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Abstract 

Leaf area index (LAI), defined as the one sided green leaf area per unit ground area, is 

a key parameter in ecosystem process models. Owing to the large area of the earth's 

surface that they occupy, savanna ecosystems represent the third largest terrestrial 

carbon sink. There is considerable uncertainty however, as to the functioning of these 

ecosystems, particularly as they respond to land cover changes. Consequently, 

ecosystem process models constitute one of the best methods available for 

investigating the effect this may have on terrestrial carbon cycling. If these models 

are to be used over large areas however, they need to be parameterised. 

This thesis develops a methodology to estimate LAI in savanna ecosystems, 

using remotely sensed earth observation (EO) data, laboratory bidirectional 

reflectance measurements (BRDF), physically based canopy reflectance models 
(CRMs), and artificial neural networks (ANN). First, the scattering behaviour of 

Kalahari soils was characterised, by making laboratory BRDF measurements. Soils 

were shown to be highly non-Lambertian. These measurements were then used to 

parameterise three different CRMs. Modelled reflectances were assessed with respect 

to Landsat ETM+ and Terra-MODIS reflectances. Results showed that a 1-D turbid 

medium provided the closest fit to the measurements. A series of model sensitivity 

analyses (SA) were performed, and it was shown that reflectance in the red and short- 

wave infrared displayed greatest sensitivity to LAI, sensitivity in the near-infrared was 

negligible. Model inversions were performed with ANN and different waveband 

combinations, and LAI was estimated. The results showed that LAI could be 

estimated with high accuracy, an RMSE of 0.3 1, and 0.18, from ETM+ and MODIS 

measurements, respectively. These results were promising, and with further 

improvements to models, coupled with more accurate input data, will see the use of 

EO data play an increasingly important role in understanding the functioning of these 

savanna ecosystems. 
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1 Introduction 

1.1 Research context 

Savannas may be loosely defined as tropical ecosystems with a continuous layer of 

grasses and a discontinuous layer of shrubs and/or trees, which may be rare or even 

absent under certain circumstances, or they may be represented almost entirely by 

shrubs (Solbrig 1991). Savannas occupy approximately 25 per cent of the Earth's total 

land surface (Matthews 1983), and approximately 40 per cent of the surface of the 

tropics, some 23 million km 2 (Cole 1986). Moreover, more than one-fifth of the 

world's population live in or around savanna areas (Frost et al. 1986). Savanna 

ecosystems are therefore, one of the most important terrestrial ecosystems in the 

world, yet, are the least well understood. They are subject to significant and 

increasing land use pressure from the communities that inhabit them, most often in the 

form of subsistence agriculture and commercial cattle grazing. This, combined with 

natural climatic variability has meant that savanna ecosystems have witnessed some of 

the most significant land transformations over the last century (Archer et al. 1995), 

specifically, a relative increase in the abundance of woody plant species at the expense 

of the grasses, termed 'bush' or 'woody encroachment' (Schlesinger et al. 1990, Archer 

1994, Scholes and Archer 1997, Laliberte et al. 2004). This is important since woody 

and grass materials contribute differently to biogeochernical processes and energy 

transfer between the earth surface and the atmosphere (Pielke and Avissar 1990, 

Sellers et al. 1997, Asner et al. 1998a, Fhbbard et al. 2001). 

Given the large areas that they cover, savanna ecosystems represent the third 

largest sink of terrestrial carbon, after tropical and boreal forests, sequestering 0.39 

Gigatonnes of carbon per year (Grace 2004). Consequently, savanna ecosystems play 

a significant role in the global carbon cycle (Schimel et al. 2001, Wofsy 2001). In the 

context of global climate change, there exists considerable uncertainty as to the effect 
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of changes in savanna structure and function (House et al. 2004), with some 

researchers attributing increases in carbon sequestration (therefore a sink) to woody 

plant invasion (e. g. Pacala et al. 2001), while others suggest a reduction in carbon 

stored on land (therefore a source) because of the effect that changes above ground, 

have on processes below ground, such that more carbon is lost from the soil than is 

stored in the plant (Jackson et al. 2002). Information on these carbon sinks or stores 

may be obtained through the use of ecosystem process models (Running & Coughlan 

1988, Potter et al. 1993, Melillo et al. 1995, Prentice et al. 2000). These models 

require various biophysical parameters of vegetation as input to drive the model, 

including the leaf area index (LAI), fraction of photosynthetically absorbed radiation 

(FPAR), and ground vegetation cover (fcover). Clearly, for these models to be 

applied over large areas information about these biophysical parameters is also 

required over large areas. Additionally, incorporating LAI into climate models has 

been shown to lead to improved simulations of near-surface climate (Buermann et al. 

2001). Satellite remote sensing data therefore provides an excellent means of 

providing information on these biophysical parameters, over large areas and 

repeatedly. 

The extraction or retrieval of biophysical parameters from remotely sensed 

earth observation (EO) data, has developed from relatively simple empirically based 

vegetation index (VI) approaches to the use of more physically based canopy 

reflectance models (CRM), inverted using an advanced optimisation routine (Goel 

1988, Myneni & Williams 1994, Myneni et al. 1995a, Kimes et al. 2000). The VI 

approach is limited in its generality, since the relationships are often site- and time- 

specific, and subject to the confounding influences of variable soil backgrounds and 

standing litter, especially in low LAI semi-arid ecosystems (Huete 1988, van Leeuwen 

& Huete 1996, North 2002). Consequently, accurate results may not be achievable 
(Gobron et al. 1997). The use of a CRM inversion represents a more powerful means 

to estimate LAI than the VI approach since it is based on fewer hypotheses and more 

physical principles. Higher accuracy, and greater generality is therefore to be 

expected from a physically based CRM inversion. 
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1.2 Research aim 

The aim of this research is to develop a methodology to estimate LAI in savanna 

vegetation, through the inversion of a CRM with an artificial neural network (ANN), 

and Landsat Enhanced Thematic Mapper (ETM+) and Terra-Moderate resolution 

Imaging Spectrometer (MODIS) surface reflectances. This is based on studies at 

seven field plots in the Kgalagadi district of Botswana, where there is a semi-arid 

climate, and a range of different savanna vegetation types. While the MODIS 

LAI/FPAR product has been providing data since February 2000 (Privette et al. 2001), 

these are at the 1km spatial resolution. Additionally, the MODIS LAI product relies 

solely on the use of red and near infra-red (NIR) reflectances, which is likely to be a 

sub-optimal waveband set in savanna vegetation which are largely found against 

bright soil backgrounds, such that there is low contrast between vegetation and soil. 

Exploiting more wavebands of the MODIS sensor and using a different inversion 

method may lead to the generation of more accurate LAI estimates. In addition, high 

spatial resolution estimates of LAI obtained from ETM+ data may be extendible to the 

archive of Landsat TM data, thus permitting historical analysis. 

The use and application of remotely sensed EO data to obtain quantitative 

estimates of savanna vegetation have been relatively limited. Studies have generally 

looked at: 

* Relationships between spectral data and vegetation (Graetz & Gentle 1982, 

Choudhury & Tucker 1987, Prince & Astle 1986, Prince & Tucker, 1986, 

Ringrose & Matheson 1987,1991, Duncan et al. 1993, Palmer & van Rooyen 

1998, Schmidt & Kamieli 2000). 

e Community type differentiation (Kremer & Running 1993, Trodd & Dougill 1998, 

Chopping et al. 2002, Lu et al. 2003), 

0 Spectral mixture models to obtain estimates of the relative proportions of 

vegetation in the landscape (Smith et al. 1990, van Leeuwen et al. 1997, Drake et 

al. 1999, Elmore et al. 2000). 

9 Canopy cover estimation using VI or simple spectral relationships (Musick 1984, 

Graetz et al. 1988, Yang & Prince 2000). 
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Only relatively recently have quantitative estimates of vegetation been 

obtained from model inversion work. Edwards et al. (1999) inverted a geometric- 

optical model with AVHRR data to estimate fractional cover in Jordan. Qi et al. 

(2000), developed a method to estimate LAI from Landsat Thematic Mapper (TM) 

and Advanced Very High Resolution Radiometer (AVHRR) data over semi-arid field 

sites in the USA and Niger, respectively, using LAI-VI relationships developed from 

model simulations. North (2002), performed a modelling study highlighting the 

difficulty in estimating LAI in semýi-arid vegetation from VI, spectral mixture models, 

and CRM inversion, when there is variation in fcover and standing litter. The first 

study to present results of a complete CRM inversion in a semi-arid area, was that of 

Chopping et al. (2003). They use airborne multiple-view angle (MVA) data, to 

estimate LAI and canopy dimensions, over desert grasslands in the USA, with variable 

accuracy, over mixed vegetation communities high accuracy was reported, while over 

grasslands results were poor. The research presented in this thesis therefore represents 

the first attempt to invert a CRM against satellite measurements to estimate LAI at 

resolutions less than lkm, in semi-arid savanna vegetation. 

1.3 Thesis structure 

The next chapter of this thesis provides a review of the way in which biophysical 

parameters may be extracted from remotely sensed EO data, by using canopy 

reflectance models and their inversion. The chapter begins with a consideration of the 

remote sensing system and how vegetation and soils interact with solar radiation. 

Next the concept of canopy reflectance modelling is introduced and the forward and 

inverse problems are stated. The chapter then goes on to review the broad range of 

canopy reflectance models and the key inversion methods, and states the research 

objectives. 

Chapter 3 provides an overview of the physical geography of the study area, 

describes the general characteristics of the field plots, and describes the pre-processing 

techniques used to obtain measurements of the surface reflectance from the Landsat 

ETM+ and Terra-MODIS data sets. 

Chapter 4 describes the fieldwork and measurements that were made in order 

to parameterise the CRM in the work of chapter 6. The chapter provides an overview 
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of the sampling framework and methods that were used to make the measurements. A 

detailed discussion of the issues involved with making accurate field LAI 

measurements is presented. 

Chapter 5 describes a laboratory experiment, where spectral directional 

reflectance measurements were made with a goniometer and ASD FR 

spectroradiometer, in order to characterise the scattering properties of the Kalahari 

soils, found at the field plots. 

Chapter 6 describes an experiment where three different CRM are run in 

forward mode, in order to determine the accuracy with which the models simulate 

reflected radiance. Model simulations were assessed with respect to the ETM+ and 

MODIS data recorded at each of the field plots. 

Chapter 7 describes a series of model sensitivity analysis (SA) experiments. 

Local and global SA techniques are first compared, then the effect of the probability 

density function (PDF) used for model parameters is investigated. Finally, the 

sensitivity of reflectance to variation in LAI is quantified for the measured conditions 

at the field plots. 

Chapter 8 is the inversion chapter where artificial neural networks are used to 

invert the PROSAIL model to estimate LAI. The chapter starts with an experiment 

investigating the effect of network architecture and resistance to noise. Then various 

waveband combinations and inputs to the ANN are experimented with in order to 

determine the optimal waveband set for providing accurate LAI estimates. Finally a 

comparison is made between the LAI estimates obtained using the methods developed 

in this research with the MODIS LAI product. 

Chapter 9 is the discussion and conclusions chapter where the results of the 

research are summarised, future research directions are discussed, and the main 

conclusions from this research are drawn. 

5 



Literature review 

2.1 Introduction 

This chapter presents a review of the literature on the remote sensing of vegetation, 

canopy reflectance models, and the inversion methods which may be used to estimate 

biophysical parameters by inverting measurements against a model. The chapter 

begins by outlining the remote sensing system, and the various factors which 

influence the reflected radiance. Next, the forward and inverse problems of canopy 

reflectance are described. Then the canopy reflectance models are presented, and the 

principal inversion methods are discussed, before finishing with a summary and 

research objectives. 

2.2 Remote sensing of vegetation 

Radiation reflected from the earth's surface contains information that can be related to 

the physical features of the surface, over which remotely sensed observations are 

made. This information resides in five different domains or signatures: the spectral 

(X), spatial (x, y), directional (0,0) (zenith and azimuth angles of the solar source and 

sensor), temporal (t), and polarised (p) (Gerstl 1990). Formally this relationship R, 

between measured reflectance p, and the domains of information may be represented 

as 

p= R(X, x, y, O, O, t, p) (2.1) 

Historically, much research effort has been spent exploiting the spectral (e. g. 

Tucker 1979, Jacquemoud & Baret 1990), spatial (e. g. Woodcock et al. 1988a, b), and 

temporal (e. g. Myneni et al. 1997, Zhou et al. 2003) domains of information. The 

polansed domain has received relatively little attention owing to the lack of sensors 

which record such information such as the short-lived POLDER I and 11 instruments 

(Deschamps et al. 1994). Similarly, the directional domain has been under-utilised 

until relatively recently. However, with the recognition that information in this 
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domain contains unique information (Barnsley et al. 1997), which can now be 

exploited with new sensors such as the Multi-angle Imaging Spectro-Radiometer 

(MISR), and the Compact High Resolution Imaging Spectrometer (CHRIS), this area 

is likely to witness sustained growth over the coming years. This is especially so 

given the clear utility of directional data for sampling the hot spot (the peak in 

reflectance when the solar and sensor geometries are in the same plane and zenith 

angle) which contains key information about the nature of clumping within crowns 

(Breon et al. 2002, Lacaze et al. 2002, Chen et al. 2003). 

These domains will all be affected by the canopy over which reflectance 

measurements are made, such that Goel (1989) developed the following functional 

relationship between the reflectance of the vegetation canopy, and the five information 

domains: 

p= R(X, x, y, O, O, t, p; C) (2.2) 

Where C represents the various characteristics of the vegetation canopy and 

the soil background against which it is set. In order to obtain information about the 

vegetation canopy a model is constructed which relates the vegetation characteristics 

to the measured reflectance. This is the forward mode of a model. If one is to obtain 

estimates of the vegetation canopy characteristics from the measured reflectance this 

relationship in equation 2.2 needs to be inverted. This formulation does not consider 

the effect of the atmosphere which will affect all airborne and satellite measurements. 

2.3 Factors affecting canopy reflectance 

This section reviews the factors affecting measurements of canopy reflectance made at 

the top of the atmosphere. These factors include the spectral and structural properties 

of the vegetation, scattering from the soil and the effect of the atmosphere. Each of 

these is now considered in turn. 

2.3.1 Spectral properties of vegetation 

Radiant flux incident on a vegetation element (leaves, stems) is subject to two 

processes: scattering and absorption. Scattering is made up of reflectance and 

transmittance. The main regions of absorption in the leaf are found in the visible 
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(VIS) and shortwave infra-red (SWIR) wavelengths (Figure 2.1). In the visible, 

absorption by chlorophylla+band other photosynthetic pigments is strongest in the blue 

and red wavelengths, while less strong in the green wavelengths. Reflectance and 

transmittance are consequently low in the visible (Gates et al. 1965). In the SWIR 

absorption is due to the presence of water in the leaf, with there being three main 

water absorption features of increasing depth at 1450nm, 1900nm, and 2500nm (Gates 

et al. 1965, Danson et al. 1992). Consequently, reflectance and transmittance is 

relatively low in these regions, while higher outside of these (Figure 2.1). In the near 

infra-red (NIR), there are only minor water absorption features at 970nm and 1200nm, 

such that reflectance and transmittance is typically high. This high reflectance is a 

result of discontinuities in the cellular ultrastructure (cell wall, air spaces), such that 

there is marked refraction and high reflectance (Wooley 1971). When there is little or 

no water in the plant, reflectance and transmittance in the SWIR is controlled by the 

same process. 

Scattering from leaf and stem surfaces is controlled by the presence of hairs 

and thorns on the leaf surface, and the degree of waxiness of the leaf cuticle (Grant 

1987). Scattering is therefore largely non-Lambertian, apart from at near-normal 

incidence angles, where scattering is approximately Lambertian. 
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Figure 2.1 Leaf reflectance, transmittance, and absorption of clover (Trifolium 
latense) measured during the LOPEX93 experiment (Hosgood et al. 1994). 
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2.3.2 Structural properties of vegetation 

Canopy reflectance is a composite of scattering and absorption at the individual 

vegetation elements and also the 3-D structure of the plant canopy. The way in which 

the plant 3-D structure affects canopy reflectance are many and varied, but the central 

mechanism is through the introduction of shadow onto the surfaces (Myneni et al. 

1989, Myneni and Ross 1991). 

Aspects of the plant 3-D structure which affect canopy reflectance are 

considered at the stand scale, where the vertical size and shape, and spatial 

distribution of the plant crowns on the soil surface will be the main factor in 

generating shadow (Li & Strahler 1992, Rautiainen et al. 2004); at the crown level, 

leaf clumping, leaf inclination angle, and the leaf area index (LAI) will be the main 

factors governing the amount of mutual shading and the amount of soil background 

which is visible (Lacaze et al. 2002). The combination of the LAI and leaf inclination 

angle, gives the fractional vegetation cover. The effect of the leaf inclination angle in 

determining canopy reflectance is illustrated in Figure 2.2, where leaf I which is 

almost perpendicular to the direct sunlight, is well lit, while leaf 2, which is almost 

parallel with the direct beam, is dimly lit. The viewer at A, with the sun behind her 

will see the bright leaves represented by leaf 1 well, but not much of the dimly lit leaf 

2. The viewer at B will see the dimly lit leaf 2 well, but much less of the well lit leaf 

1. Consequently, the scene will appear brighter to viewer A than B, this difference in 

brightness being solely a result of the leaf geometry. 

The introduction of shadow leads to the vegetated surfaces being generally 

non-Lambertian reflectors, since for a given vegetation cover, greater or lesser 

amounts of shadow will be visible depending on the solar and viewing zenith and 

azimuth angles, and therefore radiation is reflected more strongly in certain directions 

than others. It is through a knowledge of these reflectance differences that vegetation 

properties can be extracted from the remotely sensed observations, if models can 

represent these mechanisms. 
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Figure 2.2 Illustration of the leaf geometry, and how it contributes to canopy 
reflectance (adapted from Norman et al. 1985). 

2.3.3 Scatteringfrom soil 

Soil surfaces absorb and reflect incident radiation, there is very little transmittance. 

Soil reflectance depends largely on the surface roughness, in addition to the particle 

size distribution, soil moisture, organic content, soil mineralogy and colour (Irons et 

al. 1989). Soils are generally highly non-Lambertian reflectors, particularly where the 

surface roughness is pronounced, such as is the case with sandy and stony soils 
(Clemiewski 1987, Cierniewski & Verbrugge 1997). Reflectance over these soils 

tends to be dominated by backscatter, because of the shadowing effects introduced by 

the roughness. For clay and loamy soils, reflectance tends to be dominated by 

specular reflection. The soil surface will exert a strong influence in the low LAI, low 

vegetation cover typical in semi-arid ecosystems, such that they need to be 

characterised well (Pinty et al. 1998). 

2.3.4 The atmospheric effect 

Satellite measurements of reflected solar radiation are Inevitably modulated by the 

path through the atmosphere. The atmosphere exerts an effect on both downwelling 
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and upwelling radiation, due to the action of scattering and absorption, by aerosols 

and gases (primarily water vapour), respectively (Kaufman 1989). In addition, there 

is radiation scattered into the field of view of a satellite sensor from adjacent pixels in 

the landscape - the adjacency effect. These atmospheric effects are wavelength 
dependent with the shorter wavelengths of the visible region being more seriously 

affected by molecular and aerosol scattering (Rayleigh, Mie). This results in a 

smoothing of the surface reflectance signal, with atmospheric scattering adding to path 

radiance at visible wavelengths, while at NIR attenuating the signal, due to absorption 

(Kaufman 1989, Myneni et al. 1995a). Clearly, if estimates of land surface variables 

such as LAI are to be obtained, this atmospheric effect needs to be corrected for. 

Various models exist to correct for the atmospheric effect ranging from 

histogram equalisation (Richter 1996), invariant object correction (Moran et al. 1992), 

and dark object subtraction methods (Teillet & Fedosejevs, 1995, Kaufman et al. 

2000), or a combination of these (Liang et al. 2001,2002). These methods are all 

subject to a limitation of not accounting for all known atmospheric effects, from the 

adjacency effect (particularly important for high spatial resolution sensors such as 

ETM+), to aerosol scattering, and the lirrfltation of finding dark targets, especially 

over semi-arid vegetation. An alternative to these methods is to use a model of 

atmospheric scattering such as MODTRAN (Berk et al. 1998), or 6S (Ven-note et al. 

1997a), however these models can be difficult to parameterise with measurements of 

aerosol optical thickness, and water vapour content, such that 'standard' atmospheres 

are normally assumed. Some researchers have tried to circumvent this problem by 

making estimates from top of the atmosphere radiances, by coupling models of the 

land and atmospheric systems together (Fourty & Baret 1997, Fang & Liang 2003). 

Clearly, the atmospheric correction of satellite measurements of reflected 

radiation presents a serious impediment to the generation of high quality surface 

reflectance products. This is a critical issue for remote sensing studies, since the 

quality of the surface variables obtained from model inversions will depend to a large 

extent on the quality of the reflectance data. Lyapustin & Privette (1999), have shown 

the importance of accurate atmospheric correction with respect to estimating surface 

albedo. 
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2.4 The bi-directional reflectance distribution function (BRDF) 

The preceding sections have talked about Lambertian and non-Lambertian reflection 

at various points, a Lambertian reflector reflects light equally in all directions, and is 

said to be isotropic, whereas a non-Lambertian reflector reflects light differently in 

different directions, and is said to be anisotropic. This phenomenon is represented 

formally by the bidirectional reflectance distribution function (BRDF) (Nicodemus 

1970, Martonchik et al. 2000). The BRDF describes the scattering of a parallel beam 

of light from one direction in the hemisphere into another direction in the hemisphere, 

and hence is bi-directional. This is given formally, ignoring any spectral dependence, 

as: 

BRDF (0j, 0i; 0,0, ) = 
dLr (0, oi ; Or 

, 0, ) 

dEi(0,0, ) (sf') 
(2.3) 

where Oj, 0j; 0,0, are the zenith and azimuth angles of the direction of illumination 

and reflection, respectively. dEj (W M-2) is the irradiance from the illumination 

direction, and dL, (W M-2 sr-1) is the radiance reflected into the differential solid angle 

at 0,0, This measurement configuration is shown in Figure 2.3. Because the 

irradiance and radiances are defined in terms of differential solid angles, strictly 

speaking the BRDF cannot be measured. Instead, the BRDF is assumed retrievable 

with some level of uncertainty from radiance measurements made over a small solid 

angle, and thus represents a limited case of biconical reflectance. Figure 2.4 shows a 

typical surface reflectance feature taken in the principal plane of the viewing 

hemisphere. This shows the peak in reflectance at the hot-spot when the solar source 

and sensor lie in the same zenithal and azimuthal planes. This peak in reflectance is 

due to the sensor viewing the minimal amount of shadow (Hapke 1986, Hapke et al. 

1996). The dark spot represents the viewing direction where maximal shadow area is 

visible due to the vertical structure of the surface. 

It is important to state that the BRDF only involves information from the 

spectral and directional domains, and these are the information domains which will be 

exploited in this thesis to obtain measurements of LAI. 

12 



-, 
"JI/ 

llý 

Zenith 
Sensor 

reference 
direction 

plane of 
viewing 

Figure 2.3 Measurement configuration for the surface BRDF (Source: www 2.1). 
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2.5 Canopy reflectance modelling: forward and inverse problems 

In order to estimate vegetation properties from satellite sensor measurements of 

reflected radiance, a model of how the vegetation interacts with solar radiation is 

required. Both empirical and physically based models have been developed to 

perform this task (Goel 1988). Whichever model is used, the requirement is that the 

model accurately describes the system over a wide range of conditions, such that the 

model may be used to make predictions of the surface reflectance. Using a model in 

this way is called forward modelling. Ideally, the model will be specified in terms 

which have direct relevance to the kind of biophysical parameters one would like to 

retrieve from reflectance measurements. This information is retrieved by inverting the 

measurements against the model, by allowing the model parameters to adjust until the 

closest match (in a least squares sense), is found between the measurements and the 

model predictions (the ment function). Once the minimum is found, the model 

parameters which gave the predicted reflectance, are considered those of the surface 

over which the measurement of surface reflectance was made. This process is called 

inverting the model, or the inverse problem. The forward and inverse problems are 

shown schematically in Figure 2.5. 
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Figure 2.5 Schematic overview of the forward and inverse problems 
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Strictly speaking, the inverse problem can only be solved if it is well posed, 

that is, that a solution exists, the solution is unique, and depends continuously on the 

data (Combal et al. 2002a). If one of these statements does not hold, then the problem 
is defined to be ill-posed. The inverse problem in remote sensing, is inherently ill- 

posed, since it is not unique - there may be more than one set of canopy parameters for 

the same solution (difference between measured and modelled reflectances). In order 

to obtain stable and reliable estimates from model inversion, therefore requires the use 

of prior information (Li et al. 2001), which can take the form of a knowledge of the 

likely range and distribution of the model parameters, or an estimate of the uncertainty 

associated with the reflectance measurements, and the pertinence of the model to the 

architecture of the canopy. 

Numerous models of canopy reflectance have been developed (Goel 1988, 

Strahler 1997), and there are various methods available to invert the models (Kimes et 

al. 2000). The next section of the literature review deals with each of these in turn. 

2.6 Canopy reflectance models 

There are two main types of canopy reflectance model, which are either based on 

sound physical principles - the physically based models, or statistical relationships 
between vegetation and reflectance - the empirical models. 

2.6.1 Empirical models 

The main type of empirical model used are the well known vegetation indices (VIs). 

Such models attempt to establish statistical relationships (usually a regression) 

between measurements of some property of the vegetation made on the ground, and 

measurements of reflectance in two or more wavebands, such as the commonly used 

red/NIR combination in the normalised difference vegetation index (Tucker 1979, 

Verstraete et al. 1996, Verstraete & Pinty 1996). Many studies have used a vegetation 

index approach because their simplistic nature and ease of computation, make them 

suitable for studies at a range of spatial scales (e. g. Malthus et al. 1993, Fassnacht et 

al. 1997, Turner et al. 1999, Huete et al. 2002, Zhou et al. 2003, Lee et al. 2004, 

Walthall et al. 2004). 
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Given the statistical nature of the relationships however, they are subject to 

many limiting factors. The most serious limitation for their application is that, VIs 

effectively develop a model between the vegetation property of interest and 

reflectance, under the assumption that the only factor accounting for variation in the 

reflectance is variation in that vegetation property (Verstraete & Pinty 1996). This is 

rarely the case, and as such makes generalisation across landscapes difficult (Turner et 

al. 1999). The central problem of VIs is that they are data dependent, such that they 

are inflexible, and cannot easily account for perturbations caused by variable soil 

backgrounds (Huete & Jackson 1987, Huete 1988), the presence of standing litter (van 

Leeuwen & Huete 1996), and variation in solar and view zenith angles (Gemmel & 

McDonald 2000). These factors are all significant in semi-arid ecosystems. 

Furthermore, the demands of labour intensive field work to establish the relationships 

are considerable (Cohen et al. 2003), and the relationships are site- and time-specific. 

Moreover, in semi and ecosystems, where vegetation cover is low, the effect 

of the soil background is strong, such that the inflexibility inherent in the VI approach 

is likely to render the accurate quantitative estimation of LAI very difficult. This is 

supported by theoretical studies. Baret and Guyot (1991), investigated the effects of 

canopy geometry and soil optical properties on four VIs for estimating LAI and 

absorbed photosynthetically active radiation (APAR). They found that the NDVI is 

the most susceptible to variation in soil optical properties, and suggest caution in using 

a vegetation index approach for assessments of LAI where vegetation cover is low. 

Leprieur et al. (1994,1996), also investigated the potential of various vegetation 

indices for estimating LAI and fractional vegetation cover from AVHRR data in semi- 

and ecosystems. They report that the effects of a bright soil and variable atmosphere 

inhibit the accuracy of estimates obtained from the vegetation indices, with the NDVI 

being most sensitive to these effects, as compared to SAVI and GEMI which take 

more effective account of the soil and atmosphere respectively. Clearly, despite their 

simplicity and computational efficiency, the utility of a VI approach would appear to 

be of limited worth in estimating LAI in these or any other semi and ecosystems, over 

large areas, and through time. 
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2.6.2 Physically based models 

Physically based models have been developed based on one of three different theories: 

radiative transfer, average transmittance, and geometric-optics (Goel 1988, Goel & 

Thompson 2000). These physical models consider surface scattering and volume 

scattering (Strahler 1997). Goel (1988), proposed that physically based models fall 

into one of four categories: 1) turbid medium, 2) geometric -optical, 3) hybrid and, 4) 

computer simulation models. This is still largely applicable today, and these model 

types are reviewed below, together with a section on semi-empirical models. 

2.6.2.1 Turbid medium models 
This type of model approximates the canopy as an infinitely extended plane-parallel 

scattering medium, made up of randomly distributed scattering phytoelements (leaves) 

(Myneni et al. 1989, Qin & Liang 2000). The phytoelements are assumed small 

relative to the height of the canopy, optical and structural properties are described by 

volume averages, such that the spatial location and orientation of phytoelements 

within the canopy is not considered. As a result turbid medium (TM) models cannot 

model the hot spot phenomenon (Hapke 1986). This representation of the canopy is 

depicted in Figure 2.6. Owing to their plane-parallel nature TM models are best suited 

to homogeneous canopies such as agricultural fields, and grasslands. Where the 

canopy departs from this assumption, and there is horizontal structure in the canopy 

such as forests, then inferior results are to be expected. 

These models range in complexity from the relatively simple Suits model 

(Suits 1972), and SAIL model (Verhoef 1984), to the DISORD model of Myneni et al. 

(1992). TM models have been successfully inverted to give LAI in a range of 

environments and are the most commonly used owing to their simplicity and 

suitability for inversion. The Suits model was first inverted by Goel & Strebel (1983) 

and Goel & Thompson (1984a). The Suits model represents the orientation of the 

phytoelements as being either vertical or horizontal, such that in the nadir direction an 

unrealistic V shaped BRDF is observed. Verhoef (1984), extended the Suits model 

by modelling the phytoelements as being arbitrarily inclined, which removed the 

anomalous V shape about nadir. The scattering by arbitrarily inclined leaves (SAIL) 

model was thus developed. This model has been inverted by Goel & Thompson 

(1984b, c) to estimate LAI over crops. More recently, the SAIL model has been 
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inverted by Braswell et al. (1996),, and Meron, et al. (2004). This model is used In the 

work presented in chapters 6,7, and 8 of this thesis. 

<Z KZ 
. -�un Sensor 

Figure 2.6 Schematic representation of the turbid-medium canopy (adapted from 
Gerstl & Borel 1992). 

2.6 2.2 Geometric-optical (GO) models 
This type of model represents tree crowns as a set of discrete opaque geometrical 

primitives (cones,, ellipses) distributed over a soil background, and were pioneered by 

Li & Strahler (1985,1992), and recently reviewed by Chen et al. (2000). Reflectance 

(R) is calculated as an area weighted sum of four components: sunlit crown (Ac), 

shadowed crown (AT), sunlit background (AG), shadowed background (Az), and their 

reflectances C, T, G, and Z, respectively, as: 

R= 
(AcC +ATT+AGG + AzZ) (2.4) 

A 

where A is the total area. Strahler and Jupp (1990), extended the GO approach by 

including a Boolean model so that the tree crowns sat above the soil background, the 

so-called 'spheroids on sticks' approach. These models consider reflectance variability 

at the individual tree level,, whereas the 4-Scale model (Chen & Leblanc 1997), 

considers the GO approach at levels of the individual leaf and stand. 
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These GO models are particularly well suited to discontinuous canopies such 

as forests, and savanna, and have been successfully inverted to give estimates of tree 

size and canopy dimensions (Franklin and Strahler 1988, Franklin and Turner 1992, 

Wu and Strahler 1994) and fractional vegetation cover (Woodcock et al. 1997). They 

do not include LAI as a model parameter and are therefore unsuitable for use in this 

research. 

2.6.2.3 Hybrid models 
These models incorporate the turbid medium and GO approaches to the modelling of 

canopy reflectance. External structure is modelled using GO methods and internal 

structure is represented by the turbid medium. There are a number of this type of 

model (e. g. Nilson and Peterson 1991, Rosema et al. 1992, Li et al. 1995, North 1996, 

Ni et al. 1999, Kuusk & Nilson 2001, Lacaze & Roujean 2001). Owing to the 

combination of the TM and GO approaches, many hybrid models contain numerous 

parameters, such that they are difficult to parameterise, and invert. The relatively 

simple FLIM (Rosema et al. 1992), and GeoSAEL models have been inverted 

however, to estimate LAI over forests with reasonable accuracy (Hu et al. 2000, Fang 

& Liang 2005). 

2.6.2.4 Computer simulation models 
These models use computer intensive simulation techniques such as Monte Carlo ray 

tracing (North 1996, Gastellu-Etchegorry et al. 1996, Disney et al. 2000) and radiosity 

coupled with computer graphics techniques (Borel et al. 1991, Qin & Gerstl 2000). 

The scene phytoelements are modelled as discrete surfaces, and therefore in contrast 

to the volume average approach of the TM models, simulate the hot spot effect (Gerstl 

& Borel 1992). Canopy reflectance is calculated by tracing the interaction of 

individual photons with the various phytoelements until the photon is scattered out of 

the scene - in the case of ray-tracing, whereas for the radiosity method all energy 

emitted or reflected from a surface is accounted for by reflection and absorption by 

other surfaces in the scene. These models are highly detailed requiring a large number 

of model parameters and are therefore highly accurate, yet are so computationally 
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intensive that their suitability for inversion is questionable, although they are suitable 

for forward modelling. 

2.6.2.5 Semi-empirical models 
This class of models bridges the gap between the fully fledged physical models and 

the empirical models (Wanner et al. 1995, Rahman et al. 1993, Lucht & Roujean 

2000, Chopping 2000, Chopping et al. 2003, Maignan et al. 2004). Scattering is 

modelled by the use of surface scattering (GO), and volumetric kernels, each having 

an associated weight. Formally this is represented as: 

BRDF (0j, 0,0) = fi, (, + f,,, Ik,,,, (Oi, 0,0) + fGokG 0( Oi, Or, 0) (2.5) 

Where Oj, 0,0 are the solar and zenith view angles, and relative azimuth 

angles respectively, kv,,, is the volumetric kernel, kGO is the surface scattering kernel, 

fiso, vol, Go are weights associated with each kernel, and isotropic scattering. The surface 

and volume scattering kernels are based on approximations to GO and TM 

approaches, respectively. Upon inversion the three weights are retrieved. These 

models are strictly only applicable to homogeneous surfaces, only model single 

scattering, and are not specified in terms which permit direct inversion of biophysical 

parameters. These models, are quick to run because of their linear nature, such that 

they have received most application in the normalisation of BRDF data (Weiss & 

Baret 1999), and in albedo studies (Wanner et al. 1997). 

2.6.3 Models used in this thesis 

The SAIL, GeoSAIL and FLIGHT models were used in the research presented in this 

thesis. These models were chosen since they represented a wide range of complexity, 

from the TM treatment of SAIL, to the analytical hybrid GeoSAEL, and numerical 

(Monte-Carlo ray tracing) FLIGHT. FLIGHT has both a I-D TM treatment, and a 3- 

D option, and both these were used in the model simulations of chapter 6. In addition, 

the PROSPECT model (Jacquemoud & Baret 1990, Jacquemoud et al. 1996) was used 

to simulate leaf reflectance and transmittance. 
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2.7 Model inversion methods 

This section considers the various inversion methods which may be used to invert 

canopy reflectance models to estimate vegetation properties. As the models used in 

this thesis are non-linear, the linear or analytical inversion methods are not dealt with. 

Attention is instead focused on the two most suitable inversion methods for 

operational applications - artificial neural networks (ANN), and look-up table (LUT), 

methods (Kimes et al. 2000). In addition, the numerical optimisation methods are 

reviewed since these have been the inversion method of choice over the last 15 years 

and remain popular today (Pinty et al. 1990, Privette et al. 1994, Asner et al. 1998a, 

Jacquemoud et al. 2000, Combal et al. 2002a, Chopping et al. 2003, Meroni et al. 
2004). Genetic algorithms (Fang et al. 2003) have also been used to invert canopy 

reflectance models, however, these too are not suited for operational applications, and 

so are not reviewed. Firstly, however, some general issues regarding the inversion of 

a canopy reflectance model are considered. 

2.7.1 Inversion preliminaries 

Inverting a model to biophysical parameters involves several issues. These include, 

the number of wavebands available for use and the information they contain with 

respect to the vegetation, the number of model variables to be estimated, and the 

sensitivity of the inversion to noise in the data (Goel 1989). The inversion proceeds 

by finding the minimum between a set of measured and modelled reflectances, as 

shown in Figure 2.5. In order to define the minimum an error, or merit function is 

required to express the degree of disagreement between the two, typically this is the 

sum of the squared error. The merit function (F) may be defined as: 

Wi(A 
(2.6) 

where i= I ... N is the number of measurements, wi the weights associated with each 

measurement, and pi and pi' the measured and modelled reflectances respectively. 

