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FOREWORD
Welcome to the 2009 UK Symposium on Knowledge Discovery and Data Mining.

The symposium aims to bring together researchers and practitioners who are interested in
advancing the field of data mining and knowledge discovery, sharing their experience of
developing state of the art applications and debating some of the scientific, engineering,
societal and ethical issues surrounding the field.

The event adopts the successful format of the previous events held at the University of
Liverpool, University of East Anglia, University of Kent, and the University of Bristol,
where invited speakers present seminars aimed at dissemination of new research, sharing of
experience gained in developing state-of-the-art applications and discussion of major issues
in data mining.

The topics covered in the symposium represent some of the most important and exciting
issues in the field. There are presentations on fundamental research topics such as how data
mining is changing the very nature of scientific methods, the challenges of time series data
mining, use of social network analysis for classification of messages, knowledge discovery
from case data, and development of a unifying framework for feature selection methods.
There are also presentations describing the lessons learned from real world case studies in
detecting financial crime, profiling electricity usage, image processing, credit scoring, and
predicting internet shopping patterns. These exciting topics are, of course, only possible
because of the willingness of the invited speakers to share their knowledge and expertise.

I’d like to thank several people, without whom this symposium would not have been possible.
I’m most grateful to Frans Coenen, who founded the series, provided encouragement,
suggested speakers, promoted the event and is the driving force behind the series. I am also
grateful to Trevor Martin who shared his experience of organising the event in 2008, and the
previous organisers, George Smith and Alex Freitas for their support. Nathalie Audren-
Howarth provided excellent administrative support and Louise Heatley developed a
wonderful web site that led to positive comments from several users.

Financial sponsorship for the event was provided by the University of Salford, the British
Computer Society and SYS Consulting Ltd.

We hope you find the event useful, get an opportunity to meet others in the field and enjoy
the day.

Sunil Vadera

(On behalf of the KDD’09 Organising Committee)
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Nello Cristianini is a Professor of Artificial Intelligence at the University of Bristol since
March 2006, and a holder of the Royal Society Wolfson Merit Award. He has wide research
interests in the area of computational pattern analysis and its application to problems ranging
from genomics, to computational linguistics and artificial intelligence systems. He has
contributed extensively to the field of kernel methods. Before his appointment at Bristol, he
held faculty positions at the University of California, Davis, and visiting positions at the
University of California, Berkeley. He has been Action Editor of the Journal of Machine
Learning Research (JMLR) since 2001, and Associate Editor of the Journal of Artificial
Intelligence Research (JAIR) since 2005. He is co-author of the books 'An Introduction to
Support Vector Machines' and 'Kernel Methods for Pattern Analysis' with John Shawe-
Taylor, and "Introduction to Computational Genomics" with Matt Hahn (all published by
Cambridge University Press).

Eduarda Rodrigues, Microsoft, Cambridge

Eduarda is a Researcher with the Integrated Systems group at Microsoft Research
Cambridge. Her research interests lie in the broad areas of data mining and web information
retrieval. In particular, her current work is focused on social network analysis, online
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She obtained the Licenciatura degree in Electrical and Computer Engineering from the
University of Porto, Portugal, in 1998 and a Ph.D. degree in Electronic and Electrical
Engineering from University College London, UK in 2005.

Prior to joining Microsoft Research, she was a Research Fellow at the Electronic and
Electrical Engineering Department, University College London, working on Web and Grid
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engineer at the Institute for Systems and Computer Engineering of Porto (INESC Porto),
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as a Lecturer in Statistics for Data Mining. In 2007 he was promoted to senior lecturer.
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mining, a topic of his presentation at UK KDD’09.
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Soft Computation (2006), and International Joint Conference on Neural Networks (2005-
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Robert Gordon’s Institute of Technology or RGIT) as a lecturer.
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senior research fellow to the University of Aberdeen where she worked on the MLT ESPRIT
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Studies for the Faculty of Design & Technology in 2006.

Her research develops machine learning and data mining techniques to discover knowledge
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University Management School. He also serves as the deputy director of the Lancaster Centre
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Sven received his Dipl.-Kfm. (MBA and BBA equivalent) and PhD (pending) in forecasting
with neural networks from Hamburg University, Germany, and was a visiting fellow at
Stellenbosch Business School, South Africa, and George Mason University, USA. His
research focuses on forecasting and data mining applications, frequently using methods from
artificial intelligence. He has authored over 25 articles in international journals and
conference proceedings and has given over 45 international presentations in the field.

Some of his recent projects at the Lancaster Centre for Forecasting include event and weather
based forecasting with statistical methods for retailer TESCO UK, copper price forecasting
with artificial intelligence for producer CODELCO Chile, forecasting advertisement ratings
for TV company ITV UK, and implementing international demand planning methods,
processes and systems in SAP APO-DP with FMCG producer Beiersdorf AG.



Scientific Method and Patterns in Data

Nello Cristianini
University of Bristol

Abstract

The way we do science is changing fast, due to large scale data analysis technologies.
The automated gathering of massive amounts of data, followed by their automated
analysis, is becoming mainstream in many sciences. The knowledge extracted by
machines may not even need to be readable by humans, as it can be used by other
machines, for example in the design of new experiments. The very foundations of
scientific method are undergoing a transformation, and notions like Theory and
Model are under discussion. New notions, like Pattern and Predictive Rule, may be
taking their place. The Social Sciences may be the next conquest, after Biology and
Physics, of this new way of doing science.

Introduction

In the summer of 1609, nearly exactly 400 years ago, Galileo Galilei was in Venice,
trying to sell his telescope to the Doge, in return for tenure. He had not really invented
it, as this was the creation of Dutch spectacle-maker Hans Lipperhey, of which he had
heard a description. He greatly developed it, and offered it to the Venetian Fleet as an
aid to navigation and early detection.

During 1609 Galileo perfected his lens grinding skills, experimenting with methods
and designs. He created various models and investigated the principles behind optics.
He could have started a business making telescopes, or magnifying glasses, or
spectacles. He could have been satisfied with the wage he received from the Republic
of Venice.

But Galileo was a scientist, not just a tool maker. Although he did design, create, and
test some of the best tools of his time, he was not just concerned with the engineering
aspects of his work, and the commercial opportunities. As a true scientist, he was
interested in understanding the world around him, something that would get him into
trouble more than once. Technical and scientific advances sometimes can have
profoundly disruptive effects on society at large.

So in the summer of 1609, at age 45, he turned the telescope to the sky, and started his
investigation of the Moon. He discovered mountains and valleys, by observing their
changing shadows. Most importantly he discovered that the Moon — contrary to
Aristotle’s opinion — was not a perfect sphere. Something was wrong with the
established model of the Universe.

Later on he discovered with the telescope that Jupiter was orbited by 4 Moons, and
this showed that in at least one case, celestial bodies did not revolve just around the
Earth. Then with the same tool he discovered that Venus has phases, just like our
Moon.

In fact, he realised, Aristotle was wrong, the Earth and Venus and Jupiter orbited the
sun, the Moon orbited the Earth, like the 4 Moons of Jupiter orbited their planet.
Furthermore our Moon — at least — was not a perfect sphere, but had mountains, and
he could infer their height by measuring their shadows, and predict which of them



would come out of the dark first, every month. What he had been taught about the
Universe was incorrect.

His work was published very rapidly, in March 1610, in a short booklet entitled
“Sidereus Nuncius” (Starry Messenger). His work with lenses and telescopes was
important not because it had direct implications on how we did things on Earth —
although that too — but because it was eventually responsible for a fundamental
revolution of our thinking. Its implications were theological, and landed Galileo into
trouble with the Church, among other things. His observations forced him to question
the received wisdom, and this is always an act of challenge, although one that is
expected of scientists. These implications were also philosophical, and
methodological.

In fact, that was a very early example of modern systematic scientific investigation: a
scientific instrument was developed and used to make observations, mathematical
relations were derived for the geometry on the Moon, and predictions were used as a
way to validate the models. A key assumption was that the same laws (of geometry
for example) must apply on the Moon as on Earth.

For this and many other contributions, Galileo is associated with a major shift in
scientific method, although others were thinking along the same lines at the time.

Scientific Method.

The systematic method we use to derive and represent unambiguous knowledge, so
that it has predictive and explanatory power over the world, is a major achievement of
our culture. Not all cultures focused on a systematic approach to knowledge
acquisition and revision, see for example the Romans. There are many ways of
knowing the world, and the scientific method is a systematically organised procedure
to produce knowledge that is reliable, and remove that which is not.

Over the centuries, we have started gathering knowledge in an organised process,
involving a cycle of experimental design and hypothesis generation, representing the
results — wherever possible — in unambiguous mathematical terms. In fact, certain
branches of mathematics have grown just to accommodate this new role that
mathematics had in modelling (while its origins were just in calculation). This has
been the accepted way in which we do science for the past few centuries, but is not
the only possible way.

