.0001)); 
consumed_data[p-. data_inputj: =consumed_data[p-. data_inputj+l; 
P^. data_full: =true; 
end; 

p: =p",. next; 
end; 

until (p=ring); 
end; (* CREATE_NEW-DATA 

procedure compute; 
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT 
var 

p: proc_ptr; 

procedure computing_algorithm; 
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN 
THE PROCESSOR 

var 
time_unit: integer; 

procedure comms; 
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS 

function processor_idle: boolean; 
begin 
processor_idle: =(p-. p_state<=O); 
end; 

function ring_data: boolean; 
begin 
ring_data: -p-. input_full; 
end; 

function new-data: boolean; 
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begin 
new - 

data: =pý. data_full; 
end; 

function new-data_right: boolean; 
begin 
new_data_right: =(p-. data_input=p^. proc_id); 
end; 

function ring_data_right: boolean; 
begin 
ring_data_right: =(p^. ring_input=p-. proc_id); 
end; 

function ring_ready: boolean; 
begin 
ring_ready: =not(p*"*. output_full); 
end; 

procedure take_ring_data; 
begin 
if (pconst<O) then 

p"',. p_state: =trune(random*(-pconst)) 
else 

pl',. p_state: =pconst; 
pý. p_type: =p^. p_state; 
p-. input_full: =false; 
time_unit: =time_unit-1; 
end; 

procedure take_new-data; 
begin 
pý. p_type: =p*",. data_input; 
if (pconst<O) then 

p-. p_state: =trunc(random*(-pconst)) 
else 

pý. p_state: =pconst; 
p^. p_type: =p^. p_state; 
p^. data_full: =false; 
time__ynit: =time_unit-1; 
end; 

procedure ring_data_on; 
begin 
p*"*. ring_output: =pý. ring_input; 
p-. input_full: =false; 
pý. output_full: =true; 
time_unit: =time_unit-1; 
end; 

procedure nei, ý_data_on; 
begin 
p". ring_output: =p". data_input; 
p-. data_full: =false; 
p^. output_full: =true; 
time_ynit: -time_unit-1; 
end; 
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begin (* COMMS2 *) 
if processor_idle then 

if ring_data then 
if ring_data_right then 

take_ring_data 
else 

if new data then 
if new 

- 
data_right then 

take_ýnew-data 
else 

(* NULL 
else 

(* NULL 
else 

if new data then 
if new 

- 
data_right then 

take_ýnew-data 
else 

(* NULL 
else 

(* NULL 
else 

(* NULL 
if ring_ready then 

if ring_data then 
if not ring_data_right then 

ring_data_on 
else 

if new data then 
if not new 

- 
data right then 

new 
- 

data_on 
else 

(* NULL 
else 

(* NULL 
else 

if new data then 
if not new 

- 
data-right then 

new 
- 

data_on 
else 

(* NULL 
else 

(* NULL 
else 

(* NULL 
end; (* COMMS2 

procedure process(units: integer); 
(* PERFORMS THE ACTIVITIES OF THE PROCESSING PROCESS 
begin (* PROCESS *) 
pl'ý. p_state: =p"'. p-state-units; 
if (p-. p_state<=O) then 

begin 
if (p-. p_type>O) then 

begin 
processed_datatp^. p_typel: =processed_data(pý. p_typel+l; 
processing[p-. proc_id): =processing[p-. proc_idl+l; 
end; 
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p*",. p_type: =O; 
p-'**. p_state: =O; 
end; 

end; PROCESS 

begin (* COMPUTING_ALGORITHM 
time 

- 
unit: =4; 

TOTAL PROCESSING EFFORT AVAILABLE 
PER ITERATION 

comms; 
(* COMMS USES UP SOME PROCESSING EFFORT 
process(time - 

unit); 
end; (* COMPUTING_ALGORITHM 

begin (* COMPUTE 
p: =ring; 
repeat 

begin 
computing_algorithm; 
p: =p, "*. next; 
end; 

until (p=ring); 
end; (* COMPUTE 

procedure print - state; 
(* PRINTS THE STATE OF THE RING AFTER THE LAST ITERATION 
var p: proc_ptr; 
begin (* PRINT_STATE 
write(distrecord, 'I=I, iterations: 3); 
p: =ring; 
repeat 

begin 
write(distrecord, l I, pý. p_state: 3); 
p: =pA. next; 
end; 

until (p=ring); 
writeln(distrecord); 
end; (* PRINT_STATE 

procedure print-results; 
var 

n, totalproc, totalcons, wtotproc: integer; 
begin (* PRINT 

- 
RESULTS *) 

totalproc: =O; totalcons: =O; wtotproc: =O; 
writeln(distrecord); writeln(distrecord); 
writeln(distrecord); writeln(distrecord, 'Data Consumed and Processed'); 
writeln(distrecord, l -- -------- --- ------ 1); writeln(distrecord); 
for n: =l to procs do 

begin 
totalproc: =totalproc+processing[n]; 
totalcons: =totalcons+consumed 

- 
data[n); 

write(distrecord, 'P. E.: I, n: 3,1 number consumed: ', consumed_data[n]: 3); 
writeln(distrecord, l number processed: ', processinglnl: 3); 
end; 

writeln(distrecord); writeln(distrecord); 
writein(distrecord, 'Types Processed'); 
writeln(distrecord, '--- --------l); writeln(distrecord); 
for n: =l to 50 do 
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begin 
wtotproc: =wtotproc+processed_data[n]*n; 
writeln(distrecord, 9Type: 9, n: 3.9 number processed: 9, processingtnl: 3); 
end; 

write(distrecord, 9Total: 9,9 number consumed: ', totalcons: 3); 
writeln(distrecord, l number processed: 9, totalproc: 3); 
writeln(distrecord, 9Total: 1.9 Weighted Total Processed: 9, wtotproc: 5); 
end; (* PRINT_RESULTS *) 

begin (* DISTRING2 
a: =1234567; 
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR 
input_parameters; 
writeln('Parameters input'); 
initial-states; 
writeln('Initial state set up'); 
writeln(IStarting Computation'); 
for iterations: =1 to largen do 

begin 
communicate; 
create_new-data; 
compute; 
print 

- 
state; 

end; 
writeln(IFinished Computation'); 
writeln('Printing Results'); 
print 

- 
results; 

end. (* DISTRING2 
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APPENDIX 2 

2 Simulation Programs of Distinct Node Cylinders 

program diststackl(input, output, distdatas, distrecords); 
const 

CONSTANTS FOR RANDOM NUMBER GENERATION 
m=100000000; ml=10000; b=31415821; 

type 
PROCESSING NODE TYPE 

proc_ptr=Aproc_type; 
proc_type=record 

proc r: integer; 

proc 1: integer; 
ring-input: integer; 
ring_output: integer; 
input_full: boolean; 
output_full: boolean; 
data_input: integer; 
down_output: integer; 
data full: boolean; 
down full: boolean; 
p_type: integer; 
p_state: integer; 
next: proc_ptr; 
down: proc_ptr; 

end; 

var 
a: integer; 
pconst: integer; 
distdatas, distrecords: text; 
stack: proc_ptr; 
processed_data: array[l.. 100] of integer; 
processing: array[l.. 20,1.. 201 of integer; 
consumed 

- 
data: array[l.. 20,1.. 20] of integer; 

largen, iterations, ring, layers: integer; 

function mult(p, q: integer): integer; 
(* EXTENDED MULTIPLICATION 
var pl, pO, ql, qO: integer; 
begin 
pl: =p div ml; pO: =p mod ml; 
ql: =q div ml; qO: =q mod ml; 
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m; 
end; 

function random: real; 
RANDOM NUMBER GENERATOR 
PG37 - ALGORITHMS - SEDGEWICK 
ADDISON - WESLEY 1984 

begin 
a: =(mult(a, b)+l)mod m; 
random: =a/m; 
end; 
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procedure input_parameters; 
INITIALISE INPUT AND OUTPUT FILES 
READ IN THE PARAMETERS OF THE RING TO MODEL 
WRITES A HEADING TO STACKRECORD 

var 
l, r, n: integer; 

begin (* INPUT 
- 

PARAMETERS 
reset(distdatas); rewrite(distrecords); 
writeln(distrecords, ldiststackll); 
writeln(distrecords, 'Stack State record for simulation 
(* READ IN THE NUMBER OF PROCESSORS PER RING 
readln(distdatas, ring); 
writeln(distrecords, 'Number of processors per layer 
(* READ IN THE NUMBER OF LAYERS 
readln(distdatas, layers); 
writeln(distrecords, 'Number of layers = 1, layers: 3); 
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM 
readln(distdatas, largen); 
writeln(distrecords, 'Number of iterations performed 
(* READ IN THE AMOUNT OF PROCESSING REQUIRED PER DATA 
readln(distdatas, pconst); 
writeln(distrecords, 'processing r6quired per data item 
writeln(distrecords); 
end; (* INPUT_PARAMETERS 

using : -'); 

I, ring: 3); 

9, largen: 3); 
ITEM *) 

=9 pconst: 3,1 units'); 

procedure initial-states; 
SETS UP THE INITIAL STATE OF THE STACK DATA STRUCTURE 
AND PRINTS A HEADING TO FILE STACKRECORD 

var 
p, pt: proc_ptr; 
r, l, n: integer; 

procedure set_vars; 
begin (* SET 

I 
VARS *) 

p-. input_full: =false; 
P^. Output_full: =false; 
p^. data_full: =false; 
p^. down_full: =false; 
p^. p_type: =O; 
p'',. p_state: =O; 
end; (* SET_VARS 

begin (* INITIAL_STATES 
stack: =nil; 
for 1: =layers downto 1 do 

begin 
new(p); 
pA. down: =stack; 
stack: =p; 
p-. proclr: =l; 
p-. proc_l: =l; 
pl". next: =p; 
set_vars; 
end; 

for r: =ring downto 2 do 
begin 
pt: =stack; 
new(p); 
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p***. next: =pt*"*. next; 
ptý. next: =p; 
pA. proc_r: =r; 
pý. proc_l: =I; 
set_vars; 
for 1: =2 to layers do 

begin 

pt: =pt*"*. down; 

new(p-. down); 

p: =p-. down; 

pA. next: =pt**I. next; 
ptý. next: =p; 
pA. proc_r: =r; 
pA proc_l: =l; 
set-vars; 
end; 

p^. down: =nil; 
end; 

for 1: =1 to 20 do 
for r: =1 to 20 do 

begin 
processing[l, r]: =O; 
consumed_data[l, rl: =O; 
end; 

for n: =1 to 50 do 
processed_data[n]: =O; 

end; (* INITIAL_STATES 

procedure communicate; 
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE 
var 

p, pt: proc_ptr; 
begin (* COMMUNICATE 
pt: =stack; 
while (pt0nil) do 

begin 
P: =Pt; 
repeat 

begin 
if (p-*. down<>nil) then 

if (P-. down_full and not(p-. down-. data_full)) then 
begin 
p"ý. downA. data 

- 
input: =pA. down_output; 

pl'. down_full: =false; 
p'l. downA. data_full: =true; 
end; 

if (p-. output_full and not(p-. next^. input_full)) then 
begin 
p***. next, "*. ring_input: =p-. ring_output; 
pA. nextA. input_full: =true; 
p*ý,. output_full: =false; 
end; 

p: =pA. next; 
end 

until (p=pt); 
pt: =ptý. down; 
end; 

end; COMMUNICATE 
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procedure create 
- 

new 
- 

data; 
(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM 
var 

p: proc_ptr; 
l, r: integer; 

begin (* CREATE_NEW-DATA*) 
p: =stack; 
repeat 

begin 
if (not(p-. data_full)) then 

begin 
r: =l+trunc(random*(ring-0.0001)); 
1: =l+trunc(random*(layers-0.0001)); 
p-. data_input: =1*100+r; 
consumed I 

datafl, rj: =consumed_data[l, rj+l; 
p-. data_full: =true; 
end; 

p: =pA. next; 
end; 

until (p=stack); 
end; (* CREATE_NEW-DATA 

procedure compute; 
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT 
var 

p, pt: proc_ptr; 

procedure computing_algorithm; 
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN 
THE PROCESSOR 

var 
time_unit: integer; 

procedure comms; 
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS 

function processor_idle: boolean; 
begin 
processor-idle: =(p-. p_state<=O); 
end; 

function ring_data: boolean; 
begin 
ring_data: =p-. input_full; 
end; 

function new-data: boolean; 
begin 
new-data: =p^. data_full; 
end; 

function new-data_right: boolean; 
begin 
new-data_right: =(p-. data_input=(p-. proc_r+(100*p^. proc_l))); 
end; 
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function ring_data_right: boolean; 
begin 
ring_data_right: =(p-. ring_input=(p-. proc_r+(100*pý. proc_l))); 
end; 

function column_right_data: boolean; 
begin 
column_right_data: = 

(p-. proc_r=(p-. data_input-(100*trunc(p-. data_input/l00)))); 
end; 

function column_right_ring: boolean; 
begin 
column_right_ring: = 

(p^. proc_r=(p-. ring_input-(100*trunc(p-. ring_input/100)))); 
end; 

function level-right_data: boolean; 
begin 
level-right_data: =(p-. proc_l=(p". data_input div 100)); 
end; 

function level-right_ring: boolean; 
begin 
level-right_ring: =(p*". proc_l=(p^. ring_input div 100)); 
end; 

function ring_ready: boolean; 
begin 
ring_ready: =not(p-. output_full); 
end; , 

function down_ready: boolean; 
begin 
down_ready: =not(p-. down-full); 
end; 

else 
pý. p_state: =pconst; 

pý. p_type: =pý. p_state; 
p-. input 

- 
full: =false; 

time_unit: =time_unit-1; 
end; 

procedure take_ring_data; 
begin 
if (pconst<O) then 

p". p-state: =trunc(random*(-pconst)) 

procedure take_new_data; 
begin 
if (pconst<O) then 

p-''I. p_state: =trunc(random*(-pconst)) 
else 

p". p_state: =pconst; 
pA. p_type: =pý. p_state; 
Pý. data-full: =false; 
time-unit: =time_unit-1; 
end; 
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procedure ring_data_on; 
begin 
p". ring_output: =p^. ring_input; 
p-. input_full: =false; 
p^. output_full: =true; 
time-unit: =time_unit-1; 
end; 

procedure ring_data_down; 
begin 
pý. down 

- output: =pý. ring_input; 
p-. input 

I 
full: =false; 

p-. down 
- 

full: =true; 
time 

- 
unit: =time_unit-1; 

end; 

procedure new_data_on; 
begin 
p". ring_output: =p**-. data_input; 
p-. data_full: =false; 
p'',. output_full: =true; 
time_unit: =time_unit-1; 
end; 

procedure new-data_down; 
begin 
p-. down 

- output: =p-. data_input; 
p-. data full: =false; 
p-. down full: =true; 
time 

- unit: =time_unit-1; 
end; 

begin (* COMMS1 *) 
if processor 

- 
idle then 

if new data then 
if new 

- 
data 

- 
right then 

take_new-data 
else 

if ring_data then 
if ring_data_right then 

take 
- 

ring_data 
else 

(* NULL 
else 

(* NULL 
else 

if ring_data then 
if ring_data_right then 

take_ring_data 
else 

(* NULL 
else 

(* NULL 
else 

(* NULL 
if ring_ready then 

if new-data then 
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if level_right 
- 

data and not column_right-data then 
new-data_on 

else 
if ring_data then 

if level-right_ring and not column_right_ring then 
ring_data_on 

else 
(* NULL 

else 
(* NULL 

else 
if ring_data then 

if level_right_ring and not column_right_ring then 
ring_data_on 

else 
(* NULL 

else 
(* NULL 

else 
(* NULL 

if down 
- ready then 

if new data then 
if not level 

- right_data then 
new-data_down 

else 
if ring_data then 

if not level_right_ring then 
ring_data_down 

else 
(* NULL 

else 
(* NULL 

else 
if ring_data then 

if not level_right_ring then 
ring_data_down 

else 
(* NULL 

else 
(* NULL 

else 
(* NULL 

end; (* COMMS1 

procedure process(units: integer); 
begin (* PROCESS *) 
pý. p_state: =pý. p_state-units; 
if (P-. p 

- 
state<=O) then 

begin 
if (p-. p_type>O) then 

begin 
processed 

- 
data[plý. p_typel: =processed_data[p",. p_typel+l; 

processing[pl,. proc_l, pý. proc_rl: = 
processing[p-. proc_l, pý. proc_rl+l; 
end; 

pý. p_type: =O; 
p^. p_state: =O; 
end; 
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end; (* PROCESS *) 

begin (* COMPUTING_ALGORITHM 
time 

- unit: =4; 
TOTAL PROCESSING EFFORT AVAILABLE 
PER ITERATION 

comms; 
(* COMMS USES UP SOME PROCESSING EFFORT 
process(time_unit); 
end; (* COMPUTING_ALGORITHM 

begin (* COMPUTE 
pt: =stack; 
while (pt0nil) do 

begin 
P: =Pt; 
repeat 

begin 
computing_algorithm; 
p: =p*"I. next; 
end 

until (p=pt); 
pt: =pt",. down; 
end; 

end; COMPUTE 

procedure print - state; 
(* PRINTS THE STATE OF THE STACK AFTER THE LAST ITERATION 
var p, pt: proc_ptr; 

l, r: integer; 
begin (* PRINT_STATE 
write(distrecords, 9Iteration: 9, iterations: 3); 
writeln(distrecords); write(distrecords, lr= 
for r: =1 to ring do 

write(distrecords, ' 9, r: 3); 
writeln(distrecords); 
pt: =stack; 
1: =1; 
while(pt0nil) do 

begin 
P: =Pt; 
write(distrecords, 11=9,1: 3); 
repeat 

begin 
write(distrecords, ' 9, p, ",. p_state: 3); 
p: =p". next; 
end; 

until (p=pt); 
pt: =pt-. down; 
1: =1+1; 
writeln(distrecords); 
end; 

writeln(distrecords); 
end; (* PRINT_STATE 

procedure print-results; 
var 

l, r, n, totalproc, totalcons, wtotproc: integer; 
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begin (* PRINT_RESULTS *) 
totalproc: =O; totalcons: =O; wtotproc: =O; 
writeln(distrecords); writeln(distrecords, 'Data Consumed'); 
writeln(distrecords, l ---- -------- 1); writeln(distrecords); 
write(distrecords, lr= 1); 
for r: = I to ring do 

write(distrecords, l I, r: 3); 
writeln(distrecords); 
for 1: =1 to layers do 

begin 
write(distrecords, 11=1,1: 3); 
for r: =l to ring do 

begin 
totalcons: =totalcons+consumed data[l, r]; 
write(distrecords, l I, consumea-data[l, r]: 3); 
end; 

writeln(distrecords); 
end; 
writeln(distrecords, 'Data Processed'); 
writeln(distrecords, l ---- -------- 
write(distrecords, lr= 
for r: =1 to ring do 

write(distrecords, l I, r: 3); 
writeln(distrecords); 
for 1: =1 to layers do 

begin 
write(distrecords, 11=1,1: 3); 
for r: =1 to ring do 

begin 
totalproc: =totalproc+processing[l, r]; 
write(distrecords, l I, processing[l, r]: 3); 
end; 

writeln(distrecords); 
end; 

writeln(distrecords); writeln(distrecords); 
writeln(distrecords, 'Types Processed'); 
writeln(distrecords, '---- 
for n: =1 to 50 do 

begin 
wtotproc: =wtotproc+processed_data[nl*n; 
writeln(distrecords, 'Type: ', n: 3,1 number processed: ', processed_data[nl: 3); 
end; 

write(distrecords, 'Total: 1,1 number consumed: ', totalcons: 3); 
writeln(distrecords, l number processed: ', totalproc: 3); 
writeln(distrecords, 'Total: 9.1 Weighted Total Processed: ', wtotproc: 5); 
end; (* PRINT_RESULTS *) 

begin (* DISTSTACK1 
a: =1234567; 
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR 
input_parameters; 
writeln('Parameters input'); 
initial states; 
writelnT'Initial state set up9); 
writeln(IStarting Computation9); 
for iterations: -I to largen do 

begin 
communicate; 
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create - new - 
data; 

compute; 
print_state; 
end; 

writeln(IFinished Computation'); 
writeln('Printing Results'); 
print_results; 
end. (* DISTSTACK1 
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program diststack2(input, output, distdatas, distrecords); 
const 

CONSTANTS FOR RANDOM NUMBER GENERATION 
m=100000000; ml-10000; b=31415821; 

type 
PROCESSING NODE TYPE 

proc_ptr=A proc_type; 
proc_type=record 

proc_r: integer; 
proc-l: integer; 
ring_input: integer; 
ring_output: integer; 
input_full: boolean; 
output_full: boolean; 
data_input: integer; 
down_output: integer; 
data 

- 
full: boolean; 

down 
- 

full: boolean; 
p_type: integer; 
p_state: integer; 
next: proc_ptr; 
down: proc_ptr; 

end; 

var 
a: integer; 
pconst: integer; 
distdatas, distrecords: text; 
stack: proc_ptr; 
processed - 

data: array(l.. 1001 of integer; 
processing: array[l.. 20,1.. 201 of integer; 
consumed - 

data: array[l.. 20,1.. 201 of integer; 
largen, iterations, ring, layers: integer; 

function mult(p, q: integer): integer; 
(* EXTENDED MULTIPLICATION 
var pl, pO, ql, qO: integer; 
begin 
pl: =p div ml; pO: =p mod ml; 
ql: =q div ml; qO: =q mod ml; 
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m; 
end; 

function random: real; 
RANDOM NUMBER GENERATOR 
PG37 - ALGORITHMS - SEDGEWICK 
ADDISON - WESLEY 1984 

begin 
a: =(mult(a, b)+l)mod m; 
random: =a/m; 
end; 

procedure input_parameters; 
INITIALISE INPUT AND OUTPUT FILES 
READ IN THE PARAMETERS OF THE RING TO MODEL 
WRITES A HEADING TO STACKRECORD 

var 
l, r, n: integer; 
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begin (* INPUT_PARAMETERS *) 
reset(distdatas); rewrite(distrecords); 
writeln(distrecords, ldiststack2l); 
writeln(distrecords, 'Stack State record for simulation using : -1); 
(* READ IN THE NUMBER OF PROCESSORS PER RING 
readln(distdatas, ring); 
writeln(distrecords, 'Number of processors per layer 1, ring: 3); 
(* READ IN THE NUMBER OF LAYERS 
readln(distdatas, layers); 
writeln(distrecords, 'Number of layers = 1, layers: 3); 
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM 
readln(distdatas, largen); 

writeln(distrecords, 'Number of iterations performed 1, largen: 3); 
(* READ IN THE AMOUNT OF PROCESSING REQUIRED PER DATA ITEM 

readln(distdatas, pconst); 
writeln(distrecords, 'processing required per data item = l, pconst: 3,1. units'); ' 

writeln(distrecords); 
end; (* INPUT_PARAMETERS 

procedure initial 
- states; 

SETS UP THE INITIAL STATE OF THE STACK DATA STRUCTURE 
AND PRINTS A HEADING TO FILE STACKRECORD 

var 
p, pt: proc_ptr; 
r, l, n: integer; 

procedure set_vars; 
begin (* SET 

- 
VARS *) 

p-. input_full: =false; 
pA. output_full: =false; 
P-. data full: =false; 
p-. down full: =false; 
p-. p_type: =O; 
pA. p_state: =O; 
end; (* SET_VARS 

begin (* INITIAL_STATES 
stack: =nil; 
for 1: =layers downto I do 

begin 
new(p); 
P^. down: =stack; 
stack: =p; 
p'l. proc_r: =l; 
p^. proc_l: =l; 
p^. next: =p; 
set_vars; 
end; 

for r: =ring downto 2 do 
begin 
pt: =stack; 
new(p); 
p",. next: =ptl,. next; 
Pt^. next: =p-, 
P^. Proc-r: =r; 
P^. proc_l: -l; 
set_vars; 
for 1: =2 to layers do 
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begin 
pt: =pt^. down; 
new(p*". down); 
p: =p-. down; 
pl,. next: =ptA. next; 
ptA. next: =p; 
p***. proc_r: =r; 
p-. proc_l: =l; 
set-vars; 
end; 

P-. down: =nil; 
end; 

for 1: =l to 20 do 
for r: =l to 20 do 

begin 
processing[l, rl: =O; 
consumed_datall, rl: =O; 
end; 

for n: =l to 50 do 
processed - 

data[nl: =O; 
end; (* INITIAL_STATES 

procedure communicate; 
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE 
var 

p, pt: proc_ptr; 
begin (* COMMUNICATE 
pt: =stack; 
while (pt0nil) do 

begin 
P: =Pt; 
repeat 

begin 
if (pA. down0nil) then 

if (p-. down_full and not(pl*. down, "I. data_full)) then 
begin 
p-. down-. data 

- 
input: =pA. down_output; 

p-. down 
- 

full: =false; 
p-. down-. data_full: =true; 
end; 

if (p-. output_full and not(p, ",. next*",. input_full)) then 
begin 
pA. nextA. ring_input: =p-. ring_output; 
p-"I. nextA. input_full: =true; 
pl'*. output_full: =false; 
end; 

p: =pl". next; 
end 

until (p=pt); 
pt: =pt-. down; 
end; 

end; COMMUNICATE 

procedure create_new-data; 
(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM 
var 

p: proc_ptr; 
l, r: integer; 
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begin (* CREATE_NEW-DATA*) 
p: =stack; 
repeat 

begin 
if (not(p-. data_full)) then 

begin 
r: =l+trunc(random*(ring-0.0001)); 
1: =I+trunc(random*(layers-0.0001)); 
p-. data_input: =1*100+r; 
consumed datall, rl: =consumed_data(l, r]+l; 
p-. data_Yull: =true; 
end; 

p: =pA. next; 
end; 

until (p=stack); 
end; (* CREATE_NEW-DATA 

procedure compute; 
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT 
var 

p, pt: proc_ptr; 

procedure computing_algorithm; 
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN 
THE PROCESSOR 

var 
time_unit: integer; 

procedure comms; 
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS 

function processor_idle: boolean; 
begin 
processor_idle: =(p-. p_state<=O); 
end; 

function ring_data: boolean; 
begin 
ring_data: =p-. input_full; 
end; 

function new_data: boolean; 
begin 
new-data: =p-. data_full; 
end; 

function new_data_right: boolean; 
begin 
new-data_right: =(p-. data_input=(p-. proc_r+(100*p-. proc_l))); 
end; 

function ring_data_right: boolean; 
begin 
ring_data_right: -(p*",. ring_input=(p-. proc_r+(100*p". proc_l))); 
end; 

function column_right_data: boolean; 
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begin 
column_right_data: = 

(p-. proc_r=(p-. data_input-(100*trune(p-. data_input/l00)))); 
end; 

function column_right_ring: boolean; 
begin 
column_right_ring: = 

(pA. proc_r=(p-. ring_input-(100*trune(pA. ring_input/l00)))); 
end; 

function level-right_data: boolean; 
begin 
level 

- 
right_data: =(p^. proc_l=(p-. data_input div 100)); 

end; 

function level-right_ring: boolean; 
begin 
level 

- right_ring: =(p-. proc_l=(p-. ring_input div 100)); 
end; 

function ring_ready: boolean; 
begin 
ring_ready: =not(p-. output_full); 
end; 

function down_ready: boolean; 
begin 
down_ready: =not(p-. down-full); 
end; 

procedure take_ring_data; 
begin 
if (pconst<O) then 

Pý. p 
- 

state: =trunc(random*(-pconst)) 
else 

pA. p_state: =pconst; 
p, ý. p_type: -p^. p_state; 
p^. input 

- 
full: =false; 

time_unit: =time_unit-1; 
end-, 

procedure take_new_data; 
begin 
if (pconst<O) then 

pý. p_state: =trunc(random*(-pconst)) 
else 

pý. p_statempconst; 
p''. p_type: =p*ý. p_state; 
p-. data_full: =false; 
time_unit: =time_unit-1; 
end; 

procedure ring_data_on; 
begin 
P*"'. ring_output: -p". ring_input; 
p**-. input 

- 
full: -false; 

P",. output-full: =true; 
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time_unit: =time_unit-1; 
end; 

procedure ring_data_down; 
begin 
pý. down_output: =pý. ring_input; 
p"Anput I 

full: =false; 
Pý. down 

- 
full: =true; 

time_unit: =time_unit-1; 
end; 

procedure new_data_on; 
begin 
p". ring_output: =p-. data_input; 

p-. data_full: =false; 
pl,. output_full: =true; 
time_ýunit: =time_unit-1; 
end; 

procedure new-data_down; 
begin 
p-. down_output : =pA data_input; 
P-**. data full: =false; 
p^. down full: =true; 
time_unit: =time_unit-1; 
end; 

begin (* COMMS2 *) 
if processor_idle then 

if ring_data then 
if ring_data_right then 

take_ring_data 
else 

if new data then 
if new - 

data_right then 
take_new-data 

else 
(* NULL 

else 
(* NULL 

else 
if new data then 

if new - 
data right then 

take 
- newjata 

else 
(* NULL 

else 
(* NULL 

else 
(* NULL 

if ring_ready then 
if ring_data then 

if level_right_ring and not column_right_ring then 
ring_data_on 

else 
if new data then 

if level 
- right_data and not column_right-data then 

new-data_on 
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else 
(* NULL 

else 
(* NULL 

else 
if new data then 

if level 
- right_data and not column_right_data then 

new - 
data_on 

else 
(* NULL 

else 
(* NULL 

else 
(* NULL 

if down 
- ready then 

if ring_data then 
if not level right_ring then 

ring_data_aown 
else 

if new data then 
if not level_right-data then 

new - 
data_down 

else 
(* NULL 

else 
(* NULL 

else 
if new data then 

if not level_right_data then 
new - 

data_down 
else 

(* NULL 
else 

(* NULL 
else 

(* NULL 
end; (* COMMS2 

procedure process(units: integer); 
begin (* PROCESS *) 
pý. p_state: =p1l. p-state-units; 
if (pl". p_state<=O) then 

begin 
if (pA. p_type>O) then 

begin 
processed 

- 
data(pý. p_type]: =processed_data[p". p_typel+l; 

processingtp-. proc_l, p-. proc-rl: = 
processingtp-. proc_l, p-. proc_rl+l; 
end; 

pý. p_type: =O; 
pA. p_state: =O; 
end; 

end; PROCESS 

begin (* COMPUTING_ALGORITHM 
time 

- unit: =4; 
TOTAL PROCESSING EFFORT AVAILABLE 
PER ITERATION *) 
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comms; 
(* COMMS USES UP SOME PROCESSING EFFORT 
process(time 