For both the numerical optimisation, and LUT inversion methods this is the way in 

which the inverse problem is defined, and the model parameters are adjusted, or the 
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LUT searched until the minimum is found. Another way of defining the merit 

function which takes account of the measurement and model uncertainties is: 

N 
Jwi 

(2.7) 

where 8i is the uncertainty of the inversion, which may be wavelength dependent. 

This is the merit function which is used in the LUT based MODIS LAI/FPAR 

retrieval (Wang et al. 2001), such that multiple solutions are possible. For the ANN 

inversion, the inverse problem is defined differently. Rather than trying to find the 

smallest difference between two sets of reflectance data, the ANN method tries to 

learn the underlying relationship between the spectral reflectance measurements, and 

the vegetation parameter of interest, such that the error between a modelled and 

measured biophysical parameter of interest is minimised. 

Prior to performing an inversion, it is good practice to perform a model 

sensitivity analysis (Goel & Strebel 1983, Dawson et al. 1993, Bowyer et al. 2003). 

This is a critical issue in the use of physically based models. If one desires to estimate 

biophysical parameters from a model inversion, then the reflectance measurements 

must be sensitive to variation in the given parameter. If not it will be very difficult to 

retrieve that parameter from an inverted model. For example, Privette et al. (1996a), 

developed a derivative weighting scheme which provided more weight to those 

observations to which the parameter of interest was most sensitive. In this way, the 

inversion was performed more quickly and with higher accuracy. The accuracy of any 

inversion will largely be determined by the uncertainties associated with the model 

and measurements, i. e. a good (accurate) model is needed, together with high quality 
data. 

2.7.2 Numerical optimisation 

As stated earlier this has been the method of choice for inverting a canopy reflectance 

model. The procedure is as outlined above - after an initial guess at the parameter 

values, the model parameters are adjusted until the minimum error is found between 

the measured and modelled reflectances. Once this minimum is found, -the model 
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parameters which provide the closest fit to the measurements are considered the 

surface conditions, and the biophysical parameter is retrieved. 

There are three main groups of numerical algorithm: 1) the downhill simplex 

method e. g. subroutine AMOEBA from Press et al. (1986) (Privette et al. 1996b), 2) 

the conjugate direction set method e. g. subroutine POWELL from Press et al. (1986) 

and, 3) the quasi-Newton method e. g. subroutine E04JAF from Numerical 

Algorithms Group (NAG) (1990). The selection of an optimisation algorithm is very 

much a case of trial and error (Privette et al. 1994), for the optimal one is known to 

differ depending on the physical model used (Privette et al. 1996a, cf. laquinta et al. 

1997). By far the most common however is the quasi-Newton algorithm subroutine 

E04JAF (Pinty et al. 1990, Jacquemoud et al. 1995, Braswell et al. 1996, laquinta et 

al. 1997, Asner et al. 1998a). 

There are a number of issues related to the use of these numerical algorithms 

to invert a model. It is known that the model results are sensitive to the initial guess at 

the model parameters, such that the model is restarted 3 or 4 times. The convergence 

to a global minimum may be slow, and the determination of free and fixed model 

parameter sets. For example, Privette et al. (1996a) were able to retrieve LAI over 

grasslands with acceptable accuracy when all other model parameters were fixed. 

When there were two free parameters retrieval of LAI was less successful. 

Impressive results have been achieved with these algorithms compared to the 

LUT and ANN approaches, particularly with respect to estimating noisy data sets 

(Kimes et al. 2002, Combal et al. 2002a). However, these algorithms require 

enormous computing power since the model is run for each pixel in turn, such that 

they are not suitable for operational applications. Moreover, the computing 

requirements are such that the method is best suited to relatively simple models, 

specified by a few parameters. This therefore precludes the use of potentially more 

accurate models. 

2.7.3 Look-up tables 

This method precomputes model reflectances from a large range of model parameter 

value combinations and stores them in a table, which may later be searched. In this 

way the bulk of the computational expense is performed before an inversion is 
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attempted, such that complex models may be used to create the reflectance database. 

The problem is then reduced to searching the table optimally to find the modelled 

reflectance set which most closely matches the measured reflectance. The speed of 

the search and therefore inversion, will depend on the coarseness of the database 

(Kimes et al. 2000, Barnsley et al. 2000). Gastellu-Etchegorry et al. (2003), have 

recently developed an interpolation procedure which may help reduce the size of the 

database, and therefore increase the speed of inversion. This LUT method is used to 

derive LAI and FPAR on board the MODIS/MISR instruments (Knyazikhin et al. 
1998a, b), and have been used to estimate LAI in agricultural (Weiss et al. 2000, 

Combal et al. 2002b), and forest settings (Hu et al. 2000). 

If the size of the LUT is too large then processing time is likely to be 

significant. More research is required to determine optimal table sizes and the effect 

of using coarse tables on estimation accuracy. For this reason, LUT inversions are not 

performed in this thesis. 

2.7.4 Artificial neural networks 

Artificial neural networks are highly connected parallel distributed information 

processing structures, consisting of individual processing elements (more commonly 

termed nodes or neurons), connected to each other via unidirectional signal channels 

(Haykin 1999). Various types of neural networks exist, however, in the remote 

sensing literature, multi-layer perceptron feed-forward networks are most commonly 

used (Kimes et al. 1998). These networks have been shown to provide impressive 

results in a range of remote sensing applications from classification (Arora & Foody 

1997), to biophysical parameter estimation (Smith 1993, Kimes et al. 1997, Gong et 

al. 1999, Kimes et al. 2002, Fang & Liang 2003, Fang & Liang 2005, Carter-Ingram 

et al. 2005). These networks are composed of three or more layers, the input layer, 

the hidden layer, and the output layer. Networks can have any number of hidden 

layers. Within each layer there may be any number of nodes, and the outputs of one 

layer form the inputs to the next layer. This network architecture, or topology, is 

illustrated in Figure 2.7. 
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Figure 2.7 Topology of a multi-layer artificial neural network. 

An ANN may be trained to learn the underlying relationship between the 

inputs and outputs. In the case of canopy reflectance model inversion, the inputs are 

reflectance measurements in one or more wavebands, and the output is the biophysical 

parameter of interest, in this thesis, the LAI. The node is the central processing unit of 

the network. Each node receives a signal from nodes in the preceding layer, the inner 

product of these inputs is taken to give a weight vector, and a bias term is added. The 

resulting number from this process is then output via a, usually, non-linear activation 

or transfer function, and fed to the next layer. 

Training an ANN proceeds by presenting the network with a set of input 

patterns, and output targets from which it is to learn the underlying relationship. 

Training is an iterative process, where learning is achieved by back-propagating the 

error at each training iteration (Rumelhart et al. 1986), and adjusting the weights and 

biases in such a way that the functional approximation of the network minimises the 

error goal (difference between network targets and network estimates). If the network 

can establish a relationship between the inputs and outputs, the network may then be 

inverted with measurements of reflectance to estimate the LAI. A compromise is to 

be reached in the training where the network learns the underlying relationship well, 

but no more, such that the network is able to generalise to unseen measurements (real 
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data), which will inevitably depart from the data with which the network was trained 

due to noise. 

Canopy reflectance models are used to create the training data with which to 

train and test the ANN. Consequently, any model of any complexity can be used to 

train an ANNs. Once trained, an ANN provides rapid inversion results, for example, 

in related research work, the author inverted 586,000 ETM+ pixels, in only 5.8 

seconds. However, because the network training is an iterative process, training is 

very time consuming. Other factors which detract from the appeal of ANN is the 

determination of optimal network architecture, which is mainly an heuristic process, 

and failing to find the global minimum (Bishop 1995). 

ANN are used in this thesis to provide estimates of LAI on the basis that they 

represent the most rapid inversion method at the current time, even when training time 

is accounted for. 

2.8 Summary and research objectives 

This review has established the basis upon which vegetation optical and structural 

properties influence the magnitude and direction of reflected radiance. It is upon this 

understanding and basis through which biophysical parameters may be estimated from 

measurements of reflected radiance. The broad range of canopy reflectance models 

available have been described and discussed, and their suitability for use determined. 

The various inversion methods were outlined, and the key advantages and 

disadvantages of each discussed. From this review the following research objectives 

are stated: 

To investigate and characterise the scattering properties of Kalahari 

soils. 

To compare the performance of different canopy reflectance models in 

simulating reflected radiation from savanna vegetation, in order to 

determine the most suitable model. 

To quantify the sources of variability in reflectance data, to determine 

the sensitivity of reflectance to variation in LAI. 
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Gv) To investigate the potential of artificial neural networks to accurately 

estimate LAI. 

The next chapter describes the study area and the general characteristics of the field 

plots used in this thesis. 
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Study Area and Image Processing 

3.1 Introduction 

The aim of this chapter is to describe the general characteristics of the study area, and 

introduce some of the wider background, and pre-processing steps taken in the 

generation of the satellite sensor data sets used in this thesis. The chapter begins with 

a description of the climate, geomorphology, soils, and vegetation and land use over 

the study area. This is followed by an introduction to the field sites and plots, and an 

overview of the SAFARI 2000 international research project (Swap et al. 2003), 

which ran coincident with the research presented in this thesis. After this, the pre- 

processing methods used to obtain surface reflectance from the Landsat 7 ETM+ and 

Terra-MODIS sensors are outlined, before finishing with a summary and some 

conclusions. 

3.2 Study area 

The study area is situated in the Kgalagadi district, which occupies the south-western 

comer of the Republic of Botswana. In total there are three field sites where field 

measurements were made, at which a variable number of study plots were located 

(Figure 3.1). The most northerly site is at Tshane, where two field plots were 

sampled; at Mabuasehube, there were also two field plots; while at Tshabong, the 

most southerly site, a further three field plots were located, for a total of seven field 

plots. All of these sites are situated within the Kalahari desert, and represent semi-arid 

savanna vegetation complexes. The three sites are separated by a distance of 

approximately 200km from north to south, along which there is a significant rainfall 

gradient, and variation in vegetation and land use type and pressures. The following 

sections describe in more detail the characteristics of the area. 
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Figure 3.1 Location of the three study sites in south-west Botswana, and 100mm 
mean rainfall isohyets. 

3.2.1 Climate 

The synoptic climatology of the study area is dominated by the southern hemisphere 

descending limb of the Hadley cell, of the general atmospheric circulation (Tyson 

1986, Mason & Jury 1997, Tyson & Crimp 1998). Consequently, high pressure 

anticyclonic circulation patterns characterise the area, in both summer and winter. 

This general condition is modified by two factors. First, the Southern African land 

mass creates differential sea-land heating causing the high pressure belt to split into 

two component cells, the South Atlantic and Indian Ocean anticyclones. Second, 

variation in the southward movement of the inter-tropical convergence zone (ITCZ), 

and associated Congo Air Boundary (CAB) in summer, cause variation in the position 

ZIMBA 13 W 1', 
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of these high pressure cells (Preston-Whyte & Tyson 1989). The splitting of the high 

pressure cells is greatest in summer and results in low pressure over land, whilst in 

winter, high pressure develops over land, most likely associated with the eastward 

movement of the Indian Ocean anticyclone (Thomas & Shaw 1991). The effect of 

variation in the position of the ITCZ and CAB is greatest in summer, and results in 

development of troughs of low pressure producing convective rainfall events. 

These climatic conditions lead to marked seasonality in rainfall patterns over 

the study area (Shugart et al. 2004, Scholes et al. 2002). In addition to seasonal 

patterns of rainfall, there are pronounced inter-annual variations which are thought to 

be largely attributable to El-Nino Southern Oscillation (ENSO) events on an 8-9 year 

interval (Lindesay 1988, Nicholson & Kim 1997). ENSO events generally correspond 

to drought periods (Reason & Rouault 2000). At inter-decadal time periods there is 

evidence to suggest the existence of an 18-20 year oscillation between wet and dry 

spells of approximately 9 years duration (Tyson et al. 1975, Tyson 1986). 

These climatic conditions lead to the establishment of a pronounced moisture 

gradient over the study area from north to south, with less rainfall in the south as it is 

further away from the convective trough of low pressure associated with the ITCZ and 

CAB. This gradient is shown clearly in Figure 3.1, where the study sites are shown 

together with mean 100mm rainfall isohyets. The figure shows that on average the 

Tshane site receives somewhere in the region of 400mm rainfall per annurn, while 

further south at Mabuasehube and Tshabong 300mm of annual rainfall is more typical. 

In addition to this north-south moisture gradient, the rainfall over the study area is 

highly concentrated within the summer months, or wet season, from October to April. 
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Figure 3.2 Monthly and total rainfall at (a) Tshane and (b) Tshabong field sites, for 
the years 1995-1998. (Data: www 3.1). 

These climatic characteristics are illustrated in Figure 3.2 which shows the 

annual and inter-annual variability in rainfall for the sites at Tshane and Tshabong, 

over a four year period from 1995-1998. There is no rainfall station at Mabuasehube 

such that no data were available for this site. These rainfall data were obtained from 

the International Research Institute for Climate Prediction, at Columbia University, 

U. S. A. (www 3.1). The data sets are from WMO rainfall stations which are 
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approximately 20km from the field plots, at both Tshane and Tshabong. From Figure 

3.2 it is clear to see both the concentration of the rainfall in the wet season, which is 

consistent over the years, and also the inter-annual variability throughout the period. 
This inter-annual variability and seasonality is confirmed with reference to Table 3.1 

where the coefficient of variation (CV) for the four year period is 39% and 17%, 

whilst the seasonality index is 88% and 93%, for Tshane and Tshabong, respectively. 
The CV value for Tshabong is lower than the long term average of around 40% 

(Thomas & Shaw 1991), and this is most likely a consequence of the fact that the four 

year period (1995-1998) fell within a drier period for rainfall over the area, such that 

the variability is muted. Clearly, there is a semi-arid climate over the study area. 

Table 3.1 Annual rainfall totals for the Tshane and Tshabong field sites for the four 
year period, 1995-1998. (Data: www 3.1). 

Mean Min Max Seasonality Coefficient of 
index (%) Variation (%) 

Field site 
Tshane 278 174 427 88 39 
Tshabong 250 214 308 93 17 

Note: seasonality index is the percentage rainfall that falls in the wet season (October- 
April). 

The four year (1995-1998) mean monthly temperature statistics for Tshane and 

Tshabong are given in Table 3.2. Clearly, there is less marked seasonal variation in 

temperature over the study area, although temperatures are higher in the summer 

months than the winter months. Over the summer months there is little difference in 

mean daily temperature between sites, temperatures range from 24.80 to 29', and 22.70 

to 29.1' at Tshane and Tshabong, respectively. In the winter months on the other 
hand, the more southerly site at Tshabong is 2-40 cooler than the most northerly site at 

Tshane. Data for Mabuasehube is again unavailable, though it is likely that 

temperatures are somewhere between these values at this site. 

A strong diurnal temperature range exists over the study sites, in both summer 

and winter, however, there is a larger range in winter with mean minimum 

temperatures being a lot lower than those in summer, which is a reflection of the 

generally clearer and drier air conditions, permitting night-time re-radiation (Thomas 

& Shaw 1991). Moreover, there is a larger range in mean minimum and mean 
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maximum temperature at the Tshabong field site in the winter months, than at Tshane, 

a result of less solar radiation receipt in the dry season, and longer night-time hours 

allowing more re-radiation, at this southerly site (Table 3.2). Sub-zero night-time 

temperatures are commonly experienced in the winter months across the study area. 

The study area is also characterised as having high potential evaporation rates. 
Given the low rainfall and high temperatures, together with low relative humidity, 

potential evaporation over the south-west Kalahari, exceeds actual evaporation by 

over six times, thus contributing to the desert like conditions (Tyson & Crimp 1998). 

Table 3.2 Mean daily temperature data ('C) for Tshane and Tshabong field sites for 
the four year period, 1995-1998. (Data: www 3.1). 

Tshane Tshabong 
Month Mean Min Max Mean Min Max 

Jan 29.0 20.6 33.4 28.9 20.2 35.0 
Feb 29.0 19.2 33.8 29.1 19.4 35.6 
Mar 27.3 18.3 31.9 26.2 17.4 32.8 
Apr 24.8 13.9 29.5 22.7 11.8 29.8 
May 20.4 9.4 25.8 18.0 6.8 25.5 
Jun 18.3 6.0 24.1 14.9 2.9 24.1 
Jul 17.8 5.8 23.3 13.8 1.8 21.8 
Aug 20.0 7.5 26.4 17.8 5.7 25.8 
Sep 25.4 14.1 31.2 22.1 11.6 30.7 
Oct 27.8 17.2 33.4 25.1 14.3 32.7 
Nov 28.8 19.8 33.2 27.1 17.0 33.4 
Dec 28.7 19.4 33.5 28.2 18.2 34.6 

3.2.2 Geomorphology 

The geomorphology of the study area is dominated by the Kalahari desert (Figure 

3.1). The Kalahari desert extends over most of Botswana, and parts of South Africa 

and Namibia. The Kalahari desert is delimited on climatic grounds, such that the 

northern (Etosha Pan, Namibia), and southern limits (Orange River, South Africa) 

extend over semi-arid to and conditions (Thomas & Shaw 1991). The Kalahari desert 

is part of a more extensive area which is physiographically and sedimentologically 

unified, called the Mega Kalahari, extending from -10 N to 290 S (Thomas & Shaw 

1991). The Mega Kalahari formed during the break up of Gondwanaland, about 200 

million years ago, when the separation of southern Africa left it with an uplifted 
33 



marginal hingeline (which developed into the Great Escarpment of southern Africa), 

while subsidence led to the formation of the interior basin, which is the Mega 

Kalahari. Sediments have accumulated here since the Jurassic. 

Sedimentation over the millennia has led to the elevated plateau of the 

Kalahari basin lying at altitudes of -1000m, with a gently rolling landscape of low 

relief, mantled largely by unconsolidated Kalahari sand which is between 50 to 100m 

thick over the study area (Thomas & Shaw 1991). This sand substrate coupled with 

the low annual rainfall, means that infiltration rates are rapid, and results in there 

being little if any surface water. It is primarily for this reason that the Kalahari is 

classed as a desert, despite its abundant vegetation. Other geomorphological features 

over the study area are frequent pans, where surface water may exist, at least in the 

wet season (Lancaster 1978, Thomas & Shaw 1991, Shaw & Thomas 1997). Often 

duricrusts (mainly silcretes and calcretes) are found in combination with these pans. 
In addition, there are occasional relict linear dune features of moderate elevation, 
found across the study area. 

3.2.3 Soils 

The soils over the study area are all developed from Kalahari sands, and display a 
distinct lack of horizonation, such that it is debatable as to whether they can be 

considered as soils at all. Nevertheless, the soils are classed as arenosols in the FAO- 

UNESCO classification used in southern Africa. The soils have poor profile 
development (though there is some variation in texture with depth in the profile), are 

moderately acidic, and are generally infertile having very low levels of soil nutrients, 

and soil organic carbon (Thomas & Shaw 1991, Ringrose et al. 1998). In view of this, 

it is surprising that the vegetation cover is so well developed over the Kalahari. 

3.2.4 Vegetation and land use 

The vegetation communities over the study area are all savanna complexes. While 

producing a clear and restrictive definition of savanna is problematic (Cole 1963), 

because of the large variation in canopy structures encountered, what is common is the 

existence of a continuous or semi continuous herbaceous layer, together with an 
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overstorey of woody species, which may be either trees and/or shrubs (Scholes 1997). 

Savanna may be found with either of these features absent and in varying proportions 

and conditions, leading to a large range of savanna types, from the wetter more humid 

savanna woodlands, to the and desert savanna grasslands (Cole 1986). In southern 

African savanna, this transition from wood dominated to desert grasslands, trends 

gradually from Zambia and Zimbabwe in the north east, to the south-west comer of 

Botswana. This transition is evident at the field sites used in this thesis, where tree 

dominance and higher cover is largely in evidence at Tshane (where it is wetter), 

while at the most southerly site Tshabong, there is a general reduction in tree cover 

and a concomitant increase in shrub cover. These trends are confirmed by others 

working in the same area (Ringrose 2003, Privette et al. 2004, Scholes et al. 2002, 

2004). It is important to state however, that there is significant variation in savanna 

structure along this gradient as a result of local variation in soils, geomorphology, and 
land use practices. 

Figure 3.3 shows the physiognomic groupings and vegetation types of Weare 

& Yalala (1971), across the study area, where it can be seen that all three field sites 

are on the sandveld (Kalahari sands), and are part of the Acacia mellifera, Acacia 

leuderitzii, Boscia albitrunca vegetation association. These species dominate the 

overstorey across the study area and are found together with Grewia species. In the 

understorey, grasses dominate ranging from perennial species of Aristida, Eragrostis, 

and Stipagrostis where the understorey is in good condition, to annual grasses and 

forbs where there is disturbance, often associated with overgrazing (van Rooyen & 

van Rooyen 1998). While the date of the source of this map is now over 30 years old, 

and vegetation may have changed in this period, from field experience it is considered 

that the physiognomic groupings and vegetation types are still valid, even if the 

relative abundance of particular species may have changed. 
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Figure 3.3 Vegetation of the study area (adapted from Weare & Yalala (1971)). 

Owing to the remoteness and aridity of the Kalahari in this south-west region 

of Botswana,, the only significant human impact in terms of land use is cattle ranching, 

both commercial and communal (Dougill et al. 1999). The land use over the study is 

shown in Figure 3.4. This cattle ranching has been associated with the citing of 

boreholes over large areas of Botswana, which has been reported to lead to an over- 

concentration of cattle,, leading to a reduction in the quality of forage for cattle and, 

over time, the replacement of these grasses with shrubs, leading to bush 
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encroachment,, environmental change, and possibly land degradation (Skarpe 1990a, b, 

1991., Perkins & Thomas 1993,, Jeltsch et al. 1997,, Thomas et al. 2000). Of the seven 
field plots four are located in areas where cattle grazing takes place on communal 
lands. Outside of cattle grazing, the study area represents relatively pristine 

conditions,, with the Kgalagadi Transfrontier Park (formerly the Gemsbok National 

Park) being a national park. The Mabuasehube game reserve forms part of this park, 

where two more field plots are located. These game reserves are buffered on all sides 
by Wildlife Management Areas (WMA), which are conservation areas, extending up 

to the Central Kalahari game reserve, in order to permit wildlife migration routes 
(Figure 3.4). The remaining field plot is situated in a WMA, just north of Tshabong. 
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Figure 3.4 Land use over the study area (based on the Republic of Botswana Ministry 
of Local Government Lands and Housing Map 1996). 
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3.3 Site and plot selection and description 

In order to thoroughly test the physically based plant canopy reflectance models in 

estimating LAI in savanna ecosystems, it was required that field plots should be 

located in a range of different savanna vegetation types, congruent with the spatial 

complexity that is savanna vegetation. 

Following a pilot study in the dry season of 2000, it was decided to 

devote field activity to three sites at Tshane, Mabuasehube, and Tshabong (Figure 

3.1). This decision was made for the following reasons: 

0 These sites offered the desired variation in vegetation type and land use. 

9 There was an existing knowledge of the Tshabong and Mabuasehube sites from 

previous research, by members of the project (Dougill et al. 1999, Trodd and 

Dougill 1998). 

0 The Tshane site was a relatively well established and studied field site, and was 

the most southerly of the SAFARI 2000 field sites along the Kalahari transect 

(Dowty et al. 2000, Shugart et al. 2004). Using this site would therefore provide 

potential for data exchange with the SAFARI 2000 project. 

0 Comparative ease of access to these sites. 

Having identified suitable sites, it was then possible to define some cnteria 

for the selection of study plots. Specific criteria for the selection of study plots were: 

0 Homogeneous vegetation over the area of the plot. 

9 No pronounced topography. 

0 Plots should be located at least 1km apart from each other at a site. 

Plots should not be identical in terms of the apparent vegetation structure or land 

use practice and pressure. 

All of the plots selected at each site satisfied as closely as possible, the 

criteria specified. The general characteristics and descriptions of each of the plots are 

given in Table 3.3. 
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Table 3.3 General characteristics and description of the field plots. 
Site (plot code) and Geographic Savanna Soil Plot description 
photograph co-ordinates type type 

(Lat. Long. ) 

Tshane plot I (TI) 

. 

24.16678S Low Kalahari Acacia leucleritzii and Acacia 
21.89017 E tree/shrub sands mellifera dorrunated plot 

savanna Tree height: 0.87-9.40m 
LAL 0.08-3.51 
Fractional cover of 
overstorey vegetation: 16% 
Uractional cover of 
widerstorey vegetation: 17% 
Light cattle grazing takes 
place 
SAFARI 2000 site 

Tshane plot 2 (T2) 24.16473 S Low Kalahari 4cacia leuderitzii and, 4cacia 
21.88298 E tree/shrub sands- inellifera dominated plot 

savanna Tree height. 1.14-9.13111 
LAI: 0.08-4.45 
Fractional cover of 
overstorey vegetation: 20% 
Fractional cover of 
understorey vegetation: 23% 
Light cattle grazing takes 
place 

Mabuasehube plot I (M 1) 

"' 

4 

Mabuasehube plot 2 (M2) 

ýý Z: ýrv . 11 1 

Tsha bong plot I (TG 1) 

24.91530S Savanna Kalahari Grass dominated plot 
21.97547 E grassland sands Tree height: 0.60 -4.4 1 in 

LAI: 0.01-2.03 
Fractional cover of 
understorey vegetation: 18% 
Game reserve, light grazing 

25,00723 S Savanna Kalahari Grass dominated plot 
2105590 E grassland sands Tree height: 0.61-9.08m 

LAI: 0.05-1.72 
Fractional cover of 
understorey vegetation. 17% 
Game reserve, light grazing 
by ungulates 

25.74133S Shrub Kalahari Acacia mellifera and Grewia 
22.31497 E savanna sands flava dominated plot 

Tree height: 1.38-10.38m 
LAI: 0.10-2.81 
Fractional cover of 
overstorey vegetation: 19% 
Once intensively grazed, now 
only very light grazing, little 
1-0 bi mass in the understorey 
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Table 3.3 Continued. 
Site (plot code) and Geographic Savanna Soil type Plot description 
photograph co-ordinates type 

(Lat. Long. ) 

Tshabong plot 2 (TG2) 

Tshabong plot 3 (TG3) 

4% 

25 38255 S Low Kalahari Acacia leuderitzii and 
22 16 711 E tree/shrub sands Grewiaflava dominated 

savanna plot 
Tree height. 0.78-8.72m 
LAI. 0.02-3.59 
Fractional cover of 
overstorcy vegetation: 6% 
Fractional cover of 
understorey vegetation: 
16% 
Located inside a WMA 
light grazing by ungulates 

25.63758S Shrub Kalahan Acacia mellifiera and 
22.27852 E savanna sands Grewiaflava donunated 

plot 
Tree height: 1.55-8.40m 
LAL 0.09-5.23 
Fractional cover of 
overstorey vegetation: 8% 

Once intensively grazed, 
now only very light 
grazing, little biomass in 
the understorey 

Note- the savanna classification is based on Cole (1986). 
WMA is a Wildlife Management Area where cattle grazing is not permitted. 

3.4 SAFARI 2000 project 

The author was able to become an affiliated data partner of the Southern Africa 

Regional Science Initiative 2000 (SAFARI 2000). SAFARI 2000 was an 

internationally funded research project, which brought together an international group 

of researchers,, with the aim of developing a better understanding of the southern 
African regional land-atmosphere system (Dowty et al. 2000, Shugart et al. 2004). 

Particular emphasis is given to biogenic, pyrogenic and anthropogenic gaseous 

emissions, their transport and modification, and how these emissions affect the 

regional climate and meteorology, and biogeochernistry of ecosystems (Swap et al. 
2003). To achieve this, SAFARI 2000 integrated remote sensing, computational 

modelling, airborne and field based studies. 
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Figure 3.5 Map of the SAFARI 2000 field sites along the Kalahari Transect (Source: 
Dowty et al. 2000). 

SAFARI 2000 began in mid-1999 and concluded at the end of 2002. A total of 

four intensive field campaigns (EFCs) were mounted during this period, where ground 

measurements were made in tandem with airborne and satellite data acquisition. The 

second of these EFCs took place along a sub-section of the International Geosphere- 

Biopshere Programme (IGBP) Kalahari Transect (Scholes and Parsons 1997, Scholes 

et al. 2002), in the wet season of 2000. This sub-section of the Kalahari Transect is 

made up of five field sites, shown in Figure 3.5: one in Zambia at Mongu, and four in 

Botswana at Pandamatenga, Maun, Okwa River, and Tshane. This transect spans a 

rainfall gradient of approximately 500mm, with Mongu in the north receiving an 4-71 C) 

average of 880mm per annum and Tshane in the south 365mm. Various ground C) 
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measurements were made at each of the sites during this campaign. Membership of 

this project permitted access to, and sharing of, various data sets, including the 

Landsat ETM+ data used throughout this thesis. 

3.5 Satellite sensor data 

Two different sets of satellite sensor data were used in this thesis: Landsat ETM+ and 

the Terra-MODIS 8-day surface reflectance product (MOD09A 1). 

3.5.1 Landsat ETM+ imagery and pre-processing 

Two level I-G Landsat ETM+ images were obtained via the SAFARI 2000 project, 
for use in this thesis (174/078 and 175/077). These two images covered five of the 

seven field plots, the 174/078 image covered the three plots at Tshabong and was 

acquired on the 17 February 2001, while the 175/077 image covered the two plots at 

Tshane, and was acquired on the 28 March 2001. There was no cloud free image 

available over the two plots at Mabuasehube, to coincide with the field measurements. 

The nearest cloud free image was not until June 2001, when the vegetation would 

have been at peak senescence, such that meaningful comparison with this image 

would not be possible. Consequently, the modelling work in chapter 6 and 8 was 

performed only for the five plots for which the ETM+ data were available. 

Orbital geometric correction was applied to these level I-G images, since 

working in this relatively featureless and unspoilt area of the Kalahari means that 

suitable ground control points (GCPs) are difficult to find. While collecting the field 

data, an effort was made to collect GCP data, but only two points could confidently be 

located in the 175/077 image and only one in the 174/078 image. The images 

therefore relied on the orbital correction applied by the Landsat processing, and is 

expected to be accurate to within 250 metres (www 3.2). This was checked using the 

limited GCP data available, and the geometric correction was found to be within this 

reported accuracy. Given that modelled reflectances are compared against these 

ETM+ measurements in chapter 6, this lack of precise geometric accuracy is a serious 

issue, and may lead to large discrepancies. In order to address this issue, an 8x8 pixel 

area centred on each field plot was extracted and radiometrically calibrated, and 
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atmospherically corrected to surface reflectance. In this way, there would be 64 

different reflectance values to compare against the modelled estimate, and as such at 
least some of the uncertainty associated with geometric errors has been accounted for. 

The images were radiometrically calibrated using the published gains and 

offsets given in the calibration parameter files (CPF) for each image, and 

atmospherically corrected using the Second Simulation of the Satellite Signal in the 

Solar Spectrum (6S), algorithm (Vermote et al. 1997a), an improved version of the 5S 

algorithm (Tanre et al. 1990). 6S models the effect of gaseous absorption (primarily 

03, H20i 02ý C02), and scattering by molecules and aerosols, while the interaction 

between the two is not considered, except in a statistical way. 

To calculate the effect of the atmosphere on the satellite signal, 6S needs 

inputs of the geometrical conditions (SZA, VZA, RAA), an atmospheric model for 

gaseous absorption, an aerosol model to calculate scattering effects, target elevation 

and surface conditions. For all the ETM+ pixels the atmospheric model was given to 

be tropical, where water and ozone contents in the atmosphere were 4.12g/cm 2 and 

0.247cm-atm respectively. The aerosol model was given to be continental, and the 

aerosol optical thickness was specified from measurements made at Tshane in the wet 

season of 2000, as part of the SAFARI 2000 project. The value used was 0.1913. It is 

acknowledged that these data are from a year earlier and as such may not be accurate, 

however, it was the only information available, and so was used. 6S was run for 

targets at an elevation of 1000m, so that the temperature and pressure dependence on 

absorption and scattering was considered. Surface conditions were represented as 

being patchy but with no directional effect, i. e. a Lambertian surface. After 

atmospheric correction, all pixels were cloud screened using the method described in 

Ouaidrari & Vermote (1999), in order to establish data sets of high quality. 

3.5.2 Terra-MODIS surface reflectance data and pre-processing 

In order to reduce the number of files which would need to be processed and also to 

increase the likelihood of cloud free images, the MODIS 8-day 500m surface 

reflectance product (MOD09AI) was downloaded (Vermote & Vermeulen 1999). 

The MOD09A1 product is atmospherically corrected using data from other MODIS 

products: MOD04 for aerosols, MOD05 for water vapour, and MOD07 for ozone 
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(Vermote et al. 1997b). Preliminary results indicate that the MODIS surface 

reflectance product is performing well within the expected uncertainties (Vermote et 

al. 2002). 

MODIS data comes in tiles of 10 degrees by 10 degrees, in sinusoidal 

projection. All data downloaded were version 4 products. The data were first 

reprojected to a geographic projection, then the various data sets were extracted. For 

each tile of the MOD09A1 product there are 13 files, 7 surface reflectance for each 

MODIS channel, 3 geometrical files containing respectively, the SZA, VZA, and 

RAA of each pixel, a file on the day of year that each pixel was imaged, and 2 quality 

control files. These data were analysed, and the surface reflectance, SZA, VZA, 

RAA, and day of year for each field plot was extracted after ensuring the data were 

not contaminated with cloud or any other contaminant. The MODIS surface 

reflectances are geometrically corrected and are expected to be accurate to within 
150m at nadir (Wolfe et al. 2002). 

3.6 Summary and conclusions 

This chapter has described the general characteristics of the study area, and introduced 

the seven field plots used in this thesis. The field plots are characterised by: 

* Subject to hot and wet summers, with warm and dry winters. 

9 Rainfall is highly seasonal, with over 80% falling in the summer months. 

* All plots are located within the Kalahari desert on Kalahari sands 

0 Represent a range of savanna vegetation types, and are subject to different 

land use practices. 

In addition, the pre-processing steps and issues associated with the Landsat 7 

ETM+ and Terra-MODIS data have been presented. The satellite data were pre- 

processed to obtain surface reflectance, and these data sets will be used to assess the 

performance of the modelling work in chapter 6, and to invert the neural networks in 

chapter 8. While this chapter has described the study area, the next chapter outlines 

the field measurements which were made during the wet season of 2001, at the seven 

plots. 
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Field Data Collection 

4.1 Introduction 

Field measurements of the canopy structure and vegetation surveys were made at the 

seven field plots between the 28 February and 8 March 2001. The field campaign was 

undertaken during the latter part of the wet season when it was anticipated that leaf 

area would be at its maximum. Leaf area being at its maximum would provide the best 

opportunity for estimating LAI from a canopy reflectance model inversion - the 

central aim of this thesis. The objectives of the field campaign were: 

To establish the probability density functions of key canopy 

structural variables. These data were required to parameterise the 

canopy reflectance models in order to perform the experimental 

modelling work of chapter 6. 

(ii) To obtain data on the composition of the vegetation (trees/grass), 

within the field plots 

(iii) To obtain validation data for the inversion work of chapter 8. 

Specific measurements that were made during the field campaign were: 

* Measurements of the plant area index (PAI), with a SunScan plant canopy 

analyser. 

Measurements of crown width, crown height, and tree height. 

Measurements of the leaf inclination angle of trees and shrubs. 

0 Estimates of the canopy coverage (%) of the grass (understorey) and 

trees/shrubs (overstorey), and the state of the vegetation (fraction 

green/senescent) within each of the field plots. 
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This chapter describes the methods used to collect these data. No spectral 

measurements of the soil or vegetation were made in the field because it was 

considered too difficult, logistically, to have done so. Soil samples were brought back 

from the field, and spectral directional measurements were made in the laboratory 

(chapter 5). 

4.2 Plant area index 

4.2.1 Sampling framework 

A nested sampling framework was adopted to collect the plant area index (PAI) data. 

One framework was defined on a plot size of 200 by 150 metres, and another was 
defined on a plot size of 60 by 60 metres, which was centred within the 200 by 150 

metre plot (Figure 4.1). Measurements of PAI were made along 200 metre line 

transects because this represented the most reasonable compromise between transect 

length, MODIS satellite data spatial resolution, and the time that would be needed to 

make the measurements, so as to ensure that a sufficient number of plots were studied. 

This is referred to as the 'MODIS plot. The 60 by 60 metre plot dimensions were 

chosen to relate well to the spatial resolution of the Landsat ETM+ imagery, and 

would allow for potential misregistration of the satellite imagery, given that image 

registration relied on orbital corrections (Mather 1999). This is referred to as the 

'ETM+ plot'. 

