
A COMPUTING STRUCTURE FOR DATA ACQUISITION IN HIGH ENERGY PHYSfCS--

by

GARRY ALEXANDER LESTER

Submitted for the Degree of

Doctor of Philosophy

at the

University of Salford

in the

Department of Electronic and Electrical Engineering

1988

MCIMLXXXVIII

Volume I

To Someone, possibly as yet un-met.

My theory that I have follows the lines that

I am about to relate

Anne Elk (Miss) (circa 1970).

Contents

ACKNOWLEDGMENTS xiv

ABSTRACT xv

CHAPTER 11

HISTORICAL REVIEW 1

1.1 History of Computing I

1.1.1 Mechanical Calculating Engines 1

1.1.2 Electro-Mechanical Computing Machines 3

1.1.3 Electronic Computers 3

1.1.4 Mechanisms For Introducing Parallelism 4

Multiprocessors 5

Multifunction Processors 5

Processor Arrays 5

Pipeline Processing 6

1.1.5 Scalar and Vector Processors 6

1.1.5.1 Scalar Processors 7

1.1.5.2 Vector Processors 8

1.1.6 Processor Arrays 9

1.1.7 Array Processors 10

1.1.8 Orthogonal and Associative Processors 10

1.2 Classification Schemes 12

MCMLXXXVIII

CONTENTS V

1.3 Current Computer Research 16

1.3.1 Electron ic Parallel Processors 16

1.3.1.1 Direct Networks 17

1.3.1.2 Indirect Networks 18

1.3.1.3 Bus Systems 19

1.3.1.4 Cellular Array Processors 20

1.3.1.5 Systolic and Wavefront Arrays 21

1.3.1.6 Data Driven and Demand Driven

Computing 22

1.3.1.7 Other Schemes 24

1.3.2 Digital Optical Computers 24

1.3.3 Biologic al Computers 27

1.4 Computers in Experimental High Energy Physics 27

CHAPTER 2 30

2 COMPUTING REQUIREMENT 30

2.1 Introduction 30

2.2 Present Data Collection System 30

2.2.1 Experiments and Detectors 33

2.2.2 The Event Manager 34

2.2.2.1 Operating Features 34

2.2.2.2 Singles Mode 34

2.2.2.3 Biparameter Interface 35

2.2.2.4 Multiparameter Event Handling 36

MCMLXXXVIII

CONTENTS

2.2.3 Limitations and Bottlenecks 37

2.2.3.1 Current Data Rates 38

2.3 Design Aims 38

2.4 Processing by Look-Up Table 39

2.4.1 Estimation of Memory Requirements 39

2.5 Analytical Solution 40

2.5.1 Serial Nature of Data Taking 40

2.5.2 Parallel Requirement of Processing 41

2.5.3 Event Nature of Data 41

2.5.4 Possible Granularity of Parallelism 41

vi

CHAPTER 3 42

3 THEORETICAL CONSIDERATIONS 42

3.1 Introduction 42

3.2 Processor Criteria 42

3.3 Assumptions on the Form of the Data 45

3.4 Possible Structures 45

3.4.1 Bus Connected Structures 45

3.4.2 Direct Network Computers 46

3.4.2.1 Usage Pattern 47

3.4.2.2 Tree Structures 47

3.4.2.3 Pyramid Structures 48

MCMLXXXVIII

CONTENTS vii

3.4.2.4 Ring Structure 49

3.4.2.5 Cylindrical Structures 49

3.4.2.5.1 Feed Mechanism 50

3.4.2.6 Distinct Node Flow Models 51

3.4.2.6.1 Single Ring 53

3.4.2.6.2 Cylinder 61

3.4.2.7 Homogeneous Flow Model 72

3.4.2.7.1 Cylinder 72

3.5 Relationship To Other Topologies 79

3.6 Relationship to Other Systems 80

3.7 Fault Tolerant Nature of a Cylinder 81

3.7.1 Path Redundancy 81

3.7.2 Link Failure 82

3.7.2.1 Distinct Node Case 82

3.7.2.2 Homogeneous Node Case 82

3.7.3 Processor Failure 83

3.7.3.1 Data Sink Failure 83

3.7.3.2 Data Source Failure 83

3.7.3.3 Faulty Processing Failure 84

3.7.4 No-Action Resilience to Faults 85

3.7.5 On-Line Replacement of Processors 86

3.7.5.1 Reprogramming 86

3.7.5.2 Hardware Requirement 87

3.8 Distributed Depth First Search 88

3.8.1 Development of the DDFS Algorithm 89

I MCMLXXXVIII

CONTENTS viii

3.8.2 Circuits and Self-Loops 91

3.8.3 Use of Multi-Programming 91

3.8.4 Use of DDFS for testing 92

CHAPTER 4 94

4 SIMULATION OF PROCESSING STRUCTURES 94

4.1 Introduction 94

4.2 Processing Element Model 94

4.3 Communication Hardware Model 95

4.4 Iterative Nature of the Simulation 95

4.5 Communication 96

4.6 Data Input Mechanism 96

4.7 Computation 98

4.8 Performance Indicators 99

4.9 Startup Effects 99

4.10 Preferential Communication Algorithms 101

4.11 Distinct Node Simulations 101

4.11.1 Data Routing Information 102

4.11.2 Ring Simulation 102

4.11.2.1 Algorithms Investigated 102

MCMLXXXVIII

CONTENTS ix

4.11.2.2 Performance of the Algorithms 104

4.11.2.2.1 Communication

Bound 105

4.11.2.2.2 Intermediate Data

Types 109

4.11.2.2.3 Computation Bound 114

4.11.3 Cylinder Simulation 116

4.11.3.1 Algorithms Investigated 116

4.11.3.2 Performance of the Algorithms 119

4.11.3.2.1 Communication

Bound 119

4.11.3.3 Larger Data Types 122

4.12 Homogeneous Processing Simulation 138

4.12.1 Ring Simulation 138

4.12.1.1 Algorithms investigated 138

4.12.1.2 Performance of the Algorithms 139

4.12.2 Cylinder Simulation 143

4.12.2.1 Algorithms Investigated 143

4.12.2.2 Performance of the Algorithms 145

4.12.2.2.1 Processing

Throughput 145

4.12.2.2.2 Fault Tolerance 158

CHAPTER 5

5 PRACTICAL METHODOLOGY

169

169

MCMLXXXVIII

CONTENTS

5.1 Introduction 169

5.2 Hardware Overview 169

5.2.1 Processor Memory Configuration 170

5.2.2 Communication Protocol Selection 171

5.2.3 Additional Input/Output Facilities 171

5.2.4 Power Supply and Physical Support 172

5.2.5 External Communication Interface 172

5.3 Interface Board Design 172

5.3.1 Serial Communication Protocol 172

5.3.2 Availability of Suitable Devices 174

5.3.3 Transmit Receive Synchronisation 174

5.3.4 Receive Circuit 176

5.3.5 Transmit Circuit 177

5.3.6 Interface to RS-232 C 178

5.3.6.1 Parallel Bus simulation 179

5.3.6.2 Control Logic 179

5.3.6.3 Clock Generation 181

5.4 Processor Board Design 181

5.4.1 Link Status Latches 182

5.4.2 PIO Addressing 184

5.4.3 Link Addressing 184

5.4.4 Memory Decoding 185

5.4.5 Clock Generation 186

5.5 Hardware Construction 187

MCMLXXXVIII

CONTENTS xi

5.6 Software Overview 188

5.6.1 Programming Languages 188

5.6.2 Process Scheduling Mechanism 190

5.6.3 Communication Data Structures 192

5.6.4 Communication Functions 193

5.6.5 Inter-Process Communication Addressing 194

5.6.6 Link Table Structure 194

CHAPTER 6 197

6 PRACTICAL IMPLEMENTATION 197

6.1 Introduction 197

6.2 Programming Methods 197

6.2.1 Circuit Switching 197

6.2.1.1 Storage Requirements 198

6.2.1.2 Programming Time 198

6.2.2 Identical Mutual Programming 199

6.2.2.1 Storage Requirements 200

6.2.2.2 Programming Time 200

6.2.2.3 Simultaneous Programming 201

6.2.2.4 Error Correction Mechanisms 202

6.2.2.5 Programming Algorithm Adopted 203

6.2.2.6 Differing Processor Functions 206

6.3 Data Processing 207

6.3.1 Data Format 208

MCMLXXXVIII

CONTENTS xii

6.3.2 Data Supply 209

6.3.3 Data Display 209

6.3.4 Processing Behaviour 210

6.3.4.1 Distribution Preservation 210

6.3.4.2 Processing Speedup 211

6.3.4.2.1 Ring 211

6.3.4.2.2 Column 213

6.3.4.2.3 ILI Structures 215

6.3.4.3 Fault Tolerance 216

6.3.4.4 Lost Events 217

6.4 Distributed Depth First Search Algorithm 217

6.4.1 Initial Implementation 217

6.4.2 Multiprocessing Implementation 222

CHAPTER 7 226

7 EVALUATION AND CONCLUSIONS 226

7.1 Summary 226

7.2 Evaluation 227

7.3 Further Research 228

7.3.1 Processor Selection 228

7.3.2 Node Structure 229

7.3.3 Data Supply 229

7.3.4 Data Retrieval 230

7.3.5 Programming Error Correction 230

MCMLXXXVIII

CONTENTS xiii

7.3.6 Algorithm Development 230

7.4 Final Implementation 231

7.5 Conclusions 231

REFERENCES 233

APPENDICES Vol II

MCMLXXXVIII

xiv

ACKNOWLEDGMENTS

I wish to thank my supervisor Dr CA Owen for allowing me

the freedom to approach this research in a largely independant

way whilst providing constructive advice when this was sought.

I would also wish to thank Dr ECG Owen and his colleagues at

Daresbury Laboratory for opening up this avenue of research to

me. Finally I would acknowledge Dr R Vaughan-Williams for

having written such a splendid set of symphonies which have

frequently proved a source of inspiration, particularly the

Fourth in F minor.

xv

ABSTRACT

A review of the development of parallel computing is

presented, followed by a summary of currently recognised types

of parallel computer and a brief summary of some applications

of parallel computing in the field of high energy physics.

The computing requirement at the data acquisition stage

of a particular set of high energy physics experiments is

detailed, with reference to the computing system currently in

use. The requirement for a parallel processor to process the

data from these experiments is established and a possible

computing structure put forward.

The topology proposed consists of a set of rings of

processors stacked to give a cylindrical arrangement, an

analytical approach is used to verify the suitability and

extensibility of the suggested scheme. Using simulation

results the behaviour of rings and cylinders of processors

using different algorithms for the movement of data within the

system and different patterns of data input is presented and

discussed.

Practical hardware and software details for processing

equipment capable of supporting such a structure as presented

here is given, various algorithms for use with this equipment,

e. g. program distribution, are developed and the software for

the implementation of the cylindrical structure is presented.

xvi

Appendices of constructional information and all program

listings are included.

1

CHAPTER I

I HISTORICAL REVIEW

1.1 History of Computing

1.1.1 Mechanical Calculating Engines

The earliest automatic computing engines appeared in

europe in the early seventeenth century, and were purely

mechanical in operation. According to Hayes[641 the earliest

of these was one designed and built in 1623 by Wilhelm

Schikhard, of far more influence however was the machine built

by Blaise Pascal in 1642 though even this later machine was

only capable of addition and subtraction. The next notable

event was the construction in about 1671 by Gotfried Leibniz of

a calculator capable of addition and subtraction in the manner

of Pascal's machine and also multiplication and division.

These machines were largely regarded as academic curiosities

until mechanical calculators were exploited commercially in the

19th century.

The next major figure was Charles Babbage, he proposed

two mechanical computers, the now famous Difference Engine

(begun in 1823) and Analytical Engine (conceived in 1834).

Neither machine was completed for a variety of reasons but

probably principally because both machines were very

adventurous and required rather better mechanical engineering

than was available at the time.

HISTORICAL REVIEW 2

The difference engine of Babbage was conceived for the

purpose of automatic computation of astronomical tables using

only addition and subtraction by the method of finite

differences, hence its name. Babbage had been greatly

impressed by the number of errors in manually computed tables

and his difference engine was intended to not only calculate

the entries of a table but to transfer these results

immediately to an engravers plate using steel punches.

The Analytical Engine was conceived as performing any

mathematical operation automatically and the final design

exhibited many of the main elements of the electronic computers

built over a century later. The analytical engine was to have

two main parts: the store, a memory unit consisting of sets of

counter wheels, corresponding to the cathode ray tubes, mercury

delay lines And bistable electronic circuits used as memory in

electronic computers, and the mill, corresponding to a modern

arithmetic logic unit being capable of performing the four

basic arithmetic functions.

Babbage proposed to control the machine using punched

cards not unlike those developed for use with the Jacquard

loom. There were to be two sets of cards, operation cards,

used to control the operation of the mill and variable cards,

used to select the memory locations to be used as the sources

of operands and the destination of results for a particular

operation. One of the most significant contributions of

Babbage's proposals was a mechanism to allow the sequences of

operations to be changed automatically, in modern terms

unconditional and conditional branch instructions.

HISTORICAL REVIEW 3

The earliest known reference to parallelism in computer

design is thought to be in a Sketch of the Analytical Engine

Invented by Charles Babbage by General LF Menabrea in 1842

according to Hockney and Jesshope[681. Though parallelism was

not incorporated in Babbage's analytical engine he was clearly

aware of the possibility of its application to improve

performance over a century before the technology was available

to make its large scale application possible. Though neither

of Babbage's engines were constructed mechanical four function

calculators were in widespread use from early in the nineteenth

century until electronic calculators became widely available

cheaply in the latter half of the 20th century.

1.1.2 Electro-Mechanical Computing Machines

In the 1930s and 1940s]Konrad Zuse built several

electro-mechanical computers, apparently unaware of the work of

Babbage, Z3 built around 1941 is believed to be the first

operational general purpose program controlled computer,

however this work was interrupted by the second world war and

had little influence on later machines. A more influential

machine was the Harvard Mark I (originally called the Automatic

Sequence Controlled Calculator) proposed in 1937 by Howard

Aiken, which was completed by IBM in 1944.

1.1.3 Electronic Computers

The first purely electronic, as opposed to

electro-mechanical, computers appeared in the late 1930s and

early 1940s, the first general purpose electronic computer

HISTORICAL REVIEW

probably being ENIAC (Electronic Numerical Integrator and

Calculator) built at the University of Pennsylvania. Though it

weighed 30 tons and contained 18,000 electronic valves it was

around 1000 times faster than the Harvard Mark I, taking 3 mS

for a 10 digit multiplication.

The first machines employing the stored program concept

in which program and data reside together in the same memory

unit appeared at the end of the 1940s, with EDSAC at the

University of Cambridge and EDVAC at the University of

Pennsylvania.

It is interesting that at this time the possibility of

using serial arithmetic, with the consequent reduction in

hardware required, was regarded as an advantage of the speed of

electronic components over mechanical machines which had

performed their arithmetic in parallel.

1.1.4 Mechanisms For Introducing Parallelism

Despite the speed advantages of electronic computers over

mechanical and electro-mechanical machines greater processing

rates were soon required. Though some improvement in

processing speed was achieved through improvements in the speed

of electronic components major improvements were achieved

through parallelism; the fundamental techniques for introducing

parallelism are briefly described here before their discussion

in a historical context.

HISTORICAL REVIEW 5

There are several techniques for introducing parallelism

as listed by Sharp[1361 these are; Multiprocessors,

Multifunction Processors, Array Processors and Pipeline

processing. Each of these techniques involves replication of

some or all of the computer architecture at varying levels.

Multiprocessors

Multiprocessors involve duplication of the entire

computer, computers making up the machine using some

communication scheme to coordinate their actions. A variety of

communication schemes are the subject of current research;

shared memory, shared bus and direct interprocessor connections

for examples. The major problems with multiprocessors are

those of communication and synchronisation of the processors

and of decomposition of the task into suitable units to be

performed in parallel. Multiprocessors are dealt with further

in the survey of currently researched processor types in

section 1.3.

Multifunction Processors

If units within a processor are replicated such as

floating point processors, then it is possible to perform

several operations simultaneously within a single cpu.

Processor Arrays

The development of processor arrays is dealt with fully

in section 1.1.6. In a processor array a large number of

processors are made to perform the same operations

HISTORICAL REVIEW 6

simultaneously but on different sets of data. Usually some

mechanism for data exchange between the processors is provided.

Though such machines can achieve high processing rates for the

large number of problems that can be reformulated for such a

processing scheme they are not efficiently applied to all

problems. The term array processor frequently used for such

computers is not used consistently as is illustrated in section

1.1.7.

Pipeline Processing

Pipeline processing is applicable when long sequences Of

instructions are to be repeated for different data. A

production line type of approach can be used to overlap an

instructions execution with the execution of the preceding

instruction on the following item of data in the sequence. It

is common to combine pipeline processing with one or more other

techniques for introducing parallelism.

1.1.5 Scalar and Vector Processors

There are several techniques that have been used to

achieve speed up through the implementation of parallelism.

The development of parallelism as applied to Itraditional9

architectures is presented. This account is based on those by

Hockney and Jesshope[681 and Sharp[1361.

All parallelism requires some additional hardware,

usually in the form of replication of some part of the

architecture already present, the level of replication and the

way it is used varying depending upon the scheme to be

HISTORICAL REVIEW

implemented.

7

The pilot ACE and the commercial machine derived from

this, the English Electric DEUCE, first constructed in 1951 had

several features to permit parallel operations to be carried

out. The input/output devices (a card reader and card punch)

could operate in parallel with the rest of the machine and also

instructions were available to operate on all of the words in

one of the eleven mercury delay lines with a single

instruction, what would now be classed as vector instructions.

During the 1950s several important advances were

introduced, represented by the IBM commercial machines of the

period which incorporated bit-parallel arithmetic, and later

1/0 channels which were in essence dedicated 1/0 processors,

these were the earliest multiprocessors.

At about this time some consideration was given to large

scale multiprocessor designs, however the programming of such

systems has several problems and most of the commercial

development was towards introducing parallelism into scalar

computers (computers operating on data items comprising single

values only) to achieve higher computing speeds.

1.1.5.1 Scalar Processors

Multiple functional units allowing arithmetic operations

to be performed in parallel and pipelining where stages of an

operations execution are overlapped with later stages in a

previous operations execution (usually employed in the

instruction fetch and decode sequence) became common in

HISTORICAL REVIEW 8

computer architectures of the 1960s. A modern example of a

processor employing multiple functional units is the

CYBERPLUS[721.

Multiple functional units were usually of arithmetic

units, registers and memory, to make use of these in parallel

some degree of lookahead was required to determine which

operations could be performed in parallel. This lookahead

approach allowed the overlapping of instruction decoding,

address calculation and fetching of operands using a pipelining

technique. A good representative example of a machine using

such techniques is the IBM 360/91.

1.1.5.2 Vector Processors

The logical development from scalar machines using

pipelining techniques to achieve high computing speeds was the

construction of vector processors using pipelining techniques.

Vector machines operate on vectors (an ordered group of

numerical values) as a basic unit of data. The most famous of

these are the CRAY machines, the CRAY-1 having regularly

achieved 130 MFlops/sec on appropriate problems.

This is one of the main points about departures from

scalar machines in that the problems must be suitable for the

machine architecture; vector machines exhibit little, if any

improvement over purely scalar processors when performing

purely scalar computations. This dependence upon problem

suitability is clearly demonstrated by the benchmarks of a

CYBER 205 vector processor and a CYBERPLUS scalar processor on

a Monte-Carlo crystal growth model involving a large number of

HISTORICAL REVIEW 9

testing and branching instructions[72).

1.1.6 Processor Arrays

In 1962 a paper of Slotnick et al described the SOLOMON

computer, SOLOMON standing for Simultaneous Operation Linked

Ordinal MOdular Network. This was one of the earliest

references to the concept of'an array of processors, each with

some memory, and all under the control of a central control

stream. Though never built as originally proposed several

important machines developed from this concept, such as the

ILLIAC IV and ICL DAP[491. The ILLIAC IV was not a success,

costing four times its contract figure and never coming within

an order of magnitude of its proposed performance, when finally

operational in 1975, it was however a very influential machine.

ILLIAC IV was, like the engines of Babbage a century before,

too ambitious for the technology available at the time. The

ICL DAP was commercially viable however, the first one being

installed in 1980, this machine had in its production form an

array of 64 x 64 processors, each with 4096 bits of memory and

capable of bit-serial arithmetic on the values held in this

memory, 4096 such calculations being performed in parallel. In

common with the processors of SOLOMON and ILLIAC IV the

processors of the ICL DAP had connections with their nearest

neighbours, in an array pattern from which this genre of

machines get their name. Though these machines used physical

hardware connections to their nearest neighbours an alternative

is to use conceptual links, data being passed via common

memory. In this case there is no definite structure to the

communication pattern between processors, the system being

HISTORICAL REVIEW 10

termed unstructured, the term ensemble was used for such an

arrangement. A notable example of such a machine is the

Burroughs Parallel Element Processor Ensemble PEPE developed in

the mid 1970s which had 288 processing elements, each

containing three processors (one each for input of radar

signals, processing of data and output of control signals)

controlled by three control units for the three types of

processor within each processing element. When necessary

communication between the processing elements took place via

the memories of the control units.

1.1.7 Array Processors

Many special purpose computers have been produced for

processing large amounts of data, usually in the form of

arrays, these tend to be referred to by the generic name array

processors though their architecture does not necessarily

consist of an array of processors. A good example of such

processors are the special purpose devices for Fast Fourier

Transform (FFT) and similar algorithms frequently used in

signal processing applications. A list of the attributes

required of a subset of array processors, peripheral array

processors, has been suggested by Karplus[821 though the

generality of the term array processor is acknowledged.

1.1.8 Orthogonal and Associative Processors

An alternative approach to simultaneously processing all

of the bits of a word in parallel is to do the converse and

process the same bit of several words in parallel. In the

HISTORICAL REVIEW 11

orthogonal computer described by Shooman in parallel computing

with vertical data a 'horizontal unit' for word serial/bit

parallel operations and a 'vertical unit' for bit serial/word

parallel operations were both provided allowing the most

appropriate mechanism of referencing the data to be used.

The notion of testing all words in parallel leads to the

idea of associative processing and content-addressable memory

in which items are referenced by a match between the data and a

given bit pattern or mask rather than by the address of its

location in memory. It is usual to provide both associative

and address reference in a processing scheme though in a purely

associative memory there is no facility to address data by its

position in store.

A series of commercial machines under the name of OMEN

(Orthogonal Mini EmbedmeNt) were produced in the early 1970s,

these used a PDP-11 as the horizontal arithmetic unit and an

array of 64 processing elements as the associative vertical

arithmetic unit.

Several machines based around the orthogonal computer

concept have been built and machines along these lines are the

subject of considerable present research.

Recently a large amount of interest has been shown in

multiprocessor computers, most commercial machines use only a

small number of processors; the CRAY X-MP, regarded by many as

a state of the art multiprocessor supercomputer has a maximum

of only four processors. Some academic multiprocessors use

rather more processing elements and these are dealt with in the

0.

HISTORICAL REVIEW 12

survey of multiprocessor types in section 1.3.

1.2 Classification Schemes

Several schemes have been proposed for the classification

of multiprocessor computers, however most of these are

inadequate to classify the wide variety of machine types

presently recognised.

A natural classification is by the level at which

parallelism is implemented within the computer, Hockney and

Jesshope[681 divide this up into four levels:

1- Job Level

2- Program Level

3- Instruction Level

4- Arithmetic and Bit Level

at the job level separate jobs or large sections thereof

are regarded as the units to be executed in parallel. Since

Jobs are usually independant these can be executed in parallel

without communication or determinacy problems arising.

At the program level sections of a program that do not

exhibit data dependencies may be executed in parallel on

separate processors, a good example of this are loop constructs

which do not require data exchanges between iterations of the

loop.

Pipelining of the stages of instruction fetch and

decoding has allowed parallelism at the instruction level to

become a commonplace feature of computer architecture.

HISTORICAL REVIEW 13

At the lowest level parallelism between the operations on

elements of instruction operands is possible, e. g. bit

parallel arithmetic or vector arithmetic.

The machine to be described in this thesis would reside

at the top most level of this scheme, the duplication of the

program being regarded as separate jobs using different data.

A very simple taxonomy was presented by Crenshaw in a

NATO conference paper[481 in which computer systems are

regarded as either 'federated' or 'integrated'. In this scheme

a federated system is one consisting of several computers each

performing a particular task and communicating with the other

processors through 1/0 channels. The computers making up a

federated computer may themselves be integrated computers and

need not be identical. An integrated system is one in which

unrelated tasks are performed in a multiprogrammed fashion

within a single computer. This computer may be a monoprocessor

or a multiprocessor sharing common main storage. The key

feature of an integrated computer system is the single job

queue and operating system.

In this terminology the computing structure presented in

chapter 3 would be regarded as a federated computer made up of

a collection of integrated computers (since it is likely that

the nodes would be capable of multiprogramming).

One of the most widely quoted classifications is that of

Flynn[52,68,136,1421. Rather than describing the architecture

of the computer Flynn's taxonomy relates the instructions and

the data being processed. Flynn identified four cases of the

HISTORICAL REVIEW 14

relationships between the instruction stream(s) and data

stream(s):

SISD - Single Instruction stream, Single Data stream

SIMD - Single Instruction stream, Multiple Data stream

MISD - Multiple Instruction stream, Single Data stream

MIMD - Multiple Instruction stream, Multiple Data stream

the first of these represents the serial computer

architecture. The SIMD architecture is one in which a single

instruction operates on multiple data, a good example being a

vector instruction. The MISD case is on first inspection

meaningless since it implies that multiple operations are being

performed on a single data item simultaneously, however in a

later paper Flynn[511 suggest that special streaming

techniques, such as the pipeline where different instructions

are applied to the data stream as it passes through the

machine, are included in this group. The final group, the MIMD

machines, includes all multiprocessor configurations, the lack

of distinction between different types of multiprocessor being

the main deficiency of Flynn's taxonomy. The system presented

in chapter 3 falls in this MIMD category.

A classification based on the organisation of the

computer from its constituent parts was provided by

Shore[138,68,1361 in 1973. Shore's classification provides six

cases of processor:

Word serial, Bit parallel

Word parallel, Bit serial

Orthogonal computer (Bit parallel and/or Bit slice)

HISTORICAL REVIEW 15

IV - Unconnected array

V- Connected array

VI - Logic in memory array

type I is the traditional serial computer architecture

and type II is a bit slice processor. The orthogonal computer,

type III is effectively a combination of types I an II being

able to access data in two perpendicular directions. Type IV

is an array of unconnected processors under the control of a

single control unit, type V is similar except that the

processors are connected to permit communication. Type V, the

final type consists of memory with processing units distributed

throughout it as in associative processors. This

classification does not adequately cover loosely coupled

processors such as direct connection network computers[871 of

which the structure presented in chapter 3 is an example, these

being regarded as multicomputers rather than a multiprocessor.

Hockney and Jesshope[681 propose a structural notation

not unlike that used by chemists to indicate chemical formulae

as a means of expressing computer architecture. This provides

a comprehensive scheme for description of computer

architectures which is then used in the presentation of a

computer taxonomy as a set of decision trees. Zakharov[1611 is

critical of this scheme as being too cumbersome to be useful,

also, as in the scheme of Shore, network computers are not

included in the classification.

Sharp[1361 provides four cases as an extension of the

scheme of Flynn, these are:

HISTORICAL REVIEW 16

SES - Single Processor, Scalar Data

SEA - Single Processor, Array Data

MES - Multiple Processors, Scalar Data

MEA - Multiple Processors, Array Data

the last two of these being subdivisions of Flynn9s MIMD

group.

Other schemes have been proposed by both Kuck and

Schwartz, the scheme presented by Kuck is an extension of

Flynn's taxonomy by the addition of an execution stream

providing for 16 system types in all and that of Schwartz

provides a taxonomic table based on 55 designs.

None of the schemes are entirely satisfactory, since, as

Hockney and Jesshope state, it is quite possible for computers

to have characteristics which belong in more than one section

of the classification.

1.3 Current Computer Research

1.3.1 Electronic Parallel Processors

A large number of parallel processing architectures are

the subject of ongoing research, most of these involve some

form of multiprocessor. Several authors have surveyed the

machines and architectures

investigated[135,127,104,2,142,82,651- Implementation of

entire machines in VLSI has been the subject of considerable

research and an influential factor in the selection of many

architectures such as repeated processor and switch units which

can be configured by appropriate switch settings as in the CHiP

HISTORICAL REVIEW

architecture[140],

others[1331.

17

VLSI array processors[1461 and various

1.3.1.1 Direct Networks

In direct networks a number of processors (nodes), each

with its own independant memory are connected to some (or in

the case of full connection, all) of the other processors which

comprise the system by a dedicated communication mechanism

(links). These networks are static since the connection

pattern is unchanging unlike indirect networks described in

section 1.3.1.2. There is an enormous variety in the

connection schemes currently being considered, the schemes

usually exhibit regularity and some of the more commonly

investigated schemes are the ring (an extension of which, the

cylinder, is used as the connection scheme in chapter 3), tree,

mesh (toroidal mesh), hypercube and shuffle-exchange

networks[133,501. Such networks are easily constructed from

identical processing nodes, such as the DIRMU multiprocessor

node[621 or the MDP[331 or the

TRANSPUTER[11,102,156,148,155,78,1011, though in such a case it

is desirable for all nodes to have the same degree (number of

links) and for this to remain constant regardless of the size

to which the machine is expanded. This increase in the degree

of nodes with size is one of the main disadvantages of one of

the most widely investigated topologies, the

hypercube[113,147,1151. A closely related architecture which

overcomes this difficulty are the cube connected cycles and

extended cube connected cycles topologies[133,50], in which the

processors at the vertices of the hypercube are replaced by

q

HISTORICAL REVIEW 18

cycles (rings) of processors; such a topology can be realised

with processors of degree three.

Completely connected machines are rarely encountered

owing to the high degree required of the processors making up

such a system for large numbers of processors. The HPDM[911

has five TRANSPUTERS completely connected and in addition uses

shared memory to communicate with a similar number of more

conventional CLIPPER processors which are connected together

with a parallel bus. The HPDM may be connected to other HPDMS

by an ETHERNET or X. 25 network.

1.3.1.2 Indirect Networks

Indirect or dynamic networks fall into one of three major

classes; single stage, multistage and crossbar, Feng[501 gives

a description of such networks and the uses to which they are

put. Single stage networks are also called recirculating

networks since data may have to be recirculated several times

before it reaches its destination. They are used in cycling

machines[1321, the GF11 supercomputer[17] uses a3 stage

network in a cycling scheme. Multistage and crossbar networks

are frequently used to connect processors to memory units, the

interconnection network permitting access to any of the memory

units by any of the processor units.

The Remps machine[73] users a global network to allow

memory sharing between processors but in addition uses two

other networks, one to allow 1/0 communication mapping and the

second, a one sided network, to allow interprocessor

communication without memory sharing.

HISTORICAL REVIEW 19

One sided networks, referred to occasionally as full

switches, allow any of the processors attached to communicate

with any of the other processors attached, unlike two sided

networks which allow any of the inputs to. connect to any of the

outputs, Almasi[2] refers to these as the 'boudoir' and

Idancehall' arrangements respectively. The IBM RP3[731 is a

current example of the application of a one sided network to

interprocess communication.

1.3.1.3 Bus Systems

Bus systems use single or multiple parallel busses to

permit data exchange between several units connected to the bus

in a random access fashion. This f ree interconnection of

devices as compared with say direct network machines readily

allows many conceptual interconnection schemes to be mapped on

to the parallel bus. The critical component is largely the

bandwidth of the bus, limited by the number of physical

connections possible. The general any to any connection

possibility of the bus was one of the main reasons for its

adoption to connect the vector processors of the MU6V[751.

This general mapping allows bus connections to be applied in a

variety of environments such as Message-Passing[126] and Data

Flow[1501. This argument also applies to other globally shared

medium communications such as those used in Local Area

Communications as in the TUMULT ring[1301.

Multiple buses lend themselves to a hierarchical scheme,

often referred to as a cluster structure[1591 since clusters of

processors may be grouped around a bus, these busses being

HISTORICAL REVIEW 20

connected by other busses, or, as in the case of MuTeam[301 by

serial asynchronous links. The Synapse N+1 system[1121, in

common with many systems, uses one or more global buses (the

synapse expansion bus in the case of synapse) to which are

connected lower level buses. The TAMIPS multiprocessor[1511

has up to eight processors connected to its local bus, this

multiprocessor can then be attached to the multibus (IEEE-796)

to provide for expansibility. The Flex/32[1001 multicomputer

uses a local bus with several processors connected, the

processors may connect to other groups of processors or

input/output devices to provide for expansibility. There are

several busses in use, VME, Multibus (as used in the Sequoia

computer[981), Futurebus and others. FERMTOR[1251 uses local

buses in a ring, the buses making up the ring being connected

by station latches which deal with data transfers between

devices not connected to the same bus. By varying the number

of buses and number of devices connected to each bus this

architecture may be 'tuned' to the data access pattern.

1.3.1.4 Cellular Array Processors

The array processor (SIMD) architecture in which arrays

of very simple processors can communicate with adjacent

processors is of considerable interest especially with a view

towards incorporating large numbers of processors onto a single

VLSI device. An example of such a VLSI device is the ITT

CAP-II chip[107] which has a4X4 array of 16 processors each

working with 16 bit words. Mishin and Sedukhin[1061 discuss

the behaviour of such an adjacent communication cellular

computer system and its performance for a number of problems.

HISTORICAL REVIEW 21

Control for such an array of processors is generated from

one central control mechanism with little independant activity

by the individual processors. It is possible to transfer some

of the centralised control to the individual processors but

still maintain an overall central control. In such cases the

SIMD nature of the architecture becomes less clear as the

control tends towards completely independant operation as in

MIMD architectures.

1.3.1.5 Systolic and Wavefront Arrays

The systolic array is a possible example of a halfway

house between SIMD and MIMD operation, there being an array of

processors, each performing computations under a global scheme

of synchronisation and control but with each processor

performing a distinct function not necessarily the same as that

of the other processors. In the systolic array[1321 an array

of processors synchronously read input data from their

immediate neighbours, performing some computation on this data

and writing the outputs to their neighbours. Such arrays are

termed systolic arrays because the way the data flows within

them is reminiscent of a heartbeat. Normally data such as

matrices are fed into one or more parts of the array, the flows

of data and intermediate results through the array interacting

so as to produce the desired result which appears from the

outputs of some or all of the processors.

The array need not be planar and may possibly contain

closed loops or be switched dynamically as in the nonplanar

array of Aravena and Porter[lo). Unlike most systolic arrays

HISTORICAL REVIEW 22

which do not store values but process values and output the

results the OCSAMO systolic array(l] uses internal registers to

allow values to be held and used in later stages of the

computation. The Warp computer[51 has demonstrated practical

application of a systolic array to a variety of problems.

Closely related to the systolic array is the wavefront

array, this is an asynchronous version of the systolic array.

The wavefront array is made up of an array of processors

connected as in the systolic approach but in the case of a

wavefront processor the processors operate in an asynchronous

data driven fashion[851, this has been expressed by Kung

et al[891 as :

Wavefront Array = Systolic Array

Dataflow Computing

the processors in the wavefront array only performing

actions when all of the required data is present at its inputs.

The name wavefront derives from the way data propagates through

the array in waves relating to each group of data items

supplied.

1.3.1.6 Data Driven and Demand Driven Computing

The dataflow[40,111] model of computing and possible

machines using this model have received considerable attention.

In the dataflow or data driven model of computing an

instruction (actor) is executed when all of its required

operands are available, the dataflow program consists of a flow

graph with actors on the nodes and data items flowing over the

HISTORICAL REVIEW 23

arcs. Data driven operation is asynchronous in that the data

is passed on to the next actor as soon as the result is

produced. The data driven concept is applicable at any level

of grain, the machine presented in this thesis possibly being

regarded as a dataflow machine with, the grain level being the

entire processing required rather like a large grain parallel

codeblock data flow scheme[231. A variety of machines have

been proposed and built[153,61,25,150,461 and have now reached

the stage of a commercial product[149,811.

The principle divisions within dataflow computers are

those of static and dynamic. In a static machine such as the

HDFM (Hughes Data Flow Machine)(241 the dataflow graph is

mapped onto one or more processors in a fixed (static) pattern,

each processor being active only when one of the dataflow

actors it has been allocated is active. In a dynamic machine

such as the Manchester Data Flow Machine[61] any processor may

deal with any actor that is ready for execution.

Dataflow has been modified and combined with other

schemes such as the combination of control and dataf low of

Maeng and Cho[96] and the suggestion by Sowa[1411 that

performance of a dataflow multiprocessor may be improved by

using a program counter in a more traditional type of approach

for the serial parts of dataflow computations.

The demand driven model is the converse of data driven,

the computation begin broken down into a similar flow graph but

the execution of an instruction being initiated when its result

is requested rather than when its operands become available.

This request for results triggers requests for arguments on the

HISTORICAL REVIEW 24

instruction input arcs, requests being passed back as necessary

until data is available.

1.3.1.7 Other Schemes

There are many other multiprocessor architectures, some

are combinations of mechanisms described above such as the

OPSILA computer[12,131 which uses a vector processor combined

with and driven by a scalar processor, many other architectures

can be regarded as extensions of those presented above; in the

logic architecture where a certain goal is unified with

particular definitions the request of a goal initiates a search

for the definitions necessary to obtain the results in a manner

similar to that in demand flow[651, the processing being

carried out by a Parallel Inference Engine[661.

1.3.2 Digital Optical Computers

In contrast to computing using the passage of electrons

through conductors computing machines have been proposed and

constructed which operate using the transmission of photons,

usually in the form of laser light. Both digital and analogue

computers have been designed[128] though of particular current

interest are digital optical computers. Lohmann[951 lists four

principle motivations for the development of digital optical

computers:

HISTORICAL REVIEW 25

Optical Subsystems

2- Very Fast Optical Gates

3- Immunity against electromagnetic interference

4- Highly parallel processing with global

interconnections

and of these the last has been expressed as being of

greatest importance by Wherret[1541.

A variety of schemes have been proposed to perform

processing on information expressed as patterns of light

intensities, Ichioka and Tanidal[761 describe a system of

overlapping shadow patterns that allow the sixteen possible

logical functions of the pixels of two binary patterns to be

generated and many systems employing some form of spatial light

modulator (SLM) have been described, an SLM being essentially a

mask programmable by incident light intensity allowing a wide

variety of functions to be performed on two-dimensional data (a

useful comparison of commercially available SLMs is to be found

in [181). Non-linear optical devices (those in which the

transmissive properties of the device vary with the applied

light intensity) can be used to perform logical operations if

the device has a threshold in the output/input transmission

characteristic[711 and the combination of a non-linear element

with positive feedback may be used to create bi-stable elements

such as the Fabry-Perot cavity[181. These bi-stable elements

can be used as latches and to create state machines operating

on a large number of pixels simultaneously.

HISTORICAL REVIEW 26

The ability to perform operations on two-dimensional data

provides the highly parallel processing referred to above and

holographic techniques permit optical interconnection or

coordinate transforms of this two-dimensional data on an any to

any basis without the problems of physical siting and crosstalk

of comparable electronic interconnections.

The advantages of optical connections in terms of

bandwidth and the removal of the CR time constant limitation

inherent in any electronic connection along with the global

interconnection possibilities and non-interference of

overlapping communication paths has stimulated investigation of

hybrids of electronic circuits and optical interconnections;

Goodman et al[591 discuss the possibility of using integrated

optics and/or fibres for the distribution of clock signals and

the use of holographic elements for global interconnections in

a VLSI environment and Bell[181 describes various

interprocessor connection schemes using optics, including an

optical crossbar switch.

Interfacing to an optical computer should be immediately

feasible since optical storage and communication methods are

already well established and electronically controlled optical

switches are available, using materials which change their

refractive index depending upon the strength of an applied

magnetic field[1231.

HISTORICAL REVIEW

1.3.3 Biological Computers

27

Some proposals and discussion of computers based on

biological materials have appeared in the literature[29]. None

of these have proceeded further than the stage of discussion

and it has been suggested[1231 that a biological computer

already exists in the form of the human brain and that any

biological computers are likely to share the weaknesses of it

that have inspired the development of other computing

mechanisms.

1.4 Computers in Experimental High Energy Physics

Both theoretical and experimental physics research are

making greater and greater demands of computer processing

power, particularly in the field of High Energy Physics

(HEP)[31,1621 for a variety of purposes. Mount[1091

illustrates the need for parallel processing techniques in HEP

particularly with respect to vector and pipeline processors and

discusses software details for such machines and Kunz[901

provides a brief resume of vector and parallel processing

applied to HEP. A multimicroprocessor suitable for

computationally intensive theoretical physics is presented by

Christ and Terrano[26], the processor being made up of Intel

80286/287 microprocessors and floating point vector processors

in a planar array. Computers have also found a wide variety of

uses in experimental work, the systems briefly surveyed here

will be concerned mainly with data acquisition, data

acquisition in this case being taken to include some degree of

pre-processing.

HISTORICAL REVIEW 28

Computers in experimental High Energy Physics serve

functions of both control and data acquisition though the two

roles are not distinct since the same communication paths are

frequently used for both, and acquired data is often used to

make control adjustments (ie feedback).

Most control and data acquisition systems incorporate a

selection of microprocessors and minicomputers in a networked

scheme[19,91 though some complex control systems, such as those

used for fusion experiments, require the use of a

multiprocessor[841. Many experiments require real time

processing for control and data acquisition with the ability to

respond to asynchronous interrupts quickly, hierarchical

structures utilising a central controller interacting with and

distributing work to sub-processors have been presented for

this type of work[6,124).

Frequently encountered in High Energy Physics are systems

utilising high speed front end electronics (for coincidence

detection, thresholding etc) followed by successive levels of

processing to filter out unwanted or Inoise9 events[7,131,281,

the data acquisition system described in chapter2 for Daresbury

Laboratory falls into this group.

Though many theoretical HEP computing tasks may be

efficiently vectorised experimental computing does not often

run efficiently on vector or pipelined machines; however much

of the processing is of totally independant 'events' which can

be readily processed in parallel on separate processors leading

to the concept of processor farms[108]. These farms take the

form of several identical processors, an events being passed to

HISTORICAL REVIEW 29

the next available processor for processing, the structure

described in the following chapters is a structure to allow a

multimicroprocessor to be used in the fashion of a processor

f arm.

30

CHAPTER 2

2 COMPUTING REQUIREMENT

2.1 Introduction

The computing structure that forms the basis of this

thesis was principally intended to process experimental data

from experiments in High Energy Physics, a field that in both

its theoretical and experimental requirements demands ever

increasing amounts of computation, as has been noted by

Creutz[311. Though currently available computing hardware can

achieve very high rates of data processing the large volumes of

data being created from experiments in HEP take long periods of

9number crunching' after the experiment has taken place. This

situation is far from ideal since many of the experiments

performed require run time adjustments to be made in the light

of the data obtained and since the experiments are inherently

complex and the detectors used are rather fragile immediate

feedback of any failures, indicated by the change in the

processed output data, would be highly desirable.

2.2 Present Data Collection System

The niche in which the computing system had to reside is

illustrated by a brief description of the present computing

facilities used for data acquisition for the NSF at Daresbury

Laboratory. The following is a brief summary of the facilities

for data acquisition, more detailed information being available

in the relevant manuals [38,34,36,37,351. The main elements of

COMPUTING REQUIREMENT 31

the data acquisition and processing system at the NSF at

Daresbury Laboratory are shown in fig 2.1.

COMPUTING REQUIREMENT

LJ X
CD

ir
U- LLJ
m L)
, CD

L) < x: c: u

: 3c
r,

LD

Li < X: < L.)

Ir
LU

2: LD
Lii -<
-: D Z:
L. Li -a--

3--

C3 M
<<
1-HI-111-1

LLJ
u :r
Z CD
LLJ

LLJ

CD ca
Li

Lki XM LL. J Cr - X: Ld Z ý-

cr uj
-j C.) LLJ

Z: X

Z:

:Z ui
(f)

Z:
CD

ZD

cr
:: D
m
U)
LLI

CD
cr
CD LL-
F-
L.)
uj
LLJ

C3
if

M

32

COMPUTING REQUIREMENT 33

2.2.1 Experiments and Detectors

The experiments performed involved high energy beams of

particles fired into various experimental arrangements as

required by the experimentor; the principle type of data

collected was that of particle type and energy as reaction

products emerged from the experiment, using detectors either

singly or in multiple arrangements [60,137] to give analogue

signals corresponding to one or more parameters of the particle

detected. The experiments were run on a continuous basis

rather than as a set of discrete firings.

The data from the analogue detectors is correlated for

coincidence by fast electronics, non-correlated signals being

ignored, before being converted into digital format using

Nuclear Instrument Module (NIM) standard compatible analogue to

digital converters (ADCs). These ADCs permit analogue windows

to be set, pulses outside of the specified range of values

being ignored by the ADC; this being the only hardware

filtering of the values received from the ADCs available to the

experimentor. Each group of* correlated data are considered

together and termed an event.

It is possible for data other than that from ADCs to be

included in an event, however such data can only be taken from

devices which are plug compatible with the ADCs and the data

will be taken and processed as if it were from an ADC.

COMPUTING REQUIREMENT

2.2.2 The Event Manager

34

The event manager (EM) is based around a state machine,

programmable to some extent by changing values in internal

registers, it manages the collection of data from the ADCs, the

data being read out individually or as groups, depending upon

the experimental set up and operating mode of the event

manager. The EM packages up the data and passes this via a

CAMAC network to a mainframe computer for storage processing,

analysis and display. The event manager does no mathematical

processing of the data only acting as an 'intelligent'

interface between the ADCs and the CAMAC network, it is capable

of some masking and vectoring of data depending upon the

operating mode.

2.2.2.1 Operating Features

The event manager offers three principle operating

schemes, all schemes require fast coincidence detection

electronics to be provided by the experimentor to determine

when an event of possible interest has occurred. -

2.2.2.2 Singles Mode

In the first operating scheme, 'singles' mode, a

histogram of the values detected is produced for each of the

ADCs connected to the event manager by a simple increment of

the position in the spectrum indexed by the value. This is the

simplest and fastest scheme since it requires virtually no

processing other than a simple comparison of range of value,

which is performed by the ADCs before conversion into digital

COMPUTING REQUIREMENT 35

representation and therefore little improvement could be

anticipated by the addition of computing hardware.

2.2.2.3 Biparameter Interface

The second scheme is an extension of singles mode in that

an increment of a histogram is generated for each event. In

this case however two of the values are used together to

generate the increment, one of the values is used as an index

to indicate which histogram to update. The principle use for

this mode is to handle Mass-Energy events, and the description

of this mode is in terms of such use. Two ADCs are used with

each biparameter interface, it being possible to use more than

one biparameter interface in an experimental set up, the two

ADCs used for the interface must be determined to be coincident

by the experimentors fast front end electronics.

The mass ADC value is used to index a lookup table, the

entry in the lookup table being a not interested' code or a

'mass window' number, each mass window representing a spectrum,

within which the energy ADC value is then incremented. Up to

16 such mass windows (spectra) are permitted and it is also

possible to set up upper and lower windows on the energy

spectra with events having values falling outside these windows

being rejected.

As with singles mode, no processing other than that

performed by the hardware is required and no real improvement

could be achieved by the addition of computing hardware.

COMPUTING REQUIREMENT 36

2.2.2.4 Multiparameter Event Handling

Multiparameter events are the most general form of data

dealt with by the event manager, each of the above schemes are

merely a hardware implementation of a frequently used

interpretation of the data of a multiparameter event. When a

group of ADCs are determined to have fired in a pattern

corresponding to a multiparameter event of interest, this being

done by the experimentors fast front end electronics, the event

manager takes the values from the ADCs and records these as a

group, termed an event, which indicates their mutual

association. It is possible for an ADC to take part in a

multiparameter event and singles mode as part of the same

experimental setup.

These events are passed, via the CAMAC network, to a

mainframe computer for processing, analysis and display. No

processing whatsoever is applied to the data by the event

manager, raw data being passed back to the mainframe computer.

At the mainframe computer only a small proportion of the

event s may be processed as they are obtained from the event

manager (-10%) the processing of the majority of events being

performed offline. The small number of events processed online

are used to provide some immediate feedback of the behaviour of

the experiment, though due to the small percentage possible

this feedback is slow to respond to changes and is somewhat

limited in its usefulness.

COMPUTING REQUIREMENT 37

For this mode of operation on line processing of the data

would allow all of the data to be processed and displayed to

provide more responsive feedback to the experimentor and also

would prevent unnecessary taking and storage of any data not

regarded as interesting. This mode operation was the one for

which the processing scheme presented in this thesis was

intended.

2.2.3 Limitations and Bottlenecks

The first two of these schemes are able to provide the

required processing of the data at an adequate data rate, what

little processing is required being performed by the event

manager along with data acquisition. The use of the event

manager to collect multiparameter data leaves the data

unprocessed and varying amounts of processing time are required

depending upon the experiment, for many experiments this

processing is a bottleneck. The aim of the work included in

this thesis was to produce a design for a computing device

capable of being used in the above environment to process data

from the High Energy Physics experiments at a suitably high

data rate. This 'computing engine' would be placed between the

event manager and the mainframe computer and would be required

to pass through data not requiring processing (in the modes

handled sufficiently well by the event manager alone) or behave

as a 'data filter' on the basis of some user defined function

for those operating modes where data is not processed by the

event manager.

COMPUTING REQUIREMENT

2.2.3.1 Current Data Rates

38

The current rate of data taking is in the order of 50 000

events per second, where an event represents all the data from

the ADCs that were determined to be part of the event by the

coincidence electronics. With the present event manager up to

64 analogue to digital converters can be involved in any one

event and the computing and communication structure must be

able to cope with this volume of data, with a possibility of

extension in the future.

2.3 Design Aims

Although the computing engine to be developed was aimed

at a research environment and therefore the main emphasis in

the design was one of flexibility and expansibility it was

possible to set some initial targets and consider the

feasibility of achieving these. It also had to be noted that

since the event manager was a potential bottleneck this could

be subject to replacement, possibly with some form of

multiprocessor.

A throughput of 100 000 events per second was set as

initial target figure since this was the region of the limit of

the current event manager and ADCs. In normal operation the

filtering function applied to the data is set up before data

taking commences and left unchanged during the experimental

run, in some experiments tailoring of parameters of this

function is required in the light of collected data but this is

performed in an iterative 'stop and restart' fashion rather

than dynamically. Considering this pattern of usage suggested

COMPUTING REQUIREMENT 39

some form solution using a look up table in the interests of

processing speed, the look up table being set up at the

beginning of each experimental run.

2.4 Processing by Look-Up Table

A look up table of results for various input parameters

could be calculated before the commencement of data taking and

thereafter used to process data. This would allow a result to

be obtained in a single memory access, a time period in the

reqion of 200 nS. In addition to evaluation of a function

masking, indexing and various other windowing and logical

operations on the data are normally required, these could be

included in a complete mapping of the input data values using a

look up table.

2.4.1 Estimation of Memory Requirements

A simple calculation of the memory required, however,

soon indicates that this approach can make unreasonable demands

of memory size. For data of 8 bits in length and a function of

two parameters producing an 8 bit result requires a memory size

of 64 KBytes, in practice most of the data collected is of

greater than 8 bits and the possibility of evaluating functions

with more than two parameters was regarded as desirable. For

12 bit data and a3 parameter function giving an 8 bit result

requires a memory size of 68 000 M bytes which is obviously

unrealistic even considering the recent advances in memory

devices[77,861.

COMPUTING REQUIREMENT

2.5 Analytical Solution

40

An alternative to a direct memory map of the function to

be evaluated would be an analytical solution of the functions

involved, this would require a considerable amount of intensive

calculation and be many times slower than the look up table

approach. If some form of multiprocessor were used then it may

be possible to achieve a sufficiently high processing rate

while obviating the need for vast amounts of memory to process

the functions involved. The programmable nature of a

multiprocessor could provide a great deal of flexibility both

in the function evaluated and the method of evaluation, where

appropriate it would be possible to mix a look up table method

of evaluation with other processing.

2.5.1 Serial Nature of Data Taking

The event data occurs and is collected in a time

sequential fashion which would seem to contradict the concept

of parallel processing of the data events. This 'serial part'

(Amdahl[31) is inherent since there is only one experiment and

one set of detectors. Experiments in High Energy Physics deal

with events over time scales in the region of pico and nano

seconds so the experiment itself is highly unlikely to be a

limiting factor in the data rates achievable, producing data

several orders of magnitude faster than it can be collected and

processed.

COMPUTING REQUIREMENT 41

2.5.2 Parallel Requirement of Processing

The event manager can, on detection of an event, read out

the required data in a matter of a few hardware cycles but the

processing of such an event analytically can take several to

many hardware cycles. Some overlapping (parallelism) of event

processing would be required to bring the processing data rate

to that of the collection of data by the event manager. This

suggests that some form of multiprocessor could usefully be

applied to the processing of data.

2.5.3 Event Nature of Data

The data in each event is entirely independant of the

others, the events can be regarded as separate entities since

there are no data dependencies from one event to another.

2.5.4 Possible GranularitY of Parallelism

From the above it would seem that some form of parallel

processing would be required to perform an analytical solution

of the data processing, the level at which this parallelism

occurs is open to consideration. This, along with other

considerations that influenced the approach to this problem is

dealt with in chapter 3.

42

CHAPTER 3

3 THEORETICAL CONSIDERATIONS

3.1 Introduction

From the previous discussion it is clear that high rates

of data processing are required in High Energy Physics

experiments. Though some experiments are done as discrete

'shots' and require the processing of a large amount of related

data to a fixed (usually short) deadline[61 before the next

firing in the case under consideration the requirement was for

a high average throughput of data over an appreciable period of

time. The data from the experiments under consideration

consisted of separate 'events', each being independent of all

other events and there being no determinate order of arrival of

events. The information sought in this data was principally

the frequencies of occurrence of particular types of evefits.

3.2 Processor Criteria

Several criteria were drawn up as guidelines for

consideration in the selection of a computing structure;

I) The system should be expandable to a large degree,

preferably infinitely, without any of the mechanisms

involved becoming saturated.

2) The system should have at least sufficient fault

tolerance to allow the processed data to be recovered and

possibly to process data at a reduced rate following a

THEORETICAL CONSIDERATIONS

f ailure.

43

3) A throughput of events in the order of 100 000

events/second was taken as an initial target figure.

4) The possibility of replacement of the Event Manager

in its present form was to be considered, possibly with

some form of multiprocessor, perhaps using a multi-write

bus to compare detected values[941. It is possible that

such a multi-processor could achieve a large bandwidth

through the use of multiple output streams and a

structure capable of accepting multiple input streams

would be an advantage in such a case.

Consideration of the above points does imply that a

multiprocessor system of some form could be usefully applied,

the alternative, a large monoprocessor is currently in use and

is an expensive and not entirely satisfactory method of

processing the data.

Having established that a multiprocessor of some form is

to be used then a further criterion may be added to the list :

All processors should be identical in form.

Dealing with these points in more detail; the processor

was intended for a research environment with a consequent wide

variety in the exact nature of the processing to be performed

and the possibility that as experiments become more complex a

higher degree of computing power would be required. The

ability to expand the processor without changing the form of

its use would allow the processor to be tailored to the

THEORETICAL CONSIDERATIONS

processing task.

44

The requirement for fault-tolerance points towards a

system with built in redundancy, possibly with multiple busses

or a suitable interconnection network.

The figure of 100 OOO. events/second was taken as a target

figure as this is approaching the maximum rate that the current

event manager could achieve. This figure sets a lower bound on

the number of processors required in terms of the processing

time for each event, the number of processors is given by

Number of Processors = rIO0 000 xT
Pi

where TP is the time required to process an event and rxj

is the smallest integer not less than x. This expression

assumes the presence of sufficient parallelism in the

computation to keep this number of processors busy.

Finally, if all processors are made identical then the

design is simplified to some extent since once designed and

tested the processors can be readily duplicated. Identical

processors also allow for a reduction of the number of

replacement boards required as stock.

These criteria are comparable to the design objectives of

the TUMULT ring network[129,1301, however, the ring structure

proposed for use with TUMULT takes the form of a shared

communication ring, in the direct connection machine[871

proposed here the term ring reflects the nature of the direct

connection graph formed by the interconnections of the

processors rather than the form of the communication structure

THEORETICAL CONSIDERATIONS 45

to which they are connected.

3.3 Assumptions on the Form of the Data

The principle assumption made about the form of the data

was that the data occurred as discrete independent events, an

assumption also made in the scheme of Glendinning and Hey[571.

It was assumed that these events could be processed in any

order so long as the overall distribution of events was

maintained and that a sufficiently high rate of processing was

achieved. This assumption allows the grain of parallelism to

be set at replication of the entire event processing program,

the experiment and the event manager providing data

sufficiently rapidly to allow a large degree of overlap of the

processing of separate events and consequently maintain the

required parallelism indicated above. This scheme avoids many

decomposition and synchronisation problems associated with

smaller grain size[120,55,21,811.

3.4 Possible Structures

3.4.1 Bus Connected Structures

With these considerations in mind some form of

multiprocessor structure and processing scheme were required,

bus structures were not appropriate since a bus structure will

inevitably saturate at some point, however high a bandwidth the

bus may have. In addition, if the communication algorithm is

not carefully selected then buses can prove prone to lockout

and starvation of processes. It is also possible for the buses

to fail such that data cannot be retrieved from any of the
T

THEORETICAL CONSIDERATIONS 46

nodes without the implementation of multiple buses or some form

of bus isolator which are themselves prone to failure and

expensive to implement.

3.4.2 Direct Network Computers

For these reasons the mechanisms considered were message

passing direct network computers where processors are connected

together in a network communicating over short links between

pairs of processors only. Such machines are often referred to

as direct connection[87], direct network[1331 or homogeneous

ensemble machines[561, they have several advantages over a

shared communication medium as in a bus or lan type of

structure. Since each processing node includes communication

hardware as the number of processors increases the bandwidth

for communication increases proportionately, a very important

point[971, possible internal schemes for a node in such a

system have been suggested by various authors[8,1221. The

TRANSPUTER [78,102,156,148,11,1551 has been specifically

designed for construction of direct connection machines and

these have four serial links; to allow the possibility of using

TRANSPUTERS to construct the machine it would be necessary to

implement connection graphs with connectivities of less than

four. Von Conta[152] has also observed that connectivities :54

are regarded as advantageous for practical reasons. A

comparison of the relative merits of different networks has

been given by Wittie[1581.

THEORETICAL CONSIDERATIONS

3.4.2.1 Usage Pattern

47

The anticipated usage pattern of a network computer as a

processor for High Energy Physics event processing differs from

that of many computationally intensive tasks which use the

communications links for interprocessor communication of

internally generated messages; the links would be used as a

means of distributing the externally generated (by the

experiment and event manager) events making up the workload.

This usage makes external communication a factor of greater

importance than that where a computing problem is loaded and

the results collected after a period of intensive computing.

3.4.2.2 Tree Structures

tree structure made up of such processors would be

infinitely expansible and for some applications may present a

reasonable solution[20,22] though the communication bandwidth

can become a limitation particularly through the root of the

tree[871. Some modifications to tree structures have been

proposed to overcome its disadvantages [42,103,691. The nodes

may be made identical in such a structure but there is no

inherent fault tolerance since a tree is a separable graph (it

has a vertex connectivity of one) and the failure of a single

node or link disconnects the related sub-trees which can

isolate one or more nodes completely from the rest of the

system.

THEORETICAL CONSIDERATIONS

3.4.2.3 Pyramid Structures

48

Since there is only one source of data, ie the event

manager, a pyramid structure with data fed to its apex may be

appropriate. If the network is built up from pyramids with the

base nodes being connected to the apexes of other pyramids, as

shown in fig 3.1, then the connectivity of the nodes is very

likely to become excessive. In addition there is no

possibility of feeding the structure simply at several

different points to allow for improvements in the event manager

unless the pyramid is fed from the base. In this case, as in

that of the tree structure, the bandwidth through the apex

nodes may prove to be a limiting factor.

EVENT
MANAGER

FIG. 3-1 PYRAMID STRUCTURE.

THEORETICAL CONSIDERATIONS

3.4.2.4 Ring Structure

49

A ring structure may be expanded infinitely though as the

number of processors increases the bandwidth required for

communication between processors would also increase and may

lead to saturation of the communication links. The nodes of

such a ring may be made identical in form during normal

operation though a single fault may prevent proper functioning

of the ring. In the case of one fault the state and processed

data could be retrieved by a modified communication algorithm,

this would require the processors in the ring "knowing' that a

fault had occurred, it is also possible that two faults could

occur in such a way as to isolate part of the ring completely.

Despite its disadvantages the basic ring structure

appeared to be worthy of further study.

3.4.2.5 Cylindrical Structures

A cylindrical structure, ie one or more rings of

processors connected vertically in addition to the horizontal

connections of the ring structure, overcomes many of the

problems of the simple ring; this structure does not appear to

have previously been investigated in the literature. The shape

of the cylinder thus formed, ie its height/width ratio, may be

varied to tailor the nature of the structure to the

application. The nodes of a cylinder may be identical though

an additional two communication links are required compared to

those of the simple ring structure, the edge connectivity is

four as compared to two for a ring (as far as

processor-processor connections are concerned). The vertex

THEORETICAL CONSIDERATIONS 50

connectivity of a cylinder will vary with the shape of the

cylinder but would still be greater than two, the vertex

connectivity of a ring.

3.4.2.5.1 Feed Mechanism

Though in this analysis the data items are assumed to

require uniform processing it is possible and indeed likely

that some types of data may be processed more rapidly than

others. If the input data streams are entirely independent

this could result in an imbalance of data taken in at these

points and consequently disturb the event distribution. If the

data is generated from one experiment and one set of front-end

electronics then the distribution of events processed will

ultimately be the same as that collected by the electronics

though some types of events may be slower to be processed and

counted. If the data input streams originate from separate

sources it is possible to preserve their arrival distribution

by simply gating together the status of the input streams of

the fed nodes, if any one node cannot accept more data then the

others should be prevented from accepting data, this would

ensure that those input streams that cleared faster were held

back to match the rate at which other data items were dealt

with.

With the event manager presently in use, and possibly any

future event manager, data occurs as only one output stream.

It would seem therefore illogical to consider multiple input

arrangements. By a similar argument to that for the

requirement for a multiprocessor in section 2.5.2 if an event

THEORETICAL CONSIDERATIONS 51

manager is available that is capable of collecting event data

at extremely high data rates it would be beneficial to be able

to divert this along the multiple lower bandwidth paths

(restricted by both hardware cost and any routing algorithm

software required) to allow full use to be made of the event

manager's bandwidth. This splitting of the data stream would

require no processing since any routing could be performed by

the computing system itself allowing a simple autonomous

mechanism to perform the splitting and consequently maintain a

high throughput. This would be an ideal point to perform the

required gating of the input streams of data but could be a

possible single point failure, the likelihood of such failure

is reduced by the simple nature of such a device, the event

manager itself being more likely to fail.

