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ABSTRACT

A review o0f the development of parallel computing is
presented, followed by a summary of currently recognised types

of parallel computer and a brief summary of some applications

of parallel computing in the field of high energy physics.

The computing requirement at the data acquisition stage
of a particular set of high energy physics experiments 1is
detailed, with reference to the computing system currently in
use. The requirement for a parallel processor to process the

data from these experiments is established and a possible

computing structure put forward.

The topology proposed consists of a set of rings of
processors stacked to give a c¢ylindrical arrangement, an
analytical approach 1is used to verify the suitability and
extensibility of the suggested schene. Using simulation
results the behaviour of rings and cylinders of processors
using different algorithms for the movement of data within the
system and different patterns of data input is presented and

discussed.

Practical hardware and software details for processing
equipment capable of supporting such a structure as presented
here is given, various algorithms for use with this equipment,
e.g. program distribution, are developed and the software for

the implementation of the cylindrical structure is presented.
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Appendices of constructional information and all program

listings are included.



CHAPTER 1

1 HISTORICAL REVIEW

1.1 History of Computing

1.1.1 Mechanical Calculating Engines

The earliest automatic computing engines appeared in
europe in the early seventeenth century, and were purely

mechanical in operation. According to Hayes[64] the earliest

of these was one designed and built in 1623 by Wilhelm
Schikhard, of far more influence however was the machine built
by Blaise Pascal in 1642 though even this later machine was
only capable of addition and subtraction. The next notable
event was the construction in about 1671 by Gotfried Leibniz of
a calculator capable of addition and subtraction in the manner
of Pascal?®’?s machine and also multiplication and division.
These machines were largely regarded as academic curiosities
until mechanical calculators were exploited commercially in the

19th century.

The next major figure was Charles Babbage, he proposed
two mechanical computers, the now famous Difference Engine
(begun in 1823) and Analytical Engine (conceived in 1834).
Neither machine was completed for a variety of reasons but
probably principally Dbecause both machines were very
adventurous and required rather better mechanical engineering

than was available at the time.
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The difference engine of Babbage was conceived for the
purpose of automatic computation of astronomical tables using
only addition and subtraction by the method of finite
differences, hence its name. Babbage had been greatly
impressed by the number of errors in manually computed tables
and his difference engine was intended to not only calculate
the entries of a table but to transfer these results

immediately to an engravers plate using steel punches.

The Analytical Engine was conceived as performing any
mathematical operation automatically and the final design
exhibited many of the main elements of the electronic computers
built over a century later. The analytical engine was to have
two main parts: the store, a memory unit consisting of sets of
counter wheels, corresponding to the cathode ray tubes, mercury
delay lines and bistable electronic circuits used as memory in
electronic computers, and the mill, corresponding to a modern

arithmetic logic unit being capable of performing the four

basic arithmetic functions.

Babbage proposed to control the machine using punched
cards not unlike those developed for use with the Jacquard
loom. There were to be two sets of cards, operation cards,
used to control the operation of the mill and variable cards,
used to select the memory locations to be used as the sources
of operands and the destination of results for a particular
operation. One of the most significant contributions of

Babbage?’s proposals was a mechanism to allow the sequences of

operations to be changed automatically, in modern terms

unconditional and conditional branch instructions.

L}
o
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The earliest known reference to parallelism in computer
design is thought to be in a Sketch of the Analytical Engine
Invented by Charles Babbage by General I F Menabrea in 1842
according to Hockney and Jesshope[68]. Though parallelism was
not incorporated in Babbage’s analytical engine he was clearly
aware of the possibility of its application to improve
performance over a century before the technology was available
to make its large scale application possible. Though neither
of Babbage’s engines were constructed mechanical four function
calculators were in widespread use from early in the nineteenth
century until electronic calculators became widely available

cheaply in the latter half of the 20th century.

1.1.2 Electro-Mechanical Computing Machines

In the 1930s and 1940s Konrad 2Zuse built several
electro—mechanical computers, apparently unaware of the work of
Babbage, Z3 built around 1941 is believed to be the first
operational general purpose program controlled computer,
however this work was interrupted by the second world war and
had little influence on later machines. A more influential
machine was the Harvard Mark I (originally called the Automatic
Sequence Controlled Calculator) proposed in 1937 by Howard

Aiken, which was completed by IBM in 1944,

1.1.3 Electronic Computers

The first purely electronic, as opposed to
electro-mechanical, computers appeared in the 1late 1930s and

early 1940s, the first general purpose electronic computer
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probably being ENIAC (Electronic Numerical Integrator and
Calculator) built at the University of Pennsylvania. Though it

weighed 30 tons and contained 18,000 electronic valves it was
around 1000 times faster than the Harvard Mark I, taking 3 mS

for a 10 digit multiplication.