- 
unit); 

end; (* COMPUTING_ALGORITHM 

begin (* COMPUTE 
pt: =stack; 
while (pt0nil) do 

begin 
P: =Pt; 
repeat 

begin 
computing_algorithm; 
p: =p". next; 
end 

until (p=pt); 
pt: =pt-. down; 
end; 

end; COMPUTE 

procedure print 
- 

state; 
(* PRINTS THE STATE OF THE STACK AFTER THE LAST ITERATION 
var p, pt: proc_ptr; 

l, r: integer; 
begin (* PRINT 

- 
STATE 

write(distrecords, 'Iteration: $, iterations: 3); 
writeln(distrecords); write(distrecords, lr= I 
for r: =l to ring do 

write(distrecords, l 9, r: 3); 
writeln(distrecords); 
pt: =stack; 

while(pt0nil) do 
begin 
P: =Pt; 
write(distrecords, 11=1,1: 3); 
repeat 

begin 
write(distrecords, l 9, pl,. p_state: 3); 
p: =p". next; 
end; 

until (p=pt); 
pt: =ptl**. down; 
1: =1+1; 
writeln(distrecords); 
end; 

writeln(distrecords); 
end; (* PRINT_STATE 

procedure print-results; 
var 

l, r, n, totproc, totcons, wtotproc: integer; 
begin (* PRINT 

- 
RESULTS *) 

totproc: =O; totcons: =O; wtotproc: =O; 
writein(distrecords); writeln(distrecords, 'Data Consumed'); 
writeln(distrecords, '--- ----1); writeln(distrecords); 
write(distrecords, lr= 9); 
for r: = 1 to ring do 
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write(distrecords, l I, r: 3); 
writeln(distrecords); 
for 1: =1 to layers do 

begin 
write(distrecords, 91=1,1: 3); 
for r: =1 to ring do 

begin 
totcons: =totcons+consumed 

- 
data[l, r]; 

write(distrecords, l 1, consumed_data[l, r]: 3); 
end; 

writeln(distrecords); 
end; 
writeln(distrecords, 'Data Processed'); 
writeln(distrecords, l ---- -------- 1); 
write(distrecords, lr= 1); 
for r: =l to ring do 

write(distrecords, $ I, r: 3); 
writeln(distrecords); 
for 1: =1 to layers do 

begin 
write(distrecords, 11=1,1: 3); 
for r: =1 to ring do 

begin 
totproc: =totproc+processing[l, r]; 
write(distrecords, l l, processing[l, r]: 3); 
end; 

writeln(distrecords); 
end; 

writeln(distrecords); writeln(distrecords); 
writeln(distrecords, 'Types Processed'); 
writeln(distrecords, '---- 
for n: -1 to 50 do 

begin 
wtotproc: =wtotproc+processed_data[n]*n; 
writeln(distrecords, 'Type: ', n: 3,1 number processed: ', processed-data[nl: 3); 
end; ' 

write(distrecords, $Total: 1,1 number consumed: ', totcons: 3); 
writeln(distrecords, l number processed: ', totproc: 3); 
writeln(distrecords, 'Total: 1,1 Weighted Total Processed: ', wtotproc: 5); 
end; (* PRINT_RESULTS *) 

begin (* DISTSTACK2 
a: =1234567; 
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR 
input_parameters; 
writeln('Parameters input9); 
initial-states; 
writeln('Initial state set up'); 
writeln(9Starting Computation'); 
for iterations: =l to largen do 

begin 
communicate; 
create_new-data; 
compute; 
print-state; 
end; 

writeln('Finished Computation9); 
writeln('Printing Results9); 
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print 
- 

results; 
end. (* DISTSTACK2 
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APPENDIX 3 

Simulation Programs of Homogeneous Rings 

program ringprogl(input, output, ringdata, ringrecord); 
const 

CONSTANTS FOR RANDOM NUMBER GENERATION 
m=100000000; ml=10000; b=31415821; 

type 
PROCESSING NODE TYPE 

proc_ptr=Aproc_type; 
proc_type=record 

proc-id: integer; 
ring_input: integer; 
ring_output: integer; 
input_full: boolean; 
output_full: boolean; 
data_input: integer; 
data 

- 
full: boolean; 

p_type: integer; 
p-state: integer; 
next: proc_ptr; 
end; 

var 
a: integer; 
ringdata, ringrecord: text; 
ring: proc_ptr; 
data_types: array[l.. 501 of integer; 
processed data: array[l.. 1001 of integer; 
consumed - 

ýata: array[l.. 1001 of integer; 
largen, iterations, procs: integer; 

function mult(p, q: integer): integer; 

var pl, pO, ql, qO: integer; 
begin 
pl: =p div ml; pO: =p mod ml; 
ql: =q div ml; qO: =q mod ml; 
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m; 
end; 

function random: real; 
RANDOM NUMBER GENERATOR 
PG37 - ALGORITHMS - SEDGEWICK 
ADDISON - WESLEY 1984 

begin 
a: =(mult(a, b)+l)mod m; 
random: =a/m; 
end; 

procedure input_parameters; 
INITIALISE INPUT AND OUTPUT FILES 
READ IN THE PARAMETERS OF THE RING TO MODEL 

var 
n: integer; 

begin (* INPUT_PARAMETERS 

xxxv Appendix 3 35 



reset(ringdata); rewrite(ringrecord); 
writeln(ringrecord, lringprogll); 
writeln(ringrecord, 'Ring State record for simulation using : -1); 
(* READ IN THE NUMBER OF PROCESSORS 
readln(ringdata, procs); 
writeln(ringrecord, 'Number of processors =-I, procs: 3); 
(* READ IN THE DATA_TYPE (PROCESSING TIME) FOR EACH PROCESSOR 
readln(ringdata, largen); 
writeln(ringrecord, 'Number of iterations performed = 1, largen: 3); 
writeln(ringrecord, 'Data types fed to processors'); writeln; 
for n: =l to procs do 

begin 
readln(ringdata, data_typeslnl); 
writeln(ringrecord, 'Processor : 9, n: 3,9 
end; 

writeln; 
end; (* INPUT_PARAMETERS 

Data type : I, data_types[nl: 3); 

procedure initial 
- states; 

SETS UP THE INITIAL STATE OF THE RING DATA STRUCTURE 
AND PRINTS A HEADING TO FILE RINGRECORD 

var 
p: proc_ptr; 
n: integer; 

procedure set_yars; 
begin (* SET_VARS *) 
p-. input 

- 
full: =false; 

p''. output_full: =false; 
p-. data_full: =false; 
p^. p_type: =O; 
p^. p_state: =O; 
end; (* SET_ýVARS 

begin (* INITIAL_STATES 
write(ringrecord, l 
new(ring); 
p: =ring; 
p-. proc_id: =l; 
write(ringrecord, l l, pA. proc_id: 3); 
set_vars; 
for n: =l to (procs-1) 

begin 
new(p-. next); 
p: =p***. next; 
p-. proc_id: =(n+l); 
write(ringrecord, l 
set-vars; 
end; 

do 

9, p*ý. proc_id: 3); 

p*"*. next: =ring; 
writeln(ringrecord); 
write(ringrecord, 'Data 1); 
for n: -l to procs do 

write(ringrecord, l l, data_types[nl: 3); 
writeln(ringrecord); 
for n: -l to 50 do 

begin 
processed_data[nl: =O; 
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consumed_data[nl: =O; 
end; 

end; INITIAL_STATES 

procedure communicate; 
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE 
var 

p: proc_ptr; 
begin (* COMMUNICATE 
p: =ring; 
repeat 

begin 
if (p, ". output_full and not(pA. next",. input_full)) then 

begin 
p^. next-. ring_input: =pý. ring_output; 
pý. nextý. input_full: =true; 
p-. output-full: =false; 
end; 

p: =pA. next; 
end; 

until (p=ring); 
end; (* COMMUNICATE 

procedure create - new - 
data; 

(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM 
var 

p: proc_ptr; 
begin (* CREATE-NEW-DATA 
p: =ring; 
repeat 

begin 
if (not(p, "*. data_full) and (data_types[pý. proc_idj0O)) then 

begin 
if (data_typeslp". proc_id]<O) then 

p-. data_input: =l+trunc(random*(-data_types[p-. proc_idl)-0.0001) 
else 

p-. data_input: =data_types JpA proc_id]; 
consumed-data[p^. data-inputl: = 

consumed_data[p-. data_inputl+l; 
pA data_full: =true; 
end; 

p: =pý. next; 
end; 

until (p=ring); 
end; (* CREATE-NEW_DATA 

procedure compute; 
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT 
var 

p: proc_ptr; 

procedure computing_algorithm; 
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN 
THE PROCESSOR 

var 
time_unit: integer; 

procedure comms; 
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(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS *) 

function processor_idle: boolean; 
begin 
processor_idle: =(p-. p_state<=O); 
end; 

function ring_data: boolean; 
begin 
ring_data: =p-. input_full; 
end; 

function new-data: boolean; 
begin 
new-data: =p"*. data_full; 
end; 

function ring_output_ready: boolean; 
begin 
ring_output_ready: =not(p-. output_full); 
end; 

procedure take_ring_data; 
begin 
p-. p_type: =p***. ring_input; 
pA. p_state: =p*". p_type; 
p-. input_full: =false; 
time 

- unit: -time_unit-1; 
end; 

procedure take_new_data; 
begin 
p-. p_type: =p-". data_input; 
pA. p_state: -pA. p_type; 
p-. data 

I 
full: =false; 

time 
- unit: =time_unit-1; 

end; 

procedure ring_data_on; 
begin 
pl",. ring_output: =p*",. ring_input; 
p-. input_full: -false; 
p*"'. output_full: -true; 
time_unit: =time_unit-1; 
end; 

procedure new-data_on; 
begin 
p*"*. ring_output: -p*"I. data_input; 
p-. data 

- 
full: =false; 

p-. output-full: =true; 
time 

- unit: -time_unit-1; 
end; 

begin (* COMMS1 *) 
if processor_idle then 

if new-data then 
take_new-data 
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else 
if ring_data then 

take_ring_data 
else 

(* NULL 
else 

(* NULL 
if ring_output_ready then 

if new data then 
new - 

aata_on 

else 
if ring_data then 

ring_data_on 
else 

(* NULL 
else 

(* NULL 
end; (* COMMS1 

procedure process(units: integer); 
(* PERFORMS THE ACTIVITIES OF THE PROCESSING PROCESS 
begin (* PROCESS *) 
p-". p_state: =p*". p_state-units; 
if (p-. p_state<=O) then 

begin 
if (p". p_type>O) then 

processed - 
datatp-. p_type]: =processed_datatp-. p_typel+l; 

pA. p_type: =O; 
p-,,. p_state: =O; 
end; 

end; PROCESS 

begin (* COMPUTING_ALGORITHM 
time_unit: =4; 

TOTAL PROCESSING EFFORT AVAILABLE 
PER ITERATION 

comms; 
(* COMMS USES UP SOME PROCESSING EFFORT 
process(time_unit); 
end; (* COMPUTING_ALGORITHM 

begin (* COMPUTE 
p: =ring; 
repeat 

begin 
computing_algorithm; 
p: -p*"I. nexto, 
end; 

until (p-ring); 
end; (* COMPUTE 

procedure print 
- 

state; 
(* PRINTS THE STATE OF THE RING AFTER THE LAST ITERATION 
var p: proc-ptr; 
begin (* PRINT_STATE 
write(ringrecord, 'I-I, iterations: 3); 
p: =ring; 
repeat 
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begin 
write(ringrecord, l I, pý. p_state: 3); 
p: =p"*. next; 
end; 

until (p=ring); 
writeln(ringrecord); 
end; (* PRINT_STATE 

procedure print_consumption; 
var 

n, totproc, totcons, wtotproc: integer; 
begin (* PRINT 

- 
CONSUMPTION *) 

totproc: =O; totcons: =O; wtotproc: =O; 
writeln(ringrecord); 
writeln(ringrecord); writeln(ringrecord, 9Data Consumed and Processed'); 
writeln(ringrecord,, -- -------1); writeln(ringrecord); 
for n: =1 to 50 do 

begin 
totcons: =totcons+consumed_data[n]; 
totproc: =totproc+processed 

- 
dataln]; 

wtotproc: =wtotproc+processed_data[nl*n; 
write(ringrecord, 'Type: ', n: 3,1 number consumed: 1, consumed-data(n]: 3); 
writeln(ringrecord, l number processed: ', processed_data[nl: 3); 
end; 

write(ringrecord, 'Total: 1,1 number consumed:,, totcons: 3); 
writeln(ringrecord, l number processed: ', totproc: 3); 
writeln(ringrecord, 'Total: 1.1 Weighted Total Processed:,, wtotproc: 5); 
end; (* PRINT_CONSUMPTION *) 

begin (* RINGPROG1 
a: -1234567; 
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR 
input_parameters; 
writeln('Parameters input'); 
initial-states; 
writeln(IInitial state set up9); 
writeln(IStarting Computation'); 
for iterations: =1 to largen do 

begin 
communicate; 
create_new 

- 
data; 

compute; 
print 

- 
state; 

end; 
writeln(IFinished Computation'); 
writeln('Printing Results'); 
print - 

consumption; 
end. (* RINGPROG1 
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program ringprog2(input, output, ringdata, ringrecord); 
const 

CONSTANTS FOR RANDOM NUMBER GENERATION 
m=100000000; ml=10000; b-31415821; 

type 
PROCESSING NODE TYPE 

proc_ptr=, "*proc_type; 
proc_type=record 

proc-id: integer; 
r-ing_input: integer; 
ring__ýoutput: integer; 
input_full: boolean; 
output_full: boolean; 
data_input: integer; 
data 

- 
full: boolean; 

p_type: integer; 
p-state: integer; 
next: proc_ptr; 
end; 

var 
a: integer; 
ringdata, ringrecord: text; 
ring: proc_ptr; 
data_types: array[l.. 501 of integer; 
processed data: array[l.. 100] of integer; 
consumed - 

ýata: array(l.. 100] of integer; 
largen, iterations, procs: integer; 

function mult(p, q: integer): integer; 
(* EXTENDED MULTIPLICATION 
var pl, pO, ql, qO: integer; 
begin 
pl: =p div ml; pO: =p mod ml; 
ql: =q div ml; qO: =q mod ml; 
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m; 
end; 

function random: real; 
RANDOM NUMBER GENERATOR 
PG37 - ALGORITHMS - SEDGEWICK 
ADDISON - WESLEY 1984 

begin 
a: =(mult(a, b)+l)mod m; 
random: =a/m; 
end; 

procedure input_parameters; 
INITIALISE INPUT AND OUTPUT FILES 
READ IN THE PARAMETERS OF THE RING TO MODEL 

var 
n: integer; 

begin (* INPUT_PARAMETERS 
reset(ringdata); rewrite(ringrecord); 
writeln(ringrecord, lringprog2l); 
writeln(ringrecord, $Ring State record for simulation using : -9); 
(* READ IN THE NUMBER OF PROCESSORS 
readln(ringdata, procs); 
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writeln(ringrecord, $Number of processors = l, procs: 3); 
(* READ IN THE DATA TYPE (PROCESSING TIME) FOR EACH PROCESSOR 
readln(ringdata, largen); 
writeln(ringrecord, $Number of iterations performed - l, largen: 3); 
writeln(ringrecord, 'Data types fed to processors'); writeln', 
for n: =l to procs do 

begin 
readln(ringdata, data_typestnl); 
writeln(ringrecord,, Processor : I, n: 3, 
end; 

writeln; 
end; (* INPUT_PARAMETERS 

Data type : I, data_types[nl: 3); 

procedure initial 
- states; 

SETS UP THE INITIAL STATE OF THE RING DATA STRUCTURE 
AND PRINTS A HEADING TO FILE RINGRECORD 

var 
p: proc_ptr; 
n: integer; 

procedure set 
- 

vars; 
begin (* SET 

I 
VARS *) 

p-. input 
- 

full: =false; 
P-. Output - 

full: =false; 
p-. data_full: =false; 
p-. p_type: =O; 
pA. p_state: =O; 
end; (* SET_VARS 

begin (* INITIAL 
- 

STATES 
write(ringrecord. 9 
new(ring); 
p: =ring; 
p-. proc_id: =l; 
write(ringrecord, l l, p"*. proc_id: 3); 
set-vars; 
for n: =l to (procs-1) do 

begin 
new(p-. next); 
p: =pl,. next; 
p-. proc_id: =(n+l); 
write(ringrecord, l l, pA. proc_id: 3); 
set_vars; 
end; 

p-. next: =ring; 
writeln(ringrecord); 
write(ringrecord, 'Data 9); 
for n: =l to procs do 

write(ringrecord, ' l, data_typeslnl: 3); 
writeln(ringrecord); 
for n: =l to 50 do 

begin 
processed 

- 
data[nl: -O; 

consumed_data[nl: -O; 
end; 

end; INITIAL_STATES 

procedure communicate; 
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(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE 
var 

p: proc_ptr; 
begin (* COMMUNICATE 
p: =ring; 
repeat 

begin 
if (p-. output_full and not(p",. next"'. input_full)) then 

begin 
p-. next-. ring_input: =p-. ring_output; 
p"". next1'1. input_full: =true; 
p-. output-full: =false; 
end; 

p: =p, ". next; 
end; 

until (p=ring); 
end; (* COMMUNICATE 

procedure create new - 
data; 

(* PERFOMS THE FýNCTION OF THE DATA INPUT MECHANISM 
var 

p: proc_ptr; 
begin (* CREATE_NEW_DATA 
p: =ring; 
repeat 

begin 
if (not(p"'. data_full) and (data_types[p-. proc_idl<>O)) then 

begin 
if (data_types[p",. proc_id]<O) then 

p-. data_input: =l+trune(random*(-data_types[p-. proc_idl-0.0001)) 
else 

p-. data_input: =data_types[p, ". proc_id]; 
consumed_data[p-. data_inputl: = 

consumed data[p-",. data_input]+J; 
P-. data_full: =true; 
end; 

p: -pl,. next; 
end; 

until (p=ring); 
end; (* CREATE-NEW-DATA 

procedure compute; 
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT 
var 

p: proc_ptr; 

procedure computing_algorithm; 
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN 
THE PROCESSOR 

var 
time_unit: integer; 

procedure comms; 
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS 

function processor_idle: boolean; 
begin 
processor_idle: -(p*". p_state<-O); 
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end; 

function ring-data: boolean; 
begin 
ring_data: =p-. input_full; 
end; 

function new_data: boolean; 
begin 
new-data: =pA. data-full; 
end; 

function ring_output_ready: boolean; 
begin 
ring_output_ready: =not(p, *,. output_full); 
end; 

procedure take_ring_data; 
begin 
pl,. p_type: =p*". ring_input; 
p**,. p_state: =pA. p_type; 
p-. input_full: =false; 
time 

- unit: =time_unit-1; 
end; 

procedure take_new-data; 
begin 
p-**. p_type: =p*ý. data_input; 
pl". p_state: =p". p_type; 
P-. data 

- 
full: =false; 

time_unit: =time_unit-1; 
end; 

procedure ring_data_on; 
begin 
pA. ring_output: =p^. ring_input; 
p-. input_full: =false; 
p**I. output_full: =true; 
time_unit: =time_unit-1; 
end; 

procedure new-data_on; 
begin 
p*'*. ring_output: =p*",. data_input; 
P-. data_full: =false; 
pý. output_full: =true; 
time_unit: =time_unit-1; 
end; 

begin (* COMMS2 *) 
if processor 

- 
idle then 

if ring_data then 
take_ring_data 

else 
if new data then 

take_new-data 
else 

(* NULL 
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else 
(* NULL 

if ring_output_ready then 
if ring_data then 

ring_data_on 
else 

if new data then 
newJata_on 

else 
(* NULL 

else 
(* NULL 

end; (* COMMS2 

procedure process(units: integer); 
(* PERFORMS THE ACTIVITIES OF THE PROCESSING PROCESS 
begin (* PROCESS *) 
p',. p_state: =pý. p_state-units; 
if (p, 'ý. p_state<=O) then 

begin 
if (p-. p_type>O) then 

processed - 
data[p-. p_typel: =processed_data[p-"*. p_typel+l; 

pA. p_type: =O; 
p". p - 

state: =O; 
end; 

end; PROCESS 

begin (* COMPUTING_ALGORITHM 
time 

- 
unit: =4; 

TOTAL PROCESSING EFFORT AVAILABLE 
PER ITERATION 

comms; 
(* COMMS USES UP SOME PROCESSING EFFORT 
process(time - 

unit); 
end; (* COMPUTING_ALGORITHM 

begin (* COMPUTE 
p: =ring; 
repeat 

begin 
computing_algorithm; 
p: =p'ý. next; 
end; 

until (p=ring); 
end; (* COMPUTE 

procedure print_state; 
(* PRINTS THE STATE OF THE RING AFTER THE LAST ITERATION 
var p: proc_ptr; 
begin (* PRINT STATE 
write(ringrecord, 9I-9, iterations: 3); 
p: -ring; 
repeat 

begin 
write(ringrecord, 9 l, p",. p_state: 3); 
P: -p^. next; 
end; 

until (p=ring); 
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writeln(ringrecord); 
end; (* PRINT_STATE 

procedure print_consumption; 
var 

n, totproc, totcons, wtotproc: integer; 
begin (* PRINT_CONSUMPTION *) 
totproc: =O; totcons: =O; wtotproc: =O; 
writeln(ringrecord); 
writeln(ringrecord); writeln(ringrecord, 'Data Consumed and Processed'); 
writeln(ringrecord,, ---- --------9); writeln(ringrecord); 
for n: =1 to 50 do 

begin 
totcons: =totcons+consumed_data[n]; 
totproc: =totproc+processed_dataln]; 
wtotproc: =wtotproc+processed_data[nl*n; 
write(ringrecord, 'Type: ', n: 3,1 number consumed: 1, consumed T 

data[nl: 3); 
writeln(ringrecord, l number processed: ', processed_data[nl: 3); 
end; 

write(ringrecord, 'Total: 1.1 number consumed: ', totcons: 3); 
writein(ringrecord, l number processed: ', totproc: 3); 
writeln(ringrecord, 'Total: 1.1 Weighted Total Processed: 1, wtotproc: 5); 
end; (* PRINT_CONSUMPTION *) 

begin (* RINGPROG2 
a: =1234567; 
(* SET THE SEED FOR 
input_parameters; 
writeln('Parameters 
initial_states; 

_ 

THE RANDOM NUMBER GENERATOR *) 

input'); 

writeln('Initial state set up$); 
writeln('Starting Computation$); 
for iterations: =1 to largen do 

begin 
communicate; 
create_new-data; 
compute; 
print_state; 
end; 

writeln('Finished Computation2); 
writeln('Printing Results9); 
print - 

consumption; 
end. (* RINGPROG2 
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program ringproglproc(input, output, ringdata, ringrecord); 
const 

CONSTANTS FOR RANDOM NUMBER GENERATION 
m=100000000; ml=10000; b=31415821; 

type 
PROCESSING NODE TYPE 

proc_ptr="Iproc_type; 
proc_type=record 

proc 
- 

id: integer; 
ring_input: integer; 
ring_output: integer; 
input_full: boolean; 
output_full: boolean; 
data_input: integer; 
data 

- 
full: boolean; 

p_type: integer; 
p- state: integer; 
next: proc_ptr; 
end; 

var 
a: integer; 
ringdata, ringrecord: text; 
ring: proc_ptr; 
data_types: array[l.. 501 of integer; 
processed-data: array[l.. 501 of integer; 
consumed_data: array[l.. 50] of integer; 
largen, iterations, procs: integer; 

function mult(p, q: integer): integer; 
(* EXTENDED MULTIPLICATION 
var pl, pO, ql, qO: integer; 
begin 
pl: =p div ml; pO: =p mod ml; 
ql: =q div ml; qO: =q mod ml; 
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m; 
end; 

function random: real; 
RANDOM NUMBER GENERATOR 
PG37 - ALGORITHMS - SEDGEWICK 
ADDISON - WESLEY 1984 

begin 
a: =(mult(a, b)+l)mod m-, 
random: =a/m; 
end; 

procedure input_parameters; 
INITIALISE INPUT AND OUTPUT FILES 
READ IN THE PARAMETERS OF THE RING TO MODEL 

var 
n: integer; 

begin (* INPUT_PARAMETERS 
reset(ringdata); rewrite(ringrecord); 
writeln(ringrecord, lringprogl-processing done preferential2); 
writeln(ringrecord, 'Ring State record for simulation using : -1); 

READ IN THE NUMBER OF PROCESSORS 
readln(ringdata, procs); 
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writeln(ringrecord, 9Number of processors = 9, procs: 3); 
(* READ IN THE DATA TYPE (PROCESSING TIME) FOR EACH PROCESSOR 
readln(ringdata. largen); 
writeln(ringrecord, 9Number of iterations performed = 9, largen: 3); 

writeln(ringrecord, 9Data types fed to processors'); writeln; 
for n: =l to procs do 

begin 

readln(ringdata. data_types[nl); 
writeln(ringrecord, 'Processor : 9, n: 3.9 Data type : 9, data_types[nl: 3); 

end; 
writeln; 
end; (* INPUT_PARAMETERS 

procedure initial 
- 

states; 
SETS UP THE INITIAL STATE OF THE RING DATA STRUCTURE 
AND PRINTS A HEADING TO FILE RINGRECORD *) 

var 
p: proc_ptr; 
n: integer; 

procedure set 
- 

vars; 
begin (* SET 

I 
VARS *) 

p-. input_full: =false; 
P-. Output - 

full: =false; 
p-. data_full: =false; 
p-'*,. p_type: =O; 
p-, ". p_state: -O; 
end; (* SET_VARS 

begin (* INITIAL_STATES 
write(ringrecord, s 
new(ring); 
p: =ring; 
p-. proc_id: =I; 
write(ringrecord, l l, p". proc_id: 3); 
set - vars; 
for n: =l to (procs-1) do 

begin 
new(p-. next); 
p: =pA. next; 
p^. proc_id: =(n+l); 
write(ringrecord, l l, p**. proc_id: 3); 
set-vars; 
end; 

p'*. next: =ring; 
writeln(ringrecord); 
write(ringrecord, 'Data 1); 
for n: =l to procs do 

write(ringrecord, l l, data_types[nl: 3); 
writeln(ringrecord); 
for n: =l to 50 do 

begin 
processed_data[nl: =O; 
consumed_data[nj: =O; 
end; 

end; INITIAL_STATES 

procedure communicate; 
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(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE 
var 

p: proc_ptr; 
begin (* COMMUNICATE 
p: =ring; 
repeat 

begin 
if (p, ". output_full and not(pA. next"'. input_full)) then 

begin 

pý. nextA. ring_input: =p". ring_output; 
pA. next"I. input_full: =true; 
p-. output_full: =false; 
end; 

p: =p"*. next; 
end; 

until (p=ring); 

end; (* COMMUNICATE 

procedure create - new_data; 
(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM 
var 

p: proc_ptr; 
begin (* CREATE_NEW-DATA 
p: =ring; 
repeat 

begin 
if (not(pý. data_full) and (data_types[p-". Proc_idl<>O)) then 

begin 
if (data_types[p,. procid]<O) then 

p-. data_input: =l+trunc(random*(-data_types[p^. proc_id]-0.0001)) 
else 

p-. data_input: =data_types[pý. proc_id]; 
consumed-data[p^. data_inputl: = 

consumed - 
data[p-. data_inputl+l; 

p-. data_full: =true; 
end; 

p: =p",. next; 
end; 

until (p=ring); 
end; (* CREATE-NEW-DATA 

procedure compute; 
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT 
var 

p: proc_ptr; 

procedure computing_algorithm; 
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN 
THE PROCESSOR 

var 
time_unit: integer; 

procedure comms(time 
- unit: integer); 

(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS 

function processor_idle: boolean; 
begin 
processor_idle: -(p***. p_state<=O); 

xlix Appeiidix 3 49 



end; 

function ring_data: boolean; 
begin 
ring_data: =p-. input_full; 
end; 

function new-data: boolean; 
begin 
new-data: =p"'. data_full; 
end; 

function ring_output_ready: boolean; 
begin 
ring_output_ready: =not(pý. output_full); 
end; 

procedure take_ring-data; 
begin 
p*",. p_type: =pl**. ring_input; 
pl'. p_state: =pý. p_type; 
p-. input 

- 
full: =false; 

time_unit: =time_unit-1; 
end; 

procedure take_new_data; 
begin 
pl'-. p_type: =p-. data_input; 
pý. p_state: =p"ý. p_type; 
p-. data_full: =false; 
time_unit: =time_unit-1; 
end; 

procedure ring_data_on; 
begin 
p-. ring_output: =p-. ring_input; 
p-. input 

- 
full: =false; 

pA. oUtpUt 
- 

full: =true; 
time_unit: =time_unit-1; 
end; 

procedure new-data_on; 
begin 
p-. ring_output: =p*"'. data_input; 
P-. data_full: =false; 
Pý. Output 