3.4.2.6 Distinct Node Flow Models

Most study of communication structures has concentrated

on the performance of structures for mutual communication

between processors engaged in a computation; properties of the

interconnection graph such as diameter, total bandwidth and

various path related properties have been proposed as

indicators of performance though their value has been

questioned[93). Since the pattern of usage of the structure

proposed here was to be one of distribution of events rather

than mutual communication a rather different criterion, the

mean throughput of events has been used as the indicator of

performance.

THEORETICAL CONSIDERATIONS 52

The usual methods for modelling of multiprocessor systems

are Markov models, some form of Petri Net technique[92] or

Queueing networks[991. Modelling of ring structures has been

carried out using queuing networks, the approximate model

developed by Zablotski et al[1601 serving the same purpose as

the model developed here, permitting structural variations of

multiprocessors to be evaluated quickly, Protopapas and

Denenberg[1191 have developed a modelling technique for delays

in multicomputer networks. Housheng[70] has demonstrated the

superiority of a buffer insertion ring (of which the ring

described below may be regarded as an example) over slotted and

token rings using a simple queuing model.

In this case however simple static flow models were

developed, the flow model having a direct correspondence with

the important criterion, mean throughput of events. A rather

abstract approach was taken, the model being at the processor

level[641 as it was not intended to model the system behaviour

with a pre-conceived design and operation assumptions but

rather to find some indication of the characteristics required

of processors to work efficiently in such a structure.

Simple models of both rings and cylinders were developed,

based on flow characteristics. This does not model the

detailed internal workings of a computing system but models the

overall behaviour at an abstract level. This model is

particularly relevant to asynchronous processors which, if used

with suitable buffering should correspond well with such a

scheme. In common with other mathematical modelling techniques

the system being modelled is very complex and the mathematical

THEORETICAL CONSIDERATIONS 53

model must be a simplified approximation to the real system.

3.4.2.6.1 Single Ring

The first case considered was that of a ring of

processors with data being fed into only one of the processing

nodes. Assuming that each processor can process input data at

a rate of Pn/R (where An is the bandwidth of new data into the

fed processors and R is the number of processors in the ring)

then the problem becomes trivial. Data rates around the ring

decrease in steps of P. /R until the originating node is reached

as shown in fig 3.2. This particular model applies to the case

where the data must be routed to a particular node for

processing (an even distribution is assumed) and also the case

where any data can be processed in any node.

Bn

1-2)
R

FIG. 3-2 DATA RATES AROUND A RING

FED AT A SINGLE NODE.

THEORETICAL CONSIDERATIONS 54

This assumes of course that the processing of all data

items is identical and that the amount of additional bandwidth

required for retrieval of the accumulated spectra is small. In

a well buffered system the deviation of processing time of

events from the mean values should be largely smoothed out to a

constant mean value which is assumed to be reasonably similar

for each processor. The accumulated data could be read out of

the nodes at relatively infrequent intervals or, if

bi-directional links are used, be sent in the reverse direction

to the incoming data allowing the bandwidth required for the

retrieval of the accumulated spectra to be small.

Bn

r=Bn(R-1)
2-

FIG. 3-3 DATA RATES AROUND A RING
FED AT ALL NODES.

A ring structure with a single entry point has a total

data input bandwidth equal to that of the feed link, which does

not meet the requirement of expansibility. The next structure

considered was a ring structure, as above, but with data being

fed into all of the nodes in the ring simultaneously, this is

THEORETICAL CONSIDERATIONS

shown in fig 3.3.

55

Again, P. is the bandwidth into one node from the data

source and of is the bandwidth forwarded along a link in the

ring and R is the number of processors in the ring.

The assumption that the retrieval of processed data was

not significant could be made in this case by the same argument

as above. The situation modelled was for distinct processing

nodes where data items had to be processed in particular nodes

depending upon some parameter of the data. It was assumed that

the distribution of processing of such data was uniform across

the nodes.

In the alternative case where any data may be processed

at any node each processor would process the data fed into it,

with possibly a small amount of data passed to other nodes to

even out variations in data rates and processing rates around

the ring.

In the case of processor distinct processing

on data arrives at each node from outside the ring.

An/R data is processed at the node that it is fed into.

Of data must be forwarded onto other nodes.

Considering one of the links in the ring, since 1/R th of

the data passed on from any one node is removed at each

successive node the data from the rth node through the link

under consideration will be

THEORETICAL CONSIDERATIONS

(R-r)
An 0

R

and the total data through this link will be

R
(R-r)

Of on
R

r=l

which can be simplified to

(R-1)
ßf =

56

This relationship is fixed by the distribution of the

processing of data throughout the processing system and still

applies in the case of saturation of one of the communication

links, the bandwidth of data being passed through the other

links being restricted in proportion. This result differs from

the value of N/2 (R/2) obtained for the mean message density of

a one-way ring by Wittie[1581 because of the assumption that

nodes do not generate messages for themselves, in the model

presented here however 1/R th of the data is destined for the

node at which it originally arrives which is effectively a self

generated message.

All nodes in such a processing ring are identical so the

data flows within only one node need be considered. A simple

diagram of the data flows within the node is shown in fig 3.4.

In this simple model On is the bandwidth of new data

taken in at the node, of is the bandwidth of data forwarded to

the next node in the ring and pc is the bandwidth of the

processing of the data items.

THEORETICAL CONSIDERATIONS

Bn

Bf

57

If no communication links saturate then the input data

bandwidth is the same as the bandwidth of computation.

K on PC Acmax
r*(Pn

+ Od

where #cmax is the processing bandwidth if no data

movement has to be performed by the processor and the term

Kr*(On + Of) represents the amount of processing bandwidth used

to either pass on data items or to take data from the data

streams for processing. The lost computing bandwidth is

assumed to be some proportion, Krs of the data dealt with.

For the case where the communication links are not

saturated total processing bandwidth is given by

Total Processing = R-#c

= Repcmax - R-Kr*(Pn + Od

Since on = AC

and Of - Pn-(R-1)/2

FIG. 3-4 DATA FLOWS WITHIN A
PROCESSING NODE OF A RING.

THEORETICAL CONSIDERATIONS

this can be re-written as

R*)3c = R-Ocmax - R-Kr*Pc*('

re-arranging this gives

Oc + gc*Kr(l + (R-1)/2) = ACmax

and

R-Acmax
Total Processing =

(I + Kr* (1 + (R-1)/2)

58

- (ii)

R
ocmax 01+

Kr + Kr*R/2 - Kr/2

Graphs of this function are shown in fig 3.5 and. fig 3.6

for Acmax '3 1 and values of 0: ýKr: ýl and 1: MM. When Kr m 01 ie

no processing is required for routing, a linear speedup with

additional processors is achieved.

With this model a processor may be described by the three

parameters, Acmax, Kr, and Ophys*

If one or more of the processor links saturate then

Of = Ophys

or On = Ophys

0.... being the maximum physical transmission rate of data.

The other term may be determined from M above. For the

optimum use of the bandwidth of the communication links On and

of should both reach Ophy, simultaneously.

I

THEORETICAL CONSIDERATIONS

--1 (11 LD

(f)
LU
Z)

Z
h--4 .

n
CD CO
Z-

CD

u LD
Z-

CD

u3 -Z
h--1 .
no
m (-. j
C)

LD CD
Z-

(D

u3 11
Lii CD
(i
CD
rr-
n

1 CD

CD
h-

(Ti

w
U-

CD (D 0)
C: C C
-4 . -4 - -1

-J > -J + -J

0 co co 'IT Cki
T-f

0

Q

CD

IL

LD
Z

CC) T-
h-

Z

cn rr
CD
lf)
Cf)

CD

n
1t
CD

rr-
LLJ

Cu

Q

59

CAHII/SiN-ýAA) 9NISSý13OHd -IV-Loi

THEORETICAL CONSIDERATIONS

: 10
io x Ju

FIG. 3-6 TOTAL PROCESSING FOR DIFFERENT RING SIZES AT
VARIOUS VALUES OF Kr : Z=TOTAL PROCESSING (EVENTS/TIME).

60

410

.0

410
x A) s *10

THEORETICAL CONSIDERATIONS 61

#I = On

0f (R-1

On 2

R3 is the optimum size of ring.

The total bandwidth into the system #tot = R. A.. For RO

the total input bandwidth is limited to R-PPY, but for R>3 the

total input bandwidth is limited by pf reaching PP,
Y, to a

value of

Atot R-On Reg
phys*

2/(R-1)

as R- Atot 2-0
phys

The case where On = Of is also the case where the total

communication bandwidth input is greatest, the total input

bandwidth being 3-#
phys*

3.4.2.6.2 Cylinder

The same approach can be extended to a structure where

rings of processors are stacked vertically producing a

cylindrical arrangement. This arrangement is shown in fig 3-7.

Considering the data flows within such a structure when

processors are distinct and data must be routed to appropriate

processor to be processed the bandwidth relationships derived

above may be applied. The model of the data flows within a

processor of such a system are shown in fig 3.8.

THEORETICAL CONSIDERATIONS

Bnl

Bf 1
Bc

3f 1
ji

Bn2)

FIG. 3-1 DATA FLOWS THROUGH A CYLINDER
FED AT ALL NODES.

Bn

Bd

Bf

62

FIG. 3-8 DATA FLOWS WITHIN A PROCESSING
NODE OF A CYLINDER.

THEORETICAL CONSIDERATIONS 63

In addition to the three links of the node model used in

the ring a fourth link is added to allow the vertical

connection. The bandwidth transmitted through this link is

indicated by Od' The model of this cylindrical arrangement

makes the same assumption about the fact that retrieval of

spectra from the processors requires little overhead, it also

assumes that the processing of all data items takes a similar

amount of time. As with the model of the ring the spectra may

be read out at infrequent intervals or, if bidirectional links

are used, be sent in the reverse direction to incoming data

allowing the overhead for retrieval of spectra to be ignored.

The situation where processing nodes were distinct was

modelled, the mapping of processing of the data over the

structure being assumed to be uniform and data being forwarded

to the appropriate node to be processed. Routing of the data

was assumed to take place vertically first and then

horizontally as is the case in the derivation of the message

switching capacity for a square grid by Horowitz and Zarat(691.

The structure was assumed to consist of L layers of R

processing nodes, with the R nodes of the uppermost layer (1-1)

receiving incoming data.

On, is the bandwidth fed into the Ith layer, 0.1 being

the data bandwidth fed into the top layer of nodes in the

cylinder. Each layer of the cylinder can be regarded as a

separate ring. Each layer of the structure will receive data

given by

THEORETICAL CONSIDERATIONS 64

Onl -= Oni - Oni *(1-1)/L

and the bandwidth of data to be processed by a layer is given

by

P: Ll - Pi(, +,) = Pil/L

It is worth noting at this point that the vertical links

of the lower levels should never saturate since 0, (, +,) is

always less than Oil and P., has a maximum value of Aphya*

Since the data input bandwidth of a layer of the cylinder

cannot be greater than P, 1/L the optimum value for R (ie the

value of R such that the horizontal links saturate as the data

input bandwidth reaches its maximum value) is not 3 as in the

case of the single ring. a

From the bandwidth relationships determined for the ring

structure it can be shown that

Afl -

Anl

L

(R-1)

2
(iii)

as in the case of the ring model this relationship applies

regardless of one of the data flows reaching its maximum since

the other data flow will be correspondingly restricted.

If no communication links saturate then the input data

bandwidth is the same as the bandwidth of computation.

An, ý Lopemean and A
cl '-- (Pcmax -K r*(Pnl

+ Ofl))

where the term Kr*(, 6nl + 6f. 1). represents the amount of

processing bandwidth used to either pass on data items or to

take data from the data streams for processing. As in the case

THEORETICAL CONSIDERATIONS 65

of the ring model the lost computing bandwidth is assumed to be

some proportion, Kr, of the data dealt with.

Similarly to the case of the ring

Total Processing = R-Ani

R*(Acmax - kr*(Pnl + Pfl))
1=1

since Pni /L =#C

and Of, = Onl/L

On, = On, - On, -(1-1)/L

this can be re-written as

L
(1-1) Oni (R-1)

R-0
ni = R-

I#cmax

- Kro[Oni - Pnl 0L+L

1=1

(R-1) (L-1)
R-L-P

cmax - R-L-gn, *Kr*[1+---I
2L 2L

rearranging gives

Oni (R-1) (L-1)

1 fjn, *K I11+---I=
Acmax

L 2L 2L

THEORETICAL CONSIDERATIONS

Total processing =
R- i6c max

(R-1) (L-1)
+ Kr-

[I+---I

L 2L 2L

R-L-0
cmax

I+ Kro[

66

As a check of the consistency of this equation with the

ring model it may be observed that for L=1 this equation

becomes identical to that for the ring model. Graphs of this

function are shown in fig 3.9 - 3.11 for Acmax m1 and values

Of Kr = 0.0,0.5 and 1.0 with values of 1: Mý. 10 and 1! MK10. As

in the case of the ring when Kr = 01 ie no processing is

required for routing, a linear speedup with additional

processors is achieved. These graphs demonstrate clearly that

even a relatively small value of Kr can result in a serious

degradation of the processing throughput. In this model a

processor may be described by the parameters, Pcmaxt Kr and

flPhYS*

If of, or On, reaches the maximum value of O. hy, then the

other term will be correspondingly restricted, that is if

ßfl = ßphys

or ß., u-- ßphys

then saturation of one of the communication paths has occurred.

The other bandwidths involved may be determined from (iii)

above. For the optimum use of the bandwidth of the

communication links 0., and Of, should both reach A
phys

simultaneously.

THEORETICAL CONSIDERATIONS

I .0

0

4to

FIG. 3-9 TOTAL PROCESSING FOR DISTINCT NODE CYLINDERS
WITH Kr=O : Z=TOTAL PROCESSING (EVENTS/TIME).

01

410

67

0

CIO

0

410

0'

THEORETICAL CONSIDERATIONS

.0

.0

a 410

FIG. 3-10 TOTAL PROCESSING FOR DISTINCT NODE CYLINDERS
WITH Kr=0.5 : Z=TOTAL PROCESSING'(EVENTS/TIME).

430

68

410

910

6

THEORETICAL CONSIDERATIONS

FIG. 3-11 TOTAL PROCESSING FOR DISTINCT NODE CYLINDERS
WITH Kr=i : Z=TOTAL PROCESSING (EVENTS/TIME).

69

THEORETICAL CONSIDERATIONS 70

ßfi = ß',
(R-1)

2L

-R- 2L +1 is the optimum shape of the cylinder

The total bandwidth into the system #tot - R*Onl' For

RM +1 the total input bandwidth is limited to R*P
phy a

but

for RM +1 the total input bandwidth is limited by Of,

reaching flphy, to a value of

2L
#tot '0 R-Oni m R-Ophys

(R-1)

as r -* - Ptot -o 2L*#
phys

The case where 0,1 - P., is also the case where the total

communication bandwidth is greatest, the total input bandwidth

being (2L + 1). 0
phys*

From the analysis above several observations can be made.

If the processing time of data items is long compared with the

time to communicate data, ie PC << PPhyS9 then the

communication links will not saturate and processing bandwidth

will be entirely dependant upon the number of processors and

not dependant upon the size of the ring structure or the shape

of the cylinder, with some possibly small effect due to the

changing value of the term Kr*(Pnl + Pfl)' If #c approaches

P., /L the processing bandwidth will tend to be limited by Ophys

at some point in the communication structure and the optimum

shape allows the total input bandwidth to be maximised. In

this case the number of input links may be matched to the

number of input sources by suitable selection of the shape of

THEORETICAL CONSIDERATIONS

the cylinder.

71

The model of distinct processors may be appropriate for

I some types of processing, perhaps for cases where the storage

requirement for spectra is large and it is desirable to store

different regions of the spectra in separate nodes or different

types of data may require routing to specific nodes for

particular types of processing; or possibly in a case where an

analytical solution was too slow to be performed, even by a

large number of processors and a look up type of approach had

to be adopted (see sections 2.4 and 2.5) with a large look up

table distributed throughout the processing nodes. If this

latter scheme were implemented then the routing would reduce to

a simple comparison of the data with the limits of the bounds

of the array held at that particular node to test for the data

having found the node in which its solution resides.

There are some disadvantages with this computing scheme,

one of the most significant being the need to identify which

node data is to be processed at, which is likely to involve

some pre-processing of the data each time it is routed (with a

corresponding high value of Kd' Considering this, it would

seem more efficient to process each event to completion in

whichever node it found itself and then possibly route the

processed data to a particular node for storage. The need to

route data to particular nodes also carries with it the penalty

that a large amount of data shuffling is performed occupying a

correspondingly large amount of communication bandwidth.

THEORETICAL CONSIDERATIONS 72

The logical conclusion of this discussion is to consider

instead a system in which an event is processed to completion

in the first node that is not already busy and no un-necessary

data movement takes place. This system results in

simplification of several aspects of the computing structure,

notably the routing algorithm and the implementation of fault

tolerance.

3.4.2.7 Homogeneous Flow Model

3.4.2.7.1 Cylinder

An alternative to the above processor distinct scheme is

a truly homogeneous machine where any of the data items may be

processed at any one of the processing nodes. In this case not

only are the hardware units identical but the software may also

be made identical. This allows the programming of the

processing system to be simplified considerably, as is

discussed more fully in section 6.2, only one program being

required rather than several programs. It is likely that this

single program would be longer than the individual programs of

the previous case but not much more so since the processing for

routing may be considerably simplified and may even be fixed

and retained in firmware rather than down-line loaded since

this part of the program is not dependant upon the type of

data. This homogeneous scheme does not require events to be

routed to specific destinations, unlike most schemes[141 a very

simple "if there's room send it" type of approach may be

applied since data may be processed in any order. Similarly

the problem of mapping a system of interacting processes onto

THEORETICAL CONSIDERATIONS

the machine[1431 is avoided.

73

In the case where the system is homogeneous and all of

the top ring are fed with data the system will tend towards a

state where only vertical communication takes place as data is

passed downwards. However, the horizontal links are useful in

that if processing times of events are not equal or if not all

of the nodes of the top ring are fed with data they can be used

to share the data amongst the processors, they also provide

path redundancy making some degree of fault tolerance possible.

Considering a homogeneous cylinder, since 0
nI -K Pphys the

lower layers should never saturate since for every source of

data to a ring there is a corresponding processor and at least

one communication link along which data may be sent. However,

the further that data is sent before being processed the more

processing is lost to forwarding data rather than completion of

the processing of events. This should not be taken to imply

that processing of events should be performed to the exclusion

of forwarding data as this leads to a situation where only

those processors directly fed with data perform any useful

work, as has been shown by the simulation described in chapter

4 section 4.10.

Since there is no prescribed node to which data should be

sent in the case of the homogeneous processor the flow of the

data throughout the structure and the consequent behaviour of

the structure cannot be modelled in the same way as the case of

distinct processors. However, some general statements can be

made without reference to the particular algorithm adopted.

THEORETICAL CONSIDERATIONS 74

Ignoring the computational bandwidth lost due to data

requiring forwarding

if PC > Ophys /L

then #tot ,,, R-P
phys

ie the communication mechanisms would be the main limitation on

throughput, as noted earlier, saturation of the lower levels

will not take place and this limitation will be due to the

bandwidth of data into the uppermost nodes of the system.

if Oc < Ophys/L

then Otot ý R-Looc

ie the processing mechanisms would be the main limitation on

throughput.

Data is only forwarded a limited distance within the

system, the distance being dependant upon the amount of

processing required for each event. As processors are situated

further from the fed nodes they receive a proportionately lower

bandwidth of data to deal with. This carries the important

implication that there is a limit to the size of the cylinder

beyond which processors will never be supplied with data to

process.

The processors were described by the same parameters,

Pcmaxs Ophys and Kr as in the distinct node model and the

processing bandwidth was assumed to take the same form:

ße m ßcinax - Kr*(ßn + ßt)

THEORETICAL CONSIDERATIONS 75

as in the model for the distinct node processor.

The data flows in the homogeneous model are largely

algorithm dependant and not predictable in the way that they

are in the non-homogeneous scheme making prediction of the

processing bandwidth spent towards movement of data and the

remaining processing bandwidth considerably more difficult.

If all processors are fed with data the simplifying

assumption that processing of events is sufficiently similar

for Pf to be insignificant or to have a cancelling effect with

of of adjacent nodes and that each column behaves largely

independently is made. Only one of such columns of processors

need be considered.

The computing bandwidth at the processor 1 in the column

is given by the equation

Pcl m Ocmax - 1ýr*flnl

and the bandwidth of data sent down to the next layer (Od) is

given by

ßd Z* ßn1 - ßel

The bandwidth into any layer of the column is given by

L-1
(Pcmax - Kr. A. 1)

1-1

the recursive nature of this relationship does not allow a

general equation for a maximum value of P., in terms of L,

Pcmaz and Kr to be readily found, the values of On, may be

calculated recursively from #nil Kr and A
Cmax,

It is also

THEORETICAL CONSIDERATIONS 76

possible to calculate Pnj recursively in terms of L, Kr and

Pcmaxg a plot of total input bandwidth for values of R-1,

': ýL: M, 0: ýKr-: ýl and Pcmaz m1 is shown in fig 3.12; this shows

clearly that, like the distinct node processor case, relatively

small values of Kr give rise to serious degradation of the

processing throughput.

The values of P., at maximum loading may be obtained by

considering first a single processor. The computing bandwidth

is given by

Acl . Pcmax - Kr*Pnl

and since no data is sent on to another processor P
nImOcl 80

the maximum processing bandwidth is given by

Ocl -

Pcmax

1+Kr

Considering next a processor above the one just

considered, in this case the processing bandwidth is given by

#C(1-1) = Pcm&x -

and on(I-1) = oc(1-1)

= Oc(1-1) + Onl

combining these gives

oc(I-1) = Acmax - Kr*Pc(I-1) - KroOnl

Pc(,
-,)*(l, 'Kr) w Ocmax - Kr*Pnl

Ocmax - Kr"Pnl

1+Kr

THEORETICAL CONSIDERATIONS 77

Pcmax - Kr*Pnl

- #jnI
1+K

r

Applying this equation recursively allows the maximum

value of P.
1 to be obtained. Achieving this maximum flow

through the processors is very much dependant upon the

algorithm used for communication.

THEORETICAL CONSIDERATIONS

uIo
io X&

FIG. 3-12 INPUT BANDWIDTH FOR A HOMOGENEOUS COLUMN
OF PROCESSORS Z=MAXIMUM BANDWIDTH (EVENTS/TIME).

210.

78

410

«to

THEORETICAL CONSIDERATIONS 79

This model describes the behaviour of one column of

processors within a homogeneous cylinder of processors fed with

data at all of the processors in the top most layer of the

cylinder. One of the advantages of the homogeneous cylinder is

the ability to feed data into the system at any or all points

as desired though this flexibility makes useful performance

predictions rather more difficult.

A cylinder fed with data is likely to feed the larger

part of its data downwards, with minimal horizontal

communication, giving a total input bandwidth close to R times

the input bandwidth for a single column calculated above.

If the cylinder is fed at less than R of the processors

the balance of communications assumed above would be broken.

The bandwidth calculations above are related to the path length

of the data, the total bandwidth of the cylinder not fed at R

nodes will be dependant upon the mean path length of the data

through the system. The mean path length could possibly be

used in place of L to provide an estimate of the maximum

computational bandwidth.

3.5 Relationship To other Topologies

The topology proposed is that of a cylinder of processors

connected as a direct connection network computer. The

cylinder can be regarded as a rectangular array with additional

connections to produce rings in only one direction. These

cyclic connections give an advantage over a rectangular array

(or a tree) in that data will not reach a $dead end" if not

accepted by a processor but will cycle round the ring until

THEORETICAL CONSIDERATIONS 80

either accepted by a processor or sent to another ring, similar

design considerations have been outlined by Hyvýrinen[741.

This development could be taken a stage further, with

connections from the top of the cylinder to the bottom to give

a toroidal surface[1521. However this arrangement, though

having cyclic paths both vertically and horizontally, would

require nodes to be fed with data to have four communication

links plus a link to fed data into the node. Though an

additional link would not be technically unfeasible, for all

nodes to be identical in physical construction and not feed

data in at all nodes could leave something approaching 20% of

the communication hardware redundant, resulting in reduced cost

effectiveness.

Inspection of the way that the cylindrical arrangement is

used, with the decreasing bandwidth fed to the lower nodes,

would perhaps suggest that an inverted pyramid structure would

provide a better mapping to the problem. Though this is

probably true to some extent this would leave some nodes with

links unused if the intended identical nodes were used to

construct the system, with a consequent loss of path redundancy

and no additional processing could be anticipated.

3.6 Relationship to other Systems

The distinct node scheme presented uses similar

processing nodes and operating system mechanisms to that

described by Ansade et al[81, the asynchronous operation of

separate processors being common to both. Many of the

synchronisation and similar problems studied by Ansade and his

u.

THEORETICAL CONSIDERATIONS 81

colleagues are avoided by the homogeneous processing scheme.

The homogeneous processing scheme is similar in many

respects to the scheme used by Glendinning and Hey[571, in this

scheme a 'reserve$ of TRANSPUTERS are used to process events

independently, either for theoretical simulation or for data

processing, using the same program in each processor operating

on different and independent data. The communication structure

used in this work was a simple chain of processors in a linear

arrangement and also involved a distinct master TRANSPUTER and,

unlike the homogeneous scheme presented here, does not offer

any fault tolerance.

Both the distinct node and homogeneous schemes are driven

by the arrival of data to process and are in essence a large

grain dataflow computer[40,111,811, the grain being set at the

level of the entire program and the parallelism being

introduced through replication of the dataflow graph. Many of

the problems even of macrodataflow[581 are circumvented by this

choice of grain size.

3.7 Fault Tolerant Nature of a Cylinder

3.7.1 Path Redundancy

The cylindrical structure proposed has a considerable

amount of path redundancy, for any data that would have been

sent through a failed link may be sent down to a lower ring and

for any failed vertical link data may be passed around the ring

to a node with a functioning vertical link before being passed

down. Though some links must carry additional data traffic as

II

THEORETICAL CONSIDERATIONS 82

a result of this re-direction the lower layers will not be

heavily loaded unless this has specifically been arranged'to be

the case and alternatively it is possible to ensure that links

are slightly underloaded to permit re-direction of data without

causing saturation.

3.7.2 Link Failure

3.7.2.1 Distinct Node Case

In the case of distinct processing nodes the failure of a

link must cause re-direction and the communication algorithm

must permit data (as opposed to results) to be sent both up and

down in the vertical direction, involving the mixing of data

and results (this may allow-deadlock situations to be created).

3.7.2.2 Homogeneous Node Case

In the case of a homogeneous processor the processor to

which data is sent is of no consequence, however if a

horizontal link fails this could produce a processing 'shadow'

where the following processors in the same ring do not receive

any data, this effect should not be evident if all of the

uppermost processors are fed with data and may be simply

overcome by allowing data to be sent upwards as well as

downwards, again this would involve mixing data and results

though there should be no attendant problems of deadlock as

events are completely independent and may be routed round

queues of data and results.

THEORETICAL CONSIDERATIONS

3.7.3 Processor Failure

83

Failure of a processing node such that is does nothing

would be identical to failure of the four links connected to

it*. If a fed node fails then no data will be fed to the system

at that point and if only one node is f ed with data then this

is a possible single point failure of the system.

3.7.3.1 Data Sink Failure

There are three other principal cases of failure of a

processing node. A processor may fail such that it will accept

data and not t. ake any corresponding action, acting as a sink

for data. This situation would not produce any symptoms

readily detectable by the other processors, however this could

be dealt with by using suitable error detection software

mechanisms[4]. This could ensure that if a processor were not

providing finished results then no further data items would be

accepted.

3.7.3.2 Data Source Failure

A processor may also fail such that it generates output

data that is not the result of processing input data items,

this could take two forms; a random stream of 'noise' data or a

stream of correctly formed processed events but carrying

meaningless values. The former may be detected and dealt with

(simply ignoring the 'noise' would be an effective remedy) by

requiring valid data to be framed correctly ie with an

appropriate header and correct checksum etc, the probability of

a valid frame being generated being very small. The latter

THEORETICAL CONSIDERATIONS 84

case is somewhat more difficult to deal with since no readily

detectable symptoms are produced as far as the other processors

are concerned. The erroneous behaviour of a processor may be

detected and dealt with using suitable software error detection

mechanisms within the failed processor[4]. This could ensure

that if a processor were producing unwarranted output data then

the processor would shut itself down or take some other action.

In this case, as in that where data is accepted without

producing a corresponding output, a simple count of data items

accepted as compared with results produced with appropriate

action being taken if an unacceptably large discrepancy arises

could be used to detect erroneous behaviour.

3.7.3.3 Faulty Processing Failure

The final and most difficult form of processor

misbehaviour to detect is that where data items are accepted

for processing and the results sent on correctly but the actual

processing performed is erroneous. This could be dealt with

using N Modular Redundancy (NMR)[41, this would require either

N processors at each node or a rigidly defined communication

and interaction scheme between N processors of the system, both

methods involving a reduction in processing 'power' by a factor

of approximately N as compared with a system not implementing

NMR. Having the N processors at one node would be a more

efficient solution as it would avoid the use of the network to

compare results with the attendant problems of network loading

and routing. Having all N processors in one node allows a

simple comparison of the results, results over which there is a

disagreement may simply be destroyed avoiding the need for

THEORETICAL CONSIDERATIONS 85

rollback[4,801, this loss being small in comparison to the

total number of events processed. However, this situation

cannot be left to continue unabated as if the processor

continually destroys results it will become a 'sink' for data

as in section 3.7.3.1 above. in the case of the homogeneous

processor the action taken on detecting an error by the NMR

implementation may simply be to shut the processor down,

because of the inherent fault tolerance of the network no

action would be necessary to maintain the function of the

system. This would result in the destruction of an event,

however at a processing rate of 10 000 events per second (an

order of magnitude less than that targetted which may or may

not be regarded as significant depending upon the experiment)

the resulting error after 1 second would be 0.01% of the total.

In such a situation where a result is not essential following a

failure, only the detection of failure, 2 Modular Redundancy

could be applied with a consequent minimising of cost.

3.7.4 No-Action Resilience to Faults

In the case of distinct processors the NMR error

detection mechanism could be used to provide corrective action,

because of the mapping of event processing onto the system a

processor cannot simply be shut down without preventing the

processing of a particular group of events.

For a homogeneous processor however, provided that the

processing nodes can be relied upon not to misbehave in one of

the ways mentioned above then the network would ensure graceful

degradation of the processing performed without the system or

THEORETICAL CONSIDERATIONS 86

the user having to perform any corrective or reconfiguration

action, unlike most fault tolerant schemes which require the

system to repair itself after a fault[4,15,53,141. In f act

only the node that has sustained failure need be 'aware' that a

fault has occurred; an inactive processor would appear to any

processor that attempted to send it an event as already busy,

if this were the case then the sending processor would simply

send the data along the alternative output link and the data

would pass around the fault through neighbouring processors,

this mechanism could lead to a processing 'shadow' as mentioned

above.

This graceful degradation would not continue indefinitely

as the failed processors and links could soon form a cut-set

within the topology and isolate a possibly large section of the

network. For this reason it would be desirable to allow for

the provision of replacement of faulty processing nodes within

the system with the system running.

3.7.5 On-Line Replacement of Processors

3.7.5.1 Reprogramming

For a system consisting of distinct processing nodes a

replaced processor would require reprogramming with its

location within the network and the routing and processing

programs for the data it would be intended to deal with.

Unless each processor were to store the programs for its

immediate neighbours, considerably increasing the memory

requirements, the programmming information would have to be

sent through the network interfering with its normal operation.

THEORETICAL CONSIDERATIONS 87

In this instance, with the implementation of NMR, replacement

of processors should rarely be required and re-initialisation

of the system following processor replacement would probably be

the most cost effective strategy.

For a homogeneous processor many of these problems would

not exist or would be significantly reduced in complexity.

Since all processors execute exactly the same program no

additional memory is required for storage of neighbour nodes

programs as this is inherent in the nature of the system. All

that would be required would be the facility for processors to

request a copy of the program from one of their nearest

neighbours.

3.7.5.2 Hardware Requirement

Both of these schemes require specific capabilities of

the hardware not provided for by all communication schemes.

When a processor is replaced the adjacent processors must be

informed of the availability of the replaced processor, this is

easily achieved at the software level. Problems may arise with

some types of hardware communication protocol however, simple

handshake lines present no problem but protocols that implement

an acknowledge mechanism at the hardware level using

transmitted acknowledge packets [78,10611095671 require both

communicating nodes to be restarted if one the the nodes

suffers a failure as otherwise one of the nodes could possibly

have lost an acknowledgement and be left unable to send data.

If the facility is not available to restart individual

communication circuits within a processing node then all

THEORETICAL CONSIDERATIONS 88

communication must be restarted and this will have a knock-on

effect ultimately requiring restarting the entire system. This

problem does not arise at the software level since the state of

any part of the software mechanism can be independently set as

appropriate.

3.8 Distributed Depth First Search

Several situations arise where it is desirable to

interrogate all of the processors of the network in turn, for

testing of the processing nodes or to verify that the

connection topology is correct. An algorithm was required to

enable this to be carried out in a systematic fashion. Two

principle established algorithms for searching of graphs exist,

these are the depth first search (DFS) and the breadth first

search (BFS)[132,411, though others do exist. Both of these

algorithms are well known for searching graphs using a

monoprocessor and both create a spanning arborescence of the

graph, algorithms also exist for searching of such graphs in

parallel[671. Neither of these were what was required, this

being for the algorithm itself to be reproduced at all vertices

of a graph and for the active node to progress through the

graph as the node under consideration would in the case of the

monoprocessor algorithm. The data exchanges within the

monoprocessor algorithm would have to be replaced with transfer

of data across the network making up the graph. The depth

first search was developed into a distributed algorithm though

the same approach could be applied to the breadth first search

algorithm. Additional data exchanges were added. to the

algorithm to provide a more complete description of the

THEORETICAL CONSIDERATIONS 89

interconnection graph than a spanning arborescence.

3.8.1 Development of the DDFS Algorithm

The starting point for the development of the algorithm

was the algorithm as quoted by Sedgewick[1321.

procedure dfs;
var now, k: integer;

val: array[l.. maxV]of integer;
procedure visit(k: integer);

var t: link;
begin
now: =now+l; val[kl: =now;
t: =adj[k];
while t0z do

begin
if val[tA. v]=O then visit(t-. v);
t: =t*"*. next;
end

end;

begin
now: =O;
for k: =l to V do val[kl: =O;
for k: =l to V do

if val[K]=O then visit(k);
end;

This algorithm is intended to scan an adjacency list held

in a monoprocessor and a great deal of the detail is specific

to the representation. The important details are the

initiating call to visit(k) (in the algorithm above all of the

nodes stored are tested to allow non-connected graphs to be

scanned), the tests of vallt-. vl for all of the nodes to which

the node being scanned is connected and the resulting visit to

the connected node.

The distributed algorithm is not required to visit its

connected nodes until it is visited by another node, the

initial visit being generated by an external driver. The

initialisation of the assigned values was performed by each
I-

THEORETICAL CONSIDERATIONS 90

node declaring itself as unvisited on commencement of the

program. The procedure visit is recursive the calls of the

procedure being replaced by interactions between processors,

the procedure visit was split into two parts, visit call and

visit answer, a call to visit being represented by the

interaction between the procedure visit call of one node and

visit answer of the next. Since vertices of connectivity : ý4

were under consideration the links t were represented as the

integers I to 4. These changes give a first outline for the

modified algorithm.

procedure ddfs;
var now, val: integer;

procedure visit-call(t: link);
begin
send now to visited node;
while waiting

if val - requested then
send val to requesting link;

receive new now from visited node;
end;

procedure visit answer(t: link);
begin
receive value of now;
for t: =l to 4 do

begin
if valreq(t) =0 then

visit call(t);
end;

return new value of now;
end;

begin
repeat

begin
wait for something;
if visited then

visit answer;
if val_requested then

send val to requesting link;
end

until forever;
end;

THEORETICAL CONSIDERATIONS 91

The function valreq is one to return the value of the

node (if any) connected to link t. This would involve some

interaction between the two processors in addition to visit

call and visit answer interactions.

3.8.2 Circuits and Self-Loops

Inspection of the behaviour of the algorithm reveals an

inability to cope with some cyclic graphs where the node that

is next to be visited is already part of the visit call/answer

chain. Unless the algorithm can respond to val requests while

engaged waiting for the response from its visit call cyclic

graphs cannot be scanned correctly, this is the purpose of the

code to respond to val requests in the visit-call section of

the algorithm though this still does not permit self-loops to

be scanned.

3.8.3 Use of Multi-Programming

With the increasing availability of multiprocessing

systems it was possible to consider an algorithm using such a

facility, a separate process could be set up to respond to val

requests at any time allowing all graphs to be scanned

correctly. With this modification the algorithm written in a

pseudo parallel pascal using parbegin/parend to indicate

parallel execution[441 becomes:

THEORETICAL CONSIDERATIONS

procedure depth first search;
var now, val: integer;

procedure valresponse
begin
wait for a request for val;
send val to the appropriate link;
end;

procedure ddfs;

procedure visit call(t: link);
begin
send now to visited node;
receive new now from visited node;
end;

procedure visit answer(t: link);
begin
receive value of now;
for t: =1 to 4 do

begin
if valreq(t)=O then

visit call(t);
end;

return new value of now;
end;

begin
wait for something;
if visited then

visit answer(t);
end;

parbegin
valresponse;
ddfs;
parend;

92

All that the system needs to function is a visit call to

one of the nodes.

3.8.4 Use of DDFS for testing

The algorithm above provides little useful information,

to be useful some additions need to be made to return some

information to the interrogating node. To allow the connection

pattern to be tested the link connections must be added to the

information passed back with the new value of now, with the

THEORETICAL CONSIDERATIONS 93

recursive nature of the visit call/answer this information will

ultimately be passed back to the interrogating node. if

testing of the processors is required this can be performed as

part of the DDFS, the test results may be passed back to the

interrogating node with the assigned value and 'the link

connection information. This assumes of course that the

processing nodes are actually capable of running the test

programs, if not then the node will not appear in the graph

returned, a result that itself indicates a fault. A large

amount of work on fault detection schemes in the presence of

faulty nodes has been done[118,16,32,63,27,1051 and such a

scheme could be used to test the system. The purpose for which

the search algorithm was principally developed was to allow the

initial correct connection pattern of the network to be

verified since a simple 'patch panel' type of construction was

envisaged in the interests of flexibility and ease of

replacement of processors. The implementation of the algorithm

is explored more fully in chapter 6.

I

94

CHAPTER 4

SIMULATION OF PROCESSING STRUCTURES

4.1]Introduction

The ring and cylindrical structures considered in the

previous chapter were based on regarding the system purely as a

set of data flows. This chapter describes simulations of such

structures which were undertaken as a precursor to hardware

development to explore various aspects of the behaviour and

performance of the computing structures proposed.

The first stage involved the simulation of a single ring,

experience gained with the ring was then applied to the

selection and design of simulations of cylinders of processors.

The programs used for the simulations are to be found in

appendices 1-

4.2 Processing Element Model

The processing elements of the computer structure under

simulation were modelled as a sequential machine[411, with the

state diagram show in fig 4.1.

Initially the state of a processor would be zero, this

state being used to indicate that the processor is idle and

waiting to accept further data. The sequential machine is then

set to a state when it commences processing of an event, the

state assigned representing the complexity of the computational

task, as the event is processed the processor takes a

SIMULATION OF PROCESSING STRUCTURES 95

progressively lower state until the state zero is reached, i. e.

the processor is idle once again and can accept a further event

to be processed.

BUSY IDLE

N-1) 23- N-2 1- -- e2)1)

PROCESSING ACCEPT TASK----ý

FIG. 4-1 STATE DIAGRAM OF THE PROCESSOR MODEL
USED FOR SIMULATION.

4.3 Communication Hardware Model

The communication structure supporting these processors

was modelled at the register transfer level[1211 as a set of

input or output buffers within each processor, these being

connected to the appropriate buffer in a separate node by a

communication link. The action of the communication hardware

was represented by a transfer of data from the output buffer of

one processor to the input buffer of another, with necessary

changes to internal flags to indicate the state of the buffers.

4.4 Iterative Nature of the Simulation

The action of the communication mechanism and the

processing elements were simulated in an iterative fashion,

each iteration representing a time unit (Equitemporal

SIMULATION OF PROCESSING STRUCTURES 96

Iteration[1211). This approach produced a system model that

would operate with globally synchronised communication and

computation, this could allow some undesirable aspect of the

real system's behaviour to be overlooked.

4.5 Communication

There were two stages to each iteration, the first

involving the transfer of data from the output buffers to input

buffers, this being carried out in accordance with the

connection pattern of the ring or cylindrical structure.

4.6 Data Input Mechanism

At this stage fresh data was placed in the upper input

buffers of the nodes of the ring which were empty, this

achieved the function of the data input mechanism. Data was

placed into any input buffers that were empty so that buffers

were filled as fast as they were emptied, this allowed the

computing structure behaviour to be simulated without

interference from the effects of the input device.

Several different schemes of inputting data were

implemented depending upon the simulation being carried out.

In the distinct node set of simulations the data represented

the node in which the event would be processed and the

processing task incurred by the processor on receipt of this

event would either be a user defined constant or one of a range

of randomly selected values, the distribution of the random

numbers used for these simulations is shown in fig 4.2.

Lli
T,

r--"
ui cn
(f) Lli

ci: >
LLJ
(ri LLJ

LL
L3 Lli

LD
1--4

M f-4

cr <1

Cf) :: D

0i

XZ

co

SIMULATION OF PROCESSING STRUCTURES

00 CD 000
0 CC) 0 Cu
ýl

3, TlVA H3V3 -ýO S33N3umm
-ýo H39NnN

CD
CD
ýl

0
CD

(D
LD

CD
Iq

0
cu

0

LLJ

97

SIMULATION OF PROCESSING STRUCTURES 98

The required processing effort to completely deal with the data

is referred to as the data type in the discussion that follows.

In the homogeneous set of simulations performed the data simply

represented the amount of processing required to complete the

event, provision was made to supply differing types of either

fixed or random complexity to each node. Data having a

randomly distributed type was notated as having a type of Rn

where n is the maximum value of the data type and given a

negative value rather than a positive value as for constant

type.

A count of the total number of events supplied to each

node was maintained and this was included as part of the

results for possible use as a performance indicator.

4.7 Computation

The second stage of each iteration was the simulation of

the action of each processing node, there being two actions

carried out by the processing node, the routing of data and the

processing of data. These two actions could be performed by

distinct parts of a processor in a practical implementation as

in the asynchronous cells studied by Ansade et al[81 or by

separate concurrent processes within a processor. Several

different routing algorithms were tested in this scheme. A

fixed amount of 'processing effort' was available in each

iteration and for each data transfer carried out within a node

some of this processing effort was consumed. The action of

processing was simulated by decrementing the state of the

processor by the amount of 'processing effort' available

SIMULATION OF PROCESSING STRUCTURES 99

remaining after the communication had been performed. On

completion of the processing of an event, indicated by the

processor entering state zero, a count of the total number of

events of each type was incremented as appropriate, to provide

an indication of performance in terms of completed events. In

all of the simulation discussions that follow the value taken

as the maximum 'processing effort' was 4 units per iteration

with one unit deducted for each data transfer performed. The

amount of processing consumed was perhaps rather high, this was

made so deliberately to exacerbate any potentially serious

communication effects and to make such effects show up more

readily and clearly in any of the simulations performed.

4.8 Performance Indicators

In addition to the counts of events taken into the system

and completed events as performance indicators a 'Weighted

Total Processed' was kept. This was the sum of events of each

type processed with a weighting applied to each type according

to the processing time required for completion of that event

type. This is effectively the total usefully applied number of

processor cycles and takes into account variations in

processing time for different types of data.

4.9 Startup Effects

On commencement of the simulation all of the nodes were

in an empty state as a real machine would be immediately after

having been programmed. It would have been possible to

initialise all of the nodes to some form of 2steady state"

SIMULATION OF PROCESSING STRUCTURES 100

value to allow simulation of the steady state flow within the

system without interference from any other effects, it was

however considered undesirable to do this; this would avoid any

tendency to influence the outcome of the simulation by

initialisation of the system into an artificial state that

perhaps would not occur in practice and would also determine

that no untoward conditions arose during initialisation as data

percolated through the various systems under study. For these

reasons the simulated systems were started up from an empty

state, for simulation intended to observe the steady state

throughput of the system, as most of them were, this would

produce an apparent lowering of the throughput of the system as

some processing cycles would be required simply to fill the

system with data. This would be particularly pronounced for

extremely large systems and small numbers of iterations. The

larger part of the simulations were carried out over 1000

iterations, this was considered to be large enough to make the

initialisation insignificant for most of the systems

investigated. For a 100 node system this would require

something in the region of 20-200 iterations (dependant on the

diameter of the interconnection graph and the number of nodes

fed with data.) to fill the buffers and would produce -20%

error. It is possible that this is a pessimistic estimate as

some processing would be performed during these initialisation

cycles and most of the systems simulated were of a size

considerably less than 100 nodes. The figure of 1000

iterations proved to be something of a practical limit since

the time taken to run these simulations on a Pr1me 9955

minicomputer took several minutes for each simulation with a

SIMULATION OF PROCESSING STRUCTURES 101

particular system shape and data type.

4.10 Preferential Communication Algorithms

Communication was given preference in the computing

scheme implemented, this decision is readily justified by

considering the converse case. If 'processing effort' were

directed towards completion of the current event then

communication would only take place, if at all, when the

processor was idle. In any situation other than. that where all

processors were fed with data individually this would

inevitably lead to processors remaining idle while data was

waiting to be processed. One simulation of this type of

algorithm was carried out and performance was equal to that of

a single processor regardless of the number of processors

available. Following this result this line of investigation

was not pursued further.

4.11 Distinct Node Simulations

The first set of simulations carried out were a

simulation of the scheme developed where data types were to be

routed to particular nodes for processing. Initially rings

were simulated, since the cylindrical structure was a

development from the ring and it was believed that experience

gained with the ring simulation could provide indications of

areas of interest with the cylindrical structure.

SIMULATION OF PROCESSING STRUCTURES 102

4.11.1 Data Routing Information

In all of these schemes the data supplied to the system

was the address at which the data should be processed and was

passed around until the data reached the correct processor. In

the case of the ring structure this address was simply the

number of the processor around the ring, in the case of the

cylinder the address was the value: number round the ring +

(100 x layer number) which allowed the layer and ring values to

be sent as one integer value. The data was passed around the

ring until the address of the data matched the 'identifier' of

the processor node, once this situation occurred the data had

been routed to the correct node and the processor was allocated

a fixed amount of processing work to perform. All of the data

packets in this scheme effectively had a fixed type. This

fixed type could be changed by the user and if a negative value

were used for the data type this would produce a random type,

evenly distributed up to the value indicated.

4.11.2 Ring Simulation

4.11.2.1 Algorithms Investigated

The possible algorithms for movement of data within such

a processing system were restricted only by the designers

imagination and creativity. Algorithms where data were

processed in preference to communication being performed were

excluded from study for the reasons stated above in section

4.10. Two out of the many possibilities were selected as cases

for study.

SIMULATION OF PROCESSING STRUCTURES 103

The algorithm was split into two sections of code, one

taking data from one of the data streams for processing and the

other taking data from one of the data streams and forwarding

this on to the next node. These sections of code had a similar

structure in both algorithms, if the space to which the data

was to be sent was ready to accept more data then first one

possible source and then the other was tested for the presence

of data, any data found being passed on. This produced two

algorithms, in one preference was given to new data coming in

from above and in the second preference was given to data from

the ring.

This essentially simple scheme would not suffice in the

distinct processor system, some tests for a match between the

data and the identity of the processor being required. This

complicates the algorithm but not excessively so, data destined

for processing at that particular node must not be sent past

and data not destined for processing at that node must not be

accepted for processing.

The algorithms as they appear in the programs (which are

to be found in appendix 1) are shown below, short procedures

and functions for common facilities have been written allowing

this algorithmic style of program.

4

SIMULATION OF PROCESSING STRUCTURES 104

begin (* COMMS1 *) begin (* COMMS2 *)
if processor -

idle then if processor idle then
- data then if new ta then if ring_da

data right then - if new if ring_data_right then
- take
-

newjata take ring_data
-

else else
if ring_data then if new data then

right then data if ring if new data right then
- _ _ take

-
ring_data newjata take

else else
(* NULL (* NULL

else else
(* NULL (* NULL

else else
if ring_data then if new data then

right then data if ring if new
-

data_right then
_ _ data ring take take new-data

- _ _ else else
(* NULL (* NULL

else else
(* NULL (* NULL

else else
(* NULL (* NULL

if ring_ready then if ring_ready then
data then if new if ring_data then

- if not new
-

data_right then if not ring_data_right then
new

-
data_on ring_data_on

else else
data then if ring if new

-
data then

_ data right if not ring then if not new
-

data-right then
_ _ ring_data_on new-data_on

else else
(* NULL (* NULL

else else
(* NULL (* NULL

else else
data then if ring if new

-
data then

_ if not ring_data_right then if not new
-

data right then
ring_data_on new-data_on

else else
(* NULL (* NULL

else else
(* NULL (* NULL

else else
(* NULL (* NULL

end; (* COMMS1 end; A* COMMS2

4.11.2.2 Performance of the Algorithmn

The two ring communication algorithms were tested with a

variety of input data types (see section 4.6) ranging from 1 to

50 inclusive, ie from purely communication bound through to a

situation where the processing was computation bound, in

SIMULATION OF PROCESSING STRUCTURES 105

addition to constant data types similar simulations were

carried out using data of even random distribution (see section

4.6). It was thought that any tendency for the processors to

become Isynchronised' due to the regularity of the data would

be avoided, obviously this could not be done for data of type 1

since only one value of the data type was possible.

4.11.2.2.1 Communication Bound

Taking the data types dealt with in order, fig 4.3 shows

the variation in weighted total processing (WTP) achieved with

different sizes of ring fed with data of type 1. For a ring

fed with data requiring so little processing Pcmax can be taken

to be 1 (since only one event may be accepted to be processed

at each iteration in the simulation model) and Kr may be taken

to be zero as regardless of the number of data transfers made

within a node sufficient processing remains to process the

event to completion. The value of P
phys would be 1 as only one

event may be passed along each link in one direction. The

bandwidths are all in events/iteration and Kr is a

dimensionless constant. In the graph line 1 represents the

behaviour of algorithm 1, line 2 represents the behaviour of

algorithm 2 and line 3 shows the values predicted by the flow

model of section 3.4.2.6.1. The most obvious feature of the

graph is the behaviour of line 2, up to a2 processor network

the algorithm processes as much data as algorithm 1, however,

beyond a ring size of 2 processors the processing drops * to a0

very low level. Running the simulation for large numbers of

iterations has shown that what is occurring is not merely

process starvation, but total lockout or deadlock.

SIMULATION OF PROCESSING STRUCTURES

ýl

II
CD

I-

LU
00
0z
z :: D

0
(10

0
F--4

u
LLJ

:D

z
F--4 0
[I: u

Lli
Cl
0
z

Lij
fl-

u

cr)
ý-A
M

CD

(D W CD
C:

-J -J

11 11- -1- --T -T-- 1

(D

1141

(D

CD
U)
UD
LU

CD
CE
11-

Z
LU

x LLJ

0

-i C:)

LU
C: 3

Q

Co

EE

CD
z
ý-q
rr

ui
LO

cn
f-r
CD
U)
cn
Lij
u
CD
Ir
n

LL
0

(I
Lli

z

Oki

0

0 0 0 CD 0 0 0
0 CD 0 0 C) 0
0 LD 0 LO 0 LO
m (\I cu Ir-I T-1

106

(SiINn 9NISS33OLid) SNOIiVU31I
OOOT HAAO 9NISS13OHd -lViOi 031H9IýIM

SIMULATION OF PROCESSING STRUCTURES 107

In fact what is believed to happen is that a situation builds

up where all of the processors buffers are full with data that

cannot be processed at that node (the output buffer can only

contain data that cannot be processed at that node) for all

processors. In this situation no data may be passed on since

the buffer is full and the buffer cannot empty because the

following processor is in a similar situation. This situation

where all buffers are filled with data not for the processor in

which it resides arises out of the priority with which input

data is dealt with, preferentially more data is accepted into

the system, this causes a chain of unprocessed and

I unprocessable (by the node in which it resides) data to build

up behind each processor, any processable data being sifted out

of the chain by the processor. This rapidly produces the

deadlock situation above.

When this algorithm is used in a ring fed with data with

a randomly distributed processing time this effect is still

present lending credence to the idea that this effect is

produced as a result of the algorithm used rather than some

effect due to the uniformity of the data.

The behaviour of algorithm 2 (line 2) shows no signs of

the deadlock of algorithm 1, such a situation is prevented by

the preference given to data from previous nodes in the ring,

this prevents the backlog of data which could cause deadlock.

The curve tends towards a value for weighted total

processing (WTP) of approximately 2000 which is consistent with

the predictions made in section 3.4.2.6.1 which suggests that

the asymptotic value of the total bandwidth as R -+ - is 2*AP,.
Y,

SIMULATION OF PROCESSING STRUCTURES 108

events/iteration for events of type 1 and over 1000 iterations

gives a total processed value of 2000 'processing units'.

Another main feature of this curve is the shifting of the peak

from the predicted position at R=3 to a position nearer to R-5.

Consideration of the factors that should induce such a peak, ie

that of a balance between the bandwidth of data passed around

the ring and the bandwidth of data fed into the ring such that

the maximum input flow is obtained without causing saturation

of one before the other, implies that there is a tendency for

there to be a greater bandwidth of data transmitted around the

ring rather than into it with a consequently larger ring size

being achievable before both bandwidths reach a simultaneous

limit. A ring size of 5 would imply that the bandwidth around

the ring is twice that of the bandwidth into the ring, ie

Af=2-Pn from (i) of section 3.4.2.6.1. Considering the values

of processing bandwidth allows further insight into the systems

behaviour to be gained. The peak value, ie total processing at

R=5, is almost 2500, that is a mean value of 0.5

events /iteration supplied to each vertical link, which is the

value which will produce saturation (Pf=Aphy.) of the

horizontal links. The total processing when R=3 is -2000 which

is a mean value of 0.66 events /iteration supplied to each

vertical link, producing a mean flow of approximately 0.66

events/iteration in the horizontal links. This behaviour

occurs as a result of the algorithms inherent priority for

communication in the horizontal direction. The algorithm will

transfer an event from the horizontal input to the horizontal

output of a node in preference to accepting new data and

transferring this to the horizontal output. Of course if data

SIMULATION OF PROCESSING STRUCTURES 109

arrives at the node at which it is to be processed it will be

taken for processing as soon as the processor become free for

reasons outlined in section 4.10, though even in this case

preference would be given to data arriving from other nodes in

the ring. This behaviour of the algorithm forces data at the

vertical input links to wait until there is no data at the

horizontal input link or that the data at this link is not to

be processed at that node. Despite the rather crude buffering

scheme of the simulation the flow model is a reasonably good

predictor of the form of behaviour exhibited by the system

though the particular values are influenced by the details of

the algorithm involved. In the experimental environment in

which processing is to be performed the actual values need not

be precise since the processing time for events will vary from

one experimental set up to another as will the importance of

processing time.

4.11.2.2.2 Intermediate Data Types

Two simulations of the ring were carried out with

intermediate data types, data of types of 5 and 10 and randomly

distributed data with mean values of 5 and 10 were used.

The simulation using data of type 5 had values of

Pcmaz m 1/2, Kr m 1/4 and Pp,
y, m 1, the bandwidths being in

events/iteration and Kr being a dimensionless constant.

Examining the behaviour of the algorithms shown in fig 4.4,

lines 1 and 3 show the behaviour of algorithm 1 and lines 2 and

4 show the behaviour of algorithm 2.

LL
CD

CD
Z

Lii
Li- LU

n
:

Z

cr

LU

CD

U
Z

U)

, ýz

SIMULATION OF PROCESSING STRUCTURES

cu 7-, Lf)

(D w (D CD CD
C: c

I
c

I
C:

.
-j < -j -j + -j x

cm

X

11 (0

rr
CD

En En
LU
u CD
Er
0-

Z
LU

X LU -3
: 3. "

LU

CD

Lii
C:) X

X

C

Co

E
(D
Z

LU
LO T-

Z

CD
u3

cn
CD

EI-

11
0

rr
Li
Ei]

Z

Cýj

0

0 0 0 0 C 0
0 0 0 0 0 0
0 0 0 0 0 0

co LO NT Cýj

110

(SIINn 9NISS33OHd) SNOIlVHýIJI
OOOT H3AO 9NISSýIOOHd -lVIOJ 0IIH9I3M

SIMULATION OF PROCESSING STRUCTURES ill

The first of each pair of lines shows the behaviour when fed

with data of constant type 5 and the second line of each pair

shows the behaviour of the algorithm when fed with randomly

distributed data with a mean value of 5. Line 5 shows the

values predicted by the flow model of section 3.4.2.6.1.

Immediately obvious is the deadlock that occurs with

algorithm 1, again no deadlock occurs using this algorithm for

values of R: ý2.

The value of Kr selected, 1/4, stems directly from the

simulation, the value for Acmax would appear to be

appropriately set at 4/5 events/iteration, however since

processing remaining after completion of an event may not be

usefully applied to the next event this 'lost' processing

effectively becomes part of the processing required for an

event so that two full iterations of processing are required to

complete an event. Hence Pcmax = 1/rs/, tl events/iteration

(where rxi is the smallest integer not less than x) was used,

giving P
cmaz = 1/2.

This inconsistency between the model which assumes a well

buffered uniform flow and the simulation which consists of

discrete iterations and minimal buffering results in a lower

throughput of events, which can be taken into consideration to

some extent with the changes in Acmax outlined above. This

change in Pcmax also requires some adjustment in the expected

corresponding weighted total processing as only those

processing units actually used for processing an event will

form part of this total whereas all of the processing units

used towards an event (including idling) would be included in

SIMULATION OF PROCESSING STRUCTURES 112

the calculated total processing. What is required is an

adjustment of the value used to convert events into processing

units, an event's type must become

type' = type + idling units (processing units)

however this cannot be assigned a constant value as the number

of idling units are not a fixed part of the event and will vary

depending upon the number of data transfers made while the

event is being processed. For this reason this effect was not

taken account of in the predictions made. Its effect would

amount to a maximum of three processing units per event

processed and with large data types this effect rapidly becomes

insignificant.

In the light of predictions made with these values there

is a good correlation between predicted and simulated values.

The processing predicted is 0.4 events/iteration which

corresponds to a weighted total processing of 2000. It can be

seen that the simulation value is close to this predicted

value. The asymptotic value for large R. is again 2-P
phys

events/iteration which corresponds to a value of 10 000

processing units, only slightly greater than the value obtained

from simulation.

The shape of the curve bears a strong resemblance to that

of the theoretical predictions. With 0
C<Pphy,

the effect of

any bias in the routing algorithm is largely masked.

The same approach can be applied to inspecting the

results of simulations using data of type 10, again the

behaviour of both algorithms is shown on the graph fig 4.5.

SIMULATION OF PROCESSING STRUCTURES

, ý-l CU -l--) NT Ln

II
CD

M

-T-

31.

cn
LU
ED
CD

0

Lij
Ll- Lli

n
CD >-

rr

LU
m
CD

C-)

cn

LO

cu (1) cu CD (D
C: c C: C:

-J -J -J + -J -J

m

u
m

cn Ir
CD
En
(J-) LLJ

A U
0
(I:
0-

z
LLJ
Lli

LLJ
m

y
ý U I

CD

LLJ
A

CD 0 CD CD CD CD 0 0
CD 0 CD CD (D CD 0
(D 0 0 0 0 0 0
IZ cm 0 OD (0 cm
ý-1 ýI ýI

(SiINn 9NISS-ýXHd) SNOIiVHAII
0001 HAAO 9NISSA3OHd -lViOi O]iH9I]M

Q

CC)

E
LD
Z

rr

W
LO r

i-

Z
1-ý

cn rr
CD
u3
cn Lii u CD l; r Ei:
n

ti-
CD

rr
LU
m

Z

cu

CD

113

SIMULATION OF PROCESSING STRUCTURES 114

As in the previous graph lines I and 3 show the behaviour of

algorithm 1 with both constant and randomly distributed data

respectively, lines 2 and 4 show the behaviour of algorithm 2

with both constant and randomly distributed data and line 5

shows the values predicted by the flow model. The most

prominent feature is again the deadlock condition arising with

algorithm 1 for values of R2! 3. The same value of Krs 1/4, was

chosen to model the behaviour of the system and by similar

reasoning to the case for data of type 5,

'Scmax , 1/rio/*i = 1/3 events/iteration. With these values

there is a good correlation between the predictions using the

flow model and the values obtained by simulation.

4.11.2.2.3 Computation Bound

Fig 4.6 shows the results of simulation using data of

type 50. The same format is used as in the previous graphs,

the four lines representing algorithm 1 with both constant and

randomly distributed data and algorithm 2 with both constant

and randomly distributed data. For this data

Pcmaz 2-- 1/r50/*l = 1/13 events/iteration and Krý 1/4.

Again algorithm 1 exhibits deadlock, but in addition to

this the randomly distributed data type for both algorithms

produces a very poor computing throughput when compared with

the behaviour of these algorithms with data of constant type.

This is probably due to the extremely wide spread of the random

numbers used (see fig 4.2) in addition to the longer processing

times approaching the time taken to cross the network.

11
0

cn
Lii
n
CD
Z

-J
CD

< [In

F- LU

ID
0 a-
Lii .

2:
LL CD

LD
Z

CE (D

LU
CD LU
CD n

ci
Z

Cf)

CC)
I

lIq

(0
II
Li

SIMULATION OF PROCESSING STRUCTURES

Cýj m Iq Lr)

CD CD CD (1) CD
C: C: C-

r--T -

A

x

E
I- u

A cf)
cr-
CD
cn
cr) LLJ

A u
0

Lu

LL,
m

A
CD

i

LLJ
A Cl

A

A

A

0
VH

CE)

LD
Z

cr

LU
T-

(0
Z

CD
(n
r_o
LU
u
CD
rr

Nz
CL

1,
CD

rr
LU
Co

CU

Q

0 0 0
0 CD 0
0 C) 0
0 LO 0
cu ýl

115

(SIINn ONISS33OHd) SNOIiVU13ij
0001 H3AO 9NISS33OHd -lVlOi 03iH9ji3M

SIMULATION OF PROCESSING STRUCTURES 116

Due to the rather simple buffering scheme implemented it is

likely that events with short processing times will be held up

behind some of those with longer processing times. Unlike the

case where processors will spend a considerable amount of time

processing once an event has been received some events will

require barely any processing and the processor is likely to

remain idle for a considerable amount of time in such

circumstances.

The curve for algorithm 2 fed with data of constant type

follows the predicted curve well and exhibits a fairly linear

if not ideal speedup with additional processors.