The first machines employing the stored program concept
in which program and data reside together in the same memory
unit appeared at the end of the 1940s, with EDSAC at the

University of Cambridge and EDVAC at the University of

Pennsylvania.

It is interesting that at this time the possibility of
using serial arithmetic, with the consequent reduction 1in
hardware required, was regarded as an advantage of the speed of
electronic components over mechanical machines which had

performed their arithmetic in parallel.

1.1.4 Mechanisms For Introducing Parallelism

Despite the speed advantages of electronic computers over
mechanical and electro-mechanical machines greater processing
rates were soon required. Though some improvement in
processing speed was achieved through improvements in the speed
of electronic components major improvements were achieved
through parallelism:; the fundamental techniques for introducing

parallelism are briefly described here before their discussion

in a historical context.
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There are several techniques for introducing parallelism
as listed by Sharp{136] these are: Multiprocessors,
Multifunction Processors, Array Processors and Pipeline
processing. Each of these techniques involves replication of

some or all of the computer architecture at varying levels.

Multiprocessors

Multiprocessors involve duplication of the entire

computer, computers making wup the machine using some
communication scheme to coordinate their actions. A variety of

communication schemes are the subject of current research;
shared memory, shared bus and direct interprocessor connections
for examples. The major problems with multiprocessors are
those o0of communication and synchronisation of the processors
and of decomposition of the task into suitable units to be
performed in parallel. Multiprocessors are dealt with further

in the survey of currently researched processor types in

section 1.3.

Multifunction Processors

If units within a processor are replicated such as
floating point processors, then it is possible to perform

several operations simultaneously within a single cpu.

Processor Arrays

The development of processor arrays is dealt with fully
in section 1.1.6. In a processor array a large number of

processors are made to perform the same  operations
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simultaneously but on different sets of data. Usually some
mechanism for data exchange between the processors is provided.
Though such machines can achieve high processing rates for the
large number of problems that can be reformulated for such a
processing scheme they are not efficiently applied to all

problems. The term array processor frequently used for such

computers is not used consistently as is illustrated in section

1'1.7.

Pipeline Processing

Pipeline processing is applicable when long sequences of
instructions are to be repeated for different data. A
production line type of approach can be used to overlap an
instructions execution with the execution of the preceding
instruction on the following item of data in the sequence. It
is common to combine pipeline processing with one or more other

techniques for introducing parallelism.

1.1.5 Scalar and Vector Processors

There are several techniques that have been used to
achieve speed up through the implementation of parallelism.
The development of parallelism as applied to ‘*traditional’
architectures is presented. This account is based on those by

Hockney and Jesshope[68] and Sharp[l136].

All parallelism requires some additional hardware,

usually in the form of replication of some part of the
architecture already present, the level of replication and the

way it is used varying depending upon the scheme to be
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implemented.

The pilot ACE and the commercial machine derived from
this, the English Electric DEUCE, first constructed in 1951 had

several features to permit parallel operations to be carried
out. The input/output devices (a card reader and card punch)
could operate in parallel with the rest of the machine and also

instructions were available to operate on all of the words in

one of the eleven mercury delay 1lines with a single

instruction, what would now be classed as vector instructions.

During the 1950s several important advances were
introduced, represented by the IBM commercial machines of the

period which incorporated bit-parallel arithmetic, and later
I/0 channels which were in essence dedicated I/O processors,

these were the earliest multiprocessors.

At about this time some consideration was given to large

scale multiprocessor designs, however the programming of such
systems has several problems and most of the commercial

development was towards introducing parallelism into scalar
computers (computers operating on data items comprising single

values only) to achieve higher computing speeds.

1.1.5.1 Scalar Processors

Multiple functional units allowing arithmetic operations
to be performed in parallel and pipelining where stages of an
operations execution are overlapped with later stages in a
previous operations execution (usually employed in the

instruction fetch and decode sequence) became common in
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computer architectures of the 1960s. A modern example of a
processor employing multiple functional units is the

CYBERPLUS[72].

