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Abstract

Proof by induction plays a central role in showing that recursive
programs satisfy their specification. Sometimes a key step is to gener-
alise a lemma so that its inductive proof is easier. Existing heuristics
for generalisation for induction are examined. The applicability of
heuristics for generalisation is also examined, and it is shown that
the kind of examples on which some of the heuristics work best form
a well defined class of problems. A class of generalisation problems
is identified for which none of the methods work, and directions for
future research are provided.

1 Introduction to generalisation

1.1 Motivation

Formal methods have been advocated as a way of increas-ing the reliability
of the developed software. The use of formal methods first involves de-
veloping a specification. Development steps or refinements are then made
towards an implementation. A key advantage of using a formal method
is that we can prove that the development steps are correct with respect
to their specification. The initial specification and the early development
steps often involve recursive functions (e.g. in specifications [1]). Hence,
in using formal methods, we may need to prove that recur-sive functions
satisfy their specification. A common way of carrying out such proofs is to
use induction. Proof by induction proceeds in two stages. First, the base
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case is proved, and then an induction step is proved. Normally, the base
case is easily established. The induction step proceeds by replacing function
applications by the recursive part(s) of their definition (i.e. by unfolding)
and relies on the fact that the induction hypothesis can be used at some
stage during the proof. Sometimes, the unfolding process does not yield a
property in a form that can utilise the induction hypothesis.

Example: fact

As an example, consider how one might attempt to prove that the following
two functions, which are intended to compute the factorial function, are
equivalent.

f :N → N
f (x ) 4 if x = 0 then 1 else f (x -1) ∗ x

g :N×N → N
g(x , y) 4 if x = 0 then y else g(x -1, x ∗ y)

That is, we need to prove:

g(x , 1) = f (x )

The first step in carrying out an inductive proof is to select an appropriate
induction rule. In this thesis we do not discuss the problem of selecting an
appropriate induction scheme automatically. Instead we select an appropri-
ate rule where necessary. For this problem, suppose we use the following
induction rule ([1]):

N-ind

p(0);
n ∈ N, p(n) ` p(n + 1)

n ∈ N ` p(n)

Then our proof attempt proceeds as follows.
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Proof Attempt

Base Case

Since f (0) = 1 and g(0, 1) = 1 we conclude that the base case is true.

Induction Step

Assume g(n, 1) = f (n) is true for an arbitrary n ∈ N. We need to show
that:

g(n + 1, 1) = f (n + 1).

Unfolding the left hand side and simplifying gives:

g(n, (n + 1) ∗ 1).

We cannot use the induction hypothesis on this expression since the second
arguments of g in this expression is (n + 1) ∗ 1 while the second argument
of the left hand side of the hypothesis requires it to be 1. Hence, our proof
has been obstructed.

We can, however prove the more general result:

g(x , y) = f (x ) ∗ y

as follows.

Proof of the Generalised lemma

Base Case

Since f (0) = 1 and g(0, y) = y we conclude that g(0, y) = f (0) ∗ y .
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Induction Step

Assume g(n, y) = f (n) ∗ y is true for an arbitrary n ∈ N, and any y ∈ N.
We need to show that:

g(n + 1, y) = f (n + 1) ∗ y .

Unfolding the left hand side and simplifying gives:

g(n, (n + 1) ∗ y).

Now applying the induction hypothesis, we can rewrite this to:

f (n) ∗ (n + 1) ∗ y .

Folding f (n) ∗ (n + 1) to f (n + 1) now enables us to obtain:

f (n + 1) ∗ y .

Hence we have carried out the induction step.

Further this can be specialised to original lemma:

g(x , 1) = f (x )

by setting y to 1 and simplifying.

As this example illustrates, generalising a lemma can result in a lemma
that is easier to prove. We now give a working definition of generalisation.

Definition of Generalisation

Generalisation is the process of going from the consideration of a set of
objects to a larger set [2]. Hence, we say that a lemma L1 is a generalisation
of a lemma L2 if L1 can be specialised to L2 by restricting the set of objects
under consideration by L1. Thus in the above example, the lemma g(x , y) =
f (x ) ∗ y is more general than g(x , 1) = f (x ) because the latter is obtained
by restricting the y in the former to 1 (and simplifying).