4.11.3 Cylinder Simulation

4.11.3.1 Algorithms Investigated

The approach to the distinct node simulations of

cylinders was very similar to that for distinct node rings. In

this case three sections of code were used, one for the

processor and one for each of the output links, these taking

data from either of the input link and passing it on to the

relevant data sink.

The address of the processor at which processing was

required to take place was 'encoded' in the data in a similar

fashion to that for the rings but to uniquely identify a

processor in a cylinder two values were required. These were

combined to form one value that could be passed around the

simulated topology; since it was slightly 'easier, to generate

the encoded' value than to perform the reverse process and

SIMULATION OF PROCESSING STRUCTURES 117

generate the values of R and L from the encoded value the test

for a match of the processor identity and the data was

performed by generating the 'encoded' identity of the processor

and comparing this with the data.

Only one algorithm was tested fully in this

configuration, the algorithm giving priority to taking new data

into the system in preference to dealing with data already

within the ring structure was found to produce apparent

deadlock situations and could not be used therefore in the

cylindrical arrangement.

SIMULATION OF PROCESSING STRUCTURES 118

begin (* COMMS1 *) begin (* COMMS2 *)
if processor -

idle then if processor idle then
if new-data then if ring data then

if new
-

data_right then _ if ring_data_right then
take__ýnew-data take_ring_data

else else
if ring_data then if new

-
data then

if ring_data_right then if new data right then
- take ring_data ýata
ýnew_ take

else else
(* NULL (* NULL

else else
(* NULL (* NULL

else else
if ring_data then if new data then

if ring_data_right then if new-data-right then
take

-
ring_data take

-
new-data

else else
(* NULL (* NULL

else else
(* NULL (* NULL

else else
(* NULL (* NULL

if ring_ready then if ring_ready then
if new

-
data then if ring_ý. data then

if level
-

right_data and if level_right_ring and
not column_right-data then not column_right_ring then

new
-

data_on ring-data_on
else else

if ring
-

data then if new-data then
if level_right_ring and if level_right_data and

not column
-

right_ring then not column_right_data then
ring

-
data_on new-data_on

else else
(* NULL (* NULL

else else
(* NULL (* NULL

else else
if ring_data then if new

-
data then

if level
-

right_ring and if level_right-data and
not column_right_ring then not column -

right_data then
ring_data_on new-data_on

else else
(* NULL (* NULL

else else
(* NULL (* NULL

else else
(* NULL (* NULL

if down_ready then if down
- ready then

if new
-

data then if ring_data then
if not level_right_data the n if not level_right_ring then

new
-

data_down ring-data_down
else else

if ring_data then if new data then
if not level_right_ring - then if not level right data then

ring -
data-down _ _ new data down

else _ - else
(* NULL (* NULL

SIMULATION OF PROCESSING STRUCTURES 119

else else
(* NULL (* NULL

else else
if ring_data then if new -

data then
if not level_right_ring then if not level_right_data then

ring_data_down new-data_down
else else

(* NULL (* NULL
else else

(* NULL (* NULL
else

(* NULL
end; (* COMMS1

else
(* NULL

end; (* COMMS2

4.11.3.2 Performance of the Algorithms

Communication Bound

A few sample runs were tried using a development of the

first communication algorithm and as expected processing very

quickly produced an apparent deadlock condition. This

condition was assumed to take the same form as the deadlock of

the ring structure and this scheme was not investigated

further, the following results are for a system using the

second algorithm presented.

In the case of a system fed with data of type 1 the

system will be entirely communication bound, this is directly

comparable to the communication bound ring structure (section

4.11.2.2.1). By similar reasoning to the case of the ring

structure values of Kr"31/4 and P
Cmax ý1 were used to model this

situation. The results of the simulated total processing are

shown in fig 4.7.

The curve along the line L=1 is, as expected, the same as

that for the case of the ring with a maximum reached at

approximately R=5 and an asymptotic value of 2 events/iteration

as R becomes large.

SIMULATION OF PROCESSING STRUCTURES

5 -9103

120

FIG. 4-7 DISTINCT NODE COMMS2 FED AT ALL NODES WITH DATA
OF TYPE 1. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

4103

0103

4103

SIMULATION OF PROCESSING STRUCTURES

4102

FIG. 4-8 DISTINCT NODE COMMS2 FED AT ALL
OF TYPE 1. Z=MEAN WTP PER NODE OVER 1000

44102

NODES WITH DATA
ITERATIONS.

121

410a

4102

SIMULATION OF PROCESSING STRUCTURES 122

For values of R=l and increasing L there is no

improvement in throughput as there is only one source of data.

There is a broad ridge in the surface, the top of which tends

to follow the R=2L +I optimum shape predicted by the model of

section 3.4.2.6.2.

Fig 4.8 shows the weighted total processing - the number

of nodes in the system, this gives the mean processing applied

towards event processing per node and does not have any

component from the processing required for routing data. From

this surface the most $efficient' arrangement would appear to

be a single processor however this is also the arrangement with

the lowest throughput. The peak value of this surface is 1000

events/iteration/node and the surface decays down to a value of

less than 100 which corresponds to less than 0.1

events /iteration per processor. Though this may sound poor

this is the best that could be achieved since with Pn=1 and

L-10 each processor would receive 1/10 events /iteration to

process.

4.11.3.3 Larger Data Types

Figs 4.9 - fig 20 show the simulation results of distinct

node cylinders with varying input data and the corresponding

plots of processing per node. The surfaces of weighted total

processing show all of the main features of the theoretically

derived graphs of weighted total processing, figs 3.9 - 3.11.

There is a slight asymmetry in the results from the

simulations when compared to those of the theoretical model in

that the weighted total processing increases more linearly with

SIMULATION OF PROCESSING STRUCTURES 123

s

R, at large L than predicted by the model and the increase with

L at large R shows a more distinct rounding. This can be

attributed to a combination of the number of events required to

fill the cylinder on startup increasing with L (see section

4.9) and some degree of bias towards horizontal rather than

vertical communication being present in the communication

algorithm.

Comparing the peak values of the surfaces (ie at the

point R=L=10) with the corresponding values of the theoretical

model. The value of total processing in events per unit time

(iteration) in the flow model is given by

Total Processing =
R-L-Ocmax

1+ Kro[

which for a value of K -ý r'-1/4 gives

Total Processing = 28.57 X Ocmax events/iteration

For the cylinder fed with data of type 5, (giving Pcmax =

1/ r5 /41 1/2) this gives a peak value of 14.29

events /iteration which represents a value of 71430 units of

total processing over 1000 iterations. However the number of

events presented to the system cannot exceed 10 000 (R X

Iterations) giving a maximum total processing of 50 000,

clearly this is the main factor constraining the system

throughput.

SIMULATION OF PROCESSING STRUCTURES

4 as
/5

as
15

. 23
Is

as
P5

25

8 q, 04

124

FIG. 4-9 DISTINCT NODE COMMS2 FED AT ALL NODES WITH DATA
OF TYPE 5. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

4'. 25 -
3.15

3.25 -3-5
a. 75 -2.75
2.25 -2.25
1.75 1.73
1.25 -1.25

. 75 75

. 25 as
1.0 1.0

2.0 2.0
3.0 3.0

4.0 4.0

S. 0

5.0
.0

7.0 7.0

,. LAYERS 8.0 1.0 T LAYERS hi X-RIMMS SIZE tm
9.0 0Z AXIS M104

104

, 04

SIMULATION OF PROCESSING STRUCTURES

5

S

S

5

4104

125

FIG. 4-10 DISTINCT NODE COMMS2 FED AT ALL NODES WITH DATA OF
TYPE R10-* Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

3
3
3
3
$
t

104

2

2

I

I

4103

FIG. 4-11 DISTINCT NODE COMMS2 FED AT ALL
OF TYPE 5. Z=MEAN WTP PER NODE OVER 1000

SIMULATION OF PROCESSING STRUCTURES

4103

NODES WITH
ITERATIONS.

DATA

126

4103

4103

SIMULATION OF PROCESSING STRUCTURES

2,

2

11

4103

127

FIG. 4-12 DISTINCT NODE COMMS2 FED AT ALL NODES WITH DATA
OF TYPE RIO. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

4103

4103

4103

SIMULATION OF PROCESSING STRUCTURES 128

This is still considerably greater than the 42 500 obtained by

the simulation the results for which are shown in fig 4.9,

obviously some effects other than included in the model have an

influence on the processing. The simulation fed with randomly

distributed data with a mean value of 5 produced a similar

performance to the constant data type case, these results are

shown in fig 4.10. The discrepancy between the calculated and

simulated result is probably due to some processors remaining

idle while the system initially fills with data.

Comparing the modellsimulation discrepancy for

simulations of data types requiring larger amount of processing

shows an improvement in the model/ simulation correlation for

these data types.

Repeating the calculations for simulation performed for a

system fed with data of type 10 gives a predicted throughput of

76 923 processing units over the simulation, this compares well

with the 76 000 processing units achieved by the simulation

(see fig 4.13). The simulation fed with randomly distributed

data with mean value of 10 produced a similar performance to

the constant data type case. This is shown in fig 4.14.

SIMULATION OF PROCESSING STRUCTURES

FIG. 4-13 DISTINCT
TYPE 10. Z=WEIGHTED

q, 04

129

NODE COMMS2 FED AT ALL NODES WITH DATA OF
TOTAL PROCESSING OVER 1000 ITERATIONS.

*104

4104

4104

SIMULATION OF PROCESSING STRUCTURES

Z AX, S 4104

130

FIG. 4-14 DISTINCT NODE COMMS2 FED AT ALL NODES WITH DATA OF
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

. 104

4104

q, 04

SIMULATION OF PROCESSING STRUCTURES

OR

131

FIG., 4-15 DISTINCT NODE COýMS2 FED AT ALL NODES WITH DATA
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

103

1103

[SOS

SIMULATION OF PROCESSING STRUCTURES

4103

FIG. 4-16 DISTINCT NODE COMMS2 FED
OF TYPE R20. Z=MEAN WTP PER NODE

-1103

132

AT ALL NODES WITH DATA
OVER 1000 ITERATIONS.

*103

410 a

SIMULATION OF PROCESSING STRUCTURES 133

With data of type 50 the value of total processing for R=L=10

over 1000 iterations predicted from the model is 2.198 X 50 x

1000 - 110 000 events which is a reasonably close value (within

5%) of the performance achieved by the simulation (see fig

4.17). The simulation using randomly distributed data of mean

value 50 showed a similar behaviour to that of the ring

structure in that a very poor throughput was achieved with

random data of large type and this was again attributed to wide

range of the random numbers used and the simple buffering

scheme of the simulation. The effect is not as serious as that

in the case of the ring, because there are two output links to

each node reducing the probability of data being help up by a

busy node. Separating the queues of data to be processed and

data to be forwarded to allow data to move through the system

without being hindered by data awaiting processing would

probably remove this effect. In the homogeneous cylindrical

processor this effect does not occur as data is not held up by

data awaiting processing. These simulations with large data

type do not show the rounding off as L increases, the effect of

the start up and algorithmic effects being less significant.

All of the plots of mean weighted total processing per

node have the same form, the highest value being for a single

processor, the plot decaying rapidly at first and then steadily

as the number of processors is increased and the processing is

distributed over a greater number of processors.

SIMULATION OF PROCESSING STRUCTURES 134

S

I

I
0

0

Mog

FIG. 4-17 DISTINCT NODE COMMS2 FED AT ALL NODES WITH DATA OF
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

*105

1 4103

4105

SIMULATION OF PROCESSING STRUCTURES

104

135

FIG. 4-18 DISTINCT NODE COMMS2 FED AT ALL NODES WITH DATA OF
TYPE R100. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

104

@104

1,04

SIMULATION OF PROCESSING STRUCTURES

4110
3

136

FIG. 4-19 DISTINCT NODE'COMMS2 FED AT ALL NODES WITH DATA
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

4gj03

4103

4103

SIMULATION OF PROCESSING STRUCTURES

41102

FIG. 4-20 DISTINCT NODE COMMS2 FED
OF TYPE R100. Z=MEAN WTP PER NODE

qioa

AT ALL NODES WITH DATA
OVER 1000 ITERATIONS.

137

0102

4102

SIMULATION OF PROCESSING STRUCTURES 138

4.12 Homogeneous Processing Simulation

4.12.1 King Simulation

4.12.1.1 Algorithms investigated

As with the case of distinct processing nodes a large

number of possible communication schemes exist, these were

reduced to two principle algorithms. The two algorithms used

were essentially the same as those of the distinct node

processing ring simulated, the statements required to compare

the data with the identity of the processor could be omitted,

providing a considerable simplification.

The two algorithms as they appear in the programs (which

are to be found in appendix 3) are shown below, the same method

of using short procedures and functions to allow an algorithmic

style of programming was implemented.

SIMULATION OF PROCESSING STRUCTURES

(* COMMS1 *)
if processor -

idle then
if new-data then

take
- new-data

else
if ring_data then

take
- ring_data

else
(* NULL

else
(* NULL

if ring_output_re * ady then
if new data then

new -
ýata_on

else
if ring_data then

ring_data_on
else

(* NULL
else

(* NULL
COMMS1

(* COMMS2 *)
if processor -

idle then
if ring_data then

take_ring_data
else

if new data then
take_new-data

else
(* NULL

else
(* NULL

if ring_output_ready then
if ring_data then

ring_data_on
else

if new data then
new -

data-on
else

(* NULL
else

(* NULL
COMMS2

4.12.1.2 Performance of the Algorithms

139

The nature of the homogeneous rings allowed the effect of

different schemes of feeding data into the system such as only

feeding a subset of the nodes with data and/or feeding

different types of data into different nodes.

Simulations using data of type 1 were not performed as in

the homogeneous ring data may be processed at any node that is

free and data requiring such little processing as type 1 would

be proce ed in the node to which it were fed immediately. For
ýfs

a ring where all nodes are fed with data the processing would

be proportional to the number of fed processors in the ring.

In the case of a ring fed at a single point only one processor

would be kept busy and all but one of the nodes in the ring

would remain idle, (this can be compared to the lower layers

remaining idle in the case of a cylinder fed with data of type

1 as described in section 4.12.2.2).

SIMULATION OF PROCESSING STRUCTURES 140

Fig 4.21 shows the performance of a homogeneous ring of

processing nodes fed at all nodes with data of type 10. Lines

1 and 2 show the behaviour of communication algorithms 1 and 2

fed with data of constant type 10 respectively and lines 3 and

4 show the behaviour of communication algorithms 1 and 2 fed

with randomly distributed data with a mean value of 10

respectively. For such data, as for the distinct node

simulations

Ocmax m 1/F10/41 = 1/3

and Kr '= 1/4

from the discussion in chapter 3 of such a processing scheme

the processing bandwidth is given by

R-9
cmax Total Processing = R-#c =-

1+K
r

-RX0.266 events/iteration

-RX2.66 processing units/iteration

there is reasonably good agreement between this and the values

in fig 4.21. The values for randomly distributed data being

almost identical to those for data with uniform processing

requirements illustrating some validity in the assumption made

that horizontal communication is either insignificant or

mutually cancelling.

SIMULATION OF PROCESSING STRUCTURES

ýl (-ýj lzl-

-T-

Cf)

z

CD
CL

M
LLJ
II

0
LLJ
(T
D

n
u :: D

Cf) CD

C-D
z

cl-

CD
LLJ
z
LLJ
CD
0

.
M:
CD
F

ýq
0i

Iq

C-D

(D CD CD
c c C:
-1 -4 r-I

-J X -J -J

(D CD CD (D 0 0
0 CD 0 0 0 0
LO (D LD 0 0 0 LO
m m Cu Ri ýl

(SiINn 9NISS33OLid) SNOIiVH3iI
OOT H3AO 9NISSA3OHd -ýViOi 031HSIAM

0

0

CD

(D
Z
1--4
r, r

LU
T-

h-

Z
1--4

LO
n-
CD
Cf)
(10
LU
(i
CD
rr
n

11
CD

rr
LU
(13

Z

oj

C

141

SIMULATION OF PROCESSING STRUCTURES 142

CD
n

LLJ
71
0

LLJ
II

LLJ 0
r-r
D
i- LLJ
C-) n
:D
rr

0
CD
z

rT <

Cf)
D
CD
LLJ
z
LLJ
CD
0
2:
CD
T-

0i
cu

XZ

CD

LL

ý-l Izi-

CD CD CD (D
C-

-
-J X -J X -J X

CD 0 0 0 0
0 CD 0 0 0
0 CD co cu

LO

'IT ry-

LU
T-

cn
CD
Ln
En
LU
C-) CD
Ei:

CD

(-r
LU
in
: 2:

-1) Z

(SiINn E)NISS23OHd) SNOIiVHAij
OOT H--ýAO 9NISS23OHd -lViOi OliH9IýN

SIMULATION OF PROCESSING STRUCTURES 143

Fig 4.22 shows the processing achieved by a ring of up to 5

processors fed at only one of the processing nodes with input

data of type 10; lines 1 and 2 show the behaviour of

communication algorithms 1 and 2 fed with data of constant type

10 respectively and lines 3 and 4 show the behaviour of

communication algorithms I and 2 fed with randomly distributed

data with a mean value of 10 respectively. This arrangement is

effectively a column of up to 5 processors. The values agree

well with the values predicted from the model presented in

section 3.4.2.7, the values for randomly distributed data are

very nearly identical to those with data of constant type.

There is a rounding of the curve as the computational bandwidth

approaches the maximum input bandwidth (Octot -* Ophys) as R

increases.

Both sets of results exhibit a lower throughput for

algorithm 2; this is the algorithm which forwards data already

within the ring in preference to taking in new data. This lead

to un-necessary $data shuffling' which wastes computing and

communication bandwidth.

4.12.2 Cylinder Simulation

4.12.2.1 Algorithms investigated

Four principle cases of the homogeneous cylinder were

identified, there being two sinks for data (the processor

itself was assumed to take priority and was not included as one

of the permutations) and two sources for data. in keeping with

the distinct node case three sections of code were used,

corresponding to the three data sinks.

SIMULATION OF PROCESSING STRUCTURES 144

The same algorithmic style of programming as before was

used, in addition to the two cases explored for the distinct

node cylinder the effect of changing the order in which the

sections of code to send data to the two output sinks (the

downward and horizontal outputs) were placed was examined. The

four algorithms thus defined are shown below, as they appear in

the simulation programs, copies of which appear in appendix 4.

begin (* COMMSI *) begin (* COMMS2 *)
if processor

-
idle then if processor_idle then

if new -
data then if ring_data then

take_new-data take_ring_data
else else

if ring -
data then if new-data then

take_ring_ýdata take_new-data
else else

(* NULL (* NULL
else else

(* NULL (* NULL
if ring_ready then if ring_ready then

if new data then if ring_data then
new -

ýata_on ring_data_on
else else

if ring data then if new data then
ring_jata_on new_; iata_on

else else
(* NULL (* NULL

else else
(* NULL (* NULL

if down
- ready then if down_ready then

if new data then if ring_data then
down new -

aata ring data down
_ else _ _ else

if ring data then if new data then
ring_jata_down new-aata_down

else else
(* NULL (* NULL

else else
(* NULL (* NULL

end; (* Commsl end; (* COMMS2

SIMULATION OF PROCESSING STRUCTURES

begin (* COMMS3 *)
if processor -

idle then
if new data then

take-new-data
else

if ring_data then
take

-
ring_data

else
(* NULL

else
(* NULL

if down
-

ready then
if new data then

new
-

ýata_down

else
if ring-data then

ring_data_down
else

(* NULL
else

(* NULL
if ring_ready then

if new data then
new

-
ýata_on

else
if ring data then

ring_jata_on
else

(* NULL
else

(* NULL
end; (* COMMS3

begin (* COMMS4 *)
if processor_idle then

if ring_data then
take_ring_data

else
if new data then

take_new-data
else

(* NULL
else

(* NULL
if down_ready then

if ring_data then
ring_data_down

else
if new data then

new
-

aata_down

else
(* NULL

else
(* NULL

if ring_ready then
if ring_data then

ring_data_on
else

if new data then
new

-
ýata_on

else
(* NULL

else
(* NULL

end; (* COMMS4

4.12.2.2 Performance of the Algorithms

4.12.2.2.1 Processing Throughput

145

The overall pattern of behaviour of these algorithms with

different data types was found to take the same form, the

performance of the system when fed with randomly distributed

data was almost identical to that of the constant data type

case and the behaviour of algorithms 1 and 2 was found to

correspond strongly with that of algorithms 3 and 4

respectively; therefore, in the interests of brevity only a few

illustrative cases will be discussed here and a complete set of

simulation results are to be found in appendix 5.

SIMULATION OF PROCESSING STRUCTURES 146

The performance of a cylinder fed at all of its uppermost

nodes with data of type 10 shown in fig 4.23 clearly shows that

there is a maximum useful value of L beyond which no

improvement (in the absence of faults) is achieved with

additional processors; once L has reached this value the

performance improves with increasing R (apparently

indefinitely). The performance of this system agrees well with

that predicted from the model of section 3.4.2.7, there is a

slightly lower throughput using algorithm 2 (and similarly

algorithm 4 c. f. appendix 5) as a result of the algorithms

preference for horizontal communication producing a tendency

towards un-necessary 'data shuffling'. This lower processing

throughput is also shown in fig 4.25, the weighted total

processing per processor for the two systems, though other

details are similar. As R increases there is no decrease of

processing throughput as in the distinct processor case (see

fig 4.15) because there is no corresponding increase in the

distance data must travel as R increases. There is a slight

decrease in processing per node, due to the effect of Kr, as L

increases up to the maximum useful value followed by a steep

decline when this value is exceeded.

The performance of a cylinder fed at only one point with

data of type 10 shows the effect of saturation of the point at

which data is fed into the system. There is a limited number

of nodes (in this case 4) that can be usefully employed. For a

linear chain of processors the methods described in section

3.4.2.7 may be directly applied and the system exhibits

generally good agreement with these values. The corresponding

results using data of type 50 shown in fig 4.27 exhibit a
J

SIMULATION OF PROCESSING STRUCTURES 147

similar overall behaviour, however the processing values do not

correspond very well with those predicted from the model. This

occurs as a result of the 'quantisation' of the simulation;

with data of type 50 very few events will require

re-transmission by a node while it is processing an event,

though processing effort would be consumed for each action

there is a likelihood in a large number of cases of the number

of iterations required to finish the event remaining unchanged

with a consequent reduction in the apparent value of Kr- The

predicted and obtained values differ approximately by a factor

of 2 and only a small change in the effective value of Kr could

easily produce such a change in the predicted value.

SIMULATION OF PROCESSING STRUCTURES

FIG. 4-23.1 HOMOGENEOUS
OF TYPE 10. Z=WEIGHTED

vA

M104

148

COMMS1 FED AT ALL POINTS WITH DATA
TOTAL PROCESSING OVER 1000 ITERATIONS

a

q 104

a

,,, 04

104

SIMULATION OF PROCESSING STRUCTURES

t

104

149

FIG. 4-23.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA
OF TYPE i0- Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS

104

0

104 . 1104

SIMULATION OF PROCESSING STRUCTURES

S.
7.

to

1103

150

FIG. 4-24.1 HOMOGENEOUS COMMSI FED AT ONE POINT WITH DATA OF
TYPE 10. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

I

103

I

p

4110
a

0

*I(V3

SIMULATION OF PROCESSING STRUCTURES

A II

41,03

151

FIG. 4-24.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA OF
TYPE 10. Z=WEIGHTED TOTAL PROCESSING OVER*1000 ITERATIONS.

I

4103

0103

5

q 103

SIMULATION OF PROCESSING STRUCTURES

4103

FIG. 4-25.1 HOMOGENEOUS COMMSI FED AT ALL
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000

4103

152

POINTS WITH DATA
ITERATIONS.

4103

* 103

SIMULATION OF PROCESSING STRUCTURES

*Ica

FIG. 4-25.2 HOMOGENEOUS COMMS2 FED AT ALL
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000

*103

POINTS WITH
ITERATIONS.

153

DATA

4103

44103

SIMULATION OF PROCESSING STRUCTURES

110

154

FIG. 4-26.1 HOMOGENEOUS COMMSI FED AT ONE POINT WITH DATA OF
TYPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

103

103

103

SIMULATION OF PROCESSING STRUCTURES

2

2

FIG. 4-26.2 HOMOGENEOUS
TYPE 10. Z=MEAN WTP PER

4103

COMIAS2 FED
NODE OVER

4103

AT ONE POINT WITH
1000 ITERATIONS.

155

DATA OF

alas

4103

SIMULATION OF PROCESSING STRUCTURES

1104

156

FIG. 4-27.1 HOMOGENEOUS %'-'POMMSi FED AT ONE POINT WITH DATA OF
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

104

1104

104

SIMULATION OF PROCESSING STRUCTURES

104

157

FIG. 4-27.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA OF
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

104

104

Ig4

SIMULATION OF PROCESSING STRUCTURES 158

4.12.2.2.2 Fault Tolerance

One of the expected advantages of the homogeneous

cylinder, as with the ring but with a greater path redundancy,

was that of fault tolerance. It should be noted that in

contrast to fault tolerance achieved through the system

patching itself up following a fault[4,15,53,141 the system

carries on regardless with a reduced throughput. A discussion

of the possible failures and the preventative mechanisms and

methods required are discussed in chapter 3, section 3.7. An

abstract simulation of failure of processors within the system

was carried out using the simulation model. A facility was

provided of specifying at the commencement of a simulation run

whether any processors had failed and if so, which ones.

Failed processors were simply simulated as 'doing nothing

gracefully', it was assumed that. either some suitable fault

detection was incorporated within the processing nodes to cope

with the source, sink and faulty processing scenarios described

in section 3.7 or that such conditions were highly unlikely.

Two principle cases were studied using the simulation

model, the first was a cylinder of processors with R=L=10 fed

with data of type 50 at only one of the nodes of the top layer

and the second case was a similar cylinder again with R=L=10

f ed with data of type 50 but at all of the nodes of the top

layer.

Figs 4.28-4.31 show the processing achieved by a cylinder

of processors using the four communication algorithms when up

to 3 randomly chosen faults were introduced. Four runs were

carried out for each algorithm, each using a different seed for

SIMULATION OF PROCESSING STRUCTURES 159

the random number generator used to determine the faulty nodes.

The graphs show clearly the effect of the failure of the

node to which the data is f ed in line 2. The other lines

however show a negligible change in processing despite the

introduction of faults. Bearing in mind that only one node is

fed with data and that this will restrict the number of nodes

usefully applied, some of the faults introduced will cause an

already idle processor to fail with no consequent effect on the

total processing.

SIMULATION OF PROCESSING STRUCTURES

ý-1 (M m "; i-

LU
z
CD

M:
CD
M

Lij
LL

-i C:)
LO

0 LLJ
n

Fr

0
3:

Cf) r--)
-T-

o F-

3:
U)
:: D
CD Z
LLJ V--f
z CD

Llj n
(D
0
M:
CD
T-

co
Cu

(0

U-

cI_) a) U.) U.)

C c c

- r:: ' - + -I X

C:) 0 (D C)
CD CD C) C)
C) CD 0 CD
0 0 CD 0

LO NT Cr) CU ýq

C

(Ti

cm

, r, -)
. LLJ

CM U
Z)
r-i
0

10 Ln

LL
CD

cr_-
LU
113
'r>7

Z

LO

0

0

GD

(SiINn 9NISSA3OHd) SNOIiVHý3ij
0001 H]3AO 9NISSýD30dd -lViOi OAiH9I]M

160

SIMULATION OF PROCESSING STRUCTURES

V-1 Cu IýT

LLJ
z
0

M:
CD
M

LLJ
II
0

-1 0

0 LLJ
n

M

CD

<
F-

0i <
cn 0
CD
C-)

3:
cn
CD z
LLJ "
z CD
LLJ n
CD CD
M:
0
r

CT)
Cu

17

(0

U-

(D (D CD (1)
c

I
C:

I
c

1
c

1

r--f . r-I -1 --1

-J -J -J I
"

(D CD CD C:) CD
CD CD 0 CD C:)
0 0 0 C) C)
CD C:) CD CD CD
LD XZ cr) cm

0

(r)

LD

cm

C:) M
. LU

CU

CD
rr

z

Ln (f)

LL CD

cr-
LU 0 co
M:
D
z

LO

0

CD

161

(SiINn 9NISSA3OHd) SNOIiVHAJI
OOOT HAAO 9NI=33OHd -IVIOJ O]iH9I3M

SIMULATION OF PROCESSING STRUCTURES

(Ai

LLJ
z
0

M:
CD
r, r
LL

0
LLJ
LL

0

-i
CD
LO

0 LU
n

CD

<

<

M: 7,
CD F-
C-) ý-A

3:
Cf)
:: D
CD
LU
z0
LLJ n
CD
CD
2:
0
T-

CD
0-)

Iq

CD

(D CD CD CD
C: c C-

-J -J

0 0 0 0 0
0 0 0 0 CD
0 0 0 0 0
0 0 0 CD
Lf') Iq (r) C)IJ

c
In

LO

Oj

C) M
. LU

Cýj U

CD

LL

11
CD

f-r
LLJ

D
z

LO

0

Q

00

162

(SiINn 9NISS-]3OHd) SNOIiVHýIJI
OOOT HýIAO SNISSýDOHd -lViOj OýIiH9I3M

SIMULATION OF PROCESSING STRUCTURES

ýl CU rr-) IT

LLJ
z
CD

2:
CD
rT,
II

q
LLJ
II

CD

-1
0
LO

0 L. Li

Fr

-r- Ll-
CD

<

<
U)

CD
C-)

3:

CD
LLJ
z CD
LU (I
CD
0
2:
CD

Iq

CD

CD (D CD CD
C: C: c C-
-f . r-I --I --q

-J -J -J 4- 1

0 C) 0 0 0
0 0 0 0 CD
0 C) 0 (D
0 0 0 0
Lf-) Iq m cli

C

c-fl

LD

(::) C)
.

LU

CM CJ
ID
r-i
0
rr

C:)

Ei:
Lii

Z

LO

0

(SiINn 9NISS33OUd) SNOI-LVH3iI
OOOT HýIAO 9NISS30OHd -lViOi 031H9I3M

163

SIMULATION OF PROCESSING STRUCTURES 164

Figs 4.32-4.35 show the results of similar simulation

runs for a cylinder of size R=L=10 fed at all of the uppermost

processors with data of type 50.

Without the introduction of faults the previously

observed performance was repeated. The algorithms showed

reasonably benign behaviour as faults were introduced,

curiously the algorithms giving preference to horizontal

communication actually showed some improvement as faults were

introduced, this improvement is produced as horizontal rings

are broken preventing the tendency of these algorithms to

'shuffle' data unnecessarily. It is worth noting again that

this data shuffling (and the consequent degradation of

processing throughput) is avoided using an algorithm that gives

preference to vertical communication, an algorithm that would

encourage deadlock in the distinct node processor simulated

above. The algorithms that give preference to vertical

communication behaved extremely well with increasing faults, up

to the small number investigated, and so long as the number of

failures are such that the probability of a cut set that

isolates a large part of the system occurring is low then this

behaviour could be expected to continue.

SIMULATION OF PROCESSING STRUCTURES

ýl C'ki IýT

X
0
rr
11

r-I
Lij
11

0

11 C)

-i
LO

-
Lli

0n

MI

CD

3:

U) -T-

0
u

(f) U)

0
LIJ
z0
Ljj n
C-D
0
7-
0 T-

Cu
m

CD

w I

(0

LC)

CU

LU

CD
rr

z
ý-q

U)

LL
CD

(I:

LO

0

LD

cu CO cu CD
m m m m ru (M (M (M CM

(SiINn 9NISS33OHd) SNOLLVH]3iI
OOOT H-ýAO 9NISS-ý3OHd -lViOi 013IH9I3M

165

SIMULATION OF PROCESSING STRUCTURES

ý-1 CM _n `Z

CD
M

Lij
II

0

11 0

-i
LO

- LLJ
0n

rr
I

1: CD
F--

Cýj

0
L) -3:

U) cn
:: D F-
0z
LIJ
Z CD
LLJ
CD
CD
M:
CD
T-

m
Cr)

LD

(D CD CD
C: c C:

-J -J -J + I

(n

(NJ

c) r--i
.

LLI

CU (-)
:D
CD
CD
rr
h-
Z
h--1

LD U3

LL-
CD

rr

LP

0

cm CO ÜD ", Z cm
LD u-) Ln Ln LD
CU Cti CM cu cm Cu

(SiINn ONISS33OHd) SNOIiVHýIij
OOOT H13AO 9NISSA3OHd -lViOi OýIiH9IýIM

166

SIMULATION OF PROCESSING STRUCTURES

cu m "; Z

CD
(r

CD

11 CD

LU
CD EI-

Z CD

3: 1-

U)
-T-

CD
ci

U) Ln Z) F- 0Z Lij h-i
Z CD
LLJ Ci-
LD
CD
2:
CD
T-

Iq

(O

U-

C
T)

N

c: ý, n
.

LU

CM CJ

CD
rr
F--
Z
ý-_A

Ln U3

LL

11
CD

rf-
LU C:)

Z

0

LO
o

Lf) C) C) Lo CD
m Cu Ri
m

"' 11, ", ",
1 1

ý I . .

.

167

(SiINn 9NISSý13OHd) SNOIiVHý31I
0001 H-ýAO ONISS-ý3OHd -lViOj 03iH9I3M

SIMULATION OF PROCESSING STRUCTURES

ý-1 CM mZ

CD
Ei:

LL-

0

-i
Ln

- LU
C) EL

:

Z: CD

3:

ug
: 2:

C)

cn cn Z) h-
CD Z
LLJ ý-1
Z CD
LLJ
(D
CD
'Y
0
r

ýq

CD

LL

cn

LD

cm

(D M
.

LU
(. U U

:: D
M
CD
M

z

Ln cr)

LL

11
CD

M
(D LLI

m

LO

0

D0

DK lIZT (li CD Co IZ

cu CU cu CM cu cu

(1) CD CD 1
C-

168

(SIINn 9NISS330dd) SNOIiVHýIij
OOOT HIAO SNISS33OHd -lViOi OAiH9I3M

169

CHAPTER 5

5 PRACTICAL METHODOLOGY

5.1 Introduction

The theoretical and rather abstract discussion in chapter

3 required some form of physical implementation. This chapter

describes the development of computing hardware capable of

supporting the computing structures proposed and the

construction and programming techniques associated with this

development.

5.2 Hardware Overview

To reflect the nature of the computing structure under

consideration the hardware was to take the form of separate

identical processor boards, each with four communication links.

Four links were sufficient for the topology proposed and are

also the minimum number of links capable of supporting a3

dimensional computing structure (in a tetrahedral arrangement).

To allow the configuration of the arrangement to be changed the

processors were to be on separate boards with plug connectors

so that the desired topology could be created using flying

leads. The main design decisions to be made were; processor

type, the amount of memory (both RAM and ROM) to be contained

on each board and the communication mechanism to be available

between the processor boards. The main design aim was

obviously to be able to support the topology proposed but also

to have as flexible a hardware structure as possible to allow

PRACTICAL METHODOLOGY 170

the boards to be used as a general tool for investigating

multiprocessor topologies.

5.2.1 Processor Memory Configuration

The processor chosen was a Z-80[1631 since these are

cheap, plentiful and quite versatile. A great deal of software

and hardware support already exists for these devices. A 32k X

8 bit RAM space was decided upon since this was available in a

single package and use of this device would keep the component

count low whilst providing sufficient memory space for most

envisaged applications also leaving half of the Z-80 addressing

space for ROM. A U. V. erasable 8k X8 bit EPROM was decided

upon for the Read Only Memory. Use of single devices for the

RAM and ROM requirements of the processor greatly reduced the

memory decoding requirement of the system. The type of

inter-processor communication could take one of many different

forms. The communication protocol had to be ihdependant of the

processor to allow the possibility of connecting different

types of processor, a serial protocol was selected to keep the

number of interconnections to a minimum since with a large

number of processors, each with several connections, the number

of interconnections, with their associated problems of

crosstalk, noise and physical placement, can easily become

excessive if each interconnection itself requires a large

number of wires such as in the case of a parallel communication

protocol.

PRACTICAL METHODOLOGY 171

5.2.2 Communication Protocol Selection

The protocol developed by INMOS for use with the

TRANSPUTER[78,102,156,148,11,1551 was adopted since it met all

of the original design considerations and also offered the

possibility of direction connection with the TRANSPUTER which

has been designed specifically for construction of network

computers. The TRANSPUTER protocol also has the advantage that

communication and handshaking is carried out using only two

wires, reducing the number of connections required by a factor

of 2 as compared to one of the more conventional serial

protocols. Buf f ering in the f orm of 16 bytes of FIFO memory

both in the transmit and receive data paths of each link were

provided (giving a total of 32 bytes of buffering in each

direction). This scheme is similar in many respects to that in

the hypercube of Tuazon et al[1471, using a fifo memory between

processors.

5.2.3 Additional Input/Output Facilities

Though not used in this particular application the

processor cards also included a parallel input/output device

(PIO). Since the emphasis in the design of the hardware was on

flexibility the possibility of passing data in and out of each

node individually and the ability to simulate a bus

interconnection was considered a worthwhile addition to the

design.

PRACTICAL METHODOLOGY 172

5.2.4 Power Supply and Physical Support

The multiprocessor hardware was built into a card frame

with an STE backplane. The STE backplane was used to provide

the power requirements of the boards only, since the

communication between the cards was to be by flying leads to

allow a wide range of connection topologies to be realised.

5.2.5 External Communication Interface

To allow the computer to receive data and programming

information from, and return data to, the outside world

interfaces from the TRANSPUTER protocol to a more conventional

and widely available protocol were required. Boards to convert

from the TRANSPUTER protocol to a standard 8 bit serial

protocol at RS-232C voltage levels at 9600 baud were

constructed. These boards were used to prototype the

TRANSPUTER compatible link circuit before construction of the

processor boards was undertaken.

5.3 Interface Board Design

Since the interface boards were constructed before the

processor boards in order to prototype the serial link circuit

the design of the former will be used to illustrate the design

of the link circuit.

5.3.1 Serial Communication Protocol

The serial protocol selected, for reasons outlined above,

was that selected for use by INMOS with their TRANSPUTER. The

PRACTICAL METHODOLOGY 173

protocol involves a two-wire physical connection between the

links as shown in fig 5.1(a). There are two types of 'packet'

that can be sent, an acknowledge 9packet9 and a data 'packet,

as shown in fig 5.1(b), these packets are sent at a rate of

10 Mbits/sec. Handshaking is achieved through the use of the

acknowledge packet, the transmitter sends a data packet and

cannot then send another data packet until it has received an

acknowledge packet. The TRANSPUTER, and the links designed

here, allow an acknowledge packet to be send during the

reception of data so that continuous data transmission is

possible. During bi-directional communication acknowledge

packets and data packets are mixed.

LINK 1
R

I
LINK 2

b
ccknowýedge

F-T-7
b

dm a

12-
0

0)
12 'j 4561

FIG. 5-1 TRANSPUTER COMMUNICATION SCHEME.

PRACTICAL METHODOLOGY 174

5.3.2 Availability of Suitable Devices

The aim of the link circuit was to produce a serial link

capable of connecting to virtually any parallel bus, though

INMOS had a device to perform this function under development,

this was not available initially and when released was

prohibitively expensive. This coupled with the considerable

number required made the development of a cheap alternative

viable.

5.3.3 Transmit Receive Synchronisation

The circuit developed is shown in fig 5.2. The circuit

has three main elements, the receive shift register, the

transmit register and the control logic. The handling of the

acknowledge mechanism was achieved by the use of two flip

flops, one indicating that an acknowledge was required before

any more data could be sent, (Acknowledge ReQuireD) and the

other indicating that data had just arrived (Data Detected).

The ARQD flip flop was set by the control logic on

sending data and the transmission of any further data would

then be deferred until the flip flop had been reset by the

detection of an incoming acknowledge packet.

PRACTICAL METHODOLOGY

D4
TSI-

13

12

in

- 9 15

D3- - - 4 13

- D2- - 5 CD 12

:t w- - - ý 10
- - 32 14 1

DOR
(Tx)

DIR
DOR

(Rx)

_C4
14 2 3

Do- 13 4
DI- - 12 -0- 5

02- -11 6
D3 I o

-
j

E- l 15

ý0- I

_ 9 15 3
D4- - 13 Q

C 2
4

- -
1

12 5 D5

- - 11 D6 MY 6
D-1- T

::::: i ;w I

CiL
ý, lK

Ii

It)

I-
C)

1

2 15
3

5 14

10

11 G

1 OMHz
(PHASE ADJUSTED)

1! 4 -74FOO

ff'F-

13

12 "1

r

10

10 15 1
15
14

13 2
12

126

13
12

Z:
B4

93
114010 5

11

10
I-
L.)
m

2 13
10 12

C)

*

15 3

15 -4 12

14 -5 1-7

2 13 -6 1 RESET

10 12 - -RR'T

-HR7
cr X! X:
CD
Li

10 15 15
15

It- * 15-8
a, a- q 14 ui ; 7. I- I=. v =3 -

14-
C.) + C-) 13 - 13 13 2

12 E 10
12 -

99
1,4 14FOO

ALL INVERTERS

SYRCR---ý ý4HCT14.
(TO CLOCK CCT) POWER SUPPLIES

112 14FOO NOT SHOWN.
FIG. 5-2 LINK CIRCUIT.

175

PRACTICAL METHODOLOGY 176

The Data Detected flip flop was set whenever the

beginning of a data packet was detected in the input stream.

If the receiver was capable of receiving more data then the

control logic would send an acknowledge packet as soon as

possible, if not then the transmission of an acknowledge would

occur when the receive part of the circuit indicated that it

was ready to receive more data. This flip flop was reset on

the transmission of an acknowledge packet.

Using these flip flops the correct handshaking was

achieved. The control logic referred to above consisted of a

state machine contained within a Programmable Logic Array (type-

PAL16R4) named Commstat. The state diagram had sequences of

states to send a data packet and an acknowledge packet with

conditional states to invoke these sequences as appropriate.

The 'cycles' were invoked according to the state of various

inputs, including the flip flop outputs, the complete program

of the device is shown in Appendix 10.

5.3.4 Receive Circuit

The shift registers are all of a usual arrangement, the

synchronisation of the receive clock to the incoming data

stream was achieved using an edge detector resetting the clock

circuit to a known state.

An incoming data packet would be clocked into the receive

shift register until the two leading start bits were detected

by an AND gate which would then hold the contents of the shift

register until they are loaded into the fifo buffer. The

'hold' signal was used to load the data into the buffer. The

PRACTICAL METHODOLOGY 177

change of the Data Input Ready (DIR) flag of the buffer was

used to clear the shift register. The transfer of data occurs

within the stop bit of the incoming data packet to allow

continuous data transfer.

A second shift register was maintained for the purpose of

detecting the headers of acknowledge and data packets. This

shift register is required to differentiate between-the genuine

headers and similar bit patterns occurring within data packets,

the necessary logic functions being contained within a

Programmable Logic Array (type PAL16L8) given the name commrx.

To ensure that the two bits used to detect the header bit

pattern arrive after the other outputs of the shift register

the last two bits of the shift register were subjected to

feedback within the PAL. This technique has, perhaps rather

surprisingly, proved reliable effective and reproducable. The

program for this device can be found in appendix 10.

5.3.5 Transmit Circuit

The transmit shift register had to be capable of sending

data packets, with a suitable pair of start bits, or an

acknowledge packet. This was achieved on loading the shift

register by ensuring that a Ill was always loaded into the

leading bit of the shift register and loading the second bit of

the shift register with a value dependant upon the type of

packet to be sent. (101 for and acknowledge packet and Ill for

a data packet). To avoid spurious data appearing in the output

stream when an acknowledge packet was to be sent the data

inputs to the shift register were held low by pull down

PRACTICAL METHODOLOGY 178

resistors and the output from the buffer disabled, the signal

to disable the buffer also being used to generate the

appropriate value for the second bit of the header.

5.3.6 Interface to RS-232 C

The TRANSPUTER link circuit described above is easily

connected to virtually any parallel bus, decoding for

connection to a Z-80 bus was achieved using a single PAL (type

16L8) named decodel the design of which can be found in

appendix 10. The arrangement is shown in fig 5.3. Since only

three control lines are required by the link circuit two such

links can be controlled by a single decoding PAL.

ro-R

Z-80

Z-80
AO. .A
7-Rn i

FIG. 5-3 DECODING OF THE Z-80 BUS TO CONNECT TO
THE LINK CIRCUIT OF FIG. 5-2.

PRACTICAL METHODOLOGY 179

To prototype the link circuit and decoding and to produce

an RS-232C to TRANSPUTER interface a means of producing a

pseudo Z-80 bus from a serial connection was required. The

circuit to fulfill this function is shown in fig 5.4.

5.3.6.1 Parallel Bus simulation

Conversion to and from serial data was performed by an

industry standard Universal Asynchronous Receiver Transmitter

(type 6402), this was controlled by a state machine to produce

simulated Read and Write Input/Output cycles of a Z-80. The

parallel inputs and outputs of the UART were linked together so

that by the use of suitable control signals the operation of a

parallel bus could be reproduced.

5.3.6.2 Control Logic

The control logic was made up of a PAL (type 16R6) named

Simml to generate the state sequences required subject to the

inputs, and a second PAL (type 16L8) named Simmz80 to produce

the various control lines of the Z-80 from these. It was

assumed that in a real Z-80 system handshaking would be

performed by software and tests of the status of the various

devices, the control logic simulated this using simple

connections to the status flags of the buffers concerned. The

control logic produced read and write Input/Output cycles, to

avoid locking out of either type of cycle a read cycle was

generated at the end of every write cycle, if possible subject

to the state of the buffers, and vice versa.

ui
(n
LL) C) E C*4 M 4-
=M CD C) 0 to t- Zý; E

LLJ

ui NN 10

ir ir x: x: x
2 ý:! LD 2 ll- 9ý

180

CD
h-

h-

cm

C-3

1

U

L, i
u

«z- LL.
Li-

cr LL LLI CD 1--
Z: ý-

CD :D

ID
(-) Z:
cr '-,

LL-

PRACTICAL METHODOLOGY

3-ý 'MJ 30 11nOd13 AU 01

3 :0F.
CC3: FM Cl

S-13A31 MVi-10A ZZZ-S8 iV
onve oogb iv ViVO IVI83S

E: Z:
C)
cli

CL
N
N

PRACTICAL METHODOLOGY 181

Though the Z-80 control signals could not be generated in

precise time relationship the overall form of the cycles could

be produced easily. The programs for the PALs used for the

control logic can be found in appendix 10.

5.3.6.3 Clock Generation

The clock circuit was based on a single 20 MHz

oscillator, this was used to generate the clock signals for the

TRANSPUTER compatible link, the clock signal for the UART and

the clock for the simulation control logic. The 10 MHz and

phase adjusted 10 MHz clock signals required for the link were

easily derived from the 20 MHZ starting clock. Both a 5MHz and

a 10 MHz clock were provided for the simulation circuit to

allow a Z-80 running at either 5 MHz or 2.5 MHz to be simulated

depending upon the connection made to the clock circuit. The

clock signal of 153.6 KHz required by the UART was generated

using a 14 bit binary counter which was reset on reaching and

appropriate value, the repeating reset signal was used to

toggle a flip flop and thus generate the required square wave

clock signal. The counter reaching the required value was

detected by the PAL Simmz8O.

5.4 Processor Board Design

The interface board provided a useful test of the link

circuit before designing the processor boards. The processor

board was based around a Z-80 microprocessor, 32 Kilobytes of

Read/Write memory in the form of a single 32k x8 bit static

RAM and 8 kilobytes of Read Only Memory in the form of a single

PRACTICAL METHODOLOGY 182

8k x8 bit Erasable Programmable ROM. A Z-80 parallel Input

Output (PIO) device was also included on each board.

The circuit of the processor board is shown in fig 5.5.

Three of the link circuits have been omitted for brevity since

their connection to the circuit is identical to the one shown.

The link circuits are addressed as part of the Input/Output

memory map, the decoding being performed by two PALs (type

16L8), Decodela and Decodelb, the complete programs for these

devices are shown in appendix 10. These decoders also decode

the signals for input latches for the buffer status signals.

5.4.1 Link Status Latches

Two input latches provided two Input/Output mapped ports

to allow the programmer to read the state of the buffers of the

link circuits, one port giving the Data Input Ready signals for

all of the buff ers and the other giving the Data Output Ready

signals for all of the buffers. The latches have the following

bit patterns :

DOR Latch

Bit 234567

DOR RxA RxB RxC RxD TxA TxB TxC TxD

DIR Latch

Bit 2

DIR TxA TxB TxC TxD RxA RxB RxC RxD

PRACTICAL METHODOLOGY 183

ýL ý2 IE ! ý2 ý2 ýR ý2 !! 2 ý2 c; 2

SiT88 X
cli

)ý8
04

SiI88 X >IZF

C-4

WOb ý, KZ wvb 99-79 C, C,
CD -

c
$2

C,
3P. + -j

cm)
uj
ui

-=, ýe
4- CD

3300030

CN r.) V- n co r- co a,
Zýc U

ýe ,, * ýý ," 'ý ý' "4"- C'4 "' '1- 'n C' 4 ýL c) r - ý2 'n ýL c)r - ý2 , 7, , , , , c , clj

C',

+

U) ndo og -z u
AS38 ' V- cc C , C, 4

Li

fr_

04
-

+ 7-
04 C+4 4 m t)

C-4 c
(N Ill ,

,, ýý :ý CD
U)

Qý
U; C)

C) r -_-- 7-
U)

cr, U- + L)

1

Lli
aI = u
0 a- 0 CD
t LL CL

M
ui L)

C3
uj

Lo C-4 (D n -'r 1ý) n co
Ln L) U)

z
C3 Fl: .<
Lij

(L

C Old 08 -7 fr
LL

CN C) - LL

N NN
C) x

X
m X:

V-
C4

CD
114

Lr) Lo V- C4
G) ý2

C3 C3 v

y
i

ý. f -

I
C-D

8
cr

LV

s
w tn cr co
-c Mm L8 '08 z

"V-ov 7T M
0

dý-400ý10 ý2 V 30W3a ýN-

C-1 C-4
CL

04

N

if
C4 I- i, *Z13HiL

3,1 , CL
CA
C14

ZZ 1 1

g
<

I- c r
' ' >! f F c r , I

ir cr e, .r
C)

i

25 C3 M M

PRACTIPAL METHODOLOGY 184

To simplify the decoding requirements of the Input/Output it

was not regarded as essential that all devices should have only

one address, only that it should be possible to address devices

individually as and when required.

5.4.2 PIO Addressing

The address line a7 was used to select the PIO, when low

the PIO would be active, otherwise the PIO would not be

selected. When selected the address lines a5 and a6 were used

to select which of the registers of the PIO were to be

addressed.

5.4.3 Link Addressing

With the address line a7 high the PIO would be disabled

allowing the other devices to be selected. There were

insufficient address remaining to allow the use of a single

address line for each device. Address line a4 was used to

select between addressing the link circuits and addressing the

buffer status latches. With address line a4 low the link

circuit could then be addressed each with one of the address

lines aO, al, a2, a3 and with address line a4 high the two

buffer status latches could be addressed each with one of

address lines aO, al.

PRACTICAL METHODOLOGY 185

The mapping of the links to the address lines is:

Link A aO

Link B al

Link C a2

Link D a3

which corresponds to the mapping of the bits used for the

buffer status latches, this allows the address of a link to be

used to mask the data from the buffer status latch to extract

the buffer status using simple logical operations. The

Input/Output addressing scheme chosen allowed the decoding to

be performed by only two devices and also allows more than one

device to be addressed simultaneously should this be required,

though this is only meaningful on write cycles (e. g. output to

more than one link circuit simultaneously).

5.4.4 Memory Decoding

The memory decoding was similarly designed to that of the

Input/Output in that reflections of regions of memory were

considered acceptable in order to minimise the decoding

requirements. Memory address decoding was performed by a

single PAL (type PAL16L8) named Decode2, the complete program

for this device can be found in appendix 10. The RAM was

enabled with address line a15 high, the ROM was enabled with

address line a15 low. The scheme was very easy to implement

and gives the memory map shown in fig 5.6. Decode2 also

provided the interrupt acknowledge signal required by the

PRACTICAL METHODOLOGY 186

interrupt generator circuit which is described below in

connection with the clock circuit.

FFFF

RAM

8000 16
ýFFF 16

000016 ROM
8 BITS

FIG. 5-6 MEMORY MAP OF THE Z-80 SYSTEM.

5.4.5 Clock Generation

The clock circuit of the processor board had several

functions to perform, it had to provide; the clock signal for

the microprocessor, the 10 MHz clock signal for the link

circuits transmit side, the phase adjusted 1OMHz clock signal

for the link circuits receive side and an interrupt signal for

the microprocessor. The clocks were derived from one of a

20MHz or a 4MHz starting clock frequency. The clock circuit is

shown in fig 5.7, this also provides 2,4 and 5 MHz clock

signals for the microprocessor, selectable by DIL switches on

the processor board. The interrupt signals were generated from

a counter, the period between interrupts being selectable by

DIL switches from frequencies of the microprocessor clock

PRACTICAL METHODOLOGY 187

4678 frequency divided by one of 2,2 , 25,2 ,2,2,29,210,

211,212,2 13,21*.

im

V

22p

7T
20MHz

ri

C
C-

r

22p

1OMHz (PHASE ADJUSTED)

S7RCR (FROM LINK CCT)

Q IOMHz

5MHz C)
-C>CK Q -i :: ý V) u- + a- '7ý 1 C) a- CD

-
LL ý-, -i

4MHz I L-) U. 7:
CL uj

j uj <
- LL. r-

-j
z Lo

z z

KQ --- Q -C >C K -j CL
-1

7:

14HCT4020
INTERRUPT ACKNOWLEDGE -JRESET CLK Z-80 CLOCK

0011 (QOcQ1- --Ql3Ql

INTERRUPT

FIG. 5-ý CLOCK GENERATION CIRCUIT FOR
THE PROCESSOR BOARD.

5.5 Hardware Construction

The design outlined above presented the problem of

requiring a large number of devices and a consequently large

number of interconnections, a fairly high component density had

to be achieved to allow the processor boards to be kept to a

reasonable size. Printed circuit techniques were considered

but were rejected since an extremely expensive multi-layer

board would be required. Wire wrap construction was considered

PRACTICAL METHODOLOGY 188

and had the advantage that the components could be mounted

adjacent to each other; however, wire wrap is extremely

laborious to construct however and is rather prone to human

error which may produce faults in the circuit board which would

be time consuming to find and correct.

A compromise was sought and found in a hybrid form of

construction. A relatively cheap double sided printed circuit

was made up, this carried the power supplies to all of the

devices, additionally as many 9easy to route9 connections as

possible were added to the printed circuit design. Wire wrap

sockets were then soldered into place and the remaining

connections made with wire wrap. once the printed circuit

design had been debugged all of the devices were assured of a

low impedance supply and the reduction in the number of

connections made using wire wrap reduced the probability of

wiring error correspondingly. The printed circuit designs for

the boards used and the wire wrap connections required to

complete the circuit are to be found in appendix 6.

5.6 Software Overview

5.6.1 Programming Languages

The microprocessor system was programmed using a

combination of Z-80 assembly code[163) and the C programming

language[83,117,471. The C compiler used produced Z-80

assembly language as an intermediate stage of compilation

allowing easy interception and modification of the compiled

assembly code if desired. The stages involved in producing a

binary file suitable for down line loading are shown in the

PRACTICAL METHODOLOGY 189

form of t (translation) diagrams in fig 5.8.

COMMUNICAT10N
FUNCTIONS

COMPILATION ASSEMBLY I LINKING CONVERSION
CC Z-80 1 Z-80 Z-80 Z-80 Z-80 1 Z-80 Z-80 LOAD C

1L. 0 G *. MAL -CREL *. REL 4. COM -X. COM COM *. BIN FILE TO
80 OAD

FI

tL ýEL

L-80

L
PROCESSORS

0
2

-0 M-60 -80 BIN L 80 Go BIN

FIG. 5-8 TRANSLATIONS REQUIRED TO PRODUCE A FILE
SUITABLE FOR DOWN LOADING.

A scheme of concurrent execution of programs within each

processor was created, loosely based on the Communicating

Sequential Processes (CSP) model of Hoare[67] which has been

developed by INMOS to give the programming language

OCCAM[79,1571 used to program concurrent systems using the

TRANSPUTER[78,102,156,148,11,1551. In the CSP model

communication between processes takes place only when both

processes are ready to communicate, the processes waiting if

required. In the model created here a process sending a value

may send its value and proceed independant of the state of the

receiving process, the CSP style interaction may be simulated;

using acknowledgement sent in the reverse direction it is

possible to ensure that the sending process is forced to wait

if this is required.

PRACTICAL METHODOLOGY 190

The mechanisms used to provide the fundamental functions

required for the concurrent execution of programs are described

here, the development of various algorithms using these

facilities as a basis are left for a later chapter. The

mechanisms for loading the program into the machine are not

described here but dealt with in section 6.2.

5.6.2 Process Scheduling Mechanism

The software system was based around the Ecosoft Eco-C

compiler[471 which produces Z-80 assembly code which can be

intercepted and if necessary modified before use. The time

slice mechanism and the functions to interact with the

Input/Output devices were the 'only additions to the standard

compiler output, the programs used to make up the

multiprocessing system are to be found in appendix 11. The

start address of the functions to be executed concurrently as

processes were easily accessed at the stage of linking the

program, allowing them to be incorporated into the concurrent

execution scheme. It proved possible to make all of the

necessary additions at the compilation (by inclusion of

suitable data definitions) and linking (by linking with hand

written code) stages avoiding the need to edit the assembly

code produced by the compiler from the program source code.

Program and data reside in separate segments of memory, the

layout created within memory is shown in fig 5.9. The process

scheduling was simple preemptive scheduling on a Round Robin

(RR) basis[39,1441. The data structure created for use with

the time slice generation mechanism is shown in fig 5.10, the

first two bytes indicate which process is currently running and
a

PRACTICAL METHODOLOGY 191

the number of the highest numbered process respectively. Pairs

of bytes are then used to store 16 bit addresses, these being

the value contained in the stack pointer for each process.

FFFF 16

800016

STACK 1

STACK 2

STACK 3

PROGRAM
CODE

STITIC UARIABLES
LINK

TABLES
PROCESS SOITCH

TABLE

FIG. 5-9 MEMORY USAGE BY
THE MULTIPROCESSING SYSTEM.

SP3H

SP3,
-

SP2,

SP2,
_

Sp lH

Sp 1L

NPROC

RUNNING

FIG. 5-10 PROCESS SWITCH TABLE.

PRACTICAL METHODOLOGY 192

When an interrupt occurred the state of the processor was

saved on the stack associated with that process, the stack

pointer was then saved in the appropriate place in the list of

stack pointers. The next stack pointer would then be restored,

the state of the processor restored from this stack and a

return made to the process that suffered' an interrupt

previously. A pseudo clock was implemented by using this

interrupt routine to increment a memory location.

5.6.3 Communication Data Structures

The other data structures added were for communication

between processes in a similar manner to their communication

with the outside world. Two versions of this software were

created, a version where only single bytes could be passed

between processes with no buffering (see appendix 12) and a

second version including a fifo buffer between processes to

allow more loosely coupled operation (see appendix 13). The

functions to access these communication mechanisms were written

to appear identical in operation to the programmer for both

communication mechanisms allowing the use of either mechanism

with no change in the users software. For each process to be

run a 'link table' (see figs 5.11 and 5.12) was created, using

static variable declarations in the C code, this was arranged

to reside immediately following the list of stack pointers but

choice of this location was merely a matter of convenience.

The important detail was that all such link tables were

contiguous and that they would reside in a location known to

the linker used, and would therefore be accessible to the

functions, written in assembly code, for the transfer of data.

PRACTICAL METHODOLOGY 193

Since the 'link tables' were created using static variable

declarations within the C program they would also be available

to the C programmer if desired.

5.6.4 Communication Functions

For both the fifo buffered and single byte communication

mechanisms the functions provided to access these link tables

were :

void swbyte(proc, link, value);

value rwbyte(proc, link);

report stbyte(proc, link, value);

report rtbyte(proc, link);

where proc is the number of the process to be accessed (in

reality this refers to which link table is accessed and the use

of other than one link table for a process will change the

mapping of proc to the process to be communicated With) and

link is the particular link in the process's link table that is

to be accessed; value refers to the returned value and report

refers to a success or failure indication depending upon the

state of the data stream being written to or read. from. These

functions perform similar operations to the ? and I operators

of CSP[67] and OCCAM[791. The functions send wait byte and

receive wait byte do not return until their service has been

performed. The functions send test byte and receive test byte

both perform their service immediately if- possible and if not

return with an indication of failure (in practice a report

value greater than 255).

PRACTICAL METHODOLOGY 194

5.6.5 Inter-Process Communication Addressing

In keeping with the style of the flags from the external

links the flags indicated DIR, that is when the bit was set

there was no valid byte in the table and a byte could be

written. The addressing of the links within a table is also in

keeping with the style of the external links in that the links

were addressed by particular bits of the value of the link, the

nth link being addressed by a value of 2n (0: ýnO). With the

internal links however, unlike the external links, simultaneous

access to more than one link is not possible with the functions

provided.

The functions used for internal transfers were also used

for transfers of data to and from external links with a value

for proc of zero being used to indicate external rather than

internal links.

5.6.6 Link Table Structure

The structure of a link table for un-buffered

communication is shown in fig 5.11. The first byte of the

table was a set of flags used to indicate the presence of valid

data in the link buffers. Each bit of the flag byte was used

to indicate the presence of a valid byte in one of the link

buffers, up to a maximum of 8. Though this scheme may appear

to limit the total number of links to a process the absence of

protection mechanisms in the simple environment constructed

here permit more than one link table for each process and even

access to tables used by other processes.

PRACTICAL METHODOLOGY

LINK128

LINK64

LINK32

LINK16

LINK8

LINK4

LlNK2

LINK1

FLAGS

FIG. 5-11 LINK TABLE FOR BYTE
BUFFERED COMMUNICATION FUNCTIONS.

195

Fifo-buffered communications while offering a reduced

computing overhead by the avoidance of un-necessary process

switching requires a greater amount of memory in its

implementation of the link table. The structure created is

shown in fig 5.12, the first byte of the structure indicates

the number of such buffers associated with the process, for

each of these buffers there is then a pair of bytes holding the

head and tail values for the queue and then follows one area of

memory set aside for the queue. This whole structure is

repeated for each process.

PRACTICAL METHODOLOGY

HEAD

TAIL

NL I NKS

FIG. 5-12 LINK TABLE FOR FIFO
BUFFERED COMMUNICATION FUNCTIONS.

196

The hardware and software outlined in this chapter

describe the basis upon which the concurrent processing scheme

was mounted, as stated above the mechanisms for programming, in

the sense of getting compiled programs into the memory of the

individual processors, are described later in chapter 6 section

6.2. This chapter has only given the philosophy behind the

concurrent operating system, the details of implementation in

the form of listings of the component parts are to be found in

appendices 11 through to 14.