Multiple functional units were usually of arithmetic
units, registers and memory, to make use of these in parallel
some degree of 1lookahead was required to determine which
operations could be performed in parallel. This lookahead
approach allowed the overlapping of instruction decoding,
address calculation and fetching of operands using a pipelining
technique. A good representative example of a machine using

such techniques is the IBM 360/91.

1.1.5.2 Vector Processors

The logical development from scalar machines wusing

pipelining techniques to achieve high computing speeds was the
construction of vector processors using pipelining techniques.
Vector machines operate on vectors (an ordered group of

numerical values) as a basic unit of data. The most famous of
these are the CRAY machines, the CRAY-1 having regularly

achieved 130 MFlops/sec on appropriate problems.

This is one of the main points about departures from
scalar machines in that the problems must be suitable for the
machine architecture; vector machines exhibit little, if any
improvement over purely scalar processors when performing
purely scalar computations. This dependence upon problem
suitability is clearly demonstrated by the benchmarks of a
CYBER 205 vector processor and a CYBERPLUS scalar processor on

a Monte—-Carlo crystal growth model involving a large number of
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testing and branching instructions([72].

1.1.6 Processor Arrays

In 1962 a paper of Slotnick et al described the SOLOMON
computer, SOLOMON standing for Simultaneous Operation Linked
Ordinal MOdular Network. This was one of the earliest
references to the concept of an array of processors, each with
some memory, and all under the control of a central control
stream. Though never built as originally proposed several
important machines developed from this concept, such as the
ILLIAC IV and ICL DAP[49)]. The ILLIAC IV was not a sSuccess,
costing four times its contract figure and never coming within
an order of magnitude of its proposed performance, when finally
operational in 1975, it was however a very influential machine.
ILLIAC IV was, like the engines of Babbage a century before,
too ambitious for the technology available at the time. The
ICL DAP was commercially viable however, the first one being
installed in 1980, this machine had in its production form an
array of 64 X 64 processors, each with 4096 bits of memory and
capable of bit-serial arithmetic on the values held in this
memory, 4096 such calculations being performed in parallel. In
common with the processors of SOLOMON and ILLIAC IV the
processors of the ICL DAP had connections with their nearest
neighbours, in an array pattern from which this genre of
machines get their name. Though these machines used physical
hardware connections to their nearest neighbours an alternative
is to use conceptual 1links, data being passed via common

memory. In this case there is no definite structure to the

communication pattern between processors, the system being
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termed unstructured, the term ensemble was used for such an
arrangement. A notable example of such a machine is the
Burroughs Parallel Element Processor Ensemble PEPE developed in
the mid 1970s which had 288 processing elements, each
containing three processors (one each for input of radar
signals, processing of data and output of control signals)

controlled by three control units for the three types of

processor within each processing element. When necessary
communication between the processing elements took place via

the memories of the control units.

l1.1.7 Array Processors

Many special purpose computers have been produced for
processing 1large amounts of data, usually in the form of
arrays, these tend to be referred to by the generic name array
processors though their architecture does not necessarily
consist of an array of processors. A good example of such
processors are the special purpose devices for Fast Fourier
Transform (FFT) and similar algorithms frequently used in
signal processing applications. A list of the attributes
required of a subset of array processors, peripheral array
processors, has been suggested by Karplus{82] though the

generality of the term array processor is acknowledged.

1.1.8 Orthogonal and Associative Processors

An alternative approach to simultaneously processing all
of the bits of a word in parallel is to do the converse and

process the same bit of several words in parallel. In the
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orthogonal computer described by Shooman in parallel computing
with vertical data a ’horizontal unit® for word serial/bit
parallel operations and a °’vertical unit? for bit serial/word
parallel operations were both provided allowing the most

appropriate mechanism of referencing the data to be used.

The notion of testing all words in parallel leads to the
idea o0f associative processing and content-addressable memory
in which items are referenced by a match between the data and a
given bit pattern or mask rather than by the address of its
location in memory. It is usual to provide both associative
and address reference in a processing scheme though in a purely

associative memory there is no facility to address data by its

position in store.

A series of commercial machines under the name of OMEN

(Orthogonal Mini EmbedmeNt) were produced in the early 1970s,
these used a PDP-11 as the horizontal arithmetic unit and an
array of 64 processing elements as the associative vertical

arithmetic unit.

Several machines based around the orthogonal computer
concept have been built and machines along these lines are the

subject of considerable present research.

