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ABSTRACT

Trapozoi, lally corrugated sheeting has been previously studied

with regald to applications in shear diaphragms, making use of its

inherent strength and stiffness prepeitios by suitable connections.

The in-plane deflection is an important design factor and the shear

distortion component, due to eccentric transfer of fastener force into

profile shear, is a major contributor to the total. A design formu]a

is developed for the distortional shear flexibility for .ets taste ed

in every trough and in intermediate purlins which takes account of the

localized distortion at the sheet ends by using an energy method analysis

of assumed displacement functions to represent plate bending.

For fastening in alternate or multiple of troughs, an additional

profile concertina distortiOn occurs, resulting in a large increase in

the shear flexibility. A similar energy method is performed as for the

previous case, developing the same basic formula for the distortional

deflection. A corresponding study is made for sinusoidally corrugated

sheeting.

A nuMber of practical design factors have been examined - including

the effect of longitudinally overlapping sheets, and purlin restraint on

profile distortion. For sheets spanning over rafters into different

shear fields, the expressions for shear flexibility have been modified.

The strength of diaphragms has been investigated, especially with

regard to fastening on two sides only, which includes the torsional and

bending stiffness of laterally weak purlins. Diaphragm openings cause an

increase in the sheet flexibility and constrain purlins to follow the

resulting displaced shape. Consequently locally high purlin bending

stresses and sheet-purlin forces may be generated, as revealed by

differential equation and finite element studies.

Corrugated sheeting has many applications in frameless structures

such as folded plates and hyperbolic paraboloids. The flexibility and •

strength expressions have been used to design a prototype three bay folded

plate roof Which utilizes specially pressed sheeting to reduce the shear

distortion component of roof deflection,



The shear buckling strength of corrugated diaphragms is an

impottant factor in such construction. For larger roof diaphragms

with only periodic intenrediate fixings to purlins, buckling may occur

over the complete diaphragm depth rather than separately in each bay,

and design tables are shown for this condition.
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CHAPTER	 1.

INTRODUCTION

1.1.	 General Concepts:

Corrugated sheeting is a structural commodity of wide appli-

cation. Its use as roofing and decking is well established, relatively

thin sheets spanning between purlins awing to the bending rigidity of

the formed profile. Insulation and weather proofing layers may be

attached, and the sheets themselves are easily fastened to their supporting

members by self tapping screws etc. (1)

In recent years the diaphragming capabilities of complete panels

has been realised,
( 2, 3 ) and by making specific fastening arrangements,

the shear strength and stiffness of corrugated units, may be utilized in

integral building design. The 'stressed skin' approadh
(4)

 has proved

successful in establishing the flexibility of corrugated diaphragms due

to a nuMber of different factors, and allows the sheeting to make a

positive contribution by reducing the bare frame moments and forces

throughout the structure.

The inherent in-plane stiffness of a panel is mobilized where-

ever relative movement occurs between frames or members in single or multi-

framed buildings. Low rise ,large plan structures, typical of industrial

buildings benefit most from the diaphragm action of corrugated panels.

For excimple, horizontal wind forces may be transfered as in-plane shear

by roof cladding to stiffened end gables, eliminating the need for complex

wind bracing arrangements. Similarly, the differential spread of frames

under normal load is resisted by the roof deck.

The high relative stiffness ratio between diaphragm and frame

ensures that considerable force will be attracted to the roof sheeting

whether accounted for in design or not, and hence some benefit will accrue

from comprehensive stressed skin analyses with very little alteration to

the normal sheet fastening arrangement.

In multi-storey buildings, floors, walls and roofs all have
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considerable in-plane strength and stiffness which are mobilized through

the connections, producing a complex interaction of plates and meMbers (5)

Frameless structures of all types extend the category of 'surface

active' structures by relying completely on membrane resistance to loads,.

obviating the need for a framing system, which is designed to be independent

of the cladding. In frameless construction the primary load carrying

system is also the skin of the completed roof. Thus the philosophy is

one of interaction of planes or surfaces by their geometry to produce a

load hearing unit where in-plane stresses dominate.

Cylindrical shell, folded plate and tent roofs all provide an

efficient method of covering relatively large areas with low material

cost. Ease of erection, inherent simplicity of fastening, and prefab-

rication are important considerations for such modern construction,

especially in repetitive design for hospitals and schools, where economy

is important.

Corrugated sheeting is ideally suited for medium span folded

plate roofs to cover gymnasia, swimming baths etc. By twisting the profile
(6)	 .along its length, hyperbolic paraboloid units may be constructed, 	 making

use of the shear stiffness of the medium and the strength of the connections.

