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FOREWORD 

Welcome to the 2009 UK Symposium on Knowledge Discovery and Data Mining.   

The symposium aims  to bring together researchers and practitioners who are interested in 
advancing the field of data mining and knowledge discovery, sharing their experience of 
developing state of the art applications and debating some of the scientific, engineering, 
societal  and ethical issues  surrounding the field. 

The event adopts the successful format of the previous events held at the University of 
Liverpool, University of East Anglia, University of Kent, and the University of Bristol,    
where invited speakers present seminars aimed at dissemination of new research, sharing of 
experience gained in developing state-of-the-art applications and discussion of  major issues 
in data mining. 

The topics covered in the symposium represent some of the most important and exciting 
issues in the field.  There are presentations on fundamental research topics such as how data 
mining is changing the very nature of scientific methods, the challenges of time series data 
mining, use of social network analysis for classification of messages, knowledge discovery 
from case data, and development of a unifying framework for feature selection methods.  
There are also presentations describing the lessons learned from real world case studies in 
detecting financial crime, profiling electricity usage, image processing, credit scoring, and 
predicting internet shopping patterns.  These exciting topics are, of course, only possible 
because of the willingness of the invited speakers to share their knowledge and expertise.    

I’d like to thank several people, without whom this symposium would not have been possible.  
I’m most grateful to Frans Coenen, who founded the series, provided encouragement, 
suggested speakers, promoted the event and is the driving force behind the series. I am also 
grateful to Trevor Martin who shared his experience of organising the event in 2008, and the 
previous organisers, George Smith and Alex Freitas for their support.   Nathalie Audren-
Howarth provided excellent administrative support and Louise Heatley developed a 
wonderful web site that led to positive comments from several users. 

Financial sponsorship for the event was provided by the University of Salford, the British 
Computer Society and SYS Consulting Ltd.        

We hope you find the event useful, get an opportunity to meet others in the field and enjoy 
the day. 

Sunil Vadera  

 (On behalf of the KDD’09 Organising Committee) 
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BRIEF PRESENTER BIOGRAPHIES 

Nello Cristianini, University Of Bristol 

Nello Cristianini is a Professor of Artificial Intelligence at the University of Bristol since 
March 2006, and a holder of the Royal Society Wolfson Merit Award. He has wide research 
interests in the area of computational pattern analysis and its application to problems ranging 
from genomics, to computational linguistics and artificial intelligence systems. He has 
contributed extensively to the field of kernel methods. Before his appointment at Bristol, he  
held faculty positions at the University of California, Davis, and visiting positions at the 
University of California, Berkeley. He has been Action Editor of the Journal of Machine 
Learning Research (JMLR) since 2001, and Associate Editor of the Journal of Artificial 
Intelligence Research (JAIR) since 2005. He is co-author of the books 'An Introduction to 
Support Vector Machines' and 'Kernel Methods for Pattern Analysis' with John Shawe-
Taylor, and "Introduction to Computational Genomics" with Matt Hahn (all published by 
Cambridge University Press).  

 

Eduarda Rodrigues, Microsoft, Cambridge 

Eduarda is a Researcher with the Integrated Systems group at Microsoft Research 
Cambridge. Her research interests lie in the broad areas of data mining and web information 
retrieval. In particular, her current work is focused on social network analysis, online 
communities, web link analysis and text mining.     

She obtained the Licenciatura degree in Electrical and Computer Engineering from the 
University of Porto, Portugal, in 1998 and a Ph.D. degree in Electronic and Electrical 
Engineering from University College London, UK in 2005.  

Prior to joining Microsoft Research, she was a Research Fellow at the Electronic and 
Electrical Engineering Department, University College London, working on Web and Grid 
services for large-scale data analysis. Before initiating her Ph.D. studies, she was a research 
engineer at the Institute for Systems and Computer Engineering of Porto (INESC Porto), 
Portugal, working on distributed systems and multimedia applications.    

 

Tony Bagnall, University of East Anglia 

Tony joined the School of Computing Sciences at the University of East Anglia as a part time 
MRes student/part time teaching assistant in 1993. After completing his Masters by research 
in 1995 he began a PhD titled "Modelling the UK electricity market with autonomous 
adaptive agents". After a brief period as a research assistant on a data mining project 
sponsored by Master Foods and Centrica, in 1999 he completed his PhD and was appointed 
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as a Lecturer in Statistics for Data Mining. In 2007 he was promoted to senior lecturer. 
 
Tony has been involved in researching areas of optimization, machine learning, agent 
systems, statistics and data mining. Currently he is primarily focused on time series data 
mining, a topic of his presentation at UK KDD’09. 

 

Gavin Brown, University of Manchester 

Gavin is a member of the Machine Learning and Optimization Group at the University of 
Manchester.  

His research interests can be summarised as: feature selection/extraction with information 
theoretic methods, Markov Blanket algorithms, ensemble learning (aka multiple classifier 
systems), and online learning. All of the above in application to two domains: Systems 
Biology and adaptive compiler optimisation.    Gavin is a member of the IEEE Technical 
Committee on Intelligent Systems Applications and on the programme committees of several 
conferences including the International Conference on Pattern Recognition (2008), Genetic 
and Evolutionary Computation Conference(2005-2008), Conference on Recent Advances in 
Soft Computation (2006), and International Joint Conference on Neural Networks (2005-
2008). 

 

Susan Craw, Robert Gordon University 

Susan Craw joined the School of Computing at the Robert Gordon University in 1983 (then 
Robert Gordon’s Institute of Technology or RGIT) as a lecturer. 

In October 1986 she registered for a part-time PhD in Computer Science at Aberdeen 
University; completing it in early 1991. Later that year, she was seconded for one year as a 
senior research fellow to the University of Aberdeen where she worked on the MLT ESPRIT 
project.  On her return to the Robert Gordon University in 1992 she was promoted to senior 
lecturer. She was awarded the title of Reader in 1996, and Professor in 1998.  In 1999 she 
won a Fulbright Scholar award and spent it on sabbatical in ICS at UCI. 

She became Head of the School of Computing in 2001 and Head of Research & Graduate 
Studies for the Faculty of Design & Technology in 2006.  

Her research develops machine learning and data mining techniques to discover knowledge 
for intelligent, decision support and product design software systems. Case-Based Reasoning 
is a major focus of her research, and she builds automated tools to maintain the case 
knowledge and to discover knowledge to improve CBR retrieval and reuse.  
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Neil Berry, Deloitte 

Neil Berry is Director of Data practice at Deloitte, the business advisory firm. 

Neil’s previous role was as Lead Architect within Capgemini’s Business Information 
Management practice where he worked for 6 years. Neil led the SAS (Business Intelligence 
Software) practice at Capgemini focusing on data management, business intelligence and 
information architecture.  

Neil Berry’s specialties include: CIO Services, Architecture, SOA / SOE / SOI, Business 
Intelligence, Data Warehousing, Business Information Management, Identity Analytics, 
Fraud & Audit, Business Development, Outsourcing, 3rd party vendor management. 

 

Sven F. Crone, Lancaster University 

Sven F. Crone has over 8 years of experience in forecasting. He is currently working as an 
Assistant Professor (Lecturer) at the department of Management Science at Lancaster 
University Management School. He also serves as the deputy director of the Lancaster Centre 
for Forecasting. 

 Sven received his Dipl.-Kfm. (MBA and BBA equivalent) and PhD (pending) in forecasting 
with neural networks from Hamburg University, Germany, and was a visiting fellow at 
Stellenbosch Business School, South Africa, and George Mason University, USA. His 
research focuses on forecasting and data mining applications, frequently using methods from 
artificial intelligence. He has authored over 25 articles in international journals and 
conference proceedings and has given over 45 international presentations in the field.  

Some of his recent projects at the Lancaster Centre for Forecasting include event and weather 
based forecasting with statistical methods for retailer TESCO UK, copper price forecasting 
with artificial intelligence for producer CODELCO Chile, forecasting advertisement ratings 
for TV company ITV UK, and implementing international demand planning methods, 
processes and systems in SAP APO-DP with FMCG producer Beiersdorf AG.  
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Scientific Method and Patterns in Data 
Nello Cristianini 

University of Bristol 
 
Abstract 
The way we do science is changing fast, due to large scale data analysis technologies. 
The automated gathering of massive amounts of data, followed by their automated 
analysis, is becoming mainstream in many sciences. The knowledge extracted by 
machines may not even need to be readable by humans, as it can be used by other 
machines, for example in the design of new experiments. The very foundations of 
scientific method are undergoing a transformation, and notions like Theory and 
Model are under discussion. New notions, like Pattern and Predictive Rule, may be 
taking their place. The Social Sciences may be the next conquest, after Biology and 
Physics, of this new way of doing science. 
 
Introduction 
In the summer of 1609, nearly exactly 400 years ago, Galileo Galilei was in Venice, 
trying to sell his telescope to the Doge, in return for tenure. He had not really invented 
it, as this was the creation of Dutch spectacle-maker Hans Lipperhey, of which he had 
heard a description. He greatly developed it, and offered it to the Venetian Fleet as an 
aid to navigation and early detection. 
During 1609 Galileo perfected his lens grinding skills, experimenting with methods 
and designs. He created various models and investigated the principles behind optics. 
He could have started a business making telescopes, or magnifying glasses, or 
spectacles. He could have been satisfied with the wage he received from the Republic 
of Venice. 
 
But Galileo was a scientist, not just a tool maker. Although he did design, create, and 
test some of the best tools of his time, he was not just concerned with the engineering 
aspects of his work, and the commercial opportunities. As a true scientist, he was 
interested in understanding the world around him, something that would get him into 
trouble more than once. Technical and scientific advances sometimes can have 
profoundly disruptive effects on society at large. 
 