In fact, the scientific method has been in constant evolution for a long time. The same
can be said of the practices we follow as a research community, with anonymous peer
review and publication of results being a crucial part of the current ritual of science.
Observations lead to competing models, and this leads to experiments, and their
outcomes are used to revise the current models, and this in turn suggests new
experiments, and so on, in a cycle. The discovery of the laws of mechanics — for
example - can be seen in this light, with competing intuitions about mass, acceleration
and friction, leading to key experiments. In most cases, these feedback loops are much
more complex and interconnected, but the interactive nature of the modelling process
is often very visible.

But things are changing fast. Now the process is going through an “industrial
revolution” of its own. Data are gathered automatically, by computers and robots,



effectively acting as massive measurement apparatuses, replacing what were for
Galileo the thermometer or the clock. Increased accuracy and the ubiquity of
measurement devices result in ever larger repositories of experimental data, stored in
dedicated disk farms.

We can look at the examples of Physics, Genomics, Drug Design and Astronomy.
They all exemplify the same trend in science.

The Large Hadron Collider at CERN is a machine designed to produce experimental
data, potentially 15 Petabytes per year [Duellmann, 2007]. The engineering
challenges in producing, storing and managing this amount of information have
reached awesome proportions. But it is the analysis of this data that is truly mind
boggling. And this experiment can be seen — in a way — as the direct descendent of
physical experiments initiated 400 years ago by Galileo: the systematic investigation
of the basic laws of nature has led us to this point.

Similar challenges are encountered by today’s biology. The direct descendents of
Mendel’s painstaking collection of genetic inheritance data are experiments aimed at
the full sequencing of thousands of genomes at once. Terabytes of data are now
produced by each of the new generation of sequencing machines, and the Sanger
Centre in Cambridge is now working on the 1000 genomes project
[1000genomes.org, 2007]. Hundreds of species have now been fully sequenced, and
we are well down the road of comparing multiple complete sequences within the same
species.

In drug design, it is standard to test compounds to see if they bind to a given target, by
exhaustively testing entire libraries of chemicals, by use of robots, in what is called
combinatorial chemistry [DeWitt, 1995]. Hundreds of thousands of compounds can be
generated and tested, either by using robotics, or — increasingly — even by computer
simulations, in what is essentially a survey of entire regions of chemical space,
hunting for compounds with a given set of properties.

Astronomy — another child of Galileo’s — is now done by automatic surveys of the
night-sky run by computers, and by subsequent automatic analysis of the images and
data gathered in this way. One such project is the Sloan Digital Sky Survey (SDSS),
which created a 5-wavelength catalogue over 8,000 square degrees of the sky,
containing about 200 million objects, described by hundreds of features (data released
incrementally to the public [Adelman-McCarthy, 2008]). The SDSS used a dedicated
2.5-meter telescope at Apache Point Observatory, New Mexico. The 120-megapixel
camera imaged 1.5 square degrees of sky at a time, about eight times the area of the
full moon. A pair of spectrographs fed by fibre-optics measure spectra of (and hence
distances to) more than 600 galaxies and quasars in a single observation. The database
generated over 8 years by this automated survey is several Terabytes large, presenting
serious challenges to data management and mining [ Adelman-McCarthy, 2008].

In fact, we should consider this point in all its disruptive implications, that directly
challenge normally accepted assumptions. Taken to its extreme consequences, its
implications to Epistemology are significant. There is no way that people can analyse
the data produced at LHC, or at Sanger Centre, or by sky surveys. They can only be
conceived because we can rely on computers to do the analysis of data for us.



And this is the point we are considering: our scientific method has changed. The
revolution is not a matter of detail, or even quantity. It is a matter of quality. We have
industrialised both the production and the analysis of experimental data. We have
industrialised the generation of scientific knowledge. And this will not just lead us to
a significant acceleration of knowledge acquisition in the future, by virtue of the
automation of the feedback loop, but it also invites us to re-examine what scientific
laws and models actually are.

The automatic analysis of patterns in data, the automatic generation of hypotheses,
is a fundamental part of science. This is how computer science, statistics, and also
artificial intelligence, are finding their way to the core of all science, and to the core
of how we know our world. This is how automated pattern analysis found itself at the
centre of a revolution that will have far reaching consequences.

A Newer Method.

The automatic analysis of data, in search for significant — if elusive - patterns, is now
a key part of many scientific experiments, and this is an increasing trend.

Statistics and computer science, and the convergence of dozen of smaller disciplines,
create a conceptual and technical framework and body of knowledge that we call
Pattern Analysis. It includes tools to extract significant information from networks,
images, strings, text, bio-sequences, vectors, time series, and any other form of data
that scientists routinely analyse and model.

We may think that the process of scientific discovery will not be fully automated until
machines will be able to generate complete theories of a domain, with their formalism
and equations. This deserves 2 fundamental responses: 1) this is not necessarily out
of reach for machines 2) this is not necessary for machines to be doing science.

As for Point 1, I will just point to a line of research, represented by [Schmidt, 2009]
where various search algorithms are used to explore the space of mathematical
formulae, looking for simple expressions that account for invariants in data gathered
from a physical system. Systems of this kind are capable of inferring physical laws
from experimental data, either in the form of differential or algebraic equations. The
conservation law of angular momentum in a double pendulum, for example, was re-
discovered by a fully automated apparatus searching the space of all possible
mathematical formulae.

But Point 2 is much more important. We tend to think that the output of a scientific
investigation such as Newton’s or Einstein’s should be a set of equations, and their
interpretation, that can be used to work out predictions or models, for specific
outcomes and specific experiments. We focus a lot on analytic manipulations of these
general equations, as an example of abstract knowledge manipulations.

But this is not strictly necessary to science. The output of the scientific process does
not need to be a set of equations — although this is what we have come to expect from
Physics. All we ask of a model is to make the right prediction in the right situation.
There can be both physical and formal models of physical systems. Different
mathematical tools can be used to model the same system.



Calculus is not less arbitrary a representation than others: logical statements or
statistical patterns may be used just as well to model some aspects of reality. Calculus
simply provides modellers with a language and a technology for computation that was
unsurpassed for centuries, and hence was the most natural choice to describe Physics.
In fact, the two co-evolved and co-adapted. If one can produce a formal framework
that can simulate some aspect of reality, this is sufficient to make it a modelling
language.

The detection of subtle, elusive but predictive patterns in vast masses of data may be
as useful as the creation of a simple mathematical model to explain them. Typically,
the model is used to make predictions anyway, the same predictions that data-patterns
can make. What if we had a computer that can make the same predictions without
needing to start from a set of high level equations, but instead starting from a set of
relations discovered in data? Just as these equations derive their meaning from their
use, one could argue that predictive patterns discovered in data could play a similar
role.

Besides, it is quite possible for machines to summarise these patterns in compact
theories, only to deduce them back when needed from the basic axioms. This is what
humans do. But would that be useful for machines?

When was it in history that we started considering ‘explained’ a phenomenon when
we had — for example - a few equations describing its dynamics? It surely must have
started in mechanics, perhaps with Newton, maybe with Galileo himself. But these
equations are ultimately combined together, and with observation of initial conditions,
in order to derive predictions. What if we could just derive the very same predictions
from initial conditions and knowledge that is represented in a different way, perhaps
even as raw data?

Large part of all the scientific knowledge produced by humanity, is not in anyone’s
mind, but in some — possibly still unlinked — databases, and will only ever be accessed
by machines [Berners-Lee, 2001]. As long as the consumers of this knowledge are
other machines, human-readability is not a crucial issue. If the information is used —
for example — to design new experiments, or even to design drugs, humans may even
be completely out of the knowledge creation / exploitation loop.

Designing Experiments

Recently the function of some yeast genes has been pinpointed by a robotic apparatus,
generating hypotheses based on previous observations. This was part of an effort to
develop a system capable of performing the full hypothetical-deductive cycle: the
design of automatic-scientist systems, which can design and perform experiments
based on the outcomes of previous experiments [Bryant, 2004], [King, 2009]. For
systems like these, there would really be no reason for the knowledge they produce to
be understandable by humans, as it is used only by them, to perform increasingly
discriminating experiments.

The system discussed in [King, 2009] “has autonomously generated functional
genomics hypotheses about the yeast Saccharomyces cerevisiae and experimentally
tested these hypotheses by using laboratory automation”. In particular, it was applied
“to the identification of genes encoding orphan enzymes in Saccharomyces cerevisiae:
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enzymes catalyzing biochemical reactions thought to occur in yeast, but for which the
encoding gene(s) are not known”.

The robot “formulated and tested 20 hypotheses concerning genes encoding 13 orphan
enzymes. The weight of the experimental evidence for the hypotheses varied (based
on observations of differential growth), but 12 hypotheses with no previous evidence
were confirmed with P < 0.05 for the null hypothesis.” These hypotheses were later
confirmed also by human scientists.

While in this particular system all the knowledge produced is represented as logical
statements, it is important to notice that in order for a system to design new
experiments and perform hypothesis testing, simple machine-readable knowledge
would be sufficient.

Pattern Analysis

Of course we are not announcing “The End of Theory” (although these claims have
been made recently, [Anderson, 2008]) but just that we are facing an alternative — and
equally valid — scientific method. This will also help us understand better the status of
theoretical knowledge produced by science. Patterns extracted from data can reliably
be used to make predictions — just ask Amazon.com or Google.com — without the
need to formulate the knowledge contained in them in the form of differential
equations, or other theoretical constructions, including grand unified theories.