Curved units have been developed for corrugated steel 'Nissen' huts (7)

and grain silos which utilize the in-plane as well as the bending prop-

erties of the sheeting.

Thus, corrugated sheeting has the ability to provide a number

of functions and its continued and varied use is made more amenable by

accurate quantification of its in-plane strength and stiffness properties

as well as those of the connection arrangement.

1.2.	 The Stressed Skin A22roach in Framed Buildings:

A roof diaphragm consists of bounding members to which corrugated

sheets are attached by rigid connections. Even the sparsest distribution of

fastenings will induce shear resistance in the cladding providing that the

framing members are capable of maintaining equilibrium. The simplest
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diaphragm consists of a rectangular assetblage of pin-jointed members

with inter-connected sheeting fastened on all four sides, which generates

a uniform shear field.

The acceptable mechanical fastenings are those which provide
a definite fixing between sheet and member or neighbouring sheet and whose

strength and slip Characteristics can be reliably determined. The

performance of the individual fasteners (8) and welding pattern (3) as

used in practice has been the subject of much investigation in Europe and

North America. For a simple diaphragm, the overall capacity is dependent

on the type and nutber of connections given that all four sides and seams

must resist the same uniform shear flow. (Fig. (1.2(a)).

Amajor requirement of all diaphragm design is that failure

should occur by ductile sheet tearing rather than brittle shearing of the

fasteners.

The shear deflection of a corrugated metbrane is largely controlled

by the degree of trough fastening. The sheet is relatively flexible

perpendicular to the corrugations, and the profile is easily compressed

and extended by the net fastener force as in Fig. (3.1). Similar to an

accordion this concertina action is manifested as a shear displacement.

Hence, the usual fixing arrangement for deflection limitation is in

alternate or third troughs.

A typical roof diaphragm behaves like a deep plate girder within

which the framing members absorb the axial force and the cladding is

subjected to shear forces only (Fig. (1.1)).

Two distinct categories of roof design exist and are:

(a) where the diaphragm provides the complete roof stability

for resistance against wind loading. This is illustrated

in Fig. (1.7) for a flat roof diaphragm and pin-jointed

frame. Wind load is transmitted through the roof by

beam action and hence to the end gables.

(b) where the roof and frame act in conjunction. Flat or

pitched portal roofs may be designed individually to
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resist wind loading, but when coupled by loof sheeting,

the lateral force is shared between the diaphragm and

frame according to their relative stiffness. Fig. (1.4)

shows for a four bay roof, how frame away is resisted by

diaphragm action between stiffened end gables. Clearly

. the penultimate frame is subject to the greatest relief

of sway bending moment and consequently the end diaphragm

suffers the greatest shear force.

9)
A, plastic method of design has been proposed for the second

category which shows that, for uniform frames and loading, all the frames

have the same cladding resistance. The shear panel must be sufficiently

ductile in failure to allow all the frames to develop their respective

plastic hinges. Brittle forms of failure such as global buckling or

fastener shear would make the design method unreliable and hence these

modes should have a greater factor of safety.

For pitched roof portal frames ( 4) the spread of the eaves

under normal loading may also be resisted by diaphragm action again

dependent on the relative spread stiffnesses of frame and sheeting as

shown in Fig. (1.8). In this case the inclined diaphragm is reduced to

the appropriate flat diaphragm flexibility.

The equilibrium requirements and the compatibility of frame

and diaphragmmyvenent may be solved for each frame according to;

A-X.=. where X. =	 +6.1A	 61	 1-1 + 6.+l

C/co sE)

whereLand S. are the net diaphragm reaction andspread deflection for

the ith frame.

Ao, and A are the applied loading spread and the frame spread

flexibilitp respectively. C is the roof diaphragm's own flexibility, as

shown in Fig. (1.8).

Establishing an equation for each intermediate frame, assuming
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zero end movement, yields a solution for the final diaphragm displacements

and also the relief of frame spread bending moment. Reduction factors

have been tabulated by Bryan for the spread bending moment as a function

of frame-diaphragm relative stiffness and frame position. The roof, of

course is designed primarily for its simple bending properties and may

consist of purlins spanning across rafters, with profiled sheeting

spanning perpendicular to the purlins (Fig. 1.3(a)). The plane of shear

resistance may thus be significantly higher than the rafter thrust, and

this imposes a twisting tendency on the purlin-rafter connections. If

the cladding is fastened on two sides only to the purlins, shear connectors

running along the rafters are usually advisable to transfer the sheet

shear directly along all four edges.