As a more general lemma applies in more circum-stances, then an induc-
tion hypothesis should also be applicable in more cases when an inductive
proof is attempted. Furthermore, as the use of the induction hypothesis is
an important step in an inductive proof, we can expect an inductive proof
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of a more general lemma to be easier than that of a more specialised lemma.
Several authors have proposed heuristics for generalisation. In the follow-
ing, we summarise five published heuristics for generalisation. We examine
the success of these heuristics, identify a class of problems for which the
methods are most successful, and a class of problems for which the existing
heuristics fail. The notation we use is consistent with that found in several
texts on VDM [3].

1.2 Generalisation of Minimal Common Subterms

Boyer and Moore’s theorem proving system [4] is the first notable system to
provide a heuristic for generalisation. They use a heuristic that the smallest
subterm (excluding variables) that occurs on both sides of a lemma could be
generalised to a variable. Such a subterm is known as the minimal common
subterm.

Example: append-rev

Given the following functions:

reverse :X ∗ → X ∗

reverse(l) 4 if l = []
then []
else append(reverse(tl l), [hd l ])

where

append :X ∗ × X ∗ → X ∗

append(a, b) 4 if a = [ ]
then b
else (cons(hd a, append(tl a, b)))

show that:

append(reverse(x ), append(y , z )) = append(append(reverse(x ), y), z ).
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The minimal common subterm is reverse(x ), and one therefore obtains the
following generalisation:

append(w , append(y , z )) = append(append(w , y), z ).

Boyer and Moore recognize that such a generalisation may lose an im-
portant aspect of the lemma and result in an invalid formula. For example,
applying the heuristic to:

sort(sort(l)) = sort(l)

where sort is some stable sorting scheme, would give the incorrect formula:

sort(x ) = x .

To cater for such problems, their theorem proving system requires the user
to mark those lemmas that are important properties that should not be
lost. A property whose argument matches the minimal common subterm is
then added as an assumption to the lemma before generalisation. Thus if
the following lemma was marked:

ordered(sort(x ))

then it would be added as an assumption:

ordered(sort(l)) ⇒ sort(sort(l)) = sort(l)

before the generalisation of sort(l) to give:

ordered(x ) ⇒ sort(x ) = x .

1.3 Generalisation after Unfolding

Boyer and Moore’s approach generalises a lemma without using any infor-
mation about the definition of the functions in the lemma. In contrast,
Castaing, Kodratoff, and Degano [5] use an approach that proceeds by un-
folding a function definition. The approach, which we label CKD-1, can be
summarised as:

1. Choose the induction variable.
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2. Unfold all function definitions once.

3. Generalise any constants and variables excluding those argument po-
sitions that correspond to the position of the induction variable. The
generalisation performed is a wild generalisation in that a new variable
is introduced for each argument position that is generalised. RRplace
the induction argument positions by the same new variable.

4. In general, the result of the preceding step will be an invalid lemma.
This step aims to obtain the relationships between the new variables.
These relationships are then used to carry out substitutions on the
expression obtained in step 3 in order to compensate for the wild
generalisation. The relationships between the new variables may be
obtained by tracing the generalised relationship with the induction
variable instantiated appropriately.

Example: fact

For our introductory example, the generalisation of g(x , 1) = f (x ) is ob-
tained as follows:

1. The induction variable in g(x , 1) = f (x ) is x .

2. Unfolding once gives the relationship:

g(x -1, x ∗ 1) = f (x -1) ∗ x

3. Now generalising gives:

g(x , x2 ∗ x3) = f (x ) ∗ x4 (1)

4. Obtaining relationships:

Taking x as 0 and evaluating the functions gives:

x2 ∗ x3 = 1 ∗ x4 (2)

Taking x as 1 and evaluating the functions also gives:

1 ∗ x2 ∗ x3 = 1 ∗ 1 ∗ x4 (3)
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At this stage, given that after simplification, one obtains the same
relationship in 2 and 3, Castaing et al. [5] advise that we should stop
and utilise the relationship. Thus substituting this relationship back
into equation 1 gives the generalisation:

g(x , x4) = f (x ) ∗ x4

The proof of this more general lemma then follows as given in the introduc-
tion.

Castaing, Kodratoff, and Degano [5] give no suggestion for how the in-
duction variable could be identified. They also admit that in general the
problem of obtaining and solving the equations is a difficult one. Hence it
would be difficult to automate this method in a theorem proving environ-
ment.