- 
full: =true; 

time_unit: =time_unit-1; 
end; 

begin (* COMMS1 *) 
if processor 

- 
idle 

if new data and 
take_new-data 

then 
(time_unit>O) then 

else 
if ring_data and (time-unit>o) then 

take_ring_data 
else 

(* NULL 
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else 
(* NULL 

if ring_output_ready then 
if new data and (time_unit>O) then 

new 
- 

aata_on 

else 
if ring_data and (time_unit>O) then 

ring 
- 

data_on 
else 

(* NULL 
else 

(* NULL 
end; (* COMMS1 

procedure process(var units: integer); 
(* PERFORMS THE ACTIVITIES OF THE PROCESSING PROCESS 
begin (* PROCESS *) 
if (p^. p_state>=units) then 

begin 
pA p_state : =pA p_state-units; 
units: =O; 
end 

else 
begin 
p***. p_state: =O; 
units: =units-p*"*. p_state; 
end; 

if (pl,. p_state<=O) then 
begin 
if (p*". p_type>O) then 

processed_data[p^. p_typej: =processed_data [pA. p_typel+l; 
pý. p_type: =O; 
p, ",. p_state: =O; 
end; 

end; PROCESS 

begin (* COMPUTING_ALGORITHM 
time_unit: =4; 
(* TOTAL PROCESSING EFFORT AVAILABLE 
(* PER ITERATION *) 
process(time_unit); 

PROCESSING DONE IN PREFERENCE 
COMMS USES UP SOME PROCESSING 
BUT ONLY IF GIVEN THE CHANCE 

comms(time 
- 

unit); 
end; (* COMPUTING_ALGORITHM 

begin (* COMPUTE 
p: =ring; 
repeat 

begin 
computing_algorithm; 
P: -P"'. next; 
end; 

until (p=ring); 
end; (* COMPUTE 

procedure print_state; 

ii 

TO COMMUNICATION 
EFFORT 
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(* PRINTS THE STATE OF THE RING AFTER THE LAST ITERATION *) 
var p: proc_ptr; 
begin (* PRINT 

- 
STATE 

write(ringrecord, 9I=1 
p: =ring; 
repeat 

begin 
write(ringrecord, l 
p: =pý. next; 
end; 

until (p=ring); 
writeln(ringrecord); 
end; (* PRINT_STATE 

, iterations: 3); 

, pA. p_state: 3); 

procedure print_consumption; 
var 

n, totproc, totcons: integer; 
begin (* PRINT 

- 
CONSUMPTION 

totproc: =O; totcons: =O; 
writeln(ringrecord); 
writeln(ringrecord); writein(ringrecord, 9Data Consumed and Processed9); 
writeln(ringrecord, l ---- -------- --- --------- 1); writein(ringrecord); 
for n: =l to 50 do 

begin 
totcons: =totcons+consumed data[n]; 
totproc: =totproc+processeý-data[n]; 
write(ringrecord, 'Type: ', n: 3,9 number consumed: 1, consumed T 

data[nl: 3); 
writeln(ringrecord. 1 number processed: ', processed_data[nl: 3); 
end; 

write(ringrecord, 'Total: 9.9 number consumed: ', totcons: 3); 
writein(ringrecord. 1 number processed: ', totproc: 3); 
end; (* PRINT_CONSUMPTION *) 

begin (* RINGPROGlPROC 
a: =1234567; 
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR 
input_parameters; 
writeln('Parameters input'); 
initial_states; 
writeln('Initial state set up'); 
writeln(IStarting Computation'); 
for iterations: =1 to largen do 

begin 
communicate; 
create - 

new 
- 

data; 
compute; 
print_state; 
end; 

writeln(IFinished Computation'); 
writeln('Printing Results'); 
print_consumption; 
end. (* RINGPROGlPROC 
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APPENDIX 4 

4 Simulation Programs of Homogeneous Cylinders 

program stackprogl(input, output, stackdata, stackrecord); 
(* CONSTANTS FOR RANDOM NUMBER GENERATION 
const 

m=100000000; ml=10000; b=31415821; 
type 

PROCESSING NODE TYPE 
proc_ptr=ýproc_type; 
proc_type=record 

proc r: integer; 
proc 1: integer; 
ring_input: integer; 
ring_output: integer; 
input_full: boolean; 
output_full: boolean; 
data_input: integer; 
down_output: integer; 
data 

- 
full: boolean; 

down 
- 

full: boolean; 
p_type: integer; 
p-state: integer; 
next: proc_ptr; 
down: proc_ptr; 
end; 

state_type=(faulty, good); 

var 
a: integer; 
stackdata, stackrecord: text; 
stack: proc_ptr; 
condition: array[l.. 50,1.. 501 of state - 

type; 
data_types: array[l.. 501 of integer; 
processed_data: array[l.. 200] of integer; 
consumed_data: array[l.. 200] of integer; 
largen, iterations, ring, layers: integer; 

function mult(p, q: integer): integer; 
(* EXTENDED MULTIPLICATION 
var pl, pO, ql, qO: integer; 
begin 
pl: =p div ml; pO: =p mod ml; 
ql: =q div ml; qO: =q mod ml; 
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m; 
end; 

function random: real; 
RANDOM NUMBER GENERATOR 
PG37 - ALGORITHMS - SEDGEWICK 
ADDISON - WESLEY 1984 

begin 
a: =(mult(a, b)+l)mod m; 
random: =a/m; 
end; 
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procedure input_parameters; 
INITIALISE INPUT AND OUTPUT FILES 
READ IN THE PARAMETERS OF THE RING TO MODEL 
WRITES A HEADING TO STACKRECORD *) 

var 
l, r, n: integer; 

begin (* INPUT 
- 

PARAMETERS 
reset(stackdata); rewrite(stackrecord); 
writeln(stackrecord, lstackprogll); 
writeln(stackrecord, 'Stack State record for simulation using : -1); 
(* READ IN THE NUMBER OF PROCESSORS PER RING 
readln(stackdata, ring); 
writeln(stackrecord, 'Number of processors per layer 1, ring: 3); 
(* READ IN THE NUMBER OF LAYERS 
readln(stackdata, layers); 
writeln(stackrecord, 'Number of layers = 1, layers: 3); 
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM 
readln(stackdata, largen); 
writeln(stackrecord, 'Number of iterations performed 1, largen: 3); 
(* READ IN THE FAULTY PROCESSORS *) 
writeln(stackrecord, 'With faulty processors: -'); 
for 1: =1 to 50 do 

for r: = 1 to 50 do 
condition[l, rj: =good; 

while not(stackdata^='Dl) do 
begin 
readln(stackdata, l, r); 
writeln(stackrecord, llayer: 9,1: 3,1 ring: ', r: 3); 
condition[l, rl: =faulty; 
end; 

readin(stackdata); 
(* READ IN THE DATA_TYPE (PROCESSING TIME) FOR EACH PROCESSOR 
writeln(stackrecord, 'Data types fed to processors'); writeln; 
for n: =l to ring do 

begin 
readln(stackdata, data_types[n]); 
writeln(stackrecord, 'Processor : 2, n: 3, 
end; 

writeln(stackrecord); 
end; (* INPUT_PARAMETERS 

Data type : I, data_types[nl: 3); 

procedure initial-states; 
SETS UP THE INITIAL STATE OF THE STACK DATA STRUCTURE 
AND PRINTS A HEADING TO FILE STACKRECORD 

var 
p, pt: proc_ptr; 
r, l, n: integer; 

procedure set_vars; 
begin (* SET VARS *) 
p-. input_fulY: =false; 
pý. output_full: =false; 
PA. data 

- 
full: -false; 

PA. down_full: =false; 
P^. p_type: =O; 
PA. p_state: =O; 
end; (* SET_VARS 

liv Appendix 4 54 



begin (* INITIAL_STATES 
stack: =nil; 
for 1: =layers downto I do 

begin 
new(p); 
p-. down: =stack; 
stack: =p; 
p-". proc_r: =l; 
pA. proc_l: =l; 
p, ". next: =p; 
set-vars; 
end; 

for r: =ring downto 2 do 
begin 
pt: =stack; 
new(p); 
pA. next: =pt",. next; 
pt, ý. next: =p; 
pý. proc_r: =r; 
p-. proc_l: =l; 
set_vars; 
for 1: =2 to layers do 

begin 
pt: =pt`ý. down; 
new(p-. down); 
p: =p-. down; 
pý. next: =pt"'. next; 
ptý. next: =p; 
pl". proc_r: =r; 
p^. proc_l: =l; 
set-vars; 
end; 

p-. down: =nil; 
end; 

for n: =l to 200 do 
begin 
processed data[nl: =O; 
consumed_jata[nl: =O; 
end; 

end; INITIAL_STATES 

procedure communicate; 
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE 
var 

p, pt: proc_ptr; 
begin (* COMMUNICATE 
pt: =stack; 
while (pt0nil) do 

begin 
P: =Pt; 
repeat 

begin 
if (P-. down<>nil) then 

if (p-. down_full and not(pl,. down,,. data-full)) then 
begin 
p",. down",. data_input: =p*'. down-output; 
P-. down_full: =false; 
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p-". down-. data_full: =true; 
end; 

if (p-. output_full and not(p^. next-. input_full)) then 
begin 
p^. nextl,. ring_input: =p-. ring_output; 
p***. nextA. input_full: =true; 
p^. output_full: =false; 
end; 

p: =pý. next; 
end 

until (p=pt); 
pt: =pt". down; 
end; 

end; COMMUNICATE 

procedure create - 
new 

- 
data; 

(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM 
var 

p.: proc_ptr; 
begin (* CREATE_NEW-DATA 
P: =stack; 
repeat 

begin 
if (not(pl". data_full) and (data_types[p",. proc_rl<>O)) then 

begin 
if (data_types[p". proc_r]<O) then 

p^. data_input: =l+trunc(random*(-data_types[p-. proc_rl-0.0001)) 
else 

p-. data_input: =data_types[pl". proc_rj; 
consumed_data[p-'-. data_input]: = 

consumed_data[p-. data_inputl+l; 
p^. data_full: =true; 
end; 

P: =P". next; 
end; 

until (p=stack); 
end; (* CREATE_NEW-DATA 

procedure compute; 
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT 
var 

p, pt: proc_ptr; 

procedure computing_algorithm; 
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN 
THE PROCESSOR 

var 
time_unit: integer; 

procedure comms; 
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS 

function processor_idle: boolean; 
begin 
processor_idle: =(p^. p_state<=O); 
end; 

function ring_data: boolean; 
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begin 
ring_data: =p-. input_full; 
end; 

function new-data: boolean; 
begin 
new_data: =p"*. data_full; 
end; 

function ring_ready: boolean; 
begin 
ring_ready: =not(p-. output_full); 
end; 

function down_ready: boolean; 
begin 
down_ready: =not(p-. down-full); 
end; 

procedure take_ring_data; 
begin 
p, *I. p_type: =pA. ring_input; 
pý. p_state: =pý. p_type; 
p-. input_full: =false; 
time_unit: =time_unit-1; 
end; 

procedure take_new-data; 
begin 
p-. p_type: =p-. data_input; 
pý. p_state: =pý. p_type; 
pý. data_full: =false; 
time_unit: =time_unit-1; 
end; 

procedure ring_data_on; 
begin 
p-. ring_output: =p-. ring_input; 
p-. input_full: =false; 
pý. output_full: =true; 
time_ýunit: =time_unit-1; 
end; 

procedure ring_data_down; 
begin 
p-. down_output: =p-*-. ring_input; 
p-. input_full: =false; 
P-. down 

- 
full: =true; 

time_un3. t: =time_unit-1; 
end; 

procedure newý_data_on; 
begin 
p". rinnoutput: =pý. data_input; 
p-. data_full: =false; 
p, '',. output-full: =true; 
time_unit: =time_unit-1; 
end; 
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procedure new_data_down; 
begin 
p-. down_output: =p-. data_input; 
p-. data_full: =false; 
p^. down_full: =true; 
time_unit: =time_unit-1; 
end; 

begin (* COMMS1 *) 
if processor - 

idle then 
if new data then 

take new-data 
else 

if ring_data then 
take_ring_data 

else 
(* NULL 

else 
(* NULL 

if ring_ready then 
if new data then 

new - 
aata_on 

else 
if ring_data then 

ring_data_on 
else 

(* NULL 
else 

(* NULL 
if down 

- ready then 
if new data then 

new - 
aata_down 

else 
if ring_data then 

ring_data_down 
else 

(* NULL 
else 

(* NULL 
end; (* COMMS1 

procedure process(units: integer); 
begin (* PROCESS *) 
p'l. p_state: =pý. p_state-units; 
if (p-". p-state<=O) then 

begin 
if (p-. p_type>O) then 

processed 
- 

data[p^. p_typel: =processed_data[p-. p_typel+l; 
p^. p_type: =O; 
p'ý. p_state: =O; 
end; 

end; PROCESS 

begin (* COMPUTING_ALGORITHM 
time 

- unit: =4; 
TOTAL PROCESSING EFFORT AVAILABLE 
PER ITERATION *) 
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if (condition[p-. proc_l, p***. proc_rl=good) then 
begin 
comms; 
(* COMMS USES UP SOME PROCESSING EFFORT 
process(time_unit); 
end 

else 
(* NULL 

end; (* COMPUTING_ALGORITHM 

begin (* COMPUTE 
pt: =stack; 
while (pt0nil) do 

begin 
P: =Pt; 
repeat 

begin 
computing_algorithm; 
p: =pA. next; 
end 

until (p=pt); 
pt: =ptý. down; 
end; 

end; COMPUTE 

procedure print 
- 

state; 
(* PRINTS THE STATE OF THE STACK AFTER THE LAST ITERATION 
var p, pt: proc_ptr; 

l, r: integer; 
begin (* PRINT_STATE 
write(stackrecord, 'Iteration: ', iterations: 3); 
writeln(stackrecord); write(stackrecord, lr= 1); 
for r: =l to ring do 

write(stackrecord, l 1, r: 3); 
writeln(stackrecord); 
pt: =stack; 
write(stackrecord, 'Data 1); 
for r: =1 to ring do 

write(stackrecord, l 1, data_types[r]: 3); 
writeln(stackrecord); 

while(pt0nil) do 
begin 
P*. =Pt; 
write(stackrecord, 11=1,1: 3); 
repeat 

begin 
if (condition[p-. proc_l, pA. proc_rl=good) then 

write(stackrecord, l l, pA. p_state: 3) 
else 

write(stackrecord, l FI); 
p: =p",. next; 
end; 

until (p=pt); 
pt: -ptý. down; 
1: -1+1; 
writeln(stackrecord); 
end; 
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writeln(stackrecord); 
end; (* PRINT_STATE 

procedure print_consumption; 
var 

n, totproc, totcons, wtotproc: integer; 
begin (* PRINT 

- 
CONSUMPTION *) 

totproc: =O; totcons: =O; wtotproc: =O; 
writeln(stackrecord); writeln(stackrecord, 'Data Consumed and Processed'); 
writeln(stackrecord, l ---- -------- --- --------- 1); writeln(stackrecord); 
for n: =1 to 200 do 

begin 
totcons: =totcons+consumed 

- 
data[n]; 

totproc: =totproc+processed_data[n]; 
wtotproc: =wtotproc+processed_data[nl*n; 
write(stackrecord, 'Type: ', n: 3,1 number consumed: ', consumed_data[nl: 3); 
writeln(stackrecord, l number processed: ', processed_data[nl: 3); 
end; 

write(stackrecord, 'Total: 1,1 number consumed: ', totcons: 3); 
writeln(stackrecord, l number processed: ', totproc: 3); 
writeln(stackrecord, 'Total: 1.1 Weighted Total Processed:,, wtotproc: 5); 
end; (* PRINT_CONSUMPTION *) 

begin (* STACKPROG1 
a: =1234567; 
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR 
input_parameters; 
writeln(9Parameters input9); 
initial_states; 
writeln(9Initial state set up'); 
writeln(9Starting Computation'); 
for iterations: =l to largen do 

begin 
communicate; 
create_new-data; 
compute; 
print_state; 
end; 

writeln($Finished Computation'); 
writeln(9Printing Results'); 
print_consumption; 
end. (* STACKPROG1 
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program stackprog2(input, outPUtgstackdata, stackrecord); 
const 
(* CONSTANTS FOR RANDOM NUMBER GENERATOR 

m=100000000; ml=10000; b=31415821; 
type 

PROCESSING NODE TYPE 
proc_ptr="proc_type; 
proc_type=record 

proc r: integer; 
proc 1: integer; 
ring_input: integer; 
ring_output: integer; 
input_full: boolean; 
output_full: boolean; 
data_input: integer; 
down_output: integer; 
data full: boolean; 
down full: boolean; 
p_type: integer; 
p_state: integer; 
next: proc_ptr; 
down: proc_ptr; 
end; 

state_type=(faulty, good); 

var 
a: integer; 
stackdata, stackrecord: text; 
stack: proc_ptr; 
condition: array[l.. 50,1.. 501 of state - 

type; 
data_types: arrayll.. 501 of integer; 
processed data: array[l.. 2001 of integer; 
consumed - 

ýata: array[l.. 200] of integer; 
largen, iterations, ring, layers: integer; 

function mult(p, q: integer): integer; 
(* EXTENDED 14ULTIPLICATION 
var pl, pO, ql, qO: integer; 
begin 
pl: =p div ml; pO: =p mod ml; 
ql: =q div ml; qO: =q mod ml; 
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m; 
end; 

function random: real; 
RANDOM NUMBER GENERATOR 
PG37 - ALGORITHMS - SEDGEWICK 
ADDISON - WESLEY 1984 

begin 
a: =(mult(a, b)+I)mod m; 
random: =a/m; 
end; 

procedure input_parameters; 
INITIALISE INPUT AND OUTPUT FILES 
READ IN THE PARAMETERS OF THE RING TO MODEL 
WRITES A HEADING TO STACKRECORD 

var 
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l, r, n: integer; 
begin (* INPUT_PARAMETERS 
reset(stackdata); rewrite(stackrecord); 
writeln(stackrecord, lstackprog2l); 
writeln(stackrecord, 'Stack State record for simulation using : -1); 
(* READ IN THE NUMBER OF PROCESSORS PER RING 
readln(stackdata, ring); 
writeln(stackrecord, 'Number of processors per layer 1, ring: 3); 
(* READ IN THE NUMBER OF LAYERS 
readln(stackdata, layers); 
writeln(stackrecord, $Number of layers - 1, layers: 3); 
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM 
readln(stackdata, largen); 
writeln(stackrecord, $Number of iterations performed 1, largen: 3); 
(* READ IN THE FAULTY PROCESSORS *) 
writein(stackrecord, 'With faulty processors: -'); 
for 1: =1 to 50 do 

for r: = 1 to 50 do 
condition[l, r]: =good; 

while not(stackdata, ý='Dl) do 
begin 
readln(stackdata, l, r); 
writeln(stackrecord, llayer: 1,1: 3,1 ring: ', r: 3); 
condition[l, r]: =faulty; 
end; 

readln(stackdata); 
(* READ IN THE DATA_TYPE (PROCESSING TIME) FOR EACH PROCESSOR 
writeln(stackrecord, 'Data types fed to processors'); writeln; 
for n: =l to ring do 

begin 
. 

readln(stackdata, data_types[nl); 
writeln(stackrecord, 'Processor : 9, n: 3, 
end; 

writeln(stackrecord); 
end; (* INPUT_PARAMETERS 

Data type : I, data_types[nl: 3); 

procedure initial 
- states; 

SETS UP THE INITIAL STATE OF THE STACK DATA STRUCTURE 
AND PRINTS A HEADING TO FILE STACKRECORD 

var 
p, pt: proc_ptr; 
r, l, n: integer; 

procedure set_vars; 
begin (* SET 

I 
VARS *) 

p-. input_full: =false; 
p^. Output_full: =false; 
P^. data full: =false; 
p-. down full: =false; 
p",. p_type: =O; 
p". p_state: =O; 
end; (* SET_VARS 

begin (* INITIAL_STATES 
stack: =nil; 
for 1: =layers downto 1 do 

begin 
new(p); 
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p***. down: =stack; 
stack: =p; 
p-. proc_r: =I; 
p-. proc_l: =I; 
pA. next: =p; 
set-vars; 
end; 

for r: =ring downto 2 do 
begin 
pt: =stack; 
new(p); 
pA. next: =ptA. next; 
pt^. next: =p; 
pA. proc_r: =r; 

P-. Proc-l: =I; 
set-vars; 
for 1: =2 to layers do 

begin 
pt: =pt-. down; 
new(p-. down); 
p: =p^. down; 
pA. next: =pt***. next; 
ptý. next: =p; 
pl",. proc_r: =r; 
p, ",. proc_l: =l; 
set-vars; 
end; 

p-. down: =nil; 
end; 

for n: =1 to 200 do 
begin 
processed data[n]: =O; 
consumedJata[n]: =0; 
end; 

end; INITIAL_STATES 

procedure communicate; 
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE 
var 

p, pt: proc_ptr; 
begin (* COMMUNICATE 
pt: -stack; 
while (pt0nil) do 

begin 
P: =Pt; 
repeat 

begin 
if (pý. down<>nil) then 

if (p-. down_full and not(p-. down-. data_full)) then 
begin 
p-. down-. data input: =p"*. down_output; 
P-. down 

- 
full:;; false; 

p-. down-. data_full: =true; 
end; 

if (p-. output_full and not(pý. next^. input_full)) then 
begin 
pA. next*",. ring_input: =p^. ring_output; 
pA. next*"*. input_full: =true; 
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pý. output_full: =false; 
end; 

p: =pý. next; 
end 

until (p=pt); 
pt: =ptA. down; 
end; 

end; COMMUNICATE 

procedure create_new-data; 
(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM 
var 

p: proc_ptr; 
begin (* CREATE_NEW-DATA 
p: =stack; 
repeat 

begin 
if (not(p-. data_full) and (data_types[pl. proc_rl<>O)) then 

begin 
if (data_types[pA. proc_r]<O) then 

p-. data_input: =l+trunc(random*(-data_types[pA. proc_rl-0.0001)) 
else 

p-. data_input: =data_types[p',. proc_rl; 
consumed-data[p-. data_inputl: = 

consumed-data[pA. data_input]+l; 
pA data_full: =true; 
end; 

P: =P'ý. next; 
end; 

until (p=stack); 
end; (* CREATE-NEW-DATA 

procedure compute; 
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT 
var 

p, pt: proc_ptr; 

procedure computing_algorithm; 
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN 
THE PROCESSOR 

var 
time_unit: integer; 

procedure comms; 
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS 

function processor_idle: boolean; 
begin 
processor_idle: =(p***. p_state<=O); 
end; 

function ring_data: boolean; 
begin 
ring_data: =p-. input_full; 
end; 

function new-data: boolean; 
begin 
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new - 
data: =p*",. data_full; 

end-, 

function ring_ready: boolean; 
begin 
ring_ready: =not(p-. output-full); 
end; 

function down_ready: boolean; 
begin 
down_ready: =not(p-. down-full); 
end; 

procedure take_ring_data; 
begin 
pý. p_type: =pý. ring_input; 
pA p_state : =pA p_type; 
p-. input_full: =false; 
time_unit: =time_unit-1; 
end; 

procedure take_new-data; 
begin 
p, *,. p_type: =p, **. data_input; 
pý. p_state: =p**'. p_type; 
p-. data full: =false; 
time 

- unlt: =time_unit-1; 
end; 

procedure ring_data_on; 
begin 
p*'ý. ring_output: =p***. ring_input; 
p-. input_full: =false; 
p, ",. output_full: =true; 
time_unit: =time_unit-1; 
end; 

procedure ring-data_down; 
begin 
p-. down 

- output: =p^. ring_input; 
p-. input 

I 
full: =false; 

p-. down 
- 

full: =true; 
time_unit: =time_unit-1; 
end; 

procedure new-data_on; 
begin 
p, "*. ring_output: =p***. data_input; 
pl'. data 

- 
full: =false; 

PA. output - 
full: =true; 

time 
- unit: =time_unit-1; 

end; 

procedure new-data_down; 
begin 
pA. down 

- 
output: =p-. data_input; 

p-. data 
- 

full: =false; 
p^. down_full: =true; 
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time 
- unit: =time_unit-1; 

end; 

begin (* COMMS2 *) 
if processor 

- 
idle then 

if ring_data then 
take_ring_data 

else 
if new data then 

take_new-data 
else 

(* NULL 
else 

(* NULL 
if ring_ready then 

if ring_data then 
ring_data_on 

else 
if new data then 

new 
- 

data_on 
else 

(* NULL 
else 

(* NULL 
if down 

- 
ready then 

if ring_data then 
ring_data_down 

else 
if new data then 

new 
- 

data_down 
else 

(* NULL 
else 

(* NULL 
end; (* COMMS2 

procedure process(units: integer); 
begin (* PROCESS *) 
p, ',. p_state: =pý. p 

- 
state-units; 

if (p-. p 
- 

state<=O) then 
begin 
if (p-. p_type>O) then 

processed 
- 

data[p^. p_typel: =processed_data[p^. p_typel+l; 
p^. p_type: =O; 
pll,. p_state: =O; 
end; 

end; PROCESS 

begin (* COMPUTING_ALGORITHM 
time 

- 
unit: =4; 

TOTAL PROCESSING EFFORT AVAILABLE 
PER ITERATION *) 

if (condition[p-. proc_l, pý. proc_rl=good) then 
begin 
comms; 
(* COMMS USES UP SOME PROCESSING EFFORT 
process(time_unit); 
end 
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else 
(* NULL 

end; (* COMPUTING_ALGORITHM 

begin (* COMPUTE 
pt: =stack; 
while (pt0nil) do 

begin 
p: =pt; 
repeat 

begin 
computing_algorithm; 
p: =pý. next; 
end 

until (p=pt); 
pt: =pt-. down; 
end; 

end; COMPUTE 

procedure print 
- 

state; 
(* PRINTS THE STATE OF THE STACK AFTER THE LAST ITERATION 
var p, pt: proc_ptr; 

l, r: integer; 
begin (* PRINT_STATE 
write(stackrecord, 'Iteration: ', iterations: 3); 
writeln(stackrecord); write(stackrecord, lr= 
for r: =1 to ring do 

write(stackrecord, l 1, r: 3); 
writeln(stackrecord); 
pt: =stack; 
write(stackrecord, $Data 1); 
for r: =l to ring do 

write(stackrecord, l I. data_types[rl: 3); 
writeln(stackrecord); 
1: =l; 
while(pt0nil) do 

begin 
P: =Pt; 
write(stackrecord, 11=1,1: 3); 
repeat 

begin 
if (condition[p-. proc_l, p-. proc_rl=good) then 

write(stackrecord, l 1, pý. p_state: 3) 
else 

write(stackrecord, l FI); 
p: =p*"*. next; 
end; 

until (p=pt); 
pt: =pt-. down; 
1: =1+1; 
writeln(stackrecord); 
end; 

writeln(stackrecord); 
end; (* PRINT_STATE 

procedure print-consumption; 
var 

n, totproc, totcons, wtotproc: integer; 
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begin (* PRINT_CONSUMPTION *) 
totproc: =O; totcons: =O; wtotproc: =O; 
writeln(stackrecord); writeln(stackrecord, 'Data Consumed and Processed'); 
writeln(stackrecord, l ---- -------- -- --------- 1); writeln(stackrecord); 
for n: =l to 200 do 

begin 
totcons: =totcons+consumed data[n]; 
totproc: =totproc+processeý 

- 
data[n); 

wtotproc: =wtotproc+processed 
- 

data[nl*n; 
write(stackrecord, 'Type: ', n: 3,1 number consumed: ', consumed_data[nl: 3); 
writeln(stackrecord, l number processed: ', processed_data[nl: 3); 
end; 

write(stackrecord, 'Total: 9,1 number consumed: ', totcons: 3); 
writeln(stackrecord, l number processed: ', totproc: 3); 
writeln(stackrecord, 'Total: Weighted Total Processed:,, wtotproc: 5); 
end; (* PRINT_CONSUMPTION 

begin (* STACKPROG2 
a: =1234567; 
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR 
input_parameters; 
writeln(9Parameters input'); 
initial_states; 
writeln(2Initial state set up9); 
writeln(IStarting Computation'); 
for iterations: =l to largen do 

begin 
communicate; 
create_new-data; 
compute; 
print_state; 
end; 

writeln(IFinished Computation'); 
writeln('Printing Results'); 
print_consumption; 
end. (* STACKPROG2 
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program stackprog3(input, output, stackdata, stackrecord); 
const 

CONSTANTS FOR RANDOM NUMBER GENERATION 
m=100000000; ml=loooo; b=31415821; 

type 
PROCESSING NODE TYPE 

proc_ptr=", proc_type; 
proc_type=record 

proc r: integer; 
proc 1: integer; 
ring_input: integer; 
ring_output: integer; 
input_full: boolean; 
output_full: boolean; 
data_input: integer; 
down_output: integer; 
data full: boolean; 
down full: boolean; 
p_type: integer; 
p-state: integer; 
next: proc_ptr; 
down: proc_ptr; 
end; 

state_type=(faulty, good); 

var 
a: integer; 
stackdata, stackrecord: text; 
stack: proc_ptr; 
condition: array[l.. 50,1.. 501 of state-type; 
data_types: array[l.. 501 of integer; 
processed_data: array[l.. 200] of integer; 
consumed_data: array[l.. 200] of integer; 
largen, iterations, ring, layers: integer; 

function mult(p, q: integer): integer; 
(* EXTENDED MULTIPLICATION 
var pl, pO, ql, qO: integer; 
begin 
pl: =p div ml; pO: =p mod ml; 
ql: =q div ml; qO: =q mod ml; 
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m; 
end; 

function random: real; 
(* RANDOM NUMBER GENERATOR 

PG37 - ALGORITHMS 
ADDISON - WESLEY 

begin 
a: =(mult(a, b)+l)mod 
random: -a/m; 
end; 

- SEDGEWICK 
1984 *) 

procedure input_parameters; 
INITIALISE INPUT AND OUTPUT FILES 
READ IN THE PARAMETERS OF THE RING TO MODEL 
WRITES A HEADING TO STACKRECORD 

var 
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l, r, n: integer; 
begin (* INPUT 