But what matters is that at the centre of this paradigm shift is our capability to gather,
store, manage and analyse massive amounts of data automatically. And this is the
permanent marriage between statistics and computer science — and many other sub-
disciplines — that is represented by computational pattern analysis.

Software tools for data mining, just like Galileo’s telescope, were perhaps not
originally created for doing science, but very often for doing business. But just like
Galileo, we can turn them and use them to change the way we understand our world.

And the fact that we are using off-the-shelf hardware to produce data, and to manage
and store it, and we are using commercial software to analyse it, can only signal that
further accelerations are to be expected, as costs are driven down.

Social Sciences: Media Content Analysis.

My research group at the University of Bristol makes extensive use of pattern analysis
technologies, which were originated for practical or industrial applications, to answer
purely scientific questions. Much like Galileo directed the telescope to the Moon, we
are aiming these new tools to another type of “sphere”. The analysis of contents in the
Global Media-sphere is becoming accessible to computers, and this means that it can
now be done in vast scale and in real time.

The Global Media System (or Mediasphere) is the interconnected system of all
newspapers, magazines, broadcast-news outlets, blogs, news-wires, and so on. Every
outlet can pick and choose whichever news it wants to carry; each user can choose
whichever outlet they want to read; complex dynamics regulates the resulting process
of information selection and diffusion; but simple patterns emerge, if we look in the
right place. We are interested in observing (and modelling) how “ideas” flow and
interact, as they traverse the media system (in the setting of blogs, see [Huberman,
2004] for an example).
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In order for machines to access and use the contents of the Global News Media
System, it is necessary that they understand (to some extent) human language. And
this is a totally new ingredient that we can add to the mix, today: machines can
actually read and “understand” certain aspects of text. Our apparatus is machine-
translating every day from 22 languages, and reading 1,100 news outlets, obtaining
about 20K news items per day. In the resulting vast, machine processed, dataset we
have found 450K named entities, for example, exhibiting a perfect power law of
popularity, and interesting relations such as a 3-fold extra interest in the Pope found in
Spanish-language media over English-language media, over the same period, in the
United States.

We are detecting text re-use, with massive scale implementations of suffix trees, and
tracking memes as they spread through the outlets forming the global media sphere.
We are recreating social networks, and detecting biases in the choice of topics and
words in various types of outlets. We even measure readability.

Social scientists have been interested in understanding the media system for decades,
but their investigations could only be performed by hand, on limited numbers of
outlets, time spans, and topics. A true constant monitoring of all outlets and all topics
in all languages is now within reach, and automatic analysis tools are becoming
available.

Similar ideas can apply to the Humanities, with the possibility to analyse millions of
books, in an automated — but still partly semantic — way. What is sometimes called
“Cyberscholarship” will do for the social sciences and humanities, what has already
been the computer revolution in the Life Sciences. Patterns found in text and images
can be then used to design more experiments, or to analyse the behaviour of readers,
and so on. Also psychology stands to benefit from these advances. There is much
more to “data” than numbers, and a data-driven approach to science can cover
unexpected fields of knowledge.

Publishing Data.

Making data available in a linked form, a version of the Semantic Web [Berners-Lee,
2001] could one day take the place of publishing a discovery. The data could be made
available by a machine, and used by another machine. The notion of scholarly
publication, in the form of peer-review report of some experimental findings, is a few
centuries old, and is by no means the only possible form of publication of results.

GenBank is a database that contains publicly available nucleotide sequences for
more than 300,000 organisms. It has grown exponentially since the early 1980s, and
continues to do so with a current doubling time of about 30 months. Currently
GenBank contains over 95 billion nucleotide bases from more than 92 million
individual sequences, with 16 million new sequences added in the past year. [Benson,
2009]

The examples of Pubmed and Genbank will be followed by other sciences, in the
future, with a tight integration of results, data and methods, sharing and globally
creating a single unified resource.

12



Conclusions: The Future of Method.

The scientific method is today evolving faster than ever. The automation,
systematisation and industrialisation of information gathering and analysis, are
accelerating the rate at which we expand our knowledge of the world. Machines now
produce knowledge about our very own biology. The proportions of this transition
should not be underestimated, and the science of patterns, information and knowledge
is at the centre of this storm. While advances in most other disciplines change the
overall body of knowledge we have about the world, advances in Pattern Analysis and
Data Mining change the very way in which we acquire that knowledge.

Galileo Galilei could have kept on making hi-tech tools and gadgets, and would
certainly have found enough customers to make a comfortable living. But he was a
scientist, and so he used those tools to understand the world around him. In the
process he used mathematical representations of the laws that he discovered, designed
experiments to gather data, and overall deployed the modern methodology. He also
got into trouble with the authorities, because he refused to keep his telescope aimed
low enough, and refused to ignore what he saw with it.

A new generation of scientists, with a new generation of tools, can now do the same,
and gather unprecedented types of data, and draw far reaching conclusions about our
world. The automatic collection of data in genomics, chemistry, astronomy, physics
and also the social sciences, will revolutionise the way we see our world, and will
further an understanding of it as a single interconnected system. Automated Data
Analysis is at the centre of a very important revolution in the very way we produce
new scientific knowledge.
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Abstract

Online communities, such as newsgroups, forums,
Q&A services, among others, generate huge amounts of
content every day. Such social media often contains
information, advice and opinions that are valuable not
only for community members but also for Web users in
general, who may be searching online for problem-
specific information. While some community users are
committed to producing quality content, others primarily
seek social engagement. Thus, it is important to
understand the nature of the users’ interactions and the
value of individual contributions. In this paper, we
discuss how social network analysis can be used to
enhance the automatic classification of newsgroup
messages and to characterize the nature of social
interactions in Q &A communities.

1. Introduction

Newsgroup communities have been around since the
early days of the Internet. They are formed around a
variety of topics and participants interact with each other
through threaded conversations, for sharing information,
opinions, providing support, advice, etc. Community
question answering services (cQA), such as Yahoo!
Answers and Live QnA, have become quite popular in
recent years. Their aim is to provide support for users
with specific information needs to obtain prompt
responses to their questions from other users of the
community. Similarly to newsgroups, questions are often
requests for advice or opinion, which are unlikely to be
obtained through standard Web search. Even though the
answers can be submitted by users of all levels of
expertise, the quality of answers can compare, or even
surpass, the quality of answers given by expert networks
and library reference services [11].

The social media content generated by online
communities results in a rich knowledge base and
valuable resource for other Web users to search and
explore. Besides the standard Web users who might come
across such content via a search engine, it is known that a

large percentage of users (often over 90% [17]) are
lurkers who read available content but rarely
communicate with others [17, 19]. Thus, providing
effective support for search and browsing through
community-generated content is of great value to the
users. In particular, for finding information it is helpful to
understand the structure of discussion threads and quickly
‘zoom’ onto the ‘answer’ messages. For those joining in a
long discussion it is useful to get a sense of the dynamics
and agreement level among participants.

Furthermore, it is also useful to differentiate between
threads containing factual information from those where
users primarily seek to communicate and connect with
each other. Specifically, cQA services while designed
primarily to facilitate answering questions, they are based
on the premise that their communities are formed, active,
and self sustainable. Inevitably, the quality of the cQA
services depends on the level of expertise of the
community members, the level of responsiveness to
questions, and the nature of the users’ interactions. Thus,
it is important to gain a good understanding of the
community dynamics and content contributions in order
to provide the right incentives for creating desirable
content.

This paper discusses the use of social network
analysis for enhancing the automatic classification of
newsgroup messages (Section 3) and for characterizing
the nature of social interactions in Q&A communities
(Section 4). Section 2 presents related work and Section 5
a summary of main findings.

2. Related Work

2.1 Newsgroup Communities

Discussion groups, blogs, online product reviews, and
other community-generated content are rich sources of
users’ sentiment and opinion and have been a subject of a
considerable body of research on opinion polarity and
sentiment analysis. Techniques that have been used
include text classification methods [3, 18], linguistic
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analysis [9, 15], and social network analysis [3, 20]. The
properties of the reply-to social network have been used
to identify topic polarity of newsgroup participants [3, 13]
and to characterize newsgroup types and author roles [7].

Based on the hypothesis that a message response is
most likely to disagree with the parent message, Agrawal
et al. [3] applied constrained and unconstrained graph
partitioning techniques to cluster authors who share
similar opinions into two opposing camps. Kelly et al.
[13] clustered participants with similar opinions within a
newsgroup and found that, regardless of the underlying
distribution of participants into the clusters, the ratio of
messages on each side of the discussion is balanced.
Indeed, the traffic of the minority opinion was found to be
larger in order to make up for the smaller number of
people.

2.2 Community Q&A Services

Community Q&A services have grown in popularity
over the last couple of years, greatly due to the success of
Yahoo! Answers. The research community has also
gained interest in investigating various aspects of this
service, leading to a number of studies reported over the
past year [1, 2, 11, 12]. There has been a great emphasis
on identifying and predicting quality answers [1, 2, 11],
and modelling users authority [10, 12].