Within the 200 by 150 metre plot, measurements of PAI were made along 

five transects A, B5 Cý D, and E (Figure 4.1). There were three straight line transects 

(ABC) each of 200 metres in length, each parallel to one another and separated by 75 

metres. Measurements were taken at 10 metre intervals, yielding 21 samples per 

transect. Within the centre of this 200 by 150 metre plot, measurements were taken 

along two additional straight line transects (DE), which extended from the comers of 

the 60 by 60 metre plot. These two transects were each of 85 metres in length, 

measurements were taken every 5 metres, thus yielding 18 samples per transect. 

Thus, for one plot as a whole there were 99 measurements of PAL 
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Figure 4.1 Schematic overview of the arrangement and dimensions of the transect 
measurements of PAI and the central 60 by 60 metre field plot. Measurements along 
transects A, B, and C were made at 10 metre intervals, and every 5 metres along 
transects D and E. The central 60 by 60 metre plot served as the focus for 
measurements of canopy dimensions, vegetation surveys and leaf inclination angle. 

4.2.2 Instrumentation 

Measurements of PAI were made with a SunScan plant canopy analyser (Delta-T, 

Cambridge, UK, 1996). This instrument is a line quantum sensor which consists of a 

I metre long probe which has 64 photodiodes evenly spaced along it, sensitive to 

photosynthetically active radiation (PAR), in the range 400-700nm (Welles 1990). 

The SunScan probe is connected to a beam fraction sensor (BFS) which records 

incident PAR above the canopy, whilst the SunScan probe is placed beneath the plant 

canopy and records the transmitted PAR. 

Estimates of PAI are obtained from the SunScan by inverting a simple model 

of the canopy radiation transmission. The canopy transmission is modelled using the 

ellipsoidal leaf angle distribution parameter (ELADP) of Campbell (1986), to 

calculate the canopy extinction coefficient, and Beer's law for direct radiation 

transmission, as: 

Sb (L) Sb (0) exp (-KL) (4.1) 
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WhereSb (0) is the flux density of direct radiation on a horizontal surface above the 

canopy, Sb(L) is the flux density below leaf area index, L, and K is the canopy 

extinction coefficient (Hapke 1986). Wood (1996), integrated Campbell's results over 
the whole sky to describe the transmission of diffuse radiation through a plant canopy, 
thus obtaining an estimate of the canopy transmission based on the ratio of direct to 

total (direct + diffuse) radiation. Wood's model was used to compute the transmission 

of radiation for a wide range of model parameter combinations (solar zenith angle, 
leaf PAR absorption, LAI, ELADP, ratio of direct to total radiation). Computable 

functions were fitted to these model simulations, which are stored in the SunScan 

software. The canopy transmission measured in the field is used to invert these 
functions to obtain estimates of PAI. 

4.2.3 PAI data collection 

PAI is defined as the one sided plant area per unit ground area (m 2/ M2) , and thus 

represents the sum of: the leaf area index (LAI) - the one sided leaf area per unit 

ground area (in 2/ M2) , and the wood or litter area index (WAI, LitAI) - the one sided 

wood or litter area per unit ground area (M2/ M2) (Chen et al. 1997, Asner et al. 1998b, 

2000, White et al. 2000). 

To use the SunScan plant canopy analyser the user inputs some of the model 

parameters used in the calculation of PAI, to the SunScan software. First, the 

location, local time (from GMT), and date are given to the SunScan software, and the 

solar zenith angle -a model parameter - is calculated. Second, a value for the ELADP 

must be given. Here, the software default was used, an ELADP of 1, representing a 

spherical leaf angle distribution. Finally, a value must be given for the leaf PAR 

absorption. Again, the software default was used, and leaf PAR absorption was set to 

0.85. These default settings were used since there was no prior information to inform 

the selection of values. The settings used remained constant for all measurements 

made with the SunScan, irrespective of plot or canopy type. 

The PAI is calculated based on measurements of the transmission of solar 

radiation in the PAR wavelengths. Above canopy PAR is recorded with the BFS 

which includes a shadow ring for calculating the ratio of direct to total radiation. The 

canopy transmission is recorded with the SunScan probe by placing it underneath the 
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plant canopy (Figure 4.2). The levels of incident PAR above the canopy and 

transmitted PAR below the canopy are recorded simultaneously, the computable 
functions in the SunScan software are inverted, and an estimate of PAI is obtained, 

which is stored on a Psion WorkaboutTm handheld computer. 

Measurements of PAI were always made with the BFS attached to the 

SunScan probe, such that data were recorded in 'simultaneous' mode. However, the 

BFS started to malfunction at Tshabong plot 1. The BFS would occasionally either 

not record the incident PAR and not give a PAI value and report an error; or instead, 

always gave the maximum value of 2497.6 ItMol M-2 S-1 PAR, and a nonsense beam 

fraction value, but a sensible PAI value. This was caused by a temporary short circuit 

in the communication cables between the BFS and the SunScan probe (Edmund 

Potter, Delta-T Devices, June 2001, personal communication). An example file which 

illustrates the problem is shown in Figure 4.3. This slowed the data collection because 

of the time delay for the incident PAR to be recorded correctly, which sometimes took 

five or six attempts. After a while this problem got worse, with virtually every 

measurement of incident PAR being recorded as zero. 

With this, it was decided to make measurements of PAI in 'sequential' mode, 

where, first the incident PAR above the canopy was recorded with the SunScan probe, 

before recording the transmitted PAR beneath the plant canopy. The ratio of direct to 

total radiation is determined by casting a shadow on the SunScan probe when it is held 

above the canopy. Data were recorded in 'sequential' mode only at Tshabong plot 3. 

Fortunately, when measurements were made in this mode, the light conditions were 

very stable, such that estimates of PAI made in 'sequential' mode were very similar to 

estimates made when using the instrument in 'simultaneous' mode. To investigate if 

this difference in data collection mode would bias estimates of PAL tests were later 

carried out in Salford. Measurements were made of one plant, both with and without 

the BFS, and there was no significant difference in PAI found between the two modes 

of data collection (Student's t-test, P>0.05, two-tailed probability). 
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Figure 4.2 Measurements of PAI with the SunScan plant canopy analyser, at Tshane 
plot 1. Top, overstorey measurement, showing the SunScan probe and; bottom, 
understorey measurement, showing the SunScan probe, beam fraction sensor (with 
shadow ring). 

Unfortunately, this malfunction was not always detected because the 

SunScan software continued to give sensible PAI values. This led to the loss of some 
data points in the data reduction, since Delta-T recommended that PAI values 

estimated with incident PAR at 2497.6 ýIrnol M-2 S-1 should be discarded. 

Measurements of PAI were made of both the understorey and overstorey. 
When measurements of the overstorey were made an 'o' was recorded with the data 
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value to indicate that the value corresponded to an overstorey measurement (see the 
'Notes' column in Figure 4.3). In this way, data were collected on the PAI of both 

canopy layers of the vegetation, which were needed for the model parameterisation, 

rather than just having averaged plot values. Measurements were made approximately 

one hour either side of solar noon to avoid large differences in solar zenith angles. 
Estimates of PAI obtained from the SunScan are consistent up to solar zenith angles of 
60 degrees, beyond which estimates become susceptible to larger errors. This gave a 
large period of time within which PAI measurements could be made, since the 

SunScan can be used in most light conditions. Despite this, it was considered good 

practice to always try and make measurements at around the same time each day. 

This also made planning the fieldwork more straightforward - everyone involved in 

the data collection knew when they would be needed, thereby optimising the data 

collection for all parties concerned. 

Figure 4.3 Example file output from the SunScan plant canopy analyser, illustrating 
the problem with the incident PAR readings and fraction of beam (direct) radiation - 
columns F and G respectively. 

51 



4.2.4 PAI data quality assessment 

It is pertinent to discuss the accuracy of the data collected with the SunScan plant 

canopy analysis system, both with respect to the general model assumptions used to 

derive the functions for estimating PAI, and the particular way in which the 

instrument was used. First, the SunScan makes the following assumptions about the 

canopy in the calculation of the PAI: 

The canopy is an infinite, homogeneous horizontal slab 

Foliage elements are distributed randomly in the canopy 

The canopies encountered in these semi-arid savanna ecosystems, displayed a 

range of canopy structures, from the sparse and open to the dense and closed. Most 

measurements however, were made in the more characteristic sparse and open 

canopies of the grass understorey, which may be considered homogeneous, while 

measurements of shrubs and trees, were heterogeneous. Thus, while in some cases the 

assumption that the canopy is a homogeneous medium may be valid, in other cases 

this assumption would have been violated. It may be considered that a different 

optical instrument should have been used, which did not make such an assumption. 

Of the other optical instruments that could have been used, such as the LAI-2000 (1-1- 

COR, Lincoln, Nebraska), and others (e. g. TRAC, Chen and C1hlar 1995), which rely 

on the inversion of gap fraction data for estimating PAI, White et al. (2000) report 

very similar estimates of PAI obtained in the Jornada shrublands of New Mexico, 

U. S. A., when using an LAI-2000 and a ceptometer (which uses a method very similar 

to the SunScan for deriving estimates of PAI). These Jornada shrublands are similarly 

composed of sparse open canopies, such that it may be reasonable to assume that 

similar results would be obtained, if the experiment were to be repeated in the field 

plots used here. Perhaps the only way to account for the homogeneity assumption, 

would be to calibrate the SunScan estimates of PAI with destructively sampled 

estimates, as suggested by Norman and Campbell (1989), and performed by Asner et 

al. (1998b, 2000). This was not done here, however, since it would have been too 

time consuming to perform for a representative sample of the main shrub and tree 

species and grasses. 
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The assumption that the foliage elements are randomly distributed within the 

canopy is difficult to assess. From field observations and photographs, overall, there 

does not appear to be non-random or at least no excessive clumping of foliage, such 

that this assumption may be valid. This assertion is supported by the radiative transfer 

formulations for various biomes given in Table 1 of Knyazikhin et al. (1998a), where 
foliage dispersion in savanna is stated to exhibit minimal clumping. While the TRAC 

instrument can measure the gap size distribution from which an estimate of the 

clumping index can be obtained (Chen and Cihlar 1995), no such instrument was 

available for use with this work. Various researchers have addressed the issue of 

non-random or clumped distributions of foliage, as encountered when trying to 

estimate the PAI from optical instruments (Nilson 1971, Chen et al. 1997). Where 

clumped foliage is present and not accounted for, the estimates of PAI will be 

underestimated, since more radiation will be transmitted through the canopy than the 

actual or'true'PAI value would suggest. In this thesis no correction has been made to 

the PAI estimates to account for clumping or non-random foliage distribution. 

Two further issues regarding the validity of the software settings for the 

ELADP and leaf absorption need to be addressed. The ELADP was set to I 

representing a spherical LAD (mean leaf angle 57.4 degrees (Wang and Jarvis 

(1988)), and this value was used irrespective of plot or canopy type. The leaf angle 

distribution (LAD) of the trees and shrubs was unknown a priori, such that a spherical 

LAD was deemed to be a reasonable representation. This was later confirmed by 

measurements (mean leaf angles are around 57 degrees, see Table 4.2). The leaf angle 

distribution of the grasses was also unknown a priori, however, it was assumed that 

the grasses would conform to an erectophile distribution, such that no attempt was 

made to measure the LAD of the grasses. Clearly, the use of a spherical LAD in the 

model parameterisation for the SunScan may have been invalid when the PAI of the 

grass understorey was being measured. 

Recently, Wohlfahrt et al. (2001), investigated the effect that the type of 

LAD specified in the model parameterisation (of SunScan and Decagon instruments) 

had on estimates of PAI. They were able to show that the differences in estimates of 

PAI were not significant when using a measured versus a spherical LAD when the 

measured LAD did not deviate from a spherical LAD by more than 27 degrees. It 

therefore seems likely that the effect of a spherical LAD in deriving estimates of the 
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PAI of the grass understorey will be a slight underestimation, since more light will be 

transmitted under an erectophile distribution than a spherical distribution, for a given 

value of PAL The software settings on the SunScan could have been updated in the 

field every time the understorey and overstorey were being measured along the 

transect. This was not done however, since it was considered that attempting to do so 

would likely lead to inconsistencies, and therefore random error introduced. 

The leaf absorption was set at 0.85 and again was not changed regardless of 

plot and canopy type. A value of 0.85 for leaf absorption assumes a healthy green 

leaf. For the measurements of the tree/shrub overstorey this assumption was 

reasonable. However, for the grass understorey at Mabuasehube plots I and 2 this 

assumption would have been invalid, since both contained a large fraction of standing 

litter which would not absorb as strongly as a healthy green leaf. 

4.2.5 Deriving LAIfrom PAI data 

The discussion so far has concentrated on the measurement of PAI data, when it is the 

LAI that is required for model parameterisation. The SunScan instrument, like all 

optical devices used to measure the LAI is based on light interception, such that all the 

above ground elements of the vegetation (leaves, stems, branches, standing litter) 

contribute to the interception of light. Consequently, what is measured by the optical 

instruments is not actually the LAI, but rather the effective PAI, which is the product 

of the PAI and the clumping index (Chen and Cihlar 1995). It is therefore necessary 

to correct for two factors in order to obtain estimates of the LAI from the effective 

PAI: 1) the wood and/or litter area contribution, and, 2) the clumping index (Chen et 

al. 1997, Gower et al. 1999). Mathematically: 

(I -a) L, /Q (4.2) 

where L is the LAI, a is the wood and/or litter area to total plant area ratio, L, is the 

effective LAI and Q is the clumping index. As stated in §4.2.4, no correction was 

made for the clumping index, because the vegetation measured was assumed to be 

generally randomly distributed, such that the clumping index would be unity. 
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Corrections were made for the wood and litter area contribution to the PAI (Lt), such 
that the LAI is obtained from: 

ot) Lt (4.3) 

To correct for the wood and/or litter area contribution to the PAI, requires 
data for the wood area index (WAI) and litter area index (LitAI). No such data were 

collected in this thesis. Values for the WAI were therefore obtained from the 

literature. Values for the LitAI were derived using field estimated values of the 

fraction of green and senescent vegetation (see §4.4), such that if the fraction of 

senescent was estimated at 50 per cent, the LitAI would be calculated as being 50 per 

cent of the PAI value (Asner et al. 2000). 

Published values for PAI and WAI were obtained from Asner (1998b, c) and 
Asner et al. (2000), which relate to measurements of Prosopis glandulosa -a fine 

leaved evergreen shrub, from which a mean value for the WAI: PAI ratio was 

obtained. These values come from two sites, one a sub-tropical savanna in Texas, the 

other from the Jornada shrublands of New Mexico, both in the U. S. A. Values from 

Prosopis glandulosa were used since they were considered to bear the closest 

resemblance to the structure of the various Acacia species measured in this study. The 

mean value was obtained by calculating the ratios for the minimum and maximum 

values of WAI and PAI from the values in Asner (1998b); and the ratios for the mean 

plus and minus one standard deviation of WAI and PAI from the values in Asner et al. 

(2000). This resulted in a mean WAI: PAI ratio of 0.22. Values for LAI were then 

obtained using equation 4.3. 

It is important to state that subtracting the whole ratio may lead to an 

underestimate of the actual LAI, since this assumes that the woody elements are 

distributed randomly with respect to the leaves in the canopy (Gower et al. 1999). If 

the woody elements are not distributed randomly with respect to the leaves, then the 

leaves may preferentially shade the woody elements, such that, although the ratio of 

WAITAI may be correct, the actual contribution of the woody elements to light 

interception, and therefore PAI, may be overestimated. Kucharik et al. (1998), 

showed, using a multi-band vegetation imager (MVI), that the branches play a very 
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small part in light interception in fully leaved canopies, such that corrections to PAI 

should be made based on the stem area index alone, and not the total WAL 

Whilst it is clear that for some measurements made in this thesis the 

subtraction of the complete ratio may overstate the importance of the woody 

contribution to PAI, and conversely, using the ratio may understate the importance of 

the woody contribution in other measurements; without any information on the 

contribution of the woody material, it is difficult to handle the problem any more 

elegantly. 

The measurements of PAI and derived LAI from the transect measurements 

were also converted to total-area values (of a Landsat ETM+ and MODIS pixel) using 

the following formula: 

Total-area componentAl = componentAl * Fcov (4.4) 

Where componentAl is the PAI, LAI, WAI or LitAI, and Fcov is the fractional cover 

of vegetation. The total-area PAI, LAI, and WAI/LitAI were all calculated in this 

way, using the estimates of fractional cover for the overstorey and understorey 

obtained from the vegetation surveys of section 4.5. The plot total-area LAI 

(overstorey + understorey pixel LAI) was also calculated. 

4.2.6 Spatial dependence of LAI data 

Given that measurements of the PAI and therefore derived LAI were made every 10 

metres and 5 metres along the transects, it is important to test the adequacy of the 

sampling framework, in terms of maximising the information content for a minimum 

number of samples (Curran and Atkinson 1998; Atkinson and Tate 1999). To test 

whether the LAI data collected exhibited spatial autocorrelation, the Moran's I statistic 

was calculated (Goodchild 1986). The Moran's I statistic is scaled between +1 and -1, 

with positive values indicating that data are spatially autocorrelated, and negative 

values indicating that data are not spatially autocorrelated and independent of one 

another. Mathematically, the Moran's I is calculated as: 
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where i and j index the spatial points, of which there are n, -X is the mean of x and wij 
is the weight or degree of connection between points i and j. The Moran's I was 

calculated for all transects where sufficient data existed. 
Overall, the Moran's I was statistically significant in only one case, at 

Mabuasehube plot I transect d, where the calculated value of I was 0.533, indicating 

reasonably strong spatial autocoffelation. Although the rest of the calculated values of 
I are not statistically significant, the majority of these I values are either negative or 

approximately zero, thus suggesting that spatial autocoffelation is not particularly 

prevalent. Overall therefore, it is unlikely that these data suffer from excessive spatial 

autocorrelation, and the sampling framework adopted was suitable for maximising the 

information content for the number of sample measurements. 

4.3 Canopy dimensions 

Measurements of crown width, tree height, height to crown, and crown height were 

made for between 10 and 20 individuals of the dominant overstorey tree and shrub 

species at each plot. Measurements were concentrated within the 60 by 60 metre plot, 

although measurements were made further a field than this, but still within the bounds 

of the 200 by 150 metre rectangular plot, when there were insufficient number or 

uniformity of canopy type within the 60 by 60 metre plot, the idea was to get the 

naturally occurring range of data values. Measurements of canopy dimensions at 

Mabuasehube were not made within the actual field plots. This was because the two 

field plots were both grassland savanna, and so was not possible. Measurements were 

made elsewhere in the Game Reserve however, because time allowed, and it was 

considered potentially beneficial to do so. The results of the canopy dimensions 

measurements made at each of the sites are presented in Table 4.1. 

-X)(X x 
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4.3.1 Crown width 

Measurements of the crown width were made for the overstorey vegetation of trees 

and shrubs. Crown width was measured directly using tape measures. If vegetation 

was clumped as was sometimes the case, then clumps of the same species were treated 

as one individual. The longest axis was measured first and then a second axis 

approximately orthogonal to this one was also measured. Crown diameter was then 

calculated as the average of these two measurements. 

Table 4.1 Canopy dimensions by site and species. Mean and standard deviations are 
given with minimum and maximum values in parentheses. Figures presented are in 
metres. Measurements at Mabuasehube were not made within the field plots but from 
elsewhere in the game reserve. 

Site / Species 

Tshane 

Acacia leuderitzii 
(n=20) 

Acacia tnellýfera 
(n=20) 

Mabuasehube 

Acacia mellifera 
(n= 12) 

Grewia. flava 
(n=27) 

Acacia erioloba 
(n=37) 

Boschia albitrunea 
(n= 10) 

Tree height' Crown height2 Height to crown 3 

5.28+-2.64 
(0.87 - 9.40) 

4.38 ± 2.55 
(0.72 - 9.30) 

0.89 ± 0.97 
(0.10 - 3.59) 

2.88 ± 0.89 
(1.14 - 4.08) 

1.52 ± 0.67 
(0.80 - 3.46) 

1.20 ± 0.43 
(0.60 - 2.04) 

4.93 ± 2.89 
(0.65 - 11.15) 

3.68 ± 0.48 
(2.93 - 4.41) 

2.62 ± 0.86 
(0.98 - 3.94) 

1.41 ± 0.68 
(0.60 - 3.36) 

1.08 ± 0.40 
(0.45 - 1.82) 

2.87 ± 1.67 
(0.57 - 7.23) 

1.98 ± 0.52 
(0.85 - 2.55) 

0.26 ± 0.15 
(0-05 - 0.50) 

0.11 ± 0.06 
(0.00 - 0.20) 

0.12+-0.09 
(0.00 - 0.34) 

2.06 ± 1.57 
(0.05 - 5.09) 

1.71 ± 0.51 
(0.95 - 2.33) 

Crown diameter 

5.33 ± 2.93 
(0.95 - 11-10) 

4.43 ± 1.79 
(1.88 - 7.55) 

2.37 ± 1.08 
(1.20 - 4.94) 

1.81 ± 0.97 
(0.68 - 3.89) 

3.96 ± 2.36 
(0.75 - 9.98) 

Tshabong 

Aracia leuderitzii 5.87 ± 2.71 5.00 ± 2.61 
(n= 18) (1.07 - 10.38) (0.89 - 9.59) 

Acacia mellifera 3.11 ± 1.55 2.76 ± 1.47 
(n=3 1) (1.38 - 8.40) (1.09 - 7.89) 

Greivia. flava 2.11 ± 0.58 1.96 ± 0.55 
(n=37) (0.78 - 2.88) (0.74 - 2.85) 

0.88 ± 0.88 
(0.00 - 4.00) 

0.35 ± 0.29 
(0.00 - 1.15) 

0.15 ± 0.15 
(0.00 - 0.46) 

2.90 ± 0.52 
(2.40 - 4.00) 

6.10 2.98 
(1.01 11.44) 

3.78 ± 1.65 
(1.02 - 7.78) 

3.49 1.56 
(1.01 7.00) 

I Distance from the ground to the top of crown. 
2 Difference between tree height and height to crown. 
3 Distance from the ground to the lowest point of the crown. 
4 Calculated as the average of the two principal axes. 
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4.3.2 Treelshrub height, height to crown, crown height 

Measurements of tree height and height to crown were made by either directly 

measuring using a tape measure, or using simple trigonometry, where the distance 

from a point to the centre of the tree/shrub was recorded together with the angle to the 

top of the canopy. Crown height was calculated by subtracting height to crown from 

tree height. 

4.4 Leaf angle distribution 

The leaf angle distribution (LAD) is given by the distribution of inclination and 

azimuth angles of the leaves (Ross 1981). The leaf inclination angle is generally 

defined as the angle between the normal to the leaf surface and the vertical; the 

azimuth angle is that between a horizontal projection of the leaf perpendicular and 

some direction, usually north (Daughtry 1990). For model parameterisation, the 

required information is the fractional distribution of leaf area in each angle class (from 

0-90 in 10 degree class intervals). de Wit (1965) reports how most leaves display no 

preferred azimuthal direction, such that it may reasonably be assumed that there is 

azimuthal symmetry. Therefore, only the leaf inclination angle was measured in order 

to establish the LAD for a given plant canopy. 

In this thesis, the leaf inclination angle was measured for the overstorey 

vegetation of trees and shrubs, since it was assumed that the grass understorey would 

conform to an erectophile distribution (de Wit 1965). The leaf inclination angle was 

measured using a clinometer. Approximately 100 measurements were made at 

random, on individuals of the most common species at each site, these were: Acacia 

leuderitzii, Acacia mellifera, Acacia erioloba, and Grewia flava (Table 4.2). All 

measurements made on each species from the different plots were combined in order 

to increase the sample size from which leaf angle distributions were obtained for each 

species. 
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Table 4.2 Summary statistics of leaf angle measurements by site and species totals. 
Mean and standard deviations are given with range in parentheses. Measurements at 
Mabuasehube were not made within the field plots but from elsewhere in the game 
reserve. 

Site / Species Leaf Angle 

Tshane 

Acacia mellifera 59 ± 15 
(n= 103) (23-90) 

Acacia leuderitzii 61 ± 17 
(n=84) (11 -90) 

Mabuasehube 

Acacia erioloba 48 ± 17 
(n= 100) (0-88) 

Grewia. flava 60 ± 19 
(n=50) (5-90) 

Tshabong 

Acacia leuderitzii 52±21 
(n=100) (5-90) 

Grewia. flava 57 ± 20 
(n=204) (0-90) 

Acacia mellifera 41 ± 21 
(n=100) (0-85) 

Species totals 

Acacia leuderitzii 56 ± 19 
(n= 184) (0-90) 

Acacia mellifera 50 ± 20 
(n=203) (0-90) 

Acacia erioloba 48 ± 17 
(n= 100) (0-88) 

Grewiaflava 57 ± 19 
(n=254) (0-90) 

4.5 Vegetation surveys and woody density estimation 

Measurements of the fractional cover of woody, herbaceous, soil and litter materials 

were made within four 30 by 30 metre plot quadrats of the 60 by 60 metre plot. The 

percentage of each landscape component within each quadrat was estimated visually, 

from which an average value was calculated for the plot as a whole. In addition, 

visual estimates were made of the condition of the vegetation, i. e., the fraction of 

green, bark, and senescent for the plot as a whole. 
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Estimates of the woody density (number of trees/shrubs per unit area) were 

made only at Tshabong plot 1, because there was the time to do so. Woody density 

was recorded in each of the four 30 by 30 metre quadrats that constituted the 

vegetation survey at this plot, according to a simple frequency count of each species 

present. No height restriction was imposed for inclusion in the count, however, for a 

plant to be included in the count it was required to have its roots within the 30 by 30 

metre quadrat (Mueller-Dombois and Ellenberg 1974). 

4.6 Summary 

Measurements of most, if not all, the canopy structural variables were made at each of 

the field plots. The PAI data were corrected for the WAI contribution to the 

interception of light, in order to derive estimates of the LAI, or effective LAI. The 

sampling framework adopted for the measurement of PAI data was shown to be 

adequate in terms of optimising the information content of the data. The leaf 

inclination angle data collected allowed transformation and generation of a LAD for 

each of the species. The estimates of fractional cover allowed calculation of total area 

LAI. Overall, the design and execution of the field campaign ensured that data of 

sufficient number and quality were obtained, in order to provide for parameterisation 

of the canopy reflectance models, and to serve as validation data sets. The next 

chapter uses the soil samples collected in the field to characterise their BRDF. 
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Characterising Kalahari Soil BRDF 

5.1 Introduction 

It is well known that soils are generally non-Lambertian or anisotropic scatterers 

(Coulson et al. 1965, Irons et al. 1989,1992, Despan et al. 1999). In these semi-arid 

savanna ecosystems the soil surface represents the largest single fractional component 

in a pixel. Consequently, the soil reflectance will exert a large influence over the 

pixel reflectance (Kimes et al. 1985, Privette et al. 1995, Ni & Li 2000). The vast 

majority of canopy reflectance models however, represent the soil surface as a 

Lambertian reflector, and the model simulations in chapter 6 have been performed 

with a Lambertian soil reflectance. If reflected radiance is to be modelled with higher 

accuracy it is desirable that something is known about the scattering properties of the 

soils encountered in these Kalahari field plots. In so doing, the likely impact of this 

Lambertian assumption, will be determined. This chapter presents the results of a 

laboratory experiment, where a series of spectral bidirectional and hemispherical 

measurements were made over soil samples obtained from the field plots. The overall 

aim of this work was to characterise the scattering properties of the different soils. 

Specifically, there were two objectives: 

Compare the scattering properties of the different soil samples over 

a range of azimuthal planes. 

(ii) Compare spectral bidirectional and hemispherical reflectances, in 

order to assess the likely impact of a Lambertian assumption on 

future modelling work. 

5.2 Experimental design 

Bidirectional and hemispherical reflectance measurements were made over the 

different soils using an ASD spectrometer. This section outlines the methods used and 
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experiments conducted, in order to obtain accurate measurements of the soil 

reflectance. 

5.2.1 Soil texture and colour 

In order to aid the interpretation of the results, the soil texture and colour was 

determined. Soil texture is one of the most important properties which determines soil 

reflectance (Irons et al. 1989), and as such it is important to determine the texture of 

the soils used in this thesis. Having such information will enable better understanding 

of the reasons for the observed reflectances, and possibly help account for differences 

observed between samples. In addition, the soil colour may help account for observed 

differences in the reflectances, therefore the Munsell soil colour code was recorded for 

each soil sample. 

Typically, determination of the particle-size distribution relies on a 

combination of sieving and sedimentation techniques; sieving to separate the coarse 

and fine sand particles, and sedimentation to separate the silt and clay particles 

(Rowell 1994). Particle-size class distinctions are presented in Table 5.1, though one 

should note that in the U. K., 63 Itm is used as the class distinction between fine sand 

and silt. 

Table 5.1 Particle-size class distinctions (Source: Rowell 1994). 

Class Size (mm) 

Stones 
Fine earth: Coarse sand 

Fine sand 
Silt 
Clay 

>2 
2-0.2 (2000-200 
0.2-0.06 (200-60 Am) 
0.06-0.002 (60-2 Itm) 
<0.002 (<2 ttm) 

Before the particle-size distribution may be determined, the soils are pre- 

treated. First, any organic matter that may be present is removed (a particle-size 

analysis is interested only in the mineral particles). Second, the silt and clay particles 

are dispersed. Here, no systematic attempt was made to remove any organic matter 

content since this was less than 1% of the weight of the soil. This was deten-nined by 
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a pilot study which burnt sub-samples of the soils at 3500C overnight then reweighed 

the soil to determine the loss on ignition, which was less than 1%. Similarly, the 

weight of material which passed through the 63 Itm aperture sieve (the silt and clay), 

was weighed and was found to be less than 1%. For this reason, the soils were not 
dispersed before determining the particle-size distribution, and the silt and clay classes 

were treated as one in the particle-size analysis. The particle-size analysis was 

therefore performed solely on the basis of dry sieving, and was used to separate and 

quantify the relative proportions of coarse sand, fine sand, and silt and clay. It is 
important to state that using dry sieving alone will give the effective particle-size 
distribution, i. e., that which is found in situ, rather than the theoretical particle-size 
distribution. Given that the spectral measurements were made on samples taken in 

situ, it was desired to have correspondence between the particle-size analysis and the 

conditions under which the spectral measurements were made. Two sieves were used 

to obtain the particle-size distribution: 

0 One with a 250 itm aperture, to separate the coarse sand from the fine sand and silt 

and clay (actually the distinction between coarse and fine sand is at 200 Am, but 

250 Am was the closest sized aperture available (see Table 5.1). The effect of this 

will be to overestimate the proportion of coarse sand and underestimate the fine 

sand proportion). 

One with a 63 Am aperture, to separate the fine sand from the silt and clay. 

The proportion of each class in the sample was then calculated as a 

percentage. Particle-size analysis was performed after the spectral measurements had 

been made. 

5.2.2 Laboratory spectroscopic measurements 

To augment the field data collected, laboratory bidirectional reflectance distribution 

(BRDF) measurements were made of Kalahari soils, using an ASD Fieldspec FR 

spectrometer (Analytical Spectral Devices, Colorado, USA). These data would 

provide for complete parameterisation of the canopy reflectance models used in the 

modelling of chapter 6. The methods used to collect these data are described below. 
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5.2.2.1 Laboratory set-up 
In order to make BRDF measurements a goniometer was constructed (Hosgood et al. 
1999, Sandmeier and Strahler 2000). The goniometer was constructed from wood and 
is shown in Figure 5.1. The centre of the base of the goniometer was fixed to a table 

such that the goniometer could pivot through 360 degrees in azimuth. The azimuth 

planes in which measurements would be made were decided before the construction of 

the goniometer was completed, such that holes could be drilled at the appropriate spot 

which would allow fixing of the goniometer base to the table at a particular azimuth 

angle. The main arch of the goniometer consisted of two pieces of wood cut roughly 
into hemispheres. On this arch holes were drilled in 10 degree increments in zenith 
from -80 to +80 degrees (negative angles indicate backscatter direction, and positive 

angles the forwardscatter direction). The two hemispheres of wood were fixed to the 

base of the goniometer with space between them to allow the insertion of the 

supporting arm for the ASD. The supporting arm was made from aluminium and had 

two holes drilled in it. One was used to fix the base of the arm to the arch of the 

goniometer, and the other to fix the arm at a given viewing angle. The arm could be 

moved through 80 degrees back and forward in zenith. The ASD was fixed to the 

supporting arm with black tape, and the distance between the ASD and the target 

sample was approximately 15cm (Figure 5.1). 

To avoid unwanted reflections, the measurement table, goniometer, supporting 

arm, and the walls of the spectroscopy laboratory were painted matt black. In 

addition, a black absorbing curtain surrounded the measurement table and goniometer, 

such that reflections from other areas of the spectroscopy laboratory (which were not 

painted black) would be obscured (Figure 5.1). 

5.2.2.2 Instrumentation 
An ASD fieldspec FR spectrometer was used to make the spectral measurements. The 

ASD has three spectrometers: one in the visible/near infrared (VNIR), and two in the 

shortwave-infrared (SWIR). The VNIR spectrometer consists of a 512 channel silicon 

photodiode array (each channel essentially being a detector) and light is measured 

simultaneously from 350nm to 1050nm. The two SWIR spectrometers each consist of 
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a single Indium Gallium Arsenide (InGaAs) detector, which measure light 

sequentially from 900nm to 1850nm in the first,, and from 1700nm to 2500nm In the 
second detector. The overlap in wavelengths is accounted for by the ASD software. 
Light energy is obtained via three fibre optic bundles each of which delivers light to 
the entrance slit of one of the spectrometers. The fibre-optic cable has a conical scan 
and an instantaneous field of view (IFOV) of approximately 23 degrees. Using the 
fibre-optic on its own would require relatively large target sample areas (especially at 
large viewing angles), which, given that measurements were being made in a 
laboratory was undesirable. Consequently, an 8 degree fore-optic lens was used to 

restrict the size of the IFOV. 

Figure 5.1 Gomometer design and measurement configuration, here, at 70 degrees 
backscatter. 

5.2.2.3 Data collection andprocessing 
A single 1000w tungsten halogen bulb was used as the light source, and the lamp was 

positioned at an illumination angle (SZA) of 30 degrees. This SZA was chosen to 

correspond to an expected SZA for a Landsat ETM+/Terra-MODIS overpass in the 

wet season at the latitudes of the field plots. The configuration of the supporting arm 

and the ASD with respect to the light source, meant that no hot spot data were 

collected. The projection of a sensors IFOV to the target surface, is termed the ground 
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instantaneous field of view (GEFOV) (Walthall et al. 2000). The GIFOV for nadir 

viewing (GEFOVO) and off-nadir viewing angles (GEFOV(ov)), were calculated using 

equations 5.1 and 5.2, respectively: 

GEFOVO = (tan EFOV) *H 

GIFOV(ov) =H tan a+ _'Ov -tan a-IFOV 
(5.2) 122 

where H is the distance from the ASD sensor to the target surface (0.15m), and 0, is 

the view zenith angle. 

Having calculated the GEFOV for all view angles in one scattering direction (0 

to 80), it was decided to make measurements at 10 degree intervals, from -60 to +60 

for all the soil samples, so as to ensure sufficient soil sample area was available to 

comfortably accommodate the sensor GEFOV. In all cases, measurements were made 

in seven azimuth planes: the solar principal and orthogonal planes, and at 5,10,30, 

45, and 70 degrees. Measurements were recorded in raw digital number (DN) mode, 

with a scan average of 50 spectra. Before each measurement was made the ASD was 

optimised against a Spectralon optical grade panel (Labsphere, NH, USA). The same 

Spectralon panel (assumed Lambertian) was used as the reflectance reference (Rollin 

et al. 2000), and the raw DN data were processed to reflectance values by ratioing the 

BRDF of the target against the BRDF of the Spectralon panel. Because of the signal- 

to-noise ratio (S/N) the spectra were very noisy at wavelengths shorter than 450nm 

and longer than 1820nm (a problem with the light source in laboratory studies). 

Consequently, only wavelengths in the range 450nm to 1820nm were used for further 

study. 

Because of the expectation of the presence of steps in the spectra produced by 

the ASD (at c. 1010nm and c. 1820nm), five replicate spectra were saved for each 

measurement, and the smoothest spectrum of the five (once processed to reflectance) 

was selected for use (Liang et al. 1996). The presence of steps in the spectra is 

thought to be related to the way in which the fibre-optic bundles are split, in that, each 

bundle delivers light to the same spectrometer at each scan, such that if the three 
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bundles view different areas of the target, different amounts of light will be recorded 

at each spectrometer, thus explaining the presence of steps. The step at 1010nm is 

also thought to be related to the sensitivity of the silicon detector at these NIR 

wavelengths (M. Schaepman, personal communication, August 2002). 