So in the summer of 1609, at age 45, he turned the telescope to the sky, and started his 
investigation of the Moon. He discovered mountains and valleys, by observing their 
changing shadows. Most importantly he discovered that the Moon – contrary to 
Aristotle’s opinion – was not a perfect sphere. Something was wrong with the 
established model of the Universe. 
Later on he discovered with the telescope that Jupiter was orbited by 4 Moons, and 
this showed that in at least one case, celestial bodies did not revolve just around the 
Earth. Then with the same tool he discovered that Venus has phases, just like our 
Moon. 
 
In fact, he realised, Aristotle was wrong, the Earth and Venus and Jupiter orbited the 
sun, the Moon orbited the Earth, like the 4 Moons of Jupiter orbited their planet. 
Furthermore our Moon – at least – was not a perfect sphere, but had mountains, and 
he could infer their height by measuring their shadows, and predict which of them 
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would come out of the dark first, every month. What he had been taught about the 
Universe was incorrect. 
 
His work was published very rapidly, in March 1610, in a short booklet entitled 
“Sidereus Nuncius” (Starry Messenger). His work with lenses and telescopes was 
important not because it had direct implications on how we did things on Earth – 
although that too – but because it was eventually responsible for a fundamental 
revolution of our thinking. Its implications were theological, and landed Galileo into 
trouble with the Church, among other things. His observations forced him to question 
the received wisdom, and this is always an act of challenge, although one that is 
expected of scientists. These implications were also philosophical, and 
methodological. 
 
In fact, that was a very early example of modern systematic scientific investigation: a 
scientific instrument was developed and used to make observations, mathematical 
relations were derived for the geometry on the Moon, and predictions were used as a 
way to validate the models. A key assumption was that the same laws (of geometry 
for example) must apply on the Moon as on Earth. 
For this and many other contributions, Galileo is associated with a major shift in 
scientific method, although others were thinking along the same lines at the time. 
 
Scientific Method. 
The systematic method we use to derive and represent unambiguous knowledge, so 
that it has predictive and explanatory power over the world, is a major achievement of 
our culture. Not all cultures focused on a systematic approach to knowledge 
acquisition and revision, see for example the Romans. There are many ways of 
knowing the world, and the scientific method is a systematically organised procedure 
to produce knowledge that is reliable, and remove that which is not. 
 
Over the centuries, we have started gathering knowledge in an organised process, 
involving a cycle of experimental design and hypothesis generation, representing the 
results – wherever possible – in unambiguous mathematical terms. In fact, certain 
branches of mathematics have grown just to accommodate this new role that 
mathematics had in modelling (while its origins were just in calculation). This has 
been the accepted way in which we do science for the past few centuries, but is not 
the only possible way.  
 
In fact, the scientific method has been in constant evolution for a long time. The same 
can be said of the practices we follow as a research community, with anonymous peer 
review and publication of results being a crucial part of the current ritual of science.  
Observations lead to competing models, and this leads to experiments, and their 
outcomes are used to revise the current models, and this in turn suggests new 
experiments, and so on, in a cycle. The discovery of the laws of mechanics – for 
example - can be seen in this light, with competing intuitions about mass, acceleration 
and friction, leading to key experiments. In most cases, these feedback loops are much 
more complex and interconnected, but the interactive nature of the modelling process 
is often very visible. 
 
But things are changing fast. Now the process is going through an “industrial 
revolution” of its own.  Data are gathered automatically, by computers and robots, 
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effectively acting as massive measurement apparatuses, replacing what were for 
Galileo the thermometer or the clock. Increased accuracy and the ubiquity of 
measurement devices result in ever larger repositories of experimental data, stored in 
dedicated disk farms.  
 
We can look at the examples of Physics, Genomics, Drug Design and Astronomy. 
They all exemplify the same trend in science. 
 
The Large Hadron Collider at CERN is a machine designed to produce experimental 
data, potentially 15 Petabytes per year [Duellmann, 2007]. The engineering 
challenges in producing, storing and managing this amount of information have 
reached awesome proportions. But it is the analysis of this data that is truly mind 
boggling. And this experiment can be seen – in a way – as the direct descendent of 
physical experiments initiated 400 years ago by Galileo: the systematic investigation 
of the basic laws of nature has led us to this point. 
 
Similar challenges are encountered by today’s biology. The direct descendents of 
Mendel’s painstaking collection of genetic inheritance data are experiments aimed at 
the full sequencing of thousands of genomes at once. Terabytes of data are now 
produced by each of the new generation of sequencing machines, and the Sanger 
Centre in Cambridge is now working on the 1000 genomes project 
[1000genomes.org, 2007]. Hundreds of species have now been fully sequenced, and 
we are well down the road of comparing multiple complete sequences within the same 
species. 
 
In drug design, it is standard to test compounds to see if they bind to a given target, by 
exhaustively testing entire libraries of chemicals, by use of robots, in what is called 
combinatorial chemistry [DeWitt, 1995]. Hundreds of thousands of compounds can be 
generated and tested, either by using robotics, or – increasingly – even by computer 
simulations, in what is essentially a survey of entire regions of chemical space, 
hunting for compounds with a given set of properties. 
 
Astronomy – another child of Galileo’s – is now done by automatic surveys of the 
night-sky run by computers, and by subsequent automatic analysis of the images and 
data gathered in this way. One such project is the Sloan Digital Sky Survey (SDSS), 
which created a 5-wavelength catalogue over 8,000 square degrees of the sky, 
containing about 200 million objects, described by hundreds of features (data released 
incrementally to the public [Adelman-McCarthy, 2008]). The SDSS used a dedicated 
2.5-meter telescope at Apache Point Observatory, New Mexico. The 120-megapixel 
camera imaged 1.5 square degrees of sky at a time, about eight times the area of the 
full moon. A pair of spectrographs fed by fibre-optics measure spectra of (and hence 
distances to) more than 600 galaxies and quasars in a single observation. The database 
generated over 8 years by this automated survey is several Terabytes large, presenting 
serious challenges to data management and mining [Adelman-McCarthy, 2008]. 
 
In fact, we should consider this point in all its disruptive implications, that directly 
challenge normally accepted assumptions. Taken to its extreme consequences, its 
implications to Epistemology are significant. There is no way that people can analyse 
the data produced at LHC, or at Sanger Centre, or by sky surveys. They can only be 
conceived because we can rely on computers to do the analysis of data for us. 
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And this is the point we are considering: our scientific method has changed. The 
revolution is not a matter of detail, or even quantity. It is a matter of quality. We have 
industrialised both the production and the analysis of experimental data. We have 
industrialised the generation of scientific knowledge. And this will not just lead us to 
a significant acceleration of knowledge acquisition in the future, by virtue of the 
automation of the feedback loop, but it also invites us to re-examine what scientific 
laws and models actually are. 
 
The automatic analysis of patterns in data, the automatic generation of hypotheses, 
is a fundamental part of science. This is how computer science, statistics, and also 
artificial intelligence, are finding their way to the core of all science, and to the core 
of how we know our world. This is how automated pattern analysis found itself at the 
centre of a revolution that will have far reaching consequences. 
 
A Newer Method. 
The automatic analysis of data, in search for significant – if elusive - patterns, is now 
a key part of many scientific experiments, and this is an increasing trend.  
Statistics and computer science, and the convergence of dozen of smaller disciplines, 
create a conceptual and technical framework and body of knowledge that we call 
Pattern Analysis. It includes tools to extract significant information from networks, 
images, strings, text, bio-sequences, vectors, time series, and any other form of data 
that scientists routinely analyse and model. 
 
We may think that the process of scientific discovery will not be fully automated until 
machines will be able to generate complete theories of a domain, with their formalism 
and equations.  This deserves 2 fundamental responses: 1) this is not necessarily out 
of reach for machines 2) this is not necessary for machines to be doing science. 
 
As for Point 1, I will just point to a line of research, represented by [Schmidt, 2009] 
where various search algorithms are used to explore the space of mathematical 
formulae, looking for simple expressions that account for invariants in data gathered 
from a physical system. Systems of this kind are capable of inferring physical laws 
from experimental data, either in the form of differential or algebraic equations. The 
conservation law of angular momentum in a double pendulum, for example, was re-
discovered by a fully automated apparatus searching the space of all possible 
mathematical formulae. 
 
But Point 2 is much more important. We tend to think that the output of a scientific 
investigation such as Newton’s or Einstein’s should be a set of equations, and their 
interpretation, that can be used to work out predictions or models, for specific 
outcomes and specific experiments. We focus a lot on analytic manipulations of these 
general equations, as an example of abstract knowledge manipulations. 
 
But this is not strictly necessary to science. The output of the scientific process does 
not need to be a set of equations – although this is what we have come to expect from 
Physics. All we ask of a model is to make the right prediction in the right situation. 
There can be both physical and formal models of physical systems. Different 
mathematical tools can be used to model the same system. 
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Calculus is not less arbitrary a representation than others: logical statements or 
statistical patterns may be used just as well to model some aspects of reality. Calculus 
simply provides modellers with a language and a technology for computation that was 
unsurpassed for centuries, and hence was the most natural choice to describe Physics. 
In fact, the two co-evolved and co-adapted. If one can produce a formal framework 
that can simulate some aspect of reality, this is sufficient to make it a modelling 
language. 
 
The detection of subtle, elusive but predictive patterns in vast masses of data may be 
as useful as the creation of a simple mathematical model to explain them. Typically, 
the model is used to make predictions anyway, the same predictions that data-patterns 
can make. What if we had a computer that can make the same predictions without 
needing to start from a set of high level equations, but instead starting from a set of 
relations discovered in data? Just as these equations derive their meaning from their 
use, one could argue that predictive patterns discovered in data could play a similar 
role. 
 
Besides, it is quite possible for machines to summarise these patterns in compact 
theories, only to deduce them back when needed from the basic axioms. This is what 
humans do. But would that be useful for machines?  
 
When was it in history that we started considering ‘explained’ a phenomenon when 
we had – for example - a few equations describing its dynamics? It surely must have 
started in mechanics, perhaps with Newton, maybe with Galileo himself. But these 
equations are ultimately combined together, and with observation of initial conditions, 
in order to derive predictions. What if we could just derive the very same predictions 
from initial conditions and knowledge that is represented in a different way, perhaps 
even as raw data? 
 