Adamic et al. [1] analysed the Yahoo! Answers social
network, identifying users with similar behaviour to the
‘answer-person’ role found in newsgroup communities
[7]. Agichtein et al. [2] provided a classification model
for estimating answer quality based on features derived
from the content and also authority measures from the
social network. Gyongyi et al. [10] and Jurczyk et al. [12]
applied variants of Kleinberg’s HITS algorithm to the
Q&A social network graph to model user reputation and
level of expertise.

3. Classification of Newsgroup Messages

We performed a set of experiments with the aim to
classify messages posted to two types of newsgroups,
political discussion groups and Q&A groups, and to
investigate the impact of particular features on the
classifiers performance. We applied linear Support Vector
Machine (SVM) [5] classifiers to:

1) Predict the agreement level between a message and its
parent message within discussion newsgroup threads.
Messages were classified as ‘agree’, ‘disagree’, or
‘insult’.

2) Identify which messages are questions or answers
within technical Q&A newsgroup threads. Messages
were classified as ‘question’ or ‘answer’.

We represented each message-parent pair by a vector
of features and we used a one-vs-all multi-class approach

for classifying message pairs. In this section, we describe
the dataset, feature sets and present a summary of the
classification experiments reported in [8].

3.1 Dataset

Our dataset consists of message thread and header
information from 4 Usenet newsgroups. The first two
newsgroups, alt.politics.immigration and talk.politics.
guns, host mostly political discussions and debates. The
other 2 groups, microsoft.public.internetexplorer. general
and microsoft.public.windowsxp.general, host mostly
Q&A-type threads. Table 1 contains information about
these data sets, hereafter referred to as immigration, guns,
iexplorer and winxp. It lists the total number of threads,
messages, replies and authors per newsgroup. It also
indicates the period of time in which all messages were
collected.

Table 1. Description of the newsgroup data sets.

Newsgroup Threads Messages Replies Authors C(l))lle;ci(t)i:i)n
immigration 1,367 10,095 8,728 463 Aug 31 to
Guns 874 6,776 5,902 844 Oct 19°06
iexplorer 3,631 10,934 7,303 3,443 Jul 19 to
winxp 10,280 42,052 31,772 8,145 Oct 19°06

For the classification experiments we created training
data sets from several samples of threads randomly
selected from each newsgroup. The sample messages
were annotated by experts with one of the labels listed in
Table 2.

Table 2. Message labels.

Label Description

agree Message agrees with the point of view of the parent
message. Adding clarifications or extra info also
counts.

disagree Message disagrees with the point of view of the parent
message. Sarcastic comments also count.

insult Author of the message is purely insulting the author
parent message. Insults replying to insults are disagree
messages.

question Message is a question or a clarification of a previously

asked question by the same author.

Message is an answer to a question in the parent
message or a request for further information about the
question.

answer

The message has no connection to the parent message
and is not a question message.

off-topic

don't know If none of the above labels apply.

3.2 Feature Sets
We considered a variety of features, both of structural

and content nature, to investigate the impact of particular
features on the classifiers performance. For content
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analysis, we cleaned each message to remove headers and
any quoted text from parent messages. Additionally, we
derived features from 5 implicit network structures: 3
author networks and 2 thread networks. Past research has
used thread-level message features for analysis of
newsgroup data [4, 6, 7, 21]. We also ran experiments
with such kind of features, but our results did not show
much improvement with these features. Thus, here we
concentrate on the multi-network features.

Author Networks

We captured users’ participation by defining 3 author
networks for each newsgroup: reply-to, thread partici-
pation, and text similarity. In all of these, the nodes
represent authors, but the edges carry distinct semantics:

- A reply-to network edge from author A to author B
indicates that A has replied to at least one message
posted by B.

- A thread participation network edge from author A to
author B indicates that both authors have participated
in the same thread in at least k occasions.

- A text similarity network edge indicates similarity
between the content of connected authors’ messages.
The messages from each author were summarized by
a centroid keyword vector and author-author edges
were created to indicate cosine similarity of at least #.

We described each message reply by a vector of
features extracted from the three author networks, A1, A2
and A3. Given a message, M1, and the message it replies
to, MO, 3 feature vectors were created for M1 and another
3 for MO (see Figure 1). Individual features of each vector
are associated with nodes in the networks, i.e., authors. A
similar author node vector was created for the author of
the parent message MO. The final feature set for a reply
message concatenated the two vectors.

Feature Set M1 (Author A) MO0 (Author B) Network
Al ‘ ay ‘ az ‘ - | AN ‘bu ‘bu | o b Reply-to
Thread
A2 ay |dxp | --- |8m by |bxn ... |bx participation
A3 as | axn ‘ - |am ‘b;l by |- b Text similarity

Figure 1. Feature sets from the author networks.

Feature Set MI (Thread T) Network

B[ [ o
B2 |[ta]te] - Jon

Figure 2. Feature sets from the thread networks.

Common authors

Text similarity

Thread Networks

We captured topic associations by defining 2 types of
thread networks for each newsgroup: common authors
network and text similarity network.

The nodes of both networks represent threads but the
edges have a different meaning in each case:

- A common authors network edge between thread T
and Q indicates “thread T has at least m authors in
common with thread Q”.

- A text similarity network edge between thread T and
Q indicates similarity between the content of their
messages. The cosine similarity between centroid
keyword vectors was used and an edge between thread
T and Q indicates similarity of at least #.

We described each thread by a vector of features
extracted from the two thread networks, referred to as B1
and B2, respectively. Given a message M1 belonging to
the thread T, we created two feature vectors, where
individual components were associated with other nodes
the networks, i.e. threads — see Figure 2.

3.3 Experiments

We conducted a comprehensive set of experiments
with the SVM classifiers to investigate the effectiveness
of individual feature sets and their combinations in:

1) Predicting the level of agreement of messages posted
to political discussion newsgroups.

2) Identifying question and answer messages in technical
discussion newsgroups.

Given that reply-to network features have been used in
related work [3, 7, 13], we took the feature vector Al as
the baseline for our analysis of the classification results.
For evaluation we used 10-fold cross-validation and the
performance of the classifier was measured based on the
break-even-point (BEP) from the ranked list of messages
scored by the classifier. Next, we summarize the main
findings.

Discussion Newsgroups

To predict the level of agreement between a message
and its parent message in discussion threads, we used the
relevant training data, i.e. messages labelled as ‘agree’,
‘disagree’ or ‘insult’. We observed increased performance
over the baseline when thread network features were
introduced. This improvement was particularly evident in
the ‘insult’ class, where such messages seem to be
strongly predicted through the co-participation in threads
(B1): BEP increase from 68% to 74% for guns and from
38% to 85% for immigration. Using threads text
similarity features (B2) gave further boost to the guns
category: from 74% to 81%.
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Table 3. Classification results for discussion groups

Guns immigration

Feature Sets - - - -
agree disagree insult  agree  disagree insult

FI1=A1 61% 80% 62% 65% 75% 37%
F2=A1+A2 69% 82% 72% 66% 76% 45%
F3=F2 + A3 65% 84% 68% 68% 77% 38%
F4=F3 + B1 67% 86% 74% 73% 80% 85%
F5=F4 + B3 66% 85% 81% 72% 80% 85%

Table 4. Classification results for Q&A groups

iexplorer winx;
Feature Sets answer £ question answer £ question
Fl=Al 70% 59% 93% 78%
F2=A1+A2 71% 64% 94% 80%
F3=F2 + A3 75% 66% 94% 79%
F4=F3 + B1 75% 66% 94% 79%
F5=F4 + B3 75% 65% 94% 77%

Technical Q&A Newsgroups

To identify questions and answers in technical Q&A
newsgroups, we used the relevant training data, i.e.
messages labelled as ‘question’ or ‘answer’. Unlike the
previous case, features derived from the thread networks
did not improve the classifier’s performance. Connections
among authors that participated in the same threads (A2)
were particularly beneficial to predict ‘questions’: BEP
increase of 59% to 64% for iexplorer and 78% to 80% for
winxp. Content-based author similarity features (A3)
improved the prediction of ‘answers’ for iexplorer: from
71% to 75%.

In summary, we found that the co-participation of
authors across threads (feature set B1) was a particularly
relevant factor for improving the classification of
messages in discussion threads. Text similarity features
further improved classification. These results hint that
authors seem to be consistent in their opinions, when
recurring co-participating with other authors across
discussion threads. However, thread network features did
not enhance the classification performance in the Q&A
case. These results are consistent with the observations by
Fisher et al. [7] on the distinctive behaviour of core
participants of discussion vs. technical newsgroups. The
former tend to form fairly closed communities with the
most active participants responding to each other often
and mostly ignoring newcomers. The latter, on the
contrary, tend to be experts who respond primarily to
newcomers who ask questions.

4. Social Behaviour in cQA Services

The cQ&A services allow users to freely submit
questions and answers on any topic, and provide several
mechanisms for self-regulation of the content quality,
such as, enabling comments on answers, voting for best
answers, reporting abuse, and assigning reputation points

to community members. However, since users need to
create a sense of community, it is not surprising that some
users seek to communicate and connect with the
community by asking questions, such as, ‘How are you?’
or ‘I'm eating a slice of home-made pie. Anyone wants
some?’. This behaviour does not comply with the
intended use of the service but aims to engage with and
perhaps entertain the community.