5.2.2.4 Error sources and data quality 
When making laboratory (or field) BRDF measurements, error can be introduced in 

several ways. It is important to attempt to try and quantify the error in the 

measurements made, so that some faith can be placed in the usefulness of the data sets 

obtained. Commonly cited sources of error in laboratory BRDF measurements 

include: 

e lamp (or bulb) instability and nonparallelism, 

target vanance between successive measurements, and, 

9 the geometric accuracy of the goniometer (Sandmeier and Strahler 2000). 

Sandmeier et al. (1998) have shown that the error introduced by lamp instability can 

be as great as 2.7% relative RMSE (in the 450nm to 1000nm range), for 

measurements made at the European Goniometric Facility (EGO) on concrete 

(assumed a temporally invariant target surface), when there is a 59 minute time 

difference between measurements. They state that by using a direct current (DQ 

power supply, the errors attributable to lamp instability could be significantly reduced. 

Meister et al. (2000), have been able to show this, and report measurement errors 

attributable to lamp instability of 0.3% when using a DC power supply for 

measurements of asphalt and roof-tiles at the EGO. Sandmeier et al. (1998) have also 

shown the effect of target variance. They show that heating of vegetation samples 

caused by the heat of the lamp, can lead to a relative RMSE of up to 7.8% for repeated 

measurements of grass taken 2 hours and 55 minutes apart. 

To assess the errors that might be introduced in the BRDF measurements made 

in this thesis, two experiments were conducted. Experiment one was concerned with 

determining the relative error of successive measurements made over a short and long 

time period, by taking successive nadir measurements of the Spectralon panel at 30 
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second intervals for a period of 10 minutes, and at 2 minute intervals for a period of I 

hour and 25 minutes. The second experiment was concerned with determining the 

repeatability of BRDF measurements made in the principal plane, by making 

measurements of dry building sand (air dried at room temperature) from -70 to +70 

degrees in zenith, then repeating the procedure as soon as the first run of 

measurements was completed. The time difference between the two measurement 

runs was approximately I hour and 29 minutes, for each corresponding measurement 

pair. The aim of these two experiments was to investigate the influence of the 

stability of the lamp on directional measurements made, in order to determine if there 

is a time period beyond which changes in the lamp become too severe to allow 

accurate and repeatable measurements to be made. 

In both experiments the SZA was fixed at 30 degrees. The error for the nadir 

measurements over the Spectralon panel was assessed by calculating the relative root 

mean square error (RRMSE): 

2 
1n Ri* -Ri 100 RRMSE = -I 

Fn 

Ri 

(5.3) 

While for the measurements over dry building sand (processed to 

reflectance), the root mean squared error (RMSE) was calculated: 

n 

RMSE= -I(Ri Ri 
n i=l 

(5.4) 

Where Rj* is the measured data value to be compared, Ri is the measured or 

'true' data, and n is the number of data sets. For the panel measurements of 

experiment one, the 'true' data value is the first DN number recorded in each 

wavelength, and subsequent measurements are compared to this value. For the 

measurements of the dry building sand the 'true' value at each VZA is the reflectance 

value obtained from the first measurement run, and corresponding values from the 

second measurement run are compared to these. No attempt was made to investigate 

the effect of target variance, since the target samples used in this thesis were assumed 
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to be temporally invariant. The geometric accuracy and precision of repositioning the 
ASD after successive measurements was also not investigated. 

5.2.2.5 Soil BRDF and hemispherical reflectance measurements 
To complete the spectral measurements for parameterisation of the canopy reflectance 

models, samples of soil were brought back from the field. Soil samples were taken 

from only four of the seven field plots, these were Tshane plot I (Tl), Mabuasehube 

plot 2 (M2), and Tshabong plots I and 3 (TGI and TG3). Samples were obtained by 

taking the top fraction of the soil in a random fashion within the plots. Before spectral 

measurements were made the soils were sieved in order to separate the small litter 

fraction from the soil, a sieve with a 4mm aperture was used to achieve this. Any 

remaining litter was removed by hand. Soil samples, although already dry, were left 

to air dry in the laboratory in case there was any residual moisture remaining in the 

samples, doing this ensured the samples would not undergo changes during the 

measurement time period. The soil samples were placed on a sample tray (which was 

painted matt black) and were spread out to cover the entire tray area. The soil samples 

were then levelled off in order to obtain smooth surfaces. Though it may be 

considered that smoothing the soil surfaces may be unrepresentative of actual field 

conditions, the soils were prepared in this way because it was the only way of 

ensuring that surfaces were the same for all samples i. e. reproducible, such that any 

differences in reflectance would be attributable to different scattering properties of the 

soil samples, rather than being an artefact of the surface conditions, this was 

especially important given the small GEFOV of the ASD. 

Two sets of reflectance measurements were made on the soil samples: the 

BRDF measurements were made using the goniometer and ASD with an 8 degree 

fore-optic lens, while the hemispherical reflectance measurements were made using 

the ASD together with a contact probe. 
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5.3 Results and discussion 

5.3.1 Soil texture and colour 

Table 5.2 presents the results of the particle-size analysis together with the Munsell 

soil colour code for each sample. Differences in the particle-size distributions for the 

four different samples are quite pronounced, with there being 20% more coarse sand 

at Tshane plot 1, and 10% more coarse sand at both of the Tshabong plots than at 

Mabuasehube plot 2. The coarsest soils are at Tshane plot I where the coarse sand 

class constitutes 65.5% of the sample, while the finest soils are found at Mabuasehube 

plot 2, where the fine sand class constitutes 55.3% of the sample (Table 5.2). 

Differences in soil colour are apparent, with the soils at Mabuasehube being the 

reddest and darkest, while the other three soil samples are of the same hue -a 

yellowish red, but are lighter at Tshane than at Tshabong. 

5.3.2 Error and data quality 

Figure 5.2 shows the results of experiment I (determining the relative error of 

successive measurements), where it can be seen that the relative error is less than 2% 

across the spectral range 450nm to 1820nm, for both measurement time periods. 

Treating results in the two detectors of the ASD separately, there is a RRMSE of 

0.51% and 1.12% in the first detector (450nm to 1010nm), and a RRMSE in the 

second detector (1011nm to 1820nm) of 0.23% and 0.56%, for the 10 minute and I 

hour 25 minute time intervals respectively. The RRMSE in the second detector is 

lower than that in the first because of a stronger S/N as shown in Figure 5.2 by the 

mean DN values of the Spectralon panel. The S/N is lower in the first detector which 

not only leads to larger RRMSE values, but also introduces a wavelength dependent 

error when measurements are made over extended periods of time (the I hour 25 

minute case), a trend not as clearly marked in the second detector (Figure 5.2). Since 

there was no change in the measurement set up in this experiment (SZA and VZA 

were constant), and assuming that the panel is temporally invariant, and the ASD 

reliable, the errors are directly attributable to variations in the light source. 
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Table 5.2 Particle-size distribution, and Munsell colour code for the four Kalahari 
soil samples, which the laboratory BRDF work was performed on. 

Site Coarse Sand Fine Sand Silt and Clay Munsell Colour 
M) M) M) 

TI 65.5 34.5 0.0 7.5YR 7/8 
(Reddish yellow) 

M2 

TGI 

44.2 

55.0 

55.3 

44.5 

0.5 

0.5 

5YR 5/8 
(Yellowish red) 

7.5YR 6/8 
(Reddish yellow) 

TG3 54.2 45.7 0.1 7.5YR 6/8 
(Reddish yellow) 

Note: TI is Tshane plot 1, M2 is Mabuasehube plot 2, TG1 and TG3 are Tshabong 
plots I and 3. 

Figure 5.3 shows the results of experiment 2 (repeatability of BRDF 

measurements made on dry building sand), where it can be seen that there is some 

variability in the repeated measurements, but overall absolute differences in 

reflectance are observed to be small. Table 5.3 reports the RMSE of the repeated 

measurements for the two detectors of the ASD. In the first detector (450nm to 

1010nm), there is a maximum RMSE of 3.42% at 10 degrees forwardscatter, and a 

minimum of 0.34% at 50 degrees forwardscatter. Averaging over all view angles the 

RMSE in the first detector is 1.6%. In the second detector (101 1nm to 1820nm), there 

is a maximum RMSE of 1.83% at 70 degrees forwardscatter and a minimum RMSE of 

0.16% at 50 degrees forwardscatter. Averaging over all view angles the RMSE in the 

second detector is 0.9%. Overall, these results are considered to be acceptable enough 

in order to have confidence in the quality of the data obtained in the laboratory. 

The results of these experiments influenced the design of the measurement 

procedure. Accordingly, to avoid the introduction of excessive error into the 

measurements, because of variations in the lamp, BRDF measurements were made 

within a period of two and a half hours (the same total measurement time period as 

experiment two), enough time to make full directional sampling in two azimuthal 

planes. 
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Figure 5.2 Relative RMSE for nadir measurements of a Spectralon panel for different 
time intervals, with an illumination zenith angle of 30 degrees. The mean DN of the 
Spectralon panel is also shown. 
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Figure 5.3 BRDF plots of the building sand for selected wavelengths, demonstrating 
the repeatability of measurements made with the goniometer. Solid shapes represent 
the first measurement run in the principal plane, the hollow shapes are the values from 
the measurements made in the second run in the principal plane -I hour 29 minutes 
after the first run. Negative angles indicate the backscatter direction. 
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Table 5.3 Repeatability of BRDF measurements, taken -I hour 29 minutes apart. 
RMSE is reported in the first two detectors of the ASD, for each view angle. Negative 
angles indicate the backscatter direction. 

View angle RMSE 450-1010nm RMSE 1011-1820nm 

-70 1.90 0.59 
-60 0.58 1.35 
-50 1.23 0.57 
-40 0.39 0.49 
-30 No data No data 
-20 0.48 0.56 
-10 1.03 0.72 
0 2.83 1.78 
10 3.42 0.99 
20 2.45 0.75 
30 2.59 0.42 
40 0.76 1.70 
50 0.34 0.16 
60 2.59 0.95 
70 1.61 1.83 

5.3.3 Spectral bidirectional reflectance in the principal and orthogonal planes 

Measurements of soil BRDF made in the solar principal plane, for the five selected 

wavelengths are shown in Figure 5.4a-e. The five wavelengths were chosen for the 

sake of brevity, and were chosen to cover the visible, near-infrared and short-wave 

infrared regions of the electromagnetic spectrum. Clearly, all four soil samples are 

strongly non-Lambertian or anisotropic. At all plots, reflectance is dominated by 

backscattering with highest reflectance being recorded at 600 backscatter. Reflectance 

progressively decreases with decreasing view angle in the backscatter direction, and 

continues to decrease in the forwardscatter direction until the lowest reflectance is 

reached at 30' forwardscatter, beyond which reflectance in the forwardscatter 

direction increases in value. The BRDF therefore displays the well reported bowl- 

shape (Kimes 1983, Deering et al. 1990, Deering et al. 1999). As stated earlier, it was 

not possible to make measurements of the hot spot because of shadowing from the 

goniometer and instrument. However, measurements of the dark spot, at 300 

forwardscatter, are clearly picked up, at all wavelengths and for all soil samples 

(Figure 5.4a-e). This feature is a result of the spectrometer viewing the maximum 

shadowed area at this viewing angle. Had hot spot measurements been possible, this 

would most likely have been the peak reflectance, because of shadow hiding (Hapke 

1986, Hapke et al. 1996). 
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Comparing across field plots and wavelength, it is clear that the most striking 
feature is that the shape of the BRDF for all four field plots is almost identical. All of 
the soils are very similar anisotropically (measured as a ratio of the highest to lowest 

value for each sample in each plane), with the difference between the lowest and 
highest reflectance generally being around 40%, this pattern is repeated across 

wavelengths. It might be considered that greater anisotropy would be expected at TI 

because of the greater fraction of coarse sand at this plot. This is because one would 

expect larger shadows and therefore a lower reflectance at the dark spot (Li et al. 
1996). Clearly, there is no evidence to support this, which might be a result of the 

way in which the soil samples were prepared, they were all smoothed out and so 

should present very similar surfaces. Another possibility is that the difference in the 

amount of coarse sand present, is insufficient to translate into a noticeable difference 

in the reflectance anisotropy. 

Although the BRDF shape of the soils is almost identical, and anisotropy 

similar, differences in magnitude are apparent yet are generally no greater than 5% 

absolute reflectance, at all wavelengths and viewing angles (Figure 5.4a-e). This is 

perhaps not surprising given that the soils are all Kalahari sand, and were prepared in 

the same way i. e. smoothed out before measurements were made. Comparing across 

wavelengths, the brightest soils are seen at TI, with soils at M2 being the second 

brightest, whilst at TGI and TG3 the lowest reflectance is observed. The fact that the 

soils at TI are the brightest concurs with the Munsell colours given in Table 5.2, 

though this is strictly only applicable to the visible wavelengths. With respect to the 

Munsell colour codes, M2 would be expected to show the lowest reflectance, not the 

second highest. This may be a result of the order in which measurements were made. 

The soils from M2 were the last in the series to be measured (over a two week period), 

by which time repeated use of the goniometer had weakened its structure, such that 

the geometrical accuracy and stability would most likely have been degraded. In this 

way greater error may have been introduced into the measurements. This issue 

notwithstanding, the difference between the TG1 and TG3 and M2 soils was generally 

less than 1-2% across wavelengths and viewing angles, which is well within the 

uncertainty in the measurements due to lamp instability (Table 5.3). Again, the 

differences in colour may not be sufficiently marked to translate into clearly 

observable differences between these plots. 
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Figure 5.4 Principal plane spectral bidirectional reflectances for each of the four 
samples at (a) 465nm, (b) 550nm, (c) 660nm, (d) 860nm, (e) 1650nm. No data were 
collected in the hot spot at 30 degrees backscatter. 
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Figure 5.4 Continued. 
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Figure 5.4 Continued. 

Measurements made in the orthogonal plane are shown in Figure 5.5a-e. 

Again, the soils are seen to be anisotropic and the BRDF very similar in shape to one 

another, with directional reflectance being more symmetrical than in the solar 

principal plane, with equal amounts of reflectance in the backscatter and 

forwardscatter directions. For all soils, reflectance is at its highest in the 60' 

backscatter direction, reaches a minimum at nadir and progressively increases up to 

the maximum again at 60' in the forwardscatter direction. There is a more 

conventional bowl-shape in the orthogonal plane than the principal plane. As 

expected, the BRDF is less dynamic in the orthogonal plane, because the physical 

scattering mechanisms (operative in the principal plane) are not as strong. 

The same pattern of magnitude differences as was observed in the principal 

plane is evident in the orthogonal plane, with TI being the brightest soils followed by 

M2 and TGI and TG3, with differences generally being no greater than 5% absolute 

reflectance, across wavelengths and view angles (Figure 5.5a-e). 
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Figure 5.5 Orthogonal plane spectral bidirectional reflectances for each of the four 

samples at (a) 465nm, (b) 550nm, (c) 660nm, (d) 860nm, and (e) 1650nm. Hot spot 
data are not shown for reasons of consistency with the principal plane plots. 
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Figure 5.5 Continued. 
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Figure 5.5 Continued. 

5.3.4 Spectral bidirectional reflectance variation as afunction of viewing azimuth 

plane 

Spectral bidirectional reflectances are shown as a function of viewing azimuth plane 

in Figure 5.6-5.9, for the four different soil samples. For brevity, reflectances at the Z: ) 

red (660nm) and NIR (860nm) are shown. For all soil samples and at both red and 

NIR reflectances, there is decreasing reflectance and anisotropy as measurements are 

made away from the pnncipal plane, i. e. soils become more Lambertian. Nadir 

reflectances are shown to be relatively independent of the azimuthal plane in which 

the measurement was made, with less than 1% difference between azimuthal planes. 

Measurements made at 5 and 10 degrees in azimuth are very similar to the 

measurements made in the principal plane, and in some cases have higher reflectances 

in the backscatter direction than those made in the principal plane (cf. Figure 5.6 and 

5.8). In the forwardscatter direction these differences are less pronounced. This is 

most likely a result of errors in the measurements rather than there being any 

underlying physical explanation. What these results do indicate however, is that in 

terms of the features they show, and therefore the information they contain, sampling 

up to 10 degrees away from the principal plane, the distinctive dark spot feature of the 

BRDF is still strong in evidence. Clearly, the soils remain highly anisotropic over a Z: ) 
fairly broad swath in azimuth, before becoming progressively more isotropic beyond 
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45 degrees. In other words there is no sharp fall off in anisotropy once outside the 

principal plane. 
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Figure 5.6 Spectral reflectance as a function of viewing azimuth plane, for Tshane 
plot I (TI) at (a) 660nm, and (b) 860nm. Letters and numbers in the legend refer to 
the angular plane the measurements were made in, where pp is the pnincipal plane and 
op is the orthogonal plane. No data are shown in the hot spot for reasons of 
consistency- 
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Figure 5.7 Spectral reflectance as a function of viewing azimuth plane, for 
Mabuasehube plot 2 (M2) at (a) 660nm, and (b) 860nm. Letters and numbers in the 
legend refer to the angular plane the measurements were made in, where pp is the 
principal plane and op is the orthogonal plane. No data are shown in the hot spot for 

reasons of consistency. 
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Figure 5.8 Spectral reflectance as a function of viewing azimuth plane, for Tshabong 
plot I (TG I) at (a) 660nm, and (b) 860nm. Letters and numbers in the legend refer to 
the angular plane the measurements were made in, where pp is the principal plane and 
op is the orthogonal plane. No data are shown in the hot spot for reasons of 
consistency. 
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Figure 5.9 Spectral reflectance as a function of viewing azimuth plane, for Tshabong 
plot 3 (TG3) at (a) 660nm, and (b) 860nm. Letters and numbers in the legend refer to 
the angular plane the measurements were made in, where pp is the Principal plane and 
op is the orthogonal plane. No data are shown in the hot spot for reasons of 
consistency. 
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5.3.5 Comparison of directional and hemispherical reflectance magnitude 

The model simulations in chapter 6 were performed using the hemispherical soil 

reflectances obtained using the ASD contact probe, such that the soils were 

represented as Lambertian surfaces. This was done because the bidirectional 

measurements beyond 1800nm were too noisy, and therefore unsuitable for simulating 

MODIS and ETM+ band 7. The hemispherical reflectance recorded by the ASD and 

contact probe on the other hand uses a different light source, which has a stronger 

signal beyond 1800nm. Consequently, it is interesting to compare the bidirectional 

and hemispherical reflectances in order to determine the likely impact this will have 

on the accuracy of the modelling in chapter 6. 

Figure 5.10 shows the comparison of the directional and hemispherical 

reflectances for the soil at T1, at red (660nm) and NIR (860nm) wavelengths in the 

principal and orthogonal planes. In the principal plane the hemispherical reflectance 

is lower than the bidirectional reflectance by as much as I I% in both the red and NIR 

in the backscatter direction until -50 backscatter, where the hemispherical and 

bidirectional reflectances are equal, then from nadir to 50 degrees and 60 degrees 

forwardscatter, for the red and NIR respectively, the hemispherical reflectance is 
higher than the bidirectional reflectance, by up to as much as 5% at red and 7% at NIR 

(Figure 5.10a). In the orthogonal plane, hemispherical reflectance is lower than the 

bidirectional reflectance from 60 to 40 degrees in the backscatter direction, and from 

30 to 60 degrees in the forwardscatter direction, by up to as much as 7% in both the 

red and NIR (Figure 5.10b). From 30 degrees backscatter to 30 degrees 

forwardscatter the hemispherical reflectance is larger than the bidirectional 

reflectance, by no more than 2% and 3% in the red and NIR, respectively. At nadir, 

differences between the hemispherical and bidirectional reflectances are very small 

(-1%) in the principal plane, at both red and NIR, while in the orthogonal plane the 

difference are slightly larger at up to 3% in the NIR. In both planes the hemispherical 

reflectance is higher than the bidirectional reflectance. The same pattern of results is 

repeated in both the principal and orthogonal planes for all other wavelengths, and for 

the other three soil samples. 
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Figure 5.10 comparison of the directional and hemispherical reflectances at red (660) 

and NIR (860), for the soils at T1, in (a) the principal plane, and (b) the orthogonal 
plane. In the legend, the number is the wavelength and d indicates directional 

reflectance while h indicates hemispherical reflectance. No data are shown in the hot 

spot for reasons of consistency. 

The implication of these results is that, because the MODIS model simulations 

in chapter 6 have been parameterised with hemispherical soil reflectance rather than 

bidirectional reflectance, the soil reflectance will either be too high or too low, 

depending on the viewing angle and relative azimuth at which the MODIS data were 
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acquired (see Table 6.6), with consequent implications for the accuracy of the 

modelled reflectance. For the ETM+ model simulations on the other hand, the soil 

reflectance will be too high, by a small amount (up to 3% absolute), in all cases. 

5.4 Summary and conclusions 

Spectral bidirectional and hemispherical reflectance measurements of four Kalahari 

soil samples, have been made in the laboratory. The data set obtained represents a 

large amount of data, only a small fraction of which has been presented in this 

chapter. The results have shown that the features of the BRDF are captured well, and 

as such the data set may be considered to be of high quality. The data could be used 

as a test data set against which soil BRDF models could be compared. 

The results show that all the soils are highly non-Lambertian, with greatest 

anisotropy being displayed in the principal plane. The shape of the BRDF for all four 

soil samples is almost identical, being characterised as having predominant reflectance 

in the backscatter direction in the principal plane, while in the orthogonal plane the 

reflectance is more symmetric with respect to the back and forwardscatter directions. 

This pattern was consistent across all wavelengths considered. Moreover, not only 

was the shape of the BRDF almost identical, but the anisotropy (measured as a ratio of 

the highest to lowest value for each sample in each plane) was very similar. 

Anisotropy was seen to decrease slowly as measurements are made within a 10 degree 

swath of the principal plane before falling away more rapidly beyond 30 degrees in 

azimuth. 

Differences in reflectance magnitude were apparent between the four samples, 

however, this difference was never greater than 5% absolute reflectance across the 

wavelengths considered. Clearly, the spectral bidirectional reflectance of the four 

soils is very similar, and is most likely a reflection of the homogeneity of the soils, 

they are all Kalahari sands. This lends confidence to the idea that LAI may be 

estimated with reasonable accuracy, over the field Plots, given that there is relatively 

little variation in the underlying soil substrate which constitutes the largest fractional 

area of a pixel. Variation in pixel reflectance may well be driven by subtle changes in 

the vegetation cover therefore. This issue is investigated in chapter 7. 
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Clearly, representing these soil surfaces as Lambertian scatterers is a crude 

approximation. Comparing the bidirectional and hemispherical reflectances it was 

shown that in the principal plane the impact of using the hemispherical reflectance in 

the model simulations of chapter 6, will be to generally underestimate bidirectional 

reflectance in the backscatter direction, and overestimate bidirectional reflectance in 

the forwardscatter directions. In the orthogonal plane the hemispherical reflectance 

underestimates bidirectional reflectance from around 300 to 600 in both the back and 

forwardscatter directions, while from 300 backscatter to 300 forwardscatter, the 

hemispherical reflectance overestimates bidirectional reflectance. These results will 

be used to aid in the interpretation and understanding of the accuracy of the MODIS 

and ETM+ model simulations in the next chapter. 
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Simulating Canopy Reflectance 

6.1 Introduction 

The successful use of canopy reflectance models (CRMs) to estimate biophysical 

parameters via model inversion depends on a number of factors, among the most 

critical of which, is the model accuracy (Goel 1989). Unless the model used provides 

a close fit to the measured reflectance, the likely success of model inversion will be 

seriously compromised. A related issue is that of model suitability. Model suitability 

relates to whether or not the assumptions made in the formulation of the model are 

consistent with the structure of the vegetation canopy being modelled. This issue is 

particularly relevant to modelling the reflectance of savanna vegetation, where there is 

a large range of canopy structures, from grassland savannas, to shrubland savannas, 

and low tree/shrub savannas. In grassland savanna, composed entirely of a 

herbaceous understorey, the assumptions of turbid medium (TM) models may be 

satisfied, and a TM model deemed to be the most suitable. In shrubland savanna, 

where the vegetation is composed entirely of shrubs, then a hybrid model may be 

considered the most suitable. In low tree/shrub savanna, however, where there is a 

herbaceous understorey together with an overstorey of trees and shrubs, the question 

of model suitability is more difficult to assess, since the various CRMs which are 

available are designed to model one specific vegetation layer. Whilst a turbid medium 

approach may be suitable for modelling a herbaceous understorey, it may not be 

suitable for modelling trees and shrubs of the overstorey. Similarly, a hybrid model 

may be suitable for modelling the trees and shrubs of the overstorey, but unsuitable 

for modelling herbaceous understoreys. 

Given the need to invert one single model, and the fact that no one model is 

ideally suited to modelling this range of vegetation structures, presents a serious 

impediment to the faithful representation of savanna vegetation structure in CRMs. 

Clearly, a TM model could be used to represent all savanna types. Doing so, 
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however, will result in the structural effects of the overstorey (i. e. shadow) being 

ignored, and the assumptions of the TM models are clearly inconsistent with the 

structure of the shrubland and low tree/shrub savanna. In this case, it is important to 

determine the effect this has on the accuracy with which reflectance is modelled. 
Table 6.1 provides a summary of the issues involved in modelling savanna vegetation, 

as they relate to the field plots used in this thesis. 

Table 6.1 Summary of the canopy reflectance modelling considerations in savanna 
vegetati on. 

Vegetation Type Low Tree/Shrub Shrub Savanna Grassland Savanna 
Savanna 

Canopy 
morphology 

Description Continuous herbaceous Discontinuous shrub Continuous 
layer, interspersed with vegetation, against a soil 4: 1 Z: ) herbaceous layer, 
trees and shrubs, background against a soil 
against a soil background 
backaround 

Model Type Hybrid or Turbid Hybrid Turbid medium 
medium? 
How to represent two 
distinct canopy layers? 

Field Plots Tshane plots I and 2, Tshabong plots I and 3 Mabuasehube plots I 
and Tshabong plot 2 and 2 

This chapter presents the results of a series of model simulations designed to 

investigate the accuracy with which three different canopy reflectance models 

(selected for study in chapter 2), represent reflected radiation from savanna 

vegetation. Specifically, TM and hybrid model simulations were compared, together 

with modelling which explicitly took account of two distinct canopy layers. In so 

doing, the importance of the overstorey structure in determining canopy reflectance 

could be investigated. The aim of this chapter was to determine the most accurate 

model for representing the reflectance of savanna vegetation. 
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6.2 Experimental methodology 

A series of modelling experiments were carried out, where answers to the following 

questions were sought: 

0 How accurately do the three different canopy reflectance models simulate 

the reflected radiation from savanna vegetation? 

0 What are the relative differences in accuracy between the different models? 

* Is the explicit incorporation of a two-layer canopy into model simulations 

necessary for increased accuracy, or does a TM treatment suffice? In other 

words, how important is the overstorey in determining canopy reflectance? 

6.2.1 Model simulations 

Model simulations were performed with the SAIL, GeoSAIIL, and FLIGHT canopy 

reflectance models. Two sets of simulations were performed: 1) for evaluation with 

Landsat ETM+ data, and 2) for evaluation with MODIS data. GeoSAH- was not used 

in the MODIS simulations because it can only simulate nadir viewing angles. In the 

absence of any field or laboratory measured leaf reflectance and transmittance data, 

the PROSPECT model (Jacquemoud & Baret 1990; Jacquemoud et al. 1996) was used 

to simulate leaf reflectance and transmittance. PROSPECT was coupled to the SAIL 

and GeoSAEL models directly, and are thus referred to as PROSAIL and 

PROGeoSAIIL respectively. FLIGHT is not renamed as PROFILIGHT because the 

two models were not directly coupled. Table 6.2 provides a list of the input 

parameters required for each model. 

The models were used in various ways and the model simulations are 

summansed in Table 6.3. The specific case of modelling vegetation which is 

composed of two distinct canopy layers is an area of research which has received little 

attention, with, at the time the simulations were performed, only four models which 

explicitly incorporate two distinct canopy layers. These are, the SAIL-Cylinder model 

of Begue et al. (1996), an enhanced version of this SAIL-Cylinder model produced by 

Hanan (2001), the 4-Scale model of Leblanc et al. (1999), and the radiosity-graphics 

model (RGM) of Qin & Gerstl (2000). None of these models were suitable for use in 

this work, since the code for the SAIL-Cylinder model was not available, and the 

enhanced version of this model only simulates reflectance in the PAR and NIR 
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wavelengths; the two-layer modelling of the understorey in 4-Scale relies on a 

geometric-optical (G-0) approach (Figure 6.1), which was considered unsuited to the 

modelling of grass understoreys; while the RGM model IS too computationally 

expensive to be considered. Since the simulations were performed another model 

which incorporates two canopy layers, and which is based on RGM has been 

published (Chopping et al. 2003). 

Figure 6.1 Illustration of the modelling of two-layer canopies in the 4-scale model 

(Source: www 6-1) 
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Table 6.2 Input parameters required for the PROSAEL, PROGeoSAIL and FLIGHT 
models. 

Parameter and Units PROSAIL PROGeoSAIL FLIGHT 

Leaf structure parameter (N) X X X 

Ag CM-2 Leaf chlorophyll content (Ca+b X X X 

Equivalent water thickness (EWT g CM X X X 
Dry matter content (DMC g cm 2-) X X X 

Soil reflectance X X X 
Bark reflectance X X 
Shoot reflectance X X 
Soil BRDF X 
Hotspot X X X 
LAI (M-2 M-2) X X X 

Leaf angle distribution X X X 
Soil roughness X 
Fraction of green X X 
Fraction of bark X X 
Fraction senescent X X 
Leaf size (in) X 
Crown shape X X 
Min/Max Height to crown (in) X 
Crown height (in) X X 
Crown radius (in) X X 
Fraction of vegetation cover X X 
Number of trees X 
Solar zenith angle (degrees) X X X 
View zenith angle (degrees) X X X 
Relative azimuth angle (degrees) X X X 

Therefore, in order to model the two-layer canopies found at plots TI, T2, 

and TG2 an approach was adopted whereby the simulations were performed in two 

steps. 

1. A TM model is parameterised to represent the grass understorey, and 

executed. The output from this simulation is then used as the background 

reflectance, for the second simulation. 

2. A hybrid model is parameterised to represent the overstorey. The output 

from this run of the model is then treated as the reflectance from a two- 

layer canopy. 

The aim of these two-layer canopy simulations, was to determine the 

in determining the importance of the structural effects (e. g. shadow) of the overstorey, 1 

reflectance of the plots, and whether a TM treatment led to significant error. The 

PROSAIL and FLIGHT-ID models were also used at these plots in order to permit the 

comparison (Table 6-3). 
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Table 6.3 Summary of the model simulations performed in this chapter. 
Model ID Simulation Details ETM+/MODIS Field Plots 

PROSAIL Parameterised with the total LAI of 
the plot, and a spherical LAD. 

Both TI, T2, MI, 
M2, TGI, 
TG2, TG3 

PROGeoSAIL Parameterised with the overstorey 
LAI, LAD and fractional cover. 

PROGeoSAIL Understorey simulated with 
2-LAYER PROSAIL, parameterised with 

understorey LAI and LAD. 
Overstorey simulated with 
PROGeoSAIL parameterised with 
overstorey LAI and LAD. 

FLIGHT I -D mFC FLIGHT used in turbid medium 
mode, parameterised with total LAI 
of the plot, measured total fractional 
cover, and a spherical LAD. 

FLIGHT 1-D IFC FLIGHT used in turbid medium 
mode, parameterised with total LAI 

of the plot, and a spherical LAD. 
Fractional cover is declared to be I to 
provide complementary inputs to the 
PROSAIL model. 

FLIGHT 3-D Parameterised with overstorey LAI, 
LAD and fractional cover. 

FLIGHT 3-D mFC Understorey simulated with FLIGHT 
2-LAYER I-D, parameterised with understorey 

LAI, LAD and measured fractional 

cover. Overstorey simulated with 
FLIGHT in 3-D mode, parameterised 
with overstorey LAI, LAD, and 
fractional cover. 

ETM+ 

ETM+ 

Both 

Both 

Both 

Both 

TGI, TG3 

T 1, T2, TG2 

TI, T2, MI, 
M2, TG I, 
TG2, TG3 

TI, T2, MI, 
M2, TGI, 
TG2, TG3 

TGI, TG3 

T I, T2, TG2 

FLIGHT 3-D IFC Understorey simulated with FLIGHT Both T 1, T2, TG2 

2-LAYER I-D, parameterised with understorey 
LAI and LAD, but fractional cover 
set to be 1. Overstorey simulated with 
FLIGHT in 3-D mode, parameterised 
with overstorey LAI, LAD and 
fractional cover. 

Note: TI T2 are Tshane plots 1 and 2, MI M2 are Mabuasehube plots I and 2, TG I TG2 TG3 are 
Tshabong plots 1,2, and 3. 

C) 

Reflectance was simulated across the solar spectrum at 5nm intervals, and 

convolved to the wavebands of the ETM+ and MODIS sensors, using the sensor 

specific spectral response functions which are shown in Figure 6.2. Table 6.4 lists the 

full width half maximum (FWHM) for the ETM+ and MODIS wavebands. 
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Figure 6.2 Spectral response functions for the Landsat ETM+ and Terra-MODIS 
wavebands. 

Table 6.4 Full width half maximum (nm) for the Landsat ETM+ and Terra-MODIS 
optical wavebands, simulated in this chapter. 

Band ETM+ MODIS 
1 450-515 620-670 
2 525-605 841-876 
3 630-690 459-479 
4 750-900 545-565 
5 1550-1750 1230-1250 
6 1628-1652 
7 2090-2350 2105-2155 

6.22 Model parameterisation 

Simulations were perfon-ned with model parameters set to the mean of all field 

recorded values for each plot, and are given in Table 6.5, while Table 6.6 contains the 

viewing and illumination geometry for the ETM+ and MODIS simulations. 
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Table 6.5 Input parameter values for the model simulations. 
Plot ID 

Parameter TI T2 Mi M2 TGI TG2 TG3 
Leaf structure parameter (N) 2 
Leaf chlorophyll content 35.0 
Itg CM-2) 
Leaf equivalent water 0.012 
thickness (EWT g CM 
Leaf dry matter content 0.006 
(DMC g CM2-) 
Total LAI 0.35 0.45 0.01 0.06 0.25 0.16 0.22 
Overstorey LAI 0.28 0.35 0.25 0.10 0.22 
Understorey LAI 0.07 0.10 0.01 0.06 0.06 
LAD Figure 6.4b 
Min/Max height to crown (in) 0.05/ 0.15/ 0.00/ 0.02/ 0.00/ 

1.37 3.59 1.02 4.00 0.82 
Crown height (m) 1.75 1.51 Not modelled 1.68 1.23 1.27 
Crown radius (m) 2.47 2.27 2.31 1.66 2.12 
Fcover overstorey 0.16 0.20 0.18 0.06 0.08 
Fcover understorey 0.17 0.23 0.18 0.17 0.16 
Soil reflectance Figure 6.3 Z: ) 

Note: all plots were parameterised with the same leaf parameter values. 

Table 6.6 Measurement conditions for the ETM+ and MODIS data sets. All angular 
values are in degrees. 

Sensor 
ETM+ 

View zenith angle 
Solar zenith angle 

Rel. azimuth angle 
Day of year image 

Image path/row 

MODIS 
View zenith angle 
Solar zenith angle 

Rel. azimuth angle 
Day of year image 

Plot ID 
Tl T2 mi M2 TGI TG2 TG3 

Nadir Nadir Nadir Nadir Nadir 
43.36 43.36 37.42 37.42 37.42 No ETM+ 55 28 55 28 74 * 97 74.97 74.97 . . image available 87 87 48 48 48 
175/077 175/077 174/078 174/078 174/078 

19.05f 55.46b 5.69b 21.79f 25.1f 24.64f 12.14f 
29.03 37.55 32.11 29.33 29.53 29.50 32.76 
137-99 33.75 35.74 137.2 136.34 136.74 132.75 
62 61 64 62 62 62 71 

Day infield 59 60 62 63 65 66 67 

Note: f in the view zenith an-ale row indicates the forward scatter direction, and b the backscatter 
t: ) direction. Day of year image and day in field are in Julian days, and refer to the date of the images, and 

day on which field measurements of canopy structure were made, respectively. 

As mentioned previously, leaf reflectance and transmittance data were 

simulated with the PROSPECT model. Ideally, measured reflectance and 

transmittance values would be used, however, no such data sets were available. In 

order to parameterise the PROSPECT model, the leaf chlorophyll content, equivalent 

water thickness, and dry matter content were assigned the average values contained in 
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the LOPEX931 database (Hosgood et al. 1994, Jacquemoud et al. 1996). These values 

were used because a search of the literature failed to provide any guidance on the 

values of these parameters, for the species under study. Specifying a value for the leaf 

structure parameter N, presents a problem because it cannot be measured. Therefore, 

a value of 2.0 was used for the N parameter as this has been shown to represent a 

range of species accurately (Weiss et al. 2000, Combal et al. 2002b, Jacquemoud 

personal communication May 2003). 