- 
PARAMETERS 

reset(stackdata); rewrite(stackrecord); 
writeln(stackrecord, lstackprog3l); 
writeln(stackrecord, 'Stack State record for simulation using : -9); 
(* READ IN THE NUMBER OF PROCESSORS PER RING 
readln(stackdata, ring); 
writeln(stackrecord, 'Number of processors per layer 9, ring: 3); 
(* READ IN THE NUMBER OF LAYERS 
readln(stackdata, layers); 
writeln(stackrecord, 'Number of layers = 1, layers: 3); 
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM 
readln(stackdata, largen); 
writeln(stackrecord,, Number of iterations performed 1, largen: 3); 
(* READ IN THE FAULTY PROCESSORS *) 
writeln(stackrecord, 9With faulty processors: -9); 
for 1: =1 to 50 do 

for r: = I to 50 do 
condition[l, r]: =good; 

while not(stackdataý=91)9) do 
begin 
readln(stackdata, l, r); 
writeln(stackrecord, 91ayer: 9,1: 3.9 ring: 9, r: 3); 
condition[lgrj: =faulty; 
end; 

readin(stackdata); 
(* READ IN THE DATA_TYPE (PROCESSING TIME) FOR EACH PROCESSOR 
writeln(stackrecord, 9Data types fed to processors9); writeln; 
for n: =1 to ring do 

begin 
readin(stackdata, data_types[nl); 
writeln(stackrecord, 9Processor : I, n: 3,1 Data type : I, data_types[nl: 3); 
end; 

writeln(stackrecord); 
end; (* INPUT_PARAMETERS 

procedure initial 
- states; 

SETS UP THE INITIAL STATE OF THE STACK DATA STRUCTURE 
AND PRINTS A HEADING TO FILE STACKRECORD 

var 
p, pt: proc_ptr; 
r, l, n: integer; 

procedure set_yars; 
begin (* SET 

I 
VARS *) 

p-. input_full: =false; 
pll,. output_full: =false; 
p-. data_full: =false; 
P^. down-full: =false; 
p'*. p_type: -O; 
pl',. p_state: =O; 
end; (* SET__VARS 

begin (* INITIAL_STATES 
stack: -nil; 
for 1: =Iayers downto 1 do 

begin 
new(p); 
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p-. down: =stack; 
stack: =p; 
pl*. proc_r: =I; 
pl". proc_l: =l; 
p*". next: =p; 
set-vars; 
end; 

for r: =ring downto 2 do 
begin 
pt: =stack; 
new(p); 
pA. next: =pt'*'. next; 
ptA. next: =p; 
p-. proc_r: =r; 
p-. proc_l: =l; 
set_vars; 
for 1: =2 to layers do 

begin 
pt: =pt-. down; 
new(p-. down); 
p: =p-. down; 
pý. next: =pt**,. next; 
pt*ý. next: =p; 
pA. proc_r: =r; 
p-. proc_l: =I; 
set_vars; 
end; 

P-. down: =nil; 
end; 

for n: =1 to 200 do 
begin 
processed - 

data[nl: =O; 
consumed_data[nl: =O; 
end; 

end; INITIAL_STATES 

procedure communicate; 
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE 
var 

p, pt: proc_ptr; 
begin (* COMMUNICATE 
pt: =stack; 
while (pt0nil) do 

begin 
P: =Pt; 
repeat 

begin 
if (pý. down<>nil) then 

if (p-. down-full and not(p". down, ". data-full)) then 
begin 
p-. down-. data_input: =p",. down_output; 
p-"I. down 

- 
full: -false; 

p-. down-. data full: =true; 
end; 

if (p-. output_full and not(p-. next-. input_full)) then 
begin 
pý. nextA. ring_input: =pl*. ring_output; 
p1". next11,. input_full: =true; 
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pA. output-full: =false; 
end; 

p: =pý. next; 
end 

until (p=pt); 
pt: =ptA. down; 
end; 

end; COMMUNICATE 

procedure create - new - 
data; 

(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM 
var 

p: proc_ptr; 
begin (* CREATE_NEW-DATA 
p: =stack; 
repeat 

begin 
if (not(p-. data_full) and (data_types[pA. proc_rl<>O)) then 

begin 
if (data_types[pA. proc_r]<O) then 

p-. data_input: =l+trunc(random*(-data_types[pA. proc_rl-0.0001)) 
else 

p-. data_input: =data_types[pA. proc_rl; 
consumed - 

data[p-. data_input]: = 
consumed_datalp-. data_inputl+l; 

p-. data_full: =true; 
end; 

P: =P-"ý. next; 
end; 

until (p=stack); 
end; (* CREATE_NEW-DATA 

procedure compute; 
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT 
var 

p, pt: proc_ptr; 

procedure computing_algorithm; 
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN 
THE PROCESSOR 

var 
time_unit: integer; 

procedure comms; 
PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS 

function processor_idle: boolean; 
begin 
processor_idle: =(p",. p_state<=O); 
end; 

function ring_data: boolean; 
begin 
ring_data: =p". input_full; 
end; 

function new_data: boolean; 
begin 



new-data: =p-. data_full; 
end-, 

function ring_ready: boolean; 
begin 
ring_ready: =not(p-. output_full); 
end; 

function down_ready: boolean; 
begin 
down_ready: =not(p-. down-full); 
end; 

procedure take-ring__data; 
begin 
pý. p_type: =p",. ring_input; 
pý. p_state: =p"'. p_type; 
p-*,. input 

- 
full: =false; 

time 
- 

unit: =time_unit-1; 
end; 

procedure take_new-data; 
begin 
pA. p_type: =p"*. data_input; 
p, *'. p_state: =p*"I. p_type; 
p-*-. data_full: =false; 
time_ýunit: =time_ýunit-l; 
end; 

procedure ring_data_on; 
begin 
pl. rinnoutput: =p-. ring-input; 
p^. input_full: =false; 
pA. output_full: =true; 
time_ýunit: =time_unit-1; 
endy 

procedure ring_data-down-, 
begin 
p-. down 

- output: =p*". ring_input; 
p-. input full: =false; 
p-. down 

- 
lull: =true; 

time_unit: =time_unit-1; 
end; 

procedure new-data_on; 
begin 
pý. ring_output: =pý. data_input; 
P-. data_full: =false; 
p-. output_full: =true; 
time 

- 
unit: =time_unit-1; 

end; 

procedure new-data_down; 
begin 
pA. down 

- output: =p-. data_input; 
p-. data 

- 
full: =false; 

p*". down_full: =true; 
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time_unit: =time_unit-1; 
end; 

begin (* COMMS3 *) 
if processor - 

idle then 
if new data then 

take 
- new-data 

else 
if ring_data then 

take_ring_data 
else 

(* NULL 
else 

(* NULL 
if down 

- ready then 
if new data then 

new - 
data_down 

else 
if ring_data then 

ring_data_down 
else 

(* NULL 
else 

(* NULL 
if ring_ready then 

if new-data then 
new - 

data_on 
else 

if ring_data then 
ring_data_on 

else 
(* NULL 

else 
(* NULL 

end; (* COMMS3 

procedure process(units: integer); 
begin (* PROCESS *) 
p-. p_state: =pý. p_state-units; 
if (p"*. p state<=O) then 

begin 
if (p-. p_type>O) then 

processed_datalp-. p_typel: =processed_data[pA. p_typel+l; 
pA. p_type: =O; 
pý. p_state: -O; 
end; 

end; PROCESS 

begin (* COMPUTING_ALGORITHM 
time unit: =4; 

TýTAL PROCESSING EFFORT AVAILABLE 
PER ITERATION *) 

if (conditionip-. proc_l, plý. proc_rj=good) then 
begin 
comms; 
(* COMMS USES UP SOME PROCESSING EFFORT 
process(time_unit); 
end 
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else 
(* NULL 

end; (* COMPUTING_ALGORITHM 

begin (* COMPUTE 
pt: =stack; 
while (pt0nil) do 

begin 
P: =Pt; 
repeat 

begin 
computing_algorithm; 
p: =p, ",. next; 
end 

until (p=pt); 
pt: =pt-. down; 
end; 

end; COMPUTE 

procedure print_state; 
(* PRINTS THE STATE OF THE STACK AFTER THE LAST ITERATION 
var p, pt: proc_ptr; 

l, r: integer; 
begin (* PRINT_STATE 
write(stackrecord, 9Iteration: 9, iterations: 3); 
writeln(stackrecord); write(stackrecord, lr= 9); 
for r: =l to ring do 

write(stackrecord, 9 l, r: 3); 
writeln(stackrecord); 
pt: =stack; 
write(stackrecord, 9Data 9); 
for r: =l to ring do 

write(stackrecord, l 9, data_types[rl: 3); 
writeln(stackrecord); 
1: =l; 
while(pt0nil) do 

begin 
P: =Pt; 
write(stackrecord, 11=1,1: 3); 
repeat 

begin 
if (condition[p-. proc_l, p-. proc_rl=good) then 

write(stackrecord, l l, p^. p_state: 3) 
else 

write(stackrecord, l FI); 
p: =p**,. next; 
end; 

until (p=pt); 
Pt: =pt^. down; 
1: -1+1; 
writeln(stackrecord); 
end; 

writeln(stackrecord); 
end; (* PRINT_STATE 

procedure print_consumption; 
var 

n, totproc, totcons, wtotproc: integer; 



begin (* PRINT_CONSUMPTION *) 
totproc: =O; totcons: =O; wtotproc: =O; 
writeln(stackrecord); writeln(stackrecord, 'Data Consumed and Processed'); 
writeln(stackrecord, l --- -------- --- --------- 9); writeln(stackrecord); 
for n: =l to 200 do 

begin 
totcons: =totcons+consumed data[n]; 
totproc: =totproc+processea - 

data[n]; 
wtotproc: =wtotproc+processed data[nl*n; 
write(stackrecord, lType: 1, n: 3,1 number consumed: ', consumed_data[nl: 3); 
writeln(stackrecord, l number processed: ', processed_data[nl: 3); 
end; 

write(stackrecord, 'Total: 1,1 number consumed: ', totcons: 3); 
writeln(stackrecord, l number processed: ', totproc: 3); 
writeln(stackrecord, 'Total: 1,1 Weighted Total Processed:,, wtotproc: 5); 
end; (* PRINT_CONSUMPTION *) 

begin (* STACKPROG3 
a: =1234567; 
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR 
input_parameters; 
writeln(9Parameters input$); 
initial-states; 
writeln(9Initial state set up2); 
writeln(IStarting Computation'); 
for iterations: =1 to largen do 

begin 
communicate; 
create_new-data; 
compute; 
print-state; 
end; 

writeln(IFinished Computation'); 
writeln('Printing Results'); 
print_consumption; 
end. (* STACKPROG3 
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program stackprog4(input, output, stackdata, stackrecord); 
const 

CONSTANTS FOR RANDOM NUMBER GENERATION 
m=100000000; ml=10000; b=31415821; 

type 
PROCESSING NODE TYPE 

proc_ptr=, "lproc_type; 
proc_type=record 

proc r: integer; 
proc 1: integer; 
ring_input: integer; 
ring_output: integer; 
input_full: boolean; 
output_full: boolean; 
data_input: integer; 
down_output: integer; 
data full: boolean; 
down full: boolean; 
p_type: integer; 
p-state: integer; 
next: proc_ptr; 
down: proc_ptr; 
end; 

state_type=(faulty, good); 

var 
a: integer; 
stackdata, stackrecord: text; 
stack: proc_ptr; 
condition: array[l.. 50,1.. 501 of state - 

type; 
data_types: array[l.. 501 of integer; 
processed_data: array(l.. 200] of integer; 
consumed_data: array[l.. 200] of integer; 
largen, iterations, ring, layers: integer; 

function mult(p, q: integer): integer; 
(* EXTENDED MULITPLICATION 
var pl, pO, ql, qO: integer; 
begin 
pl: =p div ml; pO: =p mod ml; 
ql: =q div ml; qO: =q mod ml; 
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m; 
end; 

function random: real; 
RANDOM NUMBER GENERATOR 
PG37 - ALGORITHMS - SEDGEWICK 
ADDISON - WESLEY 1984 

begin 
a: =(mult(a, b)+l)mod m; 
random: =a/m; 
end; 

procedure input_parameters; 
INITIALISE INPUT AND OUTPUT FILES 
READ IN THE PARAMETERS OF THE RING TO MODEL 
WRITES A HEADING TO STACKRECORD 

var 
4? 
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l, r, n: integer; 
begin (* INPUT 

- 
PARAMETERS 

reset(stackdata); rewrite(stackrecord); 
writeln(stackrecord, lstackprog4l); 
writeln(stackrecord, 'Stack State record for simulation using : -1); 
(* READ IN THE NUMBER OF PROCESSORS PER RING 
readln(stackdata, ring); 
writeln(stackrecord, 'Number of processors per layer 1, ring: 3); 
(* READ IN THE NUMBER OF LAYERS 
readln(stackdata, layers); 
writeln(stackrecord, 'Number of layers = 1, layers: 3); 
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM 
readln(stackdata, largen); 
writeln(stackrecord, 'Number of iterations performed 1, largen: 3); 
(* READ IN THE FAULTY PROCESSORS *) 
writeln(stackrecord, 'With faulty processors: -'); 
for 1: =1 to 50 do 

for r: = 1 to 50 do 
condition[l, r]: =good; 

while not(stackdata**, ='Dl) do 
begin 
readln(stackdata, l, r); 
writeln(stackrecord, llayer: 9,1: 3,1 ring: ', r: 3); 
condition[l, r]: =faulty; 
end; 

readln(stackdata); 
(* READ IN THE DATA_TYPE (PROCESSING TIME) FOR EACH PROCESSOR 
writein(stackrecord, 'Data types fed to processors'); writeln; 
for n: -l to ring do 

begin 
readln(stackdata, data_types[nl); 
writeln(stackrecord, 'Processor : I, n: 3, 
end; 

writeln(stackrecord); 
end; (* INPUT_PARAMETERS 

Data type : I, data_types[nl: 3); 

procedure initial 
- 

states; 
SETS UP THE INITIAL STATE OF THE STACK DATA STRUCTURE 
AND PRINTS A HEADING TO FILE STACKRECORD *) 

var 
p, pt: proc_ptr; 
r, l, n: integer; 

procedure set-vars; 
begin (* SET 

I 
VARS *) 

p-. input 
- 

full: =false; 
Pý. Output 

- 
full: =false; 

p-. data_full: =false; 
pl,. down 

- 
full: =false; 

p^. p_type: =O; 
p^. p_state: =O; 
end; (* SET_VARS 

begin (* INITIAL_STATES 
stack: =nil; 
for 1,: =layers downto I do 

begin 
new(p); 
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p-. down: =stack; 
stack: =p; 
p-. proc_r: =l; 
pý. proc_l: =l; 
p^. next: =p; 
set-vars; 
end; 

for r: =ring downto 2 do 
begin 

pt: =stack; 
new(p); 
pA. next: =ptý. next; 
pt*ý. next: =p; 
p*",. proc_r: =r; 
p-. proc_l: =l; 
set 

- 
vars; 

for 1: =2 to layers do 
begin 

pt: =pt-. down; 
new(p-. down); 
p: =p-. down; 
p"*. next: =ptý. next; 
ptA. next: =p; 
pl'. proc_r: =r; 
p***. proc_l: =l; 
set-vars; 
end; 

pA. down: =nil; 
end; 

for n: =l to 200 do 
begin 
processed - 

data[n]: =o; 
consumed_data[n]: =O; 
end; 

end; INITIAL_STATES 

procedure communicate; 
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE 
var 

p, pt: proc_ptr; 
begin (* COMMUNICATE 
pt: =stack; 
while (pt0nil) do 

begin 
P: =Pt; 
repeat 

begin 
if (p-. down<>nil) then 

if (p-. down_full and not(p-. down-. data_full)) then 
begin 
p-. down-. data_input: =p, *,. down_output; 
P-. down 

- 
full: =false; 

p^. down-. data full: =true; 
end; 

if (p-. output_full and not(p-. next-. input_full)) then 
begin 
pl'*. nextý. ring_input: =p**,. ring-output; 
p***. next*",. input_full: =true-, 
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p-. output_full: =false; 
end; 

p: =pý. next; 
end 

until (p=pt); 
pt: =pt-. down; 
end; 

end; COMMUNICATE 

procedure create - new - 
data; 

(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM 
var 

p: proc_ptr; 
begin (* CREATE_NEW_DATA 
p: =stack; 
repeat 

begin 
if (not(p-. data_full) and (data_types[p, ". proc_rl<>O)) then 

begin 
if (data_types[pA. proc_r]<O) then 

p-. data_input: =l+trune(random*(-data_types[pA. proc_rl-0.0001)) 
else 

p-. data_input: =data_types[p",. proc_rl; 
consumed-data[p-. data_inputl: = 

consumed_datafp-. data_inputl+l; 
P-. data_full: =true; 
end; 

P: =P',. next; 
end; 

until (p=stack); 
end; (* CREATE_NEW-DATA 

procedure compute; 
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT 
var 

p, pt: proc_ptr; 

procedure computing_algorithm; 
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN 
THE PROCESSOR 

var 
time_unit: integer; 

procedure comms; 
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS 

function processor_idle: boolean; 
begin 
processor_idle: =(p-. p_state<=O); 
end; 

function ring_data: boolean; 
begin 
ring_data: -p^. input_full; 
end; 

function new_data: boolean; 
begin 
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new_data: =p-. data_full; 
end; 

function ring_ready: boolean; 
begin 
ring_ready: =not(p-. output_full); 
end; 

function down_ready: boolean; 
begin 
down_ready: =not(p-. down-full); 
end; 

procedure take_ring_data; 
begin 
p**,. p_type: =pA. ring_input; 
pý. p_state: =p'*I. p_type; 
pA input., 

_full: =false; 
time 

- unit: =time_unit-1; 
end; 

procedure take_new_data; 
begin 
pý. p_type: =p***. data_input; 
p"*. p_state: =p*". p_type; 
p-. data 

- 
full: =false; 

time_un3. t: =time_unit-1; 
end; 

procedure ring_data_on; 
begin 
p-. ring_output: =p-. ring_input; 
pý. input_full: =false; 
p^. output_full: -true; 
time_unit: =time_unit-1; 
end; 

procedure ring-data_down; 
begin 
p-. down_output: =pý. ring_input; 
p^. input_full: =false; 
P-. down 

- 
full: =true; 

time_un3. t: =time_unit-1; 
end; 

procedure new-data_on; 
begin 
p, **. ring_output: =pA. data_input; 
p-. data_full: =false; 
p, '',. output_full: =true; 
time_ýunit: =time_unit-1; 
end; 

procedure new-data_down; 
begin 
p-. down 

- 
output: =p^. data_input; 

P-. data 
- 

full: =false; 
p-. down_full: =true; 
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time_unit: =time_unit-1; 
end; 

begin (* COMMS4 *) 
if processor - 

idle then 
if ring - 

data then 
take 

- ring_data 
else 

if new data then 
take new-data 

else 
(* NULL 

else 
(* NULL 

if down_ready then 
if ring-data then 

ring_data_down 
else 

if new data then 
new - 

ýata_down 

else 
(* NULL 

else 
(* NULL 

if ring_ready then 
if ring-data then 

ring_data_on 
else 

if new data then 
new - 

ýata_on 

else 
(* NULL 

else 
(* NULL 

end; (* COMMS4 

procedure process(units: integer); 
begin (* PROCESS *) 
pý. p_state: =p". p_state-units; 
if (p-. p_state<=O) then 

begin 
if (p-. p_type>O) then 

processed 
- 

datalp^. p_typel: =processed_data[p^. p_typel+l; 
pl', -p_type: =O; 
p-"I. p_state: =O; 
end; 

end; PROCESS 

begin (* COMPUTING_ALGORITHM 
time 

- 
unit: =4; 

TOTAL. PROCESSING EFFORT AVAILABLE 
PER ITERATION *) 

if (condition[p-. proc_l, p". proc_rl=good) then 
begin 
comms; 
(* COMMS USES UP SOME PROCESSING EFFORT 
process(time_unit); 
end 
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else 
(* NULL 

end; (* COMPUTING_ALGORITHM 

begin (* COMPUTE 
pt: =stack; 
while (pt0nil) do 

begin 
P: =Pt; 
repeat 

begin 
computing_algorithm; 
p: =p, "I. next; 
end 

until (p=pt); 
pt: =pt-. down; 
end; 

end; COMPUTE 

procedure print-state; 
(* PRINTS THE STATE OF THE STACK AFTER THE LAST ITERATION 
var p, pt: proc_ptr; 

l, r: integer; 
begin (* PRINT_STATE 
write(stackrecord, OIteration: $, iterations: 3); 
writeln(stackrecord); write(stackrecord, lr= 9); 
for r: =1 to ring do 

write(stackrecord, l 1, r: 3); 
writeln(stackrecord); 
pt: =stack; 
write(stackrecord, 'Data 2); 
for r: =1 to ring do 

write(stackrecord, l l, data_types[rl: 3); 
writeln(stackrecord); 
1: =1; 
while(pt0nil) do 

begin 
p: =pt; 
write(stackrecord, 91=9,1: 3); 
repeat 

begin 
if (condition[p-. proc_l, p-. proc_rl=good) then 

write(stackrecord, l 9, p". p_state: 3) 
else 

write(stackrecord, l F9); 
p: =p'*. next; 
end; 

until (p=pt); 
pt: =pt-. down; 
1: =1+1; 
writeln(stackrecord); 
end; 

writeln(stackrecord); 
end; (* PRINT_STATE 

procedure print_consumption; 
var 

n, totproc, totcons, wtotproc: integer; 
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begin (* PRINT_CONSUMPTION *) 
totproc: =O; totcons: =O; wtotproc: =O; 
writeln(stackrecord); writeln(stackrecord, 'Data Consumed and Processed'); 
writeln(stackrecord, l ---- ------- --- --------- 1); writeln(stackrecord); 
for n: =1 to 200 do 

begin 
totcons: =totcons+consumed data[n]; 
totproc: =totproc+processea_data[n); 
wtotproc: =wtotproc+processed - 

data[n]*n; 
write(stackrecord, 'Type: ', n: 3,1 number consumed: 1, cons * umed_data[nl: 3); 
writeln(stackrecord, l number processed: ', processed_data[nl: 3); 
end; 

write(stackrecord, 'Total: number consumed: ', totcons: 3); 
writeln(stackrecord, l number processed: ', totproc: 3); 
writeln(stackrecord, 'Total: Weighted Total Processed: ', wtotproc: 5); 
end; (* PRINT_CONSUMPTION 

begin (* STACKPROG4 
a: =1234567; 
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR 
input_parameters; 
writeln('Parameters input'); 
initial_states; 
writeln($Initial state set up'); 
writeln(IStarting Computation'); 
for iterations: =l to largen do 

begin 
communicate; 
create_new-data; 
compute; 
print-state; 
end; 

writeln(IFinished Computation'); 
writeln('Printing Results'); 
print_consumption; 
end. (* STACKPROG4 
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APPENDIX 5 

5 Homogeneous Cylinder Simulation Results 
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, 04 

FIG. 5Ai. 1 HOMOGENEOUS COMMSi FED AT ALL POINTS WITH DATA OF 
TYPE i0- Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A1.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA OF 
TYPE i0- Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A1.3 HOMOGENEOUS COMMS3 FED AT ALL POINTS WITH DATA OF 
TYPE 10. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5Ai. 4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA OF 
TYPE 10. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A2.1 HOMOGENEOUS COMMSI FED AT ALL POINTS WITH DATA OF 
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A2.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA OF 
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A2.3 HOMOGENEOUS COMMS3 FED AT ALL POINTS WITH DATA OF 
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A2.4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA OF 
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A3.1 HOMOGENEOUS COMMSI FED AT ALL POINTS WITH DATA 
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5A3.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA 
OF-T-YPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5A3.4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA 
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5A4.1 HOMOGENEOUS COMMSI FED AT ALL POINTS WITH DATA 
OF TYPE R20. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5A4.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA 
OF TYPE R20. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5A4.3 HOMOGENEOUS COMMS3 FED 
OF TYPE R20. Z=MEAN WTP PER NODE 
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FIG. 5A4.4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA 
OF TYPE R2: 0. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5A5.1 HOMOGENEOUS COMMSI FED AT ALL POINTS WITH DATA OF 
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A5.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA OF 
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A5.3 HOMOGENEOUS COMMS3 FED AT ALL POINTS WITH DATA OF 
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A5.4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA OF 
TYPE 50. Z=WEIGHTEn TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A6.1 HOMOGENEOUS COMMS1 FED AT ALL POINTS WITH DATA OF 
TYPE RiOO. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A6.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA OF 
TYPE R100. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A6.3 HOMOGENEOUS COMMS3 FED AT ALL POINTS WITH DATA OF 
TYPE R100. Z=WEIGHTED TOTAL PROCESSING OVER'1000 ITERATION. S. 
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FIG. 5A6.4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA OF 
TYPE R100. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A7.1 HOMOGENEOUS COMMSI FED AT ALL POINTS WITH DATA 
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5A7.3 HOMOGENEOUS COMMS3 FED AT ALL POINTS WITH DATA 
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5A7.4 HOMOGENEOUS COMMS4 FEO AT ALL POINTS WITH OATA 
OF TYPE 50. Z=MEAN WTP PER NOOE OVER 1000 ITERATIONS. 
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FIG. 5A8.1 HOMOGENEOUS COMMSi FED AT ALL POINTS WITH DATA 
OF TYPE RiOO. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5AB. 2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA 
OF TYPE RiOO. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5A8.4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA 
OF TYPE R100. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5A9.1 HOMOGENEOUS COMMSI FED AT ONE POINT 
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FIG. 5A9.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA OF 
TYPE 10. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A9.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA OF 
TYPE 10. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A10.1 HOMOGENEOUS COMMSI FED AT ONE POINT WITH DATA OF 
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A10.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA OF 
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A10.3 HOMOGENEOUS COMMS3 FED AT ONE POINT WITH DATA OF 
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A10.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA OF 
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER *1000 ITERATIONS. 
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FIG. 5AIi. 1 HOMOGENEOUS COMMSI FED AT ONE POINT WITH DATA 
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5A11.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA 
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5A11.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA 
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5Ai2.1 HOMOGENEOUS 
OF TYPE R20. Z=MEAN WTP 
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FIG. 5A12.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA 
OF TYPE R20. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5Ai2.3 HOMOGENEOUS COMMS3 FED AT ONE POINT WITH DATA 
OF TYPE R20. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5Ai2.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA 
OF TYPE R20. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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FIG. 5Ai3.1 HOMOGENEOUS COMMSI FED AT ONE POINT WITH DATA OF 
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5Ai3.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA OF 
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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FIG. 5A13.3 HOMOGENEOUS COMMS3 FED AT ONE POINT WITH DATA OF 
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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1104 

FIG. 5A13.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA OF 
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 000-ITERATIONS. 
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104 

FIG. 5A14.1 HOMOGENEOUS COMMSi FED AT ONE POINT WITH DATA OF 
TYPE RIOO. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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104 

FIG. 5A14.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH. DATA OF 
TYPE RIOO. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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104 

FIG. 5A14.3 HOMOGENEOUS COMMS3 FED AT ONE POINT WITH DATA OF 
TYPE Ri00- Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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104 

FIG. 5A14.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA OF 
TYPE RiOO. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS. 
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1103 

FIG. 5Ai5.1 HOMOGENEOUS COMMSI FED AT ONE POINT WITH DATA 
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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4103 

FIG. 5A15.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA 
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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103 

FIG. 5A15.3 HOMOGENEOUS COMMS3 FED AT ONE POINT WITH DATA 
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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*SOB 

FIG. 5A15.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA 
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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103 

FIG. 5A16. i HOMOGENEOUS COMMSI FED AT ONE POINT WITH DATA 
OF TYPE RIOO. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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103 

FIG. 5A16.2 HOMOGENEOUS COMMS2 FED 
OF TYPE RiOO. Z=MEAN WTP PER NODE 

AT ONE POINT WITH DATA- 
OVER 1000 ITERATIONS. 
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son 

FIG. 5A16.3 HOMOGENEOUS COMMS3 FED AT ONE POINT WITH DATA 
OF TYPE R100. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS. 
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1103 

FIG. 5A16.4 HOMOGENEOUS COMMS4 FED AT ONE'POINT WITH DATA 
OF TYPE RiOO. Z=MEAN WTP PER NOD E OVER 1000 ITERATIONS. 
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6 Printed Circuit Board Designs 

Link Circuit 

Component Layer 
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Component Layer 
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Component Layer 
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Component Layer 



Solder Layer 
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APPENDIX 7 

7 Wire Wrap Connections To Complete a Link Circuit 

From To From To 

Device, Pin Device, Pin Device, Pin Device, Pin 

1,5 To Data Input 5,7 To 18,12 

1,2 To 13,3 5,12 To 4,1 

1,3 To 2,10 4,2 To 18,11 

1,4 To 2,9 4,3 To 18,10 

1,9 To 14,2 4,4 To 17,13 

1,13 To 17,1 4,5 To 17,12 

1,12 To 4,12 4,10 To 17,11 

2,1 To 11,13 4,11 To 17,10 

2,2 To 11,12 4,13 To Data Output 

2,3 To 10,10 10,11 To 10 MHz (PA) 

2,6 To SYNCH 12,1 To 15,13 

3,8 To 6,15 12,9 To 15,12 

3,9 To 6,14 13,3 To 14,3 

3,13 To 6,13 13,10 To 18,4 

3,14 To 6,12 13,11 To 18,5 

3,19 To li'l 13,12 To 18,6 

10,1 To 9,1 13,13 To 18,7 

3,18 To 8,1 14,1 To ROE 

8,1 To 7,1 14,2 To DIR(Rx) 

7,1 To 6,1 14,10 To 17,4 

3,17 To 12,5 14,11 To 17,5 

3,12 To 12,13 14,12 To 17,6 

5,6 To 18,13 14,13 To 17,7 
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From To From To 

Device, Pin Device, Pin Device, Pin Device, Pin 

14,14 To DOR(Rx) 16,8 To 18,12 

14,15 To RSO 17,2 To DIR(Tx) 

15,1 To 10 MHz 17,9 To RESET 

15,2 To RESET 17,14 To DOR(Tx) 