197

CHAPTER 6

6 PRACTICAL IMPLEMENTATION

6.1 Introduction

This chapter deals with both the abstract and the more

tangible elements of placing a program within the processing

elements of the computing structure under discussion. This

chapter also includes some practical details of software

required to implement the concepts presented previously and, in

addition, the implementation of various algorithms for use in

such a multiprocessing environment.

6.2 Programming Methods

6.2.1 Circuit Switching

The initial method of passing the program to the machine

that was considered was to use steerable data streams, similar

to the steerable packets used to program the Cosmic Cube(1341

but using a circuit switching technique rather than packet

switching. This method would require that the structure and

the connection point to the structure be known to the loading

program. There are two well established methods of traversing

graphs, depth first search and breadth first search[132,411,

and either of these could be used as the basis of an algorithm

for programming the computing structure proposed.

PRACTICAL IMPLEMENTATION 198

For each of these methods the program required could be

sent down a single link to the computing structure, the node

currently being addressed changing either according to a depth

first search or breadth first search pattern with the

programming circuit being switched to suit.

6.2.1.1 Storage Requirements

This method of programming would allow all of the

processing nodes to be programmed individually though this

would require copies of all of the programs of the individual

nodes to be retained by the programming source. This would

involve having a very large amount of storage capacity at the

programming source to hold all of the programs. If large

programs were required to be loaded into processing nodes then

this could possibly lead to a restriction on the number of

nodes in the system, however for a 64 Kilobyte 9program9 to be

down loaded to 1000 processing nodes this still only requires

64 Megabytes of storage which, though large, is not an

un-realistic figure, especially since not all of the data has

to reside in memory simultaneously. Also of some significance

is the time required to complete the programming of the nodes.

6.2.1.2 Programming Time

In the case of circuit switching, and also packet

switched programming techniques, where a distinct progam is

required to be loaded into each processing node only one node

may be subject to programming at any instant. Considering

again the case of 64 Kilobyte programs to be loaded into 1000

PRACTICAL IMPLEMENTATION 199

processing nodes down links of 10 Megabit/second capacity (this

figure is marginally better then the transmission speed of the

serial links used with the transputer[78]). The time taken to

program all of the nodes would be approximately

1000 x8X 64 x 103 seconds
10 X 106

that is 51.2 seconds. This is quite a long period if

programming has to be performed frequently and it should also

be borne in mind that this is an absolute minimum figure and

would almost certainly be increased through the use of any

routing information, error correcting redundancy etc.

6.2.2 Identical Mutual Programming

Though for many applications processing nodes are

required to have distinct programs running in separate nodes

the homogeneous processing scheme under investigation required

the same processing to be applied to all incoming data. This

allowed all of the processing nodes to run the same program,

which suggested the possibility of having processing nodes pass

the program between each other.

Using this method only one node would require programming

initially and this node could then go on to program its

immediate neighbours which would then program their immediate

neighbours and so on until all of the processing nodes had been

programmed.

PRACTICAL IMPLEMENTATION 200

6.2.2.1 Storage Requirements

This method has advantages in the amount of storage

required for the programming source* in that only one copy of

the program would be required by the programming source with a

consequent reduction in the amount of storage space required.

6.2.2.2 Programming Time

The time required to program a network computer by mutual

programming will depend upon the connection graph of the

computer. The worst case would be where processors were

arranged in a linear arrangement and the program supplied to

one end as in fig 6.1a. In this case only one processor would

be undergoing programming at any one time and the time taken to

program the network would be almost the same as that taken in

the case of circuit or packet switching of distinct programs.

An improvement in the programming time could be achieved,

without changing the structure, simply by supplying the program

to one of the processors other than the end one, as in f ig

6.1b. The 'program front' will then proceed in both directions

away from the originating node simultaneously.

The time to program the system obviously depends upon the

graph of the interconnection pattern of the nodes as seen by

the program source. If the processing nodes encountered by the

program have a high degree then the program will be distributed

more rapidly throughout the system than if nodes of a low

degree are encountered. However, if the graph contains one or

more circuits then in some cases the nodes to which the program

is offered will already be programmed. In such a case the

PRACTICAL IMPLEMENTATION

processor offering the

P P

PROGRAM

=PROGRAM FRONT

PROGRAM

PPP bP -&--I- --

FIG. 6-1 PROPAGATION OF PROGRAM FRONTS
FOR TWO PROGRAM SUPPLY POINTS.

201

program would appear, as far as the propagation of the

programming front is concerned, as though it had a lower degree

than it actually has within the graph. As a result of this

behaviour the program is never passed around a circuit so the

program is distributed along one of the spanning trees of the

graph, the particular spanning tree being dependant upon the

time taken for processors to program each other and the

consequent speed of propagation of the program down the

different sub-trees.

6.2.2.3 Simultaneous Programming

Using the hardware described in chapter 5 it would be

possible to send data down one or more links truly

simultaneously. This capability opens up the possibility of

sending a copy of the program to all of the nearest neighbour

PRACTICAL IMPLEMENTATION 202

un-programmed nodes simultaneously with a consequently more

rapid dispersion of the program throughout the system. This

mechanism was not implemented in practice because the

simultaneous write facility is not generally available and also

because during such a programming action the insertion of a

verification of correct program transmission based upon some

form of acknowledgement mechanism would be difficult to

implement.

6.2.2.4 Error Correction Nechanisins

Since the program has to pass through D (where D is the

diameter of the graph of the interconnection scheme of the

processing nodes), and possibly more, serial links to reach

some of the processing nodes the possibility of corruption of

the program becomes significant. The program may also be

corrupted while residing within the memory of a processing

node, however this is considerably less likely than the

corruption during transmission and may be dealt with using a

suitable memory arrangement, e. g. a ninth parity bit on RAM

devices.

Some form of error detection and correction of the

transmission of program material down the serial links would be

desirable. There are two main possibilities, error detection

and re-transmission or error correction using redundant

information or possibly a combination of both techniques,

depending upon the degree of security required and the overhead

that is acceptable.

PRACTICAL IMPLEMENTATION 203

One point to note it that error correcting codes, e. g.

parity words, could easily be applied in the simultaneous

program transmission scheme mentioned above, the same

information being sent to all nodes being programmed, however

because the interaction between the nodes is not on a one to

one basis the nodes being programmed cannot easily request

re-transmission of sections of the program without interfering

with the programming of the other nodes.

6.2.2.5 Programming Algorithm Adopted

Bearing in mind the preceding points a programming

mechanism was implemented on the Z-80 based system described in

chapter 5. The programming system consisted of two main parts,

the program loader residing in each processing node and the

software required to send a program to the processor network in

the correct form, the latter being merely a special case of the

program loader, there being only output to deal with.

Since the system to be programmed was initially to be

only small error detection and correction mechanisms were not

implemented, however they could easily be inserted into the

algorithm when the system reached such proportions that they

were required. As mentioned above, the ability to send program

material simultaneously to more than one link was not used as

this is not a general feature of such processor schemes and the

increased speed of programming was not required in the small

scale system initially developed.

PRACTICAL IMPLEMENTATION 204

The algorithm used within the processing nodes written in

'pseudo code' was :

wait until the offer of a program copy is received;

send an acknowledgement;

receive the program;

for all links other than the source link do
begin
send an offer of a program copy;
awaittimeout;
if acknowledgement received then

send the program;
end;

enter the program;

Clearly some information other than just program material

had to be sent to processors and this had to be distinguishable

from the program material itself. A system of $escape' codes

were used, in this application the value FF16 was used as an

escape value, however, the particular value chosen is

unimportant. When a value of FF 16 occurred in the program

material this would be sent as FF 16 FF 16 which would allow

distinction between this and one of the escape codes and would

be correctly interpreted by the receiving processor, all single

occurrences of FF 16 indicating an escape sequence.

.6

PRACTICAL IMPLEMENTATION

The codes used were:

FF
16

FF
16 : Indicates a value of FF 16

205

FF 16
00

16 AddrL AddrH
I

Sets the address to load data into

and sets redirection to the memory

FF 16 01 16 (SP-2) (SP-1): Pushes a value onto the stack

FF 16 02 16 SPL SPH : Loads the Stack Pointer with a value

FF 16 03 16 LINK 16
Sets the link to send data to

and sets redirection to that link

FF16 0416 : Performs a RETurn instruction

FF16 0516 Exits from the programming loop

(Marks end of program)

FF 16 06 16 AddrL AddrH Set the highest address required to

forward to the next processor

FF 26 0716 AddrL AddrH : Sets the lowest address required to

forward to the next processor

PRACTICAL IMPLEMENTATION 206

The loading program was designed to have two modes of

operation, one in which incoming bytes were stored in

contiguous memory with the address to which the bytes were sent

being incremented automatically and an alternative where all

incoming data was sent to one of the serial links. Setting of

the address or link to which data should be sent was performed

using the sequences FF 16 00 16 and FF 16 03 16 respectively

followed by the required data. The sequence FF 16 01 16
followed

by a 16 bit value pushed a value onto the stack, this in

combination with the sequence FF, 6 04 16 could be used to jump

to a particular location, also, when the program loop had been

lef t and any neighbour processors programmed a RETurn would

automatically be made to the address on the top of the stack.

The sequence FF, 6 0216 followed by a 16 bit value would

position the stack pointer where required. The sequences FF, 6

06,6 and FF. 6 07.6 followed by a 16 bit address indicated the

top and bottom respectively of the region of memory that must

be sent on to any processors requiring a copy of the program.

6.2.2.6 Differing Processor Functions

The technique of mutual programming is considerably more

convenient than programming each node individually and it would

be desirable to apply this same technique to the case where

different functions are to be carried out by different

processing nodes. To some extent it is possible to do this.

The programs executed in the nodes may be made to be dependant

upon the position of the processing node within the computing

structure. This can be achieved by sending the same program to

all of the processing nodes but upon commencement of execution

PRACTICAL IMPLEMENTATION 207

of the program having the program perform interactive

'enquiries' of its neighbours (if any) to determine the type of

situation in which it finds itself, possibly determining if any

special devices are connected (e. g. disc units) in the

process. Depending upon the results of this then going on to

initialise and execute the appropriate section of code within

the program. For example, in the cylindrical arrangement of

stacked rings proposed in this thesis the processing nodes

could perform a simple test to determine whether the node lies

at the bottom of the stack (in which case no data should be

sent further down) or at the top of the stack and if so whether

any input of output devices are connected or not (and

consequently enable or disable the sections of code to input or

output data as appropriate).

A very simple example of such a program could be :

enquire_lower_ýnode;
enquire

- upper - node;
if not lower_node and not upper_node then

single_ring_code;
if lower_node and upper_node then

inside_layer_code;
if lower_node and not upper_node then

top_layer_code;
if not lower

- node and upper_node then
bottom-layer_code;

6.3 Data Processing

The four algorithms for the use of the cylindrical stack

of processors for processing of event data in a homogeneous

fashion, the study of which by simulation has been described in

chapter 4, were implemented on the hardware described in

chapter 5. Four separate event processing programs were used,

these were supplied with data by driver programs serving the

PRACTICAL IMPLEMENTATION 208

function of the supply of data by an event manager, the

programs involved are to be found in appendix 15. Only three

processors were available and it was only possible to supply

data at one point. Though this did limit the extent to which

the behaviour of the system for differing shapes could be

explored it did allow the correct operation of such a system to

be verified or denied. Since the simulations carried out used

a globally synchronised communication scheme it -would be

possible for a deadlock condition or unreasonable behaviour of

a completely asynchronous system to have been overlooked.

6.3.1 Data Format

Data from an 'event, was encoded in a simple packet

structure utilising a header value, followed by the length of

the data, followed by the data itself, a simple example being

shown in fig 6.2. The same structure was also used to carry

results in the reverse direction.

F-LýEýN

FIG. 6-2 EVENT PACKET STRUCTURE.

This 'packaging' offers no fault detection or recovery

J

PRACTICAL IMPLEMENTATION 209

but for the purposes of verifying the operation of the

homogeneous computing structure has proved satisfactory. it

may in a more complete implementation be advantageous to

distinguish between incoming data packets and outgoing results

packets but due to the policy of sending results in the reverse

direction to data the type of packet may be determined from its

direction of travel within the structure.

6.3.2 Data Supply

Data was supplied to the system by a driver program

serving the functions of both the event manager and the

mainframe used for the accumulation of data. A simple scheme

was used, the characters 'a' to Ig9 being sent as raw events

and the uppercase characters 'A' to 9GI returned as processed

events. The selection of printable characters for the data

made for easier debugging during the initial testing stages.

Events were supplied to the processor as fast as the processor

would accept them, not only to determine the maximum processing

rate but to illustrate the behaviour of the system under heavy

loading, particularly with regard to deadlock or under

utilisation of any of the processors.

6.3.3 Data Display

During debugging a very simple data display consisting of

the characters returned by the processor was presented on the

screen of the machine accumulating the results. The continuous

transfer of characters in this fashion was a potential

bottleneck so a system of storing counts of the results

PRACTICAL IMPLEMENTATION 210

received and displaying the cumulative values at infrequent

intervals was also implemented. This is distinctly different

from the accumulation of results within the processing nodes

before returning cumulative values.

6.3.4 Processing Behaviour

The results indicate the behaviour of a homogeneous

processing scheme and allowed the relative behaviour of the

four communication algorithms tested to be evaluated.

Though no formal proof of the liveness of the processors

was undertaken no deadlock was observed in the implementation

described here and the behaviour of the four algorithms tested

was found to be virtually identical. This behavioural

equivalence was due to the continuous cycling of the program

masking any apparent priority.

6.3.4.1 Distribution Preservation

One of the programs tested gave a significant weighting

of processing speed to one type of event as compared with other

events (see appendix 15), the events sent to the processor were

evenly distributed and for the processed data to be meaningful

in a real implementation the distribution of supplied events

must be preserved regardless of differing processing times of

events. The distribution of processed events was indeed

observed to be uniform despite the bias toward some types of

event in all of the topologies examined verifying the validity

of this approach to processing event data.

PRACTICAL IMPLEMENTATION 211

6.3.4.2 Processing Speedup

The rate of processing in events per second was measured

over 5000 events for a variety of structures made up of the

three processors available. It should be noted that events

with a fairly long processing time were represented and that

the processing rates do not relate to the target figure of

100 000 events/second aimed for in a final implementation but

indicate that speedup is achieved and that processors will

distribute the workload amongst themselves. Algorithm 1

produced a comparatively poor throughput, this probably results

from the statement order giving some weighting to horizontal

communication producing the 'data shuffling' effect where data

circulating around the ring interferes with the intake of data,

wasting computing cycles, as was observed in the simulations.

6.3.4.2.1 Ring

Fig 6.3 shows the processing rates of homogeneous rings

of processors. The graph shows clearly speedup with each

additional processor and very little difference in processing

rate between the four communication algorithms tested.

PRACTICAL IMPLEMENTATION

(U

Z
Z
Z

Er

u3
rr
CD
Cf) -
u-) cn LLJ 2:
ci -r
0
rr

rT-
CD
LD

CD

ZZ
h--ý CD

h-
<
ci

CD Z

LU *5-
CD

Cr
rr

LD : --) Z CD
ý--4 11
cn
En LLJ LLJ

CD
rr
Ei.

L. D

CD
I!
LL

cl_) a) a)
C C C C

__j x

00000
CD 00 CD 0
OD I, - CD T) Nr

c
(11

cu

UD
rr
CD
u3
cn
LU
L)
CD

cu
CD

rr
Lii
In

Ln

Q

0
çr)

212

(ON03ý]S/SiN-]A-ý) AiVEJ 9NISSý13OHd

PRACTICAL IMPLEMENTATION

6.3.4.2.2 Column

213

Fig 6.4 shows the processing rates of homogeneous columns

of processors. The graph again shows clearly speedup with each

additional processor and again very little difference in

processing rate between the four communication algorithms

tested. All of the algorithms exhibited marginally better

performance in this configuration than in the ring, possibly

due to data circulating around the ring interfering with the

incoming data stream a situation apparently avoided when there

is only one processor in each ring, the superior performance of

algorithm 1 tends to support this view.

PRACTICAL IMPLEMENTATION

-1 (M m `Z

cn f-r
CD
Co
cn
Lij (n
L) 5- CD -T-
rT- i-
n F-I

Fr
II CD
CD C-D

I
<

757
:Dz

-J
CD

CD
u

-: r U

rr z
CD D
LL 2:

: 2:
LLJ CD

u

Cc M
7D

LD CD

cn LLJ (f) -T-
LLJ
C3
CD
rr
n

7
CD

LL

CD (D CD (1)
C: c C:

1 1

-J -J -J

0 (D

co Ln

0

çr)

LO

0i

(_O
Ei:
CD
(f)
LO
LU
u
CD

EL
(M 11

CD

(-r
LU
m

Z

LP

j

o-1
0
(11

214

(ON03ý]S/SiN3AA) 31VH 9NISSA3OHd

PRACTICAL IMPLEMENTATION

6.3.4.2.3 ILI Structures

215

The three possible ILI shaped structures utilising three

processors were tested and showed processing rates comparable

to the ring and columns consisting of three processors. The

three ILI shaped structures tested are shown in fig 6.5, the

corresponding processing rates when running the four

communication programs are shown in table 6.1.

R R R

ABC

FIG. 6-5 'L' SHAPED STRUCTURES TESTED.

TABLE 6-1 PROCESSING RATES FOR THE THREE STRUCTURES ILLUSTRATED

IN FIG 6-5 RUNNING THE FOUR ALGORITHMS TESTED.

Communication Algorithm

L Shape 1 2 34

A 740 794 671 721

B 949 937 931 934

C 600 630 714 636

Mean 763 787 772 763

PRACTICAL IMPLEMENTATION 216

The processing rates are very similar for all of the

algorithms, the algorithms being largely equivalent. The

processing rate is affected by the number of data transfers

required for data to reach particular processors (related to

the diameter of the interconnection graph) configuration B in

which data need only undergo one forwarding operation provides

a greater processing throughput than the other configurations.

Configuration C has the lowest throughput, believed to be due

to data circulating around the ring interfering with vertical

communication to some extent. The algorithm showing the best

mean performance in these three structures is algorithm 2

suggesting that adoption of an algorithm with similar

characteristics as regards the priorities and relative latency

of communication in the possible directions as this algorithm

would produce the greatest throughput.

6.3.4.3 Fault Tolerance

The occurrence of faults within the system was tested

very simply by removing links from the system while running.

No timings were taken though processing rates similar to those

of one of the structures described above would be expected.,

The possibility of communication in the reverse direction upon

the occurrence of a fault was not explored and as such

isolation of processors from the supply of data was readily

achieved with only three processors. In the case of the

column, the ring and the three ILI shaped structures it was

found that those processors remaining connected so as to

receive data as links were removed would contribute processing

power to the system.

PRACTICAL IMPLEMENTATION 217

6.3.4.4 Lost Events

On initiation of the data supply some events were lost,

these were events sent to un-connected lines of a processor or

results of processed events sent to un-connected lines of a

processor. After the initial loss, which can be avoided by

incorporating a test for un-connected lines before processing

commences in the communication scheme, no further lost events

were observed; the events were believed to be lost on the

removal of a link in the demonstration of faults tolerance but

due to the difficulty of making observations in the environment

of ongoing processing no observations of these were made.

6.4 Distributed Depth First Search Algorithm

6.4.1 Initial Implementation

The depth first search algorithm developed in chapter 3

was expressed in 9pseudo code' as :

PRACTICAL IMPLEMENTATION

procedure ddfs;
var now, val: integer;

procedure visit_call(t: link);
begin
send now to visited node;
while waiting

if val_requested then
send val to requesting link;

receive new now from visited node;
end;

procedure visit answer(t: link);
begin
receive value of now; '
for t: =1 to 4 do

begin
if valreq(t) =0 then

visit call(t);
end;

return new value of now;
end;

begin
repeat

begin
wait for something;
if visited then

visit answer;
if val

-
requested then

send val to requesting link;
end

until forever;
end-,

218

This algorithm had to be coded in a form suitable for

down loading into the processors available, in the modified C

programming language developed. Since bytewise communication

was used in the programming system this limited the number of

processing nodes that the implementation of the algorithm could

correctly scan, this maximum was further reduced by the need to

allocate some of the 256 values as special codes. Though the

actual number of processing nodes possible was limited this

does not invalidate the test of the depth first search

algorithm as longer messages carrying larger values could be

simply incorporated into this framework.

PRACTICAL IMPLEMENTATION 219

For the algorithm to produce output more amenable to

debugging and testing printable characters were used as the

special codes and values. The 'values' of the visited nodes

were represented by lower case characters 'a' (unvisited)

through to IzI (maximum) giving a maximum number of nodes of

25. The values of the links were sent as the characters 111,

121,141 and 181 these representing the actual addresses of the

links within the processing node.

A driver program to send the required codes to initiate

the depth first search and to collect the resulting data and

print this as an adjacency matrix was written in C. This

program and the depth first search programs are to be found in

appendix 16.

Though only three processing nodes were available for

testing the algorithm this was sufficient to test the

propagation of the algorithm through the processing system and

the correct functioning of the algorithm with various

connection patterns. Some connection patterns tested and their

resulting labels and adjacency matrix are shown below in fig

6.6, the latter of these is obviously spurious data due to the

incorrect scanning of a self-loop.

PRACTICAL IMPLEMENTATION

DFSDRIVER

220

Total Number of Connected Nodes 2

FROM
0123456789

TO
00400000000
100 82 0000000
20 18 00000000
30000000000
40000000000
50000000000
60000000000
70000000000
80000000000
90000000000

Note: Vertex 0 represents the connection point to the graph
The numbers indicate which link forms the connection(s)

FIG. 6-6a PROCESSOR INTERCONNECTION PATTERN AND THE RESULTING

ADJACENCY MATRIX USING THE DDFS ALGORITHM.

PRACTICAL IMPLEMENTATION

Total Number of Connected Nodes =1

I VER

FROM
0123456789

221

TO
00100000000
14000000000
20000000000
30000000000
40000000000
50000000000
60000000000
70000000000
80000000000
90000000000

Note: Vertex 0 represents the connection point to the graph
The numbers indicate which link forms the connection(s)

FIG. 6-6b PROCESSOR INTERCONNECTION PATTERN AND THE

RESULTING ADJACENCY MATRIX USING THE DDFS ALGORITHM.

PRACTICAL IMPLEMENTATION 222

6.4.2 Multiprocessing Implementation

The depth first search algorithm itself is inherently

simple, being extended to a distributed form merely by

separating visit calls and visit answers into separate

processors and initiating appropriate data exchanges between

processors as would be exchanged in a procedure call and return

of a depth first search program running on a single processor.

However the requirement for one processor to be able to

interrogate a processor as to whether it has been visited or

not, and its consequently assigned identity, regardless of its

state complicates matters somewhat in that provision must be

made to respond to such requests at all times. This ability to

respond is essential to allow both circuits and self-loops

within graphs to be dealt with correctly.

To retain the simplicity of the depth first search and

avoid the complication of responding to the requests for the

processor identity it would be possible, using the message

passing multiprocessing system developed to separate these two

functions. This could be achieved by intercepting the requests

for identity and responding to them without involving the depth

first search program. To achieve this a process would be

required to Ifilter9 all incoming data streams to intercept the

Value Request Codes and a process would be required to combine

the responses to Value Request Codes and the data streams from

the depth first search program. These processes are shown in

fig 6.7.

PRACTICAL IMPLEMENTATION 223

The C multiprocessing program represented in this diagram

is to be found in appendix 16. The program was tested in the

same fashion as the previously discussed depth first search

program and was found to function in the same way, however it

produced the correct output on encountering self-loops, as

shown in fig 6.8.

1

2

4

8

FIG. 6-ý PROCESS MODEL OF THE MULTIPROCESSING
DEPTH FIRST SEARCH.

PRACTICAL IMPLEMENTATION 224

Total Number of Connected Nodes 2

FROM
0123456789

TO
00400000000
100 82 0000000
20 18 00000000
30000000000
40000000000
50000000000
60000000000
70000000000
80000000000
90000000000

Note: Vertex 0 represents the connection point to the graph
The numbers indicate which link forms the connection(s)

FIG. 6-8a PROCESSOR INTERCONNECTION PATTERN AND THE RESULTING

ADJACENCY MATRIX USING THE DDFS (MULTIPROCESSING) ALGORITHM.

PRACTICAL IMPLEMENTATION

Total Number of Connected Nodes =3

225

FROM
0123456789

TO
00100000000
10 48 40000000
20202000000
3002 18 000000
40000000000
50000000000
60000000000
70000000000
80000000000
90000000000

Note: Vertex 0 represents the connection point to the graph
The numbers indicate which link forms the connection(s)

FIG. 6-8b PROCESSOR INTERCONNECTION PATTERN AND THE RESULTING

ADJACENCY MATRIX USING THE DDFS (MULTIPROCESSING) ALGORITHM.

226

CHAPTER 7

7 EVALUATION AND CONCLUSIONS

7.1 Summary

This thesis presents a possible computing scheme for

processing of data from High Energy Physics. Chapter 3

presented an abstract consideration for a cylindrical

arrangement of processors as a possible solution to the problem

of achieving a sufficiently high processing rate. The theory

developed as a predictor of behaviour is of an extremely simple

nature and possible rather crude; however, as the nature of the

processing to be performed was not rigidly defined, varying

depending upon the experimentor's requirements, the development

of a more exact model was not readily justified. The structure

proposed was that of a cylindrical connection of processors

communicating asynchronously in a data driven scheme.

Simulations were carried out using a state machine model of the

processors which showed generally good agreement with the

behaviour predicted from the model.

Two schemes of use for this structure were proposed, a

non-homogeneous scheme in which data would be processed at a

particular node and a homogeneous scheme in which data would be

processed at any node. The homogeneous scheme was demonstrated

to avoid many of the mapping and routing problems of the

non-homogeneous scheme and hence was taken as the subject of

further development.

EVALUATION AND CONCLUSIONS 227

Processor hardware and software support sufficient to

test the correct functioning of the homogeneous scheme

developed is described in chapter 5 and its use to test the

above processing scheme and also an algorithm for determining

the interconnection pattern of the processors derived from

depth first search is described in chapter 6.

7.2 Evaluation

The variable nature of the amount of processing to be

performed meant that the final throughput in events/second

would be dependant upon the processing required by the

experimentor, so no final figure of throughput could be

obtained. However, the general behaviour of the system has

been demonstrated for various conditions of input data by

simulation and it has also been shown that the throughput of

the system can be predicted to a reasonable degree of accuracy

from the model developed in chapter 3 provided that some basic

parameters of the processors making up the system are known.

The correct functioning of the system with respect to producing

results that correctly represented the distribution of data

events and the ability to continue processing at a reduced rate

despite faults has been demonstrated both by simulation and,

for a small number of processors, in a hardware implementation.

In addition to the above a 'distributed depth first search'

algorithm has been developed to allow the connection topology

to be verified and possibly perform some testing of the

processors. The algorithm has been stated in a very general

style facilitating coding in a variety of programming

languages.

EVALUATION AND CONCLUSIONS 228

7.3 Further Research

This thesis presents the concepts behind a computing

structure and illustrates some verification that the structure

is functionally correct. There remains a considerable amount

of research and development work before a final design could be

realised.

7.3.1 Processor Selection

The computing scheme may be realised utilising one or

more of the large number of microprocessors available today and

some investigation into the relative merits of the

microprocessors for this application would be required before

selection could be made. Zanella[1621 suggests that the HEP

community have informally adopted the following

microprocessors; 6809 for control applications and the 68000

series of microprocessors for more compute intensive tasks.

These processors could prove suitable and their adoption would

be in keeping with the informally adopted standard. The

structure is tetravalent and suitable for implementation using

TRANSPUTERS, their high speed and multiprocessing system

support makes them a strong candidate for the construction of

the system. The high price (1988) must be borne in mind and a

more cost effective solution may be found through the use of a

greater number of slower but cheaper microprocessors; this

approach may also offer improved fault tolerance through a

greater division of the workload and greater path redundancy in

the interconnection pattern. Development of methods of

estimating or measuring the values of Ocmaxq Kr and Ophy, for

Ot ý11-
.

EVALUATION AND CONCLUSIONS 229

various node designs would be important to allow the model to

be used to make predictions of performance and behaviour.

7.3.2 Node Structure

Closely related to the selection of a microprocessor from

which to construct the system would be the design of the

internal structure of each processing node. The dual

functionality of a node, ie the routing and the processing of

data suggests a node with two distinct communicating sections,

perhaps utilising both the 6809 and 68000 series of

microprocessors. Since a large part of the software is

independant of the application, such as the loading and routing

software this could be retained in EPROM leaving only the

experimentor's processing algorithm to be loaded. An element

of the consideration of node structure would possibly include

the requirement and possibility of incorporating fault

detection hardware into the processing nodes.

7.3.3 Data Supply

The feeding of data into the system has not been fully

considered, if a single data source is to be fed into the

system it would be possible to use a multiplexer to divide a

high bandwidth data stream into several low bandwidth links.

If one of the data links has a sufficiently high bandwidth to

take all of the data the use of a multiplexer may be avoided,

the communication links being used to distribute data through

the system. The possible use and design of such a multiplexer

may be the subject of further research.

0

EVALUATION AND CONCLUSIONS

7.3.4 Data Retrieval

230

One aspect not thoroughly explored here is the retrieval

of processed data from the computing structure. Though an

algorithm has been presented, this being the reverse of the

algorithm for the un-processed data the possibility of grouping

processed events into 'bundles' to reduce the results traffic

has not been explored. The inter-relationship between the

factors of node storage requirement, results traffic, the

possibility of large numbers of lost events should a node fail

before a 'bundle' contained therein is transmitted and possible

(temporary) distortion of the displayed spectra if large

numbers of similar events are awaiting transmission would

require investigation.

7.3.5 Programming Error Correction

The possibility of mutual identical programming has been

demonstrated, however no error correction was incorporated. As

any transmission errors would propagate to any further

processors programmed and since any errors would be compounded

a strong error correction mechanism would be desirable in this

context.

7.3.6 Algorithm Development

Four communication algorithms have been isolated and

utilised in both simulation and a hardware implementation,

other algorithms could be developed with a view to improved

behaviour, especially as regards fault-tolerance. In relation

to this work the occurrence of 'processing shadows' behind

EVALUATION AND CONCLUSIONS 231

faulty nodes could be usefully evaluated, a Petri-Net technique

would be useful to prove the correctness of the processor

interactions and the development of a recoverable interaction

scheme and reprogramming mechanism would be required to allow

on-line replacement of faulty nodes. The algorithms used in

the processing of events would be determined largely by the

requirements of the experimentor though some consideration of

general strategies (e. g. look-up table evaluation) would be

desirable.

7.4 Final Implementation

The implementation of the computing structure as a real

system would require the development of a considerable amount

of hardware and software, not just for the computing engine

itself but for interfaces device drivers etc. The loading

algorithms and node communication programs would have to be

written in an appropriate language. A user interface to the

system would be required though this could be largely derived

from that already in use since the use of the system would be

unlikely to change.

7.5 Conclusions

The feasibility of using a multimicroprocessor to process

data from High Energy Physics has been demonstrated. There

remains considerable further work to be done býefore a final

implementation could be realised.

EVALUATION AND CONCLUSIONS

That is the theory that I have and which

is mine and what it is too.

232

Anne Elk (Miss) (circa 1970).

233

REFERENCES

ABDEL KADER A. A., 'Design of the Systolic Array OCSAMOI,

VLSI and Computers, Proceedings of First International

Conference on Computer Technology, Systems and

Applications, IEEE Comput Soc Press, 1987, ISBN

0-8186-0773-4.

[21 ALMASI G. S., 90verview of Parallel Processing', Parallel

Computing, Vol 2,1985.

[31 AMDAHL G. M., 9Validity of the Single-Processor Approach

to Achieving Large Scale Computing Capabilities', AFIPS

Conference Proceedings, Thomson, Washington, DC, USA,

1967.

[41 ANDERSON T. and LEE P. A., Fault Tolerance: Principles

and Practice, Prentice-Hall International, 1981, ISBN

0-13-308254-7.

151 ANNARATONE M. et al., 'The Warp Computer: Architecture,

Implementation and Performance9, IEEE Transactions on

Computers, Vol C-36, No 12, December 1987.

[61 ANNUNZIATA M. et al., 'A Daisy Architecture for the

Multiprocessor Real Time Data Acquisition System of the

Thor Tokomak Experiment', Kicroprocessýng and

Microprogramming, Vol 17,1986.

REFERENCES 234

[7) ANNUNZIATA M. et al., IAMDAS An Advanced

Microprogrammed Data Acquisition System: A first

evaluation prototype', Microprocessing and

Microprogramming, Vol 18,1986.

181 ANSADE Y. et al., 9Algorithms Dedicated to a Network of

Asynchronous Cells9, Parallel Algorithms and

Architectures, 1986.

191 ANZALONE A., GIUSTOLISI F. and SCOLLO G., 'Distributed

Processing in a Nuclear Data Acquisition System',

Performance of Data Communication Systems and their

Applications, North-Holland, Amsterdam, 1981.

[101 ARAVENA J. L. and PORTER W. A., 'Nonplanar Array

Processing', VLSI and Computers, Proceedings of First

International Conference on Computer Technology, Systems

and Applications, IEEE Comput Soc Press, 1987, ISBN

0-8186-0773-4.

ASKEW C. R., 'Parallel Processing using Transputers or

OCCAM (or both)', Proceedings of the 1986 CERN School of

Computing, CERN, Geneva, April 1987.

[121 AUGIN M. and BOERI F., 9The OPSILA Computer9, Parallel

Algorithms and Architectures, Proceedings of the

International Workshop on Parallel Algorithms and

Architectures, North-Holland, Netherlands, 1986, ISBN

0-444-70104-4.

REFERENCES 235

[131 AUGUIN M. et al., 'Experience Using a SIMD/SPMD

Multiprocessor Architecture5l microprocessing and

microprogramming, Vol 21,1987.

1141 BADR. H., GELERNTER D. and PODAR S., 9An Adaptive

Communication Protocol for Network Computers9,

Performance Evaluation Reviews, Vol 13, No 2. August

1985.

1151 BALASUBRAMANIAN V. and BANERJEE P., 9A Fault Tolerant

Massively Parallel Processing Architecture', Journal of

Parallel and Distributed Computing, Vol 4, Part 4, Aug

1987.

[161 BARSI F., GRANDONI F. and HAESTRINI P., "A Theory of

Diagnosability of Digital Systems', IEEE Transactions on

Computers, Vol C-25, No 6, June 1976.

[171 BEETEM J., DENNEAU M. and WEINGARTEN D., 'The GF11

Supercomputer', Twelth Annual International Symposium on

Computer Architecture, IEEE Comput Soc Press, 1985, ISBN

0-8186-0634-7.

[181 BELL T. E., optical Computing: A Field in Flux$. IEEE

Spectrum, August 1986.

119] BERARDI B., BOMBI F. and FERMANI G., 9Development Status

of the FTU Control System', Fusion Technology 1986,

Volume 2, Proceedings of the fourteenth Symposium,

Pergamon Press, 1986.

REFERENCES 236

[201 BERKLING K. J., 'A Computing Model Based on Tree

Structures'. IEEE Transactions on Computers, Vol C-20, No

4, April 1971.

[211 BERNSTEIN A. J., 9Analysis of Programs for Parallel

Processing9, IEEE Transactions on Electronic Computers,

Vol EC-15, No 5, October 1966.

[221 BHATT S. N. and LEISERSON C. E., 'How to Assemble Tree

Machines', Communications of the ACH, 1982.

[231 BUEHRER R. W., ýEmulation of a Parallel Codeblock Dataflow

Processor', Microprocessing and Microprogramming, Vol 21,

1987.

[241 CAMPBELL M. L., 'Static Allocation for a Data Flow

Mulitprocessorl, Proceedings of the 1984 International

Conference on Parallel Processing, IEEE Comput Soc Press,

Washington, DC, USA, 1985.

[251 CARLSON W. W. and HWANG K., 'Algorithmic performance of

Dataflow Multiprocessors', IEEE Computer, December 1985.

[261 CHRIST N. H. and TERRANO A. E., 'A Very Fast Parallel

Processor', IEEE Transactions on Computers, Vol C-33, No

4, April 1984.

[271 CIN M. D. and FLORIAN F. H., 'Analysis of a Fault-Tolerant

Distributed Diagnosis Algorithm', FTCS 15, Proceedings of

Fifteenth Annual International Symposium on

Fault-Tolerant Computing, IEEE Comput Soc Press, 1985,

ISBN 0-8186-0618-5.

REFERENCES 237

1281 CITTOLIN S., 9The UA1 VME Data Acquisition System',

Proceedings of the 1986 CERN School of Computing, CERN,

Geneva, April 1987.

[291 CONRAD M., 20n Design Principles for a Molecular

Computer', Communications of the ACK, Vol 28, No 5, May

1985.

1301 CORSINI P. and PRETE C. A., 'Architecture of the MuTeam

System9, IEE Proceedings, Vol 134, Pt E, No 5, September

1987.

[311 CREUTZ M., 'High-Energy Physics', Physics Today, May

1983.

1321 DAHBURA A. T., SABNANI K. K. and KING L. L., "The

Comparison Approach to Multiprocessor Fault Diagnosis$,

IEEE Transactions on Computers, Vol C-36, No 3, March

1987.

1331 DALLY W. J. et al., 9Architecture of a Message-Driven

Processor9, Fourteenth Annual International Symposium on

Computer Architecture, IEEE Comput Soc Press, Washington,

1987.

1341 DARESBURY LABORATORY, User Guide to Data Acquisition:

Hardware, Daresbury Laboratory, Daresbury, Warrington,

UK, May 1984.

[351 DARESBURY LABORATORY, User Guide to Data Acquisition:

Multiparameter Event Monitoring, Daresbury Laboratory,

Daresbury, Warrington, UK, October 1983.

REFERENCES 238

1361 DARESBURY LABORATORY, User Guide to Data Acquisition:

Software, Daresbury Laboratory, Daresbury, Warrington,

UK, June 1984.

[371 DARESBURY LABORATORY, User Guide to Data Acquisition:

Data Analysis, Daresbury Laboratory, Daresbury,

Warrington, UK, September 1984.

1381 DARESBURY LABORATORY, User Guide to Data Acquisition:

Introduction, Daresbury Laboratory, Daresbury,

Warrington, UK, May 1984.

1391 DEITEL H. M., An Introduction to Operating Systems,

Revised First Edition, Addison-Wesley, 1984, ISBN

0-201-14502-2.

[40] DENNIS J. B., 'Data Flow Computation', Control Flow and

Data Flow: Concepts of Distributed Programming,

Proceedings of NATO Advanced Institute International

Summer School, Spring er-Verl ag, Berlin, Germany, 1985,

ISBN 0-38-713919-2.

[41] DEO N., Graph Theory with Applications to Engineering and

Computer Science, Prentice-Hall, 1974, ISBN

0-13-363473-6.

[421 DESPAIN A. M. and PATTERSON D. A., IX-Tree: A Tree

Structured Multi-Processor Computer Architecture',

Proceedings of the Fif th Annual Symposium on Computer

Architecture, 1978.

REFERENCES 239

[431 DIETZ H. and KLAPPHOLZ D., 'Refined C: A Sequential

Language for Parallel Programming9, Proceedings of the

1984 International Conference on Parallel Processing,

IEEE Comput Soc Press, Washington, DC, USA, 1985.

[441 DIJKSTRA E. W., 9Cooperating Sequential Processes'.

Programming Languages, Academic Press, New York, 1968.

[451 DU D. Z., HSU D. F. and HWANG F. K., "Doubly Linked Ring

Networks9, IEEE Transactions on Computers, Vol C-34, No

9, September 1985.

[461 DUBIELEWICZ A. et al, 'An Architecture of a Stand-Alone

Multiprogramming Data Flow System9, Microcomputers, Usage

and Design, Elsevier Science Publishers, EuroMicro 1985.

[47] ECOSOFT, Eco-C C Compiler, Utility Software Package,

Reference Manual, Ecosoft Inc, 1984.

1481 ENSLOW P. H., Multi-Processors and Parallel Processing,

John wiley & Sons, 1974, ISBN 0-441-16735-5.

1491 ETTINGER J. E., 'Distributed Array Processors', Parallel

Processing, State of the Art Report, Pergamon Infotech

Limited, Maidenhead, UK, 1987, ISBN 0-08-034113-6.

[501 FENG T., "A Survey of Interconnection Networks', IEEE

Computer, December 1981.

[511 FLYNN M. J., 'Some Computer Organizations and Their

Effectiveness'. IEEE Transactions on Computers, Vol C-21,

No 9. September 1972.

REFERENCES 240

[521 FLYNN M. J., Wery High-Speed Computing Systems',

Proceedings of the IEEE, Vol 54, No 12, December 1966.

[531 FORTES J. A. B. and RAGHAVENDRA C. S., 'Gracefully

Degradable Processor Arrays', IEEE Transactions on

Computers, Vol C-34, No 11, November 1985.

[541 GAJSKI D. D. and PEIR J., 9Comparison of Five

Multiprocessor SYstems', Parallel Computing, Vol 2,1985.

[55] GELENBE E. et al., 'A Performance Model -of Block

Structure Parallel Programs', Parallel Algorithms &

Architectures, Proceedings of the International Workshop

on Parallel Algorithms & Architectures, North-Holland,

Amsterdam, 1986.

[561 GINOSAR R. and HILL D. D., 9Design and Implementation of

Switching Systems for Parallel Processors'. Proceedings

of the 1984 International Conference on Parallel

Processing, IEEE Comput Soc Press, Washington, DC, USA,

1985.

[571 GLENDINNING I. and HEY A. , 'Transputer Arrays as Fortran

Farms for Particle Physics', Computer Physics

Communications, Vol 45,1987.

[581 GOKHALE M. B., 9Macro vs Micro Dataflow: A Programming

Example', Proceedings of the 1986 International

Conference on Parallel Processing, IEEE ComPut Soc Press,

Washington, DC, USA, 1986.

REFERENCES 241

[591 GOODMAN J. W. et al., ýOptical Interconnections for VLSI

Systems9, Proceedings of the IEEE, Vol 72, No7, July

1984.

[601 GOULDING F. S and HARVEY B. G., 'Identification of Nuclear

Particles'. Annual Review of Nuclear Science, Vol 25,

1975.

[611 GURD J. R., KIRKHAM C. C. and WATSON I., 'The Manchester

Prototype Dataflow Computer', Communications of the ACK,

Vol 28, No 1, January 1985.

1621 HANDLER W., MAEHLE E. and WIRL K., 2DIRMU Multiprocessor

Configurations', Proceedings of the 1984 International

Conference on Parallel Processing, IEEE Comput Soc Press,

Washington, DC, USA, 1985.

[631 HAWKES L. W., $A Regular Fault-Tolerant Architecture for

Interconnection Networks'. IEEE Transactions on

Computers, Vol C-34, No 7. July 1985.

1641 HAYES J. P., Computer Architecture and Organization,

McGraw-Hill, 1978, ISBN 0-07-027363-4.

[65] HERTZBERGER L. O., 'New Architectures$, Computing In High

Energy Physics, Proceedings of the Conference on

Computing in High Energy Physics, North-Holland,

Amsterdam, Netherlands, 1986, ISBN 0-444-87973-0.

[66] HERTZBERGER L. O., 'Trends in Architectures', Proceedings

of the 1986 CERJV School of Computing, CERN, Geneva, April

1987.

REFERENCES 242

[67] HOARE C. A. R., 'Communicating Sequential Processes',

Communications of the ACK, Vol 21, No 8, August 1978.

[681 HOCKNEY R. W. and JESSHOPE C. R., Parallel Computers,

Architecture, Programming and Algorithms, Adam Hilger

Ltd, Bristol, 1981, ISBN 0-85274-422-6.

1691 HOROWITZ E. and ZORAT A., 'The Binary Tree as an

Interconnection Network: Applications to Multiprocessor

systems and VLSI', IEEE Transactions on Computers, Vol

C-30, No 4, April 1981.

[70] HOUSHENG Z., 9Buffer_Insertion Ring: A Performance

Study'. Microcomputers, Usage and Design, Eleventh

Euromicro symposium on Microprocessing and

Microprogramming, North-Hollland, Amsterdam, Netherlands,

1985.

[711 HUANG A., 2Architectural Considerations involved in the

Design of an Optical Digital Computer9, Proceedings of

the IEEE, Vol 72, No 7, July 1984.

1721 HUFF B. R., $The Cyberplus Parallel Processing System -A

Supercomputer Alternative', Computing in High Energy

Physics, Proceedings of the Conference on Computing in

High Energy Physics, North-Holland, Amsterdam,

Netherlands, 1986, ISBN 0-444-87973-0.

REFERENCES 243

1731 HWANG K. and ZHIWEI X., 'Remps: A Reconfigurable

Multiprocessor for Scientific Supercomputings,

Proceedings of the 1984 International Conference on

Parallel Processing, IEEE Comput Soc Press, Washington,

DC, USA, 1985.

[741 HYVXRINEN 0., 'A High Performance Network Architecture

for Digital Signal Processing oriented VLSI Based

Multiprocessor System', VLSI in Computers and

Communications, 2nd Nordic Symposium on VLSI in Computers

and Communications, 1986.

[751 IBBETT R. N., CAPON P. C. and TOPHAM N. P., IMUM A

Parallel Vector Processing System', Twelth Annual in

Symposium on Computer Architecture, IEEE Comput Soc

Press, 1985, ISBN 0-8186-0634-7.

[761 ICHIOKA Y. and TANIDA J., 'Optical Parallel Logic Gates

Using a Shadow-Casting System for Optical digital

Computing', Proceedings of the IEEE, Vol 72, No 7, July

1984.

[771 IIZUKA. A. et al., 2Evolution of DRAM in Silicon MOS

Technology', VLSI and COMPUTERS, Proceedings of First

International Conference on Computer Technology, Systems

and Applications, IEEE Comput Soc Press, 1987, ISBN

0-8186-0773-4.

[781 INMOS LIMITED, The Transputer Family, Product

Information, INMOS Limited, Bristol, U. K., March 1986.

I

REFERENCES 244

1791 INMOS LIMITED., Occam 2, Product Definition, INMOS

Limited, Bristol, UK, June 1986.

[801 KANT K. and SILBERSCHATZ A., 'Error Propagation and

Recovery in Concurrent Environments', The Computer

Journal, Vol 28, No 5,1985.

[811 KAPLAN I., 9The LDF 100: A Large Grain Dataflow Parallel

Processor', Computer Architecture News, Vol 15, No 3,

June 1987.

[821 KARPLUS W. J., 9Parallelism and Pipelining: The Road to

more Cost-Effective Scientific Computing9,

Multiprocessors and Array Processors, Proceedings of the

third Conference on Multiprocessors and Array Processors,

Society for Computer Simulation, 1987.

(831 KERNIGHAN B. W. and RITCHIE D. M., The C Programming

Language, Prentice-Hall, Englewood Cliffs, NJ, 1978, ISBN

0-13-110163-3.

[841 KIMURA T., KURIHARA K. and MATSUKAWA M., 9Application of

the Fast Array Processor for JT-60 Plasma Control9,

Fusion Technology 1986, Volume 2, Proceedings of the

fourteenth Symposium, Pergamon Press, 1986.

[851 KOREN I. and PELED I., 2The Concept and Implementation of

Data-Driven Processor Arrays9, IEEE Computer, July 1987.

REFERENCES 245

[86] KOWARIK 0., KRAUS R. and HOFFMAN K., 'Self Repairing

Semiconductor Memories', VLSI and COMPUTERS, Proceedings

of First International Conference on Computer Technology,

Systems and Applications, IEEE Comput Soc Press, 1987,

ISBN 0-8186-0773-4.

(871 KRUSKAL C. P., RUDOLPH L. and CYTRON R., 'The

Architecture of Parallel Computers$, Control Flow and

Data Flow: Concepts of Distributed Programming,

Proceedings of NATO Advanced Institute International

Summer School, Springer-Verlag, Berlin, Germany, 1985,

ISBN 0-38-713919-2.

[881 KUEHN J. T. and SIEGEL H. J., 'Extensions to the C

Programming Language for SIMD/MIMD parallelism2,

Proceedings of the 1984 International Conference on

Parallel Processing, IEEE Comput Soc Press, Washington,

DC, USA, 1985.

(891 KUNG S. Y. et al., 'Wavefront Array Processors - Concept

to Implementation2, IEEE Computer, July 1987.

[901 KUNZ P. F., 'Resume on Vector and Parallel Processing in

HEPI, Computing in High Energy Physics, Proceedings of

the Conference on Computing in High Energy Physics,

North-Holland, Amsterdam, Netherlands, 1986, ISBN

0-444-87973-0.

[911 LEBEE P., GUILLEMONT M. and FONTENIER G., 9A

Heterogeneous Parallel Distributed Machine Prototype:

the HPDMI, Sixth Annual Conference on Computers and

Communications, IEEE Comput Soc Press, 1987.

REFERENCES 246

[921 LESTER B. P., 9Analysis of Firing Rates in Petri Nets

using Linear Algebra', Proceedings of the 1984

International Conference on Parallel Processing, IEEE

Comput Soc Press, 1985.

[93] LEVITAN S. P., 'Evaluation Criteria for Communication

Structures in Parallel Architectures', Proceedings of the

1984 International Conference on Parallel Processing,

IEEE Comput Soc Press, Washington, DC, USA, 1985.

[941 LINDNER R., 'Introduction to a Simple but unconventional

multiprocessor and an outline of an application',

Computer Architectures for Spatia117 Distributed Data,

Proceedings of NATO Advanced Study Institute,

Springer-Verlag, Berlin, Germany, 1985.

195] LORMANN A. W., $Optical Computers', VLSI and Computers,

Proceedings of First International Conference on Computer

Technology, Systems and Applications, IEEE Comput Soc

Press, 1987, ISBN 0-8186-0773-4.

[961 MAENG S. R. and CHO J. W., 'A Control and Data Flow

Multiprocessor', The Australian Computer Journal, Vol 18,

No 1, February 1986.

[97] MANUEL T. and BARNEY C., 2The Big Drag on Computer

Throughput', Electronics, November. 1986.

[981 MARK P. B, 'The Sequoia Computer: A Fault-Tolerant

Tightly-Coupled Multiprocessor Architecture', Twelth

Annual International Symposium on Computer Architecture,

IEEE Comput Soc Press, 1985.

REFERENCES 247

[991 MARSAN M. A., CONTE G. and BALBO G., 'Performance

Analysis of Multiprocessor Systems', Multi-Microprocessor

Systems for Real-Time Applications, ed Conte. G and Del

Corso. D., D. Reidel Publishing Company, 1985, ISBN

90-277-2954-1.

[1001 MATELAN N., 'The Flex/32 Multicomputer', Twelth Annual

International Symposium on Computer Architecture, IEEE

Comput Soc Press, 1985, ISBN 0-8186-0634-7.

(101] MAY D. and SHEPHERD R., 'The INMOS Transputer$, Parallel

Processing, State of the Art Report, Pergamon Infotech

Limited, Maidenhead, UK, 1987, ISBN 0-08-034113-6.

[1021 MAY D., KINGSMITH T. and PEARSON I., 9The T414

Transputer - the end of the beginning9, Electronic

Engineering, November 1985.

[1031 MENEZES B. L. and JENEVEIN R. M., 9KYKLOS: A Linear Growth

Fault-Tolerant Interconnection Network, , Proceedings of

the 1984 International Conference on Parallel Processingg

IEEE Comput Soc Press, Washington, DC, USA, 1985.

[1041 MEYER E. L., 'Survey of Multiprocessors", VLSI Systems

Design, November 1985.

[1051 MEYER F. J. and PRADHAN D. K., 9Dynamic Testing Strategy

for Distributed Systems', FTCS 15, Proceedings of

Fifteenth Annual International Symposium on

Fault-Tolerant Computing, IEEE Comput Soc Press, 1985,,

ISBN 0-8186-0618-5.

REFERENCES 248

[106] MISHIN A. I. and SEDUKHIN S. G., 9Cellular Computing

Systems and Parallel Computation', Automation, Control

and Computer Science, Vol 15, No 1,1981.

[1071 MORTON S. G., ABREU E. and TSE F., 9ITT CAP-Toward a

Personal Supercomputer', IEEE Micro, December 1985.

[1081 MOUNT R., 'Alternatives in High Volume HEP Computing9,

Computing in High Energy Physics, Proceedings of the

Conference on Computing in High Energy Physics,

North-Holland, Amsterdam, Netherlands, 1986, ISBN

0-444-87973-0.

[1091 MOUNT R. P., 2Computer Architectures for High Energy

Physics', Proceedings of the 1986 CERN School of

Computing, CERN, Geneva, April 1987.

[1101 NAEINI R., "A few Statement types adapt C language to

parallel processing', Electronics, June, 1984.

[111] NEAL L. R., 2Novel Computer Architectures - Part 2: Data

Flow Computation9, Computer Education, June 1987.

[1121 NESTLE E. and INSELBERG A., 'The Synapse N+1 System:

Architectural Characteristics and Performance Data of a

Tightly-Coupled Multiprocessor System$, Twelth Annual

International Symposium on Computer Architecture, IEEE

Comput Soc Press, 1985.

[1131 PALMER J. F., 2The NCUBE family of Parallel

Supercomputers', Fifth Annual International Phoenix

Conference on Computers and Communications, IEEE Comput

Soc Press, 1986, ISBN 0-8186-0691-6.

REFERENCES 249

[1141 PAPAZOGLOU M., "A Proposal for Two Multimicroprocessor

Architectures for Execution of Procedural Languages',

Microcomputers, Usage and Design, Eleventh Euromicro

Symposium on Microprocessing and Microprogramming,

North-Holland, Amsterdam, Netherlands, 1985.

[1151 PETERSON J. C. et al., "The Mark III Hypercube-Ensemble

Concurrent Computer2, Proceedings of the 1984

International Conference on Parallel Processing, IEEE

Comput Soc Press, Washington, DC, USA, 1985.

[1161 PFISTER G. F. et al., 'The IBM Research Parallel Processor

Prototype (RP3): Introduction and Architecture',

Proceedings of the 1984 International Conference on

Parallel Processing, IEEE Comput Soc Press, Washington,

DC, USA, 1985.

[1171 PLUM T., Learning to Program in C, Prentice-11alll,

Englewood Cliffs, NJ, 1983, ISBN 0-13-527854-6.

[1181 PRADHAN D. K. and REDDY S. M., $A Fault-Tolerant

Communication Architecture for Distributed Systems', IEEE

Transactions on Computers, Vol C-31, No 9, September

1982.

[119] PROTOPAPAS D. A and DENENBERG J. N., 9A New Model for

Performance Analysis of Large Scale Multimicrocomputer

Networks9, Sixth Annual International Phoenix Conference

on Computers and Communications, IEEE Comput Soc Press,

Washington, DC, USA, 1987.

S.

REFERENCES 250

[120] QUINTON P. and VERJUS J. P., 9Distributed Synchronisation

of Parallel Programs: Why and How? ', Parallel Algorithms

& Architectures, Proceedings of the International

Workshop on Parallel Algorithms & Architectures,

North-Holland, Amsterdam, 1986.

[1211 RAMMIG F. J., 9Multilevel Simulation Techniques', VLSZ and

Computers, First International Conference on Computer

Technology, Systems and Applications, IEEE Comput Soc

Press, 1987, ISBN 0-8186-0773-4.

[1221 REED D. A. and SCHWETMAN H. D., "Cost-Performance Bounds

for Multimicrocomputer Networks', IEEE Transactions on

Computers, Vol C-32, No 1, January 1983.

[1231 ROBERTS D. H., 9Electrons, Phonons and Photons - The

Physical Particles of Electronics', Colloquium, Dept of

Pure and Applied Physics, University of Salford, Salford,

U. K., 25 May 1988.

[1241 RODDA L., SAVIONI R. and SECIII G. R., 'A Ilierarchical

Architecture with Independant Processors for Real-Time

Systems9, Hicroprocessing and Microprogramming, Vol 15,

1985.

[125] ROSE J., LOUCKS W. and VRANESIC Z., OFERMTOR: A Tunable

Multiprocessor Architecture$, IEEE Micro, August 1985.

(1261 SANGUINETTI J. and KUMAR B. 9 'Performance of a

Message-Based Multiprocessor$, Twelth Annual

International Symposium on Computer Architecture, IEEE

Comput Soc Press, 1985, ISBN 0-8186-0634-7.

REFERENCES 251

[1271 SATYANARAYANAN M., 'Multiprocessing: An Annotated

Bibliography$, IEEE Computer, May 1980.

[1281 SAWCHUK A. A. and STRAND T. C., 'Digital Optical

Computing', Proceedings of the IEEE, Vol 72, No 7, July

1984.

[1291 SCHOLTEN J., HOFSTEDE J. and SMIT G. J. M., $Proposal for

an architecture for TUMULT based on a serial link9,

Microprocessing and Microprogramming, Vol 21, Part 1-5,

August 1987.

[1301 SCHOLTEN J., SMIT G. J. M. and VANIT HOFF E. L.,

9Realisation of an Interconnection Network for TUMULT9,

Microcomputers: Usage and Design, Eleventh Euromicro

Symposium on Microprocessing and Microprogramming,

North-Holland, Amsterdam, Netherlands, 1985.

[1311 SCOLLO G. et al., 'Specification and Implementation of

the MONDAN System', Protocol Specification, Testing and

Verification, IV, Elsevier Science Publishers B. V., 1985.

[1321 SEDGWICK R., Algorithms, Addison-Wesley, 1984, ISBN

0-201-06672-6.

[1331 SEITZ C. L., 'Concurrent VLSI Architectures', IEEE

Transactions on Computers, C-33, No 12, December 1984.

[1341 SEITZ C. L., 'The Cosmic Cube', Communications of the ACK,

Vol 28, No 1, January 1985.

11351 SERLIN 0., 'Parallel Processing: Fact or Fancy? 19

Datamation, December 1985.

REFERENCES 252

[136] SHARP J. A., An Introduction to Distributed and Parallel

Processing, Blackwell Scientific Publications, London,

1987, ISBN 0-632-01745-7.

[1371 SHIMODA T. and ISHIHARA M., 9Simple AE-E Particle

Identification with a with a wide dynamic range', Nuclear

Instruments and Methods, Vol 165,1979.

[1381 SHORE J. E., 9Second Thoughts on Parallel Processing',

Computer Elec Eng, Vol 1,1973.

[1391 SMITH J. R., 'Parallel Algorithms for Depth First Searches

in Planar Graphs$, STAN Journal of Computing, Vol 15, No

3, August 1986.

[1401 SNYDER L., 9Introduction to the Configurable Highly

Parallel Computer', IEEE Computer, January 1982.

[141] SOWA M., 'A Method for Speeding up Serial Processing in

Dataflow Computers by Means of a Program Counter', The

Computer Journal, Vol 30, No 4,1987.

[1421 STONE H. S., Introduction to Computer Architecture, Second

edition, Science Research Associates Inc, 1980, ISBN

0-574-21225-6.

[1431 TAYLOR S., AV-RON E. and SHAPIRO E. , 9A Layered Method

for Process and Code Mapping9, New Generation Computing,

Vol 5, No 2,1987.

[1441 THEAKER C. J. and BROOKES R. B., A Practical Course on

Operating Systems, Macmillan, 1984, ISBN 0-333-34678-5.

REFERENCES 253

[1451 TRELEAVEN P. C., BROWNBRIDGE D. R. and HOPKINS R. P.,

9Data-Driven and Demand-Driven Computer Architecture9,

Computing Surveys, Vol 14, No 1, March 1982.

[1461 TSENG P. S., HWANG K. and PRASANNA KUMAR V. K., 9A

VLSI-Based Multiprocessor Architecture for Implementing

Parallel Algorithms9, Proceedings of the 1984

International Conference on Parallel Processing, IEEE

Comput Soc Press, Washington, DC, USA, 1985.

11471 TUAZON J. et al., 'Caltech/JPL Mark II Hypercube

Concurrent Processor', Proceedings of the 1984

International Conference on Parallel Processing, IEEE

Comput Soc Press, Washington, DC, USA, 1985.

[1481 VAJDA F., 'Critical Issues of the Application of a

Transputer in a Concurrent System9, Microcomputers:

Usage and Design, Eleventh Euromicro Symposium on

Microprocessing and Microprogramming, North-Holland,

Amsterdam, Netherlands, 1985.

[1491 VAN ZANDT J., 9C3 I Beyond the Von Neumann Bottlenecklg

Defense Electronics, January 1986.

1150] VEDDER R. and FINN D., 'The Hughes Data Flow

Multiprocessor: Architecture for Efficient Signal and

Data Processing', Twelth Annual International Symposium

on Computer Architecture, IEEE Comput Soc Press, 1985,

ISBN 0-8186-0634-7.

REFERENCES 254

[1511 VIITANEN J. and VXNNI P., 2The TAMIPS Multiprocessor 9,

Proceedings of the 1984 International Conference on

Parallel Processing, IEEE Comput Soc Press, Washington,

DC, USA, 1985.

11521 VON CONTA, C., 9Torus and Other Networks as Communication

Networks With Up To Some Hundred Points9, IEEE

Transactions on Computers, Vol C-32, No 7, July 1983.

[1531 WATSON I. and GURD J., 'A Practical Data Flow Computer",

IEEE Computer, February 1982.

11541 WHERRETT P., 'Potential of Optical Computing9, Colloqium,

Dept of Physics, University of Salford, Salford, UK, 17

February 1988.

[1551 WHITBY-STREVENS C., 'The Transputer', Twelth Annual

International Symposium on Computer Architecture, IEEE

Comput Soc Press, 1985, ISBN 0-8186-0634-7.

[1561 WILSON P., 'Highly Concurrent Systems Using the

Transputer', NorthCon 84, Mini-Micro NorthWest 1984,

Conference Record, Seattle, USA, 1984.

11571 WILSON P., IOCCAM -A Programming Language for Concurrent

Systems', Multiprocessors and Array Processors,

Proceedings of Third Conference on Multiprocessors and

Array Processors, Society for Computer Simulation, 1987.

11581 WITTIE L. D., 'Communication Structures for Large Networks

of Microcomputers', IEEE Transactions on Computers, Vol

C-30, No 4, April 1981.

REFERENCES 255

[1591 WU S. B. and LIU M. T., 'A Cluster Structure as an

Interconnection Network for Large Multimicrocomputer

Systems', IEEE Transactions on Computers, Vol C-30, No 4,

April 1981.

[1601 ZABLOTSKII V. N. et al., 'Approximate Analytic Model of

Multiprocessor Computer System With a Ring Structure',

Automation, Control and Computer Science, Vol 18, No 3,

1984.

[1611 ZAKHAROV V., 'Parallelism and Array Processing', IEEE

Tz, ansactions on Computers, C-33, No 1, January 1984.

[1621 ZANELLA P., 'Trends in Computing for HEPI, Computing in

High Energy Physics, Proceedings of the Conference on

Computing in High Energy Physics, North-Holland,

Amsterdam, Netherlands, 1986, ISBN 0-444-87973-0.

[1631 ZILOG CORPORATION, Z-80 Product description, Zilog

Corporation, 1977.