The values of LAI used were obtained from the field measurements and 

scaled to plot values using the measurements of fractional vegetation cover and 

equation 4.4. It is important to state that the values of LAI used are the same for the 

ETM+ and MODIS simulations. Intuitively, one might expect that there should be 

differences in the plot level LAI, for simulations which represent pixels of 30 metres 

and 500 metres, for the ETM+ and MODIS sensors, respectively. This effectively 

assumes that there is perfect linear spatial scaling between LAI at 30 metres and 500 

metres. Liang (2000), has shown that this is possible, depending on the homogeneity 

of the vegetation over the area considered. For the plots studied here, an indication of 

the homogeneity of the LAI over the area sampled (see Figure 4.1), is provided by the 

fact that there was no significant difference between the LAI recorded on the MODIS 

and ETM+ sampling schemes (MWUT, P>0.05). Errors in the estimation of the LAI 

and fractional cover values will translate into an under- or over-estimation of the plot 

level LAI with consequent implications for the accuracy of the simulation 

Soil reflectance was modelled as a Lambertian surface with soil spectra 

coming from the laboratory measurements made with the ASD contact probe (Figure 

6.3). Despite the observed non-Lambertian properties of these soils, the directional 

measurements made in chapter 5 were not used because of the instability of the lamp 

beyond 1820nm, which would have meant that ETM+ band 7 and MODIS band 7 

could not have been simulated. 

LOPEX93 was an experiment carried out at the Jol int Research Centre in Italy, where 
biophysical and spectral measurements were made on -55 different species of plants. 
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Figure 6.3 Laboratory measured soil reflectance spectra for the three study sites. 

The leaf angle distribution (LAD) was determined by comparing the 

measured leaf angle data to the theoretical leaf angle distributions of Bunnik (1978). 

Figure 6.4a shows the cumulative frequency distribution of leaf angles for each 

species measured, as well as the theoretical spherical and plagiophile distributions. It 

can be seen that two species Grewia flava and Acacia leuderitzii fit more closely the 

spherical than the plagiophile distribution, while the other two species Acacia 

erioloba, and Acacia mellifera fit more closely the plagiophile than the spherical 

distribution. This was confirmed by correlation analysis (not shown). Given the 

requirement for one single LAD in the models, the LAD was determined by linearly 

combining the LAD of the dominant species at each plot. All grass understorey 

simulations were assumed to conform to an erectophile LAD. The actual LAD used 

for each plot is shown in Figure 6.4b. 
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Figure 6.4 (a) Field measured cumulative LAD by species and theoretical sphencal 
and plagiophile distributions of Bunnik (1978), (b) actual LAD used in model 
parameterisation for all field plots. The grass understorey LAD is Bunnik's 
erectophile distnbution. 
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PROGeoSAEL simulations were performed with a spherical crown shape, 

while crown shape was modelled with an ellipse in the FLIGHT 3-D simulations. 

Figure 6.5 provides a view of the overstorey scene representation for the FLIGHT 3-D 

ETM+ (nadir view zenith angle) simulations. The Figure serves to illustrate the effect 

of the canopy structure in generating shadow within the scenes. Each scene is 

generated with the solar zenith angle and canopy dimensions as given in tables 6.5 and 

6.6. 

6.2.3 Evaluation of model performance 

The philosophy with respect to model 'validation' adopted throughout this work 

follows that of Oreskes et al. (1994). When modelling open systems it is impossible 

to establish any absolute truth, such that it is not possible to validate such models, they 

can only be evaluated with respect to the agreement they show with the 

measurements. In order to assess the accuracy and relative performance of the model 

simulations, two values of relative error were calculated. By waveband, the relative 

percentage error was calculated according to equation 6.1, and for all wavebands the 

relative RMSE was calculated (RRMSE), according to equation 6.2. Relative values 

were calculated in order to provide an unbiased assessment of error, whereby 

wavebands which have higher absolute reflectances would not be interpreted as being 

in greater error than wavebands with low absolute reflectances. 

R* -Ri Relative error (%) =i Ri 
* 100 

si 

n ban 

RRMSE 
d-, Ri Ri 

100 
n 

Fbnds 
ni 

R 
ands =1 i 

(6.1) 

(6.2) 

where Ri*is the modelled canopy reflectance in waveband j, and Ri is the measured 

reflectance in waveband j. 
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6.3 Results 

Results for the ETM+ simulations for the five plots simulated are shown in Figure 

6.6a-e, while Table 6.7 contains the relative errors (equation 6.1 and 6.2). The results 

of the MODIS simulations for the seven plots simulated are presented in Figure 6.7a- 

g, and relative errors are reported in Table 6.8. 

6.3.1 ETM+ simulations 

Figure 6.6a shows that overall, there is poor agreement between the measured 

reflectances and all the modelled reflectances, at Tshane plot I (TI). While all the 

model simulations produce the same pattern as the measurements, overall the models 

overestimate reflectance with error ranging from 76.3% to 114.5%, with FLIGHT I-D 

IFC and FLIGHT I-D mFC being the most and least accurate models, respectively 
(Table 6.7). None of the model estimates even get close to the error of the ETM+ 

measurements. The lowest accuracy is seen in the visible wavebands, with ETM3 

being the most inaccurate waveband for all models, with error ranging from 86.8% for 

FLIGHT I-D IFC, to 142.7% for FLIGHT I-D mFC (Table 6.7). All models display 

highest accuracy in ETM5, with errors ranging from 48.3% (PROSAIL and FLIGHT 

I-D IFC) to 66.3% (FLIGHT 1-D mFC). 

Differences between models at TI of generally no more than 15% relative are 

seen across all wavebands, with the exception of the FLIGHT I-D mFC simulations 

(both when run on its own, and as part of the two-layer simulations). The largest 

differences between models are observed in the visible wavebands, and smallest 

differences are observed in ETM4 and ETM5, which probably reflects the dominance 

of the soil reflectance in these wavebands (Table 6.7). Overall, the TM models 

provide the closest fit to the measurements, with only 4% difference between FLIGHT 

I-D 1FC and PROSAIL. The two canopy layer modelling (PROGeoSAIL 2-layer and 

FLIGHT 3-D IFQ performed with the combination of the TM and hybrid models, 

produce very similar accuracies compared to each other, but are approximately 10% 

less accurate than the best performing turbid medium results. 

Simulations performed for Tshane plot 2 (T2) are shown in Figure 6.6b, 

where it can be seen that there is a similar pattern to Tshane plot 1. Clearly, there Is 

generally poor correspondence between the models and measurements. All models 
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overestimate reflectance by between 43.9% and 78.0% overall, with FLIGHT I-D 

lFC and FLIGHT I-D mFC, again being the most and least accurate, respectively 
(Table 6.7). Again, none of the model estimates get close to the error of the ETM+ 

measurements. Four of the models have lowest accuracy in ETM3, with errors 

ranging from 68.1% to 101.9%, while two of the models - FLIGHT I-D IFC and 
PROSAIL, have lowest accuracy in ETM4, overestimating reflectance by 58.5% and 
60.3% respectively (Table 6.7). All but one of the models (FLIGHT 1-D 1FQ 

display highest accuracy in ETM5, with errors ranging from 31.0% to 50.1%. 

Differences between models at T2 are slightly more pronounced than at TI, 

but still no more than 20% across all wavebands (excluding FLIGHT I-D mFC 

simulations). The pattern of differences between models is the same as at T1 

however, with largest divergence between models being seen in the visible wavebands 

of ETM3 and ETMI, and smallest in ETM4 and ETM5 (Table 6.7). The TM models 

again provide the highest accuracy overall, with errors of 43.9% and 47.7% for the 

FLIGHT 1-D IFC and PROSAIL models, respectively. Similarly, the two canopy 
layer modelling simulations, again produce comparable results to one another, and are 

still approximately 10% less accurate than the best performing turbid medium results. 

At Tshabong plot I (TGI) there is very close agreement between all of the 

models and the measurements (Figure 6.6c). Models generally underestimate 

reflectance in the visible wavebands, and overestimate in the NIR and SWIR, with 

overall errors ranging from 9.3% to 14.3%, with PROGeoSAIL and FLIGHT I-D 

mFC being most and least accurate, respectively (Table 6.7). Lowest accuracy is 

observed in ETM7 for all but one of the models, FLIGHT 1-D IFC, with errors 

ranging from 12.6% to 31.9%. Highest accuracy is generally seen in ETM4 and 

ETM5, with only one model, FLIGHT 3-D, displaying highest accuracy in ETM3, 

overestimating reflectance by 2.5%. 
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Table 6.7 Relative error (%) for the ETM+ wavebands, together with the overall 
relative error (RRMSE) for all wavebands and each model (the All column). Negative 
sign indicates model underestimation. Model which provides the highest accuracy is 
emboldened. 

Plot/Model ID ETM 
1 

ETM 
2 

ETM 
3 

ETM 
4 

ETM 
5 

ETM 
7 

All 

Tshane plot I 
PROSAIL 89.4 90.4 90.6 76.7 50.5 76.5 80.3 
PROGEOSAIL 2-LAYER 96.9 98.3 105.6 71.9 48.3 84.1 86.4 
FLIGHT ID mFC 134.8 128.7 142.7 76.0 66.3 115.6 114.5 
FLIGHT 1D 1FC 80.3 85.2 86.8 75.0 48.3 75.4 76.3 
FLIGHT 3D mFC 2-LAYER 110.6 107.8 120.1 72.9 56.0 98.6 97.0 
FLIGHT 3D IFC 2-LAYER 96.9 99.1 107.5 72.6 52.5 90.3 88.5 

Tshane plot 2 
PROSAIL 37.1 47.0 53.1 60.3 33.9 49.7 47.7 
PROGEOSAIL 2-LAYER 49.0 54.4 68.1 55.4 31.8 58.1 53.9 
FLIGHT 1D rnFC 75.3 80.6 101.9 60.0 50.1 88.8 78.0 
FLIGHT ID 1FC 28.8 41.9 48.5 58.5 31.0 47.7 43.9 
FLIGHT 3D mFC 2-LAYER 54.3 62.3 81.1 55.2 39.3 72.1 62.2 
FLIGHT 3D IFC 2-LAYER 43.5 53.9 69.3 56.5 36.3 63.9 55.1 

Tshabong plot I 
PROSAIL -15.3 -8.6 -5.3 3.0 3.0 16.6 10.2 
PROGEOSAIL -6.8 -3.6 1.8 0.7 1.3 21.2 9.3 
FLIGHT ID mFC -2.5 3.0 10.9 1.6 8.1 31.9 14.3 
FLIGHT 1D IFC -20.3 -11.7 -9.5 2.3 -0.5 12.6 11.6 
FLIGHT 3D -11.0 -3.6 2.5 2.6 4.2 24.0 11.1 

Tshabong plot 2 
PROSAIL 1.9 15.4 33.8 27.0 29.1 57.8 32.4 
PROGEOSAIL 2-LAYER 4.7 17.2 37.8 25.9 28.7 60.9 34.1 
FLIGHT ID mFC 12.1 24.3 49.1 25.0 34.4 72.7 41.3 
FLIGHT 1D IFC -1.9 13.0 31.1 25.9 27.8 56.9 31.1 
FLIGHT 3D mFC 2-LAYER 6.5 20.1 42.8 25.0 31.3 67.2 37.4 
FLIGHT 3D IFC 2-LAYER 0.9 15.4 36.0 24.7 28.9 61.3 33.5 

Tshabong plot 3 
PROSAIL -4.6 1.6 4.5 9.9 9.1 25.4 12.1 
PROGEOSAIL 5.5 9.2 16.8 8.2 10.6 35.7 17.6 
FLIGHT ID mFC 8.3 13.0 21.6 7.9 15.4 42.1 21.5 
FLIGHT 1D 1FC -11.0 -2.7 -0.4 8.7 6.3 21.5 10.9 
FLIGHT 3D 3.7 8.7 16.8 8.9 12.5 37.4 18.3 

Note: see Table 6.3 for notes on the model ID. 

Differences between models at TGI are very small indeed, only in ETMI and 

ETM7 is there any significant divergence, which is of the order of approximately 

15%. Interestingly, in contrast to its performance at plots TI and T2, the FLIGHT I- 

D n-iFC representation shows very similar accuracy to the other models, though it is 

still least accurate overall. The hybrid model PROGeoSAIL is the most accurate 
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overall, but there is only around 2% difference between PROGeoSAEL accuracy and 

the two TM models (PROSAEL and FLIGHT I-D IFC). 

Results of the model simulations for Tshabong plot 2 (TG2) are shown in 

Figure 6.6d, where it can be seen that there is moderate agreement between 

measurements and modelled estimates for all models. Overall, models overestimate 

reflectance by between 31.1% and 41.3%, with FLIGHT I-D IFC and FLIGHT I-D 

mFC, being the most and least accurate, respectively (Table 6.7). All models display 

lowest accuracy in ETM7, with errors ranging from 56.9% to 72.7%. There is also 

significant error in ETM3. Highest accuracy is shown in ETMI for all models, with 

errors ranging from an underestimate of 0.9% (FLIGHT 3-D 117C 2-LAYER) to an 

overestimate of 12.1 % (FLIGHT I -D mFC). All the models are within the error of the 

measurements in ETMI. There is also good accuracy in ETM2 with errors not getting 

above 25%. 

Differences between models are again small, generally of the order of 10% 

across all wavebands. The TM models are most accurate overall with less than 2% 

difference between FLIGHT I-D 1FC and PROSAEL, the two-layer modelling 

approaches are a further 2% more inaccurate than the turbid mediums. Again, the 

FLIGHT I-D mFC is the least accurate model though the difference is less than 10%. 

The results from Tshabong plot 3 (TG3) are shown in Figure 6.6e, where it 

can be seen that the models are in close agreement with the measurements. Generally, 

the models overestimate reflectance, with overall errors ranging from 10.9% to 21.5%, 

FLIGHT I-D 1FC and FLIGHT I-D mFC being the most and least accurate, 

respectively (Table 6.7). Accuracy across wavebands is generally high, apart from in 

ETM7 where there is significantly more error than in other wavebands, ranging from 

21.5% (FLIGHT I-D IFQ to 42.1% (FLIGHT I-D mFC). Highest accuracy is 

achieved in the visible wavebands for all but one model, and most of the model 

estimates are within the errors of the measurements in these wavebands. 

PROGeoSAIL and FLIGHT 3-D show highest accuracy in ETM1, PROSAIL in 

ETM2, and FLIGHT I-D IFC in ETM3, while FLIGHT 1-D mFC shows highest 

accuracy in the NIR band of ETM4. 

There are only small differences between models in the visible to NIR 

wavebands. Differences in the SWIR (ETM5 and ETM7) are greatest, but the 

maximum difference between any two models is not greater than 20%. In contrast to 
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TGI where a hybrid model provided the most accurate results, at this shrubland plot, 
the TM models (excluding FLIGHT I-D mFQ showed closer correspondence to the 

measurements than the hybrid models by between approximately 5% and 8%. 
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6.3.2 MODIS simulations 

Figure 6.7a shows that overall, there is moderate agreement between the measured 

reflectances and all the modelled reflectances, at Tshane plot I (TI). All the models 

overestimate reflectance, with errors ranging from 42.9% to 65.8% overall, with 
FLIGHT I-D IFC and FLIGHT I-D mFC being the most and least accurate 

respectively (Table 6.8). Lowest accuracy is displayed in MOD7 for all models, with 

errors ranging from 55.4% to 91.5%. Highest accuracy is displayed in MOD3 for all 

models apart from FLIGHT 1-D mFC, which shows highest accuracy in MOD5. 

Error in MOD3 ranges from 22.1 % to 57.9%, while in MOD5 there is 52.2% error. 

Excluding the FLIGHT 1-D mFC model simulations (both run on its own and 
in 2-LAYER configuration), differences between models are generally no greater than 
20% across wavebands. Largest differences are observed in MODI and MOD7, with 
the two-canopy layer model FLIGHT 3-D lFC 2-LAYER overestimating reflectance 
by 21% more than the TM models, in both cases. The FLIGHT I-D mFC model 

produces much more inaccurate results than any of the other models, though the 

differences are minimised in the NIR channels (MOD2 and MOD5). Overall, the TM 

models - FLIGHT I-D lFC and PROSAIL, provide the most accurate results, with 

only 1% difference between them. The two-canopy layer modelling does not provide 

a closer fit to the measurements, being 12% to 15% more inaccurate than the TM 

models. 

Figure 6.7b shows that at Tshane plot 2 (T2) there is generally close 

agreement between all the models and measurements. On the whole the models 

overestimate reflectance, with the exception of two models in MOD3, where 

reflectance is underestimated. Overall errors range from 23.6% to 53.8%, with 

FLIGHT I-D IFC and FLIGHT I-D mFC, again being the most and least accurate, 

respectively (Table 6.8). Lowest accuracy is seen in MOD7 for the models which 

have some representation of horizontal heterogeneity in them (FLIGHT I-D mFC, 

FLIGHT 3-D mFC 2-LAYER, and FLIGHT 3-D IFC 2-LAYER), with errors ranging 

from 46.1% to 74.1%. PROSAIL and FLIGHT I-D IFC, on the other hand, display 

lowest accuracy in MOD2. Highest accuracy is again achieved in MOD 3 for all 

models, with errors ranging from an underestimate of 4.1% to an overestimate of 

40.2%. 
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Differences between models show a similar pattern to that at Tshane plot 1, 

with error generally being no greater than 20% across wavebands, with the exception 

of the FLIGHT I-D mFC simulations (both run on its own and in 2-LAYER 

configuration), and in MOD1 and MOD7. Differences in MOD1 are as great as 26% 

between FLIGHT I-D lFC and FLIGHT 3-D IFC 2-LAYER. Again, the TM models 
FLIGHT I-D 1FC and PROSAIL, provide the most accurate results overall, being 

approximately 9% to 14% more accurate than the two-canopy layer modelling. 

Simulations performed at Mabuasehube plot I are compared to 

measurements in Figure 6.7c. It can be seen that there is moderate correspondence 
between all models and measurements, models overestimate reflectance in all 

wavebands. Overall errors range from 33.8% to 44.5%, with PROSAIL and FLIGHT 

I-D mFC being the most and least accurate, respectively (Table 6.8). All models 
display lowest and highest accuracy in MOM and MOD6 respectively, with errors 

ranging from 44.3% to 59.4% in MOD7, and 24.2% to 32.8% in MOD6. 

Differences between models are not particularly marked, with a maximum 

overall error of approximately 10%, though it should be pointed out that only TM 

models have been tested for this grassland site. What is interesting is the relative 

performance of FLIGHT 1-D mFC at this plot, in that it compares favourably with the 

other two models, in contrast to its performance at plots T1 and T2. However, this 

model does not reproduce the same pattern as the measurements with modelled 

reflectance increasing from MOD6 to MOD7, whereas the other two models show a 

reduction in reflectance consistent with the measurements (Figure 6.7c). 
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Table 6.8 Relative error (%) for the MODIS simulations, together with the overall 
relative error (RRMSE) for all wavebands and each model (the All column). Negative 
sign indicates model underestimation. Model which provides the highest accuracy is 
emboldened. 

Plot/Model ID MOD 
1 

MOD 
2 

MOD 
3 

MOD 
4 

MOD 
5 

MOD 
6 

MOD 
7 

All 

Tshane plot I 

PROSAIL 42.1 52.4 26.3 34.4 47.6 41.0 56.6 43.9 
FLIGHT ID mFC 79.4 54.5 57.9 59.2 52.2 55.5 91.5 65.8 
FLIGHT 1D 1FC 39.7 53.6 22.1 33.1 47.3 39.9 55.4 42.9 
FLIGHT 3D mFC 2-LAYER 66.8 54.5 44.2 49.0 50.6 49.8 81.0 57.8 
FLIGHT 3D lFC 2-LAYER 60.7 56.8 37.9 45.9 52.2 49.5 76.7 55.4 

Tshane plot 2 
PROSAIL 17.5 39.5 -4.1 12.6 33.7 18.6 24.2 24.2 
FLIGHT ID mFC 74.0 44.4 40.2 46.5 43.5 40.6 74.1 53.8 
FLIGHT 1D 1FC 15.0 40.1 -8.2 10.7 32.6 16.8 23.3 23.6 
FLIGHT 3D mFC 2-LAYER 50.5 38.4 18.6 27.7 35.0 27.5 53.3 37.7 
FLIGHT 3D 1FC 2-LAYER 41.0 39.5 10.3 22.6 35.0 25.1 46.1 33.5 

Mabuasehube plot I 
PROSAIL 38.1 35.9 27.9 32.1 29.9 24.2 44.3 33.8 
FLIGHT 1D mFC 53.3 41.1 39.8 42.9 35.9 32.8 59.4 44.5 
FLIGHT ID IFC 42.2 39.7 30.1 35.3 33.4 27.9 49.7 37.5 

Mabuasehube plot 2 
PROSAIL 101.8 88.9 60.3 78.1 69.9 54.4 83.8 78.3 
FLIGHT ID mFC 123.0 93.3 75.3 92.1 75.4 63.5 101.8 91.1 
FLIGHT ID IFC 108.5 94.5 63.0 83.3 75.1 59.9 91.6 83.8 

Tshabong plot I 
PROSAIL 19.2 14.8 3.4 10.7 20.1 19.3 31.8 18.9 
FLIGHT ID mFC 48.1 18.7 27.3 29.3 26.3 33.0 59.6 37.0 
FLIGHT ID lFC 22.9 21.5 5.7 15.3 25.5 24.0 36.7 23.4 
FLIGHT 3D 36.9 20.5 15.9 22.0 25.9 28.5 49.9 30.5 

Tshabong plot 2 
PROSAIL 55.9 35.9 20.0 30.7 41.6 42.8 69.5 44.9 
FLIGHT ID mFC 78.3 38.7 35.3 43.8 46.3 52.8 91.2 58.6 
FLIGHT ID IFC 60.3 42.4 22.4 35.8 47.5 48.7 76.2 50.2 
FLIGHT 3D mFC 2-LAYER 72.3 40.2 30.6 40.9 46.5 51.1 86.3 55.6 
FLIGHT 3D IFC 2-LAYER 64.7 40.2 24.7 36.5 45.8 48.4 79.9 51.5 

Tshabong plot 3 
PROSAIL 35.9 21.7 20.3 24.8 27.9 30.5 51.8 32.0 
FLIGHT 1D mFC 63.6 20.9 43.0 40.9 29.7 40.4 77.8 48.6 
FLIGHT ID IFC 36.9 25.2 18.9 26.3 30.8 33.0 54.9 34.0 
FLIGHT 3D 62.6 26.6 40.5 40.1 33.9 42.2 78.7 49.3 

Note: see Table 6.3 for notes on the model ID. 

The results from Mabuasehube plot 2 (M2) are shown in Figure 6.7d, where 

it can be seen that the models are in poor agreement with the measurements. Results 

at this plot are the worst of all the MODIS simulations. All models overestimate 

reflectance in all wavebands and overall errors range from 78.3% to 91.1%, with 
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PROSAIL and FLIGHT I-D mFC again being the most and least accurate, 

respectively (Table 6.8). Lowest accuracy is displayed in MODI for all models, with 

all errors greater than 100%. Highest accuracy is achieved in MOD6 for all models, 

though error is still significant ranging from 54.4% to 63.5%. 

The pattern of differences between models is almost identical to that seen at 
M1, with the magnitude of differences being slightly higher overall. These 

differences are expressed most strongly in MODI, where there is a maximum 
difference of approximately 22% between PROSAIL and FLIGHT I-D mFC (Table 

6.8). 

Figure 6.7e shows the results of the model simulations from Tshabong plot I 

(TGI), where it can be seen that there is generally close agreement between all models 

and measurements. Results at this plot provide the closest fit to measurements of all 

the simulations. Models overestimate reflectance in all wavebands, with overall errors 

ranging from 18.9% to 37.0%, with PROSAIL again being the most accurate and 
FLIGHT 1-D mFC the least accurate (Table 6.8). Lowest accuracy is observed in 

MOD7 for all models, with errors ranging from 31.8% to 59.6%. Highest accuracy is 

shown in MOD3 by all but one of the models, with FLIGHT 1-D mFC achieving 

highest accuracy in MOD2, with an error of 18.7%. 

Differences between models are generally no greater than 20% across 

wavebands, if the FLIGHT I-D mFC simulations are excluded. If FLIGHT I-D mFC 

simulations are included then differences increase significantly, to as much as 29% in 

MOD1. Overall, the largest differences between models are seen in bands MODI and 

MOD7. The TM models PROSAIL and FLIGHT I-D 1FC have lowest overall errors, 

with the hybrid model having between approximately 7% to 12% more error. 

Results from the Tshabong plot 2 (TG2) simulations are compared to 

measurements in Figure 6.7f. It can be seen that all the models overestimate 

reflectance in all wavebands, and that generally the models are in moderate agreement 

with the measurements, with overall errors of between 44.9% and 58.6% for the best 

(PROSAIL) and worst (FLIGHT I-D mFC) performing models, respectively (Table 

6.8). Lowest accuracies are again displayed in MOD7 for all models, differences 

ranging from 69.5% to 91.2%. Mghest accuracy is displayed in MOD3 for all 

models, differences ranging from 20.0% to 35.3%. 
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Differences between models are generally no greater than 20% across 

wavebands, for all models. Overall, differences are not greater than approximately 

14% between the best and worst performing models. In contrast to results obtained at 

T1, T2 and TGI, but consistent with the results obtained at MI and M2, the FLIGHT 

I-D mFC simulations are not significantly outperformed by the other models. The 

TM models PROSAIL and FLIGHT I-D IFC again provide the closest fit to the 

measurements, with the two-layer canopy modelling being between 5% and 10% more 
inaccurate. 

Figure 6.7g shows the results of the simulations for Tshabong plot 3 (TG3). 

It can be seen that there is moderate correspondence between all the models and the 

measurements, with the models overestimating reflectance in all wavebands. Overall 

errors range from 32.0% to 49.3% for the best and worst models, PROSAIL and 

FLIGHT 31), respectively (Table 6.8). Results here are consistent with those obtained 

at T1, T2, M1, TG1, and TG2, in that lowest accuracy is obtained in band MOD7, 

with errors ranging from 51.8% to 78.7%. Highest accuracy is observed in band 

MOD2, with errors ranging from 20.9% to 26.6%. 

There are some interesting differences between models. For the first time, 

the FLIGHT 1-D mFC model simulations are not the most inaccurate, FLIGHT 3-D 

simulations are. However, the differences between models are generally not greater 

than 20%, with the exception of bands MODI and MOD7, and overall the maximum 

difference between models is approximately 17%. The TM models PROSAIL and 

FLIGHT I-D IFC, again provide the closest fit to the measurements, with only 2% 

difference between them. 
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Figure 6.7 Relative performance of the MODIS simulations, for all models. 
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Figure 6.7 Continued. 
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Figure 6.7 Continued. 
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Figure 6.7 Continued. 

6.4 Discussion 

These results show that in both the ETM+ and MODIS simulations, model 

performance is more or less evenly split between those which show very close to very 

poor agreement with measurements, and those which display moderate agreement 

with measurements. With having so few field plots it is difficult to draw firm 

conclusions about model performance overall. Generally, all the model simulations 

overestimate reflectance. The largest differences between model estimates and ETM+ 

measurements are seen at TI and T2, while the largest difference between model 

estimates and MODIS measurements is seen at M2. 

In assessing the reasons for the differences between models and 

measurements, it is clearly very difficult to separate the model uncertainties from the 

uncertainties associated with the measurements, i. e. are the measurements correct or 

are the models correct? Notwithstanding the measurement uncertainties which Z71 

r: ý ric correction, and atmospheric emanate from, among others, imperfect geomet 

correction, it seems reasonable to suggest that the large differences observed at TI and CN-: 1 17) 
T2 for the ETM+ simulations, are a result of incorrect model input values for the sod 
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reflectance. This is because the errors are consistently high in all wavebands, 

suggesting that it is not an atmospheric effect, where error would be expected to be 

much larger in the visible, than the NIR and SWIR. In addition, the fact that there is a 

28 day difference between the date of image acquisition (28 March 2001), and the 

date when soil samples were taken (28 February 2001), lends further credence to the 

idea that the soil reflectance may have been incorrectly specified (Table 6.5). 

In order to investigate this possibility, 'pure' soil pixels were identified in the 

image close to the field plots, and these were atmospherically corrected in the same 

way as the plot pixels (see chapter 3). For comparison, the same procedure was 

performed for the plots at Tshabong. Figure 6.8 contains the values obtained in this 

way, together with the laboratory measured spectra, used in the model simulations. It 

can be seen that in the visible wavebands and ETM7 the laboratory measured spectra 

are more than double the values of the image soil reflectance data, and more than 50% 

higher in ETM4 and ETM5. In contrast, the image and laboratory measurements 

made at Tshabong are broadly in agreement. It seems likely therefore, that the 

uncertainty associated with the soil reflectance values, would, in large part, account 

for the divergence between models and measurements at T1 and T2. This idea would 

appear to be supported by the fact that the largest soil differences are observed in the 

visible wavebands and ETM7, and smallest in ETM4 and ETM5, which concurs with 

the error pattern seen in the model and measurement comparisons (Table 6.7). 

It also seems likely that the large differences between the models and 

MODIS measurements at M2, is a result of incorrect values of soil reflectance, though 

this is more difficult to test or establish because of the difficulty in identifying a'pure' 

soil pixel at 500m spatial resolution. It is not clear why the models perform 

considerably better for the MODIS than the ETM+ simulations at plots T1 and T2. 

However, it might be related to the coincidence of the image acquisition with field 

data such that the soil reflectance values are more accurate, or alternatively, as a result 

of different viewing and illumination geometries (Table 6-5), where soil effects play a 

less important role in determining canopy reflectance. This will be investigated 

through model sensitivity analyses in chapter 7. More generally, the results of the 

MODIS simulations may be in error as a result of the soil being modelled as a 

Lambertian surface, when it clearly is not. From the results of chapter 5, the 

following observations may be made with respect to this issue. If the soils were 
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modelled as non-Lambertian, then results at plots TI, M2, TGI, TG2, and TG3 would 
be more accurate (soil reflectance is overestimated by using a Lambertian soil), while 

at plot T2 accuracy would decrease (soil reflectance is underestimated by using a 
Lambertian soil), while at plot MI there would be little change, owing to the fact that 

the VZA here (5.69 degrees backscatter, Table 6.6) is very close to nadir where the 

difference between Lambertian and non-Lambertian soils is minimal (see chapter 5). 

Although the relative performance of the various models is comparable, there 

is one striking difference. That is, the performance of FLIGHT I-D n-tFC with respect 

to all other models at plots TI and T2, in the ETM+ simulations. This observation is 

most probably accounted for by the already noted soil effects. The FLIGHT I -D mFC 

simulations provide a TM representation, together with information on the fractional 

cover which introduces horizontal heterogeneity into the simulations. This in effect, 
leads to a larger proportion of the soil background being 'seen', compared to the other 

TM models, leading to an increase in reflectance (in wavebands where the soil has 

higher reflectance than the vegetation); while the TM treatment means that there are 

minimal shadowing effects, which serve to reduce reflectance in the hybrid and two- 

layer canopy modelling. Consequently, the FLIGHT I-D rriFC reflectances are a lot 

higher than the other models. The fact that FLIGHT I-D mFC generally provides 

similar performance to the other models at all other plots, reinforces the idea that there 

is an error in the soil reflectance values used for the ETM+ simulations at plots TI and 

T2. 

The lowest accuracy for all models is generally displayed in the SWIR2 for 

both the ETM+ and MODIS simulations (ETM7 and MOD7). It is not entirely clear 

why this should be so. However, it may be a result of running simulations with too 

little water in the leaves, which would result in the overestimation of reflectance 

observed. This is a possible limitation caused by parameterising PROSPECT with 

the average leaf water content contained in the LOPEX93 database. Not only is the 

SWIR2 the waveband region where errors are generally largest, but it is also where, 

together with the red wavebands (ETM3 and MODI), the differences between models 

is largest at each plot. This is possibly due to the influence of the LAI in these 

waveband regions. Conversely, highest accuracy for the MODIS simulations is 

generally observed in the blue wavebands (MOD3). There is a less clear pattern for 

the ETM+ simulations, with the NM (ETM4) and SWIRI (ETM5) sometimes being 
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most accurate, while other times the visible wavebands provide the highest accuracy. 

With only five plots for the ETM+ comparisons, it is difficult to generalise. What is 

clear however, is that differences between models are generally minimised in the NM 

channels for both ETM+ and MODIS simulations (ETM4 and MOD2 and MOD5), 

which probably reflects the dominance of the soil reflectance in these wavebands. 
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Figure 6.8 Comparison of laboratory and image obtained soil reflectance. 

For both the ETM+ and MODIS simulations the TM models are seen to 

provide a closer fit to the measurements in all but one case, with a hybrid model 

providing a closer fit to the ETM+ measurements at TGI, a shrubland savanna plot, 

although the difference is less than 1%. The two-canopy layer modelling simulations 

performed at plots T1, T2, and TG2, do not provide a closer fit to the measurements. 

it would appear that in these low LAI canopies where the tree/shrub overstorey 

ground cover then the effect of the canopy structure occupies around 10-20% of the in 

introducing shadow into the scene is insufficient to demand expl*c't 
C) ii incorporation of 

two distinct canopy layers into the modelling, or indeed the use of a hybnd model, Z: ) 

since a turbid medium can provide higher accuracy. The fact that there is little t7) 

difference between the PROGeoSAIL and FLIGHT hybnd modelling would seem to t) I 
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underline this view. Clearly, this conclusion applies to these results only. Under 

different conditions, for example a larger SZA, larger range of VZA, different time of 

year, greater fractional cover or LAI, a two-layer modelling approach may be required 

(Fuller et al. 1997). These conditions could be modelled relatively easily, and would 

serve as a useful addition to the question of which type of model is needed in order to 

represent canopy reflectance with sufficient accuracy (Pinty et al. 2004). 

In the particular case of assessing model accuracy in the ETM+ simulations, 

it is important to point out that given a different atmospheric correction, the hybrid 

models or two-layer canopy modelling may be the most accurate. The measured 

ETM+ reflectances could well be higher or lower, since the exact gaseous and aerosol 

loadings of the atmosphere were not known. The error bars on the ETM+ 

measurements take account of image misregistration only. They do not take account 

of the uncertainty in the atmospheric correction. Had this been considered then the 

error bars would be larger, and assessment of model accuracy might well be different. 

Overall, the TM models outperform the hybrid and two-layer representations 

by generally no more than 10-15% relative. These results provide a further addition to 

the Radiation Transfer Model Intercomparison exercise (RAMI), which has shown 

that for the I-D case (homogeneous vegetation) a range of models perform similarly, 

while for the 3-D case (heterogeneous vegetation), large differences are observed 

between models, depending on the complexity of the scene (Pinty et al. 2001,2004). 

The TM models generally estimate reflectance to be lower in all wavebands (apart 

from the NIR), than both the hybrid models or the two-canopy layer modelling. This 

would seem to indicate that the differences observed might be attributed to incorrect 

specification of fractional vegetation cover in the hybrid and two-layer simulations. 

Although, the TM models provide the closest fit to the measurements, the PROSAIL 

and FLIGHT I-D IFC deviate by an average of 2% and 3% in the ETM+ and MODIS 

simulations, respectively. FLIGHT I-D 1FC provides a closer fit than PROSAIL in 

the ETM+ simulations, and vice versa in the MODIS simulations. Taking the ETM+ 

and MODIS simulations together, PROSAIL performs with 38% error, and FLIGHT 

I-D IFC with 39% error. Whether or not this is sufficient accuracy in order to 

provide accurate estimates of LAI on inversion, remains to be seen. North (2002), 

suggests that for model inversion to be successful, a model must approximate the 

measured signal to within 15%. Clearly, some of the plots here meet this criterion, 
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while others do not. The effect this has will be determined in the inversion work of 
chapter 8. 

6.5 Summary and Conclusion 

Canopy reflectance was simulated with three different models used in various 
formulations, designed to provide a robust test of the accuracy with which the models 

represent radiation emergent from savanna vegetation. Model simulations were 

parameterised with the mean values of the field recorded data, and evaluated against 
Landsat ETM+ and Terra-MODIS satellite data. 

Results showed that overall, all the models were generally able to simulate 

reflectance with moderate accuracy at most sites, for both the ETM+ and MODIS 

measurements. Relative differences between the models were generally no greater 

than 10-15% overall. However, the TM models were consistently the most accurate in 

all but one case. The hybrid models and the two-layer canopy representations 

achieved no higher accuracy. Therefore, in terms of model realism or suitability, it 

would appear that in these optically thin canopies where overstorey canopy cover is 
10-20%, the errors introduced by using a model which does not match the physical 

realism of the canopy as closely as another, would have little consequence on the 

accuracy with which reflectance is simulated. 