15,6 To 14,2 18,3 To TSI 

16,7 To 18,11 
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APPENDIX 8 

8 Wire Wrap Connections To Complete an RS-232C to Inmos Interface 

From To From To 

Device, Pin Device, Pin Device, Pin Device, Pin 

19,1 To -12V 21,23 To 28,16 

19,2 To 27,19 22,2 To 15,2 

19,3 To D-conn, 20 22,2 To 27,2 

19,6 To D-conn, 2 22,4 To 17,9 

19,14 To +12V 23,6 To 28,8 

20,1 To D-conn, 5 23,9 To 28,6 

20,3 To 27,3 23,10 To 25,13 

20,4 To D-conn, 3 23,11 To 28,19 

21,4 To 28,18 24,5 To 27,1 

21,5 To 13,10 25,14 To 2,6 

21,6 To 13,11 25,9 To 10,11 

21,7 To 13,12 25,5 To 15,1 

21,8 To 13,13 26,5 To 28,15 

21,9 To 14,10 26,7 To 28,13 

21,10 To 14,11 26,8 To 28,12 

21,11 To 14,12 26,9 To 28,14 

21.12 To 14,13 26,19 To 18,3 

21,17 To 24,9 26,17 To 14,1 

21,18 To 28,17 26,18 To 14,15 

21,19 To 27,5 27,6 To 14,14 

21,22 To 27,4 27,7 To 17,2 
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APPENDIX 9 

9 Wire Wrap Connections To Complete a Processor Board 

From To From To 

Device, Pin Device, Pin Device, Pin Device, Pin 

36,4 To 17A, 9 30,22 To 35,6 

17A, 9 To 17B, 9 30,19 To 31,11 

17B, 9 To 17C, 9 30,19 To 35,8 

17C, 9 To 17D, 9 30,20 To 35,9 

36,10 To 15A, 2 30,20 To 37,36 

15A, 2 To 15B, 2 30,21 To 35,7 

15B, 2 To 15C, 2 30,21 To 37,35 

15C, 2, To 15D, 2 30,22 To 35,6 

36,8 To 30,26 30,27 To 32,6 

25,7 To 28,3 30,27 To 35,11 

25,6 To 28,2 30,27 To 37,37 

25,5 To 28,1 30,16 To 37,23 

25,4 To 29,8 35,12 To 25,11 

25,3 To 29,7 35,13 To 33,22 

25,2 To 29,6 35,14 To 33,20 

25,1 To 29,5 35,17 To 34,27 

30,6 To 37,25 35,18 To 34,22 

27,12 To 23,1 35,19 To 34,20 

30,21 To 35,7 33,18 To 34,18 

30,21 To 37,35 33,19 To 34,19 
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From To From To 

Device, Pin Device, Pin Device, Pin Device, Pin 

30,14 To 33,11 30,7 To 20,12 

30,15 To 33,12 30,9 To 20,14 

30,12 To 33,13 30,10 To 20,16 

30,8 To 33,15 30,13 To 20,18 

30,7 To 33,16 20,3 To 14A, 13 

30,9 To 33,17 20,5 To 14A, 12 

30,10 To 33,18 20,7 To 14A, 11 

30t13 To 33,19 20,9 To 14A, 10 

30,7 To 37,39 20,12 To 13A, 13 

30,8 To 37,40 20,14 To 13A, 12 

30,9 To 37,38 20,16 To 13A, 11 

30,10 To 37,3 20,18 To 13A, 10 

30,12 To 37,1 14A, 13 To 14B, 13 

30,13 To 37,2 14A, 12 To 14B, 12 

30,14 To 37,19 14A, 11 To 14B, 11 

30,15 To 37,20 14A, 10 To 14B, 10 

30,14 To 20,3 13A, 13 To 13B, 13 

30,15 To 20,5 13A, 12 To 13B, 12 

30,12 To 20,7 13A, 11 To 13B, 11 

30,8 To 20,9 13A, 10 To 13B, 10 

clxv Appendix 9 165 



From To From To 

Device, Pin Device, Pin Device, Pin Device, Pin 

14B, 13 To 14C, 13 30,34 To 33,6 

14B, 12 To 14C, 12 30,35 To 33,5 

14B, ll To 14C, 11 30,36 To 33,4 

14B, 10 To 14C, 10 30,37 To 33,3 

13B, 13 To 13C, 13 30,38 To 33,25 

13B, 12 To 13C, 12 30,39 To 33,24 

13B, 11 To 13C, 11 30,40 To 33,21 

13B, 10 To 13C, 10 30,1 To 33,23 

14C, 13 To 14D, 13 30,2 To 33,2 

14C, 12 To 10,12 33,10 To 34,10 

14C, 11 To 10,11 33,9 To 34,9 

14C, 10 To 14D, 10 33,8 To 34,8 

13C, 13 To 13D, 13 33,7 To 34,7 

13C, 12 To 13D, 12 33,6 To 34,6 

13C, 11 To 13D, 11 33,5 To 34,5 

13C, 10 To 13D, 10 33,4 To 34,4 

30,30 To 33,10 33,3 To 34,3 

30,31 To 33,9 33,25 To 34,25 

30,32 To 33,8 33,24 To 34,24 

30,33 To 33,7 33,21 To 34,21 
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From To From To 

Device, Pin Device, Pin Device, Pin Device, Pin 

33,23 To 34,23 32,19 To 18C, 3 

33,2 To 34,2 20,1 To 32,12 

30,3 To 34,26 20,2 To 14D, 2 

30,4 To 34,1 20,4 To 14C, 2 

30,1 To 35,1 20,6 To 14B, 2 

30,2 To 35,2 20,8 To 14A, 2 

30,3 To 35,3 20,11 To 17D, 2 

30,4 To 35,4 20,13 To 17C, 2 

30,5 To 35,5 20,15 To 17B, 2 

31,14 To 14B, l 20,17 To 17A, 2 

31,15 To 14B, 15 21,1 To 31,12 

31,16 To 18B, 3 21,2 To 17D914 

31,17 To 14A, l 21,4 To 17C, 14 

31,18 To 14A, 15 21,6 To 17B, 14 

31,19 To 18A, 3 21,8 To 17A, 14 

32,14 To 14D, l 21,11 To 14D, 14 

32,15 To 10,15 21,13 TO 14C, 14 

32,16 To 18D, 3 21,15 To 14B, 14 

32,17 To 14C, l 21,17 To 14A, 14 

32,18 To 14C, 15 22,15 To 2A, 6 
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From To From To 

Device, Pin Device, Pin Device, Pin Device, Pin 

22,14 To 2B, 6 24,5 To 15A, l 

23,15 To 2C, 6 24,5 To 15B, l 

23,14 To 2D, 6 24,9 To 15C, l 

22,5 To 10A, 11 24,9 To 15D, l 

22,9 To 10B, 11 37,4 To 30,37 

23,5 To i0c, 11 37,5 To 30,35 

23,9 To 10D, 11 37,6 To 30,36 

4. 
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APPENDIX 10 

10 Pal Designs Used in the Multiprocessor Hardware Design 

PARTNO 00001 ; 
NAME COMMRX; 
DATE 13/01/87 
REV 01 ; 
DESIGNER G. A. Lester 
COMPANY University Of Salford 
ASSEMBLY 00002 
LOCATION 00003 

/*Logic for use in TRANSPUTER compatible link. 
/*detects acknowledge, detects data and generates the reset 
/*for the receive shift registers. 
/*Final version. (Different pins to prototype. -rev 00)*/ 

/* Allowable Target Device Types: p1618 

/** Inputs **/ 

PIN 1 = !r /* reset signal 
PIN 2 = dO /* data from shift register. 
PIN 3 = dl 
PIN 4 = d2 
PIN 5 = d3 
PIN 6 = d4 
PIN 7 = d5 
PIN 8 = d6 
PIN 9 =V 
PIN 13 = d8 
PIN 14 = d9 
PIN 11 = Wire /* DIR(falling)Edge from rx buffer*/ 

/ ** outputs **/ 

PIN 19 = ! mrl /*Master Reset 1 
PIN 18 = ! mr2 /*Master Reset 2 
PIN 17 = ! arxd /*Acknowledge received 
PIN 12 = ! dd /*Data bits Detected 
PIN 15 = ack /*Acknowledge bits 
PIN 16 = dat /*Data bits 

/** Logic Equations **/ 

mrl -r# dire ; 

mr2 =r# arxd # (dO & dl) ; 

arxd r# ack & ! (d7 d6 # d5 I d4 # d3 # d2 # di # dO) 

dd dat & ! (d7 d6 # d5 # d4 # d3 # d2 # dl # dO) 
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ack = d8 & ! d9 

dat = d8 & d9 

clxx Appendix 10 170 



PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

00002 ; 
COMMSTAT 
09/01/87 
01 ; 
G. A. Lester 
University Of Salford 
00002 
00015 

/*The state machine for use in the TRANSPUTER compatible links. 
/*Used in conjunction with commrx. 
/*Generates Acknowledge and data cycles conditional on the inputs. */ 

/* Allowable Target Device Types: pl6r4 

/** Inputs **/ 

PIN I = elk /* 2*5mhz clock 
PIN 2 = !r /* reset line 
PIN 3 = arqd /* ack required before tx of data 
PIN 4 = drxd /* data received 
PIN 5 = ! te /* empty from tx fifo buffer 
PIN 6 = ! rf : /* full from rx fifo buffer 

/** Outputs **/ I 

PIN 12 = ! asent /* ack sent 
PIN 13 = Itso /* Transmitter Shift Out 
PIN 14 = ! qO /* state var 
PIN 15 = ! ql /* state var 
PIN 16 = ! q2 /* state var 
PIN 17 = ! q3 /* state var 
PIN 18 = ! toe /* Transmitter Output Enable 
PIN 19 = ! pe /* parallel (load) enable to s. r. 

/** Declarations and Intermediate Variable Definitions **/ 

Field count = [q3, q2, ql, qO] ; 

$define SO IdlO 
$define 81 IdIl 
$define s2 IdI3 
$define s3 ldl2 
$define s4 IdI6 
$define s5 IdI7 
$define s6 IdI5 
$define s7 IdI4 
$define s8 Id'12 
$define S9 Id'13 
$define slO Id'15 
$define sll Id'14 
$define s12 IdIlo 
$define s13 IdIll 
$define s14 IdI9 
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$define s15 IdI8 

/** Logic Equations **/ 

count. d= 
*& count: sO & so 
*& count: sl & so 
*& count: s2 & so 
*& count: s3 & so 
*& count: s4 & so 
*& count: s5 & so 
*& count: s6 & so 
*& count: s7 & so 
*& count: s8 & so 
*& count: s9 & so 
*& count: slO & so 
*& count: sll & so 
*& count: sl2 & so 
*& count: sl3 & so 
*& count: sl4 & so 
*& count: sl5 & so 
!r& count: sl & s2 
!r& count: s3 & s4 
!r& count: s4 & s5 
!r& count: s5 & s6 
!r& count: s6 & s7 
!r& count: s7 & s8 
!r& count: s8 & S9 
!r& count: s9 & slo 
!r& count: slO & S11 
!r& count: sll & s12 
!r& count: sl2 & s13 
!r& count: sO & s13 
!r& Irf & drxd & count: s2 & sl 
!r& ! rf & drxd & count: sl3 & sl 
Ir & larqd & ! te & count: s2 & s3 
!r& (rf I ! drxd) & (! arqd & ! te) & count: sl3 & s3 
!r& (te # arqd) & (! drxd # rf) & count: s2 & s13 
Ir & (te I arqd) & (! drxd # rf) & count: sl3 & s13 

asent = count: s2 count: sO 

tso = count: s5 

toe = ! (count: sl f count: s2) 

pe = count: sl # count: s3 ; 

clxxii Appendix 10 172 



PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

00003 ; 
DECODElA 
08/01/87 
00 ; 
G. A. Lester 
University Of Salford 
00002 
00031 

/* The decode functions required to interface the TRANSPUTER type 
/* links to a Z-80 system. 
/* Generates the gate signal for an additional latch. 

/* Allowable Target Device Types: 16L8 

/** Inputs **/ 

PIN 1 = a4 /* address line a4 
PIN 2 = a3 /* address line a3 
PIN 3 = a2 /* address line a2 
PIN 4 = al /* address line al 
PIN 5 = aO /* address line aO 
PIN 6 = Iml /* ml cycle line 
PIN 7 = Ird /* read line 
PIN 8 = ! wr /* write line 
PIN 9 = liorq /* iorq line 
PIN 11 M Imreq /* mreq line 

outputs 

PIN 12 = lelatch /* Latch (buffer empty signals) 
PIN 13 = interm /* intermediate variable 
PIN 14 = 1roeB /* Rx Output Enable B 
PIN 15 = rsoB /* Rx Shift Out B 
PIN 16 = tsiB /* Ts Shift In B 
PIN 17 = 1roeA /* Rx Output Enable A 
PIN 18 = rsoA /* Rx Shift Out A 
PIN 19 = tsiA /* Tx Shift In A 

/** Declarations and 

Field addr = [a4, a3,, 

/** Logic Equations 

elatch = a4 & aO & 

interm - iorq & Iml 

rsoA = Ia4 & aO & 

roeA = Ia4 & aO & 

tsiA = Ia4 & aO & 

Intermediate Variable Definitions 

a2, al, aO] 

iorq & Iml & rd 

iorq & Iml & rd 

iorq & Iml & rd 

iorq & Iml & wr 
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rsoB = ! a4 & al & iorq & ! ml & rd 

roeB = ! a4 & al & iorq & ! ml & rd 

tsiB = la4 & al & iorq & ! ml & wr ; 
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PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

00004 ; 
DECODEIB 
08/01/87 
00 ; 
G. A. Lester 
University Of Salford 
00002 
00032 

/* The decode functions required to interface the TRANSPUTER style*/ 
/* links to a Z-80 system. 
/* Generates the gate signal for an additional Latch 

/* Allowable Target Device Types: 16L8 

/** Inputs **/ 

PIN 1 = a4 /* address line a4 
PIN 2 = a3 /* address line a3 
PIN 3 = a2 /* address line a2 
PIN 4 = al /* address line al 
PIN 5 = aO /* address line aO 
PIN 6 = Iml /* ml cycle line 
PIN 7 = ! rd /* read line 
PIN 8 = ! wr /* write line 
PIN 9 = liorq /* iorq line 
PIN 11 = ! mreq /* mreq line 

/ ** outputs **/ 

PIN 12 = Match /* Latch (buffer full signals) 
PIN 13 = interm /* intermediate variable 
PIN 14 = ! roeD /* Rx Output Enable D 
PIN 15 = rsoD /* Rx shift Out D 
PIN 16 = tsiD /* Ts Shift In D 
PIN 17 = ! roeC /* Rx Output Enable C 
PIN 18 = rsoC /* Rx Shift Out C 
PIN 19 = tsic /* Tx Shift In C 

/** Declarations and 

Field addr = [a4, a3,, 

/** Logic Equations 

flatch = a4 & al & 

interm = iorq & ! ml 

rsoC = Ia4 & a2 & 

roeC = ! a4 & a2 & 

tsic = ! a4 & a2 & 

Intermediate Variable Definitions 

a2, al, aO] 

iorq & ! ml & rd ; 

iorq & Iml & rd ; 

iorq & ! ml & rd ; 

iorq & Iml & wr ; 
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rsoD = ! a4 & a3 & iorq & Iml & rd ; 

roeD = ! a4 & a3 & iorq & Iml & rd ; 

tsiD = ! a4 & a3 & iorq & ! ml & wr ; 
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PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

00005 ; 
DECODE2 
13/03/87 
00 ; 
G. A. Lester 
University Of Salford 
XXXX2 
XXX35 

/* Memory decoding for Z-80 system. 
/* Also provides interrupt acknowledge signal. 

/* Allowable Target Device Types: 16L8 

/** Inputs **/ 

PIN 1 - all /* address line all 
PIN 2 = a12 /* address line a12 
PIN 3 = a13 /* address line a13 
PIN 4 = a14 /* address line a14 
PIN 5 = a15 /* address line a15 
PIN 6 = ! wr /* write line 
PIN 7 = Ird /* read line 
PIN 8 = ! mreq /* mreq line 
PIN 9 = liorq /* iorq line 
PIN 11 = Iml /* ml cycle line 

/** Outputs **/ 

PIN 12 intack /* Interrupt acknowledge 
PIN 13 Iromrd /* rom read 
PIN 14 Iromce /* rom chip enable 
PIN 17 Iramwr /* ram write 
PIN 18 Iramrd /* ram read. 
PIN 19 Iramce /* ram chip enable 

Declarations and Intermediate Variable Definitions 

Logic Equations 

intack ml & iorq ; 

romrd mreq & 1a15 & rd 

romce mreq & 1a15 ; 

ramwr mreq & a15 & wr 

ramrd mreq & a15 & rd 

ramce mreq & a15 ; 
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PARTNO 00006 
NAME SIMM1 
DATE 08/05/86 
REV 00 ; 
DESIGNER G. A. Lester 
COMPANY University Of Salford 
ASSEMBLY 00001 
LOCATION 00027 

/*The state machine to generate a pseudo Z80 1/0 read/write 
/*cycle simulation. To be used in conjunction with simmZ80. 
/*Used to drive the TRANSPUTER compatible links. 

/* Allowable Target Device Types: pl6r6 

/** Inputs **/ 

PIN 1 = elk /* 5MHz clock (10 MHz ? 
PIN 2 = !r /* reset 
PIN 3 = Icts /* clear to send 
PIN 4 = tbre /* trans buffer requires extra 
PIN 5 = dr /* data ready 
PIN 6 = !e /* empty 
PIN 7 = !f /* full 

/** Outputs **/ 

PIN 19 = ! dtr /* data terminal ready 
PIN 18 = ! qO /* state var 
PIN 17 = Iql /* state var 
PIN 16 = ! q2 /* state var 
PIN 15 = ! q3 /* state var 
PIN 14 = ! q4 /* state var 
PIN 12 = etc /* empty or ! tbre or ! cts 

/** Declarations and Intermediate Variable Definitions **/ 

etc = (e I Itbre I Icts); 

Field count = [q4, q3, q2, ql, qO] ; 

$define SO Idlo 
$define sl Idli 
$define s2 9d92 
$define s3 IdI3 
$define s4 IdI4 
$define S5 9d'5 
$define S6 IdI6 
$define s7 IdI7 
$define S8 ld98 
$define S9 IdI9 
$define slO IdIlo 
$define sll IdIll 
$define s12 9d912 
$define s13 Id'13 
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$define s14 Id, 14 
$define S15 Id'15 
$define s16 Id'16 
$define s17 Id'17 
$define S18 Id'18 
$define S19 Id9ig 
$define s20 9d'20 
$define s2l ld'21 

/** Logic Equations **/ 

count. 
* & count: sO & so 
* & count: sl & so 
* & count: s2 & so 
* & count: s3 & so 
* & count: s4 & so 
* & count: s5 & so 
* & count: s6 & so 
* & count: s7 & so 
* & count: s8 & so 
* & count: s9 & so 
* & count: slO & so 
* & count: sll & so 
* & count: sl2 & so 
* & count: sl3 & so 
* & count: sl4 & so 
* & count: sl5 & so 
* & count: sl6 & so 
* & count: sl7 & so 
* & count: sl8 & so 
* & count: sl9 & so 
* & count: s20 & so 
* & count: s2l & so 

!r & count: sl & s2 
!r & count: s2 & s3 
!r & count: s3 & s4 
!r & count: s4 & S5 
!r & count: s5 & s6 
Ir & count: s6 & s7 
!r & count: s7 & S8 
!r & count: s8 & S9 
Ir & count: s9 & slo 
!r & count: slO & S11 
Ir & count: sll & s12 
!r & count: sl4 & s15 
!r & count: sl5 & s16 
!r & count: sl6 & s17 
!r & count: sl7 & S18 
!r & count: s18 & S19 
!r & count: sl9 & s20 
!r & count: s20 & s2l 
!r & count: s2l & so 
Ir & (! f & dr) & count : sO & sl 
!r & (f ldr) & le & tbre & cts 
!r & (f ! dr) & etc & count: sO 
Ir & letc & count: sl2 & s14 
!r & etc & count : sl2 & sO 

& count: sO & s14 
& so 
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dtr =! dr ; 
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PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

00007 ; 
SIMMZ80 
08/01/87 
00 ; 
G. A. Lester 
University Of Salford 
00000 
00000 

/*The state machine to generate a pseudo Z80 1/0 read/write 
/*cycle simulation. To be used in conjunction with simml. 

/* Allowable Target Device Types: p1618 

/** Inputs **/ 

PIN 1 = IqO /* state var 
PIN 2 = Iql /* state var 
PIN 3 = 1q2 /* state var 
PIN 4 = ! q3 /* state var 
PIN 5 = ! q4 /* state var 
PIN 6 = clkO /* from elk ect 
PIN 7 = clkl /* from elk cct 
PIN 8 = clk6 /* from elk cct 

/** Outputs **/ 

PIN 19 clko /* to clk cct 
PIN 18 rrd /* received register disable 
PIN 17 ! drr /* data received reset 
PIN 16 ! tbrl /* trans buffer register load 
PIN 15 addr /* status line 
PIN 14 ! iorq /* 1/0 request line 
PIN 13 Ird /* read data strobe 
PIN 12 1wr /* write data strobe 

/** Declarations and Intermediate Variable Definitions **/ 

Field count = [q4, q3, q2, ql, qO] ; 

$define so Idlo 
$define sl IdIl 
$define s2 IdI2 
$define s3 IdI3 
$define s4 IdI4 
$define s5 IdI5 
$define s6 IdI6 
$define s7 IdI7 
$define S8 IdI8 
$define S9 IdI9 
$define slO Id'10 
$define sll IdIll 
$define s12 Id'12 
$define s13 Id'13 
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$define s14 Id'14 
$define s15 Id'15 
$define s16 Id'16 
$define s17 Id'17 
$define S18 Id'18 
$define S19 Id'19 
$define s20 Id'20 
$define s2l Id'21 

/** Logic Equations 

clko =clk6 & clkO ; 

rrd =! (count: s3 count: s4 # count: S5 f count: s6 
# count: s7 count: s8 count: s9); 

drr =count: slO 

tbrl =count: sl7 count: sl8 count: sl9 

addr =! (count: s2 count: slO count: sll # count: s12 # count: sf3 
count: sl4 count: sO count: sl); 

iorq count: s4 count: s5 count: s6 # count: s7 count: s8 
count: s16 # count: s17 # count: s18 # count: s19 # count: s20 

rd count: s16 # count: sl7 # count: s18 # count: s19 # count: s2O 

wr count: s4 count: s5 count: s6 # count: S7 count: s8 

PROGRAMS COMPILED USING: 
/* CUPL 2.1, ASSISTED TECHNOLOGY, DIVISION OF PERSONAL CAD 
/* SYSTEMS INC., 1290 PARKMOOR AVE, SAN JOSE, CA. 
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APPENDIX 11 

1 Files Used with the Eco-C Compiler for Multiprocessing 

. Z80 
RAMTOP EQU 9FFFH 
STACKSIZE EQU 01FFH 
OSSTACK EQU RAMTOP 
si EQU OSSTACK - (STACKSIZE/2) 
S2 EQU Sl - STACKSIZE 
S3 EQU S2 - STACKSIZE 
SMAIN EQU S3 - STACKSIZE 
TERMINATE EQtJ 0028H 
SPROC EQU 0030H 

ENTRY BUFFERS 

EXTRN PROM 
EXTRN PROC2 
EXTRN PROC3 
EXTRN MAIN 

DSEG 
CLOCK:: DEFW 0000 
RUNNING:: 

DEFB 01 
NPROC:: DEFB 08 
STACKLIST:: 

DEFW 0101H 
DEFW 0202H 
DEFW 0303H 
DEFW 0404H 

USERNPROC:: 
BUFFERS EQU USERNPROC +1 

CSEG 
$INITA:: 

DI 
LD SP, OSSTACK 
LD HL, 0000 
LD (CLOCK), HL 
LD A, (USERNPROC) 
LD (NPROC), A 
LD A, 01 
LD (RUNNING), A 
LD HL, 2 
LD DEJERMINATE 
LD SP, SMAIN 
PUSH DE 
LD BC, MAIN 
PUSH BC 
CALL PUTREG 
LD (STACKLIST+06), SP 
LD SP, S3 
PUSH DE 

; PROCESS ENTRIES OBTAINED 
; EXTERNALLY 

;A MAXIMUM OF FOUR PROCESSES 

; STATIC VARS SHOULD BE LOADED AFTER 
; THIS POINT 

; SETS OPERATING SYSTEM STACK 
; INITIALISES PSEUDO CLOCK 

; SETS THE RUNNING PROCESS AND 
; NPROC TO THE VALUE CONTAINED 
; IN USERNPROC 

; SETS UP STACKS AND PROCLIST FOR 
; EACH PROCESS 

; IF ANY PROCESS RETURNS THEN 
; THAT PROCESS WILL TERMINATE 
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LD BC, PROC3 ; BY ENTERING A NON-BUSY WAIT 

PUTREG: 

PUSH BC 
CALL PUTREG 
LD (STACKLIST+04), SP 
LD SP, S2 
PUSH DE 
LD BC, PROC2 
PUSH BC 
CALL PUTREG 
LD (STACKLIST+02), SP 
LD SP, Sl 
PUSH DE 
LD HL, 02 
EI 
JP PROM 

POP IY 
PUSH AF 
EX AF, AF I 
PUSH AF 
PUSH BC 
PUSH DE 
PUSH HL 
EXX 
PUSH BC 
PUSH DE 
PUSH HL 
PUSH Ix 
PUSH IY 
PUSH ly 
RET 
END $INITA 
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LD HL, RUNNING 
LD C, (HL) 
LD B, O 
ADD HL, BC 
ADD HL, BC 
EX DE, HL 
LD HL, 0000 
ADD HL, SP 
EX DE, HL 
LD (HL), E 
INC HL 
LD (HL) 

,D 
LD HL, RUNNING 
LD A, (HL) 
INC HL 
LD B, (HL) 
CP B 
JP NZ, NOTLAST 
DEC HL 
LD (RL), l 
INC HL 
INC HL 
JR RESTORE 

NOTLAST: 
DEC HL 
INC (HL) 
INC A 
LD C, A 
LD B, O 
ADD HL, BC 
ADD HL, BC 

RESTORE: 
LD E, (HL) 
INC HL 
LD D. (HL) 
EX DE, HL 
LD SP, HL 
POP IY 
POP ix 
POP HL 
POP DE 
POP BC 
EXX 
POP HL 
POP DE 
POP EC 
POP AF 
EX AF, AF' 
POP AF 
Ei 
RETI 

SETPIO: 
LD A, OFFH 
OUT (2011), A 
OUT (2011). A 
OUT (6011), A 

; FIND THE SPACE TO SAVE SP 

; SAVES STACK POINTER 

; TEST WHICH PROCESS IS RUNNING 

; IF RUNNING = NPROC 
; SET RUNNING TO 01 

; RESTORE REGISTERS FOR PROM 

; IF RUNNING LESS THAN NPROC 
; INCREMENT RUNNING 
; INCREMENT A TO MATCH (A=RUNNING) 
; SET HL TO POINT TO SP FOR THE 
; NEW PROCESS 

; RESTORE REGISTERS USING THE VALUE 
; OF SP STORED AT (HL) 

; RE-ENABLE INTERRUPTS AND 
; RETURN TO THE RUNNING PROCESS 
; NON-OPERATING SYSTEM ROUTINES 
; INITIALISATION ETC 
; SET UP THE PIO (INACTIVE) 
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OUT (60H), A 
LD A, 17H 
OUT (20H), A 
OUT (60H), A 
LD A, OFFH 
OUT (20H), A 
OUT (60H), A 
RET 

WAITPROG: 
IN A, (91H) 
AND A 
JR Z, WAITPROG 

WPROM1: LD C, 01 
WPROMZ: IN A, (91H) 

AND C 
JR Z, WPROM3 
SET 7, C 
IN A, (C) 
CP PROGOFFER 
JR ZJNPROG 
RES 7, C 

WPROM3: RLC C 
LD A, C 
CP 10 
JR NZ, WPROM2 
JR WPROMI 

INPROG: LD A, C 
EXX 
LD C, A 
EXX 
LD A, GITM 
CALL OUTPUT 

RLOOPI: CALL INPUT 
CP OFFH 
JR Z, ROMI 
CALL SEND 
JR RLOOPI 

ROMI: CALL INPUT 
CP OFFH 
JR NZ, ROM2 
CALL SEND 
JR RLOOPI 

ROMZ: CP 00 
JR NZ, ROM3 
CALL INPUT 
LD L, A 
CALL INPUT 
LD 11, A 
LD IY, MEM 
JR RLOOPI 

ROM3: CP 01 
JR NZ, ROM4 
CALL INPUT 
LD E, A 
CALL INPUT 

; WAIT FOR AND OFFER OF A PROGRAM 

; SET C9 TO THE ADDRESS OF THE CREATOR 

; ACKNOWLEDGE THE OFFER OF A PROGRAM 

; LOOP TO READ IN THE PROGRAM 

; SETS MEMORY LOAD AND ADDRESS 
; TO START AT 

; PUSHES A VALUE ONTO THE STACK 
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LD D, A 
PUSH DE 
JR RLOOPI 

ROM4: CP 02 
JR NZ, ROMS 
EX DE, HL 
CALL INPUT 
LD L, A 
CALL INPUT 
LD H. A 
LD SP, HL 
EX DE, HL 
JR RLOOP1 

ROM5: CP 03 
JR NZ, ROM6 
CALL INPUT 
EXX 
LD C, A 
EXX 
LD IY, IO 
JR RLOOPI 

ROM6: CP 04 
JR NZ, ROM7 
RET 

ROM7: CP 05 
JR NZ, ROM8 
JR REXITI 

ROM8: CP 06 
JR NZ, ROM9 
EXX 
CALL INPUT 
LD E, A 
CALL INPUT 
LD D, A 
EXX 
JR RLOOPI 

ROM9: CP 07 
JR NZ, ROMA 
EXX 
CALL INPUT 
LD L, A 
CALL INPUT 
LD H, A 
EXX 

ROMA: JP RLOOPI 
REXITI: JR OFFERPROG 

INPUT: IN A, (91H) 
AND C 
AND OF11 
JR Z, INPUT 
IN A, (C) 
RET 

OUTPUT: EX AF, AF' 
RETEST: LD B, OFH 
WAITBIT: DJNZ WAITBIT 

IN A, (9211) 