Large part of all the scientific knowledge produced by humanity, is not in anyone’s 
mind, but in some – possibly still unlinked – databases, and will only ever be accessed 
by machines [Berners-Lee, 2001]. As long as the consumers of this knowledge are 
other machines, human-readability is not a crucial issue. If the information is used – 
for example – to design new experiments, or even to design drugs, humans may even 
be completely out of the knowledge creation / exploitation loop. 
 
Designing Experiments 
Recently the function of some yeast genes has been pinpointed by a robotic apparatus, 
generating hypotheses based on previous observations. This was part of an effort to 
develop a system capable of performing the full hypothetical-deductive cycle: the 
design of automatic-scientist systems, which can design and perform experiments 
based on the outcomes of previous experiments [Bryant, 2004], [King, 2009]. For 
systems like these, there would really be no reason for the knowledge they produce to 
be understandable by humans, as it is used only by them, to perform increasingly 
discriminating experiments.  
 
The system discussed in [King, 2009] “has autonomously generated functional 
genomics hypotheses about the yeast Saccharomyces cerevisiae and experimentally 
tested these hypotheses by using laboratory automation”. In particular, it was applied 
“to the identification of genes encoding orphan enzymes in Saccharomyces cerevisiae: 
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enzymes catalyzing biochemical reactions thought to occur in yeast, but for which the 
encoding gene(s) are not known”. 
The robot “formulated and tested 20 hypotheses concerning genes encoding 13 orphan 
enzymes. The weight of the experimental evidence for the hypotheses varied (based 
on observations of differential growth), but 12 hypotheses with no previous evidence 

were confirmed with P < 0.05 for the null hypothesis.” These hypotheses were later 
confirmed also by human scientists. 
While in this particular system all the knowledge produced is represented as logical 
statements, it is important to notice that in order for a system to design new 
experiments and perform hypothesis testing, simple machine-readable knowledge 
would be sufficient.  
 
Pattern Analysis 
Of course we are not announcing “The End of Theory” (although these claims have 
been made recently, [Anderson, 2008]) but just that we are facing an alternative – and 
equally valid – scientific method. This will also help us understand better the status of 
theoretical knowledge produced by science. Patterns extracted from data can reliably 
be used to make predictions – just ask Amazon.com or Google.com – without the 
need to formulate the knowledge contained in them in the form of differential 
equations, or other theoretical constructions, including grand unified theories. 
 
But what matters is that at the centre of this paradigm shift is our capability to gather, 
store, manage and analyse massive amounts of data automatically. And this is the 
permanent marriage between statistics and computer science – and many other sub-
disciplines – that is represented by computational pattern analysis. 
 
Software tools for data mining, just like Galileo’s telescope, were perhaps not 
originally created for doing science, but very often for doing business. But just like 
Galileo, we can turn them and use them to change the way we understand our world.  
 
And the fact that we are using off-the-shelf hardware to produce data, and to manage 
and store it, and we are using commercial software to analyse it, can only signal that 
further accelerations are to be expected, as costs are driven down. 
 
Social Sciences: Media Content Analysis. 
My research group at the University of Bristol makes extensive use of pattern analysis 
technologies, which were originated for practical or industrial applications, to answer 
purely scientific questions.  Much like Galileo directed the telescope to the Moon, we 
are aiming these new tools to another type of “sphere”. The analysis of contents in the 
Global Media-sphere is becoming accessible to computers, and this means that it can 
now be done in vast scale and in real time. 
 
The Global Media System (or Mediasphere) is the interconnected system of all 
newspapers, magazines, broadcast-news outlets, blogs, news-wires, and so on.  Every 
outlet can pick and choose whichever news it wants to carry; each user can choose 
whichever outlet they want to read; complex dynamics regulates the resulting process 
of information selection and diffusion; but simple patterns emerge, if we look in the 
right place. We are interested in observing (and modelling) how “ideas” flow and 
interact, as they traverse the media system (in the setting of blogs, see [Huberman, 
2004] for an example). 
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In order for machines to access and use the contents of the Global News Media 
System, it is necessary that they understand (to some extent) human language. And 
this is a totally new ingredient that we can add to the mix, today: machines can 
actually read and “understand” certain aspects of text.  Our apparatus is machine-
translating every day from 22 languages, and reading 1,100 news outlets, obtaining 
about 20K news items per day. In the resulting vast, machine processed, dataset we 
have found 450K named entities, for example, exhibiting a perfect power law of 
popularity, and interesting relations such as a 3-fold extra interest in the Pope found in 
Spanish-language media over English-language media, over the same period, in the 
United States.  
 
We are detecting text re-use, with massive scale implementations of suffix trees, and 
tracking memes as they spread through the outlets forming the global media sphere. 
We are recreating social networks, and detecting biases in the choice of topics and 
words in various types of outlets. We even measure readability. 
 
Social scientists have been interested in understanding the media system for decades, 
but their investigations could only be performed by hand, on limited numbers of 
outlets, time spans, and topics. A true constant monitoring of all outlets and all topics 
in all languages is now within reach, and automatic analysis tools are becoming 
available. 
 
Similar ideas can apply to the Humanities, with the possibility to analyse millions of 
books, in an automated – but still partly semantic – way. What is sometimes called 
“Cyberscholarship” will do for the social sciences and humanities, what has already 
been the computer revolution in the Life Sciences. Patterns found in text and images 
can be then used to design more experiments, or to analyse the behaviour of readers, 
and so on. Also psychology stands to benefit from these advances. There is much 
more to “data” than numbers, and a data-driven approach to science can cover 
unexpected fields of knowledge. 
 
Publishing Data. 
Making data available in a linked form, a version of the Semantic Web [Berners-Lee, 
2001] could one day take the place of publishing a discovery. The data could be made 
available by a machine, and used by another machine. The notion of scholarly 
publication, in the form of peer-review report of some experimental findings, is a few 
centuries old, and is by no means the only possible form of publication of results. 
 
GenBank is a database that contains publicly available nucleotide sequences for 
more than 300,000 organisms. It has grown exponentially since the early 1980s, and 
continues to do so with a current doubling time of about 30 months. Currently 
GenBank contains over 95 billion nucleotide bases from more than 92 million 
individual sequences, with 16 million new sequences added in the past year. [Benson, 
2009] 
 
The examples of Pubmed and Genbank will be followed by other sciences, in the 
future, with a tight integration of results, data and methods, sharing and globally 
creating a single unified resource.  
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Conclusions: The Future of Method. 
The scientific method is today evolving faster than ever. The automation, 
systematisation and industrialisation of information gathering and analysis, are 
accelerating the rate at which we expand our knowledge of the world. Machines now 
produce knowledge about our very own biology. The proportions of this transition 
should not be underestimated, and the science of patterns, information and knowledge 
is at the centre of this storm. While advances in most other disciplines change the 
overall body of knowledge we have about the world, advances in Pattern Analysis and 
Data Mining change the very way in which we acquire that knowledge. 
 
Galileo Galilei could have kept on making hi-tech tools and gadgets, and would 
certainly have found enough customers to make a comfortable living. But he was a 
scientist, and so he used those tools to understand the world around him. In the 
process he used mathematical representations of the laws that he discovered, designed 
experiments to gather data, and overall deployed the modern methodology. He also 
got into trouble with the authorities, because he refused to keep his telescope aimed 
low enough, and refused to ignore what he saw with it.  
 
A new generation of scientists, with a new generation of tools, can now do the same, 
and gather unprecedented types of data, and draw far reaching conclusions about our 
world. The automatic collection of data in genomics, chemistry, astronomy, physics 
and also the social sciences, will revolutionise the way we see our world, and will 
further an understanding of it as a single interconnected system.  Automated Data 
Analysis is at the centre of a very important revolution in the very way we produce 
new scientific knowledge. 
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Abstract 

Online communities, such as newsgroups, forums, 

Q&A services, among others, generate huge amounts of 

content every day. Such social media often contains 

information, advice and opinions that are valuable not 

only for community members but also for Web users in 

general, who may be searching online for problem-

specific information. While some community users are 

committed to producing quality content, others primarily 

seek social engagement. Thus, it is important to 

understand the nature of the users’ interactions and the 

value of individual contributions. In this paper, we 

discuss how social network analysis can be used to 

enhance the automatic classification of newsgroup 

messages and to characterize the nature of social 

interactions in Q&A communities.  

1. Introduction 

Newsgroup communities have been around since the 

early days of the Internet. They are formed around a 

variety of topics and participants interact with each other 

through threaded conversations, for sharing information, 

opinions, providing support, advice, etc. Community 

question answering services (cQA), such as Yahoo! 

Answers and Live QnA, have become quite popular in 

recent years. Their aim is to provide support for users 

with specific information needs to obtain prompt 

responses to their questions from other users of the 

community. Similarly to newsgroups, questions are often 

requests for advice or opinion, which are unlikely to be 

obtained through standard Web search. Even though the 

answers can be submitted by users of all levels of 

expertise, the quality of answers can compare, or even 

surpass, the quality of answers given by expert networks 

and library reference services [11].  

The social media content generated by online 

communities results in a rich knowledge base and 

valuable resource for other Web users to search and 

explore. Besides the standard Web users who might come 

across such content via a search engine, it is known that a 

large percentage of users (often over 90% [17]) are 

lurkers who read available content but rarely 

communicate with others [17, 19]. Thus, providing 

effective support for search and browsing through 

community-generated content is of great value to the 

users. In particular, for finding information it is helpful to 

understand the structure of discussion threads and quickly 

‘zoom’ onto the ‘answer’ messages. For those joining in a 

long discussion it is useful to get a sense of the dynamics 

and agreement level among participants.  

Furthermore, it is also useful to differentiate between 

threads containing factual information from those where 

users primarily seek to communicate and connect with 

each other. Specifically, cQA services while designed 

primarily to facilitate answering questions, they are based 

on the premise that their communities are formed, active, 

and self sustainable. Inevitably, the quality of the cQA 

services depends on the level of expertise of the 

community members, the level of responsiveness to 

questions, and the nature of the users’ interactions. Thus, 

it is important to gain a good understanding of the 

community dynamics and content contributions in order 

to provide the right incentives for creating desirable 

content.  