The fact that differences between models are relatively small, and are 

minimised in the NIR, is most likely a reflection of the dominance of the soil, in 

determining canopy reflectance. The plots with the largest errors, TI and T2 in the 

ETM+ simulations, is where there is the largest time difference between image 

acquisition and field data collection, such that there is most likely an error in the soil 

reflectance values used in model parameterisation. This also serves to highlight the 

difficulty in using satellite data to evaluate model performance when there is a 

considerable time difference between samples being taken and image acquisition. The 

simulations performed here and evaluated as they are with ETM+ and MODIS data, 

represents one of the few attempts to assess CRM performance with satellite sensor 

data. 

in view of the results of this chapter, future model simulations and inversions 

will be performed with the PROSAIL model. PROSAJIL was selected over the 
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FLIGHT I-D because it performed to within 2% of the FLIGHT 1-D simulations for 

the ETM+ simulations, while it was the most accurate model overall in the MODIS 

simulations. Additionally, PROSAIL is more suited to inversion studies than 

FLIGHT I-D because the solution to the radiative transfer equation is solved 

analytically rather than by Monte-Carlo methods, and as such is more computationally 

efficient. 

This chapter has dealt with one area of model uncertainty, the pertinence of 

the model assumptions to the canopy which is being modelled, and consequent 

implications for accuracy. The next chapter of this thesis will quantify the sources of 

variability in reflectance, such that information on the effect of uncertainty in model 

parameterisation will be obtained. Thus, it will provide information which will help 

explain and account for some of the observations and assertions made in this chapter, 

as well as inform the design of the inversion work in chapter 8. 
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Quantifying Reflectance Sensitivity 

7.1 Introduction 

In order to estimate LAI through the inversion of a physic ally-based CR model, it is 

necessary to have confidence in the model, and to know which of the biophysical 

parameters the model responds to, and by how much. Results from chapter 6 have 

shown that the PROSAIL model is able to estimate canopy reflectance with moderate 

accuracy at most of the field plots, such that one may have confidence in the model. 

This chapter presents the results of a series of model sensitivity analyses (SAs), 

designed to quantify the sources of variability in reflectance. Three different SAs 

were performed, two of which addressed theoretical questions, while the final 

experiment was designed to aid and inform the design of inversion schemes to 

estimate LAI over the field plots in this thesis. 

7.2 Sensitivity analysis background and objectives 

Estimating biophysical parameters via CR model inversion will be most successful for 

those parameters to which the model is most sensitive (Goel and Strebel 1983, 

Verstraete et al. 1996). If a given parameter does not influence reflectance variability 

significantly, then the search for the minimum distance between modelled and 

measured reflectance (in the case of numerical or LUT inversions), or the underlying, 

but unknown empirical relationship between reflectance and the biophysical 

parameter (in the case of ANN inversion), will be a considerable challenge. 
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To determine which parameters a model is most sensitive to, sensitivity 

analysis may be performed. Saltelli (2000), defines sensitivity analysis as: 

11 the study of how the variation in the output of a model (numerical or 

otherwise) can be apportioned, qualitatively or quantitatively, to different sources of 

variation [in the model input parameters], and of how the given model depends upon 

the information fed into it. " 

A SA therefore provides information on how a model output changes in 

response to changes in the input parameters. The results of a sensitivity analysis can 
be used in many ways, for example: 

To identify which of the input parameters drive most of the variation in 

the model output, and conversely, those that account for least variation in 

the model output, which may allow them to be fixed or ignored in the 

inversion (e. g. Braswell et al. 1996) 

To identify a subset of the most influential model parameters. Doing 

so may permit the use of a simpler model (Oreskes et al. 1994) 

(iii) To understand how the model parameters interact with one another 

(iv) To determine if there is a region in the parameter space of the input 

parameters where model output variation is maximal 

(v) To identify wavelength regions or viewing configurations which 

contain the greatest information content for a particular model parameter 

(e. g. Privette et al. 1996, Bacour et al. 2002). 

Clearly, model SA provides a means of obtaining information about the 

physical system under study, such that the complexity of the inversion process can be 

considerably reduced. The method used to test and measure the sensitivity of the 

model output will affect the outcome of the sensitivity analysis in terms of 

understanding what drives model output variation, and by how much. 
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Two different approaches to SA have been implemented in the terrestrial 

remote sensing literature, local and global SA. Traditionally, the local SA has been 

the method of choice. Local SA concentrates on the local impact of the factors on the 

model. The model parameters are allowed to vary within a small range about a mean 

value, and the range of the variation is usually the same for each of the model 

parameters, typically ± 10% (Privette et al. 1994, Asner et al. 2000). A basecase is 
defined where a simulation is run with all parameters set to their mean value, then 

each parameter in turn is perturbed by ±10% of its range, keeping all other model 

parameters fixed at their mean value. The sum of squared difference between the 

basecase and each perturbation is then calculated for each parameter. The sum of the 

squared difference is then used as a measure of the relative importance of each 

parameter in driving variation in reflectance (e. g. Bicheron and Leroy 1999). 

Alternatively, the sum of squared difference may be submitted to a principal 

components analysis (PCA), where the scores on the first component are used as a 

measure of each parameter's influence in driving variation in reflectance (Schluessel 

et al. 1994, Privette et al. 1994, Asner 1998a, Asner et al. 2000). A local SA provides 

information on how variation in each parameter produces variation in the model 

output, known here as the first-order effects. 

More recently, global SA methods have been used to conduct sensitivity 

analyses in remote sensing (Ceccato et al. 2001,2002, Bacour et al. 2002, Bowyer & 

Danson 2004). A global SA differs significantly from the local SA method. First, in a 

global SA the full range of a parameter's variability is exhaustively searched, rather 

than just a local area around a mean value. Second, a probability density function 

(PDF) is specified for each of the model parameters, such that information is supplied 

on the shape of the variation. Third, the model parameters are varied simultaneously 

in model runs, rather than varying one parameter at a time. In doing so, the results of 

a global SA provide information on the interactions of the model parameters in 

driving model output variance. This is the key difference between the global and local 

approaches. 

Clearly, a local SA will provide information on factors i, ii, iv and v listed 

above, whereas a global SA will provide information on all of the factors. The global 

SA may therefore be seen as an information rich approach, from which more 

information is obtained about the system under study. A global SA provides 
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information on how variation in the model output is produced by variations in the 

model input parameters individually - the 'first-order effects', and, collectively, 

through their interactions with the other model parameters, known as the 'total-order 

effects'. 

Whichever SA method is used - local or global, the aim is to obtain a 
hierarchy of the most important parameters in explaining model output variance. 
There were three different sensitivity analysis experiments carried out in this chapter: 

Local and global SA comparison. 

Objective: to determine and quantify the importance of interaction 

effects between canopy reflectance model parameters, and how the two 

approaches estimate the relative importance of the model parameters. 

Rationale: a local SA varies model parameters sequentially such that 

no information is obtained on the likely interaction effects between 

them. This has serious implications for designing model inversion 

schemes. Although a parameter may not influence reflectance 

variability on its own (first-order effect), when vaned in unison with 

another may explain a lot of the variance in reflectance (total-order 

effect). A local SA does not provide this information, a global SA 

does. 

Leaf level SA to investigate the effect of the PDF specified for 

model input parameters. 

Objective: to determine the likely impact of mis-specifiying the PDF 

for a given parameter in a canopy reflectance model. 

Rationale: to perform a global SA a PDF must be specified for the 

model parameters. Where there is no measured data and therefore no 

information on the PDF, what is the effect of mis-specifiying the PDF? 
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(iii) Field plot specific SA for the ETM+ and MODIS data 

Objective: to determine the sensitivity of reflectance to variation in 
LAI at each of the field plots, in order to identify the prospects for 

estimating LAI through CR model inversion. 

Rationale: it is well known that the sensitivity of canopy reflectance 

model parameters will depend on the viewing and illumination 

geometries (Privette et al. 1996a, Bacour et al. 2001). Given that both 

ETM+ and MODIS data are used, and that the field plots are not 
located on the same ETM+ image, there is a large range of viewing and 

illumination geometries. Therefore, SAs were performed for each set 

of viewing and illumination geometries, and one where the full range 

of variability in all model parameters at all plots was considered. 

7.3 Experimental method 

7.3.1 Local sensitivity analysis 

The local sensitivity analyses were performed as follows. For a given model SA, 

1000 random draws were made for each parameter according to its specified range 

and distribution. These were used to simulate the basecase canopy reflectance. For 

each basecase simulation, each parameter in turn was perturbed by ± 10% of its range, 

and a new simulation was generated. A database was thus created with 1000 basecase 

simulations plus 1000*7*2 perturbed parameters producing a database with 15,000 

simulations (for all the local SA there were seven perturbed parameters, see section 

7.3.3.1). The sum of squared difference between each basecase simulation and each 

perturbed simulation was used as a measure of the relative importance of each 

parameter at each wavelength, in explaining reflectance variability (equation 7.1). 

Relative Impact ý-j = 

2000 
1( Rbase - 

Rpert )2 

j=l 
* 100 

(7.1) 14000 
j](R -R 

2 

.d 
base pert 

k 
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Where Rbas, and Rp, are the basecase reflectance and perturbed reflectance 

spectra, respectively. 

7.3.2 Global EFAST sensitivity analysis 

The global SA were performed with the extended Fourier amplitude sensitivity test 

(EFAST) (Saltelli et al. 1999), an extension of the classical Fourier Amplitude 

Sensitivity Test (FAST) (Cukier et al. 1973,1978) and first applied to remotely 

sensed data by Ceccato et al. (2001,2002). 

EFAST uses Fourier analysis to decompose the model output variance into 

partial variances of increasing dimensionality. Because the total number of terms in a 

variance decomposition is 2" -1, where n is the number of model parameters, EFAST 

does not provide a complete breakdown of the system. To do so is currently too 

computationally demanding, even with moderate values of n. EFAST is however, 

currently the most computationally efficient of the variance based methods (Chan et 

al. 2000). 

EFAST therefore allows calculation of the effect of each model parameter in 

accounting for model output variance (here, reflectance variability), termed the 'first- 

order sensitivity index'; and the overall effect of a parameter in accounting for output 

variance, termed the 'total-order sensitivity index'. The first-order index represents the 

percentage of the output variance which is accounted for by variation in one model 

parameter Xj, whereas the total-order index represents the percentage of the output 

variance which is accounted for by variation in Xi together with the interaction of 

parameter Xi with all the other model parameters. 

The EFAST method proceeds by defining a search curve which scans the 

entire parameter space of the model inputs converting a multi -dimensional integral to 

a one-dimensional integral. In generating samples of the model parameters EFAST 

searches each axis of the parameter space at a different frequency. These samples are 

then submitted to the model, where each parameter varies between simulations. 

Fourier decomposition is then used to obtain the fractional contribution of the model 

parameters to the model output variance. Figure 7.1 provides a schematic overview of 

the procedure followed for performing a SA with EFAST. 
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The first- and total-order indices are derived by exploring different 

frequencies from the Fourier analysis. If a parameter Xi has a strong influence on the 

output, the oscillations of the output at a given frequency (0i will be of high 

magnitude. This is the basis for computing the sensitivity. The portion of the output 

variance arising from uncertainty in Xi is obtained by calculating the sum of squares of 

the Fourier coefficients at the fundamental and all harmonics of Wi. Frequencies 

which are not used in the first-order sensitivity calculation are used to calculate the 

total-order sensitivity. 
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Figure 7.1 Schematic overview of the EFAST sensitivity process (Source: Saltelli et 
al. 1999). 

A worked example of how EFAST calculates the first- and total-order indices 

follows. Considering a model with three input parameters, the total variance V of the 

model output is calculated via: 
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V : --::: 
Vxl + Vx2 + Vx3 + Vx]2 + Vx]3 + Vx23 + Vx]23 (7.2) 

where VI, Vx2, and Vx3 are the variances of model parameters 1,2, and 3 respectively, 

VA2 is the variance of interactions between model parameters I and 2, Vx, 3 is the 

variance of interactions between model parameters I and 3, Vx23 is the variance of 

interactions between model parameters 2 and 3, and Vx123 is the variance of 

interactions between parameters 1,2, and 3. The first-order sensitivity index Sxj, for 

parameter x, is then obtained from: 

SX1 
= Vxl /v 

While the total-order indices ST, for parameter x, may be calculated as: 

ST =(Vxl + Vx]2 + VxJ3 + Vx]23) /V 

(7.3) 

(7.4) 

The percentage variance accounted for by the interactions I (the percentage of output 

variance not accounted for by the first-order indices) may be calculated from: 

Sxi 

(7.5) 

In this research 5000 model simulations were performed with the EFAST SA, 

in order to provide robust estimation of the first- and total-order indices (Saltelli et al. 

1999). 

7.3.3 Model sensitivity analyses 

7.3- 3.1 Local versits global EFASTsensitivitY ana lyses 

To assess the importance of interaction effects between model parameters, two 

different experiments were defined. First, in order to provide a robust test of the 
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comparative performance of the local and global EFAST SA, model parameter ranges 

were set to encompass a large range of variability, as would be expected to be found 

in different vegetation types throughout the world, and are given in Table 7.1, together 

with information on the PDF. This experiment is referred to as the IG entire world' 

model SA. The second experiment was designed to determine the importance of 

interaction effects in some of the field plots used in this thesis, and the model 

parameter ranges and PDF are given in Table 7.2. The ranges represent the 

measurements made at the shrubland plots at Tshabong plot I and Tshabong plot I 

Soil reflectance is the hemispherical reflectance measured in chapter 5, for these two 

plots, and the range is shown in Figure 7.2. This experiment is referred to as the 'LG 

Botswana'model SA. 

All model simulations were performed with the PROGeoSAIIL model rather 
than PROSAEL, to provide a more robust test of the differences between the local and 

global approaches, since the interaction effects are likely to be more significant as 

model complexity increases. 

Table 7.1 Range of variation and PDF for the LG entire world model SA. 

Parameter Range Probability density function 
Leaf structure parameter (N) 1-6.65 Uniform 
Leaf chlorophyll content (Ca+b) 1 

-75 Uniform 
Leaf water content (EWT) 0.0001 - 0.085 Uniform 
Leaf dry matter content (DMQ 0.0014 - 0.05 Uniform 
Leaf area index (LAI) 0.001-6.0 Uniform 
Vegetation cover (Fcov) 1-100 Uniform 
Solar zenith angle (SZA) 17-70 Uniform 

Table 7.2 Range of variation and PDF for the LG Botswana model SA. 

Parameter Range Probability density function 
Leaf structure parameter (N) 1.5-3.0 Uniform 
Leaf chlorophyll content (Ca+b) 20-60 Uniform 
Leaf water content (EWT) 0.0001 - 0.015 Uniform 
Leaf dry matter content (DMQ 0.005-0.01 Uniform 

Leaf area index (LAI) 0.03-0.90 Gaussian 

Vegetation cover (Fcov) 0.1-0.35 Gaussian 

Soil reflectance (p,,, il) 
Figure 7.2 Uniform 
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Figure 7.2 Minimum and maximum soil reflectance used in the'LG Botswana'model 
SA. 

7.3.3.2 Gaussian versus uniform PDF sensitivity analyses 
In order to investigate the effect that the PDF specified for a given model parameter 

has on reflectance sensitivity, a model SA was carried out at the leaf level, with the 

PROSPECT model. The investigation was perfon-ned at the leaf level since there was 

no measured leaf reflectance and transmittance data available for use in this thesis. 

A leaf model had to be used to generate leaf reflectance and transmittance 

data. Consequently, it was important to determine what effect mis-specification of the 

PDF might have on reflectance sensitivity, and the implication this would have for 

selection of a PDF for subsequent work in this chapter (the field plot specific SA), and 

also in chapter 8, where modelled reflectance will be used to generate training and 

testing data for the ANN. 

Model ranges used in these simulations are presented in Table 7.3 and were 

determined based on the literature. EFAST was used to calculate the sensitivity. 
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Table 7.3 Range of variation for the PROSPECT model parameters for the PDF 
comparison EFAST SA. 

Parameter Range 
Leaf structure parameter (N) 1.5-3.0 
Leaf chlorophyll content (Ca+b) 20-60 
Leaf water content (EWT) 0.0001 - 0.015 
Leaf dry matter content (DMQ 0.005-0.01 

7.3.3.3 Field plot specific ETM+ sensitivity analyses 
The two Landsat ETM+ images that are used in this thesis were acquired at different 

times of year, such that there was large variation in the SZA and SAA between 

images. The two field plots at Tshane were located on one image, while the three 

field plots at Tshabong were located on the other. Therefore, model SA were 

performed to correspond to the illumination geometries of the two images. All model 

SA were perfon-ned with PROSAIL, and EFAST was used to calculate the sensitivity. 

The PROSMIL model was used since this model provided the highest accuracy results 

in chapter 6, and is the most suitable for inversion work. 

As was noted in chapter 6, part of the explanation for the large differences 

between modelled and measured reflectances at the two Tshane plots, rrught lie in 

inaccurate soil reflectance values. Consequently, two different SA were performed 

for the Tshane field plots. First, the range of the soil reflectance was set to that 

measured in the laboratory (as was used in the forward simulations of chapter 6). 

Second, the range of the soil reflectance was defined to be much greater. The 

minimum being that obtained from the image soil reflectance (in chapter 6), and the 

maximum from the laboratory measured soil. This SA would test how sensitive LAI 

was when there was a more variable background. The two expenments are referred to 

as 'Tshane LAB SOIL', and 'Tshane IMAGE SOIL', respectively. The range and PDF 

for the PROSAIL parameters submitted to the SA are given in Table 7.4, while Table 

7.5 gives the minimum and maximum soil reflectance values used in both 

experiments. 

The model parameters for the SA for the Tshabong plots are given in Table 

7.6, and soil reflectance values used are given in Table 7.7. This experiment is 

referred to as Tshabong ETM+. Cý 
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In all the SA the ranges for the model parameters were determined by using 

the minimum and maximum of all field recorded data for the plots located on the same 

image. 

Table 7.4 Range of variation and PDF for the two PROSAEL Tshane ETM+ EFAST 
SA. 

Parameter Range Probability density function 
Leaf structure parameter (N) 1.5-3.0 Uniform 
Leaf chlorophyll content (Ca+b) 20-60 Uniform 
Leaf water content (EWT) 0.0001 - 0.015 Uniform 
Leaf dry matter content (DMQ 0.005-0.01 Uniform 
Leaf area index (LAI) 0.12-1.37 Gaussian 
Soil reflectance (p, jj) Table 7.5 Uniform 

Table 7.5 Minimum and maximum soil reflectance values used in the two Tshane 
ETM+ EFAST SA. 

Waveband Tshane LAB SOIL Tshane IMAGE SOIL 
ETM 1 0.155 -0.188 0.061 - 0.188 
ETM 2 0.256-0.309 0.114 - 0.309 
ETM 3 0.380-0.464 0.185 - 0.464 
ETM 4 0.465-0.561 0.314 - 0.561 
ETM 5 0.659-0.739 0.405 - 0.739 
ETM 7 0.642-0.716 0.320 - 0.716 

Table 7.6 Range of variation and PDF for the Tshabong ETM+ EFAST SA. 

Parameter Range Probability density function 
Leaf structure parameter (N) 1.5-3.0 Uniform 
Leaf chlorophyll content (Ca+b) 20-60 Uniform 
Leaf water content (EWT) 0.0001 - 0.015 Uniform 
Leaf dry matter content (DMQ 0.005-0.01 Uniform 

Leaf area index (LAI) 0.03-0.90 Gaussian 

Soil reflectance (p,,, il) 
Table 7.7 Uniform 

Table 7.7 Minimum and maximum soil reflectance values for the Tshabong ETM+ 
EFAST SA. 

Waveband Tshabong ETM+ 

ETM 1 0.119 -0.130 
ETM 2 0.208 - 0.226 

ETM 3 0.330 - 0.359 

ETM 4 0.422 - 0.455 

ETM 5 0.599 - 0.653 

ETM 7 0.583 - 0.636 
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7.3.3.4 Field plot specific MODIS sensitivity analyses 
The MODIS data coincident with the seven field plots all have different viewing and 
illumination geometries (see Table 6.5). Consequently, seven different SA were 

performed with PROSAEL, and EFAST was used to calculate the sensitivity. Model 

parameter ranges and PDFs are given in Table 7.8, while Table 7.9 contains the 

minimum and maximum soil reflectance values used. The SA which considered the 
full range of the biophysical model parameters at each site took the minimum and 

maximum observed values for the range, given in Table 7.8. The minimum and 

maximum for the range in viewing and illumination conditions, was taken from Table 

6.6. 

Table 7.8 Range of variation and PDF for the PROSAEL parameters used in the field 
plot specific MODIS EFAST SA. 

Parameter TI T2 Mi M2 TG1 TG2 TG3 
Leaf structure 
parameter (N) 
Leaf chlorophyll 1.5 - 3.0 (U) 
content (Ca+b) 20 - 60 (U) 
Leaf water content 0.0001 - 0.015 (U) 
(EWT) 0.005 - 0.01 (U) 
Leaf dry matter 
content (DMQ 
Leaf area index 0.12- 0.17- 0.001- 0.01- 0.03- 0.04- 0.07- 
(LAI) 0.88 (G) 1.37 (G) 0.03 (G) 0.13 (G) 0.90 (G) 0.48 (G) 0.47 (G) 
Soil reflectance Table 7.9 (U) 
(PSOH) 

Note: Letter in brackets indicates the PDF, G being Gaussian, and U being Uniform. T1 and T2 is 
Tshane plots I and 2, MI and M2 are Mabuasehube plots I and 2, TGI, TG2, and TG3 are Tshabong 
plots 1,2, and 3. 

Table 7.9 Minimum and maximum soil reflectance values for the field plot specific 
MODIS EFAST SA. 

Waveband Tshane Plots Mabuasehube Plots Tshabong Plots 
MODI 0.370 - 0.452 0.351 - 0.392 0.319 - 0.347 
MOD2 0.473 - 0.568 0.462 - 0.502 0.430 - 0.464 
MOD3 0.146 - 0.178 0.116 - 0.143 0.112 - 0.122 
MOD4 0.237 - 0.285 0.200 - 0.233 0.190 - 0.206 
MOD5 0.608 - 0.698 0.590 - 0.631 0.557 - 0.608 
MOD6 0.657 - 0.737 0.638 - 0.677 0.597 - 0.651 
MOD7 0.664 - 0.742 0.647 - 0.688 0.606 - 0.660 

137 



7.4 Results and discussion 

The results of the SA experiments are presented in sequential order, in Figures 7.3 

through 7.12. The figures represent the contribution that each model parameter makes 

to reflectance variability. Figures 7.4,7.6, and 7.8 represent the relative difference 

between two methods: the LG entire world range of variation SA, the LG Botswana 

range of variation, and the uniform and Gaussian PDF comparison, respectively. 

These figures are obtained by subtracting one method or PDF from the other. 

7.4.1 Local versus global SA comparison 

Analysis of the results will focus on the differences between the two approaches for 

both the LG entire world and LG BOTSWANA experiments, rather than trying to 

provide a biophysical interpretation. Specifically, focus is targeted at the importance 

of the interaction effects in the global SA, and the relative importance of the model 

parameters in explaining reflectance variance, estimated by both approaches. The 

global SA results are treated as the truth when comparing the two approaches. 

The results of the LG entire world SA are shown in Figure 7.3. The 

importance of model interactions in driving reflectance variability are shown to be 

significant, accounting for 15.2% of the variance across the solar spectrum (Figure 

7.3b). Interactions are most important in the NIR region where they account for 

21.4% of the variance. Clearly, the local SA has failed to capture the total variance of 

the system, and this will have implications for the estimation of the relative 

importance of model parameters in driving reflectance variability. 

Comparing Figure 7-3(a) and 7.3(b), there are clear differences in the relative 

importance of all the model parameters obtained from both methods, and these are 

most pronounced for theCa+bcontent, LAI, and Fcov. Figure 7.4 shows that the local 

SA overestimates the importance0f Ca+b in explaining reflectance variability by up to 

47% more than the global EFAST SA, with an average of 33.6% across the PAR 

wavelengths. Not only are there differences in the magnitude of the importance of 

Ca+b, but also the rank importance. For example, at 440nm in the local SA, Ca+b is the 

most important parameter explaining 58% of the variance in reflectance, yet in the 

global EFAST SA, it is the fourth most important parameter explaining only 13% of 

the variance in reflectance. 
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The importance of LAI is overestimated in the local SA (compared to the 

global SA), by an average of 14.4% across the solar spectrum, with maximum 

overestimation occurring in the SWIR region (21%) (Figure 7.4). The rank 
importance of LAI across wavelengths, does not, however, differ greatly between the 

two approaches. Largest differences between the two methods for Fcov are observed 
in the blue and red wavelength regions, with the local SA overestimating the 

importance of Fcov by 18.0% and 14.1%, respectively. Fcov is overestimated in the 

local SA at NIR wavelengths by an average of 14.2%, and underestimated in the 

SWIR region by 6.0% (Figure 7.4). 

Results of the LG BOTSWANA experiment are shown in Figure 7.5. 

Clearly, the importance of interactions between model parameters in explaining 

reflectance variability is much reduced compared to the LG entire world experiment 
(cf. Figure 7.3a and 7.5a). Interactions account for just 6% of the variance across the 

solar spectrum, and are greatest in the visible regions with a maximum of 11.3% at 

420nm (Figure 7.5a). Figure 7.6 shows the difference in relative contribution that 

each parameter makes to reflectance variability. It c an be seen that the largest 

differences between the two methods are in the estimation of the importance of LAI 

and soil reflectance (ps,, il), all other parameters generally displaying differences of 

roughly a few per cent. The symmetry in the difference between LAI and soil 

reflectance is striking, across the solar spectrum. The local SA method overestimates 

and underestimates the importance of LAI and psoil by 21.6% and 16.3% respectively, 

across the solar spectrum. 

This shows that while the interaction effects may not be significant, there are 

still large differences between the two methods in terms of the relative contribution 

that parameters make to reflectance variability. In other words, even if the interaction 

effects in a given SA are not large, this does not mean that the local and global SA 

approaches will provide equivalent outcomes. For example, at 820nm the local SA 

shows LAI to be the second most important parameter, explaining 22% of the variance 

in reflectance, whereas the EFAST first-order effects show LAI to be the third most 

important parameter, but only weakly so, explaining 6% of the variance in reflectance 

(Figure 7.5). Similarly, at 1240nm, the local SA shows LAI to be the most important 

parameter explaining 51% of the variance in reflectance, whereas the EFAST first- 

order effects show LAI to explain only 24% of the variance in reflectance, LAI being 
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the second most important parameter. In the visible wavelengths both methods report 

LAI as the most important parameter, but the local SA overestimates the importance 

of LAI by 13% - 17% (Figure 7-6). 

Taken together, these two experiments have illustrated the clear benefit of 

performing global SA compared to a local SA. In a global SA the full variance of the 

system is quantified and accounted for. Depending on the range of variation 

considered in a SA the interaction effects may be more or less important in driving 

reflectance variability. Regardless, even when the interaction effects are small, the 

global EFAST SA and the local SA cannot be considered equivalent. The results from 

both experiments show that there are marked differences in the relative importance of 

parameters, obtained from the two different methods. When the purpose of the model 

SA is to inform the design of model inversion schemes to estimate biophysical or 

biochemical parameters, very different strategies would be adopted depending on 

which method of SA had been used. 
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Figure 7.3 First-order effects for the (a) local versus (b) global EFAST SA 
comparison, considering the'LG entire world'range of variability. The EFAST SA 
contains the model interaction effects also. The legend is given in Figure 7.3(b). 
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EFAST estimates the contribution of a given parameter to be greater than that from 
the local SA,, and vice versa. 

7.4.2 Leaf level uniform versus Gaussian PDF comparison 

The relative importance of the leaf parameters in explairning reflectance variability are 

shown to be broadly similar in the uniform and Gaussian PDF SA, with differences 

generally being no larger than 10%, except at the major biochemical absorption 

wavelengths (Figure 7.7, Figure 7.8). In the visible wavelengths, differences in the 

importance Of Ca+b approach 18% and 14% in the blue and red wavelength regions, 

respectively (Figure 7.8). The uniform SA places the importance Of Ca+b higher than 

the Gaussian PDF SA. The most pronounced difference however 
, is seen at around 

1900nm, where simultaneously, the uniform SA places the importance of EWT at 

roughly 37% higher, and the importance of parameter interactions roughly 39% lower,, 

than the Gaussian PDF SA (Figure 7.8). 
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Figure 7.8 Relative contribution difference between the Uniform and Gaussian PDF 
EFAST SA. Negative differences indicate that the Uniform PDF estimates the 
contribution of a given parameter to be greater than that from the Gaussian PDF, and 
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It is not entirely clear why there is such a large difference between the two 

SAs in this wavelength region. The reason might have something to do with the 

linearity of the sensitivity of reflectance to variation in EWT. Although the ranges 

for the two SAs were the same, the sampling of the range was different. If reflectance 

displays greater sensitivity at one end of the range than the other (e. g. red reflectance 

and 2>LAI--311 , and there is a greater density of samples in this region, then clearly 

this will affect the calculation of the sensitivity. Given the fact that EFAST calculates 

the sensitivity as a linear sum of the squares of the Fourier coefficients for each model 

run,, if more model runs are performed with values to which reflectance is more 

sensitive, then the sum of squares of the coefficients will be larger. Various studies 

have shown that the sensitivity of reflectance to variation in EWT is greatest at low 

values of EWT (Pefluelas et al. 1997, Ceccato et al, 2001), supporting this 

interpretation. 
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The implication of this is that the EFAST method is not independent of the 

PDF selected for the model parameters (Saltelli 1999). In terms of the likely impact 

of mis-specifying the PDF on model s1mulations, these results suggest that overall the 

impact would normally be less than 10% across the solar spectrum, for all model 

parameters. 

7.4.3 Field plot specific ETM+ SA 

The sensitivity of reflectance to variation in the ETM+ field plot specific parameter 

ranges is presented in Figure 7.9. For the Tshane LAB SOIL SA, reflectance 

variability is shown to be dominated by variation in LAI in five of the six wavebands 
(Figure 7.9a). Largest sensitivity is observed in the visible and SWIR, with LAI 

accounting for 84.9% of the variance in ETM3,79.3% in ETMI, 71.8% in ETM7, 

66.8% in ETM2, and 48.6% in ETM5. Only in the NIR is there little sensitivity to 

LAI. In this waveband variation in soil reflectance dominates, accounting for 85.8% 

of the variance. Interestingly, this is the only waveband where the soil has a 

significant effect, in all other wavebands the importance of soil reflectance does not 

get above 10%. In the visible wavebands this result can be explained by the fact that 

there is little variation in soil reflectance in these wavelength regions (see Table 7.5). 

This has been observed in field studies by Huete (1988), and van Leeuwen et al. 

(1996). In the NIR on the other hand, there is greater variance in the soil reflectance 

values, while the influence of vegetation is reduced due to low absorption at these 

wavelengths (Merzlyak et al. 2002), and scattering effects are not significant in these 

optically thin canopies. For this reason, empirical efforts which have combined red 

and NIR reflectances in VI, to estimate vegetation biomass in semi-arid environments, 

will be hampered by errors in the NIR soil values (Asner et al. 2000). Interaction 

effects are insignificant across wavebands, indicating that variance in reflectance is 

driven by first-order effects only The influence of EWT is strong in ETM5, 

accounting for 35.6% of the variance. 

When the range of the soil reflectance is increased In the Tshane MAGE 

SOIL SA, the sensitivity of reflectance to variation in LAI Is reduced considerably 

(Figure 7.9b). Variation in soil reflectance is now the dominant control on reflectance 

variability, in all wavebands. Nevertheless, LAI is still an important parameter in four 
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of the six wavebands, explaining greater than 25% of the variance in ETM3 (40.8%), 

ETMI (29.2%), ETM7 (27.8%), and ETM2 (27.0%). The importance of LAI in the 

NIR is negligible, where soil reflectance totally dominates reflectance variability. 
These results serve to highlight the effect of inaccurate soil reflectance 

parameterisation in the simulations performed in chapter 6, and further support the 

idea that the differences between modelled and measured reflectances are attributable 

to mis-specification of soil reflectance values. Interaction effects are negligible across 

all wavebands. 
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Figure 7.9 Continued. 

In the Tshabong SA, the results are very similar to the Tshane LAB soil SA, 

with reflectance variability being dominated by variation in LAI in five of the six 
bands (Figure 7.9c). The pattern of sensitivity is identical with ETM3 showing 

greatest sensitivity to variation in LAI (88.8%) followed by ETMI (79.2%), ETM7 

(72.2%), ETM2 (66.1%), and ETM5 (46.4%). Soil reflectance again dominates in the 

NIR, though to a lesser extent than the other two SAs, most likely as a result of there 

being a smaller range of variability in soil reflectance values (cf. Table 7.5 Table 7.7). 

These results clearly show that reflectance sensitivity to variation in LAI is 

greatest in the visible and SWIR wavelengths, and minimal in the NfR where soil 

reflectance dominates. These results accord with those found by Pri 
I ivette et al. (1994), 

using the CANTEQ model, and Asner et al. (2000) using the GORT model, working 

in similarly optically thin canopies in the USA. The fact that soll reflectance only 

dominates reflectance variability in the NfR in all three experiments is attributable to 

the small range of variation in soil reflectance observed at these Plots, particularly in 

the visible wavelengths. This is a reflection of the relative homogeneity of the soil I 

background, the Kalahari sands (see chapter 5). Even when tested over a relatively 
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large range of soil values, LAI still accounts for a large amount of the variance in 

reflectance, in four of the six wavebands. The sensitivity to variation in LAI is 

consistently greatest in the red (ETM3), blue (ETMI), SWIR2 (ETM7) and green 

wavebands (ETM2) for all experiments, and this is shown in Figure 7.10. 

Consequently, these results provide reason for optimism in the estimation of LAI 

through model inversion with ETM+ data. 
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Figure 7.10 Summary of LAI sensitivity in the three ETM+ EFAST SA. 

7.4.4 Field plot specific MODIS SA 

The sensitivity of reflectance to variation in the MODIS field plot specific parameter 

ranges is presented in Figure 7.11. At Tshane plot I (TI) sensitivity of reflectance to 

variation in LAI is shown to be strong in five of the seven wavebands (Figure 7.1 la). 

Greatest sensitivity is displayed in the visible and SWIR wavebands with LAI 

accounting for 73.7% of the variance in MODI, 71.2% in MOD3,60.9% in MOD7, 

and 51.4% in MOD4. Lowest sensitivity to LAI is observed in the two NIR 

wavebands MOD2 and MOD5, where LAI accounts for 1.0% and 10.8% of the 

variance respectively. Soil reflectance drives reflectance variability in these two 

wavebands, accounting for 95.0% and 76.8% of the va i Z7) riance respectively. Variation 
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in soil reflectance is shown to be important in SWIR1 (MOD6) and the visible 

wavebands also (MODI, MOD3, MOD4), where it accounts for approximately 20% 

of the variance. 

At Tshane plot 2 (T2), there is a very similar pattern to TI with variation in 

LAI being the main driver of reflectance variability in five of the seven wavebands, 

and co-dominant in one other (MOD5) (Figure 7.1 1b). The pattern of sensitivity is the 

same as TI with greatest sensitivity to LAI being shown in the visible and SWIR 

wavebands. The co-dominance of LAI in MOD5 at this plot is most likely due to 

there being more leaf area, which acts to reduce the importance of the soil reflectance, 

which totally dominates in MOD2 (76.5%). Differences in viewing angles between 

TI and T2 could also explain this observation however. Interaction effects are shown 

to be relatively unimportant with at most 5.2% of the variance in MODI attributable 

to interactions. 

At Mabuasehube plot I (MI), variation in soil reflectance dominates 

reflectance variability in all but one of the bands (Figure 7.11c). Sensitivity to 

variation in LAI is only significant in MOM where it is the dominant factor 

accounting for 72.8% of the variance. The only other band to express any sensitivity 

to variation in LAI is MOD7, where it accounts for just 2.6% of the variance. 

Doubtless, these results are due to the very low LAI value at MI (Table 7.8), however, 

the importance of LAI in the red waveband compared to all others is startling. The 

interaction effects are negligible across all wavebands. 

At Mabuasehube plot 2 (M2), the soil reflectance again dominates in all 

wavebands, though to a lesser extent than at MI (Figure 7.11d). Greatest sensitivity 

to variation in LAI is displayed in MOD7 (29.8%), followed by MODI (24.7%). The 

difference in importance of LAI in MODI between plots M2 and M1, of -48% is 

remarkable. While the difference in the range of LAI at both plots is relatively large 

(Table 7.8), and, there is also a large difference in viewing angle, 5.69 degrees 

backscatter and 21.79 degrees forwardscatter at MI and M2, respectively, it is not 

i gate possible to say which factor might account for these results. In order to invest . 

this, new SA were performed where the viewing configuration for MI was swapped 

for that of M2 and vice versa, keeping the range of LAI the same as previously. The 

results showed that the importance of LAI increased by 1.4% at M1, and decreased by 

1.4% at M2. Clearly, the large differences are a result of the LAI range, rather than 
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the viewing configuration. The implication is clearly that LAI is more important at 

very low levels than at low levels, in the red region. The blue and green wavebands 

also show some sensitivity to LAI but only weakly so, accounting for approximately 
8% of the variance in both MOD3 and MOD4. 