; SETS THE STACK POINTER 

; SETS 1/0 FORWARD AND ADDRESS 
; HANDSHAKING ONLY GOOD WITH LINK ADDR 

; PERFORMS A IRETI INSTRUCTION 

; EXITS FROM THE PROGRAMMING LOOP 

; STORES HIGHEST VALUE TO FORWARD 
; IN DEI 

; STORES LOWEST VALUE TO FORWARD 
; IN HL9 

; END OF LOOP TO READ IN PROGRAM 
; EXIT FROM LOOP 

; C-I/O ADDRESS TO READ FROM 
; A: -(C) 
; THE SUBROUTINE WAITS UNTIL A VALUE 
; IS AVAILABLE 

; C'-I/O ADDRESS TO WRITE TO 

; (C9 ) 
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AND C 
AND OFH 
JR Z, RETEST 
EX AP, AF I 
OUT (C), A 
R. ET 

SEND: ip (IY) 

MEM: LD (HL), A 
INC HL 
RET 

10: EXX 
CALL OUTPUT 
EXX 
RET 

OFFERPROG: 
LD C, 81H 
LD A, C 

RLOOP2: EXX 
CP C 
EXX 
JP Z, NEXT2 
LD A. PROGOFFER 
CALL OUTPUT 
LD B, O 
CALL AWAITANY 
INC B 
DJNZ NOTTIMEOUT 
JR TIMEOUT 

NOTTIMEOUT: 
CP GITN 
JR NZ, NOTHANKS 
EXX 
PUSH HL 
PUSH DE 
EXX 
POP DE 
POP HL 
LD A, OFFH 
CALL OUTPUT 
LD A, 00 
CALL OUTPUT 
LD A, L 
CALL OUTPUT 
LD A, H 
CALL OUTPUT 
LD A, OFFH 
CALL OUTPUT 
LD A, 02 
CALL OUTPUT 
LD HL, 0000 
ADD HL, SP 
LD A. L 
CALL OUTPUT 
LD A, H 
CALL OUTPUT 

; THE SUBROUTINE WAITS UNTIL THE OUTPUT 

; CHANNEL HAS ROOM FOR THE VALUE 

; IY=ROUTINE TO CALL 

; A=VALUE TO SEND: HL=ADDRESS TO SEND TO 

; (HL): =A: INC HL 

; THE VALUE IS WRITTEN TO MEMORY 

; A=VALUE TO SEND: C9=ADDRESS TO SEND TO 

; (Cl): =A 
; THE VALUE IS SENT 1/0 

; Cl CONTAINS THE ADDRESS OF THE CREATOR 

; SEND PROGOFFER TO (C) 

; MAXIMUM TIMEOUT DELAY 

; IF B=O ON EXIT THEN TIMOUT OCCURED 

; IF B00 ON EXIT THEN NO TIMEOUT 

; CHECK TO SEE IF RESPONSE IS 

; GIVE IT TO ME 

; FF 00 L' H' 

; SETS LOAD ADDRESS 

; FF 02 SP 
; SETS STACK POINTER 
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LD A, OFFH ; FF 01 (SP) 
CALL OUTPUT ; PUSHES A VALUE ON THE STACK 
LD A. 01 ; USED AS A STARTING ADDRESS 
CALL OUTPUT 
POP HL 
PUSH HL 
LD A, L 
CALL OUTPUT 
LD A, H 
CALL OUTPUT 
LD A, OFFH ; FF 06 El D' 
CALL OUTPUT ; SETS HIGHEST ADDRESS TO FORWARD 
LD A, 06 
CALL OUTPUT 
LD A, E 
CALL OUTPUT 
LD A, D 
CALL OUTPUT 
LD A, OFFH ; FF 07 Ll HI 
CALL OUTPUT ; SETS LOWEST ADDRESS TO FORWARD 
LD A. 07 
CALL OUTPUT 
EXX 
PUSH HL 
EXX 
POP HL 
LD A, L 
CALL OUTPUT 
LD A, H 
CALL OUTPUT 
CALL TCLOOP 
LD A, OFFH ; FF 05 
CALL OUTPUT ; CAUSES AN EXIT FROM THE PROGRAMMING 
LD A, 05 ; LOOP 
CALL OUTPUT 

TIMEOUT: 
NOTHANKS: 
NEXTZ: LD A, C 

AND OFH 
RLCA 
CP IOH 
JR Z, REXIT2 
OR 80H 
LD C, A 
Jp RLOOP2 

REXIT2: JR STARTUP 

AWAITANY: 
IN A, (91H) 
AND C 
AND OFH 
JR NZ, FOUNDANY 
DJNZ AWAITANY 
RET 

FOUNDANY: 
IN A, (C) 
RET 
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TCLOOP: LD A, (HL) 
CP OFFH 
JR NZ, SINGLE 
CALL OUTPUT 

SINGLE: CALL OUTPUT 
INC HL 
LD A, H 
CP D 
JR NZ, TCLOOP 
LD A, L 
CP E 
JR NZ, TCLOOP 
RET 

STARTUP: 
RET ; PERFORMS A 9RETI TO THE PROGRAM 

; POSSIBLY STRIP ALL PROGOFFERS? 
END $RESET 
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APPENDIX 12 

12 Commumication Functions: Byte Wise Versions 

. Z80 
SPROC EQU 30H 
EXTRN BUFFERS 

; FUNCTION INT RTBYTE(PROC, LINK) 
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER 
; RECEIVES A BYTE, ONLY TESTS, DOES NOT WAIT IF NO VALUE AVAILABLE 
; IF A BYTE IS WAITING THEN THE FUNCTION RETURNS THE VALUE RECEIVED 
; IF THERE IS NO BYTE THEN A VALUE GREATER THAN 255 IS RETURNED 

RTBYTE:: 
CSEG 

ADD HL, SP 
PUSH HL 
LD HL, 0004 
ADD HL, SP 
LD A, (HL) 
AND A 
JR NZ, RTINT 
LD HL, 04 + 02 
ADD RL, SP 
LD C, (HL) 

RT1-. DI 
IN A, (91H) 
AND C 
JR NZ, RT2 
El 
LD HL, 0100H 
JP $RTNIll 

RT2: SET 7, C 
IN L, (C) 
EI 
LD H, 00 
JP $RTNIll 

RTINT: 
LD HL, 04 + 02 
ADD HL, SP 
LD C, (HL) 
LD B, A 
LD HL, BUFFERS - 09H 
LD DE. 0009H 

RT3: ADD HL, DE 
DJHZ RT3 
INC HL 

RT4s DI 
LD A, (RL) 
AND C 
JR Z, RT5 
EI 
LD HL, 0100H 
JP $RTNIff 

; A: -PROC 

; EXTERNAL COM14UNICATION 

; C: -LINK ADDRESS 
; DI-PREVENTS INTERFERENCE 
; TEST THE BUFFER FLAGS 

; IF NO VALUE THEN 
; EI-AGAIN 

; RETURN 0100H 
; IF VALUE THEN 
; RECEIVE VALUE 
; EI-AGAIN 

; RETURN VALUE 
; INTERNAL COMMUNICATION 

; C: -LINK ADDRESS 
; B: -PROC 

; SKIP OVER BUFFERS 

; DI-PREVENTS INTERFERENCE 
; TEST BUFFER FLAGS 

; IF NO VALUE THEN 
; EI-AGAIN 

; RETURN OIOOH 
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RT5: 

RT6: 

LD A, C ; IF VALUE THEN 
XOR (HL) ; ADJUST FLAGS 
LD (HL), A 
LD A, C 
INC HL ; SET HL TO POINT TO BUFFER LOCATION 
RRA 
JR NC, RT6 
LD L. (HL) ; RECEIVE VALUE 
EI ; EI-AGAIN 
LD H, 00 
JP $RTNIll ; RETURN VALUE 
END RTBYTE 
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. Z80 
SPROC EQU 30H 
EXTRN BUFFERS 

; FUNCTION INT RWBYTE(PROC, LINK) 
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER 
; RECEIVES A BYTE, WAITS IF NO VALUE AVAILABLE 
; RETURNS THE VALUE RECIEVED 

RWBYTE:: 
CSEG 

ADD HL, SP 
PUSH HL 
LD HL, 0004 
ADD HL, SP 
LD A, (HL) 
AND A 
JR NZ, RWINT 
LD HL, 04+02 
ADD HL, SP 
LD C, (HL) 

RW1: DI 
IN A, (91H) 
AND C 
JR NZ, RW2 
El 
RST SPROC 
JR RWI 

RW2: SET 7, C 
IN L, (C) 
EI 
LD H, 00 
JP $RTNIff 

RWINT: 
LD HL, 04+02 
ADD HL, SP 
LD C, (HL) 
LD B, A 
LD HL, BUFFERS - 09H 
LD DE. 0009H 

RW3. * ADD HL, DE 
DJNZ RW3 
INC HL 

RW4: DI 
LD A, (RL) 
AND C 
JR Z, RW5 
El 
RST SPROC 
JR RW4 

RWS: LD A, C 
XOR (HL) 
LD (HL), A 
LD A, C 

RW6: INC HL 
RRA 

; A: -PROC 

; EXTERNAL COMMUNICATION 

; C: -LINK ADDRESS 
; DI-PREVENTS INTERFERENCE 
; TEST THE BUFFER FLAGS 

; IF NO VALUE THEN 
; EI-AGAIN 
; RELINQUISH TIME SLICE 
; TRY AGAIN 
; IF SPACE THEN 
; RECEIVE VALUE 
; EI-AGAIN 

; RETURN VALUE 
; INTERNAL COMMUNICATION 

; C: -LINK ADDRESS 
; B: -PROC 

; SKIP OVER BUFFERS 

-DI-PREVENTS INTERFERENCE 
; TEST BUFFER FLAGS 

; IF NO VALUE THEN 
; EI-AGAIN 
; RELINQUISH TIME SLICE 
; TRY AGAIN 
; IF VALUE THEN 
; ADJUST FLAGS 

; SET HL TO POINT TO BUFFER LOCATION 
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JR NC, RW6 
LD L, (HL) 
El 
LD H, 00 
JP $RTNIII 
END RWBYTE 

; RECEIVE VALUE 
; EI-AGAIN 

; RETURN VALUE 
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. Z80 
SPROC EQU 30H 
EXTRN BUFFERS 

; FUNCTION INT STBYTE(PROC, LINK, VALUE) 
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER 
; SENDS A BYTE, TESTS FOR SPACE, DOES NOT WAIT IF NO SPACE AVAILABLE 
; IF THERE IS SPACE A BYTE IS SENT AND A VALUE LESS THAN 255 RETURNED 
; IF THERE IS NO SPACE A VALUE GREATER THEN 255 IS RETURNED 

CSEG 
STBYTE :: 

ADD HL, SP 
PUSH HL 
LD HL, 0004H 
ADD HL, SP 
LD A, (HL) ; A: =PROC 
AND A 
JR NZ, STINT 
LD HL, 04+02 ; EXTERNAL COMMUNICATION 
ADD HL, SP 
LD C, (HL) ; C: =LINK ADDRESS 

ST1: DI ; DI-PREVENTS INTERFERENCE 
IN A, (92H) ; TEST THE BUFFER FLAGS 
AND C 
JR NZ, ST2 ; IF NO SPACE THEN 
EI ; EI-AGAIN 
LD HL, 0100H 
JP $RTNI## ; RETURN 0100H 

ST2: SET 7, C ; IF SPACE THEN 
LD HL, 04 + 04 
ADD HL, SP 
OUTI ; SEND VALUE 
EI ; EI-AGAIN 
LD HL, OOOOH 
JP $RTNIff ; RETURN 0000 

STINT: ; INTERNAL COMMUNICATION 
LD HL, 04 + 02 
ADD HL, SP 
LD C, (HL) ; C: =LINK ADDRESS 
LD B, A ; B: =PROC 
LD HL, BUFFERS 09H 
LD DE, 0009H 

ST3: ADD HL, DE ; SKIP OVER BUFFERS 
DJNZ ST3 
INC HL 

ST4: DI ; DI-PREVENTS INTERFERENCE 
LD A, (HL) ; TEST BUFFER FLAGS 
AND C 
JR NZ, ST5 ; IF NO SPACE THEN 
EI ; EI-AGAIN 
LD HL, 0100H 
JP $RTNIII ; RETURN 0100H 

ST5: LD A, C ; IF SPACE THEN 
XOR (HL) ; ADJUST FLAGS 
LD (HL), A 
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LD A, C 
ST6: INC HL 

RRA 
JR NC, ST6 
EX DE, HL 
LD HL, 04 + 04 
ADD HL, SP 
LDI 
EI 
LD HL, OOOOH 
JP $RTNI## 
END STBYTE 

; SET HL TO POINT TO BUFFER LOCATION 

; COPY VALUE INTO BUFFER 
; EI-AGAIN 

; RETURN 0000 
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. Z80 
SPROC EQU 30H 
EXTRN BUFFERS 

; FUNCTION VOID SWBYTE(PROC, LINK, VAL) 
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS VOID 
; SENDS A BYTE, WAITS UNTIL DESTINATION FREE IF BUSY 

SWBYTE:: 

SWI: 

SW2: 

SWINT: 

SW3: 

sW4: 

SW5: 

SW6: 

CSEG 

ADD HL, SP 
PUSH HL 
LD HL, 0004 
ADD HL, SP 
LD A, (HL) 
AND A 
JR NZ, SWINT 
LD HL, 04+02 
ADD HL, SP 
LD C, (HL) 
DI 
IN A, (92H) 
AND C 
JR NZ, SW2 
EI 
RST SPROC 
JR SW1 
SET 7, C 
LD HL, 04 + 04 
ADD HL, SP 
OUTI 
EI 
JP $RTNV## 

LD HL, 04 + 02 
ADD HL, SP 
LD C, (HL) 
LD B, A 
LD HL, BUFFERS - 09H 
LD DE, 0009H 
ADD HL, DE 
DJNZ SW3 
INC HL 
DI 
LD A, (HL) 
AND C 
JR NZ, SW5 
EI 
RST SPROC 
JR SW4 
LD A, C 
XOR (HL) 
LD (HL), A 
LD A, C 
INC HL 
RRA 

; A: -PROC 

; EXTERNAL COMMUNICATION 

; C: =LINK ADDRESS 
; DI-PREVENTS INTERFERENCE 
; TEST THE BUFFER FLAGS 

; IF NO SPACE THEN 
; EI-AGAIN 
; RELINQUISH TIME SLICE 
; TRY AGAIN 
; IF SPACE THEN 

; SEND VALUE 
; EI-AGAIN 

; INTERNAL COMMUNICATION 

; C: =LINK ADDRESS 
; B: =PROC 

; SKIP OVER BUFFERS 

; DI-PREVENTS INTERFERENCE 
; TEST BUFFER FLAGS 

; IF NO SPACE-THEN 
; EI-AGAIN 
; RELINQUISH TIME SLICE 
; TRY AGAIN 
; IF SPACE THEN 
; ADJUST FLAGS 

; SET HL TO BUFFER LOCATION 
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JR NC, SW6 
EX DE, HL 
LD HL, 04 + 04 
ADD HL, SP 
LDI 
EI 
JP $RTNV## 
END SWBYTE 

; COPY VALUE INTO BUFFER 
; EI-AGAIN 
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/* static definitions for inter-process communication buffer 

and flags. 
definition for process procl 

single byte version for use with rtbyte, stbyte, rwbyte, swbyte 

static short lflgl = 255 

static short buffl[81 = (0,0,0,0,0,0,0,0) 
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APPENDIX 13 

13 Communication Functions: Fifo Buffered Versions 

. Z80 
SPROC EQU 30H 
EXTRN BUFFERS 

; FUNCTION INT RTBYTE(PROC, LINK) 

; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER 

; RECEIVES A BYTE, ONLY TESTS, DOES NOT WAIT IF NO VALUE AVAILABLE 

; IF A BYTE IS WAITING THEN THE FUNCTION RETURNS THE VALUE RECEIVED 

; IF THERE IS NO BYTE THEN A VALUE GREATER THAN 255 IS RETURNED 

; VERSION FOR USE WITH FIFO BUFFERING 

CSEG 
RTBYTE:: 

ADD HL, SP 
PUSH HL 
LD HL, 0004 
ADD HL, SP 
LD A, (HL) ; A: =PROC 
AND A 
JR NZ, RTINTL 
LD HL, 04+02 ; EXTERNAL COMMUNICATION 
ADD HL, SP 
LD C, (HL) ; C: =LINK ADDRESS 

RTL1: DI ; DI-PREVENTS INTERFERENCE 
IN A, (91H) ; TEST BUFFER FLAGS 
AND C 
JR NZ, RTL2 ; IF NO VALUE THEN 
EI ; EI-AGAIN 
LD HL, 0100H 
JP $RTNIl# ; RETURN 100H 

RTL2: SET 7, C ; IF VALUE THEN 
IN L, (C) ; RECEIVE VALUE 
EI ; EI-AGAIN 
LD H, 00 
JP $RTNI#1 ; RETURN VALUE 

RTINTL: ; INTERNAL COMMUNICATION 
LD HL, 04+02 
ADD HL, SP 
LD C, (HL) ; C: =LINK ADDRESS 
LD B, A ; B: =PROC 
LD HL, BUFFERS 
LD DE, 0012H 
DJNZ RTL3 ; IF PROC=l THEN 
JR RTL6 ; GO STRAIGHT ON 

RTL3: PUSH BC ; ELSE 
LD B, (HL) ; SKIP OVER OTHER PROCESSES BUFFERS 
INC HL 

RTL4: ADD HL, DE 
DJNZ RTL4 

RTL5: POP BC 
DJNZ RTL3 
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RTL6: INC HL 
RTL7: BIT O, C 

JR NZ, RTL8 
ADD HL, DE 
RRC C 
JR RTL7 

RTL8: DI 
LD B, (HL) 
INC HL 
LD A, (HL) 

RTL9: CP B 
JR NZ, RTLA 
EI 
LD HL, 0100H 
JP $RTNI## 

RTLA: DI 
DEC HL 
LD A, (HL) 
LD D, 00 
LD E, A 
INC A 
CP 11H 
JR C, RTLB 
LD A, 01 

RTLB: LD (HL), A 
INC HL 
ADD HL, DE 
LD E, (HL) 
EI 
EX DE, HL 
JP $RTNI## 
END RTBYTE 

0'* 

; FIND BOTTOM OF LINK STRUCTURE 

; DI-PREVENTS INTERFERENCE 
; B: =HEAD 

; A: =TAIL 
; TEST FOR BUFFER EMPTY (HEAD=TAIL) 
; IF NO VALUE THEN 
; EI-AGAIN 

; RETURN 0100H 
; DI-PREVENTS INTERFERENCE 
; IF VALUE THEN 

; INCREMENT HEAD 
; MODULO 16 

; SET HL TO POINT TO HEAD ADDRESS 

; EI-AGAIN 

; RETURN VALUE 
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. Z80 
SPROC EQU 30H 
EXTRN BUFFERS 

; FUNCTION INT RWBYTE(PROC, LINK) 
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER 
; RECEIVES A BYTE, WAITS IF NO VALUE AVAILABLE 
; RETURNS THE VALUE RECEIVED 
; VERSION FOR USE WITH FIFO BUFFERING 

CSEG 
RWBYTE:: 

ADD HL, SP 
PUSH HL 
LD HL, 0004 
ADD HL, SP 
LD A, (HL) ; A: =PROC 
AND A 
JR NZ, RWINTL 
LD HL, 04+02 ; EXTERNAL COMMUNICATION 
ADD HL, SP 
LD C, (HL) ; C: =LINK ADDRESS 

RWL1: DI ; DI-PREVENTS INTERFERENCE 
IN A, (91H) ; TEST BUFFER FLAGS 
AND C 
JR NZ, RWL2 ; IF NO VALUE THEN 
EI ; EI-AGAIN 
RST SPROC ; RELINQUISH TIME SLICE 
JR RWL1 ; TRY AGAIN 

RWL2: SET 7, C ; IF VALUE THEN 
IN L, (C) ; RECEIVE VALUE 
EI ; EI-AGAIN 
LD H, 00 
JP $RTNI## ; RETURN VALUE 

RWINTL: ; INTERNAL COMMUNICATION 
LD HL, 04+02 
ADD HL, SP 
LD C, (HL) ; C: =LINK ADDRESS 
LD B, A ; B: =PROC 
LD HL, BUFFERS 
LD DE, 0012H 
DJNZ RWL3 ; IF PROC=l THEN 
JR RWL6 ; GO STRAIGHT ON 

RWL3: PUSH BC ; ELSE 
LD B, (HL) ; SKIP OVER OTHER PROCESSES BUFFERS 
INC HL 

RWL4: ADD HL, DE 
DJNZ RWL4 

RWL5: POP BC 
DJNZ RWL3 

RWL6: INC HL 
RWL7: BIT 0, C ; FIND BOTTOM OF LINK STRUCTURE 

JR NZ, RWL8 
ADD HL, DE 
RRC C 
JR RWL7 
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RWL8: DI ; DI-PREVENTS INTERFERENCE 
LD B, (HL) ; B: =HEAD 
INC HL 
LD A, (HL) ; A: mTAIL 

RWL9: CP B ; TEST FOR BUFFER EMPTY (HEAD=TAIL) 
JR NZ, RWLA ; IF NO VALUE THEN 
EI ; EI-AGAIN 
RST SPROC ; RELINQUISH TIME SLICE 
DEC HL 
JR, RWL8 ; TRY AGAIN 

RWLA: DI ; DI-PREVENTS INTERFERENCE 
DEC HL ; IF VALUE THEN 
LD A, (HL) 
LD D, 00 
LD E, A 
INC A ; INCREMENT HEAD 
CP 11H ; MODULO 16 
JR, C, RWLB 
LD A, 01 

RWLB: LD (HL), A 
INC HL 
ADD HLIDE ; SET HL TO POINT TO HEAD ADDRESS 
LD E, (HL) 
EI ; EI-AGAIN 
EX DE, HL 
JP $RTNI## ; RETURN VALUE 
END RWBYTE 
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. Z80 
SPROG EQU 30H 
EXTRN BUFFERS 

; FUNCTION INT STBYTE(PROC, LINK, VALUE) 
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER 
; SENDS A BYTE, TESTS FOR SPACE, DOES NOT WAIT IF NO SPACE AVAILABLE 
; IF THERE IS SPACE A BYTE IS SENT AND A VALUE LESS THAN 255 RETURNED 
; IF THERE IS NO SPACE A VALUE GREATER THEN 255 IS RETURNED 
; VERSION FOR USE WITH FIFO BUFFERING 

CSEG 
STBYTE:: 

ADD HL, SP 
PUSH HL 
LD HL, 0004 
ADD HL, SP 
LD A, (HL) ; A: =PROC 
AND A 
JR NZ, STINTL 
LD HL, 04+02 ; EXTERNAL COMMUNICATION 
ADD HL, SP 
LD C, (HL) ; C: =LINK ADDRESS 

STL1: DI ; DI-PREVENTS INTERFERENCE 
IN A, (92H) ; TEST THE BUFFER FLAGS 
AND C 
JR NZ, STL2 ; IF NO SPACE THEN 
EI ; EI-AGAIN 
LD HL, 0100H 
JP $RTNI## ; RETURN OlOOH 

STL2: SET 7, C ; IF SPACE THEN 
LD HL, 04+04 
ADD HL, SP 
OUTI ; SEND VALUE 
EI ; EI-AGAIN 
LD HL, OOOOH 
JP $RTNI## ; RETURN 0000 

STINTL: ; INTERNAL COMMUNICATION 
LD HL, 04+02 
ADD HL, SP 
LD C, (HL) ; C: =LINK ADDRESS 
LD B, A ; B: =PROC 
LD HL, BUFFERS 
LD DE, 0012H 
DJNZ STL3 ; IF PROC-1 THEN 
JR STL6 ; GO STRAIGHT ON 

STL3: PUSH BC ; ELSE 
LD B, (HL) ; SKIP OVER OTHER PROCESSES BUFFERS 
INC HL 

STL4: ADD HL, DE 
DJNZ STL4 

STL5: POP BC 
DJNZ STL3 

STL6: INC HL 
STL7: BIT O, C ; FIND BOTTOM OF LINK STRUCTURE 

JR NZ, STL8 
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ADD HL, DE 
RRC C 
JR STL7 

STL8: 

STL9: 

STLA: 

DI ; DI-PREVENTS INTERFERENCE 
LD B, (HL) ; B: =HEAD 
INC HL 
LD A, (HL) ; A: =TAIL 
LD D, 00 
LD E, A 
INC A ; INCREMENT TAIL 
CP 11H ; MODULO 10H 
JR C, STL9 
LD A, 01 
CP B ; TEST FOR BUFFER FULL (HEAD=TAIL+l) 
JR NZ, STLA ; IF NO SPACE THEN 
EI ; EI-AGAIN 
LD HL, 0100H 
JP $RTNI## ; RETURN 0100H 
DI ; DI-PREVENTS INTERFERENCE 
LD (HL), A 
ADD HL, DE ; SET HL TO POINT TO BUFFER LOCATION 
EX DE, HL 
LD HL, 04+04 
ADD HL, SP 
LDI ; COPY VALUE INTO THE BUFFER 
EI ; EI-AGAIN 
LD HL, 0000 
JP $RTNI## ; RETURN OOOOH 
END STBYTE 
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. Z80 
SPROC EQU 30H 
EXTRN BUFFERS 

; FUNCTION INT STBYTE(PROC, LINK, VALUE) 
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER 
; SENDS A BYTE, TESTS FOR SPACE, DOES NOT WAIT IF NO SPACE AVAILABLE 
; IF THERE IS SPACE A BYTE IS SENT AND A VALUE LESS THAN 255 RETURNED 
; IF THERE IS NO SPACE A VALUE GREATER THEN 255 IS RETURNED 
; VERSION FOR USE WITH FIFO BUFFERING 

CSEG 
STBYTE:: 

ADD HL, SP 
PUSH HL 
LD HL, 0004 
ADD HL, SP 
LD A, (HL) ; A: =PROC 
AND A 
JR NZ, STINTL 
LD HL, 04+02 ; EXTERNAL COMMUNICATION 
ADD HL, SP 
LD C, (HL) ; C: =LINK ADDRESS 

STL1: DI ; DI-PREVENTS INTERFERENCE 
IN A, (92H) ; TEST THE BUFFER FLAGS 
AND C 
JR NZ, STL2 ; IF NO SPACE THEN 
EI ; EI-AGAIN 
LD HL, 0100H 
JP $RTNI#f ; RETURN 0100H 

STL2: SET 7, C ; IF SPACE THEN 
LD HL, 04+04 
ADD HL, SP 
OUTI ; SEND VALUE 
EI ; EI-AGAIN 
LD HL, OOOOH 
JP $RTNI#f ; RETURN 0000 

STINTL: ; INTERNAL COMMUNICATION 
LD HL, 04+02 
ADD HL, SP 
LD C, (HL) ; C: =LINK ADDRESS 
LD B, A ; B: =PROC 
LD HL, BUFFERS 
LD DE, 0012H 
DJNZ STL3 ; IF PROC=l THEN 
JR STL6 ; GO STRAIGHT ON 

STL3: PUSH BC ; ELSE 
LD B, (HL) ; SKIP OVER OTHER PROCESSES BUFFERS 
INC HL 

STL4: ADD HL, DE 
DJNZ STL4 

STL5: POP BC 
DJNZ STL3 

STL6: INC HL 
STL7: BIT O, C ; FIND BOTTOM OF LINK STRUCTURE 

JR Z, STL8 
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ADD HL, DE 
RRC C 
JR STL7 

STL8: DI 
LD B, (HL) 
INC HL 
LD A, (HL) 
LD D, 00 
LD E, A 
INC A 
CP 11H 
JR C, STL9 
LD A, 01 

STL9: CP B 
JR NZ, STLA 
EI 
LD HL, 0100H 
JP $RTNI## 

STLA: DI 
LD (HL), A 
ADD HL, DE 
EX DE, HL 
LD HL, 04+04 
ADD HL, SP 
LDI 
EI 
LD HL, 0000 
JP $RTNI## 
END STBYTE 

; DI-PREVENTS INTERFERENCE 
; B: =HEAD 

; A: =TAIL 

; INCREMENT TAIL 
; MODULO 10H 

; TEST FOR BUFFER FULL (HEAD-TAIL+l) 
; IF NO SPACE THEN 
; EI-AGAIN 

; RETURN 0100H 
; DI-PREVENTS INTERFERENCE 

; SET HL TO POINT TO BUFFER LOCATION 

; COPY VALUE INTO THE BUFFER 
; EI-AGAIN 

; RETURN OOOOH 

I 
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. Z80 
SPROC EQU 30H 
EXTRN BUFFERS 

; FUNCTION VOID SWBYTE(PROC, LINK, VALUE) 
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS VOID 
; SENDS A BYTE, WAITS UNTIL DESTINATION FREE IF BUSY 
; VERSION FOR USE WITH FIFO BUFFERING 

CSEG 
SWBYTE:: 

ADD HL, SP 
PUSH HL 
LD HL, 0004 
ADD HL, SP 
LD A, (HL) ; A: =PROC 
AND A 
JR NZ, SWINTL 
LD HL, 04+02 ; EXTERNAL COMMUNICATION 
ADD HL, SP 
LD C, (HL) ; C: =LINK ADDRESS 

SWL1: DI ; DI-PREVENTS INTERFERENCE 
IN A, (92H) ; TEST THE BUFFER FLAGS 
AND C 
JR NZ, SWL2 ; IF NO SPACE THEN 
EI ; EI-AGAIN 
RST SPROC ; RELINQUISH TIME SLICE 
JR SWL1 ; TRY AGAIN 

SWL2: SET 7, C ; IF SPACE THEN 
LD HL, 04+04 
ADD HL, SP 
OUTI ; SEND VALUE 
EI ; EI-AGAIN 
JP $RTNVII 

swINTL: ; INTERNAL COMMUNICATION 
LD HL, 04+02 
ADD HL, SP 
LD C, (HL) ; C: =LINK ADDRESS 
LD B, A ; B: =PROC 
LD HL, BUFFERS 
LD DE, 0012H 
DJNZ SWL3 ; IF PROC=l THEN 
JR SWL6 ; GO STRAIGHT ON 

SWL3: PUSH BC ; ELSE 
LD B, (HL) ; SKIP OVER OTHER PROCESSES BUFFERS 
INC HL 

SWL4: ADD HL, DE 
DJNZ SWL4 

SWL5: POP BC 
DJNZ SWL3 

SWL6: INC HL 
SWL7: BIT O, C ; FIND BOTTOM OF LINK STRUCTURE 

JR NZ, SWL8 
ADD HL, DE 
RRC C 
JR SWL7 
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SWL8: DI 
LD B, (HL) 
INC HL 
LD A, (HL) 
LD D, 00 
LD E, A 
INC A 
CP 1 1H 
JR C, SWL9 
LD A, 01 

SWL9: CP B 
JR NZ, SWLA 
EI 
RST SPROC 
DEC HL 
JR SWL8 

SWLA: DI 
LD (HL), A 
ADD HL, DE 
EX DE, HL 
LD HL, 04+04 
ADD HL, SP 
LDI 
EI 
JP $RTNV## 
END SWBYTE 

; DI-PREVENTS INTERFERENCE 
; B: =HEAD 

; A: =TAIL 

; INCREMENT TAIL 
; MODULO 10H 

; TEST FOR BUFFER FULL (HEAD-TAIL+l) 
; IF NO SPACE THEN 
; EI-AGAIN 
; RELINQUISH TIME SLICE 

; TRY AGAIN 
; DI-PREVENTS INTERFERENCE 

; SET HL TO POINT TO BUFFER LOCATION 

; COPY VALUE INTO THE BUFFER 
; EI-AGAIN 
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/* static definitions for inter-process communication buffer and 
head and tail byte. 
definition for process proel 
multiple byte version for use with rtfifo, stfifo, rwfifo, swfifo 

static short nlinkl = 01 
static short q1h1 = 01 
static short q1tl = 01 
static short bflpl[161 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 
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APPENDIX 14 

14 Programs Used to interface to the System 

The following function was written by Dr C. A. Owen and is reproduced 
by kind permission. 