0,

A COMPUTING STRUCTURE FOR DATA ACQUISITION IN HIGH ENERGY PHYSICS

by

GARRY ALEXANDER LESTER

Submitted for the Degree of

Doctor of Philosophy

at the

University of Salford

in the

Department of Electronic and Electrical Engineering

1988

MCMLXXXVIII

Volwne Il

APPENDICES

Contents

APPENDIX 1

I Simulation-Programs of Distinct Node Rings

APPENDIX 2

2 Simulation Programs of Distinct Node Cylinders

APPENDIX 3

3 Simulation Programs of Homogeneous Rings

APPENDIX 4

4 Simulation Programs of Homogeneous Cylinders

APPENDIX 5

5 Homogeneous Cylinder Simulation Results

APPENDIX 6

6 Printed Circuit Board Designs

I

MCMLXXXVIII

iii

APPENDIX 7

7 Wire Wrap Connections

APPENDIX 8

8 Wire Wrap Connections

APPENDIX 9

9 Wire Wrap Connections

161

To Complete a Link Circuit 161

163

To Complete an RS-232C to Inmos Interface 163

164

To Complete a Processor Board 164

APPENDIX 10 169

10 Pal Designs Used in the Multiprocessor Hardware Design 169

APPENDIX 11 183

11 Files Used with the Eco-C Compiler for Multiprocessing 183

APPENDIX 12 192

12 Communication Function s: Byte Wise Versions 192

APPENDIX 13 201

13 Communication Functions: Fifo Buffered Versions 201

MCMLXXXVIII I.

iv

APPENDIX 14

14 Programs Used to Interface to the System

APPENDIX 15

212

212

222

15 Programs for the Cylindrical Homogeneous Processor 222

APPENDIX 16 251

16 Programs for the Distributed Depth First Search Scan' 251

MCMLXXXVIII

APPENDIX 1

1 Simulation Programs of Distinct Node Rings

program distringl(input, output, distdata, distrecord);
const

CONSTANTS FOR RANDOM NUMBER GENERATION
m=100000000; ml=10000; b=31415821;

type
PROCESSING NODE TYPE

proc_ptr=ýproc_type;
proc_type=record

proc_id: integer;
ring_input: integer;
ring_output: integer;
input_full: boolean;
output_full: boolean;
data_input: integer;
data_full: boolean;
p_type: integer;
p_state: integer;
next: proc_ptr;
end;

var
a: integer;
pconst: integer;
distdata, distrecord: text;
ring: proc_ptr;
processing: array[l.. 1001 of integer;
processed data: array[l.. 100] of integer;
consumed -

jata: array[l.. 100] of integer;
largen, iterations, procs: integer;

function mult(p, q: integer): integer;
(* EXTENDED MULTIPLICATION
var pl, pO, ql, qO: integer;
begin
pl: =p div ml; pO: =p mod ml;
ql: =q div ml; qO: =q mod ml;
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m;
end;

function random: real;
RANDOM NUMBER GENERATOR
PG37 - ALGORITHMS - SEDGEWICK
ADDISON - WESLEY 1984

begin
a: =(mult(a, b)+l)mod m;
random: =a/m;
end;

procedure input_parameters;
INITIALISE INPUT AND OUTPUT FILES
READ IN THE PARAMETERS OF THE RING TO MODEL

var

i Appendix 11

n: integer;
begin (* INPUT_PARAMETERS
reset(distdata); rewrite(distrecord);
writeln(distrecord, ldistringll);
writeln(distrecord, 'Ring State record for simulation using : -I);

READ IN THE NUMBER OF PROCESSORS
readln(distdata, procs);
writeln(distrecord, $Number of processors = l, procs: 3);
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM
readln(distdata, largen);
writeln(distrecord, 'Number of iterations performed
(* READ IN THE AMOUNT OF PROCESSING REQUIRED PER DATA
readln(distdata, pconst);
writeln(distrecord, 'Processing required per data item
writeln(distrecord);
end; (* INPUT_PARAMETERS

, largen: 3);
ITEM *)

= l, peonst: 3,1 units')

procedure initial
-

states;
SETS UP THE INITIAL STATE OF THE RING DATA STRUCTURE
AND PRINTS A HEADING TO FILE RINGRECORD

var
p: proc_ptr;
n: integer;

procedure set
-

vars;
begin (* SET

I
VARS *)

p-. input
-

full: =false;
P-. Output

-
full: =false;

p-. data_full: =false;
pA. p_type: =O;
p, ". p_state: =O;
end; (* SET_VARS

begin (* INITIAL_STATES
write(distrecord, l
new(ring);
p: =ring;
p-. proc_id: =l;
write(distrecord, ' l, p"*. proc_id: 3);
set_vars;
for n: =l to (procs-1) do

begin
new(pA. next);

p: =p*"I. next;

p-. proc_id: =(n+l);
write(distrecord, l l, p"'. proc_id: 3);

set-vars;
end;

p-. next: =ring;
writeln(distrecord);
for n: =l to 100 do

begin
processing[n]: =O;
processed_data[nl: =O;
consumed_data[nl: =O;
end;

end; INITIAL_STATES

ii Appendix 12

procedure communicate;
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE
var

p: proc_ptr;
begin (* COMMUNICATE
p: =ring;
repeat

begin
if (pA. output_full and not(p*",. next1ý. input_full)) then

begin

p^. next-. ring_input: =pý. ring_output;
p'ý. nextý. input_full: =true;
p-*,. output_full: =false;
end;

p: =p"'. next;
end;

until (p=ring);

end; (* COMMUNICATE

procedure create - new_data;
(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM
var

p: proc_ptr;

begin (* CREATE_NEW_DATA
p: =ring;
repeat

begin
if (not(p-. data_full)) then

begin
p*",. data_input: =l+trunc(random*(procs-0.0001));
consumed_data[p-. data_input]: =consumed_datalp-. data_inputl+l;
P-. data_full: =true;
end;

p: =p*ý. next;
end;

until (p=ring);
end; (* CREATE_NEW-DATA

procedure compute;
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT
var

p: proc_ptr;

procedure computing_algorithm;
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN
THE PROCESSOR

var
time_unit: integer;

procedure comms;
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS

function processor_idle: boolean;
begin
processor_idle: -(pý. p_state<=O);
end;

iii Appendix

function ring-data: boolean;
begin
ring_data: =p-. input_full;
end;

function new-data: boolean;
begin
new_data: =p**,. data-full;
end;

function new-data_right: boolean;
begin
new-data_right: =(p-. data_input=p-. proc_id);
end;

function ring_data_right: boolean;
begin
ring_data_right: =(p^. ring_input=p-. proc_id);
end;

function ring_ready: boolean;
begin
ring_ready: =not(p-. output_full);
end;

procedure take_ring_data;
begin
if (pconst<O) then

pA. p_state: =trunc(random*(-pconst))
else

pý. p_state: =pconst;
p-. p_type: =pý. p_state;
p-. input_full: =false;
time_unit: =time_unit-1;
end;

procedure take_new-data;
begin
if (pconst<O) then

pA. p_state: =trunc(random*(-pconst))
else

p*''*. p_state: =pconst;
p-. p_type: =p-. p_state;
p-. data_full: =false;
time__unit: =time_ýunit-1;
end;

procedure ring_data_on;
begin
pý. ring_output: =pý. ring_input;
p-. input_full: =false;
p-. output_full: =true;
time_unit: =time_unit-1;
end;

procedure new-data_on;
begin
pl**. ring_output: =pA. data_input;

iv Appendix 1

P-. data_full: =false;
pý. output_full: =true;
time_unit: =time_unit-1;
end;

begin (* COMMS1 *)
if processor

-
idle then

if new data then
if new

-
data right then

take_jiewjata
else

if ring_data then
if ring_data_right then

take
-

ring_data
else

(* NULL
else

(* NULL
else

if ring_data then
if ring_data_right then

take
-

ring_data
else

(* NULL
else

(* NULL
else

(* NULL
if ring_ready then

if new data then
if not new -

data-right then
new -

data_on
else

if ring_data then
if not ring_data_right then

ring_data_on
else

(* NULL
else

(* NULL
else

if ring_data then
if not ring_data_right then

ring_data_on
else

(* NULL
else

(* NULL
else

(* NULL
end; (* COMMS1

procedure process(units: integer);
(* PERFORMS THE ACTIVITIES OF THE PROCESSING PROCESS
begin (* PROCESS *)
pý. p_state: =pý. p_state-units;
if (p-. p_state<=O) then

begin

Appendix 15

if (p-. p_type>O) then
begin
processed

-
data[p**,. p_typel: =processed_data[p^. p_typel+l;

processing[p-. proc_idl: =processing[p^. proc_idl+l;
end;

p^. p_type: =O;
p"'. p-state: =O;
end;

end; PROCESS

begin (* COMPUTING_ALGORITHM
time

-
unit: =4;

TOTAL PROCESSING EFFORT AVAILABLE
PER ITERATION

comms;
(* COMMS USES UP SOME PROCESSING EFFORT
process(time -

unit);
end; (* COMPUTING_ALGORITHM

begin (* COMPUTE
p: =ring;
repeat

begin
computing_algorithm;
p: =p'ý. next;
end;

until (p=ring);
end; (* COMPUTE

procedure print_state;
(* PRINTS THE STATE OF THE RING AFTER THE LAST ITERATION
var p: proc_ptr;
begin (* PRINT

-
STATE

write(distrecord, 'I=l
p: =ring;
repeat

begin

write(distrecord, l
p: =p^. next;
end;

until (p=ring);

writeln(distrecord);
end; (* PRINT_STATE

, iterations: 3);

, p^. p_state: 3);

procedure print_results;
var

n, totalproc, totalcons, wtotproc: integer;
begin (* PRINT

-
RESULTS *)

totalproc: =O; totalcons: =O; wtotproc: =O;
writeln(distrecord); writeln(distrecord);
writeln(distrecord, 'Data Consumed. and Processed');
writeln(distrecord, l ---- -------- --- ------9); writeln(distrecord);
for n: =l to procs do

begin
totalcons: =totalcons+consumed_data[n];
totalproc: =totalproc+processing[n];
write(distrecord, lP. E.: l, n: 3,1 number consumed: 1, consumed data[n]: 3);
writeln(distrecord, ' number processed: ', processing[nl: 3); -

vi Appendix 1

end;
writeln(distrecord); writeln(distrecord);
writeln(distrecord, 'Types Processed9);
writeln(distrecord, l ----- --------- 1); writeln(distrecord);
for n: =1 to 50 do

begin
wtotproc: =wtotproc+processed_data[n]*n;
writeln(distrecord, 'Type: ', n: 3,1 number processed: ', processed_datalnl: 3);
end;

write(distrecord, 'Total: 1,1 number consumed: ', totalcons: 3);
writeln(distrecord, l number processed: $, totalproc: 3);
writeln(distrecord, 'Total: 9.1 Weighted Total Processed: ', wtotproc: 5);
end; (* PRINT_RESULTS *)

begin (* DISTRING1
a: =1234567;
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR
input_parameters;
writeln(9Parameters inPut9);
initial

-
states;

writeln('Initial state set up');
writeln(IStarting Computation');
for iterations: =1 to largen do

begin
communicate;
create_new-data;
compute;
print

-
state;

end;
writeln(IFinished Computation9);
writeln('Printing Results9);
print - results;
end. (* DISTRINGI

vii Appendix 17

program distring2(input, output, distdata, distrecord);
const

CONSTANTS FOR RANDOM NUMBER GENERATION
m=100000000; ml=10000; b=31415821;

type
(* PROCESSING NODE TYPE

proc_ptr=^proc_type;
proc_type=record

proc
-

id: integer;
ring_input: integer;
ring_output: integer;
input_full: boolean;
output_full: boolean;
data_input: integer;
data full: boolean;
p_type: integer;
p-state: integer;
next: proc_ptr;
end;

var
a: integer;
pconst: integer;
distdata, distrecord: text;
ring: proc_ptr;
processing: array[l.. 1001 of integer;
processed -

data: array[l.. 1001 of integer;
consumed -

data: array[l.. 1001 of integer;
largen, iterations, procs: integer;

function mult(p, q: integer): integer;
(* EXTENDED MULTIPLICATION
var pl, pO, ql, qO: integer;
begin
pl: =p div ml; pO: =p mod ml;
ql: =q div ml; qO: =q mod ml;
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m;
end;

function random: real;
RANDOM NUMBER GENERATOR
PG37 - ALGORITHMS - SEDGEWICK
ADDISON - WESLEY 1984

begin
a: =(mult(a, b)+l)mod m;
random: =a/m;
end;

procedure input_parameters;
INITIALISE INPUT AND OUTPUT FILES
READ IN THE PARAMETERS OF THE RING TO MODEL

var
n: integer;

begin (* INPUT PARAMETERS
reset(distdataT; rewrite(distrecord);
writeln(distrecord, ldistring2l);
writeln(distrecord, 'Ring State record for simulation using : -1); (* READ IN THE NUMBER OF PROCESSORS *)

viii Appendix 1

readln(distdata, procs);
writeln(distrecord, 'Number of processors = l, procs: 3);
(* READ IN THE DATATYPE (PROCESSING TIME) FOR EACH PROCESSOR
readln(distdata, largen);
writeln(distrecord, $Number of iterations performed
(* READ IN THE AMOUNT OF PROCESSING REQUIRED PER DATA
readln(distdata, pconst);
writeln(distrecord, 'Processing required per data item
writeln(distrecord);
end; (* INPUT_PARAMETERS

g, largen: 3);
ITEM *)

=9
, pconst: 3,9 units');

procedure initial
-

states;
SETS UP THE INITIAL STATE OF THE RING DATA STRUCTURE
AND PRINTS A HEADING TO FILE RINGRECORD

var
p: proc_ptr;
n: integer;

procedure set_vars;
begin (* SET

I
VARS *)

p***. input-full: =false;
pA. oUtpUt

-
full: =false;

p^. data_full: =false;
p^. p_type: =O;
pA. p_state: =O;
end; (* SET_VARS

begin (* INITIAL_STATES
write(distrecord, l
new(ring);
p: =ring;
p-. proc_id: =l;
write(distrecord. 1 l, p-. proc_id: 3);
set_vars;
for n: =l to (procs-1) do

begin
new(p-. next);
p: =pA. next;
p-. proc_id: =(n+l);
write(distrecord, l l, pA. proc_id: 3);
set_vars;
end;

pA. next: =ring;
writeln(distrecord);
for n: =l to 100 do

begin
processing[nl: =O;
processed -

data[nl: =O;
consumed_data[nl: =O;
end;

end; INITIAL_STATES

procedure communicate;
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE
var

p: proc_ptr;
begin (* COMMUNICATE
p: =ring;

ix Appendix 1

repeat
begin
if (p-. output_full and not(pý. next". input_full)) then

begin
pý. nextA. ring_input: =p-. ring_output;
pý. next"Anput_full: =true;
p"*. output-full: =false;
end-,

p: =pý. next;
end;

until (p=ring);
end; (* COMMUNICATE

procedure create - new -
data;

(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM
var

p: proc_ptr;

begin (* CREATE_NEW-DATA
p: =ring;
repeat

begin
if (not(p-. data_full)) then

begin
p-. data_input: =l+trunc(random*(procs-0.0001));
consumed_data[p-. data_inputj: =consumed_data[p-. data_inputj+l;
P^. data_full: =true;
end;

p: =p",. next;
end;

until (p=ring);
end; (* CREATE_NEW-DATA

procedure compute;
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT
var

p: proc_ptr;

procedure computing_algorithm;
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN
THE PROCESSOR

var
time_unit: integer;

procedure comms;
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS

function processor_idle: boolean;
begin
processor_idle: =(p-. p_state<=O);
end;

function ring_data: boolean;
begin
ring_data: -p-. input_full;
end;

function new-data: boolean;

x Appendix 1 10

begin
new -

data: =pý. data_full;
end;

function new-data_right: boolean;
begin
new_data_right: =(p-. data_input=p^. proc_id);
end;

function ring_data_right: boolean;
begin
ring_data_right: =(p^. ring_input=p-. proc_id);
end;

function ring_ready: boolean;
begin
ring_ready: =not(p*"*. output_full);
end;

procedure take_ring_data;
begin
if (pconst<O) then

p"',. p_state: =trune(random*(-pconst))
else

pl',. p_state: =pconst;
pý. p_type: =p^. p_state;
p-. input_full: =false;
time_unit: =time_unit-1;
end;

procedure take_new-data;
begin
pý. p_type: =p*",. data_input;
if (pconst<O) then

p-. p_state: =trunc(random*(-pconst))
else

pý. p_state: =pconst;
p^. p_type: =p^. p_state;
p^. data_full: =false;
time__ynit: =time_unit-1;
end;

procedure ring_data_on;
begin
p*"*. ring_output: =pý. ring_input;
p-. input_full: =false;
pý. output_full: =true;
time_unit: =time_unit-1;
end;

procedure nei, ý_data_on;
begin
p". ring_output: =p". data_input;
p-. data_full: =false;
p^. output_full: =true;
time_ynit: -time_unit-1;
end;

xi Appendix 1 11

begin (* COMMS2 *)
if processor_idle then

if ring_data then
if ring_data_right then

take_ring_data
else

if new data then
if new

-
data_right then

take_ýnew-data
else

(* NULL
else

(* NULL
else

if new data then
if new

-
data_right then

take_ýnew-data
else

(* NULL
else

(* NULL
else

(* NULL
if ring_ready then

if ring_data then
if not ring_data_right then

ring_data_on
else

if new data then
if not new

-
data right then

new
-

data_on
else

(* NULL
else

(* NULL
else

if new data then
if not new

-
data-right then

new
-

data_on
else

(* NULL
else

(* NULL
else

(* NULL
end; (* COMMS2

procedure process(units: integer);
(* PERFORMS THE ACTIVITIES OF THE PROCESSING PROCESS
begin (* PROCESS *)
pl'ý. p_state: =p"'. p-state-units;
if (p-. p_state<=O) then

begin
if (p-. p_type>O) then

begin
processed_datatp^. p_typel: =processed_data(pý. p_typel+l;
processing[p-. proc_id): =processing[p-. proc_idl+l;
end;

xii Appendix 1 12

p*",. p_type: =O;
p-'**. p_state: =O;
end;

end; PROCESS

begin (* COMPUTING_ALGORITHM
time

-
unit: =4;

TOTAL PROCESSING EFFORT AVAILABLE
PER ITERATION

comms;
(* COMMS USES UP SOME PROCESSING EFFORT
process(time -

unit);
end; (* COMPUTING_ALGORITHM

begin (* COMPUTE
p: =ring;
repeat

begin
computing_algorithm;
p: =p, "*. next;
end;

until (p=ring);
end; (* COMPUTE

procedure print - state;
(* PRINTS THE STATE OF THE RING AFTER THE LAST ITERATION
var p: proc_ptr;
begin (* PRINT_STATE
write(distrecord, 'I=I, iterations: 3);
p: =ring;
repeat

begin
write(distrecord, l I, pý. p_state: 3);
p: =pA. next;
end;

until (p=ring);
writeln(distrecord);
end; (* PRINT_STATE

procedure print-results;
var

n, totalproc, totalcons, wtotproc: integer;
begin (* PRINT

-
RESULTS *)

totalproc: =O; totalcons: =O; wtotproc: =O;
writeln(distrecord); writeln(distrecord);
writeln(distrecord); writeln(distrecord, 'Data Consumed and Processed');
writeln(distrecord, l -- -------- --- ------ 1); writeln(distrecord);
for n: =l to procs do

begin
totalproc: =totalproc+processing[n];
totalcons: =totalcons+consumed

-
data[n);

write(distrecord, 'P. E.: I, n: 3,1 number consumed: ', consumed_data[n]: 3);
writeln(distrecord, l number processed: ', processinglnl: 3);
end;

writeln(distrecord); writeln(distrecord);
writein(distrecord, 'Types Processed');
writeln(distrecord, '--- --------l); writeln(distrecord);
for n: =l to 50 do

xiii Abie'ndix 13

begin
wtotproc: =wtotproc+processed_data[n]*n;
writeln(distrecord, 9Type: 9, n: 3.9 number processed: 9, processingtnl: 3);
end;

write(distrecord, 9Total: 9,9 number consumed: ', totalcons: 3);
writeln(distrecord, l number processed: 9, totalproc: 3);
writeln(distrecord, 9Total: 1.9 Weighted Total Processed: 9, wtotproc: 5);
end; (* PRINT_RESULTS *)

begin (* DISTRING2
a: =1234567;
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR
input_parameters;
writeln('Parameters input');
initial-states;
writeln('Initial state set up');
writeln(IStarting Computation');
for iterations: =1 to largen do

begin
communicate;
create_new-data;
compute;
print

-
state;

end;
writeln(IFinished Computation');
writeln('Printing Results');
print

-
results;

end. (* DISTRING2

xiv Appendix 1 14

APPENDIX 2

2 Simulation Programs of Distinct Node Cylinders

program diststackl(input, output, distdatas, distrecords);
const

CONSTANTS FOR RANDOM NUMBER GENERATION
m=100000000; ml=10000; b=31415821;

type
PROCESSING NODE TYPE

proc_ptr=Aproc_type;
proc_type=record

proc r: integer;

proc 1: integer;
ring-input: integer;
ring_output: integer;
input_full: boolean;
output_full: boolean;
data_input: integer;
down_output: integer;
data full: boolean;
down full: boolean;
p_type: integer;
p_state: integer;
next: proc_ptr;
down: proc_ptr;

end;

var
a: integer;
pconst: integer;
distdatas, distrecords: text;
stack: proc_ptr;
processed_data: array[l.. 100] of integer;
processing: array[l.. 20,1.. 201 of integer;
consumed

-
data: array[l.. 20,1.. 20] of integer;

largen, iterations, ring, layers: integer;

function mult(p, q: integer): integer;
(* EXTENDED MULTIPLICATION
var pl, pO, ql, qO: integer;
begin
pl: =p div ml; pO: =p mod ml;
ql: =q div ml; qO: =q mod ml;
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m;
end;

function random: real;
RANDOM NUMBER GENERATOR
PG37 - ALGORITHMS - SEDGEWICK
ADDISON - WESLEY 1984

begin
a: =(mult(a, b)+l)mod m;
random: =a/m;
end;

xv Appendix 2 15

procedure input_parameters;
INITIALISE INPUT AND OUTPUT FILES
READ IN THE PARAMETERS OF THE RING TO MODEL
WRITES A HEADING TO STACKRECORD

var
l, r, n: integer;

begin (* INPUT
-

PARAMETERS
reset(distdatas); rewrite(distrecords);
writeln(distrecords, ldiststackll);
writeln(distrecords, 'Stack State record for simulation
(* READ IN THE NUMBER OF PROCESSORS PER RING
readln(distdatas, ring);
writeln(distrecords, 'Number of processors per layer
(* READ IN THE NUMBER OF LAYERS
readln(distdatas, layers);
writeln(distrecords, 'Number of layers = 1, layers: 3);
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM
readln(distdatas, largen);
writeln(distrecords, 'Number of iterations performed
(* READ IN THE AMOUNT OF PROCESSING REQUIRED PER DATA
readln(distdatas, pconst);
writeln(distrecords, 'processing r6quired per data item
writeln(distrecords);
end; (* INPUT_PARAMETERS

using : -');

I, ring: 3);

9, largen: 3);
ITEM *)

=9 pconst: 3,1 units');

procedure initial-states;
SETS UP THE INITIAL STATE OF THE STACK DATA STRUCTURE
AND PRINTS A HEADING TO FILE STACKRECORD

var
p, pt: proc_ptr;
r, l, n: integer;

procedure set_vars;
begin (* SET

I
VARS *)

p-. input_full: =false;
P^. Output_full: =false;
p^. data_full: =false;
p^. down_full: =false;
p^. p_type: =O;
p'',. p_state: =O;
end; (* SET_VARS

begin (* INITIAL_STATES
stack: =nil;
for 1: =layers downto 1 do

begin
new(p);
pA. down: =stack;
stack: =p;
p-. proclr: =l;
p-. proc_l: =l;
pl". next: =p;
set_vars;
end;

for r: =ring downto 2 do
begin
pt: =stack;
new(p);

xvi Appendix 2 16

p***. next: =pt*"*. next;
ptý. next: =p;
pA. proc_r: =r;
pý. proc_l: =I;
set_vars;
for 1: =2 to layers do

begin

pt: =pt*"*. down;

new(p-. down);

p: =p-. down;

pA. next: =pt**I. next;
ptý. next: =p;
pA. proc_r: =r;
pA proc_l: =l;
set-vars;
end;

p^. down: =nil;
end;

for 1: =1 to 20 do
for r: =1 to 20 do

begin
processing[l, r]: =O;
consumed_data[l, rl: =O;
end;

for n: =1 to 50 do
processed_data[n]: =O;

end; (* INITIAL_STATES

procedure communicate;
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE
var

p, pt: proc_ptr;
begin (* COMMUNICATE
pt: =stack;
while (pt0nil) do

begin
P: =Pt;
repeat

begin
if (p-*. down<>nil) then

if (P-. down_full and not(p-. down-. data_full)) then
begin
p"ý. downA. data

-
input: =pA. down_output;

pl'. down_full: =false;
p'l. downA. data_full: =true;
end;

if (p-. output_full and not(p-. next^. input_full)) then
begin
p***. next, "*. ring_input: =p-. ring_output;
pA. nextA. input_full: =true;
p*ý,. output_full: =false;
end;

p: =pA. next;
end

until (p=pt);
pt: =ptý. down;
end;

end; COMMUNICATE

xvii Appendix 2 17

procedure create
-

new
-

data;
(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM
var

p: proc_ptr;
l, r: integer;

begin (* CREATE_NEW-DATA*)
p: =stack;
repeat

begin
if (not(p-. data_full)) then

begin
r: =l+trunc(random*(ring-0.0001));
1: =l+trunc(random*(layers-0.0001));
p-. data_input: =1*100+r;
consumed I

datafl, rj: =consumed_data[l, rj+l;
p-. data_full: =true;
end;

p: =pA. next;
end;

until (p=stack);
end; (* CREATE_NEW-DATA

procedure compute;
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT
var

p, pt: proc_ptr;

procedure computing_algorithm;
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN
THE PROCESSOR

var
time_unit: integer;

procedure comms;
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS

function processor_idle: boolean;
begin
processor-idle: =(p-. p_state<=O);
end;

function ring_data: boolean;
begin
ring_data: =p-. input_full;
end;

function new-data: boolean;
begin
new-data: =p^. data_full;
end;

function new-data_right: boolean;
begin
new-data_right: =(p-. data_input=(p-. proc_r+(100*p^. proc_l)));
end;

xviii Appendix 2 18

function ring_data_right: boolean;
begin
ring_data_right: =(p-. ring_input=(p-. proc_r+(100*pý. proc_l)));
end;

function column_right_data: boolean;
begin
column_right_data: =

(p-. proc_r=(p-. data_input-(100*trunc(p-. data_input/l00))));
end;

function column_right_ring: boolean;
begin
column_right_ring: =

(p^. proc_r=(p-. ring_input-(100*trunc(p-. ring_input/100))));
end;

function level-right_data: boolean;
begin
level-right_data: =(p-. proc_l=(p". data_input div 100));
end;

function level-right_ring: boolean;
begin
level-right_ring: =(p*". proc_l=(p^. ring_input div 100));
end;

function ring_ready: boolean;
begin
ring_ready: =not(p-. output_full);
end; ,

function down_ready: boolean;
begin
down_ready: =not(p-. down-full);
end;

else
pý. p_state: =pconst;

pý. p_type: =pý. p_state;
p-. input

-
full: =false;

time_unit: =time_unit-1;
end;

procedure take_ring_data;
begin
if (pconst<O) then

p". p-state: =trunc(random*(-pconst))

procedure take_new_data;
begin
if (pconst<O) then

p-''I. p_state: =trunc(random*(-pconst))
else

p". p_state: =pconst;
pA. p_type: =pý. p_state;
Pý. data-full: =false;
time-unit: =time_unit-1;
end;

xix Appendix 2 19

procedure ring_data_on;
begin
p". ring_output: =p^. ring_input;
p-. input_full: =false;
p^. output_full: =true;
time-unit: =time_unit-1;
end;

procedure ring_data_down;
begin
pý. down

- output: =pý. ring_input;
p-. input

I
full: =false;

p-. down
-

full: =true;
time

-
unit: =time_unit-1;

end;

procedure new_data_on;
begin
p". ring_output: =p**-. data_input;
p-. data_full: =false;
p'',. output_full: =true;
time_unit: =time_unit-1;
end;

procedure new-data_down;
begin
p-. down

- output: =p-. data_input;
p-. data full: =false;
p-. down full: =true;
time

- unit: =time_unit-1;
end;

begin (* COMMS1 *)
if processor

-
idle then

if new data then
if new

-
data

-
right then

take_new-data
else

if ring_data then
if ring_data_right then

take
-

ring_data
else

(* NULL
else

(* NULL
else

if ring_data then
if ring_data_right then

take_ring_data
else

(* NULL
else

(* NULL
else

(* NULL
if ring_ready then

if new-data then

xx Appendix 2 20

if level_right
-

data and not column_right-data then
new-data_on

else
if ring_data then

if level-right_ring and not column_right_ring then
ring_data_on

else
(* NULL

else
(* NULL

else
if ring_data then

if level_right_ring and not column_right_ring then
ring_data_on

else
(* NULL

else
(* NULL

else
(* NULL

if down
- ready then

if new data then
if not level

- right_data then
new-data_down

else
if ring_data then

if not level_right_ring then
ring_data_down

else
(* NULL

else
(* NULL

else
if ring_data then

if not level_right_ring then
ring_data_down

else
(* NULL

else
(* NULL

else
(* NULL

end; (* COMMS1

procedure process(units: integer);
begin (* PROCESS *)
pý. p_state: =pý. p_state-units;
if (P-. p

-
state<=O) then

begin
if (p-. p_type>O) then

begin
processed

-
data[plý. p_typel: =processed_data[p",. p_typel+l;

processing[pl,. proc_l, pý. proc_rl: =
processing[p-. proc_l, pý. proc_rl+l;
end;

pý. p_type: =O;
p^. p_state: =O;
end;

xxi Appendix 2 21

end; (* PROCESS *)

begin (* COMPUTING_ALGORITHM
time

- unit: =4;
TOTAL PROCESSING EFFORT AVAILABLE
PER ITERATION

comms;
(* COMMS USES UP SOME PROCESSING EFFORT
process(time_unit);
end; (* COMPUTING_ALGORITHM

begin (* COMPUTE
pt: =stack;
while (pt0nil) do

begin
P: =Pt;
repeat

begin
computing_algorithm;
p: =p*"I. next;
end

until (p=pt);
pt: =pt",. down;
end;

end; COMPUTE

procedure print - state;
(* PRINTS THE STATE OF THE STACK AFTER THE LAST ITERATION
var p, pt: proc_ptr;

l, r: integer;
begin (* PRINT_STATE
write(distrecords, 9Iteration: 9, iterations: 3);
writeln(distrecords); write(distrecords, lr=
for r: =1 to ring do

write(distrecords, ' 9, r: 3);
writeln(distrecords);
pt: =stack;
1: =1;
while(pt0nil) do

begin
P: =Pt;
write(distrecords, 11=9,1: 3);
repeat

begin
write(distrecords, ' 9, p, ",. p_state: 3);
p: =p". next;
end;

until (p=pt);
pt: =pt-. down;
1: =1+1;
writeln(distrecords);
end;

writeln(distrecords);
end; (* PRINT_STATE

procedure print-results;
var

l, r, n, totalproc, totalcons, wtotproc: integer;

xxii Appendix 2 22

begin (* PRINT_RESULTS *)
totalproc: =O; totalcons: =O; wtotproc: =O;
writeln(distrecords); writeln(distrecords, 'Data Consumed');
writeln(distrecords, l ---- -------- 1); writeln(distrecords);
write(distrecords, lr= 1);
for r: = I to ring do

write(distrecords, l I, r: 3);
writeln(distrecords);
for 1: =1 to layers do

begin
write(distrecords, 11=1,1: 3);
for r: =l to ring do

begin
totalcons: =totalcons+consumed data[l, r];
write(distrecords, l I, consumea-data[l, r]: 3);
end;

writeln(distrecords);
end;
writeln(distrecords, 'Data Processed');
writeln(distrecords, l ---- --------
write(distrecords, lr=
for r: =1 to ring do

write(distrecords, l I, r: 3);
writeln(distrecords);
for 1: =1 to layers do

begin
write(distrecords, 11=1,1: 3);
for r: =1 to ring do

begin
totalproc: =totalproc+processing[l, r];
write(distrecords, l I, processing[l, r]: 3);
end;

writeln(distrecords);
end;

writeln(distrecords); writeln(distrecords);
writeln(distrecords, 'Types Processed');
writeln(distrecords, '----
for n: =1 to 50 do

begin
wtotproc: =wtotproc+processed_data[nl*n;
writeln(distrecords, 'Type: ', n: 3,1 number processed: ', processed_data[nl: 3);
end;

write(distrecords, 'Total: 1,1 number consumed: ', totalcons: 3);
writeln(distrecords, l number processed: ', totalproc: 3);
writeln(distrecords, 'Total: 9.1 Weighted Total Processed: ', wtotproc: 5);
end; (* PRINT_RESULTS *)

begin (* DISTSTACK1
a: =1234567;
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR
input_parameters;
writeln('Parameters input');
initial states;
writelnT'Initial state set up9);
writeln(IStarting Computation9);
for iterations: -I to largen do

begin
communicate;

xxiii Appendix 2 23

create - new -
data;

compute;
print_state;
end;

writeln(IFinished Computation');
writeln('Printing Results');
print_results;
end. (* DISTSTACK1

xxiv Appendix 2 24

program diststack2(input, output, distdatas, distrecords);
const

CONSTANTS FOR RANDOM NUMBER GENERATION
m=100000000; ml-10000; b=31415821;

type
PROCESSING NODE TYPE

proc_ptr=A proc_type;
proc_type=record

proc_r: integer;
proc-l: integer;
ring_input: integer;
ring_output: integer;
input_full: boolean;
output_full: boolean;
data_input: integer;
down_output: integer;
data

-
full: boolean;

down
-

full: boolean;
p_type: integer;
p_state: integer;
next: proc_ptr;
down: proc_ptr;

end;

var
a: integer;
pconst: integer;
distdatas, distrecords: text;
stack: proc_ptr;
processed -

data: array(l.. 1001 of integer;
processing: array[l.. 20,1.. 201 of integer;
consumed -

data: array[l.. 20,1.. 201 of integer;
largen, iterations, ring, layers: integer;

function mult(p, q: integer): integer;
(* EXTENDED MULTIPLICATION
var pl, pO, ql, qO: integer;
begin
pl: =p div ml; pO: =p mod ml;
ql: =q div ml; qO: =q mod ml;
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m;
end;

function random: real;
RANDOM NUMBER GENERATOR
PG37 - ALGORITHMS - SEDGEWICK
ADDISON - WESLEY 1984

begin
a: =(mult(a, b)+l)mod m;
random: =a/m;
end;

procedure input_parameters;
INITIALISE INPUT AND OUTPUT FILES
READ IN THE PARAMETERS OF THE RING TO MODEL
WRITES A HEADING TO STACKRECORD

var
l, r, n: integer;

xxv Appendix 2 25

begin (* INPUT_PARAMETERS *)
reset(distdatas); rewrite(distrecords);
writeln(distrecords, ldiststack2l);
writeln(distrecords, 'Stack State record for simulation using : -1);
(* READ IN THE NUMBER OF PROCESSORS PER RING
readln(distdatas, ring);
writeln(distrecords, 'Number of processors per layer 1, ring: 3);
(* READ IN THE NUMBER OF LAYERS
readln(distdatas, layers);
writeln(distrecords, 'Number of layers = 1, layers: 3);
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM
readln(distdatas, largen);

writeln(distrecords, 'Number of iterations performed 1, largen: 3);
(* READ IN THE AMOUNT OF PROCESSING REQUIRED PER DATA ITEM

readln(distdatas, pconst);
writeln(distrecords, 'processing required per data item = l, pconst: 3,1. units'); '

writeln(distrecords);
end; (* INPUT_PARAMETERS

procedure initial
- states;

SETS UP THE INITIAL STATE OF THE STACK DATA STRUCTURE
AND PRINTS A HEADING TO FILE STACKRECORD

var
p, pt: proc_ptr;
r, l, n: integer;

procedure set_vars;
begin (* SET

-
VARS *)

p-. input_full: =false;
pA. output_full: =false;
P-. data full: =false;
p-. down full: =false;
p-. p_type: =O;
pA. p_state: =O;
end; (* SET_VARS

begin (* INITIAL_STATES
stack: =nil;
for 1: =layers downto I do

begin
new(p);
P^. down: =stack;
stack: =p;
p'l. proc_r: =l;
p^. proc_l: =l;
p^. next: =p;
set_vars;
end;

for r: =ring downto 2 do
begin
pt: =stack;
new(p);
p",. next: =ptl,. next;
Pt^. next: =p-,
P^. Proc-r: =r;
P^. proc_l: -l;
set_vars;
for 1: =2 to layers do

xxvi Appendix 2 26

begin
pt: =pt^. down;
new(p*". down);
p: =p-. down;
pl,. next: =ptA. next;
ptA. next: =p;
p***. proc_r: =r;
p-. proc_l: =l;
set-vars;
end;

P-. down: =nil;
end;

for 1: =l to 20 do
for r: =l to 20 do

begin
processing[l, rl: =O;
consumed_datall, rl: =O;
end;

for n: =l to 50 do
processed -

data[nl: =O;
end; (* INITIAL_STATES

procedure communicate;
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE
var

p, pt: proc_ptr;
begin (* COMMUNICATE
pt: =stack;
while (pt0nil) do

begin
P: =Pt;
repeat

begin
if (pA. down0nil) then

if (p-. down_full and not(pl*. down, "I. data_full)) then
begin
p-. down-. data

-
input: =pA. down_output;

p-. down
-

full: =false;
p-. down-. data_full: =true;
end;

if (p-. output_full and not(p, ",. next*",. input_full)) then
begin
pA. nextA. ring_input: =p-. ring_output;
p-"I. nextA. input_full: =true;
pl'*. output_full: =false;
end;

p: =pl". next;
end

until (p=pt);
pt: =pt-. down;
end;

end; COMMUNICATE

procedure create_new-data;
(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM
var

p: proc_ptr;
l, r: integer;

xxvii Appendix 2 27

begin (* CREATE_NEW-DATA*)
p: =stack;
repeat

begin
if (not(p-. data_full)) then

begin
r: =l+trunc(random*(ring-0.0001));
1: =I+trunc(random*(layers-0.0001));
p-. data_input: =1*100+r;
consumed datall, rl: =consumed_data(l, r]+l;
p-. data_Yull: =true;
end;

p: =pA. next;
end;

until (p=stack);
end; (* CREATE_NEW-DATA

procedure compute;
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT
var

p, pt: proc_ptr;

procedure computing_algorithm;
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN
THE PROCESSOR

var
time_unit: integer;

procedure comms;
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS

function processor_idle: boolean;
begin
processor_idle: =(p-. p_state<=O);
end;

function ring_data: boolean;
begin
ring_data: =p-. input_full;
end;

function new_data: boolean;
begin
new-data: =p-. data_full;
end;

function new_data_right: boolean;
begin
new-data_right: =(p-. data_input=(p-. proc_r+(100*p-. proc_l)));
end;

function ring_data_right: boolean;
begin
ring_data_right: -(p*",. ring_input=(p-. proc_r+(100*p". proc_l)));
end;

function column_right_data: boolean;

xxviii Appendix 2 28

begin
column_right_data: =

(p-. proc_r=(p-. data_input-(100*trune(p-. data_input/l00))));
end;

function column_right_ring: boolean;
begin
column_right_ring: =

(pA. proc_r=(p-. ring_input-(100*trune(pA. ring_input/l00))));
end;

function level-right_data: boolean;
begin
level

-
right_data: =(p^. proc_l=(p-. data_input div 100));

end;

function level-right_ring: boolean;
begin
level

- right_ring: =(p-. proc_l=(p-. ring_input div 100));
end;

function ring_ready: boolean;
begin
ring_ready: =not(p-. output_full);
end;

function down_ready: boolean;
begin
down_ready: =not(p-. down-full);
end;

procedure take_ring_data;
begin
if (pconst<O) then

Pý. p
-

state: =trunc(random*(-pconst))
else

pA. p_state: =pconst;
p, ý. p_type: -p^. p_state;
p^. input

-
full: =false;

time_unit: =time_unit-1;
end-,

procedure take_new_data;
begin
if (pconst<O) then

pý. p_state: =trunc(random*(-pconst))
else

pý. p_statempconst;
p''. p_type: =p*ý. p_state;
p-. data_full: =false;
time_unit: =time_unit-1;
end;

procedure ring_data_on;
begin
P*"'. ring_output: -p". ring_input;
p**-. input

-
full: -false;

P",. output-full: =true;

xxiX Appendix 2 29

time_unit: =time_unit-1;
end;

procedure ring_data_down;
begin
pý. down_output: =pý. ring_input;
p"Anput I

full: =false;
Pý. down

-
full: =true;

time_unit: =time_unit-1;
end;

procedure new_data_on;
begin
p". ring_output: =p-. data_input;

p-. data_full: =false;
pl,. output_full: =true;
time_ýunit: =time_unit-1;
end;

procedure new-data_down;
begin
p-. down_output : =pA data_input;
P-**. data full: =false;
p^. down full: =true;
time_unit: =time_unit-1;
end;

begin (* COMMS2 *)
if processor_idle then

if ring_data then
if ring_data_right then

take_ring_data
else

if new data then
if new -

data_right then
take_new-data

else
(* NULL

else
(* NULL

else
if new data then

if new -
data right then

take
- newjata

else
(* NULL

else
(* NULL

else
(* NULL

if ring_ready then
if ring_data then

if level_right_ring and not column_right_ring then
ring_data_on

else
if new data then

if level
- right_data and not column_right-data then

new-data_on

xxx Appendix 2 30

else
(* NULL

else
(* NULL

else
if new data then

if level
- right_data and not column_right_data then

new -
data_on

else
(* NULL

else
(* NULL

else
(* NULL

if down
- ready then

if ring_data then
if not level right_ring then

ring_data_aown
else

if new data then
if not level_right-data then

new -
data_down

else
(* NULL

else
(* NULL

else
if new data then

if not level_right_data then
new -

data_down
else

(* NULL
else

(* NULL
else

(* NULL
end; (* COMMS2

procedure process(units: integer);
begin (* PROCESS *)
pý. p_state: =p1l. p-state-units;
if (pl". p_state<=O) then

begin
if (pA. p_type>O) then

begin
processed

-
data(pý. p_type]: =processed_data[p". p_typel+l;

processingtp-. proc_l, p-. proc-rl: =
processingtp-. proc_l, p-. proc_rl+l;
end;

pý. p_type: =O;
pA. p_state: =O;
end;

end; PROCESS

begin (* COMPUTING_ALGORITHM
time

- unit: =4;
TOTAL PROCESSING EFFORT AVAILABLE
PER ITERATION *)

xxxi . Appendix 2 31

comms;
(* COMMS USES UP SOME PROCESSING EFFORT
process(time

-
unit);

end; (* COMPUTING_ALGORITHM

begin (* COMPUTE
pt: =stack;
while (pt0nil) do

begin
P: =Pt;
repeat

begin
computing_algorithm;
p: =p". next;
end

until (p=pt);
pt: =pt-. down;
end;

end; COMPUTE

procedure print
-

state;
(* PRINTS THE STATE OF THE STACK AFTER THE LAST ITERATION
var p, pt: proc_ptr;

l, r: integer;
begin (* PRINT

-
STATE

write(distrecords, 'Iteration: $, iterations: 3);
writeln(distrecords); write(distrecords, lr= I
for r: =l to ring do

write(distrecords, l 9, r: 3);
writeln(distrecords);
pt: =stack;

while(pt0nil) do
begin
P: =Pt;
write(distrecords, 11=1,1: 3);
repeat

begin
write(distrecords, l 9, pl,. p_state: 3);
p: =p". next;
end;

until (p=pt);
pt: =ptl**. down;
1: =1+1;
writeln(distrecords);
end;

writeln(distrecords);
end; (* PRINT_STATE

procedure print-results;
var

l, r, n, totproc, totcons, wtotproc: integer;
begin (* PRINT

-
RESULTS *)

totproc: =O; totcons: =O; wtotproc: =O;
writein(distrecords); writeln(distrecords, 'Data Consumed');
writeln(distrecords, '--- ----1); writeln(distrecords);
write(distrecords, lr= 9);
for r: = 1 to ring do

xxxii Appendix 2 32

write(distrecords, l I, r: 3);
writeln(distrecords);
for 1: =1 to layers do

begin
write(distrecords, 91=1,1: 3);
for r: =1 to ring do

begin
totcons: =totcons+consumed

-
data[l, r];

write(distrecords, l 1, consumed_data[l, r]: 3);
end;

writeln(distrecords);
end;
writeln(distrecords, 'Data Processed');
writeln(distrecords, l ---- -------- 1);
write(distrecords, lr= 1);
for r: =l to ring do

write(distrecords, $ I, r: 3);
writeln(distrecords);
for 1: =1 to layers do

begin
write(distrecords, 11=1,1: 3);
for r: =1 to ring do

begin
totproc: =totproc+processing[l, r];
write(distrecords, l l, processing[l, r]: 3);
end;

writeln(distrecords);
end;

writeln(distrecords); writeln(distrecords);
writeln(distrecords, 'Types Processed');
writeln(distrecords, '----
for n: -1 to 50 do

begin
wtotproc: =wtotproc+processed_data[n]*n;
writeln(distrecords, 'Type: ', n: 3,1 number processed: ', processed-data[nl: 3);
end; '

write(distrecords, $Total: 1,1 number consumed: ', totcons: 3);
writeln(distrecords, l number processed: ', totproc: 3);
writeln(distrecords, 'Total: 1,1 Weighted Total Processed: ', wtotproc: 5);
end; (* PRINT_RESULTS *)

begin (* DISTSTACK2
a: =1234567;
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR
input_parameters;
writeln('Parameters input9);
initial-states;
writeln('Initial state set up');
writeln(9Starting Computation');
for iterations: =l to largen do

begin
communicate;
create_new-data;
compute;
print-state;
end;

writeln('Finished Computation9);
writeln('Printing Results9);

xxxiii Appendix 2 33

print
-

results;
end. (* DISTSTACK2

xxxiv Appendix 2 34

APPENDIX 3

Simulation Programs of Homogeneous Rings

program ringprogl(input, output, ringdata, ringrecord);
const

CONSTANTS FOR RANDOM NUMBER GENERATION
m=100000000; ml=10000; b=31415821;

type
PROCESSING NODE TYPE

proc_ptr=Aproc_type;
proc_type=record

proc-id: integer;
ring_input: integer;
ring_output: integer;
input_full: boolean;
output_full: boolean;
data_input: integer;
data

-
full: boolean;

p_type: integer;
p-state: integer;
next: proc_ptr;
end;

var
a: integer;
ringdata, ringrecord: text;
ring: proc_ptr;
data_types: array[l.. 501 of integer;
processed data: array[l.. 1001 of integer;
consumed -

ýata: array[l.. 1001 of integer;
largen, iterations, procs: integer;

function mult(p, q: integer): integer;

var pl, pO, ql, qO: integer;
begin
pl: =p div ml; pO: =p mod ml;
ql: =q div ml; qO: =q mod ml;
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m;
end;

function random: real;
RANDOM NUMBER GENERATOR
PG37 - ALGORITHMS - SEDGEWICK
ADDISON - WESLEY 1984

begin
a: =(mult(a, b)+l)mod m;
random: =a/m;
end;

procedure input_parameters;
INITIALISE INPUT AND OUTPUT FILES
READ IN THE PARAMETERS OF THE RING TO MODEL

var
n: integer;

begin (* INPUT_PARAMETERS

xxxv Appendix 3 35

reset(ringdata); rewrite(ringrecord);
writeln(ringrecord, lringprogll);
writeln(ringrecord, 'Ring State record for simulation using : -1);
(* READ IN THE NUMBER OF PROCESSORS
readln(ringdata, procs);
writeln(ringrecord, 'Number of processors =-I, procs: 3);
(* READ IN THE DATA_TYPE (PROCESSING TIME) FOR EACH PROCESSOR
readln(ringdata, largen);
writeln(ringrecord, 'Number of iterations performed = 1, largen: 3);
writeln(ringrecord, 'Data types fed to processors'); writeln;
for n: =l to procs do

begin
readln(ringdata, data_typeslnl);
writeln(ringrecord, 'Processor : 9, n: 3,9
end;

writeln;
end; (* INPUT_PARAMETERS

Data type : I, data_types[nl: 3);

procedure initial
- states;

SETS UP THE INITIAL STATE OF THE RING DATA STRUCTURE
AND PRINTS A HEADING TO FILE RINGRECORD

var
p: proc_ptr;
n: integer;

procedure set_yars;
begin (* SET_VARS *)
p-. input

-
full: =false;

p''. output_full: =false;
p-. data_full: =false;
p^. p_type: =O;
p^. p_state: =O;
end; (* SET_ýVARS

begin (* INITIAL_STATES
write(ringrecord, l
new(ring);
p: =ring;
p-. proc_id: =l;
write(ringrecord, l l, pA. proc_id: 3);
set_vars;
for n: =l to (procs-1)

begin
new(p-. next);
p: =p***. next;
p-. proc_id: =(n+l);
write(ringrecord, l
set-vars;
end;

do

9, p*ý. proc_id: 3);

p*"*. next: =ring;
writeln(ringrecord);
write(ringrecord, 'Data 1);
for n: -l to procs do

write(ringrecord, l l, data_types[nl: 3);
writeln(ringrecord);
for n: -l to 50 do

begin
processed_data[nl: =O;

xxxvi Appendix 3 36

consumed_data[nl: =O;
end;

end; INITIAL_STATES

procedure communicate;
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE
var

p: proc_ptr;
begin (* COMMUNICATE
p: =ring;
repeat

begin
if (p, ". output_full and not(pA. next",. input_full)) then

begin
p^. next-. ring_input: =pý. ring_output;
pý. nextý. input_full: =true;
p-. output-full: =false;
end;

p: =pA. next;
end;

until (p=ring);
end; (* COMMUNICATE

procedure create - new -
data;

(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM
var

p: proc_ptr;
begin (* CREATE-NEW-DATA
p: =ring;
repeat

begin
if (not(p, "*. data_full) and (data_types[pý. proc_idj0O)) then

begin
if (data_typeslp". proc_id]<O) then

p-. data_input: =l+trunc(random*(-data_types[p-. proc_idl)-0.0001)
else

p-. data_input: =data_types JpA proc_id];
consumed-data[p^. data-inputl: =

consumed_data[p-. data_inputl+l;
pA data_full: =true;
end;

p: =pý. next;
end;

until (p=ring);
end; (* CREATE-NEW_DATA

procedure compute;
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT
var

p: proc_ptr;

procedure computing_algorithm;
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN
THE PROCESSOR

var
time_unit: integer;

procedure comms;

xxxvii Appendix 3 37

(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS *)

function processor_idle: boolean;
begin
processor_idle: =(p-. p_state<=O);
end;

function ring_data: boolean;
begin
ring_data: =p-. input_full;
end;

function new-data: boolean;
begin
new-data: =p"*. data_full;
end;

function ring_output_ready: boolean;
begin
ring_output_ready: =not(p-. output_full);
end;

procedure take_ring_data;
begin
p-. p_type: =p***. ring_input;
pA. p_state: =p*". p_type;
p-. input_full: =false;
time

- unit: -time_unit-1;
end;

procedure take_new_data;
begin
p-. p_type: =p-". data_input;
pA. p_state: -pA. p_type;
p-. data

I
full: =false;

time
- unit: =time_unit-1;

end;

procedure ring_data_on;
begin
pl",. ring_output: =p*",. ring_input;
p-. input_full: -false;
p*"'. output_full: -true;
time_unit: =time_unit-1;
end;

procedure new-data_on;
begin
p*"*. ring_output: -p*"I. data_input;
p-. data

-
full: =false;

p-. output-full: =true;
time

- unit: -time_unit-1;
end;

begin (* COMMS1 *)
if processor_idle then

if new-data then
take_new-data

xxxviii Appendix 3 38

else
if ring_data then

take_ring_data
else

(* NULL
else

(* NULL
if ring_output_ready then

if new data then
new -

aata_on

else
if ring_data then

ring_data_on
else

(* NULL
else

(* NULL
end; (* COMMS1

procedure process(units: integer);
(* PERFORMS THE ACTIVITIES OF THE PROCESSING PROCESS
begin (* PROCESS *)
p-". p_state: =p*". p_state-units;
if (p-. p_state<=O) then

begin
if (p". p_type>O) then

processed -
datatp-. p_type]: =processed_datatp-. p_typel+l;

pA. p_type: =O;
p-,,. p_state: =O;
end;

end; PROCESS

begin (* COMPUTING_ALGORITHM
time_unit: =4;

TOTAL PROCESSING EFFORT AVAILABLE
PER ITERATION

comms;
(* COMMS USES UP SOME PROCESSING EFFORT
process(time_unit);
end; (* COMPUTING_ALGORITHM

begin (* COMPUTE
p: =ring;
repeat

begin
computing_algorithm;
p: -p*"I. nexto,
end;

until (p-ring);
end; (* COMPUTE

procedure print
-

state;
(* PRINTS THE STATE OF THE RING AFTER THE LAST ITERATION
var p: proc-ptr;
begin (* PRINT_STATE
write(ringrecord, 'I-I, iterations: 3);
p: =ring;
repeat

xxxix Appendix 3 39

begin
write(ringrecord, l I, pý. p_state: 3);
p: =p"*. next;
end;

until (p=ring);
writeln(ringrecord);
end; (* PRINT_STATE

procedure print_consumption;
var

n, totproc, totcons, wtotproc: integer;
begin (* PRINT

-
CONSUMPTION *)

totproc: =O; totcons: =O; wtotproc: =O;
writeln(ringrecord);
writeln(ringrecord); writeln(ringrecord, 9Data Consumed and Processed');
writeln(ringrecord,, -- -------1); writeln(ringrecord);
for n: =1 to 50 do

begin
totcons: =totcons+consumed_data[n];
totproc: =totproc+processed

-
dataln];

wtotproc: =wtotproc+processed_data[nl*n;
write(ringrecord, 'Type: ', n: 3,1 number consumed: 1, consumed-data(n]: 3);
writeln(ringrecord, l number processed: ', processed_data[nl: 3);
end;

write(ringrecord, 'Total: 1,1 number consumed:,, totcons: 3);
writeln(ringrecord, l number processed: ', totproc: 3);
writeln(ringrecord, 'Total: 1.1 Weighted Total Processed:,, wtotproc: 5);
end; (* PRINT_CONSUMPTION *)

begin (* RINGPROG1
a: -1234567;
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR
input_parameters;
writeln('Parameters input');
initial-states;
writeln(IInitial state set up9);
writeln(IStarting Computation');
for iterations: =1 to largen do

begin
communicate;
create_new

-
data;

compute;
print

-
state;

end;
writeln(IFinished Computation');
writeln('Printing Results');
print -

consumption;
end. (* RINGPROG1

X1 Appendix 3 40

program ringprog2(input, output, ringdata, ringrecord);
const

CONSTANTS FOR RANDOM NUMBER GENERATION
m=100000000; ml=10000; b-31415821;

type
PROCESSING NODE TYPE

proc_ptr=, "*proc_type;
proc_type=record

proc-id: integer;
r-ing_input: integer;
ring__ýoutput: integer;
input_full: boolean;
output_full: boolean;
data_input: integer;
data

-
full: boolean;

p_type: integer;
p-state: integer;
next: proc_ptr;
end;

var
a: integer;
ringdata, ringrecord: text;
ring: proc_ptr;
data_types: array[l.. 501 of integer;
processed data: array[l.. 100] of integer;
consumed -

ýata: array(l.. 100] of integer;
largen, iterations, procs: integer;

function mult(p, q: integer): integer;
(* EXTENDED MULTIPLICATION
var pl, pO, ql, qO: integer;
begin
pl: =p div ml; pO: =p mod ml;
ql: =q div ml; qO: =q mod ml;
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m;
end;

function random: real;
RANDOM NUMBER GENERATOR
PG37 - ALGORITHMS - SEDGEWICK
ADDISON - WESLEY 1984

begin
a: =(mult(a, b)+l)mod m;
random: =a/m;
end;

procedure input_parameters;
INITIALISE INPUT AND OUTPUT FILES
READ IN THE PARAMETERS OF THE RING TO MODEL

var
n: integer;

begin (* INPUT_PARAMETERS
reset(ringdata); rewrite(ringrecord);
writeln(ringrecord, lringprog2l);
writeln(ringrecord, $Ring State record for simulation using : -9);
(* READ IN THE NUMBER OF PROCESSORS
readln(ringdata, procs);

x1i Appendix 3 41

writeln(ringrecord, $Number of processors = l, procs: 3);
(* READ IN THE DATA TYPE (PROCESSING TIME) FOR EACH PROCESSOR
readln(ringdata, largen);
writeln(ringrecord, $Number of iterations performed - l, largen: 3);
writeln(ringrecord, 'Data types fed to processors'); writeln',
for n: =l to procs do

begin
readln(ringdata, data_typestnl);
writeln(ringrecord,, Processor : I, n: 3,
end;

writeln;
end; (* INPUT_PARAMETERS

Data type : I, data_types[nl: 3);

procedure initial
- states;

SETS UP THE INITIAL STATE OF THE RING DATA STRUCTURE
AND PRINTS A HEADING TO FILE RINGRECORD

var
p: proc_ptr;
n: integer;

procedure set
-

vars;
begin (* SET

I
VARS *)

p-. input
-

full: =false;
P-. Output -

full: =false;
p-. data_full: =false;
p-. p_type: =O;
pA. p_state: =O;
end; (* SET_VARS

begin (* INITIAL
-

STATES
write(ringrecord. 9
new(ring);
p: =ring;
p-. proc_id: =l;
write(ringrecord, l l, p"*. proc_id: 3);
set-vars;
for n: =l to (procs-1) do

begin
new(p-. next);
p: =pl,. next;
p-. proc_id: =(n+l);
write(ringrecord, l l, pA. proc_id: 3);
set_vars;
end;

p-. next: =ring;
writeln(ringrecord);
write(ringrecord, 'Data 9);
for n: =l to procs do

write(ringrecord, ' l, data_typeslnl: 3);
writeln(ringrecord);
for n: =l to 50 do

begin
processed

-
data[nl: -O;

consumed_data[nl: -O;
end;

end; INITIAL_STATES

procedure communicate;

x1ii Appendix 3 42

(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE
var

p: proc_ptr;
begin (* COMMUNICATE
p: =ring;
repeat

begin
if (p-. output_full and not(p",. next"'. input_full)) then

begin
p-. next-. ring_input: =p-. ring_output;
p"". next1'1. input_full: =true;
p-. output-full: =false;
end;

p: =p, ". next;
end;

until (p=ring);
end; (* COMMUNICATE

procedure create new -
data;

(* PERFOMS THE FýNCTION OF THE DATA INPUT MECHANISM
var

p: proc_ptr;
begin (* CREATE_NEW_DATA
p: =ring;
repeat

begin
if (not(p"'. data_full) and (data_types[p-. proc_idl<>O)) then

begin
if (data_types[p",. proc_id]<O) then

p-. data_input: =l+trune(random*(-data_types[p-. proc_idl-0.0001))
else

p-. data_input: =data_types[p, ". proc_id];
consumed_data[p-. data_inputl: =

consumed data[p-",. data_input]+J;
P-. data_full: =true;
end;

p: -pl,. next;
end;

until (p=ring);
end; (* CREATE-NEW-DATA

procedure compute;
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT
var

p: proc_ptr;

procedure computing_algorithm;
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN
THE PROCESSOR

var
time_unit: integer;

procedure comms;
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS

function processor_idle: boolean;
begin
processor_idle: -(p*". p_state<-O);

x1iii Appendix 3 43

end;

function ring-data: boolean;
begin
ring_data: =p-. input_full;
end;

function new_data: boolean;
begin
new-data: =pA. data-full;
end;

function ring_output_ready: boolean;
begin
ring_output_ready: =not(p, *,. output_full);
end;

procedure take_ring_data;
begin
pl,. p_type: =p*". ring_input;
p**,. p_state: =pA. p_type;
p-. input_full: =false;
time

- unit: =time_unit-1;
end;

procedure take_new-data;
begin
p-**. p_type: =p*ý. data_input;
pl". p_state: =p". p_type;
P-. data

-
full: =false;

time_unit: =time_unit-1;
end;

procedure ring_data_on;
begin
pA. ring_output: =p^. ring_input;
p-. input_full: =false;
p**I. output_full: =true;
time_unit: =time_unit-1;
end;

procedure new-data_on;
begin
p*'*. ring_output: =p*",. data_input;
P-. data_full: =false;
pý. output_full: =true;
time_unit: =time_unit-1;
end;

begin (* COMMS2 *)
if processor

-
idle then

if ring_data then
take_ring_data

else
if new data then

take_new-data
else

(* NULL

xliv Appendix 3 44

else
(* NULL

if ring_output_ready then
if ring_data then

ring_data_on
else

if new data then
newJata_on

else
(* NULL

else
(* NULL

end; (* COMMS2

procedure process(units: integer);
(* PERFORMS THE ACTIVITIES OF THE PROCESSING PROCESS
begin (* PROCESS *)
p',. p_state: =pý. p_state-units;
if (p, 'ý. p_state<=O) then

begin
if (p-. p_type>O) then

processed -
data[p-. p_typel: =processed_data[p-"*. p_typel+l;

pA. p_type: =O;
p". p -

state: =O;
end;

end; PROCESS

begin (* COMPUTING_ALGORITHM
time

-
unit: =4;

TOTAL PROCESSING EFFORT AVAILABLE
PER ITERATION

comms;
(* COMMS USES UP SOME PROCESSING EFFORT
process(time -

unit);
end; (* COMPUTING_ALGORITHM

begin (* COMPUTE
p: =ring;
repeat

begin
computing_algorithm;
p: =p'ý. next;
end;

until (p=ring);
end; (* COMPUTE

procedure print_state;
(* PRINTS THE STATE OF THE RING AFTER THE LAST ITERATION
var p: proc_ptr;
begin (* PRINT STATE
write(ringrecord, 9I-9, iterations: 3);
p: -ring;
repeat

begin
write(ringrecord, 9 l, p",. p_state: 3);
P: -p^. next;
end;

until (p=ring);

x1v Appendix 3 45

writeln(ringrecord);
end; (* PRINT_STATE

procedure print_consumption;
var

n, totproc, totcons, wtotproc: integer;
begin (* PRINT_CONSUMPTION *)
totproc: =O; totcons: =O; wtotproc: =O;
writeln(ringrecord);
writeln(ringrecord); writeln(ringrecord, 'Data Consumed and Processed');
writeln(ringrecord,, ---- --------9); writeln(ringrecord);
for n: =1 to 50 do

begin
totcons: =totcons+consumed_data[n];
totproc: =totproc+processed_dataln];
wtotproc: =wtotproc+processed_data[nl*n;
write(ringrecord, 'Type: ', n: 3,1 number consumed: 1, consumed T

data[nl: 3);
writeln(ringrecord, l number processed: ', processed_data[nl: 3);
end;

write(ringrecord, 'Total: 1.1 number consumed: ', totcons: 3);
writein(ringrecord, l number processed: ', totproc: 3);
writeln(ringrecord, 'Total: 1.1 Weighted Total Processed: 1, wtotproc: 5);
end; (* PRINT_CONSUMPTION *)

begin (* RINGPROG2
a: =1234567;
(* SET THE SEED FOR
input_parameters;
writeln('Parameters
initial_states;