We performed extensive analysis of the Live QnA and
Yahoo! Answers communities. Although the two services
are very similar, they differ on the approach taken to
categorize questions. On Yahoo! Answers users assign a
label to their questions, by picking a topic category from
a fixed taxonomy, while on Live QnA users apply
community-generated tags to their questions. In our
analysis, we were particularly interested in revealing the
implications of the Live QnA question tagging feature on
the community dynamics and the observed question types
[16]. In this section we present summary findings of this
analysis.

4.1 Datasets

Our first dataset was obtained from the Live QnA
service and spans the first year of its beta release (Sep.
2006 until Sep. 2007). It consists of 488,760 questions
and 1,330,819 answers. The questions were submitted by
241,616 unique users, while the answers and comments
were contributed by 42,941 and 34,068 unique users,
respectively. The second dataset was gathered from the
Yahoo! Answers service by seeding a crawler with pages
linked to the top level categories that list recent questions
with the assigned category and sub-categories. Overall we
crawled 309,599 questions, posted by 217,615 distinct
users and 1,151,453 answers, given by 202,052 distinct
users. Over 95% of the content that we crawled was
posted during the 3-month period of March-May 2008.

4.2 Analysis of Live QnA Tags Usage

In the Live QnA dataset questions were labelled with
2(*2.3) tags on average. Overall, the community applied
188,468 distinct tags. Some of these tags were used very
frequently, possibly due to the automatic recommendation
of tags that is provided by the service. Among the 10
most frequently used tags, the technology-related ones
(‘Internet’, ‘Technology’, ‘Computers’, “Windows’, and
‘Microsoft’, ‘Windows Live’) were applied to questions
receiving on average 2.4 answers, whereas the remaining
ones (‘Fun’, ‘life’, ‘people’, and ‘Family’) were applied
to questions receiving on average 5.1 answers. This
indicates that the community members responded more
actively to questions on less technical topics.
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4.3 Analysis of Question Types

Through manual inspection of the random samples of
questions from Live QnA and Yahoo! Answers we
derived a taxonomy of question types, that includes types
such as (a) information seeking — requesting information
about a fact or a resource that can satisfy the user
information need, (b) opinion seeking — requesting an
opinion about a topic, possibly of personal nature, and (c)
chit-chat — question instigating community reaction for
the purpose of socializing. We observed that information
seeking questions were predominant in both datasets:
62.3% on the Live QnA sample and 78.1% on the Yahoo!
Answers sample. The percentages of opinion seeking
questions were also comparable: 19.0% on Live QnA
and 15.3% on Yahoo! Answers. However, we found a
substantial difference in the proportion of chit-chat
questions: 14.2% on Live QnA and 3.6% on Yahoo!
Answers.

Considering the Live QnA questions tagged with one
of the top 10 tags we analysed the frequency of question
types across tags. Figure 3 shows that tags referring to
technology and  computer-related topics  were
predominantly associated with questions of the
information-seeking type. In contrast, tags like ‘Fun’,
‘People’ and ‘life’ were mostly associated with chit-chat
questions. The ‘Fun’ tag, in particular, is highly
correlated with this type of question.

0.06
0.05 Binfo

B Opinion
B Chitchat

0.04
0.03 |
0.02
0.01 ¢
0.00

fracrion of questions

life

j
]
w

Internet
Technology
People
Computers
microsoft
Windows
Windows Live
Family

Figure 3. Distribution of labelled questions across the
top 10 most frequent Live QnA tags.

4.4 Community Tags & Social Network Activity

With the new insights about the question types and
community tags, we investigated the properties of the
social network that emerges from answering questions
with specific tags. We performed an analysis of the
answer-to social network derived from the Live QnA data
set. In such network the nodes correspond to active users
and the directed edges indicate that, for example, a user A
has responded to a question of the user B.

For each community tag we considered the associated
sub-graph of the answer-to network and calculated the
density of the sub-graph to assess the strength of the
social ties among the involved users. The graph density
measures how close a subset of vertices is to forming a
clique (i.e., to include the maximal number of edges):

Definition. For a directed graph with |El edges and VI
|E|

vertices, the graph density is defined as D = TTVI—D"

We examined sub-graphs consisting of the 100 most
active ‘answerers’ and 100 most active ‘questioners’ for
each of the top ten Live QnA tags. In Table 5 we show
for each tag sub-graph the overlap between the top
questioners and top answerer (Vp,NV,) and the density of
the sub-graphs associated with answerers (D,) and
questioners (D).

Table 5. Density of the social network resulting
from answer-to interactions between top answerers
(DA) and questioners (DQ), on the specified tag.

Tags Questions Dy D, VoV,
Fun 41,259  0.588 0.613 52%
Internet 34,005 0243  0.255 31%
People 26,583  0.450 0.459 42%
Technology 25,116  0.092  0.089 17%
Computers 24,633  0.092 0.088 21%
Life 21,739 0365 0.357 38%
Windows 18,499  0.067 0.066 19%
Microsoft 18,343 0.066  0.069 16%
Windows Live 17,644 0.107  0.120 27%
Family 17,498  0.307 0.326 40%

We observe that the community users exhibit different
behaviour across tags. For tags like ‘Fun’, ‘People’ and
‘Family’, a high percentage of users who post questions
also engage very actively in giving answers to other
users, indicating that there are sub-communities of active
users formed around such tags.

Furthermore, the density of the tag-induced sub-graphs
hints that specific type of questions may be predominant
for a given tag. For example, the density values for the
‘Fun’ tag indicate that highly active users interact with a
large proportion of other highly active users and thus
support our hypothesis that ‘Fun’ tag is associated
predominantly with chit-chat questions. We can contrast
that with density values for tags like ‘Microsoft’ or
‘Windows’, which are significantly lower. The low
overlap between top answerers and top questioners for
these tags is more typical of information-seeking
communities where expert users provide the most
answers [15].
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5. Concluding Remarks

In this paper we discussed the use of social network
analysis to enhance the automatic -classification of
newsgroup messages and to characterize the social
tagging behaviour in cQA services. We developed robust
message classifiers to detect messages of selected
response types, including agreement and disagreement in
newsgroup discussion threads. We have found that with
well selected author and thread network features we can
achieve very good classification results for any topic
being discussed. The results clearly demonstrate the
superiority of the thread network features over the
standard reply-to network alone. Our findings offer the
foundation for the design of ranking functions for
newsgroup search that take into account the types of
messages, given a search goal, such as, finding answers to
a question, finding a similar question, or finding strong
positive and negative opinions about a topic.

Through the analysis of the Live Q&A community we
found that community-generated tags reflect both the
social interactions among users and the topic of the
questions. In fact, we hypothesise that the freedom to
contribute with new tags has led to the possibility of
disseminating questions that are of social nature, and vice
versa, that the variety of social interactions have influence
the evolution of the community taxonomy.
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Time Series Data Mining

Abstract

This paper highlights the unique challenges of time series data mining from a statistical,
machine learning and data mining perspective with examples taken from three very different
problem domains.

Time series data is increasingly prevalent and as the information age matures the problems
and opportunities offered by vast inter-dependent data sets will be one of the defining
features of future data mining research. In statistics, the traditional approach to time series
has been to model the auto-correlation structure with the focus usually on forecasting. In
machine learning, the usual methodology is to derive a set of features from time-dependent
data, then most interest lies in clustering and classification. In data mining, the major concern
is compression and similarity measures and the majority of research is concerned with query
by content. In this paper an overview of all three approaches is given and their similarities
and differences for the wide range of problems that arise in the field are highlighted.

Many different application areas can be treated as time series, and we show this with
examples derived from electricity usage profiling, image processing and RNA analysis.
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Gavin Brown
University of Manchester

Feature Selection by Filters: A Unifying Perspective

Abstract

Feature Selection is an essential component of modern data mining.

The principle is to eliminate irrelevant or redundant variables from a dataset, given the
requirement to predict a target. This has the dual advantage of reducing computation time,
and increasing interpretability.

Datasets with thousands to millions of variables require fast methods for selection---these are
known as "filters". The last 15 years has seen a huge publication surge of candidate filter
methods, with no common way to relate them or pick the right one for the right task.

We focus on filters based on mutual information. This talk will give an overview of
information theoretic methods, and present a recent unifying framework that shows the
existence of a continuous space of filters. Each paper over the last 15 years corresponds to a
point in the space, most of which has never been explored.
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Neil Berry
Deloitte

Real world applications of data mining technology:
"The cook, the thief, his wife and her lover' a financial services case study.

Abstract

Financial crime is something that impacts each and every one of us. The average general
insurance policy in the UK costs £40 more than it should due to fraud, and overall fraud is
estimated to cost the insurance industry over £1.6bn a year. Extrapolate this across other
financial services products, and link it with other areas of concern e.g. Anti Money
Laundering and Sanctions Compliance, and you have the makings of a huge problem.