Recently a large amount of interest has been shown in
multiprocessor computers, most commercial machines use only a
small number of processors; the CRAY X-MP, regarded by many as

a state of the art multiprocessor supercomputer has a maximum

of only four processors. Some academic multiprocessors use

rather more processing elements and these are dealt with in the
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1.2 Classification Schemes

Several schemes have been proposed for the classification
of multiprocessor computers, however most of these are
inadequate to classify the wide variety of machine types

presently recognised.

A natural classification 1is by the 1level at which
parallelism is implemented within the computer, Hockney and

Jesshope[68)] divide this up into four levels:

1 — Job Level
2 — Program Level

3 - Instruction Level

4L, — Arithmetic and Bit Level

at the job level separate jobs or large sections thereof
are regarded as the units to be executed in parallel. Since

jobs are usually independant these can be executed in parallel

without communication or determinacy problems arising.

At the program level sections of a program that do not
exhibit data dependencies may be executed in parallel on
separate processors, a good example of this are loop constructs
which do not require data exchanges between iterations of the

loop.

Pipelining of the stages of instruction fetch and
decoding has allowed parallelism at the instruction level to

become a commonplace feature of computer architecture.
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At the lowest level parallelism between the operations on
elements of instruction operands 1is possible, e.g. bit

parallel arithmetic or vector arithmetic.

The machine to be described in this thesis would reside
at the top most level of this scheme, the duplication of the

program being regarded as separate jobs using different data.

A very simple taxonomy was presented by Crenshaw in a
NATO conference paper[48] in which computer systems are
regarded as either ’federated’ or ’integrated’. In this scheme
a federated system is one consisting of several computers each
performing a particular task and communicating with the other
processors through I/0 channels. The computers making up a
federated computer may themselves be integrated computers and
need not be identical. An integrated system is one in which
unrelated tasks are performed in a multiprogrammed fashion
within a single computer. This computer may be a monoprocessor
or a multiprocessor sharing common main storage. The key

feature of an integrated computer system is the single job

queue and operating systen.

In this terminology the computing structure presented in
chapter 3 would be regarded as a federated computer made up of
a collection of integrated computers (since it is 1likely that

the nodes would be capable of multiprogramming).

One of the most widely quoted classifications is that of
Flynn{52,68,136,142]. Rather than describing the architecture
of the computer Flynn’s taxonomy relates the instructions and

the data being processed. Flynn identified four cases of the
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relationships between the iInstruction stream(s) and data

stream(s):

SISD — Single Instruction stream, Single Data stream

SIMD — Single Instruction stream, Multiple Data stream
MISD — Multiple Instruction stream, Single Data stream

MIMD - Multiple Instruction stream, Multiple Data stream

the first of these represents the serial computer
architecture. The SIMD architecture is one in which a single
instruction operates on multiple data, a good example being a
vector instruction, | The MISD case is on first inspection
meaningless since it implies that multiple operations are being
performed on a single data item simultaneously, however in a
later paper Flynn[51] suggest that special streaming
techniques, such as the pipeline where different instructions
are applied to the data stream as it passes through the
machine, are included in this group. The final group, the MIMD
machines, includes all multiprocessor configurations, the lack
of distinction between different types of multiprocessor being
the main deficiency of Flynn’s taxonomy. The system presented

in chapter 3 falls in this MIMD category.

A classification based on the organisation of the
computer from its constituent parts was provided by

Shore[138,68,136] in 1973. Shore’s classification provides six

cases of processor:

I — Word serial, Bit parallel

II - Word parallel, Bit serial

III - Orthogonal computer (Bit parallel and/or Bit slice)
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IV - Unconnected array
\' — Connected array

VI - Logic in memory array

type I 1is the traditional serial computer architecture
and type II is a bit slice processor. The orthogonal computer,
type III is effectively a combination of types I an II being
able to access data in two perpendicular directions. Type IV
is an array of unconnected processors under the control of a
single ;ontrol unit, type V 1is similar except that the
processors are connected to permit communication. Type V, the
final type consists of memory with processing units distributed
throughout it as in associative processors. This
classification does not adequately cover 1loosely coupled
processors 'such as direct connection network computers{87] of
which the structure presented in chapter 3 is an example, these

being regarded as multicomputers rather than a multiprocessor.

Hockney and Jesshope[68] propose a structural notation
not unlike that used by chemists to indicate chemical formulae
as a means of expressing computer architecture. This provides
a comprehensive scheme for description of computer
architectures which is then used in the presentation of a
computer taxonomy as a set of decision trees. Zakharov[161] is
critical of this scheme as being too cumbersome to be useful,

also, as in the scheme of Shore, network computers are not

included in the classification.