The 'stressed-skin' nature of buildings, taking into account

the diaphragm action of corrugated panels, requires that the sheeting be

permanently in place and is treated as a primary structural rrember. Where

both frame and diaphragm act together it has been suggested that the bare

frame should resist the design load and that the sheeting ought to merely

contribute to the factor of safety. (4)

Quite apart from its membrane strength and stiffness, the

attachment of corrugated sheeting to purlins and columns, ensures that

there is some degree of lateral and torsional restraint to buckling of

light cold formed rrembers. (10

American diaphragm practice often specifies puddle welding of

an upstand overlap seam to reduce the risk of poor fusion, and this is

reflected in a high strength factor of 2.5 to account for the variability

of site welding. 	 practice involves the cxxo.bination of welding

and button punching of seams to lawer site costs.
(11) Of course, much

higher sncw and wind loads are experienced in North America and this may

make welding appear more viable than in Britain, where self-tapping screws

are the most popular fixing.

Historically the stressed skin application to buildings was

first used by consultants in California in 1949 as diaphragm resistance

for wind and seismic loading. Nilson, (3) at Cornell University began an

extensive program of research into welded diaphragms in 1956 and tabulated

the strength and deflection of various gauges of standard diaphragms
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from experimental data. Luttrell
(12)

 continued this work in 1965 firstly

at Cornell and later at West Virginia University.

(11, 13)
Many companies	 in North America use extra-polated experi-

mental observations to design large scale diaphragms and it seems that the

theoretical approach is overlooked.

In 1964 Bryan (14) at Manchester began to study mechanically

fastened prototype sheeted buildings and obtained good agreement between

experimental and theoretical deflections for full scale tests. His

approach still forms the basis of all future study.

Recently the finite element analysis has revealed new information

about the internal force distribution within diaphragms. Nilson
(15)

 and

Sved
(16)

 in Australia have modelled the individual corrugations and

fasteners and stilHied sheeted buildings by this method.

Davies (17) used finite element and other computational techniques

to verify simplified design formulae for the strength and flexibility of

corrugated diaphragms.

1.3.	 The Strength of Corrugated Dia2hragms:

A general diaphragm arrangement is shown in Figure (1.11. As a

guide to optimum proportions Bryan suggests that for flat roofs the overall

length should be no more than four times the width and 2.5 times for

pitched roofs. Using the deep girder analogy, the purlin axial stresses

are dependent on the diaphragm bending moment, and also on their position

fram the neutral axis. Assuming a linear variation of axial strain, then

the outer purlins are most highly stressed. The consequent distribution

of shear stress within the roof diaphragm is a step-wise function, each

additional increment being related to the axial stress in the intermediate

purlins.

This is a purely an observation fram statical equilibrium

considerations, which takes no account of the compatibility requirements

of shear strain between each section. Nevertheless, as a lower bound to



to the diaphragm capacity, the worst conditions should be taken for initial

failure of the seams or edge fastenings. However, the ultimate strength

of the whole diaphragm may be significantly higher as seam failure spreads

out fram the centre into the lower shear regions. Seden (18) has studied

these elastic-plastic Characteristics of diaphragm failure.

The idealized transfer of rafter thrust into diaphragm shear

is dependant on certain practical considerations. As in Fig. (1.3(a)),

shear connection directly between rafters and sheeting is advisable so

that the diaphragm is fastened on all four sides. In sone cases, the

loading may be low enough to permit shear connections in the end roof

bays only, the local rafter for being absorbed through the purlin-rafter

connections, and spread into the panel by the sheet-purlin fasteners,

(Fig. (1.3 (b))).

For a simple diaphragm connected on all four sides, the required

number of fasteners on each perpendicular edge are given by:-

n. FR
and n _ Qa/b 

Fp

where F
R and F are the ultimate loads of the individual sheet-shear

connector and sheet-purlin fasteners respectively and a and b are the

panel width and length respectively. Q, the panel ultimate load, is

applied in direction b.

(4)
Bryan	 suggested that for self-tapping screws in

F
P
 = F

R 
=

expressed

of welded

sheet steel

6 KN/mm thickness, but this is only a typical value. Nilson (3)

the complete panel strength graphically for various configurations

diaphragms.

The number of seam fasteners required may be conservatively

given by,

ns =

where Fs is the Characteristic seam fastener ultimate strength. Again, as

. a very rough guide Bryan suggested FS = 2.5 KN/mm thickness of sheet steel.



Ellifritt and Luttrell (19) proposed experimental failure curves

for welded diaphragms corresponding to weld-sheet tearing and inter-weld

buckling. A typical curve for this second failure mode might be,

3.22 
Q =	

4. 41.2 x 103	 kNL/t
(10--)

2

where t is the sheet thidkness and L the weld spacing.