Data mining techniques are being increasingly applied to these issues in ever more innovative
ways. Given the scale of potential fines (up to £250,000 per transaction) and potential
reputational damage, not to mention huge financial losses, institutions have a large vested
interest in getting this right! This presentation will use real examples from the world of
financial crime to illustrate different techniques and methods that are currently deployed in
the market to tackle these problems. It will also look to the future, to examine how the
industry is changing, and what some of the challenges may be as technology tries to advance
to keep pace with the criminals.
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Susan Craw
Robert Gordon University

Knowledge Discovery from Case Data

Case-based reasoning systems solve problems by retrieving and reusing similar experiences
from the case base as the fundamental knowledge source. However, the cases can be used for
more than solving problems, and the knowledge available in a collection of cases may be
exploited to improve the system's problem-solving. The ability to use the cases to identify
and understand regular and complex regions of the problem-solving landscape offers the
potential for data selection, pre-processing, data cleaning and knowledge maintenance for
case-based reasoning systems. The cases also capture implicit knowledge that may be learned
to improve the retrieval of suitable cases and to enable effective adaptation of the retrieved
solution to suit the new problem.

This talk explores introspection of the case knowledge and some attractive prospects to
exploit its implicit knowledge.
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Sven F. Crone
Lancaster University Management School

Classifying Imbalanced Datasets —Evidence from case studies in Business Data Mining

Data Mining methods and procedures are routinely employed in business, but often neglect
the specific properties of the dataset. For many corporate applications the actual class of
interest, e.g. those responding to a direct mailing or defaulting on a loan, is often an

underrepresented minority, which should be either targeted or avoided to ensure profitability.

But how important is the data in the majority class of lesser interest? Is it required at all, or
can we discard parts of it? And if so, is there some 'golden ratio' of negative to positive
examples? A variety of simple to sophisticated sampling strategies are now available to
under- or over-sample the existing data. This talk will demonstrate how different approaches
of basic data sampling can enhance or impair predictive accuracy, using case studies from
company projects in database marketing and direct mailing, credit and behavioural scoring,
and predicting internet shopping adoption to distinguish customers between online-shoppers,
browsers and oftline shoppers.
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“Take away this pudding, it has no

Sir Winston Churchill (1915)

Agenda

« Sampling issues in Data Mining
« Case study 1: Direct Marketing
« Cross-selling of Magazine subscriptions
« Effect of data preprocessing: Sampling
« Interaction of Sampling with Scaling & Coding
« Case study 2: Credit & Behavioral Scoring
« Predicting consumer credit default
« Effects of sample size
« Effects of sample distribution
« Case study 3: Online Shopping Behaviour
« Predicting consumer shopping channel choice
« Sample distribution & multiple classes
« Conclusion & Take-aways
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Why (Under/Over) Sampling?

» Knowledge Discovery (KDD) = non-trivial process of identifying
valid, novel, useful patterns in large data sets
- Data Mining = only one single step in the KDD process
- Data sample determines the whole process! (> GIGO)
+ “Research seems preoccupied with algorithms” vu

Tnferprotation/
Evaluation

Supported by SAS Enterprise Mining Environment

SWPLE e EPLORE — e MODFT — e HODEL — P ASSESS

nput data, Distibution Transform varable,  Logistic rgresson,  Assessment,

Semplng.  explare, Fitr cutlers, Decsion ree, care,

Data partton  Multlt, Clustering, Newalnetwork,  Report
Insiht. SORKahonen Memory-based
Assacation reasoning
Variable slection

SAS SEMMA DM-Process

[ Economical Goal

CRISP-DM Process

Sampling in Direct Marketing Literature?

Data reduction** Data projection

Feature  Re- Continuous attributes Categories

Selection sampling Standardisation Discretisation  Coding
X

->Majority of direct marketing papers focus on algorithm tuning
->0nly 3 papers consider Resampling / Instance Selection
->No analysis of the interaction with Sampling & Projection & ...

Classification

® _ast campaign

© No response
O Subscribed to magazine

.. Days sincé last purchase ... many

Few

1... Number of subscriptions ... Many

Classification

O No response
O Subscribed to magazing
B Class unknown

Days since last purchase ... Many

Few ...

1... Number of subscriptions ... Many

->Database of customers (instances)
->Known attributes for all customers (age, gender, existing subscriptions, ...)
->Known response (class membership) of buyers & non-buyers from past mailings

->Use the decision boundary to classify unseen instances
-Calculate on which side of hyperplane the instances lie (or distance)
->Assign class to unseen instances

->Build a model to separate classes -> decision boundary of different complexity

Classifying Imbalanced Datasets
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Reality Check: Imbalanced classes

O No response
© Subscribed to magazine

Problem

+ Classifiers are biased towards
the majority class

+ Shifts the decision boundary

« Error / Accuracy based learning
creates naive classifiers

+ Invalid separation of classes

1... Number of subscriptions ... Many

... Days since last purchase ... Many

Few

Imbalanced Data Sampling

)
o o

(@) O,

O No response
O Subscribed to magazine

Stratified Random Sampling

—>divide DB in mutually exclusive
strata (subpopulations) & draw
random samples from each

- Proportional
assure proportions in samples
equal those in population

- Disproportional
weighted over-& undersampling
of important classes

0|0

o
o
Oo [e]®)

... Days since last purchase ... Many

o

Few

1... Number of subscriptions ... Many

- Balanced dataset = class distributions are equal P(x|y=A)=P(x|y=B)
-> proportional sampling or stratified sampling feasible

~Imbalanced dataset = class distributions unequal P(x|y=A)>>P(x|y=B) °
->The class of interest is often the minority (in most business applications)

->Size of the sample?
->Distribution / location of the sample?

Random Undersampling

© No response
O Subscribed to magazine

Benefits
* Helps detect rare target levels

Risks

« Biases predictions (correctable)

* Looses information contained in
instances of the majority class

« Creates different boundaries

— * Increases prediction variability
1... Number of subscriptions ... Many,

Days since last purchase ... many

Few ...

Random Oversampling

O No response
O Subscribed to magazine

Benefits
* Helps detect rare target levels
« No loss of information

Risks

« Biases predictions (correctable)
« Increases prediction variability
« Increases processing time

Days since last purchase ... Many

Few ...

1... Number of subscriptions ... Many

—>Exclude random instances of the majority class
—>Retain all instances of the minority class
—>Establish a balanced class distribution

- Retain all instances of the majority class in the sample
->Duplicate identical instances of the minority class
- Establish a balanced class distribution

Classifying Imbalanced Datasets
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Case studies on
Sampling i
Ready for more theory...? (.
Online Shopping
3. Find x. Adoption
\
x High value x
=)
4cm =
: : Direct
Credit Scoring Marketing
L Prospect J New Customer]t Established Customer HFormer Customer
> rather some case studies ...! >Evidence from 3 case studies using industry datasets
Business Case:
Direct Marketing/Response Optimization
Agenda + Sell a magazine subscription to existing customers

» Sampling issues in Data Mining
+ Case study 1: Direct Marketing
« Cross-selling of Magazine subscriptions
- Effect of data preprocessing: Sampling
« Interaction of Sampling with Scaling & Coding
+ Case study 2: Credit & Behavioral Scoring
« Predicting consumer credit default
« Effects of sample size
« Effects of sample distribution
+ Case study 3: Online Shopping Behaviour . .
« Predicting consumer shopping channel choice  Whom to send mail to? (Which customers are most likely to respond?)
+ Sample distribution & multiple classes * How many customers to contact? (What is the optimal mailing size?)
« Conclusion & Take-aways

->Corporate project with leading German Publishing House GJ
~>Provided data set of past mailing campaigns
->Benchmark novel methods against in-house SPSS Clementine

;J;, ->Explore Neural Networks (NN) an Support Vector Machines (SVM) ;l;,
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Benefits of Direct Marketing NN get worse with learning ...