1.4 Generalisation after Cross-fertilization

When method CKD-1 fails to produce a suitable generalisation, Castaing,
Kodratoff, and Degano [5] suggest that the following method (which we
label CKD-2) should be attempted:

1. Unfold the definitions once. Assuming that the induction variable
of at least one of the functions is reduced, one should then use the
equality in the hypothesis and produce an equation of one function.
This process of using an equality in the hypothesis to remove a term
from a goal is known as cross-fertilisation [4].1 The choice of which
function should be eliminated is left to the user.

2. Generalise the equation of one function as in CKD-1. Discover the re-
lationship between the variables, and use the relationships to simplify
the equation.

3. Prove the simplified equation.

4. Prove the original lemma with the aid of the simplified equation.

1This step and term is based on a heuristic proposed by Boyer and Moore [4]. In their
system, they propose that using cross-fertilisation, and then forgetting the equality in
the hypothesis can result in a stronger lemma.
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Example: fibo

Consider the following functions which are both intended to compute the
n th fibonacci number:

fib :N → N
fib(x ) 4 if (x = 0) or (x = 1)

then 1
else fib(x -1) + fib(x -2)

fibo :N×N → N
fibo(x , z ) 4 if (x = 0) or (x = 1)

then z + 1
else fibo(x -1, fibo(x -2, z ))

Suppose the goal is to show that:

fibo(x , 0) = fib(x ).

Following the steps given:

1. Unfolding the definitions once and assuming x > 1:

fibo(x -1, fibo(x -2, 0)) = fib(x -1) + fib(x -2)

Now assuming the result is true for x -1, and x -2 we obtain an equation
of one function:

fibo(x -1, fibo(x -2, 0)) = fibo(x -1, 0) + fibo(x -2, 0) (4)

2. Generalising:

fibo(x -1, fibo(x -2, x2)) = fibo(x -1, x3) + fibo(x -2, x4) (5)

3. Tracing this equation for x = 2 we have:

fibo(1, x2 + 1) = x3 + 1 + x4 + 1

simplifying further gives:

x2 + 2 = x3 + x4 + 2.

We now substitute x3 + x4 for x2 in equation 5 to obtain:

fibo(x -1, fibo(x -2, x3 + x4)) = fibo(x -1, x3) + fibo(x -2, x4)
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Now, if we can prove this equation, we can use it to prove equation 4 by
substituting 0 for x3 and x4. Further, since the base case for the original
lemma holds, the original lemma would follow by induction. Thus, unlike
CKD-1, this method normally requires two inductive proofs once the gen-
eralisation has been obtained. For this example, it also means that we do
not obtain the more natural generalisation:

fibo(x , z ) = fib(x ) + z

1.5 Generalisation of Primary Terms

Boyer and Moore’s approach considers all the subterms of a lemma as po-
tentially generalisable. Aubin [6], however, constrains the subterms to be
only the primary terms of the lemma. The primary terms are defined as
those terms that are encountered in a call-by-need evaluation of the lemma.
The call-by-need [7] evaluation is defined as those terms that are needed
in a leftmost-outermost evaluation. That is, when possible we unfold the
left-most function symbol. If we are unable to unfold the left-most symbol,
then we repeat the process only on the arguments that are needed (i.e.,
those terms that occur as the condition of an if or at the head of case). The
process stops on variables, or constants.

We can now summarise Aubin’s approach, which we label Aubin-1, by
the following steps:

1. Determine the primary terms that occur on the left and right hand
sides of the lemma.

2. Select a primary term which occurs on both sides of the lemma.

3. Replace those primary terms in the lemma that are equal to the se-
lected primary term by a new variable. The same new variable is
used, so that unlike the approach taken in CKD-1, this step does not
involve performing a wild generalisation.

Aubin recognises that several candidates may exist in the second step.
Hence trial and error may be needed in making the selection. Aubin also
recognises that an invalid generalisation may be produced, and suggests
that the generalisations should be tested with examples before proceeding
to carry out a proof.
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Example: append-rev

Consider the lemma we gave earlier:

append(reverse(x ), append(y , z )) = append(append(reverse(x ), y), z )

where the functions append , and reverse are as defined earlier. Aubin-1

proceeds as follows:

1. The primary terms on the left hand side are:

{reverse(x ), x}.