_

THE RANDOM NUMBER GENERATOR *)

input');

writeln('Initial state set up$);
writeln('Starting Computation$);
for iterations: =1 to largen do

begin
communicate;
create_new-data;
compute;
print_state;
end;

writeln('Finished Computation2);
writeln('Printing Results9);
print -

consumption;
end. (* RINGPROG2

x1vi Appendix 3 46 *

program ringproglproc(input, output, ringdata, ringrecord);
const

CONSTANTS FOR RANDOM NUMBER GENERATION
m=100000000; ml=10000; b=31415821;

type
PROCESSING NODE TYPE

proc_ptr="Iproc_type;
proc_type=record

proc
-

id: integer;
ring_input: integer;
ring_output: integer;
input_full: boolean;
output_full: boolean;
data_input: integer;
data

-
full: boolean;

p_type: integer;
p- state: integer;
next: proc_ptr;
end;

var
a: integer;
ringdata, ringrecord: text;
ring: proc_ptr;
data_types: array[l.. 501 of integer;
processed-data: array[l.. 501 of integer;
consumed_data: array[l.. 50] of integer;
largen, iterations, procs: integer;

function mult(p, q: integer): integer;
(* EXTENDED MULTIPLICATION
var pl, pO, ql, qO: integer;
begin
pl: =p div ml; pO: =p mod ml;
ql: =q div ml; qO: =q mod ml;
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m;
end;

function random: real;
RANDOM NUMBER GENERATOR
PG37 - ALGORITHMS - SEDGEWICK
ADDISON - WESLEY 1984

begin
a: =(mult(a, b)+l)mod m-,
random: =a/m;
end;

procedure input_parameters;
INITIALISE INPUT AND OUTPUT FILES
READ IN THE PARAMETERS OF THE RING TO MODEL

var
n: integer;

begin (* INPUT_PARAMETERS
reset(ringdata); rewrite(ringrecord);
writeln(ringrecord, lringprogl-processing done preferential2);
writeln(ringrecord, 'Ring State record for simulation using : -1);

READ IN THE NUMBER OF PROCESSORS
readln(ringdata, procs);

x1vii Appendix 3 47

writeln(ringrecord, 9Number of processors = 9, procs: 3);
(* READ IN THE DATA TYPE (PROCESSING TIME) FOR EACH PROCESSOR
readln(ringdata. largen);
writeln(ringrecord, 9Number of iterations performed = 9, largen: 3);

writeln(ringrecord, 9Data types fed to processors'); writeln;
for n: =l to procs do

begin

readln(ringdata. data_types[nl);
writeln(ringrecord, 'Processor : 9, n: 3.9 Data type : 9, data_types[nl: 3);

end;
writeln;
end; (* INPUT_PARAMETERS

procedure initial
-

states;
SETS UP THE INITIAL STATE OF THE RING DATA STRUCTURE
AND PRINTS A HEADING TO FILE RINGRECORD *)

var
p: proc_ptr;
n: integer;

procedure set
-

vars;
begin (* SET

I
VARS *)

p-. input_full: =false;
P-. Output -

full: =false;
p-. data_full: =false;
p-'*,. p_type: =O;
p-, ". p_state: -O;
end; (* SET_VARS

begin (* INITIAL_STATES
write(ringrecord, s
new(ring);
p: =ring;
p-. proc_id: =I;
write(ringrecord, l l, p". proc_id: 3);
set - vars;
for n: =l to (procs-1) do

begin
new(p-. next);
p: =pA. next;
p^. proc_id: =(n+l);
write(ringrecord, l l, p**. proc_id: 3);
set-vars;
end;

p'*. next: =ring;
writeln(ringrecord);
write(ringrecord, 'Data 1);
for n: =l to procs do

write(ringrecord, l l, data_types[nl: 3);
writeln(ringrecord);
for n: =l to 50 do

begin
processed_data[nl: =O;
consumed_data[nj: =O;
end;

end; INITIAL_STATES

procedure communicate;

x1viii Appendix 3 48

(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE
var

p: proc_ptr;
begin (* COMMUNICATE
p: =ring;
repeat

begin
if (p, ". output_full and not(pA. next"'. input_full)) then

begin

pý. nextA. ring_input: =p". ring_output;
pA. next"I. input_full: =true;
p-. output_full: =false;
end;

p: =p"*. next;
end;

until (p=ring);

end; (* COMMUNICATE

procedure create - new_data;
(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM
var

p: proc_ptr;
begin (* CREATE_NEW-DATA
p: =ring;
repeat

begin
if (not(pý. data_full) and (data_types[p-". Proc_idl<>O)) then

begin
if (data_types[p,. procid]<O) then

p-. data_input: =l+trunc(random*(-data_types[p^. proc_id]-0.0001))
else

p-. data_input: =data_types[pý. proc_id];
consumed-data[p^. data_inputl: =

consumed -
data[p-. data_inputl+l;

p-. data_full: =true;
end;

p: =p",. next;
end;

until (p=ring);
end; (* CREATE-NEW-DATA

procedure compute;
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT
var

p: proc_ptr;

procedure computing_algorithm;
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN
THE PROCESSOR

var
time_unit: integer;

procedure comms(time
- unit: integer);

(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS

function processor_idle: boolean;
begin
processor_idle: -(p***. p_state<=O);

xlix Appeiidix 3 49

end;

function ring_data: boolean;
begin
ring_data: =p-. input_full;
end;

function new-data: boolean;
begin
new-data: =p"'. data_full;
end;

function ring_output_ready: boolean;
begin
ring_output_ready: =not(pý. output_full);
end;

procedure take_ring-data;
begin
p*",. p_type: =pl**. ring_input;
pl'. p_state: =pý. p_type;
p-. input

-
full: =false;

time_unit: =time_unit-1;
end;

procedure take_new_data;
begin
pl'-. p_type: =p-. data_input;
pý. p_state: =p"ý. p_type;
p-. data_full: =false;
time_unit: =time_unit-1;
end;

procedure ring_data_on;
begin
p-. ring_output: =p-. ring_input;
p-. input

-
full: =false;

pA. oUtpUt
-

full: =true;
time_unit: =time_unit-1;
end;

procedure new-data_on;
begin
p-. ring_output: =p*"'. data_input;
P-. data_full: =false;
Pý. Output

-
full: =true;

time_unit: =time_unit-1;
end;

begin (* COMMS1 *)
if processor

-
idle

if new data and
take_new-data

then
(time_unit>O) then

else
if ring_data and (time-unit>o) then

take_ring_data
else

(* NULL

I Appendix 3 50

else
(* NULL

if ring_output_ready then
if new data and (time_unit>O) then

new
-

aata_on

else
if ring_data and (time_unit>O) then

ring
-

data_on
else

(* NULL
else

(* NULL
end; (* COMMS1

procedure process(var units: integer);
(* PERFORMS THE ACTIVITIES OF THE PROCESSING PROCESS
begin (* PROCESS *)
if (p^. p_state>=units) then

begin
pA p_state : =pA p_state-units;
units: =O;
end

else
begin
p***. p_state: =O;
units: =units-p*"*. p_state;
end;

if (pl,. p_state<=O) then
begin
if (p*". p_type>O) then

processed_data[p^. p_typej: =processed_data [pA. p_typel+l;
pý. p_type: =O;
p, ",. p_state: =O;
end;

end; PROCESS

begin (* COMPUTING_ALGORITHM
time_unit: =4;
(* TOTAL PROCESSING EFFORT AVAILABLE
(* PER ITERATION *)
process(time_unit);

PROCESSING DONE IN PREFERENCE
COMMS USES UP SOME PROCESSING
BUT ONLY IF GIVEN THE CHANCE

comms(time
-

unit);
end; (* COMPUTING_ALGORITHM

begin (* COMPUTE
p: =ring;
repeat

begin
computing_algorithm;
P: -P"'. next;
end;

until (p=ring);
end; (* COMPUTE

procedure print_state;

ii

TO COMMUNICATION
EFFORT

Appendix 3 51

(* PRINTS THE STATE OF THE RING AFTER THE LAST ITERATION *)
var p: proc_ptr;
begin (* PRINT

-
STATE

write(ringrecord, 9I=1
p: =ring;
repeat

begin
write(ringrecord, l
p: =pý. next;
end;

until (p=ring);
writeln(ringrecord);
end; (* PRINT_STATE

, iterations: 3);

, pA. p_state: 3);

procedure print_consumption;
var

n, totproc, totcons: integer;
begin (* PRINT

-
CONSUMPTION

totproc: =O; totcons: =O;
writeln(ringrecord);
writeln(ringrecord); writein(ringrecord, 9Data Consumed and Processed9);
writeln(ringrecord, l ---- -------- --- --------- 1); writein(ringrecord);
for n: =l to 50 do

begin
totcons: =totcons+consumed data[n];
totproc: =totproc+processeý-data[n];
write(ringrecord, 'Type: ', n: 3,9 number consumed: 1, consumed T

data[nl: 3);
writeln(ringrecord. 1 number processed: ', processed_data[nl: 3);
end;

write(ringrecord, 'Total: 9.9 number consumed: ', totcons: 3);
writein(ringrecord. 1 number processed: ', totproc: 3);
end; (* PRINT_CONSUMPTION *)

begin (* RINGPROGlPROC
a: =1234567;
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR
input_parameters;
writeln('Parameters input');
initial_states;
writeln('Initial state set up');
writeln(IStarting Computation');
for iterations: =1 to largen do

begin
communicate;
create -

new
-

data;
compute;
print_state;
end;

writeln(IFinished Computation');
writeln('Printing Results');
print_consumption;
end. (* RINGPROGlPROC

iii Appendix 3 52

APPENDIX 4

4 Simulation Programs of Homogeneous Cylinders

program stackprogl(input, output, stackdata, stackrecord);
(* CONSTANTS FOR RANDOM NUMBER GENERATION
const

m=100000000; ml=10000; b=31415821;
type

PROCESSING NODE TYPE
proc_ptr=ýproc_type;
proc_type=record

proc r: integer;
proc 1: integer;
ring_input: integer;
ring_output: integer;
input_full: boolean;
output_full: boolean;
data_input: integer;
down_output: integer;
data

-
full: boolean;

down
-

full: boolean;
p_type: integer;
p-state: integer;
next: proc_ptr;
down: proc_ptr;
end;

state_type=(faulty, good);

var
a: integer;
stackdata, stackrecord: text;
stack: proc_ptr;
condition: array[l.. 50,1.. 501 of state -

type;
data_types: array[l.. 501 of integer;
processed_data: array[l.. 200] of integer;
consumed_data: array[l.. 200] of integer;
largen, iterations, ring, layers: integer;

function mult(p, q: integer): integer;
(* EXTENDED MULTIPLICATION
var pl, pO, ql, qO: integer;
begin
pl: =p div ml; pO: =p mod ml;
ql: =q div ml; qO: =q mod ml;
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m;
end;

function random: real;
RANDOM NUMBER GENERATOR
PG37 - ALGORITHMS - SEDGEWICK
ADDISON - WESLEY 1984

begin
a: =(mult(a, b)+l)mod m;
random: =a/m;
end;

iiii Appendix 4 53

procedure input_parameters;
INITIALISE INPUT AND OUTPUT FILES
READ IN THE PARAMETERS OF THE RING TO MODEL
WRITES A HEADING TO STACKRECORD *)

var
l, r, n: integer;

begin (* INPUT
-

PARAMETERS
reset(stackdata); rewrite(stackrecord);
writeln(stackrecord, lstackprogll);
writeln(stackrecord, 'Stack State record for simulation using : -1);
(* READ IN THE NUMBER OF PROCESSORS PER RING
readln(stackdata, ring);
writeln(stackrecord, 'Number of processors per layer 1, ring: 3);
(* READ IN THE NUMBER OF LAYERS
readln(stackdata, layers);
writeln(stackrecord, 'Number of layers = 1, layers: 3);
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM
readln(stackdata, largen);
writeln(stackrecord, 'Number of iterations performed 1, largen: 3);
(* READ IN THE FAULTY PROCESSORS *)
writeln(stackrecord, 'With faulty processors: -');
for 1: =1 to 50 do

for r: = 1 to 50 do
condition[l, rj: =good;

while not(stackdata^='Dl) do
begin
readln(stackdata, l, r);
writeln(stackrecord, llayer: 9,1: 3,1 ring: ', r: 3);
condition[l, rl: =faulty;
end;

readin(stackdata);
(* READ IN THE DATA_TYPE (PROCESSING TIME) FOR EACH PROCESSOR
writeln(stackrecord, 'Data types fed to processors'); writeln;
for n: =l to ring do

begin
readln(stackdata, data_types[n]);
writeln(stackrecord, 'Processor : 2, n: 3,
end;

writeln(stackrecord);
end; (* INPUT_PARAMETERS

Data type : I, data_types[nl: 3);

procedure initial-states;
SETS UP THE INITIAL STATE OF THE STACK DATA STRUCTURE
AND PRINTS A HEADING TO FILE STACKRECORD

var
p, pt: proc_ptr;
r, l, n: integer;

procedure set_vars;
begin (* SET VARS *)
p-. input_fulY: =false;
pý. output_full: =false;
PA. data

-
full: -false;

PA. down_full: =false;
P^. p_type: =O;
PA. p_state: =O;
end; (* SET_VARS

liv Appendix 4 54

begin (* INITIAL_STATES
stack: =nil;
for 1: =layers downto I do

begin
new(p);
p-. down: =stack;
stack: =p;
p-". proc_r: =l;
pA. proc_l: =l;
p, ". next: =p;
set-vars;
end;

for r: =ring downto 2 do
begin
pt: =stack;
new(p);
pA. next: =pt",. next;
pt, ý. next: =p;
pý. proc_r: =r;
p-. proc_l: =l;
set_vars;
for 1: =2 to layers do

begin
pt: =pt`ý. down;
new(p-. down);
p: =p-. down;
pý. next: =pt"'. next;
ptý. next: =p;
pl". proc_r: =r;
p^. proc_l: =l;
set-vars;
end;

p-. down: =nil;
end;

for n: =l to 200 do
begin
processed data[nl: =O;
consumed_jata[nl: =O;
end;

end; INITIAL_STATES

procedure communicate;
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE
var

p, pt: proc_ptr;
begin (* COMMUNICATE
pt: =stack;
while (pt0nil) do

begin
P: =Pt;
repeat

begin
if (P-. down<>nil) then

if (p-. down_full and not(pl,. down,,. data-full)) then
begin
p",. down",. data_input: =p*'. down-output;
P-. down_full: =false;

lv Appendix 4 55

p-". down-. data_full: =true;
end;

if (p-. output_full and not(p^. next-. input_full)) then
begin
p^. nextl,. ring_input: =p-. ring_output;
p***. nextA. input_full: =true;
p^. output_full: =false;
end;

p: =pý. next;
end

until (p=pt);
pt: =pt". down;
end;

end; COMMUNICATE

procedure create -
new

-
data;

(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM
var

p.: proc_ptr;
begin (* CREATE_NEW-DATA
P: =stack;
repeat

begin
if (not(pl". data_full) and (data_types[p",. proc_rl<>O)) then

begin
if (data_types[p". proc_r]<O) then

p^. data_input: =l+trunc(random*(-data_types[p-. proc_rl-0.0001))
else

p-. data_input: =data_types[pl". proc_rj;
consumed_data[p-'-. data_input]: =

consumed_data[p-. data_inputl+l;
p^. data_full: =true;
end;

P: =P". next;
end;

until (p=stack);
end; (* CREATE_NEW-DATA

procedure compute;
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT
var

p, pt: proc_ptr;

procedure computing_algorithm;
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN
THE PROCESSOR

var
time_unit: integer;

procedure comms;
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS

function processor_idle: boolean;
begin
processor_idle: =(p^. p_state<=O);
end;

function ring_data: boolean;

lvi Appendix 4 56

begin
ring_data: =p-. input_full;
end;

function new-data: boolean;
begin
new_data: =p"*. data_full;
end;

function ring_ready: boolean;
begin
ring_ready: =not(p-. output_full);
end;

function down_ready: boolean;
begin
down_ready: =not(p-. down-full);
end;

procedure take_ring_data;
begin
p, *I. p_type: =pA. ring_input;
pý. p_state: =pý. p_type;
p-. input_full: =false;
time_unit: =time_unit-1;
end;

procedure take_new-data;
begin
p-. p_type: =p-. data_input;
pý. p_state: =pý. p_type;
pý. data_full: =false;
time_unit: =time_unit-1;
end;

procedure ring_data_on;
begin
p-. ring_output: =p-. ring_input;
p-. input_full: =false;
pý. output_full: =true;
time_ýunit: =time_unit-1;
end;

procedure ring_data_down;
begin
p-. down_output: =p-*-. ring_input;
p-. input_full: =false;
P-. down

-
full: =true;

time_un3. t: =time_unit-1;
end;

procedure newý_data_on;
begin
p". rinnoutput: =pý. data_input;
p-. data_full: =false;
p, '',. output-full: =true;
time_unit: =time_unit-1;
end;

Ivii Appendix 4 57

procedure new_data_down;
begin
p-. down_output: =p-. data_input;
p-. data_full: =false;
p^. down_full: =true;
time_unit: =time_unit-1;
end;

begin (* COMMS1 *)
if processor -

idle then
if new data then

take new-data
else

if ring_data then
take_ring_data

else
(* NULL

else
(* NULL

if ring_ready then
if new data then

new -
aata_on

else
if ring_data then

ring_data_on
else

(* NULL
else

(* NULL
if down

- ready then
if new data then

new -
aata_down

else
if ring_data then

ring_data_down
else

(* NULL
else

(* NULL
end; (* COMMS1

procedure process(units: integer);
begin (* PROCESS *)
p'l. p_state: =pý. p_state-units;
if (p-". p-state<=O) then

begin
if (p-. p_type>O) then

processed
-

data[p^. p_typel: =processed_data[p-. p_typel+l;
p^. p_type: =O;
p'ý. p_state: =O;
end;

end; PROCESS

begin (* COMPUTING_ALGORITHM
time

- unit: =4;
TOTAL PROCESSING EFFORT AVAILABLE
PER ITERATION *)

lviii Appendix 4 58

if (condition[p-. proc_l, p***. proc_rl=good) then
begin
comms;
(* COMMS USES UP SOME PROCESSING EFFORT
process(time_unit);
end

else
(* NULL

end; (* COMPUTING_ALGORITHM

begin (* COMPUTE
pt: =stack;
while (pt0nil) do

begin
P: =Pt;
repeat

begin
computing_algorithm;
p: =pA. next;
end

until (p=pt);
pt: =ptý. down;
end;

end; COMPUTE

procedure print
-

state;
(* PRINTS THE STATE OF THE STACK AFTER THE LAST ITERATION
var p, pt: proc_ptr;

l, r: integer;
begin (* PRINT_STATE
write(stackrecord, 'Iteration: ', iterations: 3);
writeln(stackrecord); write(stackrecord, lr= 1);
for r: =l to ring do

write(stackrecord, l 1, r: 3);
writeln(stackrecord);
pt: =stack;
write(stackrecord, 'Data 1);
for r: =1 to ring do

write(stackrecord, l 1, data_types[r]: 3);
writeln(stackrecord);

while(pt0nil) do
begin
P*. =Pt;
write(stackrecord, 11=1,1: 3);
repeat

begin
if (condition[p-. proc_l, pA. proc_rl=good) then

write(stackrecord, l l, pA. p_state: 3)
else

write(stackrecord, l FI);
p: =p",. next;
end;

until (p=pt);
pt: -ptý. down;
1: -1+1;
writeln(stackrecord);
end;

lix Appendix 4 59

writeln(stackrecord);
end; (* PRINT_STATE

procedure print_consumption;
var

n, totproc, totcons, wtotproc: integer;
begin (* PRINT

-
CONSUMPTION *)

totproc: =O; totcons: =O; wtotproc: =O;
writeln(stackrecord); writeln(stackrecord, 'Data Consumed and Processed');
writeln(stackrecord, l ---- -------- --- --------- 1); writeln(stackrecord);
for n: =1 to 200 do

begin
totcons: =totcons+consumed

-
data[n];

totproc: =totproc+processed_data[n];
wtotproc: =wtotproc+processed_data[nl*n;
write(stackrecord, 'Type: ', n: 3,1 number consumed: ', consumed_data[nl: 3);
writeln(stackrecord, l number processed: ', processed_data[nl: 3);
end;

write(stackrecord, 'Total: 1,1 number consumed: ', totcons: 3);
writeln(stackrecord, l number processed: ', totproc: 3);
writeln(stackrecord, 'Total: 1.1 Weighted Total Processed:,, wtotproc: 5);
end; (* PRINT_CONSUMPTION *)

begin (* STACKPROG1
a: =1234567;
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR
input_parameters;
writeln(9Parameters input9);
initial_states;
writeln(9Initial state set up');
writeln(9Starting Computation');
for iterations: =l to largen do

begin
communicate;
create_new-data;
compute;
print_state;
end;

writeln($Finished Computation');
writeln(9Printing Results');
print_consumption;
end. (* STACKPROG1

lx Appendix 4 60

program stackprog2(input, outPUtgstackdata, stackrecord);
const
(* CONSTANTS FOR RANDOM NUMBER GENERATOR

m=100000000; ml=10000; b=31415821;
type

PROCESSING NODE TYPE
proc_ptr="proc_type;
proc_type=record

proc r: integer;
proc 1: integer;
ring_input: integer;
ring_output: integer;
input_full: boolean;
output_full: boolean;
data_input: integer;
down_output: integer;
data full: boolean;
down full: boolean;
p_type: integer;
p_state: integer;
next: proc_ptr;
down: proc_ptr;
end;

state_type=(faulty, good);

var
a: integer;
stackdata, stackrecord: text;
stack: proc_ptr;
condition: array[l.. 50,1.. 501 of state -

type;
data_types: arrayll.. 501 of integer;
processed data: array[l.. 2001 of integer;
consumed -

ýata: array[l.. 200] of integer;
largen, iterations, ring, layers: integer;

function mult(p, q: integer): integer;
(* EXTENDED 14ULTIPLICATION
var pl, pO, ql, qO: integer;
begin
pl: =p div ml; pO: =p mod ml;
ql: =q div ml; qO: =q mod ml;
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m;
end;

function random: real;
RANDOM NUMBER GENERATOR
PG37 - ALGORITHMS - SEDGEWICK
ADDISON - WESLEY 1984

begin
a: =(mult(a, b)+I)mod m;
random: =a/m;
end;

procedure input_parameters;
INITIALISE INPUT AND OUTPUT FILES
READ IN THE PARAMETERS OF THE RING TO MODEL
WRITES A HEADING TO STACKRECORD

var

1xi Appendix 4 61

l, r, n: integer;
begin (* INPUT_PARAMETERS
reset(stackdata); rewrite(stackrecord);
writeln(stackrecord, lstackprog2l);
writeln(stackrecord, 'Stack State record for simulation using : -1);
(* READ IN THE NUMBER OF PROCESSORS PER RING
readln(stackdata, ring);
writeln(stackrecord, 'Number of processors per layer 1, ring: 3);
(* READ IN THE NUMBER OF LAYERS
readln(stackdata, layers);
writeln(stackrecord, $Number of layers - 1, layers: 3);
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM
readln(stackdata, largen);
writeln(stackrecord, $Number of iterations performed 1, largen: 3);
(* READ IN THE FAULTY PROCESSORS *)
writein(stackrecord, 'With faulty processors: -');
for 1: =1 to 50 do

for r: = 1 to 50 do
condition[l, r]: =good;

while not(stackdata, ý='Dl) do
begin
readln(stackdata, l, r);
writeln(stackrecord, llayer: 1,1: 3,1 ring: ', r: 3);
condition[l, r]: =faulty;
end;

readln(stackdata);
(* READ IN THE DATA_TYPE (PROCESSING TIME) FOR EACH PROCESSOR
writeln(stackrecord, 'Data types fed to processors'); writeln;
for n: =l to ring do

begin
.

readln(stackdata, data_types[nl);
writeln(stackrecord, 'Processor : 9, n: 3,
end;

writeln(stackrecord);
end; (* INPUT_PARAMETERS

Data type : I, data_types[nl: 3);

procedure initial
- states;

SETS UP THE INITIAL STATE OF THE STACK DATA STRUCTURE
AND PRINTS A HEADING TO FILE STACKRECORD

var
p, pt: proc_ptr;
r, l, n: integer;

procedure set_vars;
begin (* SET

I
VARS *)

p-. input_full: =false;
p^. Output_full: =false;
P^. data full: =false;
p-. down full: =false;
p",. p_type: =O;
p". p_state: =O;
end; (* SET_VARS

begin (* INITIAL_STATES
stack: =nil;
for 1: =layers downto 1 do

begin
new(p);

1xii Appendix 4 62

p***. down: =stack;
stack: =p;
p-. proc_r: =I;
p-. proc_l: =I;
pA. next: =p;
set-vars;
end;

for r: =ring downto 2 do
begin
pt: =stack;
new(p);
pA. next: =ptA. next;
pt^. next: =p;
pA. proc_r: =r;

P-. Proc-l: =I;
set-vars;
for 1: =2 to layers do

begin
pt: =pt-. down;
new(p-. down);
p: =p^. down;
pA. next: =pt***. next;
ptý. next: =p;
pl",. proc_r: =r;
p, ",. proc_l: =l;
set-vars;
end;

p-. down: =nil;
end;

for n: =1 to 200 do
begin
processed data[n]: =O;
consumedJata[n]: =0;
end;

end; INITIAL_STATES

procedure communicate;
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE
var

p, pt: proc_ptr;
begin (* COMMUNICATE
pt: -stack;
while (pt0nil) do

begin
P: =Pt;
repeat

begin
if (pý. down<>nil) then

if (p-. down_full and not(p-. down-. data_full)) then
begin
p-. down-. data input: =p"*. down_output;
P-. down

-
full:;; false;

p-. down-. data_full: =true;
end;

if (p-. output_full and not(pý. next^. input_full)) then
begin
pA. next*",. ring_input: =p^. ring_output;
pA. next*"*. input_full: =true;

1xiii Appendix 4 63

pý. output_full: =false;
end;

p: =pý. next;
end

until (p=pt);
pt: =ptA. down;
end;

end; COMMUNICATE

procedure create_new-data;
(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM
var

p: proc_ptr;
begin (* CREATE_NEW-DATA
p: =stack;
repeat

begin
if (not(p-. data_full) and (data_types[pl. proc_rl<>O)) then

begin
if (data_types[pA. proc_r]<O) then

p-. data_input: =l+trunc(random*(-data_types[pA. proc_rl-0.0001))
else

p-. data_input: =data_types[p',. proc_rl;
consumed-data[p-. data_inputl: =

consumed-data[pA. data_input]+l;
pA data_full: =true;
end;

P: =P'ý. next;
end;

until (p=stack);
end; (* CREATE-NEW-DATA

procedure compute;
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT
var

p, pt: proc_ptr;

procedure computing_algorithm;
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN
THE PROCESSOR

var
time_unit: integer;

procedure comms;
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS

function processor_idle: boolean;
begin
processor_idle: =(p***. p_state<=O);
end;

function ring_data: boolean;
begin
ring_data: =p-. input_full;
end;

function new-data: boolean;
begin

Ixiv Appendix 4 64

new -
data: =p*",. data_full;

end-,

function ring_ready: boolean;
begin
ring_ready: =not(p-. output-full);
end;

function down_ready: boolean;
begin
down_ready: =not(p-. down-full);
end;

procedure take_ring_data;
begin
pý. p_type: =pý. ring_input;
pA p_state : =pA p_type;
p-. input_full: =false;
time_unit: =time_unit-1;
end;

procedure take_new-data;
begin
p, *,. p_type: =p, **. data_input;
pý. p_state: =p**'. p_type;
p-. data full: =false;
time

- unlt: =time_unit-1;
end;

procedure ring_data_on;
begin
p*'ý. ring_output: =p***. ring_input;
p-. input_full: =false;
p, ",. output_full: =true;
time_unit: =time_unit-1;
end;

procedure ring-data_down;
begin
p-. down

- output: =p^. ring_input;
p-. input

I
full: =false;

p-. down
-

full: =true;
time_unit: =time_unit-1;
end;

procedure new-data_on;
begin
p, "*. ring_output: =p***. data_input;
pl'. data

-
full: =false;

PA. output -
full: =true;

time
- unit: =time_unit-1;

end;

procedure new-data_down;
begin
pA. down

-
output: =p-. data_input;

p-. data
-

full: =false;
p^. down_full: =true;

1xv Appendix 4 65

time
- unit: =time_unit-1;

end;

begin (* COMMS2 *)
if processor

-
idle then

if ring_data then
take_ring_data

else
if new data then

take_new-data
else

(* NULL
else

(* NULL
if ring_ready then

if ring_data then
ring_data_on

else
if new data then

new
-

data_on
else

(* NULL
else

(* NULL
if down

-
ready then

if ring_data then
ring_data_down

else
if new data then

new
-

data_down
else

(* NULL
else

(* NULL
end; (* COMMS2

procedure process(units: integer);
begin (* PROCESS *)
p, ',. p_state: =pý. p

-
state-units;

if (p-. p
-

state<=O) then
begin
if (p-. p_type>O) then

processed
-

data[p^. p_typel: =processed_data[p^. p_typel+l;
p^. p_type: =O;
pll,. p_state: =O;
end;

end; PROCESS

begin (* COMPUTING_ALGORITHM
time

-
unit: =4;

TOTAL PROCESSING EFFORT AVAILABLE
PER ITERATION *)

if (condition[p-. proc_l, pý. proc_rl=good) then
begin
comms;
(* COMMS USES UP SOME PROCESSING EFFORT
process(time_unit);
end

1xvi Appendix 4 66

else
(* NULL

end; (* COMPUTING_ALGORITHM

begin (* COMPUTE
pt: =stack;
while (pt0nil) do

begin
p: =pt;
repeat

begin
computing_algorithm;
p: =pý. next;
end

until (p=pt);
pt: =pt-. down;
end;

end; COMPUTE

procedure print
-

state;
(* PRINTS THE STATE OF THE STACK AFTER THE LAST ITERATION
var p, pt: proc_ptr;

l, r: integer;
begin (* PRINT_STATE
write(stackrecord, 'Iteration: ', iterations: 3);
writeln(stackrecord); write(stackrecord, lr=
for r: =1 to ring do

write(stackrecord, l 1, r: 3);
writeln(stackrecord);
pt: =stack;
write(stackrecord, $Data 1);
for r: =l to ring do

write(stackrecord, l I. data_types[rl: 3);
writeln(stackrecord);
1: =l;
while(pt0nil) do

begin
P: =Pt;
write(stackrecord, 11=1,1: 3);
repeat

begin
if (condition[p-. proc_l, p-. proc_rl=good) then

write(stackrecord, l 1, pý. p_state: 3)
else

write(stackrecord, l FI);
p: =p*"*. next;
end;

until (p=pt);
pt: =pt-. down;
1: =1+1;
writeln(stackrecord);
end;

writeln(stackrecord);
end; (* PRINT_STATE

procedure print-consumption;
var

n, totproc, totcons, wtotproc: integer;

1xvii Appendix 4 67

begin (* PRINT_CONSUMPTION *)
totproc: =O; totcons: =O; wtotproc: =O;
writeln(stackrecord); writeln(stackrecord, 'Data Consumed and Processed');
writeln(stackrecord, l ---- -------- -- --------- 1); writeln(stackrecord);
for n: =l to 200 do

begin
totcons: =totcons+consumed data[n];
totproc: =totproc+processeý

-
data[n);

wtotproc: =wtotproc+processed
-

data[nl*n;
write(stackrecord, 'Type: ', n: 3,1 number consumed: ', consumed_data[nl: 3);
writeln(stackrecord, l number processed: ', processed_data[nl: 3);
end;

write(stackrecord, 'Total: 9,1 number consumed: ', totcons: 3);
writeln(stackrecord, l number processed: ', totproc: 3);
writeln(stackrecord, 'Total: Weighted Total Processed:,, wtotproc: 5);
end; (* PRINT_CONSUMPTION

begin (* STACKPROG2
a: =1234567;
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR
input_parameters;
writeln(9Parameters input');
initial_states;
writeln(2Initial state set up9);
writeln(IStarting Computation');
for iterations: =l to largen do

begin
communicate;
create_new-data;
compute;
print_state;
end;

writeln(IFinished Computation');
writeln('Printing Results');
print_consumption;
end. (* STACKPROG2

1xviii Appendix 4 68

program stackprog3(input, output, stackdata, stackrecord);
const

CONSTANTS FOR RANDOM NUMBER GENERATION
m=100000000; ml=loooo; b=31415821;

type
PROCESSING NODE TYPE

proc_ptr=", proc_type;
proc_type=record

proc r: integer;
proc 1: integer;
ring_input: integer;
ring_output: integer;
input_full: boolean;
output_full: boolean;
data_input: integer;
down_output: integer;
data full: boolean;
down full: boolean;
p_type: integer;
p-state: integer;
next: proc_ptr;
down: proc_ptr;
end;

state_type=(faulty, good);

var
a: integer;
stackdata, stackrecord: text;
stack: proc_ptr;
condition: array[l.. 50,1.. 501 of state-type;
data_types: array[l.. 501 of integer;
processed_data: array[l.. 200] of integer;
consumed_data: array[l.. 200] of integer;
largen, iterations, ring, layers: integer;

function mult(p, q: integer): integer;
(* EXTENDED MULTIPLICATION
var pl, pO, ql, qO: integer;
begin
pl: =p div ml; pO: =p mod ml;
ql: =q div ml; qO: =q mod ml;
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m;
end;

function random: real;
(* RANDOM NUMBER GENERATOR

PG37 - ALGORITHMS
ADDISON - WESLEY

begin
a: =(mult(a, b)+l)mod
random: -a/m;
end;

- SEDGEWICK
1984 *)

procedure input_parameters;
INITIALISE INPUT AND OUTPUT FILES
READ IN THE PARAMETERS OF THE RING TO MODEL
WRITES A HEADING TO STACKRECORD

var

lxix Appendix 4 69

l, r, n: integer;
begin (* INPUT

-
PARAMETERS

reset(stackdata); rewrite(stackrecord);
writeln(stackrecord, lstackprog3l);
writeln(stackrecord, 'Stack State record for simulation using : -9);
(* READ IN THE NUMBER OF PROCESSORS PER RING
readln(stackdata, ring);
writeln(stackrecord, 'Number of processors per layer 9, ring: 3);
(* READ IN THE NUMBER OF LAYERS
readln(stackdata, layers);
writeln(stackrecord, 'Number of layers = 1, layers: 3);
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM
readln(stackdata, largen);
writeln(stackrecord,, Number of iterations performed 1, largen: 3);
(* READ IN THE FAULTY PROCESSORS *)
writeln(stackrecord, 9With faulty processors: -9);
for 1: =1 to 50 do

for r: = I to 50 do
condition[l, r]: =good;

while not(stackdataý=91)9) do
begin
readln(stackdata, l, r);
writeln(stackrecord, 91ayer: 9,1: 3.9 ring: 9, r: 3);
condition[lgrj: =faulty;
end;

readin(stackdata);
(* READ IN THE DATA_TYPE (PROCESSING TIME) FOR EACH PROCESSOR
writeln(stackrecord, 9Data types fed to processors9); writeln;
for n: =1 to ring do

begin
readin(stackdata, data_types[nl);
writeln(stackrecord, 9Processor : I, n: 3,1 Data type : I, data_types[nl: 3);
end;

writeln(stackrecord);
end; (* INPUT_PARAMETERS

procedure initial
- states;

SETS UP THE INITIAL STATE OF THE STACK DATA STRUCTURE
AND PRINTS A HEADING TO FILE STACKRECORD

var
p, pt: proc_ptr;
r, l, n: integer;

procedure set_yars;
begin (* SET

I
VARS *)

p-. input_full: =false;
pll,. output_full: =false;
p-. data_full: =false;
P^. down-full: =false;
p'*. p_type: -O;
pl',. p_state: =O;
end; (* SET__VARS

begin (* INITIAL_STATES
stack: -nil;
for 1: =Iayers downto 1 do

begin
new(p);

lxx Appendix 4 70

p-. down: =stack;
stack: =p;
pl*. proc_r: =I;
pl". proc_l: =l;
p*". next: =p;
set-vars;
end;

for r: =ring downto 2 do
begin
pt: =stack;
new(p);
pA. next: =pt'*'. next;
ptA. next: =p;
p-. proc_r: =r;
p-. proc_l: =l;
set_vars;
for 1: =2 to layers do

begin
pt: =pt-. down;
new(p-. down);
p: =p-. down;
pý. next: =pt**,. next;
pt*ý. next: =p;
pA. proc_r: =r;
p-. proc_l: =I;
set_vars;
end;

P-. down: =nil;
end;

for n: =1 to 200 do
begin
processed -

data[nl: =O;
consumed_data[nl: =O;
end;

end; INITIAL_STATES

procedure communicate;
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE
var

p, pt: proc_ptr;
begin (* COMMUNICATE
pt: =stack;
while (pt0nil) do

begin
P: =Pt;
repeat

begin
if (pý. down<>nil) then

if (p-. down-full and not(p". down, ". data-full)) then
begin
p-. down-. data_input: =p",. down_output;
p-"I. down

-
full: -false;

p-. down-. data full: =true;
end;

if (p-. output_full and not(p-. next-. input_full)) then
begin
pý. nextA. ring_input: =pl*. ring_output;
p1". next11,. input_full: =true;

lxxi Appendix 4 71

pA. output-full: =false;
end;

p: =pý. next;
end

until (p=pt);
pt: =ptA. down;
end;

end; COMMUNICATE

procedure create - new -
data;

(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM
var

p: proc_ptr;
begin (* CREATE_NEW-DATA
p: =stack;
repeat

begin
if (not(p-. data_full) and (data_types[pA. proc_rl<>O)) then

begin
if (data_types[pA. proc_r]<O) then

p-. data_input: =l+trunc(random*(-data_types[pA. proc_rl-0.0001))
else

p-. data_input: =data_types[pA. proc_rl;
consumed -

data[p-. data_input]: =
consumed_datalp-. data_inputl+l;

p-. data_full: =true;
end;

P: =P-"ý. next;
end;

until (p=stack);
end; (* CREATE_NEW-DATA

procedure compute;
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT
var

p, pt: proc_ptr;

procedure computing_algorithm;
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN
THE PROCESSOR

var
time_unit: integer;

procedure comms;
PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS

function processor_idle: boolean;
begin
processor_idle: =(p",. p_state<=O);
end;

function ring_data: boolean;
begin
ring_data: =p". input_full;
end;

function new_data: boolean;
begin

new-data: =p-. data_full;
end-,

function ring_ready: boolean;
begin
ring_ready: =not(p-. output_full);
end;

function down_ready: boolean;
begin
down_ready: =not(p-. down-full);
end;

procedure take-ring__data;
begin
pý. p_type: =p",. ring_input;
pý. p_state: =p"'. p_type;
p-*,. input

-
full: =false;

time
-

unit: =time_unit-1;
end;

procedure take_new-data;
begin
pA. p_type: =p"*. data_input;
p, *'. p_state: =p*"I. p_type;
p-*-. data_full: =false;
time_ýunit: =time_ýunit-l;
end;

procedure ring_data_on;
begin
pl. rinnoutput: =p-. ring-input;
p^. input_full: =false;
pA. output_full: =true;
time_ýunit: =time_unit-1;
endy

procedure ring_data-down-,
begin
p-. down

- output: =p*". ring_input;
p-. input full: =false;
p-. down

-
lull: =true;

time_unit: =time_unit-1;
end;

procedure new-data_on;
begin
pý. ring_output: =pý. data_input;
P-. data_full: =false;
p-. output_full: =true;
time

-
unit: =time_unit-1;

end;

procedure new-data_down;
begin
pA. down

- output: =p-. data_input;
p-. data

-
full: =false;

p*". down_full: =true;

lxxiii Appendix 4 73

time_unit: =time_unit-1;
end;

begin (* COMMS3 *)
if processor -

idle then
if new data then

take
- new-data

else
if ring_data then

take_ring_data
else

(* NULL
else

(* NULL
if down

- ready then
if new data then

new -
data_down

else
if ring_data then

ring_data_down
else

(* NULL
else

(* NULL
if ring_ready then

if new-data then
new -

data_on
else

if ring_data then
ring_data_on

else
(* NULL

else
(* NULL

end; (* COMMS3

procedure process(units: integer);
begin (* PROCESS *)
p-. p_state: =pý. p_state-units;
if (p"*. p state<=O) then

begin
if (p-. p_type>O) then

processed_datalp-. p_typel: =processed_data[pA. p_typel+l;
pA. p_type: =O;
pý. p_state: -O;
end;

end; PROCESS

begin (* COMPUTING_ALGORITHM
time unit: =4;

TýTAL PROCESSING EFFORT AVAILABLE
PER ITERATION *)

if (conditionip-. proc_l, plý. proc_rj=good) then
begin
comms;
(* COMMS USES UP SOME PROCESSING EFFORT
process(time_unit);
end

lxxiv Appendix 4 74

else
(* NULL

end; (* COMPUTING_ALGORITHM

begin (* COMPUTE
pt: =stack;
while (pt0nil) do

begin
P: =Pt;
repeat

begin
computing_algorithm;
p: =p, ",. next;
end

until (p=pt);
pt: =pt-. down;
end;

end; COMPUTE

procedure print_state;
(* PRINTS THE STATE OF THE STACK AFTER THE LAST ITERATION
var p, pt: proc_ptr;

l, r: integer;
begin (* PRINT_STATE
write(stackrecord, 9Iteration: 9, iterations: 3);
writeln(stackrecord); write(stackrecord, lr= 9);
for r: =l to ring do

write(stackrecord, 9 l, r: 3);
writeln(stackrecord);
pt: =stack;
write(stackrecord, 9Data 9);
for r: =l to ring do

write(stackrecord, l 9, data_types[rl: 3);
writeln(stackrecord);
1: =l;
while(pt0nil) do

begin
P: =Pt;
write(stackrecord, 11=1,1: 3);
repeat

begin
if (condition[p-. proc_l, p-. proc_rl=good) then

write(stackrecord, l l, p^. p_state: 3)
else

write(stackrecord, l FI);
p: =p**,. next;
end;

until (p=pt);
Pt: =pt^. down;
1: -1+1;
writeln(stackrecord);
end;

writeln(stackrecord);
end; (* PRINT_STATE

procedure print_consumption;
var

n, totproc, totcons, wtotproc: integer;

begin (* PRINT_CONSUMPTION *)
totproc: =O; totcons: =O; wtotproc: =O;
writeln(stackrecord); writeln(stackrecord, 'Data Consumed and Processed');
writeln(stackrecord, l --- -------- --- --------- 9); writeln(stackrecord);
for n: =l to 200 do

begin
totcons: =totcons+consumed data[n];
totproc: =totproc+processea -

data[n];
wtotproc: =wtotproc+processed data[nl*n;
write(stackrecord, lType: 1, n: 3,1 number consumed: ', consumed_data[nl: 3);
writeln(stackrecord, l number processed: ', processed_data[nl: 3);
end;

write(stackrecord, 'Total: 1,1 number consumed: ', totcons: 3);
writeln(stackrecord, l number processed: ', totproc: 3);
writeln(stackrecord, 'Total: 1,1 Weighted Total Processed:,, wtotproc: 5);
end; (* PRINT_CONSUMPTION *)

begin (* STACKPROG3
a: =1234567;
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR
input_parameters;
writeln(9Parameters input$);
initial-states;
writeln(9Initial state set up2);
writeln(IStarting Computation');
for iterations: =1 to largen do

begin
communicate;
create_new-data;
compute;
print-state;
end;

writeln(IFinished Computation');
writeln('Printing Results');
print_consumption;
end. (* STACKPROG3

lxxvi Appendix 4 76

program stackprog4(input, output, stackdata, stackrecord);
const

CONSTANTS FOR RANDOM NUMBER GENERATION
m=100000000; ml=10000; b=31415821;

type
PROCESSING NODE TYPE

proc_ptr=, "lproc_type;
proc_type=record

proc r: integer;
proc 1: integer;
ring_input: integer;
ring_output: integer;
input_full: boolean;
output_full: boolean;
data_input: integer;
down_output: integer;
data full: boolean;
down full: boolean;
p_type: integer;
p-state: integer;
next: proc_ptr;
down: proc_ptr;
end;

state_type=(faulty, good);

var
a: integer;
stackdata, stackrecord: text;
stack: proc_ptr;
condition: array[l.. 50,1.. 501 of state -

type;
data_types: array[l.. 501 of integer;
processed_data: array(l.. 200] of integer;
consumed_data: array[l.. 200] of integer;
largen, iterations, ring, layers: integer;

function mult(p, q: integer): integer;
(* EXTENDED MULITPLICATION
var pl, pO, ql, qO: integer;
begin
pl: =p div ml; pO: =p mod ml;
ql: =q div ml; qO: =q mod ml;
mult: =(((pO*ql+pl*qO) mod ml)*ml+pO*qO) mod m;
end;

function random: real;
RANDOM NUMBER GENERATOR
PG37 - ALGORITHMS - SEDGEWICK
ADDISON - WESLEY 1984

begin
a: =(mult(a, b)+l)mod m;
random: =a/m;
end;

procedure input_parameters;
INITIALISE INPUT AND OUTPUT FILES
READ IN THE PARAMETERS OF THE RING TO MODEL
WRITES A HEADING TO STACKRECORD

var
4?

lxxvii Appendix 4 77

l, r, n: integer;
begin (* INPUT

-
PARAMETERS

reset(stackdata); rewrite(stackrecord);
writeln(stackrecord, lstackprog4l);
writeln(stackrecord, 'Stack State record for simulation using : -1);
(* READ IN THE NUMBER OF PROCESSORS PER RING
readln(stackdata, ring);
writeln(stackrecord, 'Number of processors per layer 1, ring: 3);
(* READ IN THE NUMBER OF LAYERS
readln(stackdata, layers);
writeln(stackrecord, 'Number of layers = 1, layers: 3);
(* READ IN THE NUMBER OF ITERATIONS TO PERFORM
readln(stackdata, largen);
writeln(stackrecord, 'Number of iterations performed 1, largen: 3);
(* READ IN THE FAULTY PROCESSORS *)
writeln(stackrecord, 'With faulty processors: -');
for 1: =1 to 50 do

for r: = 1 to 50 do
condition[l, r]: =good;

while not(stackdata**, ='Dl) do
begin
readln(stackdata, l, r);
writeln(stackrecord, llayer: 9,1: 3,1 ring: ', r: 3);
condition[l, r]: =faulty;
end;

readln(stackdata);
(* READ IN THE DATA_TYPE (PROCESSING TIME) FOR EACH PROCESSOR
writein(stackrecord, 'Data types fed to processors'); writeln;
for n: -l to ring do

begin
readln(stackdata, data_types[nl);
writeln(stackrecord, 'Processor : I, n: 3,
end;

writeln(stackrecord);
end; (* INPUT_PARAMETERS

Data type : I, data_types[nl: 3);

procedure initial
-

states;
SETS UP THE INITIAL STATE OF THE STACK DATA STRUCTURE
AND PRINTS A HEADING TO FILE STACKRECORD *)

var
p, pt: proc_ptr;
r, l, n: integer;

procedure set-vars;
begin (* SET

I
VARS *)

p-. input
-

full: =false;
Pý. Output

-
full: =false;

p-. data_full: =false;
pl,. down

-
full: =false;

p^. p_type: =O;
p^. p_state: =O;
end; (* SET_VARS

begin (* INITIAL_STATES
stack: =nil;
for 1,: =layers downto I do

begin
new(p);

lxxviii Appendix 4 78

p-. down: =stack;
stack: =p;
p-. proc_r: =l;
pý. proc_l: =l;
p^. next: =p;
set-vars;
end;

for r: =ring downto 2 do
begin

pt: =stack;
new(p);
pA. next: =ptý. next;
pt*ý. next: =p;
p*",. proc_r: =r;
p-. proc_l: =l;
set

-
vars;

for 1: =2 to layers do
begin

pt: =pt-. down;
new(p-. down);
p: =p-. down;
p"*. next: =ptý. next;
ptA. next: =p;
pl'. proc_r: =r;
p***. proc_l: =l;
set-vars;
end;

pA. down: =nil;
end;

for n: =l to 200 do
begin
processed -

data[n]: =o;
consumed_data[n]: =O;
end;

end; INITIAL_STATES

procedure communicate;
(* PERFORMS THE FUNCTION OF THE COMMUNICATION HARDWARE
var

p, pt: proc_ptr;
begin (* COMMUNICATE
pt: =stack;
while (pt0nil) do

begin
P: =Pt;
repeat

begin
if (p-. down<>nil) then

if (p-. down_full and not(p-. down-. data_full)) then
begin
p-. down-. data_input: =p, *,. down_output;
P-. down

-
full: =false;

p^. down-. data full: =true;
end;

if (p-. output_full and not(p-. next-. input_full)) then
begin
pl'*. nextý. ring_input: =p**,. ring-output;
p***. next*",. input_full: =true-,

lxxix Appendix 4 79

p-. output_full: =false;
end;

p: =pý. next;
end

until (p=pt);
pt: =pt-. down;
end;

end; COMMUNICATE

procedure create - new -
data;

(* PERFOMS THE FUNCTION OF THE DATA INPUT MECHANISM
var

p: proc_ptr;
begin (* CREATE_NEW_DATA
p: =stack;
repeat

begin
if (not(p-. data_full) and (data_types[p, ". proc_rl<>O)) then

begin
if (data_types[pA. proc_r]<O) then

p-. data_input: =l+trune(random*(-data_types[pA. proc_rl-0.0001))
else

p-. data_input: =data_types[p",. proc_rl;
consumed-data[p-. data_inputl: =

consumed_datafp-. data_inputl+l;
P-. data_full: =true;
end;

P: =P',. next;
end;

until (p=stack);
end; (* CREATE_NEW-DATA

procedure compute;
(* PERFORMS THE FUNCTION OF THE PROCESSING ELEMENT
var

p, pt: proc_ptr;

procedure computing_algorithm;
PERFORMS THE FUNCTION OF THE COMMUNICATING PROCESSES WITHIN
THE PROCESSOR

var
time_unit: integer;

procedure comms;
(* PERFORMS THE ACTIVITIES OF THE COMMUNICATION PROCESS

function processor_idle: boolean;
begin
processor_idle: =(p-. p_state<=O);
end;

function ring_data: boolean;
begin
ring_data: -p^. input_full;
end;

function new_data: boolean;
begin

lxxx Appendix 4 80

new_data: =p-. data_full;
end;

function ring_ready: boolean;
begin
ring_ready: =not(p-. output_full);
end;

function down_ready: boolean;
begin
down_ready: =not(p-. down-full);
end;

procedure take_ring_data;
begin
p**,. p_type: =pA. ring_input;
pý. p_state: =p'*I. p_type;
pA input.,

_full: =false;
time

- unit: =time_unit-1;
end;

procedure take_new_data;
begin
pý. p_type: =p***. data_input;
p"*. p_state: =p*". p_type;
p-. data

-
full: =false;

time_un3. t: =time_unit-1;
end;

procedure ring_data_on;
begin
p-. ring_output: =p-. ring_input;
pý. input_full: =false;
p^. output_full: -true;
time_unit: =time_unit-1;
end;

procedure ring-data_down;
begin
p-. down_output: =pý. ring_input;
p^. input_full: =false;
P-. down

-
full: =true;

time_un3. t: =time_unit-1;
end;

procedure new-data_on;
begin
p, **. ring_output: =pA. data_input;
p-. data_full: =false;
p, '',. output_full: =true;
time_ýunit: =time_unit-1;
end;

procedure new-data_down;
begin
p-. down

-
output: =p^. data_input;

P-. data
-

full: =false;
p-. down_full: =true;

lxxxi Appendix 4 81

time_unit: =time_unit-1;
end;

begin (* COMMS4 *)
if processor -

idle then
if ring -

data then
take

- ring_data
else

if new data then
take new-data

else
(* NULL

else
(* NULL

if down_ready then
if ring-data then

ring_data_down
else

if new data then
new -

ýata_down

else
(* NULL

else
(* NULL

if ring_ready then
if ring-data then

ring_data_on
else

if new data then
new -

ýata_on

else
(* NULL

else
(* NULL

end; (* COMMS4

procedure process(units: integer);
begin (* PROCESS *)
pý. p_state: =p". p_state-units;
if (p-. p_state<=O) then

begin
if (p-. p_type>O) then

processed
-

datalp^. p_typel: =processed_data[p^. p_typel+l;
pl', -p_type: =O;
p-"I. p_state: =O;
end;

end; PROCESS

begin (* COMPUTING_ALGORITHM
time

-
unit: =4;

TOTAL. PROCESSING EFFORT AVAILABLE
PER ITERATION *)

if (condition[p-. proc_l, p". proc_rl=good) then
begin
comms;
(* COMMS USES UP SOME PROCESSING EFFORT
process(time_unit);
end

lxxxii Appendix 4 82

else
(* NULL

end; (* COMPUTING_ALGORITHM

begin (* COMPUTE
pt: =stack;
while (pt0nil) do

begin
P: =Pt;
repeat

begin
computing_algorithm;
p: =p, "I. next;
end

until (p=pt);
pt: =pt-. down;
end;

end; COMPUTE

procedure print-state;
(* PRINTS THE STATE OF THE STACK AFTER THE LAST ITERATION
var p, pt: proc_ptr;

l, r: integer;
begin (* PRINT_STATE
write(stackrecord, OIteration: $, iterations: 3);
writeln(stackrecord); write(stackrecord, lr= 9);
for r: =1 to ring do

write(stackrecord, l 1, r: 3);
writeln(stackrecord);
pt: =stack;
write(stackrecord, 'Data 2);
for r: =1 to ring do

write(stackrecord, l l, data_types[rl: 3);
writeln(stackrecord);
1: =1;
while(pt0nil) do

begin
p: =pt;
write(stackrecord, 91=9,1: 3);
repeat

begin
if (condition[p-. proc_l, p-. proc_rl=good) then

write(stackrecord, l 9, p". p_state: 3)
else

write(stackrecord, l F9);
p: =p'*. next;
end;

until (p=pt);
pt: =pt-. down;
1: =1+1;
writeln(stackrecord);
end;

writeln(stackrecord);
end; (* PRINT_STATE

procedure print_consumption;
var

n, totproc, totcons, wtotproc: integer;

lxxxiii Appendix 4 83

begin (* PRINT_CONSUMPTION *)
totproc: =O; totcons: =O; wtotproc: =O;
writeln(stackrecord); writeln(stackrecord, 'Data Consumed and Processed');
writeln(stackrecord, l ---- ------- --- --------- 1); writeln(stackrecord);
for n: =1 to 200 do

begin
totcons: =totcons+consumed data[n];
totproc: =totproc+processea_data[n);
wtotproc: =wtotproc+processed -

data[n]*n;
write(stackrecord, 'Type: ', n: 3,1 number consumed: 1, cons * umed_data[nl: 3);
writeln(stackrecord, l number processed: ', processed_data[nl: 3);
end;

write(stackrecord, 'Total: number consumed: ', totcons: 3);
writeln(stackrecord, l number processed: ', totproc: 3);
writeln(stackrecord, 'Total: Weighted Total Processed: ', wtotproc: 5);
end; (* PRINT_CONSUMPTION

begin (* STACKPROG4
a: =1234567;
(* SETS THE SEED FOR THE RANDOM NUMBER GENERATOR
input_parameters;
writeln('Parameters input');
initial_states;
writeln($Initial state set up');
writeln(IStarting Computation');
for iterations: =l to largen do

begin
communicate;
create_new-data;
compute;
print-state;
end;

writeln(IFinished Computation');
writeln('Printing Results');
print_consumption;
end. (* STACKPROG4

lxxxiv Appendix 4 84

APPENDIX 5

5 Homogeneous Cylinder Simulation Results

I

, 04

FIG. 5Ai. 1 HOMOGENEOUS COMMSi FED AT ALL POINTS WITH DATA OF
TYPE i0- Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

0A

%104

0

0

%104

lxxxv Appendix 5 85

4104

FIG. 5A1.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA OF
TYPE i0- Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

1104

jQ4

104

lxxxvi Appendix 5 86

A 0

, 1104

FIG. 5A1.3 HOMOGENEOUS COMMS3 FED AT ALL POINTS WITH DATA OF
TYPE 10. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

0

*104

lxxxvii Appendix 5

0

q, 104

, tO. 0 4.0
, §. 0

, 7. o
, a. 0
-5.0

3.0
a. 0
i. 0

Z AXZ@ 4404

87

01

*104

FIG. 5Ai. 4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA OF
TYPE 10. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

I

, 1104.

lxxxviii
Appendix 5

A

88

0

411 j4

0104

I

I

4 too

FIG. 5A2.1 HOMOGENEOUS COMMSI FED AT ALL POINTS WITH DATA OF
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

4105

so

4ics
%xil

4103

lxxxix Appendix 5 89

I

4109

FIG. 5A2.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA OF
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

I

4110
5

4105 84

0

4105

xc Appendix 5 90

*to's

FIG. 5A2.3 HOMOGENEOUS COMMS3 FED AT ALL POINTS WITH DATA OF
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

I

*103

4100 03
!

0

viol

xci Appendix 5 gi

41013

FIG. 5A2.4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA OF
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

41105

410 53

4101

xcii Appendix 5 92

5.

2.

2.

io

9103

FIG. 5A3.1 HOMOGENEOUS COMMSI FED AT ALL POINTS WITH DATA
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

9.

a.
2.

*j03

«t03
403

0103

xciii Appendix 5 93

.6

.0

,, 03

FIG. 5A3.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA
OF-T-YPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

4103

ts 410A 1103

, 103

xciv Appendix 5 94

2.

2.

FIG. 5A3.3 HOMOGENEOUS
OF TYPE 10. Z=MEAN WTP

.0

0103

COMMS3 FED AT
PER NODE OVER

*103

ALL POINTS WITH DATA
1000 ITERATIONS.

41103 aa

0103

xcv Appendix 5 95

410
3

FIG. 5A3.4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

4103

aso aa

41103

xcvi Appendix 5 96

.,, (, 3

FIG. 5A4.1 HOMOGENEOUS COMMSI FED AT ALL POINTS WITH DATA
OF TYPE R20. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

0

4103

4103 ,

4103

xcvii Appendix 5 97

41,03

FIG. 5A4.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA
OF TYPE R20. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

4103

410
3

.3a

alai

xcviii Appendix 5 98

Vic

FIG. 5A4.3 HOMOGENEOUS COMMS3 FED
OF TYPE R20. Z=MEAN WTP PER NODE

4

0

0

2

S

4

B 4103

AT ALL POINTS WITH DATA
OVER 1000 ITERATIONS.

4103 a

4103

xcix Appendix 5 99

a

0

6 *103

FIG. 5A4.4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA
OF TYPE R2: 0. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

qj03

4103

4103

Appendix 5 100

3

401

FIG. 5A5.1 HOMOGENEOUS COMMSI FED AT ALL POINTS WITH DATA OF
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

ci

405

Appendix 5 101

101

10,3

2.

2.

I

. 50

. 00

. 50

. 00

50

0

a osol

FIG. 5A5.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA OF
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

2.

4110
9

sol

110,3

cii Appendix 5 102

i

0
0
0
0

*101

FIG. 5A5.3 HOMOGENEOUS COMMS3 FED AT ALL POINTS WITH DATA OF
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

3.

3.

I

Sol

105

101

ciii Appendix 5 103

1109

FIG. 5A5.4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA OF
TYPE 50. Z=WEIGHTEn TOTAL PROCESSING OVER 1000 ITERATIONS.

90

00

so

vo s

so

101

. 90

. 00

. 40

. 00

to

0

8 *105 s

civ Appendix 5 104

3
3

2

2

i

*log

FIG. 5A6.1 HOMOGENEOUS COMMS1 FED AT ALL POINTS WITH DATA OF
TYPE RiOO. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

3.

3.

101

105

101

ev Appendix 5 105

4103

FIG. 5A6.2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA OF
TYPE R100. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

1

I

I

[to"

los

105

cvi Appendix 5 106

a
3
2

2

i

$05 .

FIG. 5A6.3 HOMOGENEOUS COMMS3 FED AT ALL POINTS WITH DATA OF
TYPE R100. Z=WEIGHTED TOTAL PROCESSING OVER'1000 ITERATION. S.

too

zoo

10,3

cvii Appendix 51.07

r

2

2

1105

FIG. 5A6.4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA OF
TYPE R100. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

too

11011 4105

cviii Appendix 5 108

9

102

FIG. 5A7.1 HOMOGENEOUS COMMSI FED AT ALL POINTS WITH DATA
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

38.
37.
37.
38.
36.
35.
So.
34.
34.

ca

02

02

cix Appendix 5 109

28.

29.

27.

27.

26.

as.

FIG. 5A7.2 HOMOGENEOUS
OF TYPE 50. Z=MEAN WTP

28

28

2T

27.

2&

28

Ma

COMMS2 FED AT
PER NODE OVER

02

ALL POINTS WITH DATA
1000 ITERATIONS. '

Aa

toil

cx

Appendix 5 110

I

FIG. 5A7.2 HOMOGENEOUS
OF TYPE 50. Z=MEAN WTP

102

COMMS2 FED AT
PER NODE OVER

75

25

75

29

la

a

4102

ALL POINTS WITH DATA
1000 ITERATIONS.

,, a

cx Appendix 5 110

37.50:
37.00:
36.30:
38.00:
35.50-
35.00-
34.: 0-

A

9.

a

it. 041UP 11.0
Y-LAYERS U 3.0' -N of

.0

38.00

-37.50
-37.00
46.30
ý30. co

. 35. so

-30.00
-34.50

10.0

.0

.0
alza "z

Axis 41102

FIG. 5A7.3 HOMOGENEOUS COMMS3 FED AT ALL POINTS WITH DATA
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

so
37
37
36
as
39
35
34

42

0a

loa

cxi Appendix 5 ill

1102

FIG. 5A7.4 HOMOGENEOUS COMMS4 FEO AT ALL POINTS WITH OATA
OF TYPE 50. Z=MEAN WTP PER NOOE OVER 1000 ITERATIONS.

102

loa

tail

cxii Appendix 5 112

102

FIG. 5A8.1 HOMOGENEOUS COMMSi FED AT ALL POINTS WITH DATA
OF TYPE RiOO. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

ca

ca

102

cxiii Appendix 5 113

,a

FIG. 5AB. 2 HOMOGENEOUS COMMS2 FED AT ALL POINTS WITH DATA
OF TYPE RiOO. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

Da

,, a

ca

exiv Appendix 5 114

FIG. 5AB. 3 HOMOGENEOUS COMMS3
OF TYPE RiOO. Z=MEAN WTP PER

,a

FED AT ALL POINTS WITH DATA
NODE OVER 1000 ITERATIONS.