This paper discusses the use of social network 

analysis for enhancing the automatic classification of 

newsgroup messages (Section 3) and for characterizing 

the nature of social interactions in Q&A communities 

(Section 4). Section 2 presents related work and Section 5 

a summary of main findings.  

2. Related Work 

2.1 Newsgroup Communities 

Discussion groups, blogs, online product reviews, and 

other community-generated content are rich sources of 

users’ sentiment and opinion and have been a subject of a 

considerable body of research on opinion polarity and 

sentiment analysis. Techniques that have been used 

include text classification methods [3, 18], linguistic 
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analysis [9, 15], and social network analysis [3, 20]. The 

properties of the reply-to social network have been used 

to identify topic polarity of newsgroup participants [3, 13] 

and to characterize newsgroup types and author roles [7].  

Based on the hypothesis that a message response is 

most likely to disagree with the parent message, Agrawal 

et al. [3] applied constrained and unconstrained graph 

partitioning techniques to cluster authors who share 

similar opinions into two opposing camps. Kelly et al. 

[13] clustered participants with similar opinions within a 

newsgroup and found that, regardless of the underlying 

distribution of participants into the clusters, the ratio of 

messages on each side of the discussion is balanced. 

Indeed, the traffic of the minority opinion was found to be 

larger in order to make up for the smaller number of 

people. 

2.2 Community Q&A Services 

Community Q&A services have grown in popularity 

over the last couple of years, greatly due to the success of 

Yahoo! Answers. The research community has also 

gained interest in investigating various aspects of this 

service, leading to a number of studies reported over the 

past year [1, 2, 11, 12]. There has been a great emphasis 

on identifying and predicting quality answers [1, 2, 11], 

and modelling users authority [10, 12]. 

Adamic et al. [1] analysed the Yahoo! Answers social 

network, identifying users with similar behaviour to the 

‘answer-person’ role found in newsgroup communities 

[7]. Agichtein et al. [2] provided a classification model 

for estimating answer quality based on features derived 

from the content and also authority measures from the 

social network. Gyongyi et al. [10] and Jurczyk et al. [12] 

applied variants of Kleinberg’s HITS algorithm to the 

Q&A social network graph to model user reputation and 

level of expertise. 

3. Classification of Newsgroup Messages  

We performed a set of experiments with the aim to 

classify messages posted to two types of newsgroups, 

political discussion groups and Q&A groups, and to 

investigate the impact of particular features on the 

classifiers performance. We applied linear Support Vector 

Machine (SVM) [5] classifiers to: 

1) Predict the agreement level between a message and its 

parent message within discussion newsgroup threads. 

Messages were classified as ‘agree’, ‘disagree’, or 

‘insult’. 

2) Identify which messages are questions or answers 

within technical Q&A newsgroup threads. Messages 

were classified as ‘question’ or ‘answer’. 

We represented each message-parent pair by a vector 

of features and we used a one-vs-all multi-class approach 

for classifying message pairs. In this section, we describe 

the dataset, feature sets and present a summary of the 

classification experiments reported in [8]. 

3.1 Dataset 

Our dataset consists of message thread and header 

information from 4 Usenet newsgroups. The first two 

newsgroups, alt.politics.immigration and talk.politics. 

guns, host mostly political discussions and debates. The 

other 2 groups, microsoft.public.internetexplorer. general 

and microsoft.public.windowsxp.general, host mostly 

Q&A-type threads. Table 1 contains information about 

these data sets, hereafter referred to as immigration, guns, 

iexplorer and winxp. It lists the total number of threads, 

messages, replies and authors per newsgroup. It also 

indicates the period of time in which all messages were 

collected.  

 

Table 1. Description of the newsgroup data sets. 

Newsgroup Threads Messages Replies Authors 
Collection 

Period 

immigration 1,367 10,095 8,728 463 Aug 31 to 

Guns 874 6,776 5,902 844 Oct 19’06 

iexplorer 3,631 10,934 7,303 3,443 Jul 19 to 

winxp 10,280 42,052 31,772 8,145 Oct 19’06 
 

For the classification experiments we created training 

data sets from several samples of threads randomly 

selected from each newsgroup. The sample messages 

were annotated by experts with one of the labels listed in 

Table 2.  

Table 2. Message labels. 

Label Description 

agree Message agrees with the point of view of the parent 

message. Adding clarifications or extra info also 

counts.  

disagree Message disagrees with the point of view of the parent 

message. Sarcastic comments also count. 

insult Author of the message is purely insulting the author 

parent message. Insults replying to insults are disagree 

messages. 

question Message is a question or a clarification of a previously 

asked question by the same author.   

answer Message is an answer to a question in the parent 

message or a request for further information about the 

question. 

off-topic The message has no connection to the parent message 

and is not a question message. 

don't know If none of the above labels apply. 

3.2 Feature Sets 

We considered a variety of features, both of structural 

and content nature, to investigate the impact of particular 

features on the classifiers performance. For content 
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analysis, we cleaned each message to remove headers and 

any quoted text from parent messages. Additionally, we 

derived features from 5 implicit network structures: 3 

author networks and 2 thread networks. Past research has 

used thread-level message features for analysis of 

newsgroup data [4, 6, 7, 21]. We also ran experiments 

with such kind of features, but our results did not show 

much improvement with these features. Thus, here we 

concentrate on the multi-network features. 

Author Networks 

We captured users’ participation by defining 3 author 

networks for each newsgroup: reply-to, thread partici-

pation, and text similarity. In all of these, the nodes 

represent authors, but the edges carry distinct semantics: 

- A reply-to network edge from author A to author B 

indicates that A has replied to at least one message 

posted by B.  

- A thread participation network edge from author A to 

author B indicates that both authors have participated 

in the same thread in at least k occasions.  

- A text similarity network edge indicates similarity 

between the content of connected authors’ messages. 

The messages from each author were summarized by 

a centroid keyword vector and author-author edges 

were created to indicate cosine similarity of at least η. 

We described each message reply by a vector of 

features extracted from the three author networks, A1, A2 

and A3. Given a message, M1, and the message it replies 

to, M0, 3 feature vectors were created for M1 and another 

3 for M0 (see Figure 1). Individual features of each vector 

are associated with nodes in the networks, i.e., authors. A 

similar author node vector was created for the author of 

the parent message M0. The final feature set for a reply 

message concatenated the two vectors. 

 
Figure 1. Feature sets from the author networks. 

 

  
Figure 2. Feature sets from the thread networks. 

Thread Networks 

We captured topic associations by defining 2 types of 

thread networks for each newsgroup: common authors 

network and text similarity network.  

The nodes of both networks represent threads but the 

edges have a different meaning in each case: 

- A common authors network edge between thread T 

and Q indicates “thread T has at least m authors in 

common with thread Q”.  

- A text similarity network edge between thread T and 

Q indicates similarity between the content of their 

messages. The cosine similarity between centroid 

keyword vectors was used and an edge between thread 

T and Q indicates similarity of at least η. 

We described each thread by a vector of features 

extracted from the two thread networks, referred to as B1 

and B2, respectively. Given a message M1 belonging to 

the thread T, we created two feature vectors, where 

individual components were associated with other nodes 

the networks, i.e. threads – see Figure 2.  

3.3 Experiments 

We conducted a comprehensive set of experiments 

with the SVM classifiers to investigate the effectiveness 

of individual feature sets and their combinations in:   

1) Predicting the level of agreement of messages posted 

to political discussion newsgroups. 

2) Identifying question and answer messages in technical 

discussion newsgroups. 

Given that reply-to network features have been used in 

related work [3, 7, 13], we took the feature vector A1 as 

the baseline for our analysis of the classification results. 

For evaluation we used 10-fold cross-validation and the 

performance of the classifier was measured based on the 

break-even-point (BEP) from the ranked list of messages 

scored by the classifier. Next, we summarize the main 

findings. 

Discussion Newsgroups 

To predict the level of agreement between a message 

and its parent message in discussion threads, we used the 

relevant training data, i.e. messages labelled as ‘agree’, 

‘disagree’ or ‘insult’. We observed increased performance 

over the baseline when thread network features were 

introduced. This improvement was particularly evident in 

the ‘insult’ class, where such messages seem to be 

strongly predicted through the co-participation in threads 

(B1): BEP increase from 68% to 74% for guns and from 

38% to 85% for immigration. Using threads text 

similarity features (B2) gave further boost to the guns 

category: from 74% to 81%.  
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Table 3. Classification results for discussion groups 

Feature Sets 
Guns immigration  

agree  disagree insult agree disagree insult 

F1=A1 61% 80% 62% 65% 75% 37% 

F2=A1+A2 69% 82% 72% 66% 76% 45% 

F3=F2 + A3 65% 84% 68% 68% 77% 38% 

F4=F3 + B1 67% 86% 74% 73% 80% 85% 

F5=F4 + B3 66% 85% 81% 72% 80% 85% 

Table 4. Classification results for Q&A groups 

Feature Sets 
iexplorer winxp 

answer question answer question 

F1=A1 70% 59% 93% 78% 

F2=A1+A2 71% 64% 94% 80% 

F3=F2 + A3 75% 66% 94% 79% 

F4=F3 + B1 75% 66% 94% 79% 

F5=F4 + B3 75% 65% 94% 77% 

Technical Q&A Newsgroups 

To identify questions and answers in technical Q&A 

newsgroups, we used the relevant training data, i.e. 

messages labelled as ‘question’ or ‘answer’. Unlike the 

previous case, features derived from the thread networks 

did not improve the classifier’s performance. Connections 

among authors that participated in the same threads (A2) 

were particularly beneficial to predict ‘questions’: BEP 

increase of 59% to 64% for iexplorer and 78% to 80% for 

winxp. Content-based author similarity features (A3) 

improved the prediction of ‘answers’ for iexplorer: from 

71% to 75%.  