Sharp[136] provides four cases as an extension of the

scheme of Flynn, these are:
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SES — Single Processor, Scalar Data
SEA — Single Processor, Array Data
MES — Multiple Processors, Scalar Data

MEA — Multiple Processors, Array Data

the last two of these being subdivisions of Flynn’s MIMD

group.

Other schemes have been proposed by both Kuck and

Schwartz, the scheme presented by Kuck 1is an extension of
Flynn’s taxonomy by the addition of an execution stream

providing for 16 system types in all and that of Schwartz

provides a taxonomic table based on 55 designs.

None of the schemes are entirely satisfactory, since, as
Hockney and Jesshope state, it 1is quite possible for computers

to have characteristics which belong in more than one section

of the classification.

1.3 Current Computer Research

1.3.1 Electronic Parallel Processors

A large number of parallel processing architectures are
the subject of ongoing research, most of these involve some
form of multiprocessor. Several authors have surveyed the
machines and architectures
investigated{135,127,104,2,142,82,65]. Implementation of
entire machines in VLSI has been the subject of considerable
research and an influential factor in the selection of many

architectures such as repeated processor and switch units which

can be configured by appropriate switch settings as in the CHiP
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architecture([140], VLSI array processors{146] and various

others{133}.

1.3.1.1 Direct Networks

In direct networks a number of processors (nodes), each
with its own independant memory are connected to some (or in
the case of full connection, all) of the other processors which
comprise the system by a dedicated communication mechanism
(links). These networks are static since the connection
pattern is unchanging unlike indirect networks described in
section 1.3.1.2. There is an enormous variety in the
connection schemes currently being considered, the schemes
usually exhibit regularity and some of the more commonly
investigated schemes are the ring (an extension of which, the
cylinder, is used as the connection scheme in chapter 3), tree,
mesh (toroidal mesh), hypercube and shuffle—exchange
networks([133,50]. Such networks are easily constructed from
identical processing nodes, such as the DIRMU multiprocessor
node[62] or the MDP[33] or the
TRANSPUTER[11,102,156,148,155,78,101], though in such a case it
is desirable for all nodes to have the same degree (number of
links) and for this to remain constant regardless of the size
to which the machine is expanded. This increase in the degree
of nodes with size is one of the main disadvantages of one of
the most widely investigated topologies, the
hypercube[113,147,115]. A closely related architecture which
overcomes this difficulty are the cube connected cycles and
extended cube connected cycles topologies[133,50]), in which the

processors at the vertices of the hypercube are replaced by
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cycles (rings) of processors; such a topology can be realised

with processors of degree three.

Completely connected machines are rarely encountered

owing to the high degree required of the processors making up
such a system for large numbers of processors. The HPDM[91]}
has five TRANSPUTERS completely connected and in addition uses
shared memory to communicate with a similar number of more
conventional CLIPPER processors which are connected together
with a parallel bus. The HPDM may be connected to other HPDMs

by an ETHERNET or X.25 network.

1.3.1.2 Indirect Networks

Indirect or dynamic networks fall into one of three major
classes; single stage, multistage and crossbar, Feng{50] gives
a description of such networks and the uses to which they are
put. Single stage networks are also called recirculating
networks since data may have to be recirculated several times
before it reaches its destination. They are used in cycling
machines{132], the GFll supercomputer[l7] uses a 3 stage
network in a cycling scheme. Multistage and crossbar networks
are frequently used to connect processors to memory units, the
interconnection network permitting access to any of the memory

units by any of the processor units.

The Remps machine{[73)] users a global network to allow
memory sharing between processors but in addition uses two
other networks, one to allow I/0 communication mapping and the

second, a one sided network, to allow interprocessor

communication without memory sharing.
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One sided networks, referred to occasionally as full
switches, allow any of the processors attached to communicate
with any of the other processors attached, unlike two sided

networks which allow any of the inputs to connect to any of the

outputs, Almasi[2] refers to these as the ?*boudoir? and
*dancehall?® arrangements respectively. The IBM RP3[73] is a
current example of the application of a one sided network to

interprocess communication.