Reflectance sensitivity is dominated by variation in LAI and soil reflectance 

across all wavebands, at Tshabong plot I (TGI). Greatest sensitivity to variation in 

LAI is again displayed in the visible and SWIR wavebands, with LAI explaining 
88.7% of the variance in MOD 1,88.3% in MOD3,71.3% in MOD7,59.1 % in MOD4, 

and 45.6% in MOD6 (Figure 7.1 le). Variation in EWT is significant in MOD6, 

accounting for 33.9% of the variance. Soil reflectance only dominates in the NIER, 

accounting for 79.8% of the variance in MOD2, and 54.9% in MOD5. Interaction 

effects are again relatively unimportant, with the largest impact observed in MOD4 

(4.9%). 

At Tshabong plot 2 (TG2), variation in LAI drives reflectance variability in 

four of the seven wavebands (Figure 7.1 If). Greatest sensitivity is again observed in 

the visible and SWIR wavebands. LAI accounts for 81.5% of the variance in MODI, 

75.9% in MOD3,59.4% in MOD7, and 51.8% in MOD4. Variation in soil reflectance 

is dominant in the NIR and also SWIR1, accounting for 93.5% of the variance in 

MOD2,83.3% in MOD5, and 37.2% in MOD6. The increase in importance of soil 

reflectance in the SWIRI compared with TG1 is most likely a result of differences in 

the LAI between the two plots, especially given the fact that there are minimal 

differences in viewing conditions (cf. Table 7.8 Table 6.5). 

A very similar pattern is observed at Tshabong plot 3, where LAI dominates 

reflectance variability in four of the seven wavebands, and soil reflectance dominates 

in the other three (Figure 7.11g). Greatest sensitivity to LAI is displayed in MODI 

(77.5%), MOD3 (70.1%), MOD7 (52.4%), and MOD4 (42.7%). Overall, the 

importance of LAI is reduced by between 4% and 10% compared to TG2. Variation 

in soil reflectance dominates in MOD2 (92.8%), MOD5 (85.8%), and MOD6 (40.0%). 

Interaction effects are again relatively unimportant, with at most 4.0% of reflectance 

variability being attributable to interactions in MOD4, where variation in Q, +b is also 

significant (33.8%). 

The all plots all parameters SA (Figure 7.11h), displays the same general 

pattern as the field plot specific SA. LAI and soil reflectance dominate reflectance 
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variability in the visible/SWIR, and NIR respectively. Of the viewing and 
illumination variables, only the view zenith angle, has any real impact on reflectance 

variability, though it is still relatively insignificant at approximately 5% across the 

wavebands. Interaction effects are slightly more important than the field plot specific 
SA, though this is to be expected since there are more model parameters (Saltelli 

1999). 

Clearly, these results mirror those of the ETM+ SA, where reflectance 

sensitivity to variation in LAI is greatest in the visible and SWIR wavelengths, and 

minimal in the NIR, where soil reflectance dominates. These results therefore also 

accord with the previous research findings cited above (Privette et al. 1994, Asner et 

al. 2000). Consistent with the results from the ETM+ SA, greatest sensitivity to 

variation in LAI is shown in the red waveband (MODl) for all plots, except M2, 

followed by the blue (MOD3), and SWIR2 (MOD7). Figure 7.12 shows that in all 

wavebands there are considerable differences in the importance of LAI at the different 

plots, which reflects the different level of LAI at each plot. Generally, as the plot LAI 

increases, the sensitivity of reflectance to variation in LAI increases across all 

wavebands. These results would seem to indicate that the prospects for the accurate 

estimation of LAI through model inversion against MODIS data, are high. 

It should be pointed out however, that these results were obtained with leaf 

parameter ranges based on the literature. If the values used were not representative, 

then clearly the results of these SAs would be different. Given the large range of 

variation covered (Table 7.8), it might be that if measurements were available, these 

ranges would be reduced, such that the importance of LAI and soil reflectance would 

likely increase. 
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7.5 Summary and conclusion 

Three different SA experiments were performed in this chapter. First, on a theoretical 

level, a local SA was compared to a global SA to determine the influence of model 

parameter interactions on the model output, and the effect that this had on the 

calculation of the relative importance of the model parameters, estimated by the two 

different methods. The results showed that when there was a large range of variation 

in the model parameters, then the interaction effects were significant accounting for 

-15% of reflectance variability (Figure 7.3). The local SA therefore clearly falls to 

capture the total variance of the system, because of its sequential perturbation design. 

When the range of variation in model parameters is much reduced, the importance of 

interactions between model parameters is much less significant at around 6% (Figure 

7.5). However, there are still marked differences between the two methods in terms of 

the relative importance of the model parameters. This is also true when there is a 

large range of variation, and the relative importance of parameters can vary by as 

much as 47%. In addition there are some large differences in terms of the rank 

importance of the model parameters. 
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The implication is that if the results of the SA are used to inform the design 

of inversion schemes to estimate biophysical parameters, then very different strategies 

would be adopted, depending upon which method of SA is used. Clearly, the global 
SA approach is the only means of quantifying the total variance of the system, and 

attributing it to the model parameters and their interactions. The use of global SA 

methods is therefore to be encouraged. This work is the first time that a local and 

global SA have been compared in this way, with application to remote sensing of 

vegetation. 

Following on from this work, the second experiment was also on a theoretical 

level. The question asked was what was the likely effect of mis-specifiying the PDF 

for a model parameter? The motivation for this experiment was the fact that there was 

no measured leaf reflectance and transmittance data available for use in this thesis. 

Consequently, there was no information on the PDF. SA were performed with the 

PROSPECT model and two different PDFs were specified for the model parameters, a 

uniform and Gaussian. Results showed that although differences were as large as 39% 

in the major water absorption bands, overall, differences in the relative importance of 

model parameters were generally no greater than 10% across the solar spectrum 

(Figure 7.8). Consequently, it would seem that the effect of mis-specification of a 

PDF, would generally not have a significant effect on the overall sensitivity of the 

model to variation in its parameters. 

The final experiment was more practical, where the objective was to quantify 

the sensitivity of reflectance to variation in LAI at the field plots used in this thesis. 

Simulations were performed for both the ETM+ and MODIS sensor configurations, 

using the PROSAIL model and EFAST. Results from both showed that LAI generally 

dominated reflectance variability in the visible and SWIR regions (cf. Figure 7.9 

Figure 7.11). This depended, however, on the range of variation in soil reflectance for 

the ETM+, and plot level LAI variation in the MODIS simulations. Generally, 

sensitivity of reflectance to variation in LAI increased as the LAI value increased. 

Reflectance variability in the NIR was driven by variation in soil reflectance, and LAI 

had a negligible effect. Interaction effects between parameters were shown to be 

relatively unimportant in all the simulations, such that variation in reflectance was 

driven by variation in individual parameters. This will enable parameters which do 

not account for significant proportions of variance to be fixed in model inversion 

160 



work. Given the dominance of LAI in generally more than three wavebands, the 

prospects for estimating LAI through model inversion would seem to be high with 

both ETM+ and MODIS data. In the MODIS SA, when the viewing and illumination 

parameters were included, it was shown that only the view zenith angle has any effect 

on reflectance variability. This confirms previous work which has shown that most 

information lies in the spectral domain (Barnsley et al. 1997). 

The use of canopy reflectance models together with global SA methods 

represents a powerful tool in the remote sensing toolbox with which to obtain 

information about the system under study. The information obtained from such work 

can be used to provide better designed inversion schemes, where data which exhibits 

greater sensitivity to the parameter of interest can be used, whereas data which 

exhibits little sensitivity can be omitted from the analysis. In so doing the likely 

accuracy of model inversions will be increased (Privette et al. 1996a). The next 

chapter of this thesis will use the results obtained in this chapter to inform the design 

of inversion schemes to estimate LAI. 
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Estimating Leaf Area Index Via Neural Network Inversion 

8.1 Introduction and objectives 

This chapter uses the results from chapter 7 to aid the design and implementation of a 

number of experiments to estimate leaf area index (LAI) from artificial neural 

networks (ANN), using both ETM+ and MODIS data. Clearly, a neural network can 

be trained with various inputs, however, it is desirable to use inputs which contain the 

most information about the parameter to be estimated. In chapter 7 it was shown that 

different wavebands of the ETM+ and MODIS sensors, display differing sensitivity to 

variation in LAI, with sensitivity generally being greater in the visible (VIS) and 

short-wave infrared (SWIR), than the near infra-red (NIR), which displayed very little 

sensitivity to variation in LAI. A neural network inversion involves training a 

network to try to learn the underlying relationship between the inputs, and the output, 

and thereby establish a mapping function between them. It is known that networks 

can be confused, and perform sub-optimally, when data which contains little or no 

information about the parameter of interest are used in the training process (Crooks 

1992). A problem arises however, since it is not known a priori which data inputs 

will provide the highest accuracy, nor what the underlying relationship between inputs 

and outputs are. Consequently, a number of experiments were carried out in this 

chapter, with the aim of estimating LAI with as a high an accuracy as possible. 

Specifically, there were four objectives: 

To determine the optimal network architecture and the effect that 

network architecture has on the resistance of neural networks to noise. 

Rationale: the underlying relationship between the network inputs and 

outputs is unknown a priori, and needs to be discovered. In addition, all 

networks will be trained with modelled data, which are essentially error 

free, yet tested with satellite measurements which contain noise. 

To determine the optimal set of spectral data inputs to the neural 

networks. Rationale: different wavebands display different sensitivity to 
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leaf area index, and different accuracy when compared to modelled 

reflectances. Therefore it was desired to use the optimal band combination 

to estimate LAI. 

Gii) To investigate the effect of adding viewing geometry as an input to the 

training stage, in addition to the spectral data. Rationale: viewing 

geometry contains information about the canopy structure which may lead 

to more accurate inversions. 

(iv) To compare the performance of the MODIS LAI product with respect 

to field measurements, and scaled ETM+ LAI from the neural network 

inversions. Rationale: field measurements provide an assessment of how 

well the MODIS LAI product is performing. Because of the difficulty in 

assessing a product with a few field points, and given that in low LAI 

value areas the relative estimation error is likely to be high, the spatial 

variation in LAI is a useful source of information. 

8.2 Experimental methods 

8.2.1 Artificial neural networks 

Multi-layer feed-forward neural networks with back-propagation learning were used 

in all the experiments carried out in this chapter. Network training was performed 

with the Levenberg-Marquardt training algorithm (Levenberg 1944; Marquardt 1963). 

This training algorithm was selected as it is known to provide faster training since it 

only involves computation of the inverse Hessian matrix when updating the network 

weights (Bishop 1995), and has been shown to provide accurate results in 

experimental studies (e. g. Baret et al. 1995). Prior to network training the inputs were 

normalised to lie in the range -1 to 1, so that there was no difference in the input 

ranges between the different wavebands, which may bias the training. Network 

training was performed in batch mode where the weights and biases are updated only 

after the complete training set has been presented and propagated through the 

network. For all the experiments, networks were trained for 250 epochs, the error 

goal was set to 0.001, and the leaming rate was also set to 0.001. For each network 

architecture, network training was repeated twenty times in order to experiment with 
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different initial weights and biases, and also to overcome the potential for local 

minima to be found. In addition, the activation function from the input layer to the 

hidden layer was a hyperbolic tangent function, while the activation function from the 

hidden layer to the output layer was a linear function (Haykin 1999). The 

performance of the various networks trained was evaluated by calculating the root 

mean squared error (RMSE) and the coefficient of determination, with both modelled 

and measured test data sets. The specific details of the various network architectures 

experimented with are given in the inversions section. 

8.2.2 Generating reflectance data 

To train a neural network to estimate LAI from reflectance data requires a training 

data set. Ideally, this training set would consist of measurements of spectral 

reflectance and corresponding leaf area index values. Unfortunately, this was not, and 

rarely is, the case in remote sensing where ground measurements of the biophysical 

parameter of interest and companion reflectances are in short supply (Walthall et al. 

1993; Cohen & Justice 1999; Privette et al. 2000). In the absence of sufficient 

measurements with which to train and test the networks, the PROSAIL model was 

used to generate reflectance data. 

The training data for the ETM+ inversions were generated according to the 

ranges and distributions given in Table 8.1. In the light of the results from chapter 6, 

where it was suggested that the most likely explanation for the discrepancy between 

the modelled reflectances and measurements is due to inaccurate specification of the 

soil reflectance, the range of the soil reflectance was set to the minimum value 

obtained from the 175/077 (Tshane) image, and the maximum was set to that 

measured in the laboratory, the ranges are given in Table 8.2.5000 random draws of 

each of the model parameters were made and PROSAIL was then run for each 

combination. Because LAI would be estimated from two different ETM+ images 

(which covered the five ETM+ field Plots), there were two different solar zenith 

angles (SZA) to consider. Consequently, reflectances were simulated for each SZA 

(43.36 and 37.42 degrees), and then combined to form the training set. The 

reflectance database thus consisted of 10000 sets of reflectance and corresponding 

164 



LAI. The training set was finally created by drawing 5000 samples at random from 

this database. 

A similar approach was adopted for the creation of the MODIS training 

reflectances. Apart from the soil reflectance, the model parameter ranges were the 

same as those given in Table 8.1, the range of the soil reflectance is given in Table 

8.3. Because the measured reflectances which PROSAIL would be inverted against 

were all obtained under different illumination and viewing geometries at the seven 
MODIS field plots, it was required that the training data were consistent with this. 
Therefore, the seven different SZA, view zenith angles (VZA), and relative azimuth 

angles (RAA), were included in the PROSAIL simulations (Table 8.4). This may be 

considered analogous to the way in which a neural network might be trained to 

estimate biophysical properties from sensors with a fixed viewing geometry (e. g. 
MISR, CHRIS-PROBA). For each of the seven sets of viewing and illumination 

geometries, PROSAIL was run for 1000 combinations of the model parameter ranges. 
The reflectance database thus consisted of 7000 sets of reflectance and corresponding 
LAI. The training set was finally created by drawing 5000 samples at random from 

this database. A spherical leaf angle distribution (LAD) was specified for both the 

ETM+ and MODIS simulations. 

Table 8.1 Minimum and maximum parameter values and probability density function 
for generating the training data. 

Parameter Minimum/Maximum Probability density 
function 

Leaf structure parameter (N) 1.5-3.0 Uniform 
Leaf chlorophyll content (Ca+b) 20-60 Uniform 
Leaf water content (EWT) 0.0001 - 0.015 Uniform 
Leaf dry matter content (DMQ 0.005-0.01 Uniform 
Leaf area index (LAI) 0.001-1.37 Gaussian 

Table 8.2 Minimum and maximum soil reflectance for generating the ETM+ training 
data. 

Waveband ETM I ETM 2 ETM 3 ETM 4 ETM 5 ETM 7 

Minimum 
Maximum 

0.061 
0.188 

0.114 
0.309 

0.185 
0.464 

0.314 
0.561 

0.405 
0.739 

0.320 
0.716 
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Table 8.3 Minimum and maximum soil reflectance values for the field plot specific 
MODIS EFAST SA. 

Waveband Tshane Plots Mabuasehube Plots Tshabong Plots 
MODI 0.370 - 0.452 0.351 - 0.392 0.319 - 0.347 
MOD2 0.473 - 0.568 0.462 - 0.502 0.430 - 0.464 
MOD3 0.146 - 0.178 0.116 - 0.143 0.112 - 0.122 
MOD4 0.237 - 0.285 0.200 - 0.233 0.190 - 0.206 
MOD5 0.608 - 0.698 0.590 - 0.631 0.557 - 0.608 
MOD6 0.657 - 0.737 0.638 - 0.677 0.597 - 0.651 
MOD7 0.664 - 0.742 0.647 - 0.688 0.606 - 0.660 

Table 8.4 Viewing and illurnInation geometries for the seven MODIS field plots, for 
creating the MODIS training data. 

Parameter Tl T2 MI 
Field plot 
M2 TGI TG2 TG3 

View zenith 19.05f 55.46b 5.69b 21.79f 25.1f 24.64f 12.14f 
angle 
Solar zenith 29.03 37.55 32.11 29.33 29.53 29.50 32.76 
angle 
Relative 137.99 33.75 35.74 137.2 136.34 136.74 132.75 
azimuth 
angle 

Note: f indicates forward scatter, and b the backscatter direction. 

8.3 ETM+ inversions 

8.3.1 Objective 1: Determining optimal network architecture 

A priori, the complexity of the relationship between the network inputs (reflectance) 

and the network output (LAI) is not known. Using a neural network to invert a 

canopy reflectance model (or any other model), therefore, almost inevitably involves 

some experimentation with the number of layers and nodes in each layer, in order to 

determine the optimal network architecture to perform the task. Here, a series of 

experiments were conducted where networks consisting of one and two hidden layers, 

with various numbers of nodes in each layer, were tested. The single hidden layer 

networks were composed of 5 to 20 nodes, whilst the two hidden layer networks 

consisted of 5 to 20 nodes in the first hidden layer, and I to 6 nodes in the second 

hidden layer. In total, 16 one hidden layer and 96 two hidden layer networks were 

tested. 
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The networks were trained and tested with independent modelled datasets, 

using simulated ETM+ wavebands 1,2,3,5 and 7. Since the ultimate objective is to 

estimate LAI from satellite measurements of reflected radiance, and given the fact that 

no measurement is ever noise free, it is important to examine the effect of noise on the 

relationship between network architecture and performance (prediction accuracy). 
Therefore the test data sets were contaminated with white proportional noise, 

according to equation 8.1: 

I Rx = Rx + ARx (8.1) 

Where RX is the noisy data set, RX is the simulated reflectance, and ARX is the noise 

added to each simulated reflectance value. ARX is obtained by multiplying the 

simulated reflectance RX by the error level E, which varied from 0-5%, 10%, 20% and 

30%, such that there were nine test data sets. 

8.3.1.1 Results and discussion 
The performance of the single hidden layer networks is displayed in Figure 8.1. It can 

be seen that with respect to the RMSE of the predictions there is no relationship 

between network architecture (hereafter size) and network accuracy of estimation, for 

noise levels up to 10% (Figure 8.1a). For noise levels of 20% and 30% however, 

there is a negative relationship between network size and network accuracy of 

estimation, accuracy decreases as the network size increases (Figure 8.1a). With 

respect to the coefficient of determination there is a clear positive relationship 

between network size and accuracy of estimation for noise levels up to 10%, accuracy 

increases as network size increases, and a clear negative relationship for noise levels 

of 20% and 30%, accuracy decreases as network size increases (Figure 8.1b). To 

avoid any confusion, it is important to make clear that the sign of the relationship 

between network size and the RMSE/coefficient of deten-nination is assessed with 

respect to what an increase/decrease in the particular statistic means with respect to 

accuracy, where an increase in the RMSE indicates a decrease in accuracy, while an 

increase in the coefficient of determination indicates an increase in accuracy. This is 

done so that the assessment is effectively independent of the direction (up/down) in 

which the two statistics move. 
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Figures 8.2a, b show the results for the two hidden layer networks, where it is 

clear that there is a positive relationship between network size and accuracy of 

estimation with respect to both the RMSE and coefficient of determination, for noise 

levels up to 5% (Figure 8.2a, b). At noise levels of 10% there is a less clear 

relationship between network size and accuracy, while beyond 20% noise the 

relationship reverses and becomes negative - as network size increases accuracy 

decreases. This is the same pattern as observed with the single hidden layer networks, 

and indicates that as the test data set departs from the data the network was trained 

with, the increase in network size leads to the network learning the training set too 

well, and thus loses generalisation power. 

For both the one and two hidden layer networks the accuracy of estimation is 

generally independent of network size for noise levels of up to 5%, beyond which 

there is a fairly rapid degradation in network performance overall. This relationship is 

shown in Figure 8.3, where the best performing one and two hidden layer network at 

each noise level, is plotted against RMSE. Figure 8.3 also shows that the difference in 

performance between the one and two hidden layer networks only becomes marked at 

noise levels of 30%. Up to 10% noise in the test data sets there is no difference 

between the one and two hidden layer networks; at 20% noise the two hidden layer 

network outperforms the one hidden layer network by 0.022 RMSE (0.233 one hidden 

layer, 0.211 two hidden layers), a difference which is likely to be well below the 

accuracy achievable with measured data sets; while at 30% noise there is a difference 

of 0.081 (0.307 one hidden layer, 0.226 two hidden layers), again a difference which 

is likely to be well beyond the accuracy achievable with measured data sets. The 

architecture of the best performing one hidden layer network at 20% and 30% noise 

contained 9 nodes in the hidden layer in both cases, while the architecture of the best 

performing two hidden layer networks contained 6 and 1, and 15 and 1 nodes in the 

first and second hidden layers, respectively. The smaller two hidden layer networks 

provide higher accuracy than the larger two hidden layer networks. 
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Taken together, these results suggest that as network size increases (to two 

hidden layers) there is less sensitivity to noise up to a point beyond which the 

relationship reverses and further increases in network size produce poorer accuracy of 

estimation. This confirms that the network has to be large enough to learn the 

underlying relationship between the reflectance and LAI, while not being so large that 

the network starts to leam the training set so well, that the generalisation ability of the 

network is diminished. For the results presented here, it would appear that although 

networks with two hidden layers outperform the single hidden layer networks when 

tested with 20% and 30% noise data sets, they do not offer such an increase in 

accuracy, to justify the greater length of time it takes to train them. These results 

suggest that for this particular input-output mapping problem, smaller networks are 

able to produce comparable accuracy with noisy data sets as larger networks, 

consistent with the findings of Sietsma & Row (1991). Consequently, all future 

inversions were carried out with one hidden layer networks. 
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8.3.2 Objective 2: Determining optimal band combinations 

The results of chapter 7 showed that different wavebands display different sensitivity 

to variation in LAI. It is likely therefore, that use of different waveband combinations 

will result in different accuracy of estimated LAI. In order to test this, eleven 
different band combinations were used as input to the neural network. It was expected 

a priori, that using the near-infrared band (ETM4) would provide sub-optimal input, 

since the results of the model sensitivity analyses showed that the NIR exhibits very 
little sensitivity to variation in LAI. For this reason the NIR was only used as an input 

to the networks on two occasions, once to provide a test of the network performance 

when all ETM+ wavebands were used, and second, in combination with the red 

waveband (ETM 3), to provide a test of the commonly used red and NIR waveband 

combination. The results of these band combinations would therefore provide a test of 

the sensitivity analysis results. For each band combination, 16 different single hidden 

layer networks were trained with 5 to 20 nodes in the hidden layer. The best network 

was selected based on its performance with respect to the measurements, where a low 

value of RMSE was required along with a high value for the coefficient of 

determination. 

8.3.2.1 Results and discussion 

Table 8.5 details the summary accuracy for the different band combinations used. 

Overall, it can be seen that for all band combinations the error of estimation is fairly 

low with RMSE ranging from 0.31 to 0.41. In relative ten-ns however, the error is 

considerable, with relative error ranging from 132% to 221%. This is attributable to 

the fact that a relatively small absolute error at a low LAI Plot, translates into a large 

relative error. LAI is generally overestimated by the neural networks. The best band 

combinations were generally those which combined the visible wavebands and a 

SWIR band. The highest accuracy being achieved when bands I and 3, and 1,3, and 

5 (or 7) were used, with RMSE values of 0.31 and 0.32 respectively (Table 8.5). The 

results for bands I and 3 and 1,3, and 5 are shown in Figure 8.4a, b. The fact that the 

best results were obtained with the VIS and SWIR wavebands reflects the sensitivity 

of these wavebands to variation in LAI. This suggestion is supported by the results 

obtained when the NIR waveband (insensitive to vairiation in LAI), is submitted as an 

input. When the NIR (band 4) is used in combination with all other bands there is an 
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RMSE of 0.41 - the second lowest accuracy overall, whilst when used in combination 

with the red waveband, produced the lowest accuracy, with an RMSE of 0.43 (Table 

8.5). Interestingly, the coefficient of determination for the band 3 and 4 combination 
is the highest recorded. 

Comparing across field plots, Figures 8.4a, b show that for the best two 
band combinations (bands 13 and 135), the results obtained at plot TG1 consistently 

achieve the highest accuracy, with mean estimated LAI being 0.38 and 0.40 

respectively, against a field measured LAI of 0.25 (Table 8.6). Results at the other 

plots are poor, with RMSE ranging from 0.25-0.46 for both band combinations. A 

possible explanation for the results at TG1 is that there exists a stronger relationship 
between the spectral data recorded over this site and LAI, as learned by the neural 

network. This suggestion is supported by the results of the modelling in chapter 6, 

which show that the PROSAIL model is most accurate at TG1, while significantly 

poorer for the other plots, especially TI and T2. 

Table 8.5 ETM+ neural network LAI inversion results for all band combinations. 

Band combination Network RMSE R2 Relative error 
123457 6: 14: 1 0.41 0.177 200 
12357 5: 5: 1 0.34 0.438 141 
1237 4: 7: 1 0.34 0.486 146 
1235 4: 6: 1 0.35 0.470 143 
123 3: 7: 1 0.34 0.461 141 
137 3: 5: 1 0.32 0.382 139 
357 3: 5: 1 0.39 0.090 187 
135 3: 9: 1 0.32 0.494 134 
13 2: 10: 1 0.31 0.494 132 
37 2: 6: 1 0.39 0.092 188 
34 2: 18: 1 0.43 0.499 221 

Note: network architecture notation is: input nodes: hidden layer nodes: output nodes 
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Table 8.6 ETM+ neural network inversion LAI estimation summary statistics for the 
best two (13 and 135) and the commonly used red/NIR (34) band combinations, by 
field plot. 

Bands/Plot Min P Max P S. D. P Mean P Mean 0 
13 

TI 0.75 0.84 0.03 0.81 0.35 
T2 0.65 0.79 0.04 0.71 0.45 

TG1 0.34 0.43 0.03 0.38 0.25 
TG2 0.42 0.57 0.04 0.51 0.16 
TG3 0.39 0.57 0.06 0.49 0.22 

135 
TI 0.74 0.85 0.03 0.81 0.35 
T2 0.65 0.78 0.04 0.71 0.45 

TGI 0.35 0.45 0.04 0.40 0.25 
TG2 0.41 0.58 0.04 0.51 0.16 
TG3 0.39 0.60 0.07 0.50 0.22 

34 
Tl 0.22 0.55 0.09 0.37 0.35 
T2 0.41 0.76 0.10 0.55 0.45 

TGI 0.73 0.74 0.01 0.74 0.25 
TG2 0.71 0.83 0.05 0.78 0.16 
TG3 0.72 0.75 0.01 0.74 0.22 

Note: P indicates predicted, and 0 observed LAI. S. D. is the standard deviation. 

In contrast, there is a striking difference with respect to estimation accuracy 

and precision at the field plots, when using bands 3 and 4. Highest accuracy is 

achieved over plots TI and T2 (Figure 8.4c), with mean estimated LAI lying very 

close to the 1: 1 line at 0.37 and 0.55, against field measured LAI of 0.35 and 0.45, 

respectively (Table 8.6). The estimates at these two plots however are not very 

precise, with a range of 0.33 and 0.35, respectively (Table 8.6). Conversely, the 

accuracy at plots TG1 and TG3 is considerably lower than with the two best band 

combinations of 13, and 135, with mean estimated LAI at 0.74 for both plots, 

compared to a field estimate of 0.25 and 0.22 respectively. The precision is 

considerably higher however, with a range of 0.01 and 0.03 for TG1 and TG2, 

respectively. It is difficult to say why plots TI and T2 outperform the other plots with 

this band combination, given that these two plots displayed the lowest accuracy with 

respect to the spectral measurements in chapter 6. 
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Figure 8.4 Neural network estimated LAI from ETM+ data against field measured 
LAI, using (a) bands I and 3, and (b) bands 1,3, and 5, and (c) bands 3 and 4. Error 
bars represent the minimum and maximum estimated values. Measured LAI is that 
obtained from ground measurements with the SunScan plant canopy analyser. 
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Figure 8.4 Continued. 

8.4 MODIS inversions 

8.4.1 Objective 1: Determining optimal network inputs 

Not only do different wavebands contain different information about the parameter to 
be inverted, but it is well known, and has been shown in chapter 7, that the angle at 

which the image is acquired contains information about the state of the surface 
(Barnsley et al. 1997). This experiment therefore investigated the effect of 

introducing the view zenith angle (VZA) as an input to the neural network training 

process, in addition to the various band combinations. The way in which VZA was 

introduced as an input is described in §8.2.2. Based on the results of the ETM+ 

inversions, and the results of chapter 7, the two MODIS NIR wavebands (2 and 5) 

were not used as input to the networks. Again, for each different set of network 

inputs, 16 different networks were trained with 5 to 20 nodes in the hidden layer, and 

the best network was selected based on its performance with respect to the 

measurements, where a low value of RMSE was required along with a high value for 

the coefficient of determination. 
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8.4-1.1 Results and discussion 
Summary accuracy for the different inputs used to train the neural networks is given in 

Table 8.7. Overall, it can be seen that for all band combinations the error of 

estimation is low with RMSE ranging from 0.18 to 0.35. In relative terms however, 

the error is large, with relative error ranging from 1298% to 291%. Again, this is 

attributable to the fact that a relatively small absolute error at a low LAI plot, 
translates into a large relative error. This fact is exacerbated for these MODIS 

inversions because the two lowest LAI plots - MI and M2, are part of the estimates, 

which they were not in the ETM+ inversions. LAI is again generally overestimated 
by the neural networks. Intriguingly, inclusion of the VZA in the network training 

serves to reduce the relative error substantially in all cases, to between 291% and 
455% (Table 8.7). This is primarily a result of increasing the accuracy at the lowest 

LAI value plot (MI LAI = 0.01). This increase is shown in Figures 8.5a, b. 

Table 8.7 shows that the highest accuracy is achieved when MODIS bands 1, 

3,4 and 6 are used together with the VZA, an RMSE of 0.18. Estimated LAI for plots 

T11 T2, TG3 and MI sit very close to the 1: 1 line, while the estimated LAI at the other 

three plots are overestimated significantly (Figure 8.5a). The next highest accuracy is 

achieved when the same band combination is used without the VZA, an RMSE of 

0.21 (Figure 8.5b). Clearly, use of the VZA in addition to the spectral data, has 

helped to increase the accuracy in this case. However, this is not true in all cases. 

When each of the different band combinations are compared against the same band 

combination with the VZA, there is no clear relationship observed with respect to the 

RMSE, with the spectral data alone sometimes providing the highest accuracy, while 

in others introduction of the VZA serves to increase the accuracy (Table 8.7). 

Interestingly, when the VZA was used as an input the network training actually met 

the error goal in all cases, and training of the network proceeded much quicker, 

indicating that the network was better able to learn the relationship between the inputs 

and outputs, and this is shown graphically in Figure 8.6. The fact that there is no 

consistent relationship with respect to the RMSE of the estimations when the VZA is 

used as an input, indicates that meeting the error goal does not automatically transfer 

into higher accuracy of estimation. 

it is worthwhile to consider the difference in performance with respect to the 

RMSE for the best two combinations, there is a difference of 0.03. The fact that 
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spectral data alone are able to produce comparable accuracy to use of the VZA, 

indicates that use of viewing conditions may not add that much extra information to 

the inversion, since much of the information will already be contained in the spectral 

data acquired under given viewing conditions. A similar observation, though with 

respect to the SZA, was reported by Kimes et al. (2002), where the SZA was not 

selected as input to a neural network by a variable selection algorithm, because it did 

not improve the network accuracy. These results therefore confirm the SA work in 

chapter 7. 

These results would seem to indicate that use of known ancillary data in the 

network training process does not lead to appreciable improvements in network 

performance. This implies that the oft quoted limitation of neural networks - that they 

have not been generalised to handle any arbitrary viewing/illumination angles, may 

not be as insurmountable as had been thought. The results presented here provide 

only a limited test of this issue however. It is important to point out also that, had the 

soil reflectance been modelled as non-Lambertian, different results might be expected, 

given the influence of soil reflectance in these low LAI ecosystems. Nevertheless, the 

issue is deserving of further investigation, where, if a network trained with spectral 

data generated over a large range of viewing and illumination conditions, can be 

shown to produce acceptable accuracy, then the generalisation of neural networks to 

arbitrary viewing/illumination angles may be established. 

Table 8.7 MODIS inversion results for all band/input combinations. 

Band combination Network RMSE R' Relative error 
1,3,4,6,7 5: 16: 1 0.23 0.66 1253 
1,3,4,6,7, VZA 6: 8: 1 0.30 0.41 323 

1,3,4,6 4: 20: 1 0.21 0.18 1298 

1,3,4,6, VZA 5: 12: 1 0.18 0.36 291 

1,3,4 3: 20: 1 0.24 0.03 1218 

1,3,4, VZA 4: 8: 1 0.24 0.18 400 

1,3,6 3: 5: 1 0.35 0.14 1281 

1,3,6, VZA 4: 10: 1 0.27 0.23 455 

1,3 2: 17: 1 0.31 0.13 1204 

1,3, VZA 3: 12: 1 0.23 0.52 320 

Note: network architec ture notation is : input nodes: hidden la yer nodes: output nodes 
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Figure 8.5 Neural network estimated LAI from MODIS data against field measured 
LAI, using (a) bands 1,3,4,6 and VZA and (b) bands 1,3,4, and 6. 
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Figure 8.6 Comparison of the training record when the network has spectral data 
alone and spectral data together with view zenith angle as input. 

8.5 Evaluating MODIS LAI with field measured and ETM+ scaled LAI 

In order to provide an assessment of the performance of the MODIS LAI product two 

tests were performed- 1) a quantitative assessment of the MODIS LAI retrieval by 

comparison with field measured LAI, and, 2) evaluating the MODIS LAI product 

qualitatively, with respect to the neural network approach and ETM+ data used in this 

thesis. This second test would determine if there was any spatial consistency between 

the LAI images produced by the two different methods. 

8.5.1 The MODIS LAIproduct 

The MODIS LAI/FPAR product is produced every eight days at a spatial resolution of 

lkm (product fD- MOD15A2), and is available for free download from the Earth 

observing data gateway (www 8.1). This product is just one of a suite of products 

produced routinely by the MODIS sensor (Justice et al. 2002). The MODIS LAI 

product is generated from a radiative transfer (RT) based model look-up table (LUT) 

inversion. A full description of the MODIS LAI algorithm is provided in Knyazikhin 
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et al. (1998a, b, 1999). Here, only the fundamental approach is described. The basis 

for the MODIS LAI algorithm is a global landcover map for six major biomes: 1) 

grasses and cereal crops, 2) shrubs, 3) broadleaf crops, 4) savannas, 5) broadleaf 

forests, and 6) needle forests (Myneni et al. 1997). For each of these biomes there is a 
LUT of modelled reflectances which contains biome specific ranges for canopy cover, 
LAI, soil reflectance, clumping, and viewing and illumination geometries, among 

others. In this way, the LUT for each biome contains a number of constraints which 
helps to reduce the number of possible solutions. The algorithm proceeds by finding 

the correct LUT to search, with reference to the landcover map, then compares the 
MODIS reflectances in the red and NIR (band I and 2) against those stored in the 
LUT. Those modelled reflectances which are within a given percentage of the 
MODIS reflectances are considered an acceptable solution (Wang et al. 2001). Given 

the fact that the inverse problem is ill-posed, there are often many solutions to the 

problem, in such cases the LAI is estimated as a weighted average of all possible 

solutions. At high levels of LAI, reflectance in the red can become saturated where 

there is no sensitivity to variation in LAI. In such cases the retrieval is said to belong 

to the saturation domain. If this LUT method fails to provide a solution, there is a 
back up algorithm which is based on biome specific NDVI/LAI relationships (Myneni 

et al. 1995,2002). 

Accompanying the LAI/FPAR product are two additional data layers, 

containing quality control QQ information about the LAI product, at the pixel level. 

These QC files provide infori-nation, inter alia, on the quality of the data used, 

presence of cloud cover and the retrieval method used, which is one of five 

possibilities (Myneni et al. www 8-2): 

Main RT method used with the best possible results 

(ii) Main RT method used with saturation 

Main RT method failed due to geometry problems, back up NDVI 

method used 

(jV) Main RT method failed due to problems other than geometry, back 

up NDVI method used 

No retrieval 
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The retrieval method used at each pixel is used as a measure of the overall 

quality of the retrieval. The MODIS LAI product used for the comparison with field 

measured LAI and ETM+ scaled LAI were all collection 4 products. 

8.5.2 Objective 3: Comparison of MODIS LAI with field measured LAI 

To compare the MODIS LAI produced at a resolution of lkm with the field 

measurements made within a 200m by 150m grid, clearly presents a scale mismatch. 