The primary terms on the right hand side are:

{append(reverse(x ), y), reverse(x ), x}.

2. The common terms are: {reverse(x ), x}.
3. It is possible that we may select the variable x as the term to be gener-

alised. However, in this example, this simply results in the renaming
of a variable without making the lemma any easier to prove. Hence,
selecting the term reverse(x ) gives a generalisation:

append(append(v , y), z ) = append(v , append(y , z ))

It is perhaps worth emphasising that this approach marks the primary terms
to be replaced. That is, we do not simply generalise all the terms equivalent
to the selected term.

Example: append-same

So for example, the lemma:

append(j , append(j , j )) = append(append(j , j ), j )

generalises to:

append(k , append(j , j )) = append(append(k , j ), j )
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since only the first and fourth occurrence of j are primary.

This example also illustrates the advantage of this method over Boyer
and Moore’s approach. The generalisation of minimal common subterms
would result in the following invalid generalisation that claims that append
is commutative:

append(j , x ) = append(x , j ).

1.6 Generalisation of Constants

Aubin’s method of generalising primary terms does not work for problems
like the fibo example that was presented above. In recognition of this,
Aubin [6] suggests that such lemmas can often be massaged so that the
constant occurs on both sides of the equality. The generalisation can then
be obtained by replacing the constants with a variable. We label this method
Aubin-2.

Example: fibo

fibo(x , 0) = fib(x )

can be massaged to:
fibo(x , 0) = fib(x ) + 0

which can be generalised to:

fibo(x ,m) = fib(x ) + m.

Aubin does not elaborate on this process of massaging. In this example, if
one interprets massaging to mean the use of equality substitution with:

y = y + 0

then the following, incorrect form could also have resulted:

fibo(x , 0) = fib(x + 0)

fibo(x ,m) = fib(x + m).

Aubin does, however, suggest that the generalisation heuristics may result
in an invalid lemma, and that counter examples may be needed to eliminate
such cases.

12



2 Evaluation of existing methods

In this Section, we evaluate the existing methods described in the previous
Section in order to provide a better understanding of their applicability. In
order to evaluate the applicability of the existing methods, we have tested
them on several examples. Most of the examples are translated from the lit-
erature. Table 1 summarises the results of applying the methods to various
examples. These examples can be found either in the paper or in the Ap-
pendix. A tick in the Table indicates that the method works on the example,
and a cross means that the method fails. A delta marks those situations
in which some additional information is required for a method to succeed.
Thus, the deltas in the Aubin-2 column are present because it requires a
process of massaging, and the delta in the BM column marks an occasion
when an invariant property needs to be specified before generalisation. The
table shows that

The table shows that:

• there is some overlap between the methods;

• none of the methods is always successful;

• there are examples for which none of the methods work.

It would therefore be naive simply to provide all these heuristics in a
theorem proving environment. Hence, our aim now is to gain a better
understanding of the applicability of these methods in order to identify a
good subset of the heuristics that will cover most of the examples. The
first point to note from this Table is that three of the methods, CKD-1,
CKD-2 and Aubin-2, are most successful when generalising lemmas that
express the equivalence between an accumulator version of a function and a
divide-and-conquer version of a function. For example, these three methods
succeed in generalising the ’reverse’ example:

For example, these three methods succeed in generalising:

reverse(l) = reversea(l , [])
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Example C-K-D-1 C-K-D-2 Aubin-1 Aubin-2 BM
fact

√ √ × ∂ ×
fibo × √ × ∂ ×
exp3

√ √ × ∂ ×
append-same × × √ × ×
reverse

√ √ × ∂ ×
append-rev × × √ × √
length × × × × ∂
gcd × × × × ×
nines × × × × ×
nsquareprop × × × ∂ ×
elemsofrev × × × × ×
rangebt × × × × ×

Table 1: Applicability of methods on examples

where

reverse :X ∗ → X ∗

reverse(l) 4 if l = [ ]
then [ ]
else append(reverse(tl l), [hd l ])

reversea :X ∗ × X ∗ → X ∗

reversea(x , y) 4 if x = []
then y
else reversea(tl x , cons(hd x , y))

In general, the functions involved in these examples can be expressed in the
form:

f (x ) 4 if b(x )
then k
else h(f (p(x )), t(x ))

g(x , y) 4 if b(x )
then y
else g(p(x ), h(t(x ), y))
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where f , g , p, h, t are functions with an appropriate signature, b is a boolean
function, and k is a constant.