In summary, we found that the co-participation of 

authors across threads (feature set B1) was a particularly 

relevant factor for improving the classification of 

messages in discussion threads. Text similarity features 

further improved classification. These results hint that 

authors seem to be consistent in their opinions, when 

recurring co-participating with other authors across 

discussion threads. However, thread network features did 

not enhance the classification performance in the Q&A 

case. These results are consistent with the observations by 

Fisher et al. [7] on the distinctive behaviour of core 

participants of discussion vs. technical newsgroups. The 

former tend to form fairly closed communities with the 

most active participants responding to each other often 

and mostly ignoring newcomers. The latter, on the 

contrary, tend to be experts who respond primarily to 

newcomers who ask questions.  

4. Social Behaviour in cQA Services 

The cQ&A services allow users to freely submit 

questions and answers on any topic, and provide several 

mechanisms for self-regulation of the content quality, 

such as, enabling comments on answers, voting for best 

answers, reporting abuse, and assigning reputation points 

to community members. However, since users need to 

create a sense of community, it is not surprising that some 

users seek to communicate and connect with the 

community by asking questions, such as, ‘How are you?’ 

or ‘I’m eating a slice of home-made pie. Anyone wants 

some?’. This behaviour does not comply with the 

intended use of the service but aims to engage with and 

perhaps entertain the community.  

We performed extensive analysis of the Live QnA and 

Yahoo! Answers communities. Although the two services 

are very similar, they differ on the approach taken to 

categorize questions. On Yahoo! Answers users assign a 

label to their questions, by picking a topic category from 

a fixed taxonomy, while on Live QnA users apply 

community-generated tags to their questions. In our 

analysis, we were particularly interested in revealing the 

implications of the Live QnA question tagging feature on 

the community dynamics and the observed question types 

[16]. In this section we present summary findings of this 

analysis. 

4.1 Datasets 

Our first dataset was obtained from the Live QnA 

service and spans the first year of its beta release (Sep. 

2006 until Sep. 2007). It consists of 488,760 questions 

and 1,330,819 answers. The questions were submitted by 

241,616 unique users, while the answers and comments 

were contributed by 42,941 and 34,068 unique users, 

respectively. The second dataset was gathered from the 

Yahoo! Answers service by seeding a crawler with pages 

linked to the top level categories that list recent questions 

with the assigned category and sub-categories. Overall we 

crawled 309,599 questions, posted by 217,615 distinct 

users and 1,151,453 answers, given by 202,052 distinct 

users. Over 95% of the content that we crawled was 

posted during the 3-month period of March-May 2008.  

4.2 Analysis of Live QnA Tags Usage 

In the Live QnA dataset questions were labelled with 

2(±2.3) tags on average. Overall, the community applied 

188,468 distinct tags. Some of these tags were used very 

frequently, possibly due to the automatic recommendation 

of tags that is provided by the service. Among the 10 

most frequently used tags, the technology-related ones 

(‘Internet’, ‘Technology’, ‘Computers’, ‘Windows’, and 

‘Microsoft’, ‘Windows Live’) were applied to questions 

receiving on average 2.4 answers, whereas the remaining 

ones (‘Fun’, ‘life’, ‘people’, and ‘Family’) were applied 

to questions receiving on average 5.1 answers. This 

indicates that the community members responded more 

actively to questions on less technical topics. 
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4.3 Analysis of Question Types 

Through manual inspection of the random samples of 

questions from Live QnA and Yahoo! Answers we 

derived a taxonomy of question types, that includes types 

such as (a) information seeking – requesting information 

about a fact or a resource that can satisfy the user 

information need, (b) opinion seeking – requesting an 

opinion about a topic, possibly of personal nature, and (c) 

chit-chat – question instigating community reaction for 

the purpose of socializing. We observed that information 

seeking questions were predominant in both datasets: 

62.3% on the Live QnA sample and 78.1% on the Yahoo! 

Answers sample. The percentages of opinion seeking 

questions were also comparable:  19.0% on Live QnA 

and 15.3% on Yahoo! Answers. However, we found a 

substantial difference in the proportion of chit-chat 

questions: 14.2% on Live QnA and 3.6% on Yahoo! 

Answers.  

Considering the Live QnA questions tagged with one 

of the top 10 tags we analysed the frequency of question 

types across tags. Figure 3 shows that tags referring to 

technology and computer-related topics were 

predominantly associated with questions of the 

information-seeking type. In contrast, tags like ‘Fun’, 

‘People’ and ‘life’ were mostly associated with chit-chat 

questions. The ‘Fun’ tag, in particular, is highly 

correlated with this type of question. 

 

Figure 3. Distribution of labelled questions across the 

top 10 most frequent Live QnA tags. 

4.4 Community Tags & Social Network Activity 

With the new insights about the question types and 

community tags, we investigated the properties of the 

social network that emerges from answering questions 

with specific tags. We performed an analysis of the 

answer-to social network derived from the Live QnA data 

set. In such network the nodes correspond to active users 

and the directed edges indicate that, for example, a user A 

has responded to a question of the user B.   

For each community tag we considered the associated 

sub-graph of the answer-to network and calculated the 

density of the sub-graph to assess the strength of the 

social ties among the involved users.  The graph density 

measures how close a subset of vertices is to forming a 

clique (i.e., to include the maximal number of edges): 

Definition. For a directed graph with |E| edges and |V| 

vertices, the graph density is defined as � =
|�|

|�|∙�|�|�	

.  

We examined sub-graphs consisting of the 100 most 

active ‘answerers’ and 100 most active ‘questioners’ for 

each of the top ten Live QnA tags. In Table 5 we show 

for each tag sub-graph the overlap between the top 

questioners and top answerer (VQ∩VA) and the density of 

the sub-graphs associated with answerers (DA) and 

questioners (DQ).   

Table 5. Density of the social network resulting 

from answer-to interactions between top answerers 

(DA) and questioners (DQ), on the specified tag. 

Tags Questions DA DQ VQ∩∩∩∩VA 

Fun 41,259 0.588 0.613 52% 

Internet 34,005 0.243 0.255 31% 

People 26,583 0.450 0.459 42% 

Technology 25,116 0.092 0.089 17% 

Computers 24,633 0.092 0.088 21% 

Life 21,739 0.365 0.357 38% 

Windows 18,499 0.067 0.066 19% 

Microsoft 18,343 0.066 0.069 16% 

Windows Live 17,644 0.107 0.120 27% 

Family 17,498 0.307 0.326 40% 

 

We observe that the community users exhibit different 

behaviour across tags. For tags like ‘Fun’, ‘People’ and 

‘Family’, a high percentage of users who post questions 

also engage very actively in giving answers to other 

users, indicating that there are sub-communities of active 

users formed around such tags.  

Furthermore, the density of the tag-induced sub-graphs 

hints that specific type of questions may be predominant 

for a given tag. For example, the density values for the 

‘Fun’ tag indicate that highly active users interact with a 

large proportion of other highly active users and thus 

support our hypothesis that ‘Fun’ tag is associated 

predominantly with chit-chat questions. We can contrast 

that with density values for tags like ‘Microsoft’ or 

‘Windows’, which are significantly lower. The low 

overlap between top answerers and top questioners for 

these tags is more typical of information-seeking 

communities where expert users provide the most 

answers [15].  
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5. Concluding Remarks 

In this paper we discussed the use of social network 

analysis to enhance the automatic classification of 

newsgroup messages and to characterize the social 

tagging behaviour in cQA services. We developed robust 

message classifiers to detect messages of selected 

response types, including agreement and disagreement in 

newsgroup discussion threads. We have found that with 

well selected author and thread network features we can 

achieve very good classification results for any topic 

being discussed. The results clearly demonstrate the 

superiority of the thread network features over the 

standard reply-to network alone. Our findings offer the 

foundation for the design of ranking functions for 

newsgroup search that take into account the types of 

messages, given a search goal, such as, finding answers to 

a question, finding a similar question, or finding strong 

positive and negative opinions about a topic. 

Through the analysis of the Live Q&A community we 

found that community-generated tags reflect both the 

social interactions among users and the topic of the 

questions. In fact, we hypothesise that the freedom to 

contribute with new tags has led to the possibility of 

disseminating questions that are of social nature, and vice 

versa, that the variety of social interactions have influence 

the evolution of the community taxonomy.   
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Tony Bagnall 
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Time Series Data Mining 
 
Abstract  

This paper highlights the unique challenges of time series data mining from a statistical, 
machine learning and data mining perspective with examples taken from three very different 
problem domains.  
 
Time series data is increasingly prevalent and as the information age matures the problems 
and opportunities offered by vast inter-dependent data sets will be one of the defining 
features of future data mining research. In statistics, the traditional approach to time series 
has been to model the auto-correlation structure with the focus usually on forecasting. In 
machine learning, the usual methodology is to derive a set of features from time-dependent 
data, then most interest lies in clustering and classification. In data mining, the major concern 
is compression and similarity measures and the majority of research is concerned with query 
by content. In this paper an overview of all three approaches is given and their similarities 
and differences for the wide range of problems that arise in the field are highlighted.  
 
Many different application areas can be treated as time series, and we show this with 
examples derived from electricity usage profiling, image processing and RNA analysis. 
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Gavin Brown  
University of Manchester 
 
Feature Selection by Filters: A Unifying Perspective 
 
Abstract  

Feature Selection is an essential component of modern data mining. 
The principle is to eliminate irrelevant or redundant variables from a dataset, given the 
requirement to predict a target.  This has the dual advantage of reducing computation time, 
and increasing interpretability. 
 
Datasets with thousands to millions of variables require fast methods for selection---these are 
known as "filters".  The last 15 years has seen a huge publication surge of candidate filter 
methods, with no common way to relate them or pick the right one for the right task. 
 