02

02

ca

cxv Appendix 5 115

1102

FIG. 5A8.4 HOMOGENEOUS COMMS4 FED AT ALL POINTS WITH DATA
OF TYPE R100. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

Ica

loa

1102

cxvi Appendix 5 116

0

%103

FIG. 5A9.1 HOMOGENEOUS COMMSI FED AT ONE POINT
TYPE 10. Z=WEIGHTED TOTAL PROCESSING OVER 1000

I D

4103

WITH DATA OF
ITERATIONS.

103

ISO

cxvii Appendix 5 117

A

4103

I

4t03

FIG. 5A9.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA OF
TYPE 10. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

I II I

1103 4103

cxviii Appendix 5 118

I

103

FIG. 5A9.3 HOMOGENEOUS COMMS3 FED AT ONE
TYPE 10. Z=WEIGHTED TOTAL PROCESSING OVER

I

103

POINT WITH DATA OF
1000 ITERATIONS.

mica

1103

cxix Appendix 5 119

103

FIG. 5A9.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA OF
TYPE 10. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

4103

103

4102

0
0

03

FIG. 5A10.1 HOMOGENEOUS COMMSI FED AT ONE POINT WITH DATA OF
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

0
0

*103

flos

103

cxxi Appendix 5 121

I

103

FIG. 5A10.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA OF
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

a

4103

9

4103

9

alos

exxii - Appendix'5 122

1103

FIG. 5A10.3 HOMOGENEOUS COMMS3 FED AT ONE POINT WITH DATA OF
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

*J03

1103

1103

cxxiii Appendix 5
. 123

1103

FIG. 5A10.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA OF
TYPE R20. Z=WEIGHTED TOTAL PROCESSING OVER *1000 ITERATIONS.

I

1103

4103

4 toi

cxxiv Appendix 5 124

103

FIG. 5AIi. 1 HOMOGENEOUS COMMSI FED AT ONE POINT WITH DATA
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

I

I
*

2

103

103

103

cxxv I Appendix 5 125

S

I

S

0

4103

FIG. 5A11.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

41103

4103

4103

cxxvi Appendix 5 126

FIG. 5A11.3 HOMOGENEOUS
OF TYPE 10. Z=MEAN WTP

1103

COMMS3 FED AT
PER NODE OVER

two

ONE POINT WITH DATA
1000 ITERATIONS.

0

110A

cxxvii Appendix 5 127

aws

FIG. 5A11.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA
OF TYPE 10. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

4102

4110
a

4103

cxxviii Appendix 5 128
.

FIG. 5Ai2.1 HOMOGENEOUS
OF TYPE R20. Z=MEAN WTP

103

COMMSI FED AT
PER NODE OVER

WS

ONE POINT WITH DATA
1000 ITERATIONS.

*103

1103

cxxix Appendix 5 129

S

S

SOS

FIG. 5A12.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA
OF TYPE R20. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

,, 3

103

4103

cxxx Appendix 5 130

103

FIG. 5Ai2.3 HOMOGENEOUS COMMS3 FED AT ONE POINT WITH DATA
OF TYPE R20. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

103

00
so
vo
50
00
10

103 9 4103

cxxxi Appendix 5 131

103

FIG. 5Ai2.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA
OF TYPE R20. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

103

SOS

, 103

cxxxii Appendix 5 132

IS04

FIG. 5Ai3.1 HOMOGENEOUS COMMSI FED AT ONE POINT WITH DATA OF
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

1304

ý104

1104

cxxxiii Appendix 5 133

104

FIG. 5Ai3.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA OF
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

104

, 04

104

cxxxiv Appendix 5 134

104

FIG. 5A13.3 HOMOGENEOUS COMMS3 FED AT ONE POINT WITH DATA OF
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

104

, 04

104

cxxxv Appendix 5 135

1104

FIG. 5A13.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA OF
TYPE 50. Z=WEIGHTED TOTAL PROCESSING OVER 000-ITERATIONS.

104

104

1104

cxxxvi Appendix 5 136

104

FIG. 5A14.1 HOMOGENEOUS COMMSi FED AT ONE POINT WITH DATA OF
TYPE RIOO. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

104

j, 04

4104

cxxxvii Appendix 5 137

104

FIG. 5A14.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH. DATA OF
TYPE RIOO. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

j04

104

104

cxxxviii Appendix 5 138

104

FIG. 5A14.3 HOMOGENEOUS COMMS3 FED AT ONE POINT WITH DATA OF
TYPE Ri00- Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

104

104

, 104

cxxxix Appendix 5 139

104

FIG. 5A14.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA OF
TYPE RiOO. Z=WEIGHTED TOTAL PROCESSING OVER 1000 ITERATIONS.

104

cxl Appendix 5 140

1103

FIG. 5Ai5.1 HOMOGENEOUS COMMSI FED AT ONE POINT WITH DATA
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

4103

m
as
15

a5
to

29
P5
1

103 1 4103 ý

cxli Appendix 5 141

4103

FIG. 5A15.2 HOMOGENEOUS COMMS2 FED AT ONE POINT WITH DATA
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

4103

4103

4103

cxlii Appendix 5 142

103

FIG. 5A15.3 HOMOGENEOUS COMMS3 FED AT ONE POINT WITH DATA
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

103

t03

103

cxliii Appendix 5 143

*SOB

FIG. 5A15.4 HOMOGENEOUS COMMS4 FED AT ONE POINT WITH DATA
OF TYPE 50. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

4103

4103

otoa

cxliv Appendix 5 144

103

FIG. 5A16. i HOMOGENEOUS COMMSI FED AT ONE POINT WITH DATA
OF TYPE RIOO. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

103

cxlv Appendix 5

103

FIG. 5A16.2 HOMOGENEOUS COMMS2 FED
OF TYPE RiOO. Z=MEAN WTP PER NODE

AT ONE POINT WITH DATA-
OVER 1000 ITERATIONS.

103

00
. 10

. eu

. 90

. to

$02

0

is 4102

cxlvi- Appendix 5 146

son

FIG. 5A16.3 HOMOGENEOUS COMMS3 FED AT ONE POINT WITH DATA
OF TYPE R100. Z=MEAN WTP PER NODE OVER 1000 ITERATIONS.

103

5

S

S

S

S

103 NO

cxlvii Appendix 5 147

1103

FIG. 5A16.4 HOMOGENEOUS COMMS4 FED AT ONE'POINT WITH DATA
OF TYPE RiOO. Z=MEAN WTP PER NOD E OVER 1000 ITERATIONS.

los

4103

1103 1

cxlviii Appendix 5 148

6 Printed Circuit Board Designs

Link Circuit

Component Layer

cxlix Appendix 6 149

an aa
0

nuoun

an no Ono U: n a a

cl Appendix 6 150

5
(H

CT19 .5 C: n
C:)

(H
CT166.

ý
mr E C:) Cc

Ln 0
U

-iff) ul
-W r- U U

F: LEýJ LLJ
0 LLJ

(71 ON LO

0
L" C-) c) L) : t-
it' N Ui - Uj -U i

i -

J- a, Q% Uý

uu u M Cý
M ýD LIJ (7% UID UD -

cli Appendix 6 151

Component Layer

clii Appendix 6 152

cliii Appendix 6 153

i 2 3 7'ý 4, T" Ln (C 0MM RX

6 7 a
Fl

c
F,

cTi9
(11

cl, Ti9 -t

9 i0 11
F,

CT19
3(HCT

i 94
Fl'

CT! 9

13 i li 15

05
(4

0105 S1L
(C

0MM9A
R E" S

1A :D
F+O

105
ýf4

0i05

17 i8

i9

22 20

23

UART
24

(H CT112

25 26S1LRFS
(H

CT! 12ý
(D

EC0DE1
73 (D!

L

29 28 2 *?
- (S

imm-2a0
7 (S

Immi

cliv Appendix 6 154

CIV Appendix 6 155

Component Layer

clvi Appendix 6 156

Lý '3 A
-4.: C'n

17
-t F00 ýCOMMRX 1> m 3>

7A 8A
(HCT

I 9i
ý(HCT

1 91
((HCT

194 CA

9q 10A IiA 12
rH

CT19
(H

CTi9 L4
(H

CT19 li

13A I li I. P 15A
Ft

0105
F0105

Sl L
(COM

MSTAT7
RES

16AD
(Li

0105105
17AA

20 22
Fl,

CT2
(H

CT112

21232 li
(H

CT2
:31HCT112HCT112

27
25 26 (74HCO'7i

HCT ýi 020ý(

28 29
(DI

L SW
ý(Dl

L SW

31

DECODEIA
2 -- apu 32

(DECODEIB

33 3 14

2? 6-t EPROM 32Kx8 RAM

35 36
(DECCDE2 7

37

2-80 PI 0

elvii Appendix 6 157

clviii Appendix 6 158

Component Layer

Solder Layer

p ()

clix Appendix 6 159

0

1D2D3D7 T- x 7- Ln (COMMRX nwnt: p

6D7D8D
FH

CT 1-9 L, ý(HCT 194 ý[HCT 1 947 m cn

9D 10DIID V-v 12D
(HCT

194
ý(HCT

194
ý(HCT

1 94

13DI Li D15D
140 105

g(40 105 SI L
(C

0MMSTA T-7
RES

16 DC

(40
10 5

ýf4
0105

17D18D

Ic 2C 3C
-F

T Ln x
(7 4F00(COMMRX i --i

6C 7C 8c ON %D
JH

CT19 Li ý(HCT 1 94 ýIHCT
194 (T, Ln

9c
--

10c IIc
-

V"J k, -V 12C
f
HTCT194 ý (H CT1 94

ý(HCT
194

13C 14C 15
-

401 05
7

Sl L(COMMSTAT
7

RES
16C 4

140
105

3140
105

17C18c

IB 2B 3B x _r-
T' Ln

174FO 0
(COMMRX nw

6B 7B 8B
(HC

T194
JH

CT19 14
ý(H

CT 194 0% Ln

9B 9B 9Bk /-V V-%j 12
(H CT19 L4

(H CT194

14c 14B 15B
(40

105
(4

0105 SIL
(COM

MSTAT
RES

16 BC

40 10 5 [If 0105
17B18B

CIX Appendix 6 160

APPENDIX 7

7 Wire Wrap Connections To Complete a Link Circuit

From To From To

Device, Pin Device, Pin Device, Pin Device, Pin

1,5 To Data Input 5,7 To 18,12

1,2 To 13,3 5,12 To 4,1

1,3 To 2,10 4,2 To 18,11

1,4 To 2,9 4,3 To 18,10

1,9 To 14,2 4,4 To 17,13

1,13 To 17,1 4,5 To 17,12

1,12 To 4,12 4,10 To 17,11

2,1 To 11,13 4,11 To 17,10

2,2 To 11,12 4,13 To Data Output

2,3 To 10,10 10,11 To 10 MHz (PA)

2,6 To SYNCH 12,1 To 15,13

3,8 To 6,15 12,9 To 15,12

3,9 To 6,14 13,3 To 14,3

3,13 To 6,13 13,10 To 18,4

3,14 To 6,12 13,11 To 18,5

3,19 To li'l 13,12 To 18,6

10,1 To 9,1 13,13 To 18,7

3,18 To 8,1 14,1 To ROE

8,1 To 7,1 14,2 To DIR(Rx)

7,1 To 6,1 14,10 To 17,4

3,17 To 12,5 14,11 To 17,5

3,12 To 12,13 14,12 To 17,6

5,6 To 18,13 14,13 To 17,7

clxi Appendix 7 161

From To From To

Device, Pin Device, Pin Device, Pin Device, Pin

14,14 To DOR(Rx) 16,8 To 18,12

14,15 To RSO 17,2 To DIR(Tx)

15,1 To 10 MHz 17,9 To RESET

15,2 To RESET 17,14 To DOR(Tx)

15,6 To 14,2 18,3 To TSI

16,7 To 18,11

clxii Appendix 7 162

APPENDIX 8

8 Wire Wrap Connections To Complete an RS-232C to Inmos Interface

From To From To

Device, Pin Device, Pin Device, Pin Device, Pin

19,1 To -12V 21,23 To 28,16

19,2 To 27,19 22,2 To 15,2

19,3 To D-conn, 20 22,2 To 27,2

19,6 To D-conn, 2 22,4 To 17,9

19,14 To +12V 23,6 To 28,8

20,1 To D-conn, 5 23,9 To 28,6

20,3 To 27,3 23,10 To 25,13

20,4 To D-conn, 3 23,11 To 28,19

21,4 To 28,18 24,5 To 27,1

21,5 To 13,10 25,14 To 2,6

21,6 To 13,11 25,9 To 10,11

21,7 To 13,12 25,5 To 15,1

21,8 To 13,13 26,5 To 28,15

21,9 To 14,10 26,7 To 28,13

21,10 To 14,11 26,8 To 28,12

21,11 To 14,12 26,9 To 28,14

21.12 To 14,13 26,19 To 18,3

21,17 To 24,9 26,17 To 14,1

21,18 To 28,17 26,18 To 14,15

21,19 To 27,5 27,6 To 14,14

21,22 To 27,4 27,7 To 17,2

clxiii Appendix 8 163

APPENDIX 9

9 Wire Wrap Connections To Complete a Processor Board

From To From To

Device, Pin Device, Pin Device, Pin Device, Pin

36,4 To 17A, 9 30,22 To 35,6

17A, 9 To 17B, 9 30,19 To 31,11

17B, 9 To 17C, 9 30,19 To 35,8

17C, 9 To 17D, 9 30,20 To 35,9

36,10 To 15A, 2 30,20 To 37,36

15A, 2 To 15B, 2 30,21 To 35,7

15B, 2 To 15C, 2 30,21 To 37,35

15C, 2, To 15D, 2 30,22 To 35,6

36,8 To 30,26 30,27 To 32,6

25,7 To 28,3 30,27 To 35,11

25,6 To 28,2 30,27 To 37,37

25,5 To 28,1 30,16 To 37,23

25,4 To 29,8 35,12 To 25,11

25,3 To 29,7 35,13 To 33,22

25,2 To 29,6 35,14 To 33,20

25,1 To 29,5 35,17 To 34,27

30,6 To 37,25 35,18 To 34,22

27,12 To 23,1 35,19 To 34,20

30,21 To 35,7 33,18 To 34,18

30,21 To 37,35 33,19 To 34,19

clxiv Appendix 9 164

From To From To

Device, Pin Device, Pin Device, Pin Device, Pin

30,14 To 33,11 30,7 To 20,12

30,15 To 33,12 30,9 To 20,14

30,12 To 33,13 30,10 To 20,16

30,8 To 33,15 30,13 To 20,18

30,7 To 33,16 20,3 To 14A, 13

30,9 To 33,17 20,5 To 14A, 12

30,10 To 33,18 20,7 To 14A, 11

30t13 To 33,19 20,9 To 14A, 10

30,7 To 37,39 20,12 To 13A, 13

30,8 To 37,40 20,14 To 13A, 12

30,9 To 37,38 20,16 To 13A, 11

30,10 To 37,3 20,18 To 13A, 10

30,12 To 37,1 14A, 13 To 14B, 13

30,13 To 37,2 14A, 12 To 14B, 12

30,14 To 37,19 14A, 11 To 14B, 11

30,15 To 37,20 14A, 10 To 14B, 10

30,14 To 20,3 13A, 13 To 13B, 13

30,15 To 20,5 13A, 12 To 13B, 12

30,12 To 20,7 13A, 11 To 13B, 11

30,8 To 20,9 13A, 10 To 13B, 10

clxv Appendix 9 165

From To From To

Device, Pin Device, Pin Device, Pin Device, Pin

14B, 13 To 14C, 13 30,34 To 33,6

14B, 12 To 14C, 12 30,35 To 33,5

14B, ll To 14C, 11 30,36 To 33,4

14B, 10 To 14C, 10 30,37 To 33,3

13B, 13 To 13C, 13 30,38 To 33,25

13B, 12 To 13C, 12 30,39 To 33,24

13B, 11 To 13C, 11 30,40 To 33,21

13B, 10 To 13C, 10 30,1 To 33,23

14C, 13 To 14D, 13 30,2 To 33,2

14C, 12 To 10,12 33,10 To 34,10

14C, 11 To 10,11 33,9 To 34,9

14C, 10 To 14D, 10 33,8 To 34,8

13C, 13 To 13D, 13 33,7 To 34,7

13C, 12 To 13D, 12 33,6 To 34,6

13C, 11 To 13D, 11 33,5 To 34,5

13C, 10 To 13D, 10 33,4 To 34,4

30,30 To 33,10 33,3 To 34,3

30,31 To 33,9 33,25 To 34,25

30,32 To 33,8 33,24 To 34,24

30,33 To 33,7 33,21 To 34,21

clxvi Appendix 9 166

From To From To

Device, Pin Device, Pin Device, Pin Device, Pin

33,23 To 34,23 32,19 To 18C, 3

33,2 To 34,2 20,1 To 32,12

30,3 To 34,26 20,2 To 14D, 2

30,4 To 34,1 20,4 To 14C, 2

30,1 To 35,1 20,6 To 14B, 2

30,2 To 35,2 20,8 To 14A, 2

30,3 To 35,3 20,11 To 17D, 2

30,4 To 35,4 20,13 To 17C, 2

30,5 To 35,5 20,15 To 17B, 2

31,14 To 14B, l 20,17 To 17A, 2

31,15 To 14B, 15 21,1 To 31,12

31,16 To 18B, 3 21,2 To 17D914

31,17 To 14A, l 21,4 To 17C, 14

31,18 To 14A, 15 21,6 To 17B, 14

31,19 To 18A, 3 21,8 To 17A, 14

32,14 To 14D, l 21,11 To 14D, 14

32,15 To 10,15 21,13 TO 14C, 14

32,16 To 18D, 3 21,15 To 14B, 14

32,17 To 14C, l 21,17 To 14A, 14

32,18 To 14C, 15 22,15 To 2A, 6

clxvii Appendix 9 167

I

From To From To

Device, Pin Device, Pin Device, Pin Device, Pin

22,14 To 2B, 6 24,5 To 15A, l

23,15 To 2C, 6 24,5 To 15B, l

23,14 To 2D, 6 24,9 To 15C, l

22,5 To 10A, 11 24,9 To 15D, l

22,9 To 10B, 11 37,4 To 30,37

23,5 To i0c, 11 37,5 To 30,35

23,9 To 10D, 11 37,6 To 30,36

4.
clxviii Appendix 9 168

APPENDIX 10

10 Pal Designs Used in the Multiprocessor Hardware Design

PARTNO 00001 ;
NAME COMMRX;
DATE 13/01/87
REV 01 ;
DESIGNER G. A. Lester
COMPANY University Of Salford
ASSEMBLY 00002
LOCATION 00003

/*Logic for use in TRANSPUTER compatible link.
/*detects acknowledge, detects data and generates the reset
/*for the receive shift registers.
/*Final version. (Different pins to prototype. -rev 00)*/

/* Allowable Target Device Types: p1618

/** Inputs **/

PIN 1 = !r /* reset signal
PIN 2 = dO /* data from shift register.
PIN 3 = dl
PIN 4 = d2
PIN 5 = d3
PIN 6 = d4
PIN 7 = d5
PIN 8 = d6
PIN 9 =V
PIN 13 = d8
PIN 14 = d9
PIN 11 = Wire /* DIR(falling)Edge from rx buffer*/

/ ** outputs **/

PIN 19 = ! mrl /*Master Reset 1
PIN 18 = ! mr2 /*Master Reset 2
PIN 17 = ! arxd /*Acknowledge received
PIN 12 = ! dd /*Data bits Detected
PIN 15 = ack /*Acknowledge bits
PIN 16 = dat /*Data bits

/** Logic Equations **/

mrl -r# dire ;

mr2 =r# arxd # (dO & dl) ;

arxd r# ack & ! (d7 d6 # d5 I d4 # d3 # d2 # di # dO)

dd dat & ! (d7 d6 # d5 # d4 # d3 # d2 # dl # dO)

clxix Appendix 10 169

ack = d8 & ! d9

dat = d8 & d9

clxx Appendix 10 170

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

00002 ;
COMMSTAT
09/01/87
01 ;
G. A. Lester
University Of Salford
00002
00015

/*The state machine for use in the TRANSPUTER compatible links.
/*Used in conjunction with commrx.
/*Generates Acknowledge and data cycles conditional on the inputs. */

/* Allowable Target Device Types: pl6r4

/** Inputs **/

PIN I = elk /* 2*5mhz clock
PIN 2 = !r /* reset line
PIN 3 = arqd /* ack required before tx of data
PIN 4 = drxd /* data received
PIN 5 = ! te /* empty from tx fifo buffer
PIN 6 = ! rf : /* full from rx fifo buffer

/** Outputs **/ I

PIN 12 = ! asent /* ack sent
PIN 13 = Itso /* Transmitter Shift Out
PIN 14 = ! qO /* state var
PIN 15 = ! ql /* state var
PIN 16 = ! q2 /* state var
PIN 17 = ! q3 /* state var
PIN 18 = ! toe /* Transmitter Output Enable
PIN 19 = ! pe /* parallel (load) enable to s. r.

/** Declarations and Intermediate Variable Definitions **/

Field count = [q3, q2, ql, qO] ;

$define SO IdlO
$define 81 IdIl
$define s2 IdI3
$define s3 ldl2
$define s4 IdI6
$define s5 IdI7
$define s6 IdI5
$define s7 IdI4
$define s8 Id'12
$define S9 Id'13
$define slO Id'15
$define sll Id'14
$define s12 IdIlo
$define s13 IdIll
$define s14 IdI9

clxxi Appendix 10 171

$define s15 IdI8

/** Logic Equations **/

count. d=
*& count: sO & so
*& count: sl & so
*& count: s2 & so
*& count: s3 & so
*& count: s4 & so
*& count: s5 & so
*& count: s6 & so
*& count: s7 & so
*& count: s8 & so
*& count: s9 & so
*& count: slO & so
*& count: sll & so
*& count: sl2 & so
*& count: sl3 & so
*& count: sl4 & so
*& count: sl5 & so
!r& count: sl & s2
!r& count: s3 & s4
!r& count: s4 & s5
!r& count: s5 & s6
!r& count: s6 & s7
!r& count: s7 & s8
!r& count: s8 & S9
!r& count: s9 & slo
!r& count: slO & S11
!r& count: sll & s12
!r& count: sl2 & s13
!r& count: sO & s13
!r& Irf & drxd & count: s2 & sl
!r& ! rf & drxd & count: sl3 & sl
Ir & larqd & ! te & count: s2 & s3
!r& (rf I ! drxd) & (! arqd & ! te) & count: sl3 & s3
!r& (te # arqd) & (! drxd # rf) & count: s2 & s13
Ir & (te I arqd) & (! drxd # rf) & count: sl3 & s13

asent = count: s2 count: sO

tso = count: s5

toe = ! (count: sl f count: s2)

pe = count: sl # count: s3 ;

clxxii Appendix 10 172

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

00003 ;
DECODElA
08/01/87
00 ;
G. A. Lester
University Of Salford
00002
00031

/* The decode functions required to interface the TRANSPUTER type
/* links to a Z-80 system.
/* Generates the gate signal for an additional latch.

/* Allowable Target Device Types: 16L8

/** Inputs **/

PIN 1 = a4 /* address line a4
PIN 2 = a3 /* address line a3
PIN 3 = a2 /* address line a2
PIN 4 = al /* address line al
PIN 5 = aO /* address line aO
PIN 6 = Iml /* ml cycle line
PIN 7 = Ird /* read line
PIN 8 = ! wr /* write line
PIN 9 = liorq /* iorq line
PIN 11 M Imreq /* mreq line

outputs

PIN 12 = lelatch /* Latch (buffer empty signals)
PIN 13 = interm /* intermediate variable
PIN 14 = 1roeB /* Rx Output Enable B
PIN 15 = rsoB /* Rx Shift Out B
PIN 16 = tsiB /* Ts Shift In B
PIN 17 = 1roeA /* Rx Output Enable A
PIN 18 = rsoA /* Rx Shift Out A
PIN 19 = tsiA /* Tx Shift In A

/** Declarations and

Field addr = [a4, a3,,

/** Logic Equations

elatch = a4 & aO &

interm - iorq & Iml

rsoA = Ia4 & aO &

roeA = Ia4 & aO &

tsiA = Ia4 & aO &

Intermediate Variable Definitions

a2, al, aO]

iorq & Iml & rd

iorq & Iml & rd

iorq & Iml & rd

iorq & Iml & wr

clxxiii Appendix 10 173

rsoB = ! a4 & al & iorq & ! ml & rd

roeB = ! a4 & al & iorq & ! ml & rd

tsiB = la4 & al & iorq & ! ml & wr ;

clxxiv Appendix 10 174

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

00004 ;
DECODEIB
08/01/87
00 ;
G. A. Lester
University Of Salford
00002
00032

/* The decode functions required to interface the TRANSPUTER style*/
/* links to a Z-80 system.
/* Generates the gate signal for an additional Latch

/* Allowable Target Device Types: 16L8

/** Inputs **/

PIN 1 = a4 /* address line a4
PIN 2 = a3 /* address line a3
PIN 3 = a2 /* address line a2
PIN 4 = al /* address line al
PIN 5 = aO /* address line aO
PIN 6 = Iml /* ml cycle line
PIN 7 = ! rd /* read line
PIN 8 = ! wr /* write line
PIN 9 = liorq /* iorq line
PIN 11 = ! mreq /* mreq line

/ ** outputs **/

PIN 12 = Match /* Latch (buffer full signals)
PIN 13 = interm /* intermediate variable
PIN 14 = ! roeD /* Rx Output Enable D
PIN 15 = rsoD /* Rx shift Out D
PIN 16 = tsiD /* Ts Shift In D
PIN 17 = ! roeC /* Rx Output Enable C
PIN 18 = rsoC /* Rx Shift Out C
PIN 19 = tsic /* Tx Shift In C

/** Declarations and

Field addr = [a4, a3,,

/** Logic Equations

flatch = a4 & al &

interm = iorq & ! ml

rsoC = Ia4 & a2 &

roeC = ! a4 & a2 &

tsic = ! a4 & a2 &

Intermediate Variable Definitions

a2, al, aO]

iorq & ! ml & rd ;

iorq & Iml & rd ;

iorq & ! ml & rd ;

iorq & Iml & wr ;

clxxv Appendix 10 175

rsoD = ! a4 & a3 & iorq & Iml & rd ;

roeD = ! a4 & a3 & iorq & Iml & rd ;

tsiD = ! a4 & a3 & iorq & ! ml & wr ;

clxxvi Appendix 10 176

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

00005 ;
DECODE2
13/03/87
00 ;
G. A. Lester
University Of Salford
XXXX2
XXX35

/* Memory decoding for Z-80 system.
/* Also provides interrupt acknowledge signal.

/* Allowable Target Device Types: 16L8

/** Inputs **/

PIN 1 - all /* address line all
PIN 2 = a12 /* address line a12
PIN 3 = a13 /* address line a13
PIN 4 = a14 /* address line a14
PIN 5 = a15 /* address line a15
PIN 6 = ! wr /* write line
PIN 7 = Ird /* read line
PIN 8 = ! mreq /* mreq line
PIN 9 = liorq /* iorq line
PIN 11 = Iml /* ml cycle line

/** Outputs **/

PIN 12 intack /* Interrupt acknowledge
PIN 13 Iromrd /* rom read
PIN 14 Iromce /* rom chip enable
PIN 17 Iramwr /* ram write
PIN 18 Iramrd /* ram read.
PIN 19 Iramce /* ram chip enable

Declarations and Intermediate Variable Definitions

Logic Equations

intack ml & iorq ;

romrd mreq & 1a15 & rd

romce mreq & 1a15 ;

ramwr mreq & a15 & wr

ramrd mreq & a15 & rd

ramce mreq & a15 ;

clxxvii Appendix 10 177

PARTNO 00006
NAME SIMM1
DATE 08/05/86
REV 00 ;
DESIGNER G. A. Lester
COMPANY University Of Salford
ASSEMBLY 00001
LOCATION 00027

/*The state machine to generate a pseudo Z80 1/0 read/write
/*cycle simulation. To be used in conjunction with simmZ80.
/*Used to drive the TRANSPUTER compatible links.

/* Allowable Target Device Types: pl6r6

/** Inputs **/

PIN 1 = elk /* 5MHz clock (10 MHz ?
PIN 2 = !r /* reset
PIN 3 = Icts /* clear to send
PIN 4 = tbre /* trans buffer requires extra
PIN 5 = dr /* data ready
PIN 6 = !e /* empty
PIN 7 = !f /* full

/** Outputs **/

PIN 19 = ! dtr /* data terminal ready
PIN 18 = ! qO /* state var
PIN 17 = Iql /* state var
PIN 16 = ! q2 /* state var
PIN 15 = ! q3 /* state var
PIN 14 = ! q4 /* state var
PIN 12 = etc /* empty or ! tbre or ! cts

/** Declarations and Intermediate Variable Definitions **/

etc = (e I Itbre I Icts);

Field count = [q4, q3, q2, ql, qO] ;

$define SO Idlo
$define sl Idli
$define s2 9d92
$define s3 IdI3
$define s4 IdI4
$define S5 9d'5
$define S6 IdI6
$define s7 IdI7
$define S8 ld98
$define S9 IdI9
$define slO IdIlo
$define sll IdIll
$define s12 9d912
$define s13 Id'13

clxxviii Appendix 10 178

$define s14 Id, 14
$define S15 Id'15
$define s16 Id'16
$define s17 Id'17
$define S18 Id'18
$define S19 Id9ig
$define s20 9d'20
$define s2l ld'21

/** Logic Equations **/

count.
* & count: sO & so
* & count: sl & so
* & count: s2 & so
* & count: s3 & so
* & count: s4 & so
* & count: s5 & so
* & count: s6 & so
* & count: s7 & so
* & count: s8 & so
* & count: s9 & so
* & count: slO & so
* & count: sll & so
* & count: sl2 & so
* & count: sl3 & so
* & count: sl4 & so
* & count: sl5 & so
* & count: sl6 & so
* & count: sl7 & so
* & count: sl8 & so
* & count: sl9 & so
* & count: s20 & so
* & count: s2l & so

!r & count: sl & s2
!r & count: s2 & s3
!r & count: s3 & s4
!r & count: s4 & S5
!r & count: s5 & s6
Ir & count: s6 & s7
!r & count: s7 & S8
!r & count: s8 & S9
Ir & count: s9 & slo
!r & count: slO & S11
Ir & count: sll & s12
!r & count: sl4 & s15
!r & count: sl5 & s16
!r & count: sl6 & s17
!r & count: sl7 & S18
!r & count: s18 & S19
!r & count: sl9 & s20
!r & count: s20 & s2l
!r & count: s2l & so
Ir & (! f & dr) & count : sO & sl
!r & (f ldr) & le & tbre & cts
!r & (f ! dr) & etc & count: sO
Ir & letc & count: sl2 & s14
!r & etc & count : sl2 & sO

& count: sO & s14
& so

clxxix Appendix 10 179

dtr =! dr ;

clxxx Appendix 10 180

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

00007 ;
SIMMZ80
08/01/87
00 ;
G. A. Lester
University Of Salford
00000
00000

/*The state machine to generate a pseudo Z80 1/0 read/write
/*cycle simulation. To be used in conjunction with simml.

/* Allowable Target Device Types: p1618

/** Inputs **/

PIN 1 = IqO /* state var
PIN 2 = Iql /* state var
PIN 3 = 1q2 /* state var
PIN 4 = ! q3 /* state var
PIN 5 = ! q4 /* state var
PIN 6 = clkO /* from elk ect
PIN 7 = clkl /* from elk cct
PIN 8 = clk6 /* from elk cct

/** Outputs **/

PIN 19 clko /* to clk cct
PIN 18 rrd /* received register disable
PIN 17 ! drr /* data received reset
PIN 16 ! tbrl /* trans buffer register load
PIN 15 addr /* status line
PIN 14 ! iorq /* 1/0 request line
PIN 13 Ird /* read data strobe
PIN 12 1wr /* write data strobe

/** Declarations and Intermediate Variable Definitions **/

Field count = [q4, q3, q2, ql, qO] ;

$define so Idlo
$define sl IdIl
$define s2 IdI2
$define s3 IdI3
$define s4 IdI4
$define s5 IdI5
$define s6 IdI6
$define s7 IdI7
$define S8 IdI8
$define S9 IdI9
$define slO Id'10
$define sll IdIll
$define s12 Id'12
$define s13 Id'13

clxxxi Appendix 10 181

$define s14 Id'14
$define s15 Id'15
$define s16 Id'16
$define s17 Id'17
$define S18 Id'18
$define S19 Id'19
$define s20 Id'20
$define s2l Id'21

/** Logic Equations

clko =clk6 & clkO ;

rrd =! (count: s3 count: s4 # count: S5 f count: s6
count: s7 count: s8 count: s9);

drr =count: slO

tbrl =count: sl7 count: sl8 count: sl9

addr =! (count: s2 count: slO count: sll # count: s12 # count: sf3
count: sl4 count: sO count: sl);

iorq count: s4 count: s5 count: s6 # count: s7 count: s8
count: s16 # count: s17 # count: s18 # count: s19 # count: s20

rd count: s16 # count: sl7 # count: s18 # count: s19 # count: s2O

wr count: s4 count: s5 count: s6 # count: S7 count: s8

PROGRAMS COMPILED USING:
/* CUPL 2.1, ASSISTED TECHNOLOGY, DIVISION OF PERSONAL CAD
/* SYSTEMS INC., 1290 PARKMOOR AVE, SAN JOSE, CA.

clxxxii Appendix 10 182

APPENDIX 11

1 Files Used with the Eco-C Compiler for Multiprocessing

. Z80
RAMTOP EQU 9FFFH
STACKSIZE EQU 01FFH
OSSTACK EQU RAMTOP
si EQU OSSTACK - (STACKSIZE/2)
S2 EQU Sl - STACKSIZE
S3 EQU S2 - STACKSIZE
SMAIN EQU S3 - STACKSIZE
TERMINATE EQtJ 0028H
SPROC EQU 0030H

ENTRY BUFFERS

EXTRN PROM
EXTRN PROC2
EXTRN PROC3
EXTRN MAIN

DSEG
CLOCK:: DEFW 0000
RUNNING::

DEFB 01
NPROC:: DEFB 08
STACKLIST::

DEFW 0101H
DEFW 0202H
DEFW 0303H
DEFW 0404H

USERNPROC::
BUFFERS EQU USERNPROC +1

CSEG
$INITA::

DI
LD SP, OSSTACK
LD HL, 0000
LD (CLOCK), HL
LD A, (USERNPROC)
LD (NPROC), A
LD A, 01
LD (RUNNING), A
LD HL, 2
LD DEJERMINATE
LD SP, SMAIN
PUSH DE
LD BC, MAIN
PUSH BC
CALL PUTREG
LD (STACKLIST+06), SP
LD SP, S3
PUSH DE

; PROCESS ENTRIES OBTAINED
; EXTERNALLY

;A MAXIMUM OF FOUR PROCESSES

; STATIC VARS SHOULD BE LOADED AFTER
; THIS POINT

; SETS OPERATING SYSTEM STACK
; INITIALISES PSEUDO CLOCK

; SETS THE RUNNING PROCESS AND
; NPROC TO THE VALUE CONTAINED
; IN USERNPROC

; SETS UP STACKS AND PROCLIST FOR
; EACH PROCESS

; IF ANY PROCESS RETURNS THEN
; THAT PROCESS WILL TERMINATE

clxxxiii Appendix 11 183

LD BC, PROC3 ; BY ENTERING A NON-BUSY WAIT

PUTREG:

PUSH BC
CALL PUTREG
LD (STACKLIST+04), SP
LD SP, S2
PUSH DE
LD BC, PROC2
PUSH BC
CALL PUTREG
LD (STACKLIST+02), SP
LD SP, Sl
PUSH DE
LD HL, 02
EI
JP PROM

POP IY
PUSH AF
EX AF, AF I
PUSH AF
PUSH BC
PUSH DE
PUSH HL
EXX
PUSH BC
PUSH DE
PUSH HL
PUSH Ix
PUSH IY
PUSH ly
RET
END $INITA

clxxxiv Appendix 11 184

LD HL, RUNNING
LD C, (HL)
LD B, O
ADD HL, BC
ADD HL, BC
EX DE, HL
LD HL, 0000
ADD HL, SP
EX DE, HL
LD (HL), E
INC HL
LD (HL)

,D
LD HL, RUNNING
LD A, (HL)
INC HL
LD B, (HL)
CP B
JP NZ, NOTLAST
DEC HL
LD (RL), l
INC HL
INC HL
JR RESTORE

NOTLAST:
DEC HL
INC (HL)
INC A
LD C, A
LD B, O
ADD HL, BC
ADD HL, BC

RESTORE:
LD E, (HL)
INC HL
LD D. (HL)
EX DE, HL
LD SP, HL
POP IY
POP ix
POP HL
POP DE
POP BC
EXX
POP HL
POP DE
POP EC
POP AF
EX AF, AF'
POP AF
Ei
RETI

SETPIO:
LD A, OFFH
OUT (2011), A
OUT (2011). A
OUT (6011), A

; FIND THE SPACE TO SAVE SP

; SAVES STACK POINTER

; TEST WHICH PROCESS IS RUNNING

; IF RUNNING = NPROC
; SET RUNNING TO 01

; RESTORE REGISTERS FOR PROM

; IF RUNNING LESS THAN NPROC
; INCREMENT RUNNING
; INCREMENT A TO MATCH (A=RUNNING)
; SET HL TO POINT TO SP FOR THE
; NEW PROCESS

; RESTORE REGISTERS USING THE VALUE
; OF SP STORED AT (HL)

; RE-ENABLE INTERRUPTS AND
; RETURN TO THE RUNNING PROCESS
; NON-OPERATING SYSTEM ROUTINES
; INITIALISATION ETC
; SET UP THE PIO (INACTIVE)

clxxxvi Appendix 11 186

OUT (60H), A
LD A, 17H
OUT (20H), A
OUT (60H), A
LD A, OFFH
OUT (20H), A
OUT (60H), A
RET

WAITPROG:
IN A, (91H)
AND A
JR Z, WAITPROG

WPROM1: LD C, 01
WPROMZ: IN A, (91H)

AND C
JR Z, WPROM3
SET 7, C
IN A, (C)
CP PROGOFFER
JR ZJNPROG
RES 7, C

WPROM3: RLC C
LD A, C
CP 10
JR NZ, WPROM2
JR WPROMI

INPROG: LD A, C
EXX
LD C, A
EXX
LD A, GITM
CALL OUTPUT

RLOOPI: CALL INPUT
CP OFFH
JR Z, ROMI
CALL SEND
JR RLOOPI

ROMI: CALL INPUT
CP OFFH
JR NZ, ROM2
CALL SEND
JR RLOOPI

ROMZ: CP 00
JR NZ, ROM3
CALL INPUT
LD L, A
CALL INPUT
LD 11, A
LD IY, MEM
JR RLOOPI

ROM3: CP 01
JR NZ, ROM4
CALL INPUT
LD E, A
CALL INPUT

; WAIT FOR AND OFFER OF A PROGRAM

; SET C9 TO THE ADDRESS OF THE CREATOR

; ACKNOWLEDGE THE OFFER OF A PROGRAM

; LOOP TO READ IN THE PROGRAM

; SETS MEMORY LOAD AND ADDRESS
; TO START AT

; PUSHES A VALUE ONTO THE STACK

clxxxvjj Appendix 11 187

LD D, A
PUSH DE
JR RLOOPI

ROM4: CP 02
JR NZ, ROMS
EX DE, HL
CALL INPUT
LD L, A
CALL INPUT
LD H. A
LD SP, HL
EX DE, HL
JR RLOOP1

ROM5: CP 03
JR NZ, ROM6
CALL INPUT
EXX
LD C, A
EXX
LD IY, IO
JR RLOOPI

ROM6: CP 04
JR NZ, ROM7
RET

ROM7: CP 05
JR NZ, ROM8
JR REXITI

ROM8: CP 06
JR NZ, ROM9
EXX
CALL INPUT
LD E, A
CALL INPUT
LD D, A
EXX
JR RLOOPI

ROM9: CP 07
JR NZ, ROMA
EXX
CALL INPUT
LD L, A
CALL INPUT
LD H, A
EXX

ROMA: JP RLOOPI
REXITI: JR OFFERPROG

INPUT: IN A, (91H)
AND C
AND OF11
JR Z, INPUT
IN A, (C)
RET

OUTPUT: EX AF, AF'
RETEST: LD B, OFH
WAITBIT: DJNZ WAITBIT

IN A, (9211)

; SETS THE STACK POINTER

; SETS 1/0 FORWARD AND ADDRESS
; HANDSHAKING ONLY GOOD WITH LINK ADDR

; PERFORMS A IRETI INSTRUCTION

; EXITS FROM THE PROGRAMMING LOOP

; STORES HIGHEST VALUE TO FORWARD
; IN DEI

; STORES LOWEST VALUE TO FORWARD
; IN HL9

; END OF LOOP TO READ IN PROGRAM
; EXIT FROM LOOP

; C-I/O ADDRESS TO READ FROM
; A: -(C)
; THE SUBROUTINE WAITS UNTIL A VALUE
; IS AVAILABLE

; C'-I/O ADDRESS TO WRITE TO

; (C9)

clxxxvjjj Appendix 11 188

AND C
AND OFH
JR Z, RETEST
EX AP, AF I
OUT (C), A
R. ET

SEND: ip (IY)

MEM: LD (HL), A
INC HL
RET

10: EXX
CALL OUTPUT
EXX
RET

OFFERPROG:
LD C, 81H
LD A, C

RLOOP2: EXX
CP C
EXX
JP Z, NEXT2
LD A. PROGOFFER
CALL OUTPUT
LD B, O
CALL AWAITANY
INC B
DJNZ NOTTIMEOUT
JR TIMEOUT

NOTTIMEOUT:
CP GITN
JR NZ, NOTHANKS
EXX
PUSH HL
PUSH DE
EXX
POP DE
POP HL
LD A, OFFH
CALL OUTPUT
LD A, 00
CALL OUTPUT
LD A, L
CALL OUTPUT
LD A, H
CALL OUTPUT
LD A, OFFH
CALL OUTPUT
LD A, 02
CALL OUTPUT
LD HL, 0000
ADD HL, SP
LD A. L
CALL OUTPUT
LD A, H
CALL OUTPUT

; THE SUBROUTINE WAITS UNTIL THE OUTPUT

; CHANNEL HAS ROOM FOR THE VALUE

; IY=ROUTINE TO CALL

; A=VALUE TO SEND: HL=ADDRESS TO SEND TO

; (HL): =A: INC HL

; THE VALUE IS WRITTEN TO MEMORY

; A=VALUE TO SEND: C9=ADDRESS TO SEND TO

; (Cl): =A
; THE VALUE IS SENT 1/0

; Cl CONTAINS THE ADDRESS OF THE CREATOR

; SEND PROGOFFER TO (C)

; MAXIMUM TIMEOUT DELAY

; IF B=O ON EXIT THEN TIMOUT OCCURED

; IF B00 ON EXIT THEN NO TIMEOUT

; CHECK TO SEE IF RESPONSE IS

; GIVE IT TO ME

; FF 00 L' H'

; SETS LOAD ADDRESS

; FF 02 SP
; SETS STACK POINTER

clxxxix Appendix 11 189

LD A, OFFH ; FF 01 (SP)
CALL OUTPUT ; PUSHES A VALUE ON THE STACK
LD A. 01 ; USED AS A STARTING ADDRESS
CALL OUTPUT
POP HL
PUSH HL
LD A, L
CALL OUTPUT
LD A, H
CALL OUTPUT
LD A, OFFH ; FF 06 El D'
CALL OUTPUT ; SETS HIGHEST ADDRESS TO FORWARD
LD A, 06
CALL OUTPUT
LD A, E
CALL OUTPUT
LD A, D
CALL OUTPUT
LD A, OFFH ; FF 07 Ll HI
CALL OUTPUT ; SETS LOWEST ADDRESS TO FORWARD
LD A. 07
CALL OUTPUT
EXX
PUSH HL
EXX
POP HL
LD A, L
CALL OUTPUT
LD A, H
CALL OUTPUT
CALL TCLOOP
LD A, OFFH ; FF 05
CALL OUTPUT ; CAUSES AN EXIT FROM THE PROGRAMMING
LD A, 05 ; LOOP
CALL OUTPUT

TIMEOUT:
NOTHANKS:
NEXTZ: LD A, C

AND OFH
RLCA
CP IOH
JR Z, REXIT2
OR 80H
LD C, A
Jp RLOOP2

REXIT2: JR STARTUP

AWAITANY:
IN A, (91H)
AND C
AND OFH
JR NZ, FOUNDANY
DJNZ AWAITANY
RET

FOUNDANY:
IN A, (C)
RET

cxc Appendix 11 190

TCLOOP: LD A, (HL)
CP OFFH
JR NZ, SINGLE
CALL OUTPUT

SINGLE: CALL OUTPUT
INC HL
LD A, H
CP D
JR NZ, TCLOOP
LD A, L
CP E
JR NZ, TCLOOP
RET

STARTUP:
RET ; PERFORMS A 9RETI TO THE PROGRAM

; POSSIBLY STRIP ALL PROGOFFERS?
END $RESET

cxci Appendix 11 191

APPENDIX 12

12 Commumication Functions: Byte Wise Versions

. Z80
SPROC EQU 30H
EXTRN BUFFERS

; FUNCTION INT RTBYTE(PROC, LINK)
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER
; RECEIVES A BYTE, ONLY TESTS, DOES NOT WAIT IF NO VALUE AVAILABLE
; IF A BYTE IS WAITING THEN THE FUNCTION RETURNS THE VALUE RECEIVED
; IF THERE IS NO BYTE THEN A VALUE GREATER THAN 255 IS RETURNED

RTBYTE::
CSEG

ADD HL, SP
PUSH HL
LD HL, 0004
ADD HL, SP
LD A, (HL)
AND A
JR NZ, RTINT
LD HL, 04 + 02
ADD RL, SP
LD C, (HL)

RT1-. DI
IN A, (91H)
AND C
JR NZ, RT2
El
LD HL, 0100H
JP $RTNIll

RT2: SET 7, C
IN L, (C)
EI
LD H, 00
JP $RTNIll

RTINT:
LD HL, 04 + 02
ADD HL, SP
LD C, (HL)
LD B, A
LD HL, BUFFERS - 09H
LD DE. 0009H

RT3: ADD HL, DE
DJHZ RT3
INC HL

RT4s DI
LD A, (RL)
AND C
JR Z, RT5
EI
LD HL, 0100H
JP $RTNIff

; A: -PROC

; EXTERNAL COM14UNICATION

; C: -LINK ADDRESS
; DI-PREVENTS INTERFERENCE
; TEST THE BUFFER FLAGS

; IF NO VALUE THEN
; EI-AGAIN

; RETURN 0100H
; IF VALUE THEN
; RECEIVE VALUE
; EI-AGAIN

; RETURN VALUE
; INTERNAL COMMUNICATION

; C: -LINK ADDRESS
; B: -PROC

; SKIP OVER BUFFERS

; DI-PREVENTS INTERFERENCE
; TEST BUFFER FLAGS

; IF NO VALUE THEN
; EI-AGAIN

; RETURN OIOOH

cxcij Appendix 12 192

RT5:

RT6:

LD A, C ; IF VALUE THEN
XOR (HL) ; ADJUST FLAGS
LD (HL), A
LD A, C
INC HL ; SET HL TO POINT TO BUFFER LOCATION
RRA
JR NC, RT6
LD L. (HL) ; RECEIVE VALUE
EI ; EI-AGAIN
LD H, 00
JP $RTNIll ; RETURN VALUE
END RTBYTE

cxciii Appendix 12 193

. Z80
SPROC EQU 30H
EXTRN BUFFERS

; FUNCTION INT RWBYTE(PROC, LINK)
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER
; RECEIVES A BYTE, WAITS IF NO VALUE AVAILABLE
; RETURNS THE VALUE RECIEVED

RWBYTE::
CSEG

ADD HL, SP
PUSH HL
LD HL, 0004
ADD HL, SP
LD A, (HL)
AND A
JR NZ, RWINT
LD HL, 04+02
ADD HL, SP
LD C, (HL)

RW1: DI
IN A, (91H)
AND C
JR NZ, RW2
El
RST SPROC
JR RWI

RW2: SET 7, C
IN L, (C)
EI
LD H, 00
JP $RTNIff

RWINT:
LD HL, 04+02
ADD HL, SP
LD C, (HL)
LD B, A
LD HL, BUFFERS - 09H
LD DE. 0009H

RW3. * ADD HL, DE
DJNZ RW3
INC HL

RW4: DI
LD A, (RL)
AND C
JR Z, RW5
El
RST SPROC
JR RW4

RWS: LD A, C
XOR (HL)
LD (HL), A
LD A, C

RW6: INC HL
RRA

; A: -PROC

; EXTERNAL COMMUNICATION

; C: -LINK ADDRESS
; DI-PREVENTS INTERFERENCE
; TEST THE BUFFER FLAGS

; IF NO VALUE THEN
; EI-AGAIN
; RELINQUISH TIME SLICE
; TRY AGAIN
; IF SPACE THEN
; RECEIVE VALUE
; EI-AGAIN

; RETURN VALUE
; INTERNAL COMMUNICATION

; C: -LINK ADDRESS
; B: -PROC

; SKIP OVER BUFFERS

-DI-PREVENTS INTERFERENCE
; TEST BUFFER FLAGS

; IF NO VALUE THEN
; EI-AGAIN
; RELINQUISH TIME SLICE
; TRY AGAIN
; IF VALUE THEN
; ADJUST FLAGS

; SET HL TO POINT TO BUFFER LOCATION

exciv Appendix 12 194

JR NC, RW6
LD L, (HL)
El
LD H, 00
JP $RTNIII
END RWBYTE

; RECEIVE VALUE
; EI-AGAIN

; RETURN VALUE

cxcv Appendix 12 195

. Z80
SPROC EQU 30H
EXTRN BUFFERS

; FUNCTION INT STBYTE(PROC, LINK, VALUE)
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER
; SENDS A BYTE, TESTS FOR SPACE, DOES NOT WAIT IF NO SPACE AVAILABLE
; IF THERE IS SPACE A BYTE IS SENT AND A VALUE LESS THAN 255 RETURNED
; IF THERE IS NO SPACE A VALUE GREATER THEN 255 IS RETURNED

CSEG
STBYTE ::

ADD HL, SP
PUSH HL
LD HL, 0004H
ADD HL, SP
LD A, (HL) ; A: =PROC
AND A
JR NZ, STINT
LD HL, 04+02 ; EXTERNAL COMMUNICATION
ADD HL, SP
LD C, (HL) ; C: =LINK ADDRESS

ST1: DI ; DI-PREVENTS INTERFERENCE
IN A, (92H) ; TEST THE BUFFER FLAGS
AND C
JR NZ, ST2 ; IF NO SPACE THEN
EI ; EI-AGAIN
LD HL, 0100H
JP $RTNI## ; RETURN 0100H

ST2: SET 7, C ; IF SPACE THEN
LD HL, 04 + 04
ADD HL, SP
OUTI ; SEND VALUE
EI ; EI-AGAIN
LD HL, OOOOH
JP $RTNIff ; RETURN 0000

STINT: ; INTERNAL COMMUNICATION
LD HL, 04 + 02
ADD HL, SP
LD C, (HL) ; C: =LINK ADDRESS
LD B, A ; B: =PROC
LD HL, BUFFERS 09H
LD DE, 0009H

ST3: ADD HL, DE ; SKIP OVER BUFFERS
DJNZ ST3
INC HL

ST4: DI ; DI-PREVENTS INTERFERENCE
LD A, (HL) ; TEST BUFFER FLAGS
AND C
JR NZ, ST5 ; IF NO SPACE THEN
EI ; EI-AGAIN
LD HL, 0100H
JP $RTNIII ; RETURN 0100H

ST5: LD A, C ; IF SPACE THEN
XOR (HL) ; ADJUST FLAGS
LD (HL), A

cxcvi Appendix 12

LD A, C
ST6: INC HL

RRA
JR NC, ST6
EX DE, HL
LD HL, 04 + 04
ADD HL, SP
LDI
EI
LD HL, OOOOH
JP $RTNI##
END STBYTE

; SET HL TO POINT TO BUFFER LOCATION

; COPY VALUE INTO BUFFER
; EI-AGAIN

; RETURN 0000

cxcvii Appendix 12 197

. Z80
SPROC EQU 30H
EXTRN BUFFERS

; FUNCTION VOID SWBYTE(PROC, LINK, VAL)
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS VOID
; SENDS A BYTE, WAITS UNTIL DESTINATION FREE IF BUSY

SWBYTE::

SWI:

SW2:

SWINT:

SW3:

sW4:

SW5:

SW6:

CSEG

ADD HL, SP
PUSH HL
LD HL, 0004
ADD HL, SP
LD A, (HL)
AND A
JR NZ, SWINT
LD HL, 04+02
ADD HL, SP
LD C, (HL)
DI
IN A, (92H)
AND C
JR NZ, SW2
EI
RST SPROC
JR SW1
SET 7, C
LD HL, 04 + 04
ADD HL, SP
OUTI
EI
JP $RTNV##

LD HL, 04 + 02
ADD HL, SP
LD C, (HL)
LD B, A
LD HL, BUFFERS - 09H
LD DE, 0009H
ADD HL, DE
DJNZ SW3
INC HL
DI
LD A, (HL)
AND C
JR NZ, SW5
EI
RST SPROC
JR SW4
LD A, C
XOR (HL)
LD (HL), A
LD A, C
INC HL
RRA

; A: -PROC

; EXTERNAL COMMUNICATION

; C: =LINK ADDRESS
; DI-PREVENTS INTERFERENCE
; TEST THE BUFFER FLAGS

; IF NO SPACE THEN
; EI-AGAIN
; RELINQUISH TIME SLICE
; TRY AGAIN
; IF SPACE THEN

; SEND VALUE
; EI-AGAIN

; INTERNAL COMMUNICATION

; C: =LINK ADDRESS
; B: =PROC

; SKIP OVER BUFFERS

; DI-PREVENTS INTERFERENCE
; TEST BUFFER FLAGS

; IF NO SPACE-THEN
; EI-AGAIN
; RELINQUISH TIME SLICE
; TRY AGAIN
; IF SPACE THEN
; ADJUST FLAGS

; SET HL TO BUFFER LOCATION

cxcviii Appendix 12 198

JR NC, SW6
EX DE, HL
LD HL, 04 + 04
ADD HL, SP
LDI
EI
JP $RTNV##
END SWBYTE

; COPY VALUE INTO BUFFER
; EI-AGAIN

cxcix Appendix 12 0 199 .

/* static definitions for inter-process communication buffer

and flags.
definition for process procl

single byte version for use with rtbyte, stbyte, rwbyte, swbyte

static short lflgl = 255

static short buffl[81 = (0,0,0,0,0,0,0,0)

cc Appendix 12 200

APPENDIX 13

13 Communication Functions: Fifo Buffered Versions

. Z80
SPROC EQU 30H
EXTRN BUFFERS

; FUNCTION INT RTBYTE(PROC, LINK)

; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER

; RECEIVES A BYTE, ONLY TESTS, DOES NOT WAIT IF NO VALUE AVAILABLE

; IF A BYTE IS WAITING THEN THE FUNCTION RETURNS THE VALUE RECEIVED

; IF THERE IS NO BYTE THEN A VALUE GREATER THAN 255 IS RETURNED

; VERSION FOR USE WITH FIFO BUFFERING

CSEG
RTBYTE::

ADD HL, SP
PUSH HL
LD HL, 0004
ADD HL, SP
LD A, (HL) ; A: =PROC
AND A
JR NZ, RTINTL
LD HL, 04+02 ; EXTERNAL COMMUNICATION
ADD HL, SP
LD C, (HL) ; C: =LINK ADDRESS

RTL1: DI ; DI-PREVENTS INTERFERENCE
IN A, (91H) ; TEST BUFFER FLAGS
AND C
JR NZ, RTL2 ; IF NO VALUE THEN
EI ; EI-AGAIN
LD HL, 0100H
JP $RTNIl# ; RETURN 100H

RTL2: SET 7, C ; IF VALUE THEN
IN L, (C) ; RECEIVE VALUE
EI ; EI-AGAIN
LD H, 00
JP $RTNI#1 ; RETURN VALUE

RTINTL: ; INTERNAL COMMUNICATION
LD HL, 04+02
ADD HL, SP
LD C, (HL) ; C: =LINK ADDRESS
LD B, A ; B: =PROC
LD HL, BUFFERS
LD DE, 0012H
DJNZ RTL3 ; IF PROC=l THEN
JR RTL6 ; GO STRAIGHT ON

RTL3: PUSH BC ; ELSE
LD B, (HL) ; SKIP OVER OTHER PROCESSES BUFFERS
INC HL

RTL4: ADD HL, DE
DJNZ RTL4

RTL5: POP BC
DJNZ RTL3

cci Appendix 13 201

RTL6: INC HL
RTL7: BIT O, C

JR NZ, RTL8
ADD HL, DE
RRC C
JR RTL7

RTL8: DI
LD B, (HL)
INC HL
LD A, (HL)

RTL9: CP B
JR NZ, RTLA
EI
LD HL, 0100H
JP $RTNI##

RTLA: DI
DEC HL
LD A, (HL)
LD D, 00
LD E, A
INC A
CP 11H
JR C, RTLB
LD A, 01

RTLB: LD (HL), A
INC HL
ADD HL, DE
LD E, (HL)
EI
EX DE, HL
JP $RTNI##
END RTBYTE

0'*

; FIND BOTTOM OF LINK STRUCTURE

; DI-PREVENTS INTERFERENCE
; B: =HEAD

; A: =TAIL
; TEST FOR BUFFER EMPTY (HEAD=TAIL)
; IF NO VALUE THEN
; EI-AGAIN

; RETURN 0100H
; DI-PREVENTS INTERFERENCE
; IF VALUE THEN

; INCREMENT HEAD
; MODULO 16

; SET HL TO POINT TO HEAD ADDRESS

; EI-AGAIN

; RETURN VALUE

ccii Appendix 13 202

. Z80
SPROC EQU 30H
EXTRN BUFFERS

; FUNCTION INT RWBYTE(PROC, LINK)
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER
; RECEIVES A BYTE, WAITS IF NO VALUE AVAILABLE
; RETURNS THE VALUE RECEIVED
; VERSION FOR USE WITH FIFO BUFFERING

CSEG
RWBYTE::

ADD HL, SP
PUSH HL
LD HL, 0004
ADD HL, SP
LD A, (HL) ; A: =PROC
AND A
JR NZ, RWINTL
LD HL, 04+02 ; EXTERNAL COMMUNICATION
ADD HL, SP
LD C, (HL) ; C: =LINK ADDRESS

RWL1: DI ; DI-PREVENTS INTERFERENCE
IN A, (91H) ; TEST BUFFER FLAGS
AND C
JR NZ, RWL2 ; IF NO VALUE THEN
EI ; EI-AGAIN
RST SPROC ; RELINQUISH TIME SLICE
JR RWL1 ; TRY AGAIN

RWL2: SET 7, C ; IF VALUE THEN
IN L, (C) ; RECEIVE VALUE
EI ; EI-AGAIN
LD H, 00
JP $RTNI## ; RETURN VALUE

RWINTL: ; INTERNAL COMMUNICATION
LD HL, 04+02
ADD HL, SP
LD C, (HL) ; C: =LINK ADDRESS
LD B, A ; B: =PROC
LD HL, BUFFERS
LD DE, 0012H
DJNZ RWL3 ; IF PROC=l THEN
JR RWL6 ; GO STRAIGHT ON

RWL3: PUSH BC ; ELSE
LD B, (HL) ; SKIP OVER OTHER PROCESSES BUFFERS
INC HL

RWL4: ADD HL, DE
DJNZ RWL4

RWL5: POP BC
DJNZ RWL3

RWL6: INC HL
RWL7: BIT 0, C ; FIND BOTTOM OF LINK STRUCTURE

JR NZ, RWL8
ADD HL, DE
RRC C
JR RWL7

cciii Appendix 13 203

RWL8: DI ; DI-PREVENTS INTERFERENCE
LD B, (HL) ; B: =HEAD
INC HL
LD A, (HL) ; A: mTAIL

RWL9: CP B ; TEST FOR BUFFER EMPTY (HEAD=TAIL)
JR NZ, RWLA ; IF NO VALUE THEN
EI ; EI-AGAIN
RST SPROC ; RELINQUISH TIME SLICE
DEC HL
JR, RWL8 ; TRY AGAIN

RWLA: DI ; DI-PREVENTS INTERFERENCE
DEC HL ; IF VALUE THEN
LD A, (HL)
LD D, 00
LD E, A
INC A ; INCREMENT HEAD
CP 11H ; MODULO 16
JR, C, RWLB
LD A, 01

RWLB: LD (HL), A
INC HL
ADD HLIDE ; SET HL TO POINT TO HEAD ADDRESS
LD E, (HL)
EI ; EI-AGAIN
EX DE, HL
JP $RTNI## ; RETURN VALUE
END RWBYTE

cciv Appendix 13 . 204

. Z80
SPROG EQU 30H
EXTRN BUFFERS

; FUNCTION INT STBYTE(PROC, LINK, VALUE)
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER
; SENDS A BYTE, TESTS FOR SPACE, DOES NOT WAIT IF NO SPACE AVAILABLE
; IF THERE IS SPACE A BYTE IS SENT AND A VALUE LESS THAN 255 RETURNED
; IF THERE IS NO SPACE A VALUE GREATER THEN 255 IS RETURNED
; VERSION FOR USE WITH FIFO BUFFERING

CSEG
STBYTE::

ADD HL, SP
PUSH HL
LD HL, 0004
ADD HL, SP
LD A, (HL) ; A: =PROC
AND A
JR NZ, STINTL
LD HL, 04+02 ; EXTERNAL COMMUNICATION
ADD HL, SP
LD C, (HL) ; C: =LINK ADDRESS

STL1: DI ; DI-PREVENTS INTERFERENCE
IN A, (92H) ; TEST THE BUFFER FLAGS
AND C
JR NZ, STL2 ; IF NO SPACE THEN
EI ; EI-AGAIN
LD HL, 0100H
JP $RTNI## ; RETURN OlOOH

STL2: SET 7, C ; IF SPACE THEN
LD HL, 04+04
ADD HL, SP
OUTI ; SEND VALUE
EI ; EI-AGAIN
LD HL, OOOOH
JP $RTNI## ; RETURN 0000

STINTL: ; INTERNAL COMMUNICATION
LD HL, 04+02
ADD HL, SP
LD C, (HL) ; C: =LINK ADDRESS
LD B, A ; B: =PROC
LD HL, BUFFERS
LD DE, 0012H
DJNZ STL3 ; IF PROC-1 THEN
JR STL6 ; GO STRAIGHT ON

STL3: PUSH BC ; ELSE
LD B, (HL) ; SKIP OVER OTHER PROCESSES BUFFERS
INC HL

STL4: ADD HL, DE
DJNZ STL4

STL5: POP BC
DJNZ STL3

STL6: INC HL
STL7: BIT O, C ; FIND BOTTOM OF LINK STRUCTURE

JR NZ, STL8

cev Appendix 13 205

ADD HL, DE
RRC C
JR STL7

STL8:

STL9:

STLA:

DI ; DI-PREVENTS INTERFERENCE
LD B, (HL) ; B: =HEAD
INC HL
LD A, (HL) ; A: =TAIL
LD D, 00
LD E, A
INC A ; INCREMENT TAIL
CP 11H ; MODULO 10H
JR C, STL9
LD A, 01
CP B ; TEST FOR BUFFER FULL (HEAD=TAIL+l)
JR NZ, STLA ; IF NO SPACE THEN
EI ; EI-AGAIN
LD HL, 0100H
JP $RTNI## ; RETURN 0100H
DI ; DI-PREVENTS INTERFERENCE
LD (HL), A
ADD HL, DE ; SET HL TO POINT TO BUFFER LOCATION
EX DE, HL
LD HL, 04+04
ADD HL, SP
LDI ; COPY VALUE INTO THE BUFFER
EI ; EI-AGAIN
LD HL, 0000
JP $RTNI## ; RETURN OOOOH
END STBYTE

ccvi Appendix 13 206

. Z80
SPROC EQU 30H
EXTRN BUFFERS

; FUNCTION INT STBYTE(PROC, LINK, VALUE)
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS INTEGER
; SENDS A BYTE, TESTS FOR SPACE, DOES NOT WAIT IF NO SPACE AVAILABLE
; IF THERE IS SPACE A BYTE IS SENT AND A VALUE LESS THAN 255 RETURNED
; IF THERE IS NO SPACE A VALUE GREATER THEN 255 IS RETURNED
; VERSION FOR USE WITH FIFO BUFFERING

CSEG
STBYTE::

ADD HL, SP
PUSH HL
LD HL, 0004
ADD HL, SP
LD A, (HL) ; A: =PROC
AND A
JR NZ, STINTL
LD HL, 04+02 ; EXTERNAL COMMUNICATION
ADD HL, SP
LD C, (HL) ; C: =LINK ADDRESS

STL1: DI ; DI-PREVENTS INTERFERENCE
IN A, (92H) ; TEST THE BUFFER FLAGS
AND C
JR NZ, STL2 ; IF NO SPACE THEN
EI ; EI-AGAIN
LD HL, 0100H
JP $RTNI#f ; RETURN 0100H

STL2: SET 7, C ; IF SPACE THEN
LD HL, 04+04
ADD HL, SP
OUTI ; SEND VALUE
EI ; EI-AGAIN
LD HL, OOOOH
JP $RTNI#f ; RETURN 0000

STINTL: ; INTERNAL COMMUNICATION
LD HL, 04+02
ADD HL, SP
LD C, (HL) ; C: =LINK ADDRESS
LD B, A ; B: =PROC
LD HL, BUFFERS
LD DE, 0012H
DJNZ STL3 ; IF PROC=l THEN
JR STL6 ; GO STRAIGHT ON

STL3: PUSH BC ; ELSE
LD B, (HL) ; SKIP OVER OTHER PROCESSES BUFFERS
INC HL

STL4: ADD HL, DE
DJNZ STL4

STL5: POP BC
DJNZ STL3

STL6: INC HL
STL7: BIT O, C ; FIND BOTTOM OF LINK STRUCTURE

JR Z, STL8

cevii Appendix 13 207

ADD HL, DE
RRC C
JR STL7

STL8: DI
LD B, (HL)
INC HL
LD A, (HL)
LD D, 00
LD E, A
INC A
CP 11H
JR C, STL9
LD A, 01

STL9: CP B
JR NZ, STLA
EI
LD HL, 0100H
JP $RTNI##

STLA: DI
LD (HL), A
ADD HL, DE
EX DE, HL
LD HL, 04+04
ADD HL, SP
LDI
EI
LD HL, 0000
JP $RTNI##
END STBYTE

; DI-PREVENTS INTERFERENCE
; B: =HEAD

; A: =TAIL

; INCREMENT TAIL
; MODULO 10H

; TEST FOR BUFFER FULL (HEAD-TAIL+l)
; IF NO SPACE THEN
; EI-AGAIN

; RETURN 0100H
; DI-PREVENTS INTERFERENCE

; SET HL TO POINT TO BUFFER LOCATION

; COPY VALUE INTO THE BUFFER
; EI-AGAIN

; RETURN OOOOH

I

ccviii Appendix 13 208

. Z80
SPROC EQU 30H
EXTRN BUFFERS

; FUNCTION VOID SWBYTE(PROC, LINK, VALUE)
; PARAMETERS EXPECTED AS INTEGERS AND RETURNS VOID
; SENDS A BYTE, WAITS UNTIL DESTINATION FREE IF BUSY
; VERSION FOR USE WITH FIFO BUFFERING

CSEG
SWBYTE::

ADD HL, SP
PUSH HL
LD HL, 0004
ADD HL, SP
LD A, (HL) ; A: =PROC
AND A
JR NZ, SWINTL
LD HL, 04+02 ; EXTERNAL COMMUNICATION
ADD HL, SP
LD C, (HL) ; C: =LINK ADDRESS

SWL1: DI ; DI-PREVENTS INTERFERENCE
IN A, (92H) ; TEST THE BUFFER FLAGS
AND C
JR NZ, SWL2 ; IF NO SPACE THEN
EI ; EI-AGAIN
RST SPROC ; RELINQUISH TIME SLICE
JR SWL1 ; TRY AGAIN

SWL2: SET 7, C ; IF SPACE THEN
LD HL, 04+04
ADD HL, SP
OUTI ; SEND VALUE
EI ; EI-AGAIN
JP $RTNVII

swINTL: ; INTERNAL COMMUNICATION
LD HL, 04+02
ADD HL, SP
LD C, (HL) ; C: =LINK ADDRESS
LD B, A ; B: =PROC
LD HL, BUFFERS
LD DE, 0012H
DJNZ SWL3 ; IF PROC=l THEN
JR SWL6 ; GO STRAIGHT ON

SWL3: PUSH BC ; ELSE
LD B, (HL) ; SKIP OVER OTHER PROCESSES BUFFERS
INC HL

SWL4: ADD HL, DE
DJNZ SWL4

SWL5: POP BC
DJNZ SWL3

SWL6: INC HL
SWL7: BIT O, C ; FIND BOTTOM OF LINK STRUCTURE

JR NZ, SWL8
ADD HL, DE
RRC C
JR SWL7

cr-ix Appendix 13 209

SWL8: DI
LD B, (HL)
INC HL
LD A, (HL)
LD D, 00
LD E, A
INC A
CP 1 1H
JR C, SWL9
LD A, 01

SWL9: CP B
JR NZ, SWLA
EI
RST SPROC
DEC HL
JR SWL8

SWLA: DI
LD (HL), A
ADD HL, DE
EX DE, HL
LD HL, 04+04
ADD HL, SP
LDI
EI
JP $RTNV##
END SWBYTE

; DI-PREVENTS INTERFERENCE
; B: =HEAD

; A: =TAIL

; INCREMENT TAIL
; MODULO 10H

; TEST FOR BUFFER FULL (HEAD-TAIL+l)
; IF NO SPACE THEN
; EI-AGAIN
; RELINQUISH TIME SLICE

; TRY AGAIN
; DI-PREVENTS INTERFERENCE

; SET HL TO POINT TO BUFFER LOCATION

; COPY VALUE INTO THE BUFFER
; EI-AGAIN

CCX Appendix 13 210

/* static definitions for inter-process communication buffer and
head and tail byte.
definition for process proel
multiple byte version for use with rtfifo, stfifo, rwfifo, swfifo

static short nlinkl = 01
static short q1h1 = 01
static short q1tl = 01
static short bflpl[161 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

ccxi Appendix 13 211

APPENDIX 14

14 Programs Used to interface to the System

The following function was written by Dr C. A. Owen and is reproduced
by kind permission.