For instance, the above example is obtained as follows:

h(x , y) 4 append(x , y)

p(x ) 4 tl x

t(x ) 4 [hd x ]

b(x ) 4 x = [ ].

Then if we take k as [ ] we obtain reverse immediately. We obtain reversea
by using the following simple property of append :

append([x ], y) = cons(x , y).

As the following lemma shows, the success of these methods on this class of
examples is not too surprising.

Lemma

Given the above class of functions f and g and the following:

1. h is associative;

2. there exists a k such that h(k , y) = h(y , k) for all y ;

3. there is a y such that h(f (x ), y) = f (x );

4. p(x ) ≺ x for all x such that ¬b(x ) where ≺ is a well-founded ordering.

then we can conclude that

f (x ) = g(x , k) (6)

A proof of this lemma, together with a similar result covering the ’fibo’ ex-
ample, can be found in [8] and similar lemmas can also be found in [9, 10].
Hence for such cases, in which CKD-1, CKD-2 and Aubin-2 are particularly
successful, it seems more appropriate to use this result instead of heuristics,
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Example CKD-1 CKD-2 Aubin-1 Aubin-2 BM
append-same × × √ × ×
append-rev × × √ × √
length × × × × ∂
gcd × × × × ×
nines × × × × ×
nsquareprop × × × ∂ ×
elemsofrev × × × × ×
rangebt × × × × ×

Table 2: Remaining examples

i.e. we only need to show that the requirements hold in order to conclude
that equation 6 holds. Omitting this class of examples from further consid-
eration leaves us to analyse the examples in Table 2.

From Table 2 we note that CKD-1 and CKD-2 do not work for any of
the remaining examples. Furthermore, Castaing et al. [11] do not provide
examples to demonstrate that their methods work for examples that are
not in this class.t We therefore remove these techniques from further con-
sideration. The other methods are able to cover four of the eight remaining
examples. We can group into two categories the examples for which none
of the methods works:

• A closer look at the ’elemsofrev’ and ‘rangebt’ examples (see the Ap-
pendix) shows that they are both properties of accumulator functions.
As with all the examples, their frequency of occurrence in practice is
unknown. Nonetheless, as the given examples show, such problems
do exist and are realistic. Furthermore, it is known that accumulator
functions are an important class of functions as they are often more
efficient than their divide-andconquer equivalents (e.g. tail recursion
optimisation in Prolog [12]). It would therefore be a useful area of
future research to attempt to develop a heuristic that can generalise
such problems.

• None of the approaches is capable of generalising the ’nines’ and the
’gcd’ examples, given in the Appendix. The manner in which they are
generalised appears to require too much ingenuity and is too specific
to suggest a useful method of generalisation (readers can find a closer
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examination of these problems in the technical report [8]).

3 Conclusions and further work

We have described existing methods of generalisation. These methods have
been tried on several examples. None of the methods worked on all the
examples. Indeed, there are examples for which none of the methods work.
The success of a particular method depends on the kind of functions involved
in the lemma. We have shown that the examples for which the methods
CKD-1, CKD-2 and Aubin-2 are particularly suc-cessful form a well defined
class of problems. We have shown that their success on lemmas in this class
is not surprising because such lemmas are true subject to some requirements.
We have identified a class of problems, called properties of accumulator
functions, for which the existing methods fail. This class, together with the
generalisation of the ’gcd’ and ’nines’ problem mentioned in the Appendix,
remains the subject of future work.