1.3.1.3 Bus Systems

Bus systems use single or multiple parallel busses to
permit data exchange between several units connected to the bus
in a random access fashion. This free interconnection of
devices as compared with say direct network machines readily
allows many conceptual interconnection schemes to be mapped on
to the parallel bus. The critical component is largely the
bandwidth of the bus, 1limited by the number of physical
connections possible. The general any to any connection
possibility of the bus was one of the main reasons for its
adoption to connect the vector processors of the MU6V[75].
This general mapping allows bus connections to be applied in a
variety of environments such as Message-Passing[126] and Data
Flow[150]. This argument also applies to other globally shared
medium communications such as those used in Local Area

Communications as in the TUMULT ring[130].

Multiple buses lend themselves to a hierarchical scheme,
often referred to as a cluster structure([159] since clusters of

processors may be grouped around a bus, these busses being
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connected by other busses, or, as in the case of MuTeam[30] by
serial asynchronous 1links. The Synapse N+1 system[112], in
common with many systems, uses one or more global buses (the
synapse expansion bus in the case of synapse) to which are

connected lower level buses. The TAMIPS multiprocessor[151)
has up to eight processors connected to its local bus, this
multiprocessor can then be attached to the multibus (IEEE-796)
to .provide for expansibility. The Flex/32[100]) multicomputer
uses a local bus with several processors connected, the
processors may connect to other groups of processors or
input/output devices to provide for expansibility. There are
several busses in use, VME, Multibus (as used in the Sequoia
computer[98})), Futurebus and others. FERMTITOR[125] uses 1local
buses in a ring, the buses making up the ring being connected
by station latches which deal with data transfers between
devices not connected to the same bus. By varying the number
of buses and number of devices connected to each bus this

architecture may be ?tuned? to the data access pattern.

1.3.1.4 Cellular Array Processors

The array processor (SIMD) architecture in which arrays
of very simple processors can communicate with adjacent
processors is of considerable interest especially with a view
towards incorporating large numbers of processors‘onto a single
VLSI device. An example of such a VLSI device is the ITT
CAP-II chip[107] which has a 4 X 4 array of 16 processors each
working with 16 bit words. Mishin and Sedukhin[106] discuss
the behaviour of such an adjacent communication cellular

computer system and its performance for a number of problems.
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Control for such an array of processors is generated from

one central control mechanism with little independant activity

by the individual processors. It is possible to transfer some
of the centralised control to the individual processors but

still maintain an overall central control. In such cases the
SIMD nature of the architecture becomes 1less clear as the

control tends towards completely independant operation as in

MIMD architectures.

1.3.1.5 Systolic and Wavefront Arrays

The systolic array is a possible example of a halfway
house between SIMD and MIMD operation, there being an array of
processors, each performing computations under a global scheme
of synchronisation and control but with each processor
performing a distinct function not necessarily the same as that
of the other processors. In the systolic array[l132] an array
of processors synchronously read input data from their
immediate neighbours, performing some computation on this data
and writing the outputs to their neighbours. Such arrays are
termed systolic arrays because the way the data flows within
them is reminiscent of a heartbeat. Normally data such as
matrices are fed into one or more parts of the array, the flows
of data and intermediate results through the array intefacting

so as to produce the desired result which appears from the

outputs of some or all of the processors.

The array need not be planar and may possibly contain

closed loops or be switched dynamically as in the nonplanar

array of Aravena and Porter{10). Unlike most systolic arrays



HISTORICAL REVIEW 22

which do not store values but process values and output the
results the OCSAMO systolic array(l] uses internal registers to
allow values to be held and used in later stages of the

computation. The Warp computer[5] has demonstrated practical

application of a systolic array to a variety of problems.

Closely related to the systblic array 1is the w-avefront
array, this is an asynchronous version of the systolic array.
The wavefront array is made up of an array of processors
connected as in the systolic approach but in the case of a
wavefront processor the processors operate in an asynchronous
data driven fashion[85], this has been expressed by Kung

et al{89] as :

Wavefront Array = Systolic Array

+ Dataflow Computing

the processors in the wavefront array only performing
actions when all of the required data is present at its inputs.

The name wavefront derives from the way data propagates through

the array in waves relating to each group of data items

supplied.

1.3.1.6 Data Driven and Demand Driven Computing

The dataflow([40,111] model of computing and possible
machines using this model have received considerable attention.
In the dataflow or data driven model of computing an
instruction (actor) is executed when all of 1its required
operands are available, the dataflow program consists of a flow

graph with actors on the nodes and data items flowing over the
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arcs. Data driven operation is asynchronous in that the data
is passed on to the next actor as soon as the result is
produced. The data driven concept is applicable at any level
of grain, the machine presented in this thesis possibly being
regarded as a dataflow machine with the grain level being the
entire processing required rather like a large grain parallel
codeblock data flow scheme[23]. A variety of machines have

been proposed and built{153,61,25,150,46] and have now reached

the stage of a commercial product[149,81].