TITLE ECO-C BIOS entry
. Z80

CCALL: :

EXIT:

; Address of CALL, AF, BC, DE and HL passed in

ADD HL, SP
PUSH HL
LD HL, 4
ADD HL, SP ; Pointer address
LD A, (HL)
INC HL
LD H, (HL)
LD L, A ; HL = pointer address
PUSH HL ; Address of call
POP Ix ; Use IX as pointer
LD L, (IX+O)
LD H, (IX+l) ; HL = address to call
PUSH Ix ; (Need to recover this later)
LD DE, EXIT
PUSH DE ; Set return point
PUSH HL ; RET to it later
LD A, (IX+3)
LD C, (IX+4)
LD B, (IX+5)
LD E, (IX+6)
LD D, (IX+7)
LD L, (IX+8)
LD H, (IX+9)
RET ; Jumps to routine

; Comes here after routine called
POP Ix ; Recover pointer
LD (IX+9), H
LD (IX+8), L
LD (IX+7), D
LD (IX+6), E
LD (IX+5), B
LD (IX+4), C
PUSH AF
POP HL ; To get flags
LD (IX+3), A
LD (IX+2), L ; Flag register
jP $RTNVI#

END

ccxii Appendix 14 212

/ý stdio. h containing the required definitions for the
/* Function CCALL */

some system definitions

Idefine NULL 0
#define FALSE 0
Idefine TRUE 1
idefine EOF (-1)
Idefine CPMEOF (Oxla)

the structure for allocations

typedef int ALIGN;

union header
struct

union header *ptr;
unsigned size;

)s;
ALIGN X;

typedef union header HEADER;

the iob structure

struct iobbuf(
int

_cnt; char *_ptr;
char *_base;
int

_flag; int
_fd;

#define
_NFILE

6
/* maximum number of files

extern int
_nfile;

/* this variable yields the
number of files set in
the library */

typedef

extern

#define
Idefine
Idefine
#define

Idefine

Idefine

#define

struct

FILE

the i,

s tdin
stdout
stderr
stdlst

_READ

_WRITE

_UNBUF

iobbuf FILE;

_iob[];

ob definitions

&-iob[Ol
&-iob[l]
&-iob[21
&-iob[31

01
/* file open for reading

02

04
/* file open for writing

ccxiii Appendix 14 213

#define
_BBUF

010

#define
_EOF

020

#define
_ERR

040

Idefine
_WFLAG

0100

Idefine
_BFLAG

0200

/* file is unbuffered

/* a big buffer was
allocated

/* EOF has occurred on this
file

/* error has occurred on this
file */

/* buffer has been written
to */

/* if true then binary read/
write */

#define
_BSIZE

512
/* buffer size for files

Idefine SECSIZE 128
/* size of a sector

setjmp and longjmp defs

struct _env(char *rtnadr;
char *oldstk;

typedef struct _env
*jmp_buf;

typedef struct _env
jmp_env;

typedef struct
(void (*call)();

char flag; /*flag register*/
char A;
unsigned int BC;
unsigned int DE;
unsigned int HL;

BIOSREG;

typedef struct
(void (*call)();
char flag;
char A;
char C;
char B;
char E;
char D;
unsigned int HL;

CALLREG;

typedef struct

unsigned int spt;
char bsh;

ccxiv Appendix 14 214

char b1m;
char exm;
unsigned int dsm;
unsigned int drm;
unsigned int alv;
unsigned int cks;
unsigned int offs;
char psh;
char phm;
char drive;
void (*pdisc)();
char tracks;
char sectors;
char firsts;
char skew;
char drvcha;
char medcha;
char gapi;
char sl, s2, s3, s4, s5;
I XDPB;

typedef struct

char *trans;
int sO;
int sl;
int s2;
char *dirbuf;
XDPB *xdpb;
unsigned int csv, alv;
I DPH;

typedef struct (char x; void (*addr)();) *BIOS;

/********************BIOS entry point definitions*********************/

#define BOOT 0
#define WBOOT 1
Mefine CONST 2
#define CONIN 3
#define CONOUT 4
#define LIST 5
Idefine PUNCH 6
#define READER 7
#define HOME 8
#define SELDSK 9
#define SETTRK 10
#define SETSEC 11
#define SETDMA 12
#define READ 13
#define WRITE 14
#define LISTST 15
#define SECTRAN 16
#define CONOST 17
#define AUXIST 18
#define AUXOST 19
#define DEVTBL 20
#define DEVINI 21

ccxv Appendix 14 215

#define DRVTBL 22
#define MULTIO 23
#define FLUSH 24
#define MOVE 25
#define TIME 26
#define SELMEM 27
#define SETBNK 28
#define XMOVE 29

I ***/

ccxvi Appendix 14 216

COM TO BINARY
ASSEMBLES A BINARY FILE FROM A *. COM FILE
INTENDED FOR CONSTRUCTION OF FILES TO BE DOWN LOADED TO SYSTEM
TAKES A *. COM FILE AND STRIPS OFF THE FIRST 384 BYTES TO REMOVE THE
LOADER ADDED BY LINK-80, REPLACES THIS WITH AN APPROPRIATE HEADER
AND THEN GOES ON TO REPLACE ALL OCCURENCES OF
FF WITH FF FF TO ALLOW THESE TO BE DOWN LOADED TO A Z-80 SYSTEM
COMPATIBLE WITH THE LOADER INSTALLED IN ROM2

MODULE ComToBinary;

FROM Files IMPORT
Close, Create, EOF, FILE, Open, ReadByte, WriteByte;

FROM InOut IMPORT
ReadString, WriteHex, WriteString;

FROM Strings IMPORT
CAPS;

FROM SYSTEM IMPORT
BYTE;

FROM Terminal IMPORT
ReadChar, WriteChar, WriteLn;

PROCEDURE Initialise(VAR infile, outfile: FILE);
VAR

filename: ARRAY CHAR OF CHAR;
finished: BOOLEAN;

BEGIN (* Initialise
(* OPENS THE *. COM (INPUT) AND-*. BIN (OUTPUT) FILES
REPEAT
WriteString('What filename is the input file');
WriteLn;
WriteString('Stored under? 1);
WriteLn;
ReadString(filename);
IF Open(infile, filename) THEN

finished: =TRUE;
ELSE

finished: =FALSE;
END;
UNTIL finished;
REPEAT
WriteString('What filename should the binary file');
WriteLn;
WriteString(lbe stored under? ');
WriteLn;
ReadString(filename);
Create(outfile, filename);
IF Open(outfile, filename) THEN

finished: =TRUE;
ELSE

finished: =FALSE;
END;

ccxvii Appendix 14 0 217

UNTIL finished;
END Initialise;

PROCEDURE WriteHeader(outfile: FILE);

PROCEDURE HextoByte(hl, h2: CHAR; VAR bin: BYTE);

PROCEDURE ChartoInt(ch: CHAR): CARDINAL;
BEGIN (* ChartoInt *)
(* CONVERTS A HEXADECIMAL CHARACTER INTO A DECIMAL VALUE
IF ((ORD(Ial)<=ORD(ch)) & (ORD(ch)<=ORD(Ifl))) THEN

ch: =CHAR(ORD(ch)+ORD(IAI)-ORD(lal));
END;
IF ((ORD(IAI)<=ORD(ch)) & (ORD(ch)<=ORD($F9))) THEN

RETURN ORD(ch)-ORD(IAI)+10;
ELSE

RETURN ORD(ch)-ORD(IOI);
END;
END ChartoInt;

BEGIN (* HextoByte *)
(* CONVERTS A PAIR OF HEXADECIMAL CHARACTERS INTO A DECIMAL VALUE
bin: =BYTE(16*ChartoInt(hl)+ChartoInt(h2));
END HextoByte;

VAR
hl, h2: CHAR;
low, high: BYTE;

BEGIN (* WriteHeader
WRITES A HEADER TO THE *. BIN FILE CONTAINING VARIOUS INFORMATION
FOR THE LOADER *)
Send a program offer byte

WriteByte(outfile, 170);
(* Address to load the program into
WriteByte(outfile, 255);
WriteByte(outfile, 00);
WriteByte(outfile, 00);
WriteByte(outfile, 128);
(* Value to set the Stack Pointer to
WriteByte(outfile, 255);
WriteByte(outfile, 02);
WriteByte(outfile, 255);
WriteByte(outfile, 255);
(* Start address of the program
WriteByte(outfile, 255);
WriteByte(outfile, 01);
WriteString('What is the Start address in Hexadecimal? 9);
WriteLn;
ReadChar(hl); WriteChar(hl);
ReadChar(h2); WriteChar(h2);
HextoByte(hl, h2, high);
ReadChar(hl); WriteChar(hl);
ReadChar(h2); WriteChar(h2);
HextoByte(hl, h2, low);
WriteLn;
WriteHex(CARDINAL(256*CARDINAL(high)+CARDINAL(low)), 4);
WriteLn;

ccxviii Appendix 14 218

WriteByte(outfile, low);
WriteByte(outfile, high);
(* highest address to forward
WriteByte(outfile, 2ý5);
WriteByte(outfile, 06);
WriteString('What is the Highest address to forward?,);
WriteLn;
ReadChar(hl); WriteChar(h1);
ReadChar(h2); WriteChar(h2);
HextoByte(hl, h2, high);
ReadChar(h1); WriteChar(hl);
ReadChar(h2); WriteChar(h2);
HextoByte(hl, h2, low);
WriteLn;
WriteHex(CARDINAL(256*CARDINAL(high)+CARDINAL(low)), 4);
WriteLn;
WriteByte(outfile, low);
WriteByte(outfile, high);

Lowest address to forward
This is automatically set to 8000H since this is the bottom
of RAM *)

WriteByte(outfile, 255);
WriteByte(outfile, 07);
WriteByte(outfile, 00);
WriteByte(outfile, 128);
END WriteHeader;

PROCEDURE CopyFile(infile, outfile: FILE);
VAR

bin: BYTE;
c: INTEGER;
filename: ARRAY CHAR OF CHAR;

BEGIN (* CopyFile *)
TRANSFERS THE *. COM FILE TO THE *. BIN FILE
WITH SUITABLE MODIFICATIONS *)
Strips off 'waste characters9 put there by the loader

FOR c: =1 TO 128 DO
ReadByte(infile, bin);

END;
(* Copies the rest of the file replacing FF by FF FF
REPEAT
ReadByte(infile. bin);
IF (CARDINAL(bin)=255) THEN

WriteByte(outfile, 255);
END;
WriteByte(outfile, bin);
UNTIL EOF(infile);
WriteString('File Processed and Copied');
WriteLn;
END CopyFile;

PROCEDURE WriteTail(outfile: FILE);
VAR

bin: BYTE;
BEGIN (* WriteTail
(* Exit from programming and offer program

ccxix Appendix 14 219

WriteByte(outfile, 255);
WriteByte(outfile, 05);
END WriteTail;

VAR
i: CHAR;
infile, outfile: FILE;

BEGIN (* ComToBinary *)
WriteString('*. com to *. bin
WriteString(lproduces files
Initialise(infile, outfile);
WriteHeader(outfile);
CopyFile(infile, outfile);
WriteTail(outfile);
Close(infile);
Close(outfile);
END ComToBinary.

conversion'); WriteLn;
compatible with ROM2. MACI); WriteLn; WriteLn;

ccxx Appendix 14 220

BINTOHEX
PROGRAM TO CONVERT A BINARY FILE INTO HEX ON THE TERMINAL SCREEN
INTENDED TO CHECK THE OUTPUT OF COM2BIN. MOD

MODULE BintoHex

FROM Files IMPORT
Close, EOF, FILE, Open, ReadByte;

FROM InOut IMPORT
ReadString, WriteHex, WriteLn, WriteString;

FROM SYSTEM IMPORT
BYTE;

VAR
bin: BYTE;
binfile: FILE;
count: INTEGER;
filename: ARRAY CHAR OF CHAR;
i: INTEGER;

BEGIN (* BintoHex
WriteLn;
WriteString($What is the filename of the binary fileV);
WriteLn;
ReadString(filename);
IF Open(binfile, filename) THEN

count: =0000;
REPEAT
WriteHex(CARDINAL(count), 4);
FOR i: =1 TO 16 DO

IF NOT (EOF(binfile)). THEN
ReadByte(binfile, bin);
WriteString(l 1);
WriteHex(CARDINAL(bin), 2);
count: =count+1;

END;
END;
WriteLn;
UNTIL EOF(binfile);
Close(binfile);

ELSE
WriteString('File Not Opened');

END;
END BintoHex.

ccxxi Appendix 14 221

APPENDIX 15

15 Programs for the CYlindrical Homogeneous Processor

#include <stdio. h>

#define BIOS 1
#define ACK 255 /* Value used as acknowledgement of receipt
#define HEAD 254 /* Head of a data or results frame

struct jI short x; void(*addr)();
typedef struct j *TABLE;

TABLE bios, *p;

BIOSREG biosr;
CALLREG callr;

static int ack = ACK;
static int sack = 00;

maino
/* Driver to supply events to the ring and to

receive processed events from the ring
I
/* Arrays to hold incoming and outgo ing events
int frami[51;
int framo[51;
/* Total sent/received of each event type
/* Not used in this version
int sent[261;
int back[261;
int scount = 0;
/* Characters used as events */
static char sequence[10] lal, lgl , lbllc9, 'Pdl, lel, lfl, li", Ihl, Ojo
int len;
int *pointer;
int i;
void ccall();
p= (TABLE *) BIOS, bios (TABLE) (int) *p) - 3);
/* Determines the addresses for the status test routines
callr. call=&bios[CONSTI;
ccall(&callr);
pointer=callr. HL;
pointer+=20;
/* Sets up a standard frame
framo[O] HEAD;
framo[l] 01;
for

I
callr. call = pointer[O];
ccall(&callr);
if (callr. A OxFF)

callr. call &bios[READER];
ecall(&callr);

ccxxii Appendix 15

t I

222

if (callr. A != HEAD)
ack = ACK;

else if (callr. A == HEAD)

/* Take the incoming results
ccall(&callr);
len = callr. A;
for (i = O; i < len; ++i)

I
ccall(&callr);
/* Print the received character
printf("%lc", callr. A);

/* Send an acknowledge for the data
callr. call = &bios[PUNCH];
callr. C = ACK;
ccall (&callr);

/* If the previous data has been acknowledged then
/* send another one

if (ack)

ack = 00;
callr. call = &bios[PUNCH];
framo[21=sequence[scount++];
if (scount == 10) scount=O;
++sent[framo[2] - sall;
for (i=O; i < 3; ++i)

callr. C = framo[i];
ccall(&callr);

ccxxiii Appendix 15 223

#include <stdio. h>

idefine BIOS I
#define ACK 255
#define HEAD 254
#define UPDATES 500

/* Value used as acknowledgement of receipt
/* Head of a data or results frame */

struct jI short x; void(*addr)();
typedef struct j *TABLE;

TABLE bios, *p;

BIOSREG biosr;
CALLREG callr;

static int ack = ACK;
static int sack = 00;

maino
/* Driver to supply events to the ring and to

receive processed events from the ring

/* Arrays to hold incoming and outgoing events
int frami[51;
int framo[5);
int scount = 0;
int bcount = 0;
/* Totals sent/received of each event type
int sent[101;
int back[101;
/* The characters used as events
static char sequence[101 9a', Igl, lb9, lclldl, lel, 'fl. li9, 'h,,, 9j9
int len;
int *pointer;
int i;
void ccall();
p= (TABLE *) BIOS, bios (TABLE) (int) *p) - 3);
/* Determines the addresses for the status test routines
calir. call=&bios[CONSTI;
ccall(&callr);
pointer=callr. HL;
pointer+=20;
/* Sets up a standard frame
framo[O] = HEAD;
framo[l] = 01;
/* Initialises the sent and back arrays to zeros
/* And prints the headings of the event types
for (i = O; i < 10; ++i)

I
printf(11 %1cs %lcb", sequence[il, sequence[i]);
sent[i] = O; back[il = 0;

printf (11\n");
for

callr. call = pointer[O);
ccall(&callr);
if (callr. A == OxFF)

I

r-cxxiv Appendix 15 224

I
callr. call = &bios(READER];
ccall(&callr);
if (callr. A != HEAD)

ack = ACK;
else if (callr. A - HEAD)

I
/* Take the incoming result
ccall(&callr);
len = callr. A;
for (i = O; i < len; ++i)

ccall(&callr);
frami[i] = callr. A;
I

/* Send an acknowledgement for the data
callr. call = &bios[PUNCH];
callr. C = ACK;
ccall(&callr);
/* Update the totals
++bcount;
++back[frami[O] - 9A"];

/* If the previous data has been acknowledged then
/* send another one

if (ack)

ack = 00;
callr. call = &bios[PUNCH];
framo[21=sequence[scount++];
if (scount == 10) scount=O;
++sent[framo[2] - 2a9l;
for (i=O; i < 3; ++i)

callr. C = framo[i];
ccall(&callr);
I

/* After UPDATES events have been received print a
/* Summary of the totals so far

if (bcount>UPDATES)

bcount = 0;
for (i = O; i < 10; ++i)

I
printf("%4d", sent[il);
printf("%4d", back[il);

printf("\n");

ccxxv Appendix 15 225

#define ACK 255 /* Value used as acknowledgement of receipt
#define HEAD 254 /* Head of a data or results frame */

static short usernproc = 3;

finclude "Proclfb. h"
#include "Proc2fb. h"

extern int rtbyteo;
extern int stbyteo;
extern int rwbyteo;
extern void swbyteo;

/* Shared variables
/* Acknowledge requ
/* (or results) can
static short ackl =
static short ack2 =
static short ack4 =
static short ack8 =

for handshaking */
ired before any more data
be sent
ACK;
ACK;
ACK;
ACK;

/* Send an acknowledge as soon as possible
static short sackl = 00;
static short sack2 = 00;
static short sack4 = 00;
static short sack8 = 00;

/* Processor ready for input

static short pip = 01;

procl()
/* Data Routing Process
I
int rdata = 0;
int ndata = 0;
int len;
int i;
/* COMMS 1 BASED ALGORITHM
for

do

if (! ndata)

testl:
switch(ndata = rtbyte(0,1))

I
case ACK: ackl = ACK;

goto testl;
case HEAD: break;
default: ndata = 00;

break;

if ! rdata)

test4:

ccxxvi Appendix 15 226

switch(rdata = rtbyte(0,4))

case ACK: ack4 = ACK;
goto test4-,

case HEAD: break;
default: rdata = 00;

break;

if (ndata && pip)
I
pip = 0;
swbyte(1,1, HEAD);
swbyte(1,1, (len = rwbyte(0,1)));
for (i=O; i < len; ++i)

swbyte(1,1, rwbyte(0,1));
sackl = 01;
ndata = 00;

else if (rdata && pip)

pip = 0;
swbyte(1,1, HEAD);
swbyte(1,1, (len = rwbyte(0,4)));
for (i=O; i < len; ++i)

swbyte(1,1, rwbyte(0,4));
sack4 = 01;
rdata = 00;

if (ack2 && ndata)

ack2 = 00;
swbyte(0,2, HEAD);
swbyte(0,2, (len = rwbyte(0,1)));
for (i = O; i < len; ++i)

swbyte(0,2, rwbyte(0,1));
sackl = 01;
ndata = 00;

else if (ack2 && rdata)
I
ack2 = 00;
swbyte(0,2, HEAD);
swbyte(0,2, (Ien = rwbyte(0,4)));
for (i = O; i < len; ++i)

swbyte(0,2, rwbyte(0,4));
sack4 = 01;
rdata = 00;

if (ack8 && ndata)

ack8 - 00;
swbyte(0,8, HEAD);
swbyte(0,8, (len = rwbyte(0,1)));
for (i = 0; 1 < len; ++i)

t

ccxxvii Appendix 15 227

swbyte(0,8, rwbyte(0,1));
sackl = 01;
ndata = 00;

else if (ack8 && rdata)

ack8 = 00;
swbyte(0,8, HEAD);
swbyte(0,8, (len = rwbyte(0,4)));
for (i = O; i < len; ++i)

swbyte(0,8, rwbyte(0,4));
sack4 = 01;
rdata = 00;

if (sack2) (sack2 = 00; swbyte(0,2, ACK);)
if (sack8) (sack8 = 00; swbyte(0,8, ACK);)
/* Doesn't want to work without this loop in
I

while (ndata 11 rdata);

proc2()
/* Results routing process

int rresu = 0;
int nresu = 0;
int len2;
int 12;
for

do

if ! rresu)

test2:
switch(rresu rtbyte(0,2))

case ACK: ack2 = ACK;
goto test2;

case HEAD: break;
default: rresu = 00;

break;

if ! nresu)

test8:
switch(nresu = rtbyte(0,8))

case ACK: ack8 = ACK;
goto test8;

case HEAD: break;
default: nresu = 00;

break;

ccxxviii Appendix 15 228

if (ackl && (rtbyte(2,1) HEAD))

ackl = 00;
swbyte(0,1, HEAD);
swbyte(0,1, (len2 = rwbyte(2,1)));
for (i2=0; i2 < len2; ++i2)

swbyte(O, I, rwbyte(2,1));

else if (ack4 && (rtbyte(2,1) == HEAD))

ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (len2 = rwbyte(2,1)));
for (12=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(2,1));

if (rresu && ackl)

ackl = 00;
swbyte(O, I, HEAD);
swbyte(0,1, (len2 = rwbyte(0,2)));
for (i2=0; i2 < len2; ++i2)

swbyte(O, I, rwbyte(0,2));
sack2 = 01;
rresu = 00;

else if (rresu && ack4)
I
ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (Ien2 = rwbyte(0,2)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(0,2));
sack2 = 01;
rresu = 00;

if (nresu && ackl)

ackl = 00;
swbyte(0,1, HEAD);
swbyte(0,1, (len2 = rwbyte(0,8)));
for (i2=0; i2 < len2; ++i2)

swbyte(O, I, rwbyte(0,8));
sack8 = 01;
nresu = 00;

else if (nresu && ack4)
I
ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (len2 = rwbyte(0,8)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(0,8));
sack8 = 01;

r-cxxix Appendix 15 229

nresu 00;

if (sackl) (sacki = oo; swbyte(O, I, ACK);)
if (sack4) (sack4 = 00; swbyte(0,4, ACK);)
/* Doesn't want to work without this loop in

while(rresu 11 nresu);

proc3()
/* Event Processing Process
I
int frami[51;
int framo[5];
int i3jen3;
for

/* Waits for a data packet
do

len3=rwbyte(1,1);
while(len3 != HEAD);
len3=rwbyte(1,1);
for(i3=0; i3 < len3; ++i3)

frami(i31=rwbyte(I, 1);
/* Kills off a big chunk of processing time
for(i3=0; i3 < 1000; ++i3)

/* Changes case of characters to show somethings been done
for(i3=0; i3 < len3; ++i3)

framo[i31=frami[i31+(IAI-IaI);
pip = 01;
/* Sends out finished results
swbyte(2,1, HEAD);
swbyte(2,1, len3);
for(i3=0; i3 < len3; ++i3)

swbyte(2,1, framo[i3l);

ccxxx Appendix 15 230

#define ACK 255 /* Value used as acknowledgement of receipt
#define HEAD 254 /* Head of a data or results frame */

static short usernproc = 3;

#include "Proclfb. h"
#include "Proc2fb. h"

extern int rtbyteo;
extern int stbyteo;
extern int rwbyteo;
extern void swbyteo;

/* Shared variables
/* Acknowledge requ
/* (or results) can
static short ackl =
static short ack2 =
static short ack4 =
static short ack8 =

for handshaking */
ired before more data

be sent
ACK;
ACK;
ACK;
ACK;

/* Send an Acknowledge as soon as possible
static short sackl = 00;
static short sack2 = 00;
static short sack4 = 00;
static short sack8 - 00;

/* Processor ready for input
static short pip = 01;

procl()
/* Data Routing Process

int ndata = 0;
int rdata = 0;
int len;
int i;
/* COMMS 2 BASED ALGORITHM
for

do

if (! rdata)

test4:
switch(rdata - rtbyte(0,4))

I
case ACK: ack4 = ACK;

goto test4;
case HEAD: break;
default: rdata = 00;

break;

if (! ndata)

testl:

r-exxxi Appendix 15 231

switch(ndata = rtbyte(0,1))
I
case ACK: ackI = ACK;

goto testl;
case HEAD: break;
default: ndata = 00;

break;

if (rdata && pip)

pip = 0;
swbyte(1,1, HEAD);
swbyte(1,1, (len = rwbyte(0,4)));
for (i=O; i < len; ++i)

swbyte(1,1, rwbyte(0,4));
sack4 - 01;
rdata = 00;

else if (ndata && pip)

pip = 0;
swbyte(1,1, HEAD);
swbyte(1,1, (len = rwbyte(0,1)));
for (i=O; i < len; ++i)

swbyte(1,1, rwbyte(0,1));
sackl = 01;
ndata = 00;

if (ack2 && rdata)

ack2 = 00;
swbyte(0,2, HEAD);
swbyte(0,2, (Ien = rwbyte(0,4)));
for (i = O; i < len; ++i)

swbyte(0,2, rwbyte(0,4));
sack4 = 01;
rdata = 00;

else if (ack2 && ndata)

ack2 = 00;
swbyte(0,2, HEAD);
swbyte(0,2, (Ien = rwbyte(0,1)));
for (i = 0; 1 < len; ++i)

swbyte(0,2, rwbyte(0,1));
sackl = 01;
ndata = 00;

if (ack8 && rdata)

ack8 = 00;
swbyte(0,8, HEAD);
swbyte(0,8, (len = rwbyte(0,4)));
for (i = O; i < len; ++i)

ccxxxii Appendix 15 232

swbyte(0,8, rwbyte(0,4));
sack4 = 01;
rdata = 00;

else if (ack8 && ndata)
I
ack8 = 00;
swbyte(0,8, HEAD);
swbyte(0,8, (Ien = rwbyte(0,1)));
for (i = O; i < len; ++i)

swbyte(0,8, rwbyte(0,1));
sackl = 01;
ndata = 00;

if (sack2) Isack2 = 00; swbyte(0,2, ACK);)
if (sack8) (sack8 = 00; swbyte(0,8, ACK);)
/* Doesn't want to work without this loop in

while (rdata 11 ndata);

}
proc2 ()
/* Results routing process

int nresu = 0;
int rresu = 0;
int len2;
int, i2;
for

do

if I rresu)

test2:
switch(rresu rtbyte(0,2))

case ACK: ack2 = ACK;
goto test2;

case HEAD: break;
default: rresu = 00;

break;

if I nresu)

test8:
switch(nresu = rtbyte(0,8))

case ACK: ack8 = ACK;
goto test8;

case HEAD: break;
default: nresu = 00;

break;

cr-xxxiii Appendix 15 233

}
if (ack4 && (rtbyte(2,1) == HEAD))

ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (len2 = rwbyte(2,1)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(2,1));

else if (ackI && (rtbyte(2, I) == HEAD))

ackl = 00;
swbyte(0,1, HEAD);
swbyte(0,1, (len2 = rwbyte(2,1)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,1, rwbyte(2,1));

if (rresu && ack4)
I
ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (Ien2 = rwbyte(0,2)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(0,2));
sack2 = 01;
rresu = 00;

else if (rresu && ackl)

ackl = 00;
swbyte(O, I, HEAD);
swbyte(0,1, (len2 = rwbyte(0,2)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,1, rwbyte(0,2));
sack2 = 01;
rresu = 00;

if (nresu && ack4)

ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (Ien2 = rwbyte(0,8)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(0,8));
sack8 = 01;
nresu = 00;

else if (nresu && ackl)
I
ackl = 00;
swbyte(0,1, HEAD);
swbyte(0,1, (Ien2 = rwbyte(0,8)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,1, rwbyte(0,8));
sack8 = 01;

ccxxxiv Appendix 15 234

nresu = 00;

if (sack4) (sack4 = oo; swbyte(0,4, ACK);)
if (sackl) (sackl = 00; swbyte(0,1, ACK);)
/* Doesn't seem to want to work without this loop in

while(rresu 11 nresu);

}
proc3()
/* Event Processing Process

int frami[51;
int framo[51;
int, 13, len3;
for

/* Waits for a data packet
do

len3=rwbyte(1, I);
while(len3 I= HEAD);
len3=rwbyte(1,1);
for(i3=0; i3 < len3; ++i3)

frami[i3j=rwbyte(1,1);
/* Kills a big chunk of processing time
for(i3=0; i3 < 1000; ++i3)

/* Changes case to show somethings been done
for(i3=0; i3 < len3; ++i3)

framo[i31=frami[i31+(IA'-IaI);
pip = 01;
/* Sends out finished result
swbyte(2,1, HEAD);
swbyte(2,1, len3);
for(i3=0; i3 < len3; ++i3)

swbyte(2,1, framo[i3l);

r-exxxv Appendix 15 235

#define ACK 255 /* Value used as acknowledgement of receipt
#define HEAD 254 /* Head of a data or results frame */

static short usernproc = 3;

#include "proelfb. h"
iinclude "proc2fb. h"

extern int rtbyteo;
extern int stbyteo;
extern int rwbyteo;
extern void swbyteo;

/* Shared variables
/* Acknowledge requ
/* (or results) can
static short ackl =
static short ack2 =
static short ack4 =
static short ack8 =

for handshaking */
ired before any more data

be sent
ACK;
ACK;
ACK;
ACK;

/* Send an acknowledge as soon as possible
static short sackl = 00;
static short sack2 = 00;
static short sack4 = 00;
static short sack8 = 00;

/* Processor read for input
static short pip = 01;

procl()
/* Data Routing Process
I
int rdata = 0;
int ndata = 0;
int len;
int i;
/* COMMS 3 BASED ALGORITHM
for

I
do

if (! ndata)
I
testl:
switch(ndata = rtbyte(0,1))

case ACK: ackl - ACK;
goto testl;

case HEAD: break;
default: ndata = 00;

break;

if I rdata)

test4:

ccxxxvi Appendix 15 236

switch(rdata = rtbyte(0,4))

case ACK: ack4 = ACK;
goto test4;

case HEAD: break;
default: rdata = 00;

break;

if (ndata && Pip)

pip = 0;
swbyte(1,1, HEAD);
swbyte(1,1, (len = rwbyte(0,1)));
for (i=o; i < len; ++i)

swbyte(1,1, rwbyte(0,1));
sackl = 01;
ndata = 00;

else if (rdata && pip)
I
pip = 0;
swbyte(1,1, HEAD);
swbyte(1,1, (len = rwbyte(0,4)));
for (i=O; i < len; ++i)

swbyte(1,1, rwbyte(0,4));
sack4 = 01;
rdata = 00;
I

if (ack8 && ndata)

ack8 = 00;
swbyte(0,8, HEAD);
swbyte(0,8, (Ien = rwbyte(0,1)));

-for (i = O; i < len; ++i)
swbyte(0,8, rwbyte(0,1));

sackl = 01;
ndata = 00;

else if (ack8 && rdata)

ack8 = 00;
swbyte(0,8, HEAD);
swbyte(0,8, (len = rwbyte(0,4)));
for (i = O; i < len; ++i)

swbyte(0,8, rwbyte(0,4));
sack4 = 01;
rdata = 00;

if (ack2 && ndata)
I
ack2 = 00;
swbyte(0,2, HEAD);
swbyte(0,2, (len = rwbyte(0,1)));
for (i = O; i < len; ++i)

ccxxxvii Appendix 15 237

swbyte(0,2, rwbyte(0,1));
sackl - 01;
ndata = 00;

else if (ack2 && rdata)
I
ack2 - 00;
swbyte(0,2, HEAD);
swbyte(0,2, (len = rwbyte(0,4)));
for (i = O; i < len; ++i)

swbyte(. 0,2, rwbyte(0,4));
sack4 = 01;
rdata = 00;

if (sack8) (sack8 = oo; swbyte(0,8, ACK);)
if (sack2) Isack2 = oo; swbyte(0,2, ACK);)
/* Doesn$t want to work without this loop in

while (ndata 11 rdata);

I

proc2 ()
/* Results routing process
I
int nresu = 0;
int rresu = 0;
int len2;
int i2;
for

do

if (! nresu)

test8:
switch(nresu rtbyte(0,8))

case ACK: ack8 = ACK;
goto test8;

case HEAD: break;
default: nresu = 00;

break;

if ! rresu)

test2:
switch(rresu = rtbyte(0,2))

case ACK: ack2 = ACK;
goto test2;

case HEAD: break;
default: rresu = 00;

break;

ccxxxviii Appendix 15 238

I
if (ackI && (rtbyte(2, I) == HEAD))

I
ackl = 00;
swbyte(0,1, HEAD);
swbyte(0,1, (Ien2 = rwbyte(2,1)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,1, rwbyte(2,1));

else if (ack4 && (rtbyte(2, I) == HEAD))

ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (len2 = rwbyte(2,1)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(2,1));

if (nresu && ackl)

ackl = 00;
swbyte(0,1, HEAD);
swbyte(0,1, (Ien2 = rwbyte(0,8)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,1, rwbyte(0,8));
sack8 = 01;
nresu - 00;

else if (nresu && ack4)

ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (Ien2 = rwbyte(0,8)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(0,8));
sack8 = 01;
nresu = 00;
I

if (rresu && ackl)

ackl = 00;
swbyte(0,1, HEAD);
swbyte(0,1, (Ien2 = rwbyte(0,2)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,1, rwbyte(0,2));
sack2 = 01;
rresu = 00;

else if (rresu && ack4)
I
ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (Ien2 = rwbyte(0,2)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(0,2));
sack2 - 01;

ccxxxix Appendix 15 239

rresu = 00;
I

if (sackl) (sackl = oo; swbyte(0,1, ACK);)
if (sack4) (sack4 = oo; swbyte(0,4, ACK);)
/* Doesn't want to work without this loop in

while(nresu 11 rresu);

proc3 ()
/* Event Processing Process

int frami[5];
int framo[5];
int i3, len3;
for

I
/* Waits for a data packet
do

len3=rwbyte(1,1);
while(len3 I= HEAD);
len3=rwbyte(1,1);
for(i3=0; i3 < len3; ++i3)

frami(i3]=rwbyte(l, 1);
/* Kills off a big chunk of processing time
for(i3=0; i3 < 1000; ++i3)

/* Changes case of characters to show somethings been done
for(i3=0; i3 < len3; ++i3)

- framo[i31=frami[i3j+(IAI-Ia9);
pip = 01;
/* Sends out finished result
swbyte(2,1, HEAD);
swbyte(2,1, len3);
for(13=0; i3 < len3; ++i3)

swbyte(2,1, framo[13l);

ccxl Appendix 15 240

idefine ACK 255 /* Value used as acknowledgement of receipt
#define HEAD 254 /* Head of data or results frame */

static short usernproc = 3;

#include "proclfb. h"
#include "proc2fb. h"

extern int rtbyteo;
extern int stbyteo;
extern int rwbyteo;
extern void swbyteo;

/* Shared variables
/* Acknowledge requ
/* (or results) can
static short ackl =
static short ack2 =
static short ack4 -
static short ack8 =

for handshaking */
ired before any more data
be sent
ACK;
ACK;
ACK;
ACK;

/* Send an acknowledge as soon as possible
static short sackl = 00;
static short sack2 = 00;
static short sack4 = 00;
static short sack8 = 00;

/* Processor ready for input
static short pip = 01;

procl()
/* Data Routing Process

int ndata = 0;
int rdata = 0;
int len;
int i;
/* COMMS 4 BASED ALGORITHM
for

do

if (! rdata)

test4:
switch(rdata = rtbyte(0,4))

case ACK: ack4 = ACK;
goto test4;

case HEAD: break;
default: rdata = 00;

break;

if Indata)

testl:

ccxli Appendix 15 241

switch(ndata = rtbyte(0,1))
I
case ACK: ackI = ACK;

goto testl;
case HEAD: break;
default: ndata = 00;

break;

if (rdata && pip)
I
pip = 0;
swbyte(l, I, HEAD);
swbyte(1,1, (len = rwbyte(0,4)));
for (i=O; i < len; ++i)

swbyte(1,1, rwbyte(0,4));
sack4 = 01;
rdata = 00;
I

else if (ndata && pip)

pip = 0;
swbyte(1,1, HEAD);
swbyte(1,1, (len = rwbyte(0,1)));
for (i=O; i < len; ++i)

swbyte(1,1, rwbyte(0,1));
sackl = 01;
ndata = 00;
I

if (ack8 && rdata)
I
ack8 = 00;
swbyte(0,8, HEAD);
swbyte(0,8, (len = rwbyte(0,4)));
for (i = O; i < len; ++i)

swbyte(0,8, rwbyte(0,4));
sack4 = 01;
rdata = 00;

else if (ack8 && ndata)

ack8 = 00;
swbyte(0,8, HEAD);
swbyte(0,8, (len = rwbyte(0,1)));
for (i = O; i < len; ++i)

swbyte(0,8, rwbyte(0,1));
sackl = 01;
ndata = 00;

if (ack2 && rdata)

ack2 = 00;
swbyte(0,2, HEAD);
swbyte(0,2, (len = rwbyte(0,4)));
for (i = O; i < len; ++i)

ccxlii Appendix 15
, 242

swbyte(0,2, rwbyte(0,4));
sack4 = 01;
rdata = 00;

else if (ack2 && ndata)

ack2 - 00;
swbyte(0,2, HEAD);
swbyte(0,2, (Ien = rwbyte(0,1)));
for (i = O; i < len; ++i)

swbyte(0,2, rwbyte(0,1));.
sackl = 01;
ndata = 00;
I

if (sack8) (sack8 = 00; swbyte(0,8, ACK);)
if (sack2) (sack2 = 00; swbyte(0,2, ACK);)
/* Doesn9t want to work without this loop in

while (rdata 11 ndata);

proc2()
/* Results routing process
I
int nresu = 0;
int rresu = 0;
int len2;
int 12;
for

do

if ! nresu)

test8:
switch(nresu rtbyte(0,8))

I
case ACK: ack8 = ACK;

goto test8;
case HEAD: break;
default: nresu = 00;

break;

if I rresu)

test2:
switch(rresu = rtbyte(0,2))

I
case ACK: ack2 = ACK;

goto test2;
case HEAD: break;
default: rresu - 00;

break;

ccxliii Appendix 15 243

if (ack4 && (rtbyte(2,1) - HEAD))

ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (len2 = rwbyte(2,1)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(2,1));

else if (ackl && (rtbyte(2, I) == HEAD))
I
ackI = 00;
swbyte(O, I, HEAD);
swbyte(0,1, (len2 = rwbyte(2,1)));
for (i2=0; i2 < len2; ++i2)

swbyte(O, I, rwbyte(2,1));

if (nresu && ack4)

ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (len2 = rwbyte(0,8)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(0,8));
sack8 = 01;
nresu = 00;

else if (nresu && ackl)

ackl = 00;
swbyte(0,1, HEAD);
swbyte(0,1, (len2 = rwbyte(0,8)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,1, rwbyte(0,8));
sack8 = 01;
nresu = 00;

if (rresu && ack4)
I
ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (len2 = rwbyte(0,2)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(0,2));
sack2 = 01;
rresu = 00;

else if (rresu && ackl)
I
ackl = 00;
swbyte(0,1, HEAD);
swbyte(0,1, (len2 = rwbyte(0,2)));
for (12=0; i2 < len2; ++i2)

swbyte(0,1, rwbyte(0,2));
sack2 = 01;

ccxliv Appendix 15 244

rresu = 00;

if (sack4) (sack4 = 00; swbyte(0,4, ACK);)
if (sackl) (sackl = 00; swbyte(0,1, ACK); l
/* Doesn9t want to work without this loop in

while(nresu 11 rresu);

I

proc3()
/* Event Processing Process

int frami[5];
int framo[5];
int 13, len3;
for

/* Waits for a data packet
do

len3=rwbyte(1,1);
while(len3 != HEAD);
len3=rwbyte(1,1);
for(i3=0; i3 < len3; ++i3)

frami[i3]=rwbyte(1,1);
/* Kills off a big chunk of processing time
for(i3=0; i3 < 1000; ++i3)

/* Changes case of characters to show somethings been done
for(i3=0; i3 < len3; ++i3)

framo[i31=frami[i3j+(IAI-IaI);
pip = 01;
/* Sends out finished result
swbyte(2,1, HEAD);
swbyte(2,1, len3);
for(i3=0; i3 < len3; ++i3)

swbyte(2,1, framo[i3l);

ccxlv Appendix 15 245

#define ACK 255 /* Value used as acknowledgement of receipt
Idefine HEAD 254 /* Head of a data or results frame */

static short usernproc = 3;

#include "proclfb. h"
#include "proc2fb. h"

extern int rtbyteo;
extern int stbyteo;
extern int rwbyteo;
extern void swbyteo;

/* Shared variables
/* Acknowledge requ
/* (or results) can
static short ackl -
static short ack2 =
static short ack4 =
static short ack8 =

for handshaking */
ired before any more data
be sent
ACK;
ACK;
ACK;
ACK;

/* Send an acknowledge as soon as possible
static short sackl = 00;
static short sack2 = 00;
static short sack4 = 00;
static short sack8 = 00;

/* Processor read for input
static short pip = 01;

procl()
/* Data Routing Process
I
int rdata = 0;
int ndata = 0;
int len;
int i;
/* COMMS 4 BASED ALGORITHM
for

I
do

if t! raata)

test4:
switch(rdata = rtbyte(0,4))

I
case ACK: ack4 = ACK;

goto test4;
case HEAD: break;
default: rdata - 00;

break;

if ! ndata)

testl:

ccxlvi Appendix 15 246

switch(ndata = rtbyte(0,1))

case ACK: ackl = ACK;
goto testl;

case HEAD: break;
default: ndata = 00;

break;

if (rdata && pip)
I
pip = 0;
swbyte(1,1, HEAD);
swbyte(1,1, (len = rwbyte(9,4)));
for (i=O; i < len; ++i)

swbyte(1,1, rwbyte(0,4));
sack4 = 01;
rdata = 00;

else if (ndata && pip)
I
pip = 0;
swbyte(1,1, HEAD);
swbyte(1,1, (len = rwbyte(0,1)));
for (i=O; i < len; ++i)

swbyte(1,1, rwbyte(0,1));
sackl = 01;
ndata = 00;

if (ack8 && rdata)

ack8 - 00;
swbyte(0,8, HEAD);
swbyte(0,8, (len = rwbyte(0,4)));
for (i = O; i < len; ++i)

swbyte(0,8, rwbyte(0,4));
sack4 = 01;
rdata = 00;

else if (ack8 && ndata)

ack8 - 00;
swbyte(0,8, HEAD);
swbyte(0,8, (len = rwbyte(0,1)));
for (i = O; i < len; ++i)

swbyte(0,8, rwbyte(0,1));
sackl = 01;
ndata = 00;

if (ack2 && rdata)

ack2 = 00;
swbyte(0,2, HEAD);
swbyte(0,2, (len = rwbyte(0,4)));
for (i = O; i < len; ++i)

ccxlvii Appendix 15 247

swbyte(0,2, rwbyte(0,4));
sack4 = 01;
rdata = 00;

else if (ack2 && ndata)
I
ack2 = 00;
swbyte(0,2, HEAD);
swbyte(0,2, (len = rwbyte(0,1)));
for (i = O; i < len; ++i)

swbyte(0,2, rwbyte(0,1));
sackl = 01;
ndata = 00;

if (sack8) (sack8 = 00; swbyte(0,8, ACK);)
if (sack2) Isack2 = 00; swbyte(0,2, ACK);)
/* Doesn2t want to work without this loop in

while (rdata 11 ndata);

}

proc2()
/* Results routing process
I
int nresu = 0;
int rresu = 0;
int len2;
int i2;
for

I
do

if (! nresu)

test8:
switch(nresu rtbyte(0,8))

I
case ACK: ack8 = ACK;

goto test8;
case HEAD: break;
default: nresu = 00;

break;

if I rresu)

test2:
switch(rresu = rtbyte(0,2))

I
case ACK: ack2 = ACK;

goto test2;
case HEAD: break;
default: rresu = 00;

break;

ccxlviii Appendix 15 248

if (ack4 && (rtbyte(2,1) == HEAD))
I
ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (len2 = rwbyte(2,1)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(2,1));

else if (ackl && (rtbyte(2,1) == HEAD))

ackl = 00;
swbyte(0,1, HEAD);
swbyte(0,1, (len2 - rwbyte(2,1)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,1, rwbyte(2,1));

if (nresu && ack4)

ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (Ien2 = rwbyte(0,8)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(0,8));
sack8 = 01;
nresu = 00;

else if (nresu && ackl)

ackl = 00;
swbyte(0,1, HEAD);
swbyte(0,1, (len2 = rwbyte(0,8)));
for (12=0; i2 < len2; ++i2)

swbyte(0,1, rwbyte(0,8));
sack8 = 01;
nresu = 00;

if (rresu && ack4)
I
ack4 = 00;
swbyte(0,4, HEAD);
swbyte(0,4, (Ien2 = rwbyte(0,2)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,4, rwbyte(0,2));
sack2 = 01;
rresu = 00;

else if (rresu && ackl)

ackl = 00;
swbyte(0,1, HEAD);
swbyte(0,1, (Ien2 = rwbyte(0,2)));
for (i2=0; i2 < len2; ++i2)

swbyte(0,1, rwbyte(0,2));
sack2 = 01;

ccxlix Appendix 15 249

rresu - 00;

if (sack4) Isack4 = 00; swbyte(0,4, ACK);)
if (sackl) Isackl = 00; swbyte(0,1, ACK); l
/* Doesn't want to work without this loop in

while(nresu 11 rresu);
I

I

proc3 ()
/* Event Processing Process

int frami[5);
int framo[5];
int i3, len3;
for

/* Waits for a data packet
do

len3=rwbyte(l, l);
while(len3 != HEAD);
len3=rwbyte(l, l);
for(i3=0; i3 < len3; ++i3)

framiji3]=rwbyte(1, I);
/* Kills off a big chunk of processing time
/* Version with weighted processing */
for(13=0; i3 < (100*(frami[Oj-IaI)); ++i3)

/* Changes case of characters to show somethings been done
for(13=0; i3 < len3; ++i3)

framo[i3]=framiji31+(IAI-IaI);
pip - 01;
/* Sends out finished result
swbyte(2,1, HEAD);
swbyte(2,1, len3);
for(i3=0; i3 < len3; ++i3)

swbyte(2,1, framo[i3l);

ccl Appendix 15 250

APPENDIX 16

16 Programs for the Distributed Depth First Search Scan

#include <stdio. h>

Idefine BIOS 1

Idefine VCC IZI /* Visit Call Code
#define VRC IXI /* Value Request Code
Idefine NN IYI /* New Now
Idefine NC IW9 /* Not Connected

#define MAXNODES 10 /* Maximum number of nodes in the system

struct jI short x; void(*addr)();
typedef struct j *TABLE;

TABLE bios, *p;

BIOSREG biosr;
CALLREG callr;

/* Adjacency Matrix of the graph
static short adj[101[101;

maino
/* Depth First Search - Driver Code

int now = 'a';
int f, t;
int vall, tcc, val2;
void ccall();
/* f-from t-to
for (f = O; f <= MAXNODES; ++f)

for (t = O; t <= MAXNODES; ++t)
adj[t] 0; /* Initialise Adjacency Matrix

p= (TABLE BIOS, bios (TABLE) (int) *p) 3);
/* Send Visit Call Code
callr. call = &bios[PUNCH];
callr. C = VCC;
ccall(&callr);
/* Send the value of now
callr. call = &bios[PUNCH);
callr. C = now;
ccall(&callr);
do

/* Receive all reports ofconnection
callr. call - &bios[READER];
ccall(&callr);
/* If New Now received then break
if (callr. A == NN) break;
vall = callr. A;
ccall(&callr);
/* If New Now received then break

celi Appendix 16 251

if (callr. A - NN) break;
tce - callr. A;
ccall(&callr);
/* If New Now received then break
if (callr. A - NN) break;
va12 = callr. A;
if (vall I= NC && va12 I- NC)

/* Update Adjacency Matrix
adjtvall-lal][val2-lall = 10

while (callr. A != NN);
/* Receive the New Now value
ccall(&callr);
now = callr. A;
printf("\nTotal Number of connected
/* Print the Adjacency Matrix
printf("\n FROM\n
for (f = O; f < MAXNODES; ++f)

printf(II %4u", f);
printf("\n TO 11);
for (t = O; t < MAXNODES; ++t)

I
printf("\n %3u", t);
for (f - O; f < MAXNODES; ++f)

printf(II %4u", adj[tl);

adj[vall-lall[val2-lall + (tcc-909);

Nodes = %3u\n\n", now-lal);

printf("\n\nNote: Vertex 0 represents the connection point to the graph');
printf("\n The numbers indicate which links form the connection\n");

cciii Appendix'16 252

Idefine VCC 9ZI /* Visit Call Code
Idefine VRC IXI /* Value Request Code
idefine NN IYI /* New Now
idefine NC 2WI /* Not Connected

static short usernproc - 1;

extern int rtbyteo;
extern int stbyteo;
extern int rwbyteo;
extern void swbyteo;

static int now ;
static int val - a,;

procl()
/* Depth First Search - Node Code

int report
int ti - 01;
for

I
do /* Loop

if ((ti = ti*2) > 8) ti = 1;
report - rtbyte(O, ti);
I

while (report > 255); /* Until a value is received
/* If a value Request Code then return value
if (report - VRC) swbyte(O, ti, val);
/* If Value Call Code then visit answer
if (report -- VCC) vanswer(ti);

int valint(tv)
/* Value Interrogation
int tv;

int count = 0;
int report ;
swbyte(O, tv, VRC);
do

++count;
if ((report - rtbyte(O, tv)) < 256) break;

/* If a value is received then leave loop

while (count < 1024);
if (count - 1024)

/* If timeout then return Not Connected
return(NC);

else
/* If not timeout then return value of other node
return(report);

void veall(ti, te)

cciiii Appendix 16 253

/* Visit Call
int ti;
int tc;
I
int report;
int tr = 01
/* Send the value of now to the interrogated node
swbyte(O, tc, now);
/* Report the connection to the node being interrogated
swbyte(O, ti, val);
swbyte(O, ti, (tc + 909));
swbyte(O, ti, ++now);
do

do /* Loop

if ((tr = tr*2) > 8) tr 01;
report = rtbyte(o, tr);

while(report > 255); /* Until a value is received
/* Leave the loop if a new now is received
if (report - NN) break;
if (report - VRC)

/* If a Value Request Code is received then reply
/* This is essential to cope with circuits in the graph
swbyte(o, tr, val);

else
/* Send all reports of connection back to the
/* interrogating node
swbyte(O, ti, report);

I
while(report I- NN);
/* Receive the updated value of now
now - rwbyte(O, tc);

void vanswer(ti)
/* Visit Answer
int ti;
I
int to
int vi
/* Receive the value of now
now - rwbyte(O, ti);
vi = now-,
val - ++now;
/* Report the connection to the interrogating link
swbyte(O, ti, val);
swbyte(O, ti, (ti + 101));
swbyte(O, ti, vi);
/* For all links except the interrogating one
for (to = 01; to < 16; to = to*2)

if (to I- ti)

/* Interrogate the link
vi - valint(to);
if (vi -- 'a')

ccliv Appendix 16 254

/* Visit an unvisited node
swbyte(O, to, VCC);
veall(ti, to);

else

/* Report the connection to a visited node
/* or No - Connection
swbyte(O, ti, val);
swbyte(O, ti, (to + 101));
swbyte(O, ti, vi);

/* Send back an updated value of now
swbyte(O, ti, NN);
swbyte(O, ti, now);

cclv Appendix 16 255

Idefine VCC IZI /* Visit Call Code
Idefine VRC 9XI /* Value Request Code
Idefine NN IYI /* New Now
idefine NC IWI /* Not Connected

static short usernproc = 3;

finclude "proclbb. h"
finclude "proc2bb. h"

extern int rtbyteo;
extern int stbyteo;
extern int rwbyteo;
extern void swbyteo;

static int now ;
static int val = a;

procl()
/* Depth First Search - Node Code
/* MultiProcess Version
I
int report
int ti - 01;
for

do /* Loop

if ((ti - ti*2) > 8) ti = 1;
report = rtbyte(l, ti);

while (report > 255); /* Until a value is received
/* If Value Call Code then visit answer
if (report == VCC) vanswer(ti);

int valint(tv)
/* Value Interrogation
int tv;
I
int count - 0;
int report ;
swbyte(2, tv, VRC);
do

++count;
if ((report = rtbyte(l, tv)) < 256) break;

/* If a value is received then leave loop

while (count < 1024);
if (count - 1024)

/* If timeout then return Not Connected
return(NC);

else
/* If not timeout then return value of other node
return(report);

cclvi Appendix 16 256

void vcall(ti, tc)
/* visit call
int ti;
int tc;
I
int report;
int tr = 01
/* Send the value of now to the interrogated node
swbyte(2, tc, now);
/* Report the connection to the node being interrogated
swbyte(2, ti, val);
swbyte(2, ti, (tc + go,));
swbyte(2, ti, ++now);
do

do /* Loop

if Mr = tr*2) > 8) tr = 01;
report = rtbyte(l, tr);
I

while(report > 255); /* Until a value is received
/* Leave the loop if a new now is received
if (report NN) break;
if (report vRc)

/* If a Value Request Code is received then reply
/* This is essential to cope with circuits in the graph
swbyte(2, tr, val);

else
/* Send all reports of connection back to the
/* interrogating node
swbyte(2, ti, report);

while(rePort 1= NN); /* Receive the updated value of now
now m- rwbyte(l, tc);

void vanswer(ti)
/* Visit Answer
int ti;

int to
int vi
/* Receive the value of now
now - rwbyte(l. ti);
vi = now;
val = ++now;
/* Report the connection to the interrogating link
swbyte(2, ti, val);
swbyte(2, ti, (ti + *09));
swbyte(2, tiovi);
/* For all links except the interrogating one
for (to - 01; tO (16; to - to*2)

if (to I- ti)

/* Interrogate the link

ccivii Appendix 16 257

vi = valint(to);
if (vi - 'a')

I
/* Visit an unvisited node
swbyte(2, to, VCC);
vcall(ti, to);

else

/* Report the connection to a visited node
/* or No - Connection
swbyte(2, ti, val);
swbyte(2, ti, (to + 109));
swbyte(2, ti, vi);

/* Send back an updated value of now
swbyte(2, ti, NN);
swbyte(2, ti, now);

proc2()
/* Mixes VRC responses with normal data traffic

int t2 - 01;
int val2;
for

do /* Loop

if ((t2 - t2*2) > 8) t2 = 01;
if ((val2 = rtbyte(2, (t2*16))) > 255)

/* If no VRC response to send look for bytes from proci
VaJ2 = rtbyte(2, t2);

while(val2 > 255); /* Until a value is received
/* Send the byte out
swbyte(O, t2, val2);

proc3 ()
/* Value Request Code detection

int t3 - 01;
int val3;
for

do /* Loop
if ((t3 - t3*2) > 8) t3 - 01;

while((val3 = rtbyte(O, t3)) > 255);
/* Until a value is received

if (val3 - VRC)
/* If a Value Request Code is received then reply
swbyte(2, (t3*16), val);

else
/* if not then send the byte through to proci

cciviii Appendix 16 258

}
I

swbyte(l, t3, val3);

cclix Appendix 16 259

	327983_vol1
	327983_vol2