We focus on filters based on mutual information.  This talk will give an overview of 
information theoretic methods, and present a recent unifying framework that shows the 
existence of a continuous space of filters. Each paper over the last 15 years corresponds to a 
point in the space, most of which has never been explored. 
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Neil Berry  
Deloitte 
 
Real world applications of data mining technology:  
"The cook, the thief, his wife and her lover" a financial services case study. 
 
Abstract  

Financial crime is something that impacts each and every one of us. The average general 
insurance policy in the UK costs £40 more than it should due to fraud, and overall fraud is 
estimated to cost the insurance industry over £1.6bn a year. Extrapolate this across other 
financial services products, and link it with other areas of concern e.g. Anti Money 
Laundering and Sanctions Compliance, and you have the makings of a huge problem.  
 
Data mining techniques are being increasingly applied to these issues in ever more innovative 
ways. Given the scale of potential fines (up to £250,000 per transaction) and potential 
reputational damage, not to mention huge financial losses, institutions have a large vested 
interest in getting this right! This presentation will use real examples from the world of 
financial crime to illustrate different techniques and methods that are currently deployed in 
the market to tackle these problems. It will also look to the future, to examine how the 
industry is changing, and what some of the challenges may be as technology tries to advance 
to keep pace with the criminals. 
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Susan Craw  
Robert Gordon University 
 
Knowledge Discovery from Case Data 
 
Case-based reasoning systems solve problems by retrieving and reusing similar experiences 
from the case base as the fundamental knowledge source.  However, the cases can be used for 
more than solving problems, and the knowledge available in a collection of cases may be 
exploited to improve the system's problem-solving.  The ability to use the cases to identify 
and understand regular and complex regions of the problem-solving landscape offers the 
potential for data selection, pre-processing, data cleaning and knowledge maintenance for 
case-based reasoning systems. The cases also capture implicit knowledge that may be learned 
to improve the retrieval of suitable cases and to enable effective adaptation of the retrieved 
solution to suit the new problem.  
 
This talk explores introspection of the case knowledge and some attractive prospects to 
exploit its implicit knowledge. 
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Sven F. Crone  
Lancaster University Management School 
 
Classifying Imbalanced Datasets –Evidence from case studies in Business Data Mining 
 
Data Mining methods and procedures are routinely employed in business, but often neglect 
the specific properties of the dataset. For many corporate applications the actual class of 
interest, e.g. those responding to a direct mailing or defaulting on a loan, is often an 
underrepresented minority, which should be either targeted or avoided to ensure profitability. 
But how important is the data in the majority class of lesser interest? Is it required at all, or 
can we discard parts of it? And if so, is there some 'golden ratio' of negative to positive 
examples? A variety of simple to sophisticated sampling strategies are now available to 
under- or over-sample the existing data. This talk will demonstrate how different approaches 
of basic data sampling can enhance or impair predictive accuracy, using case studies from 
company projects in database marketing and direct mailing, credit and behavioural scoring, 
and predicting internet shopping adoption to distinguish customers between online-shoppers, 
browsers and offline shoppers. 
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Classifying Imbalanced Classifying Imbalanced DatasetsDatasets

Evidence from case studies in Evidence from case studies in 

Business Data Business Data MiningMining

Dr. Sven F. CroneDr. Sven F. Crone
Deputy Director, Ass. Prof. Deputy Director, Ass. Prof. 

Associated Experts
Prof. Paul Goodwin
Dr. Andrew Eaves

Research & PhD students
Heiko Kausch, RA
Stavros Asimakopoulos
Xi Chen
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Nikolaos Kourentzes
Ioannis Stamatopoulos
Andrey Davidenko
Charlotte Brown
Hong Juan Liu
T Hu
John Prest
Huang Tao

Visiting Researchers
Prof. Geoff Allen 
Dr. Yukun Bao 
Young-Sang Cho

Directors
Prof. Robert Fildes
Prof. Peter Young
Dr.Sven F. Crone

Researchers
Dr. Steve Finlay
Dr. Alastair Robertson
Dr. Didier Soopramanien
Dr. Kostas Nikolopoulos

Prof. Stephen Taylor
Dr. Wlodek Tych
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“Take away this pudding, it has no 

theme.” Sir Winston Churchill (1915)

• Sampling issues in Data Mining

• Case study 1: Direct Marketing
• Cross-selling of Magazine subscriptions
• Effect of data preprocessing: Sampling

• Interaction of Sampling with Scaling & Coding

• Case study 2: Credit & Behavioral Scoring
• Predicting consumer credit  default

• Effects of sample size

• Effects of sample distribution

• Case study 3: Online Shopping Behaviour
• Predicting consumer shopping channel choice

• Sample distribution & multiple classes

• Conclusion & Take-aways

AgendaAgenda
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Why (Under/Over) Sampling?

• Knowledge Discovery (KDD) = non-trivial process of identifying 
valid, novel, useful patterns in large data sets
• Data Mining = only one single step in the KDD process
• Data sample determines the whole process! (� GIGO)
• “Research seems preoccupied with algorithms” [Hand 2000]

Monitoring 

CRISP-DM Process

SAS SEMMA DM-Process

Sampling in Direct Marketing Literature? 

Input 

type* Methods***

Paramete

r tuning

Data reduction** Data projection

Feature

Selection

Re-

sampling

Continuous attributes Categories

Standardisation Discretisation Coding

[2] 2 BMLP, LR, LDA, QDA X X

[42] 1 MLP, LR, CHAID X X

[43] 2 MLP, RBF, LR, GP, CHAID X X
[44] 3 MLP, LR, LDA X X

[4] 2 CHAID, CART X

[6] 2 MLP, LR X X X X X

[9] 2 LVQ, RBF, 22 DT, 9 SC X X

[45] 2
LDA, LR, KNN, KDE, CART, MLP, 

RBF, MOE, FAR, LVQ
X X

[3] 1 MLP X X

[7] 2 LSSVM X X X

[11] 2 LR, LS-SVM, KNN, NB, DT X X X

[10] 1
LDA, QDA, LR, BMLP, DT, SVM, 

LSSVM, TAN, LP, KNN
X X

[46] 2 LR, MLP, BMLP X X

[47] 2
LSSVM, SVM, DT, RL, LDA, QDA, 

LR, NB, IBL
X X

[48] 1 DT, MLP, LR, FC X

[49] 1 FC X X

��Majority of direct marketing  papers focus on algorithm tuningMajority of direct marketing  papers focus on algorithm tuning
��Only 3 papers consider Only 3 papers consider ResamplingResampling / Instance Selection / Instance Selection 

��No analysis of the interaction with Sampling & Projection & …No analysis of the interaction with Sampling & Projection & …

�Database of customers (instances)
�Known attributes for all customers (age, gender, existing subscriptions, …)
�Known response (class membership) of buyers & non-buyers from past mailings
�Build a model to separate classes ���� decision boundary of different complexity

1 … Number of subscriptions  … Many

Classification
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No response
Subscribed to magazine

Last campaign

Class unknown

�Use the decision boundary to classify unseen instances
�Calculate on which side of hyperplane the instances lie (or distance)

�Assign class to unseen instances

No response
Subscribed to magazine

Classification

1 … Number of subscriptions  … Many
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�Balanced dataset = class distributions are equal P(x|y=A)=P(x|y=B) 
� proportional sampling or stratified sampling feasible

�Imbalanced dataset = class distributions unequal P(x|y=A)>>P(x|y=B) `
�The class of interest is often the minority (in most business applications)

Reality Check: Imbalanced classes

No response
Subscribed to magazine

Problem

• Classifiers are biased towards 

the majority class

• Shifts the decision boundary

• Error / Accuracy based learning 

creates  naïve classifiers

• Invalid separation of classes
1 … Number of subscriptions  … Many
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�Size of the sample?
�Distribution / location of the sample?

Imbalanced Data Sampling

No response
Subscribed to magazine

Stratified Random Sampling
�divide DB in mutually exclusive 

strata (subpopulations) &  draw 
random samples from each

�Proportional
assure proportions in samples 
equal those in population

�Disproportional
weighted over-& undersampling 
of important classes
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�Exclude random instances of the majority class
�Retain all instances of the minority class

�Establish a balanced class distribution

Random Undersampling

No response
Subscribed to magazine

Benefits
• Helps detect rare target levels

Risks
• Biases predictions (correctable)

• Looses information contained in 
instances of the majority class

• Creates different boundaries

• Increases prediction variability
• …1 … Number of subscriptions  … Many
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�Retain all instances of the majority class in the sample
�Duplicate identical instances of the minority class 

�Establish a balanced class distribution

Random Oversampling

No response
Subscribed to magazine

Benefits
• Helps detect rare target levels

• No loss of information

Risks
• Biases predictions (correctable)
• Increases prediction variability

• Increases processing time

1 … Number of subscriptions  … Many

F
ew

 …
 D

a
y
s
 s

in
c
e

 l
a

s
t 

p
u
rc

h
a

s
e

…
 M

a
n

y

69



Classifying Imbalanced Datasets
© Sven   F.  Cr o n e,  L a n ca s ter   Cen tr e  fo r   Fo r eca s tin g 

� rather some case studies ...!

Ready for more theory…?

x

�Evidence from 3 case studies using industry datasets

Credit Scoring Direct
Marketing

adapted from Berry and Linoff (2004) and Olafson et al (2006)

Case studies on 
Sampling 

Online Shopping
Adoption

• Sampling issues in Data Mining

• Case study 1: Direct Marketing
• Cross-selling of Magazine subscriptions
• Effect of data preprocessing: Sampling

• Interaction of Sampling with Scaling & Coding

• Case study 2: Credit & Behavioral Scoring
• Predicting consumer credit  default

• Effects of sample size

• Effects of sample distribution

• Case study 3: Online Shopping Behaviour
• Predicting consumer shopping channel choice

• Sample distribution & multiple classes

• Conclusion & Take-aways

Agenda • Sell a magazine subscription to existing customers

• Whom to send mail to? (Which customers are most likely to respond?)

• How many customers to contact? (What is the optimal mailing size?)