The principle divisions within dataflow computers are
those of static and dynamic. In a static machine such as the
HDFM (Hughes Data Flow Machine){24] the dataflow graph 1is
mapped onto one or more processors in a fixed (static) pattern,
each processor being active only when one of the dataflow
actors it has been allocated is active. In a dynamic machine
such as the Manchester Data Flow Machine[61] any processor may

deal with any actor that is ready for execution.

Dataflow has been modified and combined with other
schemes such as the combination of control and dataflow of
Maeng and Cho[96] and the suggestion by Sowa[l41l] that
performance of a dataflow multiprocessor may be improved by
using a program counter in a more traditional type of approach

for the serial parts of dataflow computations.

The demand driven model is the converse of data driven,
the computation begin broken down into a similar flow graph but
the execution of an instruction being initiated when its result

is requested rather than when its operands become available.

This request for results triggers requests for arguments on the
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instruction input arcs, requests being passed back as necessary

until data is available.

1.3.1.7 Other Schemes

There are many other multiprocessor architectures, some
are combinations of mechanisms described above such as the
OPSILA computer[12,13] which uses a vector processor combined
with and driven by a scalar processor, many other architectures
can be regarded as extensions of those presented above; in the
logic architecture where a certain goal is unified with
particular definitions the request of a goal initiates a search
for the definitions necessary to obtain the results in a manner
similar to that in demand flow[65], the processing being

carried out by a Parallel Inference Engine[66].

1.3.2 Digital Optical Computers

In contrast to computing using the passage of electrons
through conductors computing machines have been proposed and
constructed which operate using the transmission of photons,
usually in the form of laser light. Both digital and analogue
computers have been designed[128] though of particular current
interest are digital optical computers. Lohmann{95] lists four

principle motivations for the development of digital optical

computers:
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1 — Optical Subsystems

2 — Very Fast Optical Gates

3 -~ Immunity against electromagnetic interference

4 — Highly parallel processing with global

interconnections

and of these the last has been expressed as being of

greatest importance by Wherret[154].

A variety of schemes have been proposed to perform
processing on information expressed as patterns of 1light
intensities, Ichioka and Tanidal[{76] describe a system of
overlapping shadow ﬁatterns that allow the sixteen possible
logical functions of the pixels of two binary patterns to be
generated and many systems employing some form of spatial light
modulator (SLM) have been described, an SLM being essentially a
mask programmable by incident light intensity allowing a wide
variety of functions to be performed on two-dimensional data (a
useful comparison of commercially available SLMs is to be found
in [18]). Non—-linear optical devices (those in which the
transmissive properties of the device vary with the applied
light intensity) can be used to perform logical operations if
the device has a threshold in the output/input transmission
characteristic[71] and the combination of a non-linear element
with positive feedback may be used to create bi—-stable elements
such as the Fabry—-Perot cavity[l8)]. These bi-stable elements

can be used as latches and to create state machines opérating

on a large number of pixels simultaneously.
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The ability to perform operations on two-dimensional data
provides the highly parallel processing referred to above and

holographic techniques permit optical interconnection or

coordinate transforms of this two-dimensional data on an any to

any basis without the problems of physical siting and crosstalk

of comparable electronic interconnections.

The advantages of optical connections in terms of
bandwidth and the removal of the CR time constant limitation
inherent in any electronic connection along with the global
interconnection possibilities and non—interference of
overlapping communication paths has stimulated investigation of
hybrids of electronic circuits and optical interconnections;
Goodman et al1[59] discuss the possibility of using integrated
optics and/or fibres for the distribution of clock signals and
the use of holographic elements for global interconnections in
a VLSI environment and Bell[18] describes various
interprocessor connection schemes using optics, including an

optical crossbar switch.

Interfacing to an optical computer should be immediately
feasible since optical storage and communication methods are
already well established and electronically controlled optical
switches are available, using materials which change their
refractive index depending upon the strength of an applied

magnetic field[123].
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1.3.3 Biological Computers

Some proposals and discussion of computers based on
biological materials have appeared in the literature[29]. None
of these have proceeded further than the stage of discussion
and it has been suggested[123] that a biological computer
already exists in the form of the human brain and that any
biological computers are likely to share the weaknesses of it

that have inspired the development of other computing

mechanisms.