4 Bibliographic Remarks

Our study has included an examination of the heuristics of Castaing et al.[5].
Castaing [11] describes the use of a generalisation heuristic in their theorem
proving system based on rewriting [13]. The heuristic used is based on the
method CKD-1 but also utilises Aubin’s scheme of identifying primary vari-
ables. Castaing also describes the steps that correspond to Aubin-2, and
Boyer and Moore’s cross-fertilisation heuristic. The process of unfolding
definitions in a lemma and then using the induction hypothesis is the basis
of a number of program transformation and synthesis systems [14, 15, 16]. It
is therefore not surprising that these systems also need to use some degree
of generalisation. For example, systems based on Burstall and Darling-
ton’s [17] fold/unfold program transformation method [15] often require in-
ventive definitions before being able to transform programs to their efficient
counterpart. In the case of producing accumulator versions of programs
from divide-and-conquer versions, these turn out to be the generalisations
that we describe. A deeper understanding of the generalisation of properties
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of accumulator functions is provided in Vadera [8]. We show that, under
some requirements, we can guarantee the generalisation of such problems.
However, the requirements make the approach difficult to automate as a
general heuristic. Some interesting, but more esoteric, generalisation prob-
lems for which the existing methods fail can also be found [8]. Hesketh’s
thesis [18] takes a failure-driven approach to generalisation. A proof step
that is stuck is first analysed to identify the offending subterms. Meta
functions are then inserted in a speculative manner around the offending
sub-terms in the hope that the proof will progress further. These meta
functions take the form F i(t , a), where t is an offending subterm and a is
a new variable.The meta functions are restricted to be projections on the
first argument (no generalisation), projections on to the second argument
(generalisation by replacing a term by a variable), or of the form f (t , a)
where f is a constant function (to enable insertion of accumulator func-
tions). Subsequent proof steps may then result in the identification of the
meta functions by a restricted form of higher order unification with existing
lemmas or the induction hypothesis. In the context of this paper, Hesketh’s
approach does not aim to provide a class of generalisation problems for
which it will succeed. Indeed, the approach requires the use of a tentative
search strategy as the meta functions may be inserted in an inappropriate
place or may need to be inserted at an earlier proof step. The success of the
approach also depends on the prior availability of appropriate lemmas that
enable the identification of the meta functions. In the broader context, to
which the thesis is addressed, the approach provides a unifying framework
that uses failure to guide generalisation. Unlike the approaches presented
in this paper, an important feature of Hesketh’s approach is that a gen-
eralisation is explicitly motivated by failure. Generalisation is also useful
in revolution-based theorem provers. The Karlsruhe Induction Theorem
Proving System based on resolution and paramodulation also uses existing
generalisation heuristics [19, 20].
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A Appendix: List of problems

Example: exp3 (Manna and Waldinger [21])
Show exp3(x , n, 1) = exp(x , n) where

exp :N×N → N
exp(x , n) 4 if n = 0 then 1 else exp(x , n-1) ∗ x

exp3 :N×N×N → N
exp3(x , n, z ) 4 if n = 0 then z else exp3(x , n-1, z ∗ x )

Example: length (Bundy [22])
Show length(length(x )) = length(x ) where

length :X ∗ → nil∗

length(x ) 4 if x = [ ] then [ ] else cons(nil, length(tl x ))

Example: gcd (Manna and Waldinger [21])
Show gcd(x , y) divides x where

gcd :N×N → N
gcd(x , y) 4 if y = 0 then x else gcd(y , rem(x , y))

divides :N×N → B
x divides y 4 y rem x = 0

Example: nines (Manna and Waldinger [21])
Show

∀ns ∈ No · 9 divides v(ns) ⇒ 9 divides sum(ns)

where

No = Digit∗

Digit = {0, 1, .., 9}
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v :No → N
v(ns) 4 if ns = [ ]

then 0
else let k = len ns-1 in

(hd ns) ∗ 10k + v(tl ns)

sum :No → N
sum(ns) 4 if ns = [ ] then 0 else hd ns + sum(tl ns)

Example: nsquareprop
Show g(n, 0) = n2 + n where

g :N×N → N
g(i , j ) 4 if i = 0 then j else g(i-1, 2 ∗ i + j )

Example: elemsofrev
Show elems (greverse(l , [ ])) = elems (l) where:

greverse :X ∗ × X ∗ → X ∗

greverse(l , a) 4 if l = [ ] then a else greverse(tl l , [hd l ] _̀ a)

Example: rangebt
Show:

grange(bt , x , y , [ ]) = {i | i ∈ retrns(bt)i ≥ xi ≤ y}
where

grange :Bt ×N×N → N∗

grange(bt , x , y , a) 4
cases bt of
nil → a
mk-Node(lt , v , rt)→ if (y < v)

then grange(lt , x , y , a)
else if (x > v)

then grange(rt , x , y , a)
else grange(lt , x , y , [v ] _̀ grange(rt , x , y , a))

end
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