�Corporate project with leading German Publishing House
�Provided data set of past mailing campaigns
�Benchmark novel methods against in-house SPSS Clementine
�Explore Neural Networks (NN) an Support Vector Machines (SVM)

Business Case: 
Direct Marketing/Response Optimization

70



Classifying Imbalanced Datasets
© Sven   F.  Cr o n e,  L a n ca s ter   Cen tr e  fo r   Fo r eca s tin g 

�Smaller mailing (number of letters sent) ���� lower costs (Euro 1.- per letter)
�Higher response rate ���� higher revenue
�More specific mailing ���� lower cost
�More relevant information ���� higher customer satisfaction

Benefits of Direct Marketing

Simple With data mining

Addressees 100.000 Top 40% = 40.000

Cost 2€/mail = 200.000€ 2,5€/mail = 100.000€

Response rate 0,5% = 500 1,0% = 400

∅∅∅∅ Sales volume 300€ 300€

Sales volume 150.000€ 120.000€

Revenue -50.000€ 20.000€

NN get worse with learning …

%
Pred.  

C 0

Pred.  

C 1

Sum

C 0 72.96 27.04 100

C 1 62.02 37.98 100

134.98 65.02 55.47

%
Pred.  

C 0

Pred.  

C 1

Sum

C 0 52.87 43.37 100

C 1 47.13 56.63 100

100 100 54.75

%
Pred

C 0

Pred

C 1

Sum

C 0 61.86 38.14 100

C 1 55.09 44.81 100

116.95 82.95 54.26

• Wish to implement Neural Networks for next campaign
• In-house team (with no NN knowledge) outperformed us EVERY TIME!
• Analyzed software, training parameters, etc. � internal competition
• Observed expert in building models … !

Scale numerical 

features

Adjust imbalanced 

class distributions

Decide on sample 

size and method

Experimental Design:
Different data pre-processing

Handle categorical 

features

Select useful 

features

Handle       outliers

Different Sampling
Over-& Undersampling

Different Encoding
n, n-1, thermo, ordinal

Different Scaling
Discretise, Standardise

Evaluate across 3 algorithms:
�Neural Networks (MLPs), Support Vector Machines &  Decision Trees

�Multifactorial design to evaluate impact across multiple methods
�Neural Networks (NN)
�Support Vector Machines (SVM)
�Decision Trees (CART)

Dataset Structure

Data set size
• 300,000 customer records
• 4,019 subscriptions sold
• Response rate of 1.3%

Data set structure
• 18 categorical features
• 35 numerical features
• Binary target variable

����Evaluated the Impact of Data Preprocessing
• Data Sampling (over sampling vs. undersampling)

• Categorical attribute Encoding (N, N-1, thermo, ordinal)

• Continuous attribute Projection (Binning vs. Normalisation)
• Continuous attribute Scaling ( [0,+1] vs. [-1,+1] range)
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�Different balancing in the training data
�Original distribution in the test data (65,000 instances)

Sampling

Data partition (number of records)

Oversampling Undersampling

Data subset Class 1 Class -1 Class 1 Class -1

Training set 20,000 20,000 2,072 2,072

Validation set 10,000 10,000 1,035 1,035

SUM 30,000 30,000 3,107 3,107

Test (hold-out) set 912 64,088 912 64,088

���� Created 2 Dataset Sampling candidates

�Oversampling outperforms undersampling consistently!

�Gain in Lift depends on method (different sensitivity)

�Oversampling has higher impact than data coding & scaling

Results

Increase

Increase

Increase

�Binning & Scaling of continuous attributes irrelevant for all methods!
�Use Undersampling & N-1 encoding with SVM & NN

�Best preprocessed SVM ���� lift of 0.645 on test set … BUT …

Recommendations from Case Study

• Sampling 
• Oversampling outperfoms undersampling for all methods

• Undersampling: better in-sample results & worse out of sample

• Choice  of method 
• NN & SVM better than CART

• Encoding & Projection
• SVM: avoid Ordinal coding (e.g. 1,2,3) all other similar (incl. N !)

• NN: avoid standardization & ordinal encoding 

• DT / CART: use temperature, all others similar (incl. ordinal)

�Results are consistent across error measures
�Experiments allow identification of ‘best practices’ to model methods

�Best-practice preprocessing varies between methods

Results across Pre-processing

� Preprocessing: higher impact than method selection
� Lift-variation per method from Sampling/Scaling/Coding 

> Difference of Lift between competing methods!

 

DTSVMNN

Method

0,65

0,64

0,63

0,62

0,61

0,60

L
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Lift performance on
Test data subset

 

DTSVMNN

Method

0,58

0,57

0,56

0,55

0,54
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Arithmetic Mean Performance
on Test data subset

 

DTSVMNN

Method

0,58

0,57

0,56

0,55

0,54

0,53

0,52

0,51

0,50

G
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Geometric Mean Performance
on Test data subset

DPP causes 50%-70% of the
differences between models
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• Case study 1: Direct Marketing
• Cross-selling of Magazine subscriptions

• Effect of data preprocessing: Sampling
• Interaction of Sampling with Scaling & Coding

• Case study 2: Credit & Behavioral Scoring
• Predicting consumer credit  default
• Effects of sample size

• Effects of sample distribution

• Case study 3: Online Shopping Behaviour
• Predicting consumer shopping channel choice
• Sample distribution & multiple classes

• Conclusion & Take-aways

Agenda

Business Case: Credit scoring

Credit 

application

“I would like 

a credit card”

Assessment of creditworthiness

Declined
(credit withheld)

Predicted 
behaviour

Accepted 
(credit provided)

“Bad” customer

uncreditworthy
“Good” customer

(creditworthy)

“Good” customer
(creditworthy)

Actual 
behaviour

“Bad” customer

(uncreditworthy)

�Definitions of ‘good’ and ‘bad’ based on repayment behavior
�Default, e.g. if customer is 3 months in arrears

Verstraeten & Van den Poel (2005)

Banasik & Crook (2007)

Kim & Sohn (2007)

…

Sampling issues in Credit Scoring

Sample size

• Very large customer populations 

• Millions of customer records (e.g. 
Barclaycard >10 mio cards & 

300,000 new in 2007)

• Requires sampling to be cost & 
time efficient in model building

�Draw suitably large sample to 
have discriminatory power

Sample Distribution

• Highly imbalanced datasets

• Datasets skewed to majority 
class of “good” customers 

(e.g. credit scoring from 2:1 for 

subprime portfolios to over 100:1 
for high quality mortgages)

�Use small datasets & undersampling

�Issues of sample size and sample distribution have been neglected

�Lenders ask similar questions & use industry data sources

�Datasets across lenders are very homogeneous

�Wide acceptance of heuristic rules of thumb (Lewis 1992, Siddiqi 2005)

�1500–2000 cases of each class is sufficient (incl. validation) 

����in each class 10 * number of predictors (Harrell, Lee et al. 1996). 

Datasets in Literature
Methods Dataset & Samples

Study

LDA LR NN KNN CART other #

data 

sets

good 

cases 

bad 

cases

independ.

variables

Boyle et al. 1992 X X hyb.

LDA

3 1 ??? 139 7 to 24

Henley 1995 X X X X PP

PR

6 1 ??? 4,132 16

Desai et al. 1997 X X X GA 4 14 714 293 18

Arminger et al. 1997 X X X 3 1 1,390 1,294 21

West 2000 X X X X X KD 6 2 360

276

270 

345

24

14

Baesens et al. 2003 X X X X X QDA

BC

SVM

LP

9 8 466

455

1,056

2,376

1,388

3,555

4,680

6,240

200

205

264

264

694

1,438

1,560

1,560

20

14

19

19

33

33

16

16

Ong et al. 2005 X X X GP

RS

5 2 246

560

306 

240 

26

31

�All but Baesens (2003) & Henley (1995) use small datasets ���� Reliability?

�All but Arminger (1997) use imbalanced dataset ���� Validity?
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Experimental Set-Up

Sample Size Balancing

5% Low High

10% Low High

15% Low High

… Low High

100% Low High

Undersampling      unbalanced       over sampling

P
er

fo
rm

an
ce

� Vary both sample size and balancing

• Analyse the effect of sample size

• Analyse the effect of sample distribution

CompareCompare

Relative Relative 

PerformancePerformance

Experimental Set-Up

• Two Industry Data Sets
• A. Application scoring data set (~89K observations. ~14K bad)
• B. Behavioural scoring data set (~121K observations. ~18K bad)

• Four methods
• Logistic regression
• Linear discriminant analysis
• CART ~ c4.5
• Neural networks

• Data pre-processed using binary dummy variables. 
• A standard practice applied to credit scoring problems
• Preliminary stepwise procedure used for variable selection

• 81 dummy variables for data set A.
• 113 dummy variables for data set B.

• Validation
• 50 fold cross validation for all sampling combinations

Results of Sample Size
Absolute Performance - AUC measure (GINI coefficient)

Dataset A Dataset B

�Results of sample size for Undersampling – robust across dataset A & B

�LR outperforms all methods across both datasets

�All methods increase performance with larger samples

�NN increases performance most with additional data (up to LR)

Npb = number in minority class (bads) used for parameter estimation

Results of Sample Size
Relative Performance in % of undersampling with 1500 bads - AUC measure (GINI coefficient)

Dataset A Dataset B

�Results of sample size for Undersampling

�Performance increases of 1% to 8% through larger sample size

�LR most robust regarding sample size
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Results of Sample Distribution
Absolute Performance - AUC measure (GINI coefficient)

Dataset A Dataset B

�Results of Sample Distribution for small sample size (1500 bads)

�Oversampling on average outperforms undersampling

�LR and LDA outperform each other based upon distribution

�Methods show different sensitivity to sampling balances

Under-

sampling

Original

Imbalance

Over-

sampling

Under-

sampling

Original

Imbalance

Over-

sampling

Results of Sample Distribution
Relative Performance - AUC measure (GINI coefficient)

Dataset A Dataset B

�Results of Sample Distribution for small sample size (1500 bads)

�Improvements of 1%-2% for LR, 1%-4% for NN feasible

�Original & Oversampling outperform Undersampling

�LDA most sensitive / LR most robust to sampling distribution

Under-

sampling

Original

Imbalance

Over-

sampling

Under-

sampling

Original

Imbalance

Over-

sampling

Results - Interactions
Dataset B - Neural Network

Interactions of Sample Size and Distribution

�Results of relative performance (undersampling & 1500 bads)

�Improvements of up to 10% of NN performance possible

�Additional data more helpful than increasing (over-)sampling

�No improvement beyond oversampling

Results - Interactions
Dataset B – Linear Discriminant Analysis

Interactions of Sample Size and Distribution

�Interaction (base upon benchmark) varies substantially by method

�Additional data more helpful than increasing sampling

�Under- and oversampling outperform imbalanced data
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Results

• Sample size
• Taking larger samples than those commonly quoted 

can lead to significant performance gains.