» Wish to implement Neural Networks for next campaign
* In-house team (with no NN knowledge) outperformed us EVERY TIME!

g Simple With data mining * Analyzed software, training parameters, etc. > internal competition
« Observed expert in building models ... !
Addressees 100.000 Top 40% = 40.000
T Cost 2€/mail = 200.000€ | 2,5€/mail = 100.000€ . Pred | Pred | Sum 0
* | co | c1 o
Response rate 0,5% = 500 1,0% = 400
@ Sales volume 300€ 300€ co 38.14 | 100 co
Sales volume 150.000€ 120.000€ C1 | 55.09 100 c1
Revenue -50.000€ 20.000€ 116.95 | 82.95

Pred. Sum
Cc1

:: %
->Smaller mailing (number of letters sent) - lower costs (Euro 1.- per letter) S0

->Higher response rate - higher revenue
->More specific mailing -> lower cost
->More relevant information - higher customer satisfaction

Experimental Design:

. . Dataset Structure
Different data pre-processing
Data set size Data set structure
) ) G . + 300,000 customer records « 18 categorical features
| Different Encoding | Different Scaling + 4,019 subscriptions sold + 35 numerical features
n, n-1, thermo, ordinal Discretise, Standardise o Response rate of 1.3% . Binary target variable
N ’,
b - - —>Evaluated the Impact of Data Preprocessing
! Different Sampling Decide on Sar:"p'e - Data Sampling (over sampling vs. undersampling)
} Over-& Undersampling size and method

+ Categorical attribute Encoding (N, N-1, thermo, ordinal)
+ Continuous attribute Projection (Binning vs. Normalisation)

Yemle | auilEs Sl vl « Continuous attribute Scaling ( [0,+1] vs. [-1,+1] range)
features
->Multifactorial design to evaluate impact across multiple methods
Evaluate across 3 algorithms: ;)gsggﬂr?slz:t)orﬁn(a'imnes (SVM)
->Neural Networks (MLPs), Support Vector Machines & Decision Trees >Decision Trees (CART) A
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Sampling _ Resuits
Oversampling (Exp. 1-3;17-24) Undersampling (Exp. 9-16;2532)
Coding of Continuous Attributes Coding of Continuous Attributes
Dis cretisation (Exp. 1-16) isation (Exp. 17-32]  Discretisation Exp. 1-16) isation (Exp. 17-32)
066
ggg: Beopmes . o A
- Created 2 Dataset Sampling candidates £qe] T1 S8 fTTDj = {“jfegsﬂié “Smmmiy z
054+
Data partition (number of records) gz;:
Oversampling Undersampling 0pe-] - i -
Data subset Class 1 Class-1 Class 1 Class -1 H ggg: = ) Increase =k
Training set 20,000 20,000 2,072 2,072 s e i B =
Validation set 10,000 10,000 1,035 1,035 0511
SUM 30,000 30,000 3,107 3,107 o] -
, ) s s . 0p1 il Sk ggggggu.é N
Test (hold-out) set 912 64,088 912 64,088 8 060 = Increase - 2
& 057 . ——— H
~ 05| RN T
051
TTTTTTTT T T T T T T T TTTTT
1234568738 12345678 12345678 123456r8
Categ. Coding & Scaling  Categ. Coding & Scaling  Categ. Codmg&Sc:Img Categ. Codlng&Sc:lmg
(Experimental Sstup 18] i Setup 1) up 18) up 18)
->Different balancing in the training data - Oversampling outperforms undersampling consistently!
->Original distribution in the test data (65,000 instances) - Gain in Lift depends on method (different sensitivity)
—>Oversampling has higher impact than data coding & scaling A

Recommendations from Case Study Results across Pre-processing

= Preprocessing: higher impact than method selection
= Lift-variation per method from Sampling/Scaling/Coding

Sampling > Difference of Lift between competing methods!
+ Oversampling outperfoms undersampling for all methods e e A ot ama sopear O Teat o s
» Undersampling: better in-sample results & worse out of sample 085 05 058
. 05|
Choice of method
* NN & SVM better than CART o oss] _oss @
. . . H H I
* Encoding & Projection 5. ML S I D &
+ SVM: avoid Ordinal coding (e.g. 1,2,3) all other similar (incL. NY) | 7 02|
+ NN: avoid standardization & ordinal encoding DPP ¢auses 50%-70% 0f the 051
+ DT/ CART: use temperature, all others similar (incl. ordinal) differences between medels 050
T T T T T T T
NN SVM oT NN SVM oT NN SVM DT
Wethos Method Method
-~ Binning & Scaling of continuous attributes irrelevant for all methods! SResults are consistent across error measures
~>Use Undersampling & N-1 encoding with SVM & NN ‘ ->Experiments allow identification of ‘best practices’ to model method
->Best preprocessed SVM - lift of 0.645 on test set ... BUT .../} >Best-practice preprocessing varies between methods f,‘xsl
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Business Case: Credit scoring

% ¥
Agenda
& Credit
- Case study 1: Direct Marketing application
+ Cross-selling of Magazine subscriptions Assessment of creditworthiness
- Effect of data preprocessing: Sampling
« Interaction of Sampling with Scaling & Coding “I would like n
« Case study 2: Credit & Behavioral Scoring a credit card” 0d” customer
« Predicting consumer credit default (crditworthy) | Predicted
- Effects of sample size = . behaviour
« Effects of sample distribution 2 Declined Accepted
+ Case study 3: Online Shopping Behaviour e &, (credit withheld) / (credit provided)
« Predicting consumer shopping channel choice
« Sample distribution & multiple classes =
« Conclusion & Take-aways Verstracten & Van den Poel (2005) | Actual
& Banasik & Crook (2007) behaviour
Kim & Sohn (2007)  “Bad” customer ~ “Good” customer
" (uncreditworthy) (creditworthy)

->Definitions of ‘good’ and ‘bad’ based on repayment behavior
J —>Default, e.g. if customer is 3 months in arrears

Sampling issues in Credit Scoring Datasets in Literature
Methods Dataset & Samples
. s . Stud dat d bad independ.
Sample size Sample Distribution " LDA LR NN KNNCART other # seis omes  cases  varibles
= Very large customer populations | |+ Highly imbalanced datasets Boyle et al. 1992 X X E]Y)‘X 31 ” 139 Tw024
« Millions of customer records (e.g. | |+ Datasets skewed to majority Henley 1995 X X X X PP 6 1 229 16
Barclaycard >10 mio cards & class of “good” customers , PR
300,000 new in 2007) (e-g- credit scoring from 2:1 for iesa} etal 191971997 ; ; i GA ‘3‘ 114 139 12 ;’15
- Requires sampling to be cost & subprime portfolios to over 100:1 v X X X x x kb s 2 by
time efficient in model building for high quality mortgages) 276 14
> Draw suitably large sample to Baesens etal. 2003 X X X X X (;DCA 9 8 :22 ?2
haye discriminatory power SVM 1,056 19
T .. . . LP 2,376 19
&. ~>Lenders ask similar questions & use industry data sources 1.388 33
. —>Datasets across lenders are very homogeneous 3,555 33
- Wide acceptance of heuristic rules of thumb (ewis 1992, siddigi 2005) 4,680 16
sases of each class is suffici incl. validati 6,240 16
& 9'1500—2000 Lases‘kof each class is 5u'ffiuent (incl. validation) Ong et al. 2005 X X X o s ) 246 2%
->in each class 10 * number of predictors (Harrel, Lee ctal. 199). RS 560 3
- Use small datasets & undersampling - All but Baesens (2003) & Henley (1995) use small datasets - Reliability?
—Issues of sample size and sample distribution have been neglected - All but Arminger (1997) use imbalanced dataset > Validity?
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Experimental Set-Up Experimental Set-Up

= Vary both sample size and balancing
+ Analyse the effect of sample size + Two Industry Data Sets

5 - « A. Application scoring data set (~89K observations. ~14K bad)
QS « Analyse the effect of sample distribution - B. Beﬁavioural scoring data set (~121K observations. ~18K bad)
A% .
P Compare Four mgthods _
Bajape: Relative + Logistic regression )
Cl T + Linear discriminant analysis
sanfesze PO gganang + CART - c.5
5% Low High + Neural networks
10% Low High - Data pre-processed using binary dummy variables.
- A standard practice applied to credit scoring problems
15% Low High + Preliminary stepwise procedure used for variable selection

+ 81 dummy variables for data set A.
« 113 dummy variables for data set B.

+ Validation
100% Low High + 50 fold cross validation for all sampling combinations

Low High

Undersampling  unbalanced ~ over sampling

Results of Sample Size Results of Sample Size
Absolute Performance - AUC measure (GINI coefficient) Relative Performance in % of undersampling with 1500 bads - AUC meas
e Dataset A Dataset B - Dataset A o Dataset B
075 11C o
7 e
ors P ] o oo ol ) /M
3;2 /’*‘“ 072 107% 107% 1
on |4 070 oo oo | y R
069 ¥ 069 104% 104% | A e =
g g§ g gB 103% s 103%
7 Z102% Z1029
088 A 066 51019 ‘élgi//:
_ _ 065 T i A S100% T g 5100%
H =T sl 8
8o B P iy iy
062 062 2 g | 4] £ 7o
061 st A = 050 = ogge
0.60 0.60 Vi 95% 1’ o5%
0.59 0.59 04%
058 / —Ir 058 oo | 1 R 94%
057 —0-LDA 057 ——mw® 92% gix A
056 ——CART 056 —o—Loa 91% R o —_
0 i o =& = s =i
053 053 |- : —— N 9% T
0 o000 4000 6000 AOOD 10000 17000 Npb 0 2000 4700 KOOD HO00 100NN 12000 14000 16000 NPb o om0 400 6000 000 10900 o000 NPD 0 2000 4000 6000 8000 1000012000 14000 16000 PP
Npb = number in minority class (bads) used for parameter estimation
> Results of sample size for Undersampling — robust across dataset A & B . .
P pling - Results of sample size for Undersampling
—>LR outperforms all methods across both datasets A .
q q —>Performance increases of 1% to 8% through larger sample size
- All methods increase performance with larger samples SIUIR 0ot e e s s A e
->NN increases performance most with additional data (up to LR)
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T ,_,_,,,,,,,_,‘_, D
e Size gampins
Size