To perform the comparison essentially assumes that there is no difference between 

LAI measured at the two different resolutions. Tian et al. (2002), present results 

which suggest this may be the case for one of the Tshane plots used in this thesis (TI). 

They compared LAI measured at 750m scale and 250m scale using the Students t-test, 

and found that there was no significant difference between the two data sets, thus 

indicating that there may be spatial uniformity over the field plot. If these results are 

applicable to the other sites then the scale mismatch problem may be circumvented, to 

some extent. While this is an obvious limitation, the comparison is made 

nevertheless, since it at least offers an indication of the performance of the MODIS 

LAI product, in these semi-arid savanna plots. 

The MODIS LAI retrievals at each plot were obtained using the main RT 

method with 'the best possible results'. Figure 8.7 shows the relationship between the 

MODIS LAI and field measured LAI, where it can be seen that plots T1, T2, and TG3 

almost sit on the 1: 1 line, with MODIS LAI slightly overestimating the field value. 

The other plots, are all overestimated by the MODIS LAI, and overall there is an 

RMSE of 0.28, while the coefficient of determination is 0.04. This RMSE value is 

well within the expected accuracy of the MODIS LAI product of 0.5 LAI (Wang et al. 

2004). owing to the fact that the sample size is so small, and the obvious scale 

mismatch, it is difficult to generalise from these results. Clearly, the MODIS LAI 

appears to be working well for some plots while not as well for others. What can be 

said is that overall - scale differences notwithstanding - the accuracy achieved by 

MODIS LAI is lower than that achieved by the neural network inversion with MODIS 

reflectances in §8.4.1.1. 
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Figure 8.7 Comparison of field measured LAI with the MODIS LAI product. Date of 
the MODIS LAI is 6 March 2001 for all plots, while field measurements were made 
on 28 February, I March, 3 March, 4 March, 6 March, 7 March, and 8 March for plots 
T1, T2, M1, M2, TGI, TG2, and TG3 respectively. 

8.5.3 Objective 4: Comparison of MODIS LAI and ETM+ scaled ANN LAI 

To compare the MODIS LAI with LAI estimated from ETM+ data and a neural 

network, a subset of the 174/078 ETM+ image was atmospherically corrected using 

the simplified method of atmospheric correction (SMAQ (Rahman & Dedieu 1994). 

SMAC was used in preference to 6S since the subset contained -1.3 million pixels, 

which would have been too time consuming to correct with 6S. SMAC is based on a 

set of semi-empincal equations to estimate transmission and scattering with spectral 

band and sensor specific coefficients, which have been derived using a best-fit 

technique to predictions from the 5S atmospheric correction routine (Tanre et al. 

1990). Simulations have shown that SMAC performs with comparable accuracy to 

6S, for a range of vegetation and viewing illumination conditions (Quaife & Barnsley 

1999). SMAC requires inputs of the aerosol optical thickness at 550nm, ozone 

concentration and water vapour content. All values used were taken from the tropical 

atmosphere in 6S, apart from aerosol optical thickness which was obtained from the 

SAFARI 22000 
database (see chapter 3). Given that the date of the image was 17 
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February 2001, the MODIS LAI product was obtained for the 18 February 2001, such 

that any differences in vegetation state should be minimised. 

In order to perform the comparison of the spatial distribution of MODIS LAI 

and ETM+ scaled LAI, three different band combinations of the ETM+ data were 

used. First, a comparison of the LAI estimated from band 3 and 4 to correspond with 

the wavebands used for the generation of MODIS LAI. Despite, the ETM+ red and 
NIR dynamic range not being the same as the MODIS red and NIR, the comparison is 

still worthwhile. Second, the two band combinations which produced the highest 

accuracy when tested against field measurements, band I and 3, and band 1,3, and 5. 

The SMAC atmospherically corrected reflectances were input to the respective trained 

neural network for each band combination (see Table 8.5), and LAI was estimated. 
These estimated values were then resampled to a resolution of 990m, by taking the 

average of a 33 by 33 pixel window. The resultant images together with image 

histograms are displayed in Figure 8.8. 

Exarnination of the quality control data for the MODIS LAI image, revealed 

that 96% of the pixels were produced using the main radiative transfer method with 

'the best possible results', while 4% were produced using the back up NDVI algorithm 

- the main algorithm failing for 'reasons other than geometry'. The very high 

percentage of best possible retrievals and no retrievals from the saturation domain, is 

perhaps not surprising in these low LAI ecosystems. 

Comparing the MODIS LAI image with the LAI image generated with band 3 

and 4 of the ETM+ and neural network inversion (Figures 8.8 a and b), it is clear that 

they do not appear to be in close spatial agreement. While the LAI scale on the 

images is slightly different, LAI increases in value from shades of orange to dark 

green, in both images. The MODIS LAI surface generally shows highest LAI in the 

NW, SW and NE of the image, with a zone of lower LAI stretching north to south 

through the centre of the image, the ETM+ LAI surface conversely, displays the 

opposite pattern, with highest LAI values stretching through the centre of the image, 

and lower LAI either side. While there is a clear spatial discrepancy between the two 

images, the summary statistics mainly differ in the range observed, with a minimum 

of 0.10 and 0.25, and maximum of 1.0 and 3.23 for the MODIS LAI and ETM+ band 

34 LAI respectively (Figure 8.8a, b). Examination of the histogram for the ETM+ LAI 

revcals that there are no more than 9 pixels which have an LAI greater than 1. The 
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fact that the value distributions are similar but spatially incongruous suggests that the 

neural network has not been able to learn or establish a sound mapping function 

between the red and NIR reflectances and LAI. This result is in keeping with the 

results of the inversions evaluated with field LAI in §8.3.2.1, where the combination 

of red and NIR provided the second lowest accuracy. Clearly, the red and NIR 

combination are sub-optimal for training a neural network to estimate LAI in these 

semi-arid savannas. 

The LAI image produced using band I and 3 of ETM+ is displayed in Figure 

8.8c, while the LAI image produced with bands 1,3, and 5 of ETM+ is shown in 

Figure 8.8d, along with the image histogram of estimated values. Comparing both of 

these images with the MODIS LAI image (Figure 8.8a) shows that there is a much 

closer spatial correlation between the two ETM+ LAI images and the MODIS LAI, 

than was observed with ETM+ band 3 and 4. High and low LAI areas broadly 

correspond, there is only a section in the far NE comer of the image where there is any 

significant spatial discrepancy, with the MODIS LAI having high LAI values, while 

the ETM+ has low LAI values. Inspection of the image histograms shows that the 

summary statistics are very similar with both ETM+ waveband combinations 

producing a slighter higher mean than MODIS LAI, means of 0.54,0.53, and 0.46, for 

ETM+ band I and 3,1,3, and 5, and MODIS LAI, respectively. The range of 

estimated values and standard deviations are virtually identical. Fang & Liang (2005) 

report a similar overestimation with ETM+ data compared to the MODIS LAI over 

grasslands in Canada. 
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Figure 8.8 Comparison of (a) the MODIS LAI image of 18 February 2001, with LAI 
images estimated via neural network inversion of ETM+ data of 17 February 2001, 

rescaled to 990 metres, using (b) band 3 and 4, (c) band 1,3, and 5, and (d) band I and 
3. The colour scale is orange to dark green for low to high LAI. 
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Clearly, these two band combinations produce results which are comparable 
spatially, with the MODIS LAI. While it is not possible to make a strict comparison 
between the two different images (MODIS LAI versus ETM+ LAI band 13 and 135) 

because of differences in wavebands and the inversion method used, it does show that 

with these band combinations the neural network is clearly finding a strong and 

consistent mapping function between reflectance and LAI, which produces a similar 

spatial pattern to the MODIS LAI image. This underscores the notion that higher 

accuracy results are to be expected when the NIR band is not used. 

8.6 Discussion and conclusions 

The accurate estimation of a biophysical parameter from a model inversion depends 

largely on the quality of the model and reflectance data used to invert the model. 
Quality of the reflectance data relates to its accuracy, and the information it contains 

about the parameter to be estimated. Using a neural network to estimate LAI, it has 

been shown that smaller networks (one hidden layer) offer comparable performance to 

larger networks when tested with various levels of noise in data sets, since they are 

large enough to learn the underlying relationships, but not so large that the networks 

learn the training data too well. 

Results presented here show that different band combinations and network 

inputs provide different accuracy of estimation (Wang et al. 2001). Overall, the 

absolute accuracy is fairly high. However, in relative terms the accuracy is low. In 

these low LAI ecosystems, however, this is probably close to as high an accuracy as is 

likely to be achievable, an RMSE of 0.31 and 0.18 for the best ETM+ and MODIS 

inversions, respectively. Increased accuracy might be achieved if the data provided to 

the network were of higher quality. The results from chapter 6 showed that there was 

discrepancy between the modelled and measured reflectances, which may be due to 

inadequate atmospheric correction, or mis-specification of the soil reflectance. Given 

the way in which the soil reflectance ranges were set to generate the training data, the 

network should be able to account for this. An improved atmospheric correction 

leading to higher quality data would therefore be more likely to increase the accuracy. 

The highest accuracy for the ETM+ and MODIS inversions was produced 

using combinations of data from the VIS and SWIRI (ETM+ band 5 MODIS band 6). 
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Using the NIR waveband as input to the ETM+ inversions resulted in the lowest 

accuracy. This is a result of the low contrast between the soil and leaf material in 
these semi-arid ecosystems. This result therefore confirms the findings of Price & 

Bausch (1995) and Gobron et al. (1997). It also confirms the results of the sensitivity 

analyses, where it was shown that there was little sensitivity to vanation in LAI. In 

addition, it provides further evidence that the MODIS LAI product might be improved 

by using data from the SWIR, which contains more information about the LAI. This 

finding for these savanna ecosystems supports the observations which have been made 

over grasslands, agricultural, and forest ecosystems of North America (Cohen et al. 
2003), and coniferous forests in Finland (Wang et al. 2004). 

For the MODIS inversions, inclusion of the VZA in network training resulted in 

marginal improvements in accuracy for some band combinations, while lowering 

accuracy in others. This indicates that generally, the information contained in the 

VZA is not sufficient to lead to higher accuracy. In terms of creating networks which 

can generalise to any arbitrary set of viewing and illumination conditions, the limited 

test which has been made here suggests that the issue may not be as intractable as 

widely considered. This deserves further investigation, where one will either need a 

very large network capable of learning global relationships between reflectance, 

viewing and illumination conditions, and the biophysical parameter of interest; or else 

a number of networks trained over specific viewing and illumination conditions, 

which can be invoked for estimation, similar to the way in which LUT inversions are 

performed (Gastellu-Etchegorry et al. 2003). 

In these savanna ecosystems both the ETM+ and MODIS ANN inversions 

overestimate LAI with respect to the field measurements. In addition, the MODIS 

LAI product also overestimates with respect to the field measurements. Fensholt et al. 

(2004) report the same observation for semi-and shrubs and savanna in Senegal. Both 

the ETM+ and MODIS ANN LAI inversions produce higher accuracy with respect to 

field measurements, than the MODIS LAI product. This is most probably attributable 

to the fact that the ANN inversions can use different wavebands (i. e. not the MR), 

rather than as a result of the differences in the inversion method. Evidence for this 

assertion is provided by Fang & Liang (2005), who have demonstrated consistency 

between the MODIS LAI and ANN estimated LAI from ETM+ data when estimating 

LAI over needleleaf forests, using the same red/NIR combination to perform the 
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inversion. When the red/NIR combination is used to estimate LAI from ETM+ data 

here however, and then scaled to correspond with the MODIS LAI product, there is 

little spatial correlation between the two. This is because the combination of red/NTR 

does not contain sufficient information about variation in LAI for the network to learn 

a strong relationship. While this may seem contradictory to the foregoing discussion, 

it is not, since the red/NIR combination over forests is likely to contain sufficient 

information for the neural network to produce comparable results to the MODIS LAI. 

There is much stronger spatial correlation between ETM+ LAI and MODIS LAI when 

band I and 3 and 1,3, and 5 are used, confirming the results of the field plots. 
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Discussion and conclusions 

9.1 Introduction 

This chapter provides a discussion of the work which has been presented in this thesis, 

and the various issues which have been raised. The chapter begins with a summary of 

the research and the key findings at each stage. Possible directions for further 

research are then identified, before finishing with the conclusions made from this 

research. 

9.2 Thesis summary 

The overall aim of this thesis was to establish a methodology for the estimation of leaf 

area index via a physically based canopy reflectance model (CRM) inversion, in semi- 

and savanna vegetation. In order to achieve this the following objectives were 

defined: 

G) To investigate and characterise the scattering properties of Kalahari 

soils. 

To compare the performance of different canopy reflectance models in 

simulating reflected radiance from savanna vegetation, in order to 

determine the most suitable model type. 

To quantify the sources of variability in reflectance data, to determine 

the sensitivity of reflectance data to variation in LAI. 

(iV) To investigate the potential of artificial neural networks to accurately 

estimate LAI. 

These four objectives were investigated over a study area containing seven 

field plots in the Kgalagadi district of the Republic of Botswana (see Figure 3.1). 

These field plots were all located in the Kalahari desert, where all the soils are 
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Kalahari sands. The plots span a distance of approximately 200km, over which there 

exists a north to south moisture gradient from approximately 400mm of rainfall per 

annum in the north, to approximately 300mm of rainfall per annum in the south. The 

seven field plots represented a range of savanna types from low tree/shrub savanna, to 

grassland savanna, and shrub savanna, and were subject to different land use types and 

pressures. Field measurements of canopy structure and vegetation surveys were made 

during the 2001 wet season. These measurements were used to parameterise the 

canopy reflectance models and provided data sets against which the accuracy of the 

inverted model estimates could be assessed. 

In chapter 5 field collected soil samples were measured in the laboratory in 

order to characterise their scattering properties. So that directional measurements 

could be made a goniometer was constructed. Spectral directional measurements were 

then made using an ASD spectrometer, at 10 degree intervals in zenith, and in a range 

of azimuthal planes. The results showed that all the soil samples were highly non- 

Lambertian and that this anisotropy was greatest in the solar principal plane for a 

range of wavelengths. In the principal plane and at up to 30 degrees in azimuth the 

analysis showed that reflectance was dominated by backscattering. There was less 

dynamism in the orthogonal plane where reflectance was more equally distributed 

between the back and forwardscatter directions. The results showed that the shape of 

the BRDF for all soils was almost identical, and that the differences of reflectance 

magnitude were generally no greater than 5% absolute in all wavebands, and at all 

viewing angles, and azimuthal planes. These results were interpreted as an indication 

of the relatively homogeneous soil substrate across the study area. 

These spectral directional measurements were not used to parametense the soil 

reflectance in the CRM however, as the measurements were too noisy in the 

wavelength region 1800-2500nm, preventing simulation of the ETM+ and MODIS 

SWIR band 7. As a result, hemispherical measurements of soil reflectance were made 

with an ASD contact probe, which had its own light source. These measurements 

were used to parameterise soil reflectance in the modelling work of chapter 6. This 

meant that despite the soils clearly being non-Lambertian, they were modelled as 

Lambertian surfaces. Comparing the spectral directional and hemispherical 

measurements therefore provided a check on the likely implications of this for the 

accuracy of the modelling in chapter 6. The analysis showed that using the 
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hemispherical reflectances would lead to either an over- or underestimation of the soil 

reflectance, depending on the viewing angle and azimuthal plane in which the satellite 

measurements were made. 

In chapter 6 three different CRM were compared in a range of different 

forward modelling experiments. Simulations were performed using turbid medium 
(TM), hybrid and two-layer canopy modelling. The purpose of the two-canopy layer 

simulations was to determine the importance of the overstorey in generating shadow 
in the images, and thereby what effect modelling the canopy as a homogeneous turbid 

medium would have on accuracy. The results showed that in both the ETM+ and 
MODIS model comparisons, the TM models, PROSAIL and FLIGHT I-D provided 

the closest fit to the measurements, than either the hybrid models or modelling which 

explicitly took account of two distinct canopy layers. The accuracy of both the ETM+ 

and MODIS simulations varied, with some plots displaying very close correspondence 

with the measurements, while at others there was poor correspondence. In the ETM+ 

simulations, it was suggested that the main reason for discrepancy between the 

modelled estimates and the measurements, was a consequence of mis-specifying the 

soil reflectance. This mis-specification was most likely a result of soil reflectance 

being lower than specified, not because of the use of hemispherical reflectance, but 

because of a presumed rainfall event which lowered soil reflectances. The same can 

be said for the MODIS simulations, only here soil mis-specification is most likely 

related to the effect of a Lambertian soil, rather than a rainfall event lowering 

reflectance. The effect of the Lambertian soil surface has a greater impact on the 

accuracy of these simulations, because of the non-nadir viewing angles. 

The fact that the two-canopy layer modelling did not provide a closer fit to the 

measurements than the TM models, indicated that the influence of the overstorey in 

the remote sensing signal is not significant enough to demand the explicit 

incorporation of this 3-D structure in the modelling. Consequently, it was concluded 

that a I-D model - which clearly does not match the structure of the canopy, could be 

used with little effect on the accuracy of simulation. This issue directly raises the 

question of how complex a model is needed to represent the radiation emergent from 

vegetation canopies. Clearly, the results presented here suggest that it is dependent on 

the type and nature of the vegetation which is being modelled. The PROSAEL model 

was chosen for the inversion work since this model was shown to provide comparable 

192 



performance to the FLIGHT 1-D modelling, and because it is an analytical model, was 

better suited to the generation of training data for neural network inversions. 

In order to quantify the importance of LAI in driving reflectance variability, 

and therefore to identify the potential for its estimation from satellite measurements, a 

series of sensitivity analyses (SAs) were carried out in chapter 7. In total three 

different experiments were carried out, which addressed various issues associated with 
SA. The first of these compared the relative performance of local and global SA 

approaches. The local SA fails to report the effect of interactions between the model 

parameters, while a global SA does. The results showed that the importance of the 

interaction effects were significant when there was a large range in the model 

parameters, while less important when the range was more lirmited. However, even 

when the interaction effects were seen to be relatively unimportant, there were still 

striking differences between the two methods with respect to the importance of the 

individual parameters. The local SA tended to overestimate the importance of LAI 

compared to the global SA. All subsequent SAs were performed using the global SA 

method. 

Owing to the fact that there were no leaf reflectance and transmittance data 

suitable for use with the CRM, these data were simulated with the PROSPECT model. 

Given that there were also no measurements of the range and distribution of the 

PROSPECT model parameters, the second experiment investigated the effect of the 

PDF specified for each of the model parameters. The results showed that there was 

generally less than 10% difference between a Gaussian and uniform PDF, except at 

the major water absorption band at 1900nm. In the absence of any prior information, 

a uniform PDF was used for the plot/site specific SA in experiment three. 

The plot level SA showed that in both the ETM+ and MODIS simulations, 

greatest sensitivity to variation in LAI was displayed in the visible and SWIR bands, 

with relatively little sensitivity in the NIR. Interaction effects were shown to be 

relatively unimportant across wavelengths, such that reflectance vanability was driven 

by first-order effects. The results also showed that as the range in the soil reflectance 

increased the sensitivity of reflectance data to variation in LAI decreased. In the 

MODIS SA, when the viewing and illumination conditions were input to the SA it 

was shown that only the VZA had any significant impact on reflectance vanability, 

thus providing further evidence that the main source of vanation in reflectance data 
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lies in the spectral domain. Taken together, these results suggested that LAI may be 

expected to be estimated with high accuracy, but that this would likely depend on the 

wavebands selected to perform the inversion. 

In chapter 8, the PROSAIL model was used to train multi-layer perceptron 

neural networks to estimate LAI from ETM+ and MODIS data. The first stage of the 

chapter investigated the optimal network architecture, by training networks with one 

and two hidden layers with different numbers of neurons in each layer. To investigate 

the relationship between network size and resistance of the networks to noise, the 

networks were tested with nine noisy data sets. The results showed that the accuracy 

of inversion was independent of network size for data sets which contained up to 5% 

noise for networks with one hidden layer, while there was a positive relationship for 

networks with two hidden layers. Once the noise increased to 20% it was shown that 

a negative relationship existed between network size and accuracy of estimation, for 

both the one and two hidden layer networks. Clearly, as the test data set departs 

further from the data the network was trained with, the larger networks learn the 

training data too well, and generalisation ability suffers. The results also showed that 

there is little to choose in terms of accuracy between the one and two hidden layer 

networks. Two hidden layer networks provide higher accuracy with the noisier data 

sets, however, the difference was shown to be relatively small. Given the longer 

training time for the two hidden layer networks for only marginal improvement in 

accuracy, all future work concentrated on the use of single hidden layer networks. 

Various band combinations were used as input to the network training for the 

ETM+ estimates. The results showed that highest accuracy was achieved when the 

red and blue wavebands (ETM 3 and 1), were used together, an RMSE of 0.31, and in 

combination with the SWIR bands (ETM 5 and 7), both producing estimates with an 

RMSE of 0.32. When the NIR waveband was used as input to the network training 

process, both in combination with all other bands, and in the commonly used red/NIR 

combination, the results obtained gave the lowest accuracy of all, with an RMSE of 

0.41 and 0.43, respectively. These results were therefore consistent with expectation 

given the results of chapter 7. In the light of the ETM+ results, the NIR waveband 

was not considered in the MODIS inversions. Focus was still centred on the optimal 

band combinations, however, attention was also given to the inclusion of the viewing 

zenith angle (VZA) in the network training process, to determine if this led to 
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improved estimation accuracy. The results showed that the highest accuracy was 

achieved when MODIS bands 1,3,4 and 6 were used together with the VZA, an 
RMSE of 0.18. Although the highest accuracy overall was achieved when the VZA 

was included, on closer inspection however, this was shown not to be true in all cases, 

and even when it did, the improvement in accuracy was shown to be fairly 

unimpressive. 

Given that the work presented in this thesis is estimating LAI from a CRM 

inversion, and that the MODIS LAI product is available at a lkm resolution, it was 
decided to compare the perfon-nance of both methods. This comparison proceeded in 

two phases. First, the MODIS LAI was directly compared with the field 

measurements made at each field plot. The results showed that the MODIS LAI 

overestimated LAI at all plots, with an RMSE of 0.28. While this error is within the 

reported expected error of the MODIS LAI product, it is not as accurate as the results 

obtained using MODIS reflectances and the neural network approach of this work. It 

was suggested that this may be a result of the different band combinations used in the 

estimation, MODIS LAI relying on the red/NIR combination, while the MODIS 

neural network LAI, used data from 4 wavebands. 

Second, given the difficulty in making conclusions about the relative 

performance of the two different products, when only a small number of point 

comparisons are available, it was decided to investigate the spatial correlation between 

the LAI produced by the two different methods (neural network and MODIS LAI 

LUT). To achieve this, an ETM+ subset was atmospherically corrected and LAI was 

estimated from three different networks. Estimated LAI was then spatially averaged 

from 30m to 990m, to match as closely as possible the 1krn spatial resolution of the 

MODIS LAI product. The results showed that when LAI was estimated using a 

neural network and ETM+ bands 3 and 4 as input, there was weak spatial correlation 

with the MODIS LAI. However, when LAI was estimated using ETM+ bands I and 3 

and 1,3, and 5 there was strong spatial correlation between the two products. It was 

suggested that the poor correspondence between MODIS LAI and the ETM+ band 3 

and 4 neural network LAI, was because the network had insufficient information to 

establish a strong relationship between the spectral data and LAI. 
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9.3 Future research directions 

The work presented in this thesis represents one of the first attempts to use canopy 

reflectance models to estimate leaf area index in a semi-arid environment. The issues 

raised in this thesis and which are likely to receive further research investigation in the 

future relate to model development, improved fieldwork and modelling data sets, and 

enhancements to inversions using neural networks. Each of these issues is discussed 

below. 

9.3.1 Model development 

There are various ways in which the modelling work presented in this thesis could be 

extended, with likely improvements in the accuracy with which reflectance is 

simulated and also the kind of information that might be extracted from remotely 

sensed data. First, model simulations would do well to model the soil surface as a 

non-Lambertian scatterer. The work presented in chapter 5 demonstrated that the soils 

were highly non-Lambertian, yet this was not represented in the model simulations, 

owing to the incomplete nature of the soil reflectance data set. Clear improvements 

could be made by coupling a CRM to a soil BRDF model such as SOILSPECT 

(Jacquemoud et al. 1992), as has been demonstrated by Privette et al. (1995) and Ni & 

Li (2000). Using a soil BRDF model would be more flexible an approach than 

making measurements and would permit a wider range of soil surface conditions to be 

simulated. This would inevitably involve further issues with respect to model 

parameterisation, yet is a more feasible approach than making directional 

measurements in the laboratory with a different light source, or in the field using the 

PARABOLA instrument. 

Second, the incorporation of two distinct canopy layers into one model would 

be a welcome development. Although the results presented in this thesis indicated 

that the overstorey 3-D structure was not significant in deten-nining top of canopy 

reflectance, this was only applicable to the limited simulations performed, and is 

deserving of further attention. Under different conditions the overstorey may be very 

influential in the recorded signal, in which case a 3-D representation would be 

necessary. Recently, Chopping et al. (2003,2004) developed a simplified geometric 

model (SGM) based on linear kernel modelling, which can model two canopy layers. 

This model was developed and has been validated over and/semi-arid 
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grassland/shrubland transition ecosystems in the USA, and would be ideally suited to 

the study plots used in this thesis. Whilst modelling two canopy layers may offer new 

possibilities for information extraction, such as the ratio of woody (overstorey) to 

grass (understorey) cover, with obvious benefit to studies of savanna community 

ecology (Scholes & Archer 1997), this needs to be established. The work presented in 

this thesis has estimated the total LAI of the plot, where woody and grass LAI are 

simply combined. This may be all that is possible for LAI estimation in these semi- 

and vegetation types where LAI is <1. Simulations need to be performed to 

determine the importance of the overstorey, understorey, and relevant model 

parameters in driving reflectance variability, over a large range of solar and view 

angles. Doing so would provide a major addition to the understanding of the radiation 

emergent from semi-and vegetation types, with consequent implications for what 

information can and cannot be extracted from remote sensing data. Additionally, 

results from such work would provide information on the optimal sampling 

configuration for estimating vegetation properties in these semi-and ecosystems. 

Finally, the modelling could be extended to include the senescent vegetation 

which is known to have a significant impact on radiation emergent from these savanna 

ecosystems (van Leeuwen & Huete 1996). Given the highly variable nature of, and 

dynamic response of vegetation to rainfall in these ecosystems, senescent vegetation 

constitutes a large component of the vegetation, and is also a required variable in 

many biogeochemical models (Sellers et al. 1997, Asner et al. 1998d), such that its 

estimation from remotely sensed data could fruitfully be pursued. 

9.3.2 Additional fieldwork and modelling data sets 

The field data collected and described in chapter 4 was inevitably limited given the 

short period of time in which measurements could be made, and the fact that time in 

the field was shared with colleagues working on different projects. Field 

measurements were required for model parameterisation and to provide a test of the 

accuracy of the inversion estimates in chapter 8. The results of the inversion work 

were compared with LAI values which were derived from the measurements of plant 

area index (PAI). These PAI estimates were corrected for the woody and litter (or 

senescent) area index by using published values in the literature and visual estimation, 11 
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respectively. This correction would likely be more accurate had measurements of 

WAI been made in the field, however time did not permit this. Future field work 

would therefore be spent obtaining such data. Measurements of fractional vegetation 

cover were made visually for reasons of speed. It would be instructive to experiment 

with different methods of estimating fractional cover in these ecosystems, such as line 

intercept methods. This is important since an error (under- or overestimate) in the 

fractional cover would translate into an error in the plot level LAI. 

The model simulations in chapters 6,7 and 8 were made using modelled leaf 

reflectance and transmittance data. While this is clearly an acceptable approach, little 

was known about the ranges and PDFs for each of the model parameters, such that 

either too much or too little variability will have been introduced into the simulations. 

Future work might involve collecting full range spectral measurements of the species 

present in the field, or alternatively by taking leaf samples for analysis in a laboratory. 

Neither of these would be straightforward however, because of the logistical 

difficulties of working in this region of the Kalahari. 

An additional problem which might be improved in future work, was the mis- 

specification of the soil reflectance for the ETM+ plots at Tshane plots I and 2. This 

issue arose because the laboratory measurements of soil reflectance were made on dry 

samples, under the assumption that the soils in the field would most likely be dry also. 

On closer inspection, extracting soil pixels from the image and atmospherically 

correcting them to reflectance, it was shown that the laboratory measurements were 

considerably higher than the image values. One approach to account for this 

difference would be to ignore the laboratory measurements and instead systematically 

use the image to obtain soil reflectance values, so that they are consistent with the 

prevailing conditions of the image acquisition. Fang & Liang (2003,2005) have 

recently developed a method for doing this. This would require an accurate 

atmospheric correction however. 

The accuracy of the inversion estimates is deterrruned to a large extent by the 

quality of the InPut data to the network. This means that the quality of the 

atmospheric correction is of crucial importance (Rahman 2001). The ETM+ images 

were corrected using the 6S algorithm, with values for the aerosol optical thickness, 

and water vapour content being obtained from measurements made a year earlier, and 

a standard atmosphere respectively. Clearly, these input values are unlikely to be 
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accurate. Ideally, future work would involve estimation of these gases in the 

atmosphere using a sun photometer at the time of image acquisition. This would also 

require the scene to be cloud free on the day of image acquisition, which cannot be 

guaranteed. 

9.3.3 Enhanced neural network inversions 

Using CRM to generate reflectance data sets with which to train neural networks is 

unrealistic for the following reason: the modelled data sets are essentially error free, 

whereas the measurements from which estimates of LAI are to be obtained, contain 

some error or noise. While the simulations in chapter 8 showed that the various 

networks trained were resistant to noise levels up to 20%, it is not known how much 

error is contained in the measurements, though Vermote (2000) suggests relative 

values of 50-80%, 5-12%, 10-33%, and 3-6% are to be expected for the MODIS bands 

3 (blue), 4 (green), 1 (red), and 2 (NIR), respectively. Clearly, the effect of noise in 

the measurements is wavelength dependent and so the effect of noise will depend on 

the wavelengths used to estimate the LAI. It seems worthwhile therefore to 

investigate the effect of training a neural network with noisy data sets, to determine if 

this improves the estimation accuracy. Fang & Liang (2005) have recently 

approached this issue by actually including some real data in the training process, 

which is another alternative that might be pursued. Another alternative would be to 

investigate the use of Bayesian neural networks which may be able to explicitly 

handle some of the error or uncertainty on the network inputs, which, upon inversion 

would also yield some information on the uncertainty of the estimated LAI values. 

A further way in which the neural network inversions may be improved 

would be to reduce the dimensionality of the training data. This could be based on the 

results of the sensitivity analyses where the parameters which are shown to be 

relatively unimportant in explaining reflectance variability could be fixed at a given 

value, while the most important parameters are allowed to vary. In this way the 

variability in the training data would be more constrained to the LAI such that the 

neural network may be better able to learn the relationship between the spectral data 

and LAI. 
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9.3.4 Monitoring, classification and management of savanna ecosystems 

Given the large range of structural types encountered in savanna ecosystems (savanna 

grasslands, shrub savanna, low tree-shrub savanna), and the importance of accurate 
land cover classification, in (1) calculating carbon fluxes (e. g. Ahl et al. 2004,2005), 

and (2) monitoring landcover changes which result from cattle grazing and global 

environmental and climatic change (Foley 2005), the approach adopted in this 

research could be extended to the development of more elegant landcover 

classification methods, which would have wider implications for the monitoring and 

management of savanna ecosystems. 

Currently, the vast majority of landcover classification schemes generally 

attempt to exploit the spectral differences between different landcover classes, using 

statistical classification schemes typically, maximum likelihood, or ANNs (Mather 

1999). These classification methods may provide sufficient accuracy when 
distinguishing between broad biome level classes, however, when more subtle 
landcover classes are defined, such as those within a biome (savanna grasslands, shrub 

savanna, low tree-shrub savanna), such methods do not contain sufficient information 

to produce high accuracy landcover maps (Chopping et al. 2002). The different 

vegetation types have spectral responses which are too similar to permit their accurate 

separation. However, they do differ significantly in terms of their 3-D structure, and it 

is through the exploitation of this fact that CRM based classification schemes may be 

devised. A critical requirement for the successful extension of this research to 

landcover classification however, is the use of directional data within which the 

differences in 3-D structure between the different savanna types, will be expressed. 

Although the estimation of LAI in this research was achieved via the inversion 

of a 1-D turbid medium (TM) model, which is specified in terms of only a few 

parameters, this research has also considered the use of more complex 3-D CRM, 

which take account of the 3-D structure of the vegetation. CRM based landcover 

classification will have to be pursued using a 3-D model, if the differences in 

vegetation structure are to be extracted. This could be achieved by implementing a 

knowledge based classification scheme, whereby groups of vegetation canopy 

properties (e. g. number of trees, crown height and width, tree height) which define a 

specific savanna type (e. g. shrub savanna, low tree-shrub savanna), are determined, 

and forward simulations run with the 3-D model, for each class. In so doing, each 
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landcover class could be associated with a set of forward simulations, and the spectral- 

directional data stored in a look-up-table (LUT), or used to train an ANN. The 

classification method would then be a model inversion using this LUT or ANN. 

Peddle et al. (2003,2004), have demonstrated the effectiveness of such an approach 

using the 5-Scale model (Leblanc et al. 1999) to construct LUTs, and produce highly 

accurate (-80%) landcover maps for boreal forests in western Canada. This approach 
is deserving of further research to determine its effectiveness in classifying 

structurally distinct vegetation types in semi-arid savanna. An alternative approach, 

which has used the semi-empirical CRM described in § 2.6.2.5, has been developed 

by Chopping et al. (2002), and Su et al. (2005), whereby the weights on the geometric 

and volumetric kernels are used to extract information from AVHRR and MISR data, 

related to differences in vegetation community type, in desert grasslands of New 

Mexico, USA, and Autonomous Inner Mongolia, China, with classification accuracies 

of >90%. These methods also need to be demonstrated to be effective in the savanna 

vegetation communities studied in this research. 

If such techniques can be developed and shown to be effective in savanna 

ecosystems then the potential for more accurate landcover classifications would be 

greatly enhanced. In so doing, the monitoring of landcover changes in these 

ecosystems would be aided considerably. In addition, the provision of more accurate 

landcover maps to ecosystem process models - used to calculate carbon fluxes, will 

also greatly improve the accuracy of carbon stock calculations. Taken together, the 

more accurate monitoring, and process level assessment of these ecosystems, would 

offer the potential for more scientifically informed management of these important 

ecosystems. 

9.4 Conclusions 

While canopy reflectance models have been used in semi-and vegetation types before, 

to estimate tree size and canopy dimensions, the work presented In this thesis 

represents the first attempt to estimate LAI in semi-arid vegetation from a CRM 

inversion using satellite sensor data at a spatial resolution of <Ikm. This thesis has 

addressed the key issues associated with estimating vegetation properties in semi-and 

ecosystems, where vegetation cover is less than 40%, such that the soil background I- 
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exerts a significant impact on the remotely sensed signal. The following conclusions 

are made: 

0 For the first time the scattering properties of Kalahari soils have been 

characterised, and shown to be highly non-Lambertian. 

0 In vegetation with two distinct canopy layers, the importance of the 

overstorey in generating shadow in the scene in these low LAI savanna 

vegetation types is insignificant over the conditions tested. 

0A I-D turbid medium modelling representation provides the closest fit to 

the ETM+ and MODIS data. 

9 Local and global SA have been compared and the importance of 
interaction effects between model parameters was shown to be relatively 

unimportant in these low LAI savanna vegetation types, such that 

reflectance is driven by first order effects. 

* The visible and SWIR wavebands of ETM+ and MODIS display the 

greatest sensitivity to LAI. The NIR displays relatively little sensitivity to 

variation in LAI. 

9 Using the visible and SWIR wavebands as input to an artificial neural 

network, to invert the canopy reflectance model provided the highest 

accuracy. Inclusion of the VZA resulted in only marginal improvements in 

accuracy. 

9 The commonly used red/NIR combination in vegetation indices would 

appear to be sub-optimal in these low LAI savanna vegetation types, and 

similar vegetation types around the world. 

The results of this research are likely to be applicable to other semi and vegetation 

regions of the world, although it is unlikely that there will be such a homogeneous soil 

substrate, such that the importance of LAI in driving reflectance variability may not be 

as great, and consequently the potential for estimating LAI may be reduced. The use 

of canopy reflectance models to estimate leaf area index via a neural network 

inversion in semi-and vegetation has been established. Extension of this work to 

incorporate non-Lambertian soil scattering, and improvements in modelling and 
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neural network inversions is likely to lead to improved accuracy, such that the 

exploitation of remotely sensed earth observation data will play a key role in 

improving the understanding, mapping and monitoring of these savanna ecosystems. 
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