• >2% improvement for all methods considered
• >5 % for CART and NNs

• Balanced data sets better than unbalanced ones
• Balanced sampling outperforms imbalanced classes

• Over sampling out performs undersampling
• But even over sampling is not necessarily optimal

• Some methods much more sensitive to 
balancing than others
• Logistic regression very insensitive

• CART very sensitive

• Sampling issues in Data Mining

• Case study 1: Direct Marketing
• Cross-selling of Magazine subscriptions
• Effect of data preprocessing: Sampling

• Interaction of Sampling with Scaling & Coding

• Case study 2: Credit & Behavioral Scoring
• Predicting consumer credit  default

• Effects of sample size

• Effects of sample distribution

• Case study 3: Online Shopping Behaviour
• Predicting consumer shopping channel choice

• Sample distribution & multiple classes

• Conclusion & Take-aways

Agenda

Business Case: Predicting 
Customer Online Shopping Adoption

• Traditional buying process is offline & simultaneous ���� “bricks” store

• Introduction of the Internet changes consumer behaviour
• Seek information online & offline

• Purchasing online & offline
� Changing purchasing behaviour through internet adoption

� Changing purchasing behaviour through Technology Acceptance

• Development of heterogeneous Purchasing Behaviour
• Example: Purchasing electronic durable consumer goods

• Search for product info (e.g. video cameras) online

� test product in-store 

� search for best deal on internet & purchase

Search for Information Online Purchase Online

Search for Information Offline Purchase Offline

OnlineOnline

ShoppersShoppers

NonNon--InternetInternet

ShoppersShoppers

BrowsersBrowsers

Stages of Internet Adoption

1. OFFLINE BUYERS1. OFFLINE BUYERS
Information gathering 

& purchasing in Stores

2.2.BROWSERSBROWSERS
Information gathering online 

& purchasing in stores

3.3.ONLINE BUYERSONLINE BUYERS
Information gathering 

& purchasing online
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Motivation

DIDIER: Marketing Modelling
• Econometric / Marketing Domain

• Seeks to explain how customers behave in 
online shopping

• Use of ‘black-box” logistic regression 

models

��������Models class membership to identify Models class membership to identify 
causal variables that causal variables that explainexplain choiceschoices

��������DescriptiveDescriptive & Normative Modelling& Normative Modelling

SVEN: Data Mining Perspective
• IS/OR/MS Domain � Data Mining

• Seeks to accurately predict regardless of 
explanation why customers buy

• Use of “black-box” methods from 

computational intelligence

��Models class membership to Models class membership to 
accurately accurately classifyclassify unseen instancesunseen instances

��PredictivePredictive ModellingModelling

�same dataset & same objectives & similar methods

�Conflicting  “best practice” approaches to modelling

�Outside of most software simulators!!! Implicit knowledge?
�… WHO IS “CORRECT”?   WHAT IS THE IMPACT? 

Best practices

� balance datasets for distribution 

representative of population
� Use ordinal variables & nominal variables 

without recoding

� Do not normalise / scale data

Best practices

� Rebalance datasets for equal distribution 

of target variables
� Recode ordinal � binary scale

� Rescale & normalise data to facilitate 

learning speed etc.
≠≠≠≠≠≠≠≠

Dataset

• Survey on Internet Shopping Behaviour
• 5500 UK households � 685 respondents
• Adjusted for age, income etc. of customers (older less likely to buy)

• Adjusted for product specific risk of online shopping for branded 
durable consumer goods (inspection required to some extent)

• 73 questions on factors related to internet shopping, products etc.

Online Shopping Factors:

“Going to the shops is as convenient 

as Internet shopping”

“I would buy online if products are 

branded” etc. [1=strongly agree; …]

Demographic Factors

Age, Gender, Income

Internet Utility Factors

Score from 6 correlated variables

� Mixed scale of nominal, ordinal, interval

Imbalanced Classification problem

UndersamplingOversampling

Dataset

Offline-
Shoppers

BrowsersOnline-
Shoppers

Offlin e-
Shopp ers

BrowsersOnline-
Shoppers

Test

Validation

Training

Da ta Subset

 

Imbalanc ed

Offline-
Shoppers

Brows ersOnl ine-
Shoppers

400

300

200

100

0

C
o

u
n

t

• Split of Dataset for Training, Validation and Test {50%;25;25%}
• Distribution of target classes is skewed 

{65% online buyers; 22.5% browsers; 12.5% offline shoppers}
• Rebalancing of data sets through over- & undersampling)

Results without Discretisation
Logist.Reg. True 

Value

Training Data Test Data
Dataset Online Browse Offline Online Browse Offline

Original Online 93.36 5.17 1.48 88.89 7.78 3.33

Imbalanced Browser 62.77 23.40 13.83 49.39 22.58 29.03

Offline 36.54 17.31 46.15 35.29 29.41 35.29
Under- Online 57.69 30.77 11.54 64.44 23.33 12.22

Sampling Browser 26.92 48.08 25.00 32.26 25.81 41.94
Offline 17.31 21.15 61.54 29.41 35.29 35.29

Over- Online 68.27 24.35 7.38 74.44 16.67 8.89

Sampling Browser 30.63 43.91 25.46 35.48 29.03 35.48
Offline 16.97 19.93 63.10 29.41 29.41 41.18

Neural Net Training Data Test Data

Dataset Online Browse Offline Online Browse Offline

Original Online 86.19 12.71 1.10 86.67 8.89 4.44
Imbalanced Browser 53.13 31.25 15.63 41.94 35.48 22.58

Offline 25.17 28.57 45.71 29.41 35.29 35.29
Under- Online 44.86 40.00 17.14 27.78 58.89 13.33

Sampling Browser 14.29 48.57 37.14 16.13 32.26 51.61
Offline 8.57 20.00 71.43 11.76 41.18 47.06

Over- Online 81.22 18.23 0.55 61.11 22.22 16.67

Sampling Browser 14.92 83.43 1.66 19.35 77.42 3.23

Offline 15.52 0.55 99.45 0.00 11.76 88.24

�
�

�
� �

MCRtrain=54.3%

MCRtest =48.9%

MCRtrain=55.8%

MCRtest =41.8%

MCRtrain=58.4%

MCRtest =48.2%

MCRtrain=54.4%

MCRtest =52.5%

MCRtrain=54.9%

MCRtest =35.7%

MCRtrain=88.0%

MCRtest =75.6%

Mean Classification Rate (%)
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Results with Discretisation of Ordinal
Logist.Reg. True 

Value

Training Data Test Data
Dataset Online Browse Offline Online Browse Offline

Original Online 91.51 6.64 1.85 85.56 7.78 6.67

Imbalanced Browser 54.26 36.17 9.57 48.39 32.26 19.35

Offline 26.92 17.31 55.77 58.82 47.62 17.65

Under- Online 71.15 21.15 7.69 55.56 24.44 20.00
Sampling Browser 17.31 65.38 17.31 67.74 6.45 25.81

Offline 15.38 11.54 73.08 58.82 0.00 41.18

Over- Online 68.63 22.88 8.49 70.0 21.11 8.89

Sampling Browser 17.34 56.83 25.83 12.90 58.06 29.03
Offline 13.28 14.02 72.69 17.65 23.53 58.82

Neural Net Training Data Test Data

Dataset Online Browse Offline Online Browse Offline

Original Online 96.13 3.87 0.00 84.44 11.11 4.44
Imbalanced Browser 68.75 28.13 3.13 64.52 22.58 12.90

Offline 40.00 14.29 45.17 58.82 11.76 29.41

Under- Online 57.14 40.00 2.86 25.56 72.22 2.22

Sampling Browser 34.29 54.29 11.43 67.74 29.03 3.23
Offline 14.29 31.43 54.29 52.94 17.65 29.41

Over- Online 98.34 1.10 0.55 58.89 24.44 16.67

Sampling Browser 0.00 100.0 0.00 3.23 83.87 12.90

Offline 0.00 0.00 100.0 0.00 5.88 94.12

�
�

�
� �

MCRtrain=61.15%

MCRtest =45.1%

MCRtrain=69.9%

MCRtest =34.4%

MCRtrain=66.0%

MCRtest =62.3%

MCRtrain=56.5%

MCRtest =45.5%

MCRtrain=55.2%

MCRtest =28.0%

MCRtrain=99.5%

MCRtest =79.0%

�

Mean Classification Rate (%)

Oversampling outperforms other samplingsOversampling outperforms other samplings
- Across Different Datasets

- Across various data preprocessing 

Methods show different sensitivity to SamplingMethods show different sensitivity to Sampling
- More variation from sampling, coding & scaling than between methods
- Using different preprocessing variants is important in modeling

Various sophisticated extensions existVarious sophisticated extensions exist
- SMOTE (Synthetic Minority Oversampling Technique)

- K-nearest Neighbor sampling (removal / creation)

- One-class learning etc. …

Extend your bad of tricks …Extend your bad of tricks …
- … and experiment with imbalanced sampling!

Summary

Sven F. Crone
Lancaster University Management School
Centre for Forecasting
Lancaster, LA1 4YX
email s.crone@lancaster.ac.uk

Questions?Questions?
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