Results of Sample Distribution Results of Sample Distribution
Absolute Performance - AUC measure (GINI coefficient) Relative Performance - AUC measure (GINI coefficient)
Dataset A Dataset B Dataset A Dataset B
0.74 065 105 1.05
e N e 1.04 Fal
Ougs’ - > e ,X:{\‘"— s 1.04 ek P = o
ors one o] — - 0.64 ommn . 1os e oo /A\J o, / Ll VN
/ = 082 | 4 ~ N g ron . L/ || 7 o
072 062 / e S = R o fe st =y Eio1
] \ »'%i’(y\ 051 1}\)/ [ § 1o g\)t\ ~ § 1o
so7 |} e VAY I~ H Eoe .A‘ Eogg 1‘
s | ‘ \ © 060 | 5 5 F
f X I gose | gosee
070 059 {f %09? 5 £ o007
A \\’“N s f § 09 é_ 0es
o Y i Lo Zoss o Zoss ; oo
i R 057 J :bRN 094 NN “oos il e
0.68 o 056 X 0e3 0.93
135 7 9 111315 47 19 21 23 25 27 29 1.8 5 7 9 11 13 15 17 19 21 23 25 27 20 T35 7 9 M 131517 19 21 93 95 97 98 1.3 5 7 9 1113 15 17 19 21 23 25 27 29
Under- Original Over- Under- Original Over- Under- Original Over- Under- Original Over-
sampling li i Ti . . " y
- Results of Sample Distribution for small sample size (1500 bads) - Results of Sample Distribution for small sample size (1500 bads)
- Oversampling on average outperforms undersampling - Improvements of 1%-2% for LR, 1%-4% for NN feasible
LR and LDA outperform each other based upon distribution - Original & Oversampling outperform Undersampling
—>Methods show different sensitivity to sampling balances —>LDA most sensitive / LR most robust to sampling distribution
Results - Interactions Results - Interactions
Dataset B - Neural Network Dataset B — Linear Discriminant Analysis
Interactions of Sample Size and Distribution Interactions of Sample Size and Distribution
- 10.00%-12.00%
» 8.00%-10.00%
6.00%-8.00%
4.00%-6.00% 4.00%-6.00%
" 2.00%-4.00% 2.00%4.00%
= 0.00%-2.00% 0.00%-2.00%
= -2.00%-0.00%
®-2.00%-0.00%
= 00t 00
W -8.00%--6.00% . -6.00%--4.00%

—Results of relative performance (undersampling & 1500 bads)
~>Improvements of up to 10% of NN performance possible
- Additional data more helpful than increasing (over-)sampling
->No improvement beyond oversampling

-~ Interaction (base upon benchmark) varies substantially by method
—>Additional data more helpful than increasing sampling
- Under- and oversampling outperform imbalanced data
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Results

+ Sample size

« Taking larger samples than those commonly quoted
can lead to significant performance gains.

* >2% improvement for all methods considered
» >5 % for CART and NNs
- Balanced data sets better than unbalanced ones
» Balanced sampling outperforms imbalanced classes
+ Over sampling out performs undersampling
» But even over sampling is not necessarily optimal
+ Some methods much more sensitive to
balancing than others
- Logistic regression very insensitive
+ CART very sensitive

Agenda

» Sampling issues in Data Mining
« Case study 1: Direct Marketing
« Cross-selling of Magazine subscriptions
« Effect of data preprocessing: Sampling
« Interaction of Sampling with Scaling & Coding
* Case study 2: Credit & Behavioral Scoring
« Predicting consumer credit default
« Effects of sample size
« Effects of sample distribution
+ Case study 3: Online Shopping Behaviour
« Predicting consumer shopping channel choice
« Sample distribution & multiple classes
« Conclusion & Take-aways

Business Case: Predicting
Customer Online Shopping Adoption

Traditional buying process is offline & simultaneous > “bricks” store

Introduction of the Internet changes consumer behaviour
« Seek information online & offline
« Purchasing online & offline
- Changing purchasing behaviour through internet adoption
- Changing purchasing behaviour through Technology Acceptance
Development of heterogeneous Purchasing Behaviour
Example: Purchasing electronic durable consumer goods
« Search for product info (e.g. video cameras) online
- test product in-store
-> search for best deal on internet & purchase

Online
’ Shoppers
!

Shoppers

tages of Internet Adoption

Classifying Imbalanced Datasets
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Motivation

DIDIER: Marketing Modelling

+ Econometric / Marketing Domain

+ Seeks to explain how customers behave in
online shopping

« Use of ‘black-box” logistic regression
models

->Models class membership to identify
causal variables that explain choices

-Descriptive & Normative Modelling

SVEN: Data Mining Perspective

+ IS/OR/MS Domain - Data Mining

« Seeks to accurately predict regardless of
explanation why customers buy

« Use of “black-box” methods from
computational intelligence

~>Models class membership to
accurately classify unseen instances

->Predictive Modelling

Best practices

Best practices

= Use ordinal variables & nominal variabl

Recode ordinal - binary scale

without recoding
= Do not normalise / scale data

Rescale & normalise data to facilitate
learning speed etc.

->same dataset & same objectives & similar methods

- Conflicting “best practice” approaches to modelling

- Outside of most software simulators!!! Implicit knowledge?
... WHO IS “CORRECT”? WHAT IS THE IMPACT?

Dataset

+ Survey on Internet Shopping Behaviour

+ 5500 UK households

« Adjusted for age, income etc. of customers (older less likely to buy)

* Adjusted for product specific risk of online shopping for branded
durable consumer goods (inspection required to some extent)
« 73 questions on factors related to internet shopping, products etc.

Online Shopping Factors:

“Going to the shops is as convenient
as Internet shopping™

“I would buy online if products are
branded” etc. [1=strongly agree; ...]

Demographic Factors
Age, Gender, Income

Internet Utility Factors
Score from 6 correlated variables

- Mixed scale of nominal, ordinal, interval

- 685 respondents

Demographics

Class 1

Intemet
specific

¥

Factors

Logistic Regression
Neural Networks

Chass 2
K+ coresonines
Buy Offiine

Class 3

Online
shopping
specific
Factors

Input Variables

Models.

Browse &
Buy Offline

Output Variables

Imbalanced Clas

sification problem

+ Split of Dataset for Training, Validation and Test {50%;25;25%}
« Distribution of target classes is skewed
{65% online buyers; 22.5% browsers; 12.5% offline shoppers}

» Rebalancing of data sets

through over- & undersampling)

Results without Discretisation

Imbalanc ed

Dataset

Oversampling Undersampling

Data Subset

Logist.Reg.  True Training Data Test Data
Dataset Value  Online Browse Offline Online Browse _Offline
Original Online  93.36 88.89 MCR,5,=54.3%
Imbalanced Browser 62.77 49.39 _ o
. MCR o =48.9%
Offline  36.54 \ 35.29
MCR,;,=55.8%
MCR g =41.8%
MCR,4,=58.4%
MCR ¢ =48.2%
Neural Net Training Data Test Data
Dataset Online Browse Offline Online Browse Offline
Original Online 86.1 110  86.67
MCR;;,=54.4%
a2 ee, Imbalanced Browser 53.13 15.63 41.94
MCRieg =52.5% /
Offline 251 45.711 29.41

® Training
@ validation
O Test

Online- Browsers Offine-
Shoppers

Oniine- Browsers Offine-
Shoppers Shoppers

Online- Browsers Offfne-
Shoppers Shoppers Shoppers

MCR, 5,=54.9%
MCReq =35.7%

MCR,5,,=88.0%
MCR o =75.6%
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Results with Discretisation of Ordinal

Logist.Reg.  True Training Data Test Data

Dataset Value  Online Browse Offline Online Browse Offline

Original Online 1.85  85.56 6.67 MCR,;,=61.15
rain=01.

Imbalanced  Browser 9.57  48.39 19.35 MCRq =45.1%
Offline 55.77  58.82 17.65
MCR,4,=69.9%
MCR g =34.4%
MCR,;,=66.0%
MCR o5 =62.3%
Neural Net Training Data Test Data
Dataset Online Browse Offline _Online Browse _Offline
MCR, ;,=56.5% Original Online 96.1 y 0.00 84.44 1 .44
rain™" -

313  64.52

Imbalanced Browser  68.7:
MCR,o =45.5% ¢
CRies =45.5% J 4517 58.82 ©

Offline 40.00%

MCR, 4,=55.2%
MCR g =28.0%

MCR, 5,=99.5%
MCR e =79.0%

Summary

Oversampling outperforms other samplings
- Across Different Datasets
- Across various data preprocessing

Methods show different sensitivity to Sampling
- More variation from sampling, coding & scaling than between methods
- Using different preprocessing variants is important in modeling

Various sophisticated extensions exist

- SMOTE (Synthetic Minority Oversampling Technique)
- K-nearest Neighbor sampling (removal / creation)

- One-class learning etc. ...

Extend your bad of tricks ...
- ... and experiment with imbalanced sampling!

Mean Classification Rate (%

JK Lancaster University

MANAGEMENT SCHOOL

Questions?

Sven F. Crone

Lancaster University Management School
Centre for Forecasting

Lancaster, LA1 4YX
email s.crone@lancaster.ac.uk . o)
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