1.4 Computers in Experimental High Energy Physics

Both theoretical and experimental physics research are
making greater and greater demands of computer processing
power, particularly in the field of High Energy Physics
(HEP)([{31,162] for a variety of purposes. Mount[109]
illustrates the need for parallel processing techniques in HEP
particularly with respect to vector and pipeline processors and
discusses software details for such machines and Kunz[90]}
provides a brief resume of vector and parallel processing
applied to HEP. A multimicroprocessor suitable for
computationally intensive theoretical physics is presented by
Christ and Terrano[26], the processor being made up of Intel
80286 /287 microprocessors and floating point vector processors
in a planar array. Computers have also found a wide variety of
uses in experimental work, the systems briefly surveyed here
will be concerned mainly with data acquisition, data

acquisition in this case being taken to include some degree of

pre-processing.



HISTORICAL REVIEW 28

Computers in eXxperimental High Energy Physics serve
functions of both control and data acquisition though the two
roles are not distinct since the same communication paths are

frequently used for both, and acquired data is often used to

make control adjustments (ie feedback).

Most control and data acquisition systems incorporate a
selection of microprocessors and minicomputers in a networked
scheme[19,9] though some complex control systems, such as those

used for fusion experiments, require the use of a

multiprocessor([84]. Many experiments require real time
processing for control and data acquisition with the ability to
respond to asynchronous interrupts quickly, hierarchical
structures utilising a central controller interacting with and
distributing work to sub-processors have been presented for

this type of work[6,124].

Frequently encountered in High Energy Physics are systems
utilising high speed front end electronics (for coincidence
detection, thresholding etc) followed by successive levels of
processing to filter out unwanted or ’noise’ events{7,131,28],
the data acquisition system described in chapter2 for Daresbury

Laboratory falls into this group.

Though many theoretical ﬁEP computing tasks may be
efficiently vectorised experimental computing does not often
run efficiently on vector or pipelined machines; however much
of the processing is of totally independant ’events’ which can
be readily processed in parallel on separate processors leading
to the concept of processor farms[108]. These farms take the

form of several identical processors, an events being passed to



HISTORICAL REVIEW 29

the next available processor for processing, the structure
described in the following chapters is a structure to allow a
multimicroprocessor to be used in the fashion of a processor

farm.
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CHAPTER 2

2 COMPUTING REQUIREMENT

2.1 Introduction

The computing structure that forms the basis of this
thesis was principally intended to process experimental data
from experiments in High Energy Physics, a field that in both

its theoretical and experimental requirements demands ever

increasing amounts of computation, as has been noted by
Creutz[31]. Though currently available computing hardware can
achieve very high rates of data processing the large volumes of
data being created from experiments in HEP take long periods of
‘number crunching?® after the experiment has taken place. This
situation is far from ideal since many of the experiments
performed require run time adjustments to be made in the light
of the data obtained and since the experiments are inherently
complex and the detectors used are rather fragile immediate

feedback of any failures, indicated by the change in the

processed output data, would be highly desirable.

2.2 Present Data Collection System

The niche in which the computing system had to reside 1is
illustrated by a brief description of the present computing
facilities used for data acquisition for the NSF at Daresbury
Laboratory. The following is a brief summary of the facilities
for data acquisition, more detailed information being available

in the relevant manuals[38,34,36,37,35]. The main elements of
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the data acquisition and processing system at the NSF at

Daresbury Laboratory are shown in fig 2.1.
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2.2.1 Experiments and Detectors

The experiments performed involved high energy beams of
particles fired into various experimental arrangements as

required by the experimentor; the principle type of data
collected was that of particle type and energy as reaction
products emerged from the experiment, using detectors either
singly or in multiple arrangements{[60,137] to give analogue
signals corresponding to one or more parameters of the particle

detected. The experiments were run on a continuous basis

rather than as a set of discrete firings.

The data from the analogue detectors is correlated for
coincidence by fast electronics, non—-correlated signals being
ignored, before being converted into digital format using
Nuclear Instrument Module (NIM) standard compatible analogue to
digital converters (ADCs). These ADCs permit analogue windows
to be set, pulses outside of the specified range of wvalues
being ignored by the ADC; this being the only hardware
filtering of the values received from the ADCs available to the
experimentor. Each group of correlated data are considered

together and termed an event.

It is possible for data other than that from ADCs to be
included in an event, however such data can only be taken from
devices which are plug compatible with the ADCs and the data

will be taken and processed as 