TITLE ECO-C BIOS entry 
. Z80 

CCALL: : 

EXIT: 

; Address of CALL, AF, BC, DE and HL passed in 

ADD HL, SP 
PUSH HL 
LD HL, 4 
ADD HL, SP ; Pointer address 
LD A, (HL) 
INC HL 
LD H, (HL) 
LD L, A ; HL = pointer address 
PUSH HL ; Address of call 
POP Ix ; Use IX as pointer 
LD L, (IX+O) 
LD H, (IX+l) ; HL = address to call 
PUSH Ix ; (Need to recover this later) 
LD DE, EXIT 
PUSH DE ; Set return point 
PUSH HL ; RET to it later 
LD A, (IX+3) 
LD C, (IX+4) 
LD B, (IX+5) 
LD E, (IX+6) 
LD D, (IX+7) 
LD L, (IX+8) 
LD H, (IX+9) 
RET ; Jumps to routine 

; Comes here after routine called 
POP Ix ; Recover pointer 
LD (IX+9), H 
LD (IX+8), L 
LD (IX+7), D 
LD (IX+6), E 
LD (IX+5), B 
LD (IX+4), C 
PUSH AF 
POP HL ; To get flags 
LD (IX+3), A 
LD (IX+2), L ; Flag register 
jP $RTNVI# 

END 
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/ý stdio. h containing the required definitions for the 
/* Function CCALL */ 

some system definitions 

Idefine NULL 0 
#define FALSE 0 
Idefine TRUE 1 
idefine EOF (-1) 
Idefine CPMEOF (Oxla) 

the structure for allocations 

typedef int ALIGN; 

union header 
struct 

union header *ptr; 
unsigned size; 

)s; 
ALIGN X; 

typedef union header HEADER; 

the iob structure 

struct iobbuf( 
int 

_cnt; char *_ptr; 
char *_base; 
int 

_flag; int 
_fd; 

#define 
_NFILE 

6 
/* maximum number of files 

extern int 
_nfile; 

/* this variable yields the 
number of files set in 
the library */ 

typedef 

extern 

#define 
Idefine 
Idefine 
#define 

Idefine 

Idefine 

#define 

struct 

FILE 

the i, 

s tdin 
stdout 
stderr 
stdlst 

_READ 

_WRITE 

_UNBUF 

iobbuf FILE; 

_iob[]; 

ob definitions 

&-iob[Ol 
&-iob[l] 
&-iob[21 
&-iob[31 

01 
/* file open for reading 

02 

04 
/* file open for writing 
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#define 
_BBUF 

010 

#define 
_EOF 

020 

#define 
_ERR 

040 

Idefine 
_WFLAG 

0100 

Idefine 
_BFLAG 

0200 

/* file is unbuffered 

/* a big buffer was 
allocated 

/* EOF has occurred on this 
file 

/* error has occurred on this 
file */ 

/* buffer has been written 
to */ 

/* if true then binary read/ 
write */ 

#define 
_BSIZE 

512 
/* buffer size for files 

Idefine SECSIZE 128 
/* size of a sector 

setjmp and longjmp defs 

struct _env( char *rtnadr; 
char *oldstk; 

typedef struct _env 
*jmp_buf; 

typedef struct _env 
jmp_env; 

typedef struct 
(void (*call)(); 

char flag; /*flag register*/ 
char A; 
unsigned int BC; 
unsigned int DE; 
unsigned int HL; 

BIOSREG; 

typedef struct 
(void (*call)(); 
char flag; 
char A; 
char C; 
char B; 
char E; 
char D; 
unsigned int HL; 

CALLREG; 

typedef struct 

unsigned int spt; 
char bsh; 
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char b1m; 
char exm; 
unsigned int dsm; 
unsigned int drm; 
unsigned int alv; 
unsigned int cks; 
unsigned int offs; 
char psh; 
char phm; 
char drive; 
void (*pdisc)(); 
char tracks; 
char sectors; 
char firsts; 
char skew; 
char drvcha; 
char medcha; 
char gapi; 
char sl, s2, s3, s4, s5; 
I XDPB; 

typedef struct 

char *trans; 
int sO; 
int sl; 
int s2; 
char *dirbuf; 
XDPB *xdpb; 
unsigned int csv, alv; 
I DPH; 

typedef struct (char x; void (*addr)(); ) *BIOS; 

/********************BIOS entry point definitions*********************/ 

#define BOOT 0 
#define WBOOT 1 
Mefine CONST 2 
#define CONIN 3 
#define CONOUT 4 
#define LIST 5 
Idefine PUNCH 6 
#define READER 7 
#define HOME 8 
#define SELDSK 9 
#define SETTRK 10 
#define SETSEC 11 
#define SETDMA 12 
#define READ 13 
#define WRITE 14 
#define LISTST 15 
#define SECTRAN 16 
#define CONOST 17 
#define AUXIST 18 
#define AUXOST 19 
#define DEVTBL 20 
#define DEVINI 21 
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#define DRVTBL 22 
#define MULTIO 23 
#define FLUSH 24 
#define MOVE 25 
#define TIME 26 
#define SELMEM 27 
#define SETBNK 28 
#define XMOVE 29 

I *********************************************************************/ 
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COM TO BINARY 
ASSEMBLES A BINARY FILE FROM A *. COM FILE 
INTENDED FOR CONSTRUCTION OF FILES TO BE DOWN LOADED TO SYSTEM 
TAKES A *. COM FILE AND STRIPS OFF THE FIRST 384 BYTES TO REMOVE THE 
LOADER ADDED BY LINK-80, REPLACES THIS WITH AN APPROPRIATE HEADER 
AND THEN GOES ON TO REPLACE ALL OCCURENCES OF 
FF WITH FF FF TO ALLOW THESE TO BE DOWN LOADED TO A Z-80 SYSTEM 
COMPATIBLE WITH THE LOADER INSTALLED IN ROM2 

MODULE ComToBinary; 

FROM Files IMPORT 
Close, Create, EOF, FILE, Open, ReadByte, WriteByte; 

FROM InOut IMPORT 
ReadString, WriteHex, WriteString; 

FROM Strings IMPORT 
CAPS; 

FROM SYSTEM IMPORT 
BYTE; 

FROM Terminal IMPORT 
ReadChar, WriteChar, WriteLn; 

PROCEDURE Initialise(VAR infile, outfile: FILE); 
VAR 

filename: ARRAY CHAR OF CHAR; 
finished: BOOLEAN; 

BEGIN (* Initialise 
(* OPENS THE *. COM (INPUT) AND-*. BIN (OUTPUT) FILES 
REPEAT 
WriteString('What filename is the input file'); 
WriteLn; 
WriteString('Stored under? 1); 
WriteLn; 
ReadString(filename); 
IF Open(infile, filename) THEN 

finished: =TRUE; 
ELSE 

finished: =FALSE; 
END; 
UNTIL finished; 
REPEAT 
WriteString('What filename should the binary file'); 
WriteLn; 
WriteString(lbe stored under? '); 
WriteLn; 
ReadString(filename); 
Create(outfile, filename); 
IF Open(outfile, filename) THEN 

finished: =TRUE; 
ELSE 

finished: =FALSE; 
END; 
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UNTIL finished; 
END Initialise; 

PROCEDURE WriteHeader(outfile: FILE); 

PROCEDURE HextoByte(hl, h2: CHAR; VAR bin: BYTE); 

PROCEDURE ChartoInt(ch: CHAR): CARDINAL; 
BEGIN (* ChartoInt *) 
(* CONVERTS A HEXADECIMAL CHARACTER INTO A DECIMAL VALUE 
IF ((ORD(Ial)<=ORD(ch)) & (ORD(ch)<=ORD(Ifl))) THEN 

ch: =CHAR(ORD(ch)+ORD(IAI)-ORD(lal)); 
END; 
IF ((ORD(IAI)<=ORD(ch)) & (ORD(ch)<=ORD($F9))) THEN 

RETURN ORD(ch)-ORD(IAI)+10; 
ELSE 

RETURN ORD(ch)-ORD(IOI); 
END; 
END ChartoInt; 

BEGIN (* HextoByte *) 
(* CONVERTS A PAIR OF HEXADECIMAL CHARACTERS INTO A DECIMAL VALUE 
bin: =BYTE(16*ChartoInt(hl)+ChartoInt(h2)); 
END HextoByte; 

VAR 
hl, h2: CHAR; 
low, high: BYTE; 

BEGIN (* WriteHeader 
WRITES A HEADER TO THE *. BIN FILE CONTAINING VARIOUS INFORMATION 
FOR THE LOADER *) 
Send a program offer byte 

WriteByte(outfile, 170); 
(* Address to load the program into 
WriteByte(outfile, 255); 
WriteByte(outfile, 00); 
WriteByte(outfile, 00); 
WriteByte(outfile, 128); 
(* Value to set the Stack Pointer to 
WriteByte(outfile, 255); 
WriteByte(outfile, 02); 
WriteByte(outfile, 255); 
WriteByte(outfile, 255); 
(* Start address of the program 
WriteByte(outfile, 255); 
WriteByte(outfile, 01); 
WriteString('What is the Start address in Hexadecimal? 9); 
WriteLn; 
ReadChar(hl); WriteChar(hl); 
ReadChar(h2); WriteChar(h2); 
HextoByte(hl, h2, high); 
ReadChar(hl); WriteChar(hl); 
ReadChar(h2); WriteChar(h2); 
HextoByte(hl, h2, low); 
WriteLn; 
WriteHex(CARDINAL(256*CARDINAL(high)+CARDINAL(low)), 4); 
WriteLn; 
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WriteByte(outfile, low); 
WriteByte(outfile, high); 
(* highest address to forward 
WriteByte(outfile, 2ý5); 
WriteByte(outfile, 06); 
WriteString('What is the Highest address to forward?, ); 
WriteLn; 
ReadChar(hl); WriteChar(h1); 
ReadChar(h2); WriteChar(h2); 
HextoByte(hl, h2, high); 
ReadChar(h1); WriteChar(hl); 
ReadChar(h2); WriteChar(h2); 
HextoByte(hl, h2, low); 
WriteLn; 
WriteHex(CARDINAL(256*CARDINAL(high)+CARDINAL(low)), 4); 
WriteLn; 
WriteByte(outfile, low); 
WriteByte(outfile, high); 

Lowest address to forward 
This is automatically set to 8000H since this is the bottom 
of RAM *) 

WriteByte(outfile, 255); 
WriteByte(outfile, 07); 
WriteByte(outfile, 00); 
WriteByte(outfile, 128); 
END WriteHeader; 

PROCEDURE CopyFile(infile, outfile: FILE); 
VAR 

bin: BYTE; 
c: INTEGER; 
filename: ARRAY CHAR OF CHAR; 

BEGIN (* CopyFile *) 
TRANSFERS THE *. COM FILE TO THE *. BIN FILE 
WITH SUITABLE MODIFICATIONS *) 
Strips off 'waste characters9 put there by the loader 

FOR c: =1 TO 128 DO 
ReadByte(infile, bin); 

END; 
(* Copies the rest of the file replacing FF by FF FF 
REPEAT 
ReadByte(infile. bin); 
IF (CARDINAL(bin)=255) THEN 

WriteByte(outfile, 255); 
END; 
WriteByte(outfile, bin); 
UNTIL EOF(infile); 
WriteString('File Processed and Copied'); 
WriteLn; 
END CopyFile; 

PROCEDURE WriteTail(outfile: FILE); 
VAR 

bin: BYTE; 
BEGIN (* WriteTail 
(* Exit from programming and offer program 
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WriteByte(outfile, 255); 
WriteByte(outfile, 05); 
END WriteTail; 

VAR 
i: CHAR; 
infile, outfile: FILE; 

BEGIN (* ComToBinary *) 
WriteString('*. com to *. bin 
WriteString(lproduces files 
Initialise(infile, outfile); 
WriteHeader(outfile); 
CopyFile(infile, outfile); 
WriteTail(outfile); 
Close(infile); 
Close(outfile); 
END ComToBinary. 

conversion'); WriteLn; 
compatible with ROM2. MACI); WriteLn; WriteLn; 
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BINTOHEX 
PROGRAM TO CONVERT A BINARY FILE INTO HEX ON THE TERMINAL SCREEN 
INTENDED TO CHECK THE OUTPUT OF COM2BIN. MOD 

MODULE BintoHex 

FROM Files IMPORT 
Close, EOF, FILE, Open, ReadByte; 

FROM InOut IMPORT 
ReadString, WriteHex, WriteLn, WriteString; 

FROM SYSTEM IMPORT 
BYTE; 

VAR 
bin: BYTE; 
binfile: FILE; 
count: INTEGER; 
filename: ARRAY CHAR OF CHAR; 
i: INTEGER; 

BEGIN (* BintoHex 
WriteLn; 
WriteString($What is the filename of the binary fileV); 
WriteLn; 
ReadString(filename); 
IF Open(binfile, filename) THEN 

count: =0000; 
REPEAT 
WriteHex(CARDINAL(count), 4); 
FOR i: =1 TO 16 DO 

IF NOT (EOF(binfile)). THEN 
ReadByte(binfile, bin); 
WriteString(l 1); 
WriteHex(CARDINAL(bin), 2); 
count: =count+1; 

END; 
END; 
WriteLn; 
UNTIL EOF(binfile); 
Close(binfile); 

ELSE 
WriteString('File Not Opened'); 

END; 
END BintoHex. 
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APPENDIX 15 

15 Programs for the CYlindrical Homogeneous Processor 

#include <stdio. h> 

#define BIOS 1 
#define ACK 255 /* Value used as acknowledgement of receipt 
#define HEAD 254 /* Head of a data or results frame 

struct jI short x; void(*addr)(); 
typedef struct j *TABLE; 

TABLE bios, *p; 

BIOSREG biosr; 
CALLREG callr; 

static int ack = ACK; 
static int sack = 00; 

maino 
/* Driver to supply events to the ring and to 

receive processed events from the ring 
I 
/* Arrays to hold incoming and outgo ing events 
int frami[51; 
int framo[51; 
/* Total sent/received of each event type 
/* Not used in this version 
int sent[261; 
int back[261; 
int scount = 0; 
/* Characters used as events */ 
static char sequence[10] lal, lgl , lbllc9, 'Pdl, lel, lfl, li", Ihl, Ojo 
int len; 
int *pointer; 
int i; 
void ccall(); 
p= (TABLE *) BIOS, bios (TABLE) (int) *p) - 3); 
/* Determines the addresses for the status test routines 
callr. call=&bios[CONSTI; 
ccall(&callr); 
pointer=callr. HL; 
pointer+=20; 
/* Sets up a standard frame 
framo[O] HEAD; 
framo[l] 01; 
for 

I 
callr. call = pointer[O]; 
ccall(&callr); 
if (callr. A OxFF) 

callr. call &bios[READER]; 
ecall(&callr); 
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if (callr. A != HEAD) 
ack = ACK; 

else if (callr. A == HEAD) 

/* Take the incoming results 
ccall(&callr); 
len = callr. A; 
for (i = O; i < len; ++i) 

I 
ccall(&callr); 
/* Print the received character 
printf("%lc", callr. A); 

/* Send an acknowledge for the data 
callr. call = &bios[PUNCH]; 
callr. C = ACK; 
ccall (&callr); 

/* If the previous data has been acknowledged then 
/* send another one 

if (ack) 

ack = 00; 
callr. call = &bios[PUNCH]; 
framo[21=sequence[scount++]; 
if (scount == 10) scount=O; 
++sent[framo[2] - sall; 
for (i=O; i < 3; ++i) 

callr. C = framo[i]; 
ccall(&callr); 
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#include <stdio. h> 

idefine BIOS I 
#define ACK 255 
#define HEAD 254 
#define UPDATES 500 

/* Value used as acknowledgement of receipt 
/* Head of a data or results frame */ 

struct jI short x; void(*addr)(); 
typedef struct j *TABLE; 

TABLE bios, *p; 

BIOSREG biosr; 
CALLREG callr; 

static int ack = ACK; 
static int sack = 00; 

maino 
/* Driver to supply events to the ring and to 

receive processed events from the ring 

/* Arrays to hold incoming and outgoing events 
int frami[51; 
int framo[5); 
int scount = 0; 
int bcount = 0; 
/* Totals sent/received of each event type 
int sent[101; 
int back[101; 
/* The characters used as events 
static char sequence[101 9a', Igl, lb9, lclldl, lel, 'fl. li9, 'h,,, 9j9 
int len; 
int *pointer; 
int i; 
void ccall(); 
p= (TABLE *) BIOS, bios (TABLE) (int) *p) - 3); 
/* Determines the addresses for the status test routines 
calir. call=&bios[CONSTI; 
ccall(&callr); 
pointer=callr. HL; 
pointer+=20; 
/* Sets up a standard frame 
framo[O] = HEAD; 
framo[l] = 01; 
/* Initialises the sent and back arrays to zeros 
/* And prints the headings of the event types 
for (i = O; i < 10; ++i) 

I 
printf(11 %1cs %lcb", sequence[il, sequence[i]); 
sent[i] = O; back[il = 0; 

printf (11\n"); 
for 

callr. call = pointer[O); 
ccall(&callr); 
if (callr. A == OxFF) 

I 
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I 
callr. call = &bios(READER]; 
ccall(&callr); 
if (callr. A != HEAD) 

ack = ACK; 
else if (callr. A - HEAD) 

I 
/* Take the incoming result 
ccall(&callr); 
len = callr. A; 
for (i = O; i < len; ++i) 

ccall(&callr); 
frami[i] = callr. A; 
I 

/* Send an acknowledgement for the data 
callr. call = &bios[PUNCH]; 
callr. C = ACK; 
ccall(&callr); 
/* Update the totals 
++bcount; 
++back[frami[O] - 9A"]; 

/* If the previous data has been acknowledged then 
/* send another one 

if (ack) 

ack = 00; 
callr. call = &bios[PUNCH]; 
framo[21=sequence[scount++]; 
if (scount == 10) scount=O; 
++sent[framo[2] - 2a9l; 
for (i=O; i < 3; ++i) 

callr. C = framo[i]; 
ccall(&callr); 
I 

/* After UPDATES events have been received print a 
/* Summary of the totals so far 

if (bcount>UPDATES) 

bcount = 0; 
for (i = O; i < 10; ++i) 

I 
printf("%4d", sent[il); 
printf("%4d", back[il); 

printf("\n"); 
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#define ACK 255 /* Value used as acknowledgement of receipt 
#define HEAD 254 /* Head of a data or results frame */ 

static short usernproc = 3; 

finclude "Proclfb. h" 
#include "Proc2fb. h" 

extern int rtbyteo; 
extern int stbyteo; 
extern int rwbyteo; 
extern void swbyteo; 

/* Shared variables 
/* Acknowledge requ 
/* (or results) can 
static short ackl = 
static short ack2 = 
static short ack4 = 
static short ack8 = 

for handshaking */ 
ired before any more data 
be sent 
ACK; 
ACK; 
ACK; 
ACK; 

/* Send an acknowledge as soon as possible 
static short sackl = 00; 
static short sack2 = 00; 
static short sack4 = 00; 
static short sack8 = 00; 

/* Processor ready for input 

static short pip = 01; 

procl( ) 
/* Data Routing Process 
I 
int rdata = 0; 
int ndata = 0; 
int len; 
int i; 
/* COMMS 1 BASED ALGORITHM 
for 

do 

if (! ndata) 

testl: 
switch(ndata = rtbyte(0,1)) 

I 
case ACK: ackl = ACK; 

goto testl; 
case HEAD: break; 
default: ndata = 00; 

break; 

if ! rdata) 

test4: 
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switch(rdata = rtbyte(0,4)) 

case ACK: ack4 = ACK; 
goto test4-, 

case HEAD: break; 
default: rdata = 00; 

break; 

if (ndata && pip) 
I 
pip = 0; 
swbyte(1,1, HEAD); 
swbyte(1,1, (len = rwbyte(0,1))); 
for (i=O; i < len; ++i) 

swbyte(1,1, rwbyte(0,1)); 
sackl = 01; 
ndata = 00; 

else if (rdata && pip) 

pip = 0; 
swbyte(1,1, HEAD); 
swbyte(1,1, (len = rwbyte(0,4))); 
for (i=O; i < len; ++i) 

swbyte(1,1, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 

if (ack2 && ndata) 

ack2 = 00; 
swbyte(0,2, HEAD); 
swbyte(0,2, (len = rwbyte(0,1))); 
for (i = O; i < len; ++i) 

swbyte(0,2, rwbyte(0,1)); 
sackl = 01; 
ndata = 00; 

else if (ack2 && rdata) 
I 
ack2 = 00; 
swbyte(0,2, HEAD); 
swbyte(0,2, (Ien = rwbyte(0,4))); 
for (i = O; i < len; ++i) 

swbyte(0,2, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 

if (ack8 && ndata) 

ack8 - 00; 
swbyte(0,8, HEAD); 
swbyte(0,8, (len = rwbyte(0,1))); 
for (i = 0; 1 < len; ++i) 

t 
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swbyte(0,8, rwbyte(0,1)); 
sackl = 01; 
ndata = 00; 

else if (ack8 && rdata) 

ack8 = 00; 
swbyte(0,8, HEAD); 
swbyte(0,8, (len = rwbyte(0,4))); 
for (i = O; i < len; ++i) 

swbyte(0,8, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 

if (sack2) (sack2 = 00; swbyte(0,2, ACK); ) 
if (sack8) (sack8 = 00; swbyte(0,8, ACK); ) 
/* Doesn't want to work without this loop in 
I 

while (ndata 11 rdata); 

proc2( ) 
/* Results routing process 

int rresu = 0; 
int nresu = 0; 
int len2; 
int 12; 
for 

do 

if ! rresu) 

test2: 
switch(rresu rtbyte(0,2)) 

case ACK: ack2 = ACK; 
goto test2; 

case HEAD: break; 
default: rresu = 00; 

break; 

if ! nresu) 

test8: 
switch(nresu = rtbyte(0,8)) 

case ACK: ack8 = ACK; 
goto test8; 

case HEAD: break; 
default: nresu = 00; 

break; 
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if (ackl && (rtbyte(2,1) HEAD)) 

ackl = 00; 
swbyte(0,1, HEAD); 
swbyte(0,1, (len2 = rwbyte(2,1))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(O, I, rwbyte(2,1)); 

else if (ack4 && (rtbyte(2,1) == HEAD)) 

ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (len2 = rwbyte(2,1))); 
for (12=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(2,1)); 

if (rresu && ackl) 

ackl = 00; 
swbyte(O, I, HEAD); 
swbyte(0,1, (len2 = rwbyte(0,2))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(O, I, rwbyte(0,2)); 
sack2 = 01; 
rresu = 00; 

else if (rresu && ack4) 
I 
ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (Ien2 = rwbyte(0,2))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(0,2)); 
sack2 = 01; 
rresu = 00; 

if (nresu && ackl) 

ackl = 00; 
swbyte(0,1, HEAD); 
swbyte(0,1, (len2 = rwbyte(0,8))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(O, I, rwbyte(0,8)); 
sack8 = 01; 
nresu = 00; 

else if (nresu && ack4) 
I 
ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (len2 = rwbyte(0,8))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(0,8)); 
sack8 = 01; 
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nresu 00; 

if (sackl) (sacki = oo; swbyte(O, I, ACK); ) 
if (sack4) (sack4 = 00; swbyte(0,4, ACK); ) 
/* Doesn't want to work without this loop in 

while(rresu 11 nresu); 

proc3( ) 
/* Event Processing Process 
I 
int frami[51; 
int framo[5]; 
int i3jen3; 
for 

/* Waits for a data packet 
do 

len3=rwbyte(1,1); 
while(len3 != HEAD); 
len3=rwbyte(1,1); 
for(i3=0; i3 < len3; ++i3) 

frami(i31=rwbyte(I, 1); 
/* Kills off a big chunk of processing time 
for(i3=0; i3 < 1000; ++i3) 

/* Changes case of characters to show somethings been done 
for(i3=0; i3 < len3; ++i3) 

framo[i31=frami[i31+(IAI-IaI); 
pip = 01; 
/* Sends out finished results 
swbyte(2,1, HEAD); 
swbyte(2,1, len3); 
for(i3=0; i3 < len3; ++i3) 

swbyte(2,1, framo[i3l); 
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#define ACK 255 /* Value used as acknowledgement of receipt 
#define HEAD 254 /* Head of a data or results frame */ 

static short usernproc = 3; 

#include "Proclfb. h" 
#include "Proc2fb. h" 

extern int rtbyteo; 
extern int stbyteo; 
extern int rwbyteo; 
extern void swbyteo; 

/* Shared variables 
/* Acknowledge requ 
/* (or results) can 
static short ackl = 
static short ack2 = 
static short ack4 = 
static short ack8 = 

for handshaking */ 
ired before more data 

be sent 
ACK; 
ACK; 
ACK; 
ACK; 

/* Send an Acknowledge as soon as possible 
static short sackl = 00; 
static short sack2 = 00; 
static short sack4 = 00; 
static short sack8 - 00; 

/* Processor ready for input 
static short pip = 01; 

procl( ) 
/* Data Routing Process 

int ndata = 0; 
int rdata = 0; 
int len; 
int i; 
/* COMMS 2 BASED ALGORITHM 
for 

do 

if (! rdata) 

test4: 
switch(rdata - rtbyte(0,4)) 

I 
case ACK: ack4 = ACK; 

goto test4; 
case HEAD: break; 
default: rdata = 00; 

break; 

if (! ndata) 

testl: 
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switch(ndata = rtbyte(0,1)) 
I 
case ACK: ackI = ACK; 

goto testl; 
case HEAD: break; 
default: ndata = 00; 

break; 

if (rdata && pip) 

pip = 0; 
swbyte(1,1, HEAD); 
swbyte(1,1, (len = rwbyte(0,4))); 
for (i=O; i < len; ++i) 

swbyte(1,1, rwbyte(0,4)); 
sack4 - 01; 
rdata = 00; 

else if (ndata && pip) 

pip = 0; 
swbyte(1,1, HEAD); 
swbyte(1,1, (len = rwbyte(0,1))); 
for (i=O; i < len; ++i) 

swbyte(1,1, rwbyte(0,1)); 
sackl = 01; 
ndata = 00; 

if (ack2 && rdata) 

ack2 = 00; 
swbyte(0,2, HEAD); 
swbyte(0,2, (Ien = rwbyte(0,4))); 
for (i = O; i < len; ++i) 

swbyte(0,2, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 

else if (ack2 && ndata) 

ack2 = 00; 
swbyte(0,2, HEAD); 
swbyte(0,2, (Ien = rwbyte(0,1))); 
for (i = 0; 1 < len; ++i) 

swbyte(0,2, rwbyte(0,1)); 
sackl = 01; 
ndata = 00; 

if (ack8 && rdata) 

ack8 = 00; 
swbyte(0,8, HEAD); 
swbyte(0,8, (len = rwbyte(0,4))); 
for (i = O; i < len; ++i) 
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swbyte(0,8, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 

else if (ack8 && ndata) 
I 
ack8 = 00; 
swbyte(0,8, HEAD); 
swbyte(0,8, (Ien = rwbyte(0,1))); 
for (i = O; i < len; ++i) 

swbyte(0,8, rwbyte(0,1)); 
sackl = 01; 
ndata = 00; 

if (sack2) Isack2 = 00; swbyte(0,2, ACK); ) 
if (sack8) (sack8 = 00; swbyte(0,8, ACK); ) 
/* Doesn't want to work without this loop in 

while (rdata 11 ndata); 

} 
proc2 () 
/* Results routing process 

int nresu = 0; 
int rresu = 0; 
int len2; 
int, i2; 
for 

do 

if I rresu) 

test2: 
switch(rresu rtbyte(0,2)) 

case ACK: ack2 = ACK; 
goto test2; 

case HEAD: break; 
default: rresu = 00; 

break; 

if I nresu) 

test8: 
switch(nresu = rtbyte(0,8)) 

case ACK: ack8 = ACK; 
goto test8; 

case HEAD: break; 
default: nresu = 00; 

break; 
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} 
if (ack4 && (rtbyte(2,1) == HEAD)) 

ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (len2 = rwbyte(2,1))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(2,1)); 

else if (ackI && (rtbyte(2, I) == HEAD)) 

ackl = 00; 
swbyte(0,1, HEAD); 
swbyte(0,1, (len2 = rwbyte(2,1))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,1, rwbyte(2,1)); 

if (rresu && ack4) 
I 
ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (Ien2 = rwbyte(0,2))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(0,2)); 
sack2 = 01; 
rresu = 00; 

else if (rresu && ackl) 

ackl = 00; 
swbyte(O, I, HEAD); 
swbyte(0,1, (len2 = rwbyte(0,2))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,1, rwbyte(0,2)); 
sack2 = 01; 
rresu = 00; 

if (nresu && ack4) 

ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (Ien2 = rwbyte(0,8))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(0,8)); 
sack8 = 01; 
nresu = 00; 

else if (nresu && ackl) 
I 
ackl = 00; 
swbyte(0,1, HEAD); 
swbyte(0,1, (Ien2 = rwbyte(0,8))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,1, rwbyte(0,8)); 
sack8 = 01; 
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nresu = 00; 

if (sack4) (sack4 = oo; swbyte(0,4, ACK); ) 
if (sackl) (sackl = 00; swbyte(0,1, ACK); ) 
/* Doesn't seem to want to work without this loop in 

while(rresu 11 nresu); 

} 
proc3( ) 
/* Event Processing Process 

int frami[51; 
int framo[51; 
int, 13, len3; 
for 

/* Waits for a data packet 
do 

len3=rwbyte(1, I); 
while(len3 I= HEAD); 
len3=rwbyte(1,1); 
for(i3=0; i3 < len3; ++i3) 

frami[i3j=rwbyte(1,1); 
/* Kills a big chunk of processing time 
for(i3=0; i3 < 1000; ++i3) 

/* Changes case to show somethings been done 
for(i3=0; i3 < len3; ++i3) 

framo[i31=frami[i31+(IA'-IaI); 
pip = 01; 
/* Sends out finished result 
swbyte(2,1, HEAD); 
swbyte(2,1, len3); 
for(i3=0; i3 < len3; ++i3) 

swbyte(2,1, framo[i3l); 
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#define ACK 255 /* Value used as acknowledgement of receipt 
#define HEAD 254 /* Head of a data or results frame */ 

static short usernproc = 3; 

#include "proelfb. h" 
iinclude "proc2fb. h" 

extern int rtbyteo; 
extern int stbyteo; 
extern int rwbyteo; 
extern void swbyteo; 

/* Shared variables 
/* Acknowledge requ 
/* (or results) can 
static short ackl = 
static short ack2 = 
static short ack4 = 
static short ack8 = 

for handshaking */ 
ired before any more data 

be sent 
ACK; 
ACK; 
ACK; 
ACK; 

/* Send an acknowledge as soon as possible 
static short sackl = 00; 
static short sack2 = 00; 
static short sack4 = 00; 
static short sack8 = 00; 

/* Processor read for input 
static short pip = 01; 

procl( ) 
/* Data Routing Process 
I 
int rdata = 0; 
int ndata = 0; 
int len; 
int i; 
/* COMMS 3 BASED ALGORITHM 
for 

I 
do 

if (! ndata) 
I 
testl: 
switch(ndata = rtbyte(0,1)) 

case ACK: ackl - ACK; 
goto testl; 

case HEAD: break; 
default: ndata = 00; 

break; 

if I rdata) 

test4: 
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switch(rdata = rtbyte(0,4)) 

case ACK: ack4 = ACK; 
goto test4; 

case HEAD: break; 
default: rdata = 00; 

break; 

if (ndata && Pip) 

pip = 0; 
swbyte(1,1, HEAD); 
swbyte(1,1, (len = rwbyte(0,1))); 
for (i=o; i < len; ++i) 

swbyte(1,1, rwbyte(0,1)); 
sackl = 01; 
ndata = 00; 

else if (rdata && pip) 
I 
pip = 0; 
swbyte(1,1, HEAD); 
swbyte(1,1, (len = rwbyte(0,4))); 
for (i=O; i < len; ++i) 

swbyte(1,1, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 
I 

if (ack8 && ndata) 

ack8 = 00; 
swbyte(0,8, HEAD); 
swbyte(0,8, (Ien = rwbyte(0,1))); 

-for (i = O; i < len; ++i) 
swbyte(0,8, rwbyte(0,1)); 

sackl = 01; 
ndata = 00; 

else if (ack8 && rdata) 

ack8 = 00; 
swbyte(0,8, HEAD); 
swbyte(0,8, (len = rwbyte(0,4))); 
for (i = O; i < len; ++i) 

swbyte(0,8, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 

if (ack2 && ndata) 
I 
ack2 = 00; 
swbyte(0,2, HEAD); 
swbyte(0,2, (len = rwbyte(0,1))); 
for (i = O; i < len; ++i) 
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swbyte(0,2, rwbyte(0,1)); 
sackl - 01; 
ndata = 00; 

else if (ack2 && rdata) 
I 
ack2 - 00; 
swbyte(0,2, HEAD); 
swbyte(0,2, (len = rwbyte(0,4))); 
for (i = O; i < len; ++i) 

swbyte(. 0,2, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 

if (sack8) (sack8 = oo; swbyte(0,8, ACK); ) 
if (sack2) Isack2 = oo; swbyte(0,2, ACK); ) 
/* Doesn$t want to work without this loop in 

while (ndata 11 rdata); 

I 

proc2 () 
/* Results routing process 
I 
int nresu = 0; 
int rresu = 0; 
int len2; 
int i2; 
for 

do 

if (! nresu) 

test8: 
switch(nresu rtbyte(0,8)) 

case ACK: ack8 = ACK; 
goto test8; 

case HEAD: break; 
default: nresu = 00; 

break; 

if ! rresu) 

test2: 
switch(rresu = rtbyte(0,2)) 

case ACK: ack2 = ACK; 
goto test2; 

case HEAD: break; 
default: rresu = 00; 

break; 
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I 
if (ackI && (rtbyte(2, I) == HEAD)) 

I 
ackl = 00; 
swbyte(0,1, HEAD); 
swbyte(0,1, (Ien2 = rwbyte(2,1))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,1, rwbyte(2,1)); 

else if (ack4 && (rtbyte(2, I) == HEAD)) 

ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (len2 = rwbyte(2,1))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(2,1)); 

if (nresu && ackl) 

ackl = 00; 
swbyte(0,1, HEAD); 
swbyte(0,1, (Ien2 = rwbyte(0,8))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,1, rwbyte(0,8)); 
sack8 = 01; 
nresu - 00; 

else if (nresu && ack4) 

ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (Ien2 = rwbyte(0,8))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(0,8)); 
sack8 = 01; 
nresu = 00; 
I 

if (rresu && ackl) 

ackl = 00; 
swbyte(0,1, HEAD); 
swbyte(0,1, (Ien2 = rwbyte(0,2))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,1, rwbyte(0,2)); 
sack2 = 01; 
rresu = 00; 

else if (rresu && ack4) 
I 
ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (Ien2 = rwbyte(0,2))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(0,2)); 
sack2 - 01; 
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rresu = 00; 
I 

if (sackl) (sackl = oo; swbyte(0,1, ACK); ) 
if (sack4) (sack4 = oo; swbyte(0,4, ACK); ) 
/* Doesn't want to work without this loop in 

while(nresu 11 rresu); 

proc3 () 
/* Event Processing Process 

int frami[5]; 
int framo[5]; 
int i3, len3; 
for 

I 
/* Waits for a data packet 
do 

len3=rwbyte(1,1); 
while(len3 I= HEAD); 
len3=rwbyte(1,1); 
for(i3=0; i3 < len3; ++i3) 

frami(i3]=rwbyte(l, 1); 
/* Kills off a big chunk of processing time 
for(i3=0; i3 < 1000; ++i3) 

/* Changes case of characters to show somethings been done 
for(i3=0; i3 < len3; ++i3) 

- framo[i31=frami[i3j+(IAI-Ia9); 
pip = 01; 
/* Sends out finished result 
swbyte(2,1, HEAD); 
swbyte(2,1, len3); 
for(13=0; i3 < len3; ++i3) 

swbyte(2,1, framo[13l); 
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idefine ACK 255 /* Value used as acknowledgement of receipt 
#define HEAD 254 /* Head of data or results frame */ 

static short usernproc = 3; 

#include "proclfb. h" 
#include "proc2fb. h" 

extern int rtbyteo; 
extern int stbyteo; 
extern int rwbyteo; 
extern void swbyteo; 

/* Shared variables 
/* Acknowledge requ 
/* (or results) can 
static short ackl = 
static short ack2 = 
static short ack4 - 
static short ack8 = 

for handshaking */ 
ired before any more data 
be sent 
ACK; 
ACK; 
ACK; 
ACK; 

/* Send an acknowledge as soon as possible 
static short sackl = 00; 
static short sack2 = 00; 
static short sack4 = 00; 
static short sack8 = 00; 

/* Processor ready for input 
static short pip = 01; 

procl( ) 
/* Data Routing Process 

int ndata = 0; 
int rdata = 0; 
int len; 
int i; 
/* COMMS 4 BASED ALGORITHM 
for 

do 

if (! rdata) 

test4: 
switch(rdata = rtbyte(0,4)) 

case ACK: ack4 = ACK; 
goto test4; 

case HEAD: break; 
default: rdata = 00; 

break; 

if Indata) 

testl: 
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switch(ndata = rtbyte(0,1)) 
I 
case ACK: ackI = ACK; 

goto testl; 
case HEAD: break; 
default: ndata = 00; 

break; 

if (rdata && pip) 
I 
pip = 0; 
swbyte(l, I, HEAD); 
swbyte(1,1, (len = rwbyte(0,4))); 
for (i=O; i < len; ++i) 

swbyte(1,1, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 
I 

else if (ndata && pip) 

pip = 0; 
swbyte(1,1, HEAD); 
swbyte(1,1, (len = rwbyte(0,1))); 
for (i=O; i < len; ++i) 

swbyte(1,1, rwbyte(0,1)); 
sackl = 01; 
ndata = 00; 
I 

if (ack8 && rdata) 
I 
ack8 = 00; 
swbyte(0,8, HEAD); 
swbyte(0,8, (len = rwbyte(0,4))); 
for (i = O; i < len; ++i) 

swbyte(0,8, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 

else if (ack8 && ndata) 

ack8 = 00; 
swbyte(0,8, HEAD); 
swbyte(0,8, (len = rwbyte(0,1))); 
for (i = O; i < len; ++i) 

swbyte(0,8, rwbyte(0,1)); 
sackl = 01; 
ndata = 00; 

if (ack2 && rdata) 

ack2 = 00; 
swbyte(0,2, HEAD); 
swbyte(0,2, (len = rwbyte(0,4))); 
for (i = O; i < len; ++i) 
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swbyte(0,2, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 

else if (ack2 && ndata) 

ack2 - 00; 
swbyte(0,2, HEAD); 
swbyte(0,2, (Ien = rwbyte(0,1))); 
for (i = O; i < len; ++i) 

swbyte(0,2, rwbyte(0,1));. 
sackl = 01; 
ndata = 00; 
I 

if (sack8) (sack8 = 00; swbyte(0,8, ACK); ) 
if (sack2) (sack2 = 00; swbyte(0,2, ACK); ) 
/* Doesn9t want to work without this loop in 

while (rdata 11 ndata); 

proc2( ) 
/* Results routing process 
I 
int nresu = 0; 
int rresu = 0; 
int len2; 
int 12; 
for 

do 

if ! nresu) 

test8: 
switch(nresu rtbyte(0,8)) 

I 
case ACK: ack8 = ACK; 

goto test8; 
case HEAD: break; 
default: nresu = 00; 

break; 

if I rresu) 

test2: 
switch(rresu = rtbyte(0,2)) 

I 
case ACK: ack2 = ACK; 

goto test2; 
case HEAD: break; 
default: rresu - 00; 

break; 

ccxliii Appendix 15 243 



if (ack4 && (rtbyte(2,1) - HEAD)) 

ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (len2 = rwbyte(2,1))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(2,1)); 

else if (ackl && (rtbyte(2, I) == HEAD)) 
I 
ackI = 00; 
swbyte(O, I, HEAD); 
swbyte(0,1, (len2 = rwbyte(2,1))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(O, I, rwbyte(2,1)); 

if (nresu && ack4) 

ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (len2 = rwbyte(0,8))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(0,8)); 
sack8 = 01; 
nresu = 00; 

else if (nresu && ackl) 

ackl = 00; 
swbyte(0,1, HEAD); 
swbyte(0,1, (len2 = rwbyte(0,8))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,1, rwbyte(0,8)); 
sack8 = 01; 
nresu = 00; 

if (rresu && ack4) 
I 
ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (len2 = rwbyte(0,2))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(0,2)); 
sack2 = 01; 
rresu = 00; 

else if (rresu && ackl) 
I 
ackl = 00; 
swbyte(0,1, HEAD); 
swbyte(0,1, (len2 = rwbyte(0,2))); 
for (12=0; i2 < len2; ++i2) 

swbyte(0,1, rwbyte(0,2)); 
sack2 = 01; 
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rresu = 00; 

if (sack4) (sack4 = 00; swbyte(0,4, ACK); ) 
if (sackl) (sackl = 00; swbyte(0,1, ACK); l 
/* Doesn9t want to work without this loop in 

while(nresu 11 rresu); 

I 

proc3( ) 
/* Event Processing Process 

int frami[5]; 
int framo[5]; 
int 13, len3; 
for 

/* Waits for a data packet 
do 

len3=rwbyte(1,1); 
while(len3 != HEAD); 
len3=rwbyte(1,1); 
for(i3=0; i3 < len3; ++i3) 

frami[i3]=rwbyte(1,1); 
/* Kills off a big chunk of processing time 
for(i3=0; i3 < 1000; ++i3) 

/* Changes case of characters to show somethings been done 
for(i3=0; i3 < len3; ++i3) 

framo[i31=frami[i3j+(IAI-IaI); 
pip = 01; 
/* Sends out finished result 
swbyte(2,1, HEAD); 
swbyte(2,1, len3); 
for(i3=0; i3 < len3; ++i3) 

swbyte(2,1, framo[i3l); 

ccxlv Appendix 15 245 



#define ACK 255 /* Value used as acknowledgement of receipt 
Idefine HEAD 254 /* Head of a data or results frame */ 

static short usernproc = 3; 

#include "proclfb. h" 
#include "proc2fb. h" 

extern int rtbyteo; 
extern int stbyteo; 
extern int rwbyteo; 
extern void swbyteo; 

/* Shared variables 
/* Acknowledge requ 
/* (or results) can 
static short ackl - 
static short ack2 = 
static short ack4 = 
static short ack8 = 

for handshaking */ 
ired before any more data 
be sent 
ACK; 
ACK; 
ACK; 
ACK; 

/* Send an acknowledge as soon as possible 
static short sackl = 00; 
static short sack2 = 00; 
static short sack4 = 00; 
static short sack8 = 00; 

/* Processor read for input 
static short pip = 01; 

procl( ) 
/* Data Routing Process 
I 
int rdata = 0; 
int ndata = 0; 
int len; 
int i; 
/* COMMS 4 BASED ALGORITHM 
for 

I 
do 

if t! raata) 

test4: 
switch(rdata = rtbyte(0,4)) 

I 
case ACK: ack4 = ACK; 

goto test4; 
case HEAD: break; 
default: rdata - 00; 

break; 

if ! ndata) 

testl: 
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switch(ndata = rtbyte(0,1)) 

case ACK: ackl = ACK; 
goto testl; 

case HEAD: break; 
default: ndata = 00; 

break; 

if (rdata && pip) 
I 
pip = 0; 
swbyte(1,1, HEAD); 
swbyte(1,1, (len = rwbyte(9,4))); 
for (i=O; i < len; ++i) 

swbyte(1,1, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 

else if (ndata && pip) 
I 
pip = 0; 
swbyte(1,1, HEAD); 
swbyte(1,1, (len = rwbyte(0,1))); 
for (i=O; i < len; ++i) 

swbyte(1,1, rwbyte(0,1)); 
sackl = 01; 
ndata = 00; 

if (ack8 && rdata) 

ack8 - 00; 
swbyte(0,8, HEAD); 
swbyte(0,8, (len = rwbyte(0,4))); 
for (i = O; i < len; ++i) 

swbyte(0,8, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 

else if (ack8 && ndata) 

ack8 - 00; 
swbyte(0,8, HEAD); 
swbyte(0,8, (len = rwbyte(0,1))); 
for (i = O; i < len; ++i) 

swbyte(0,8, rwbyte(0,1)); 
sackl = 01; 
ndata = 00; 

if (ack2 && rdata) 

ack2 = 00; 
swbyte(0,2, HEAD); 
swbyte(0,2, (len = rwbyte(0,4))); 
for (i = O; i < len; ++i) 
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swbyte(0,2, rwbyte(0,4)); 
sack4 = 01; 
rdata = 00; 

else if (ack2 && ndata) 
I 
ack2 = 00; 
swbyte(0,2, HEAD); 
swbyte(0,2, (len = rwbyte(0,1))); 
for (i = O; i < len; ++i) 

swbyte(0,2, rwbyte(0,1)); 
sackl = 01; 
ndata = 00; 

if (sack8) (sack8 = 00; swbyte(0,8, ACK); ) 
if (sack2) Isack2 = 00; swbyte(0,2, ACK); ) 
/* Doesn2t want to work without this loop in 

while (rdata 11 ndata); 

} 

proc2( ) 
/* Results routing process 
I 
int nresu = 0; 
int rresu = 0; 
int len2; 
int i2; 
for 

I 
do 

if (! nresu) 

test8: 
switch(nresu rtbyte(0,8)) 

I 
case ACK: ack8 = ACK; 

goto test8; 
case HEAD: break; 
default: nresu = 00; 

break; 

if I rresu) 

test2: 
switch(rresu = rtbyte(0,2)) 

I 
case ACK: ack2 = ACK; 

goto test2; 
case HEAD: break; 
default: rresu = 00; 

break; 
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if (ack4 && (rtbyte(2,1) == HEAD)) 
I 
ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (len2 = rwbyte(2,1))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(2,1)); 

else if (ackl && (rtbyte(2,1) == HEAD)) 

ackl = 00; 
swbyte(0,1, HEAD); 
swbyte(0,1, (len2 - rwbyte(2,1))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,1, rwbyte(2,1)); 

if (nresu && ack4) 

ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (Ien2 = rwbyte(0,8))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(0,8)); 
sack8 = 01; 
nresu = 00; 

else if (nresu && ackl) 

ackl = 00; 
swbyte(0,1, HEAD); 
swbyte(0,1, (len2 = rwbyte(0,8))); 
for (12=0; i2 < len2; ++i2) 

swbyte(0,1, rwbyte(0,8)); 
sack8 = 01; 
nresu = 00; 

if (rresu && ack4) 
I 
ack4 = 00; 
swbyte(0,4, HEAD); 
swbyte(0,4, (Ien2 = rwbyte(0,2))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,4, rwbyte(0,2)); 
sack2 = 01; 
rresu = 00; 

else if (rresu && ackl) 

ackl = 00; 
swbyte(0,1, HEAD); 
swbyte(0,1, (Ien2 = rwbyte(0,2))); 
for (i2=0; i2 < len2; ++i2) 

swbyte(0,1, rwbyte(0,2)); 
sack2 = 01; 
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rresu - 00; 

if (sack4) Isack4 = 00; swbyte(0,4, ACK); ) 
if (sackl) Isackl = 00; swbyte(0,1, ACK); l 
/* Doesn't want to work without this loop in 

while(nresu 11 rresu); 
I 

I 

proc3 () 
/* Event Processing Process 

int frami[5); 
int framo[5]; 
int i3, len3; 
for 

/* Waits for a data packet 
do 

len3=rwbyte(l, l); 
while(len3 != HEAD); 
len3=rwbyte(l, l); 
for(i3=0; i3 < len3; ++i3) 

framiji3]=rwbyte(1, I); 
/* Kills off a big chunk of processing time 
/* Version with weighted processing */ 
for(13=0; i3 < (100*(frami[Oj-IaI)); ++i3) 

/* Changes case of characters to show somethings been done 
for(13=0; i3 < len3; ++i3) 

framo[i3]=framiji31+(IAI-IaI); 
pip - 01; 
/* Sends out finished result 
swbyte(2,1, HEAD); 
swbyte(2,1, len3); 
for(i3=0; i3 < len3; ++i3) 

swbyte(2,1, framo[i3l); 
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APPENDIX 16 

16 Programs for the Distributed Depth First Search Scan 

#include <stdio. h> 

Idefine BIOS 1 

Idefine VCC IZI /* Visit Call Code 
#define VRC IXI /* Value Request Code 
Idefine NN IYI /* New Now 
Idefine NC IW9 /* Not Connected 

#define MAXNODES 10 /* Maximum number of nodes in the system 

struct jI short x; void(*addr)(); 
typedef struct j *TABLE; 

TABLE bios, *p; 

BIOSREG biosr; 
CALLREG callr; 

/* Adjacency Matrix of the graph 
static short adj[101[101; 

maino 
/* Depth First Search - Driver Code 

int now = 'a'; 
int f, t; 
int vall, tcc, val2; 
void ccall(); 
/* f-from t-to 
for (f = O; f <= MAXNODES; ++f) 

for (t = O; t <= MAXNODES; ++t) 
adj[t] 0; /* Initialise Adjacency Matrix 

p= (TABLE BIOS, bios (TABLE) (int) *p) 3); 
/* Send Visit Call Code 
callr. call = &bios[PUNCH]; 
callr. C = VCC; 
ccall(&callr); 
/* Send the value of now 
callr. call = &bios[PUNCH); 
callr. C = now; 
ccall(&callr); 
do 

/* Receive all reports ofconnection 
callr. call - &bios[READER]; 
ccall(&callr); 
/* If New Now received then break 
if (callr. A == NN) break; 
vall = callr. A; 
ccall(&callr); 
/* If New Now received then break 
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if (callr. A - NN) break; 
tce - callr. A; 
ccall(&callr); 
/* If New Now received then break 
if (callr. A - NN) break; 
va12 = callr. A; 
if (vall I= NC && va12 I- NC) 

/* Update Adjacency Matrix 
adjtvall-lal][val2-lall = 10 

while (callr. A != NN); 
/* Receive the New Now value 
ccall(&callr); 
now = callr. A; 
printf("\nTotal Number of connected 
/* Print the Adjacency Matrix 
printf("\n FROM\n 
for (f = O; f < MAXNODES; ++f) 

printf(II %4u", f); 
printf("\n TO 11); 
for (t = O; t < MAXNODES; ++t) 

I 
printf("\n %3u", t); 
for (f - O; f < MAXNODES; ++f) 

printf(II %4u", adj[tl); 

adj[vall-lall[val2-lall + (tcc-909); 

Nodes = %3u\n\n", now-lal); 

printf("\n\nNote: Vertex 0 represents the connection point to the graph'); 
printf("\n The numbers indicate which links form the connection\n"); 
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Idefine VCC 9ZI /* Visit Call Code 
Idefine VRC IXI /* Value Request Code 
idefine NN IYI /* New Now 
idefine NC 2WI /* Not Connected 

static short usernproc - 1; 

extern int rtbyteo; 
extern int stbyteo; 
extern int rwbyteo; 
extern void swbyteo; 

static int now ; 
static int val - a,; 

procl( ) 
/* Depth First Search - Node Code 

int report 
int ti - 01; 
for 

I 
do /* Loop 

if ((ti = ti*2) > 8) ti = 1; 
report - rtbyte(O, ti); 
I 

while (report > 255); /* Until a value is received 
/* If a value Request Code then return value 
if (report - VRC) swbyte(O, ti, val); 
/* If Value Call Code then visit answer 
if (report -- VCC) vanswer(ti); 

int valint(tv) 
/* Value Interrogation 
int tv; 

int count = 0; 
int report ; 
swbyte(O, tv, VRC); 
do 

++count; 
if ((report - rtbyte(O, tv)) < 256) break; 

/* If a value is received then leave loop 

while (count < 1024); 
if (count - 1024) 

/* If timeout then return Not Connected 
return(NC); 

else 
/* If not timeout then return value of other node 
return(report); 

void veall(ti, te) 
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/* Visit Call 
int ti; 
int tc; 
I 
int report; 
int tr = 01 
/* Send the value of now to the interrogated node 
swbyte(O, tc, now); 
/* Report the connection to the node being interrogated 
swbyte(O, ti, val); 
swbyte(O, ti, (tc + 909)); 
swbyte(O, ti, ++now); 
do 

do /* Loop 

if ((tr = tr*2) > 8) tr 01; 
report = rtbyte(o, tr); 

while(report > 255); /* Until a value is received 
/* Leave the loop if a new now is received 
if (report - NN) break; 
if (report - VRC) 

/* If a Value Request Code is received then reply 
/* This is essential to cope with circuits in the graph 
swbyte(o, tr, val); 

else 
/* Send all reports of connection back to the 
/* interrogating node 
swbyte(O, ti, report); 

I 
while(report I- NN); 
/* Receive the updated value of now 
now - rwbyte(O, tc); 

void vanswer(ti) 
/* Visit Answer 
int ti; 
I 
int to 
int vi 
/* Receive the value of now 
now - rwbyte(O, ti); 
vi = now-, 
val - ++now; 
/* Report the connection to the interrogating link 
swbyte(O, ti, val); 
swbyte(O, ti, (ti + 101)); 
swbyte(O, ti, vi); 
/* For all links except the interrogating one 
for (to = 01; to < 16; to = to*2) 

if (to I- ti) 

/* Interrogate the link 
vi - valint(to); 
if (vi -- 'a') 
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/* Visit an unvisited node 
swbyte(O, to, VCC); 
veall(ti, to); 

else 

/* Report the connection to a visited node 
/* or No - Connection 
swbyte(O, ti, val); 
swbyte(O, ti, (to + 101)); 
swbyte(O, ti, vi); 

/* Send back an updated value of now 
swbyte(O, ti, NN); 
swbyte(O, ti, now); 
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Idefine VCC IZI /* Visit Call Code 
Idefine VRC 9XI /* Value Request Code 
Idefine NN IYI /* New Now 
idefine NC IWI /* Not Connected 

static short usernproc = 3; 

finclude "proclbb. h" 
finclude "proc2bb. h" 

extern int rtbyteo; 
extern int stbyteo; 
extern int rwbyteo; 
extern void swbyteo; 

static int now ; 
static int val = a; 

procl( ) 
/* Depth First Search - Node Code 
/* MultiProcess Version 
I 
int report 
int ti - 01; 
for 

do /* Loop 

if ((ti - ti*2) > 8) ti = 1; 
report = rtbyte(l, ti); 

while (report > 255); /* Until a value is received 
/* If Value Call Code then visit answer 
if (report == VCC) vanswer(ti); 

int valint(tv) 
/* Value Interrogation 
int tv; 
I 
int count - 0; 
int report ; 
swbyte(2, tv, VRC); 
do 

++count; 
if ((report = rtbyte(l, tv)) < 256) break; 

/* If a value is received then leave loop 

while (count < 1024); 
if (count - 1024) 

/* If timeout then return Not Connected 
return(NC); 

else 
/* If not timeout then return value of other node 
return(report); 
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void vcall(ti, tc) 
/* visit call 
int ti; 
int tc; 
I 
int report; 
int tr = 01 
/* Send the value of now to the interrogated node 
swbyte(2, tc, now); 
/* Report the connection to the node being interrogated 
swbyte(2, ti, val); 
swbyte(2, ti, (tc + go, )); 
swbyte(2, ti, ++now); 
do 

do /* Loop 

if Mr = tr*2) > 8) tr = 01; 
report = rtbyte(l, tr); 
I 

while(report > 255); /* Until a value is received 
/* Leave the loop if a new now is received 
if (report NN) break; 
if (report vRc) 

/* If a Value Request Code is received then reply 
/* This is essential to cope with circuits in the graph 
swbyte(2, tr, val); 

else 
/* Send all reports of connection back to the 
/* interrogating node 
swbyte(2, ti, report); 

while(rePort 1= NN); /* Receive the updated value of now 
now m- rwbyte(l, tc); 

void vanswer(ti) 
/* Visit Answer 
int ti; 

int to 
int vi 
/* Receive the value of now 
now - rwbyte(l. ti); 
vi = now; 
val = ++now; 
/* Report the connection to the interrogating link 
swbyte(2, ti, val); 
swbyte(2, ti, (ti + *09)); 
swbyte(2, tiovi); 
/* For all links except the interrogating one 
for (to - 01; tO ( 16; to - to*2) 

if (to I- ti) 

/* Interrogate the link 
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vi = valint(to); 
if (vi - 'a') 

I 
/* Visit an unvisited node 
swbyte(2, to, VCC); 
vcall(ti, to); 

else 

/* Report the connection to a visited node 
/* or No - Connection 
swbyte(2, ti, val); 
swbyte(2, ti, (to + 109)); 
swbyte(2, ti, vi); 

/* Send back an updated value of now 
swbyte(2, ti, NN); 
swbyte(2, ti, now); 

proc2( ) 
/* Mixes VRC responses with normal data traffic 

int t2 - 01; 
int val2; 
for 

do /* Loop 

if ((t2 - t2*2) > 8) t2 = 01; 
if ((val2 = rtbyte(2, (t2*16))) > 255) 

/* If no VRC response to send look for bytes from proci 
VaJ2 = rtbyte(2, t2); 

while(val2 > 255); /* Until a value is received 
/* Send the byte out 
swbyte(O, t2, val2); 

proc3 () 
/* Value Request Code detection 

int t3 - 01; 
int val3; 
for 

do /* Loop 
if ((t3 - t3*2) > 8) t3 - 01; 

while((val3 = rtbyte(O, t3)) > 255); 
/* Until a value is received 

if (val3 - VRC) 
/* If a Value Request Code is received then reply 
swbyte(2, (t3*16), val); 

else 
/* if not then send the byte through to proci 

cciviii Appendix 16 258 



} 
I 

swbyte(l, t3, val3); 
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