For diaphragms fastened on two sides only as in Fig. (1.2(b))

the overall equilibrium is maintained by fastener forces normal to the

purlins as well as those in line with the member. The extreffe fastener

is most highly stressed and the sheet shear force builds up from zero at

the ends to a medium at the centre, consistent with the application of

the sheet-purlin force. For a linear distribution of forces perpendicular

to the purlins as assumed by Bryan, the sheet shear force is parabolic in

nature and increases to 1.5a at the centre of the diaphragm. Davies (17)

examined the effect of purlin bending on the expressions for ultimate

load and concluded that for the indirect shear transfer case due to

fastenings on two sides only, the assumption of a linear distribution of

forces normal to the purlin was in gross error.

Considerable purlin bending was revealed by finite element study,

which tends to magnify the extreme fastener force. Indeed, the capacity

of a diaphragm due to indirect shear transfer would seem to remain constant

independent of the diaphragm width.

He suggested that for fastening on all four sides seam failure

occurs at,

• (2n
s
s +.g

1p
.n.s

s
)

Q = Oa F + n F ) • (2n
ss + n s)ss	 pp PS

where n
s
, s

s
, n, s are the number and slip of the seam and sheet-purlin

fastenings respectively. 9.1 accounts for the effect of the sheet-purlin

connections on the seam strength. Some shear force is transferred by the

purlins (of number n) away fram the seam, and for a linear distribution

of sheet-purlin forces g l tends to n/6 . A similar expression may be derived
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for failure of the sheet-shear connector fasteners.

In general, sheet-shearing is the most ideal failure, but other

possible modes include global or local shear buckling, and serviceability

limits such as excessive corrugation distortion.

1.4.	 Shear Flexibility

The shear deflection of corrugated diaphragms is composed of a

number of different factors such as the slip of the seams and edge faster ings

and the pure shear strain within the sheeting. Also the beam type deflection

may be considered as an additional component due to axial strain on the

purlin ffenbers.

The depth of the corrugation is important for its own bending

properties, but under shear the open profile is able to distort and warp

as in Fig. (2.1 (a)). This is because the plane of shear resistance is

different from the line of action of the fasteners, producing profile

twisting and a consequent longitudinal shear displacement. Distortional

flexibility is only a part of the total but is usually the major component

and the deeper or more sparcely fastened the profile, the more distortion

daminates. Based on linear movement along the sheet length Bryan
(4 )

derived the shear flexibility due to distortion as,

0.144ad4

C1.1 - f1Et3jb	 K3

where a, b, d, t, E are as defined, and K is a dimensionless parameter

dependent on the fixings and profile shape. The factors f l , f2 , f3 , are

due to the effect of a number of intermediate purlins.

The shear strain camponent is,

2a(1 + v) (1 + 2h/d) fC1.2 -	
btE	 2

where v, b, etc., are as defined.
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The flexibility due to axial strain is

2a
3

C1.3 -	 . f
33b

2
 AE

where A is the purLi_n cross-sectional area.

The flexibility due to the sheet purlin fastenings is, as in

Fig. (1.3),

c
2.1 

_ 2aTY f
3

where s is the characteristic fastener slip and approximately equals 0.15

mm/IN for self tapping screws (4 ) in sheet steel, and p is the fastener

pitch.

For fastening on two sides only C2.1 is modified to,

_	 ( 6
- a n

where n are the number of purlins.

The component due to seam slip is,

= On - 1) ssz.2	 sh
ns

where nsh is the nuMber of sheets and s s is the Characteristics seam slip

taken as 0.35 mm/KN for poprivets and screws. (4 )

Finally, the flexibility due to sheet-shear connector slip is,

C2 .3 -
Sc

where nsc, and ssc are the number and slip value of these fasteners.

a2

)

2sSc

The total flexibility is the sum of all these constituent parts,

and the deflection per boy is obtained by multiplying by the diaphragm



shear force.

The theoretical distribution of shear force within a diaphragm

as in Fig. (1.1) is controlled by the linear variation of axial force in the

purlins. To maintain equilibrium there must be an increase or shear

flow towards the sheet centre and hence Bryan (4 ) modifies his component

flexibilities by the factors f f2' and f3
 which are all equal to a value

less than unity, to approximately account for this effect.

The basic sheet flexibility, c is defined as being in line with

a force applied along the corrugations. To obtain the transverse flexibility

a modification factor (b/a)
2 
is introduced as in Fig. (1.5).

American diaphragms often use a flat sheet spot welded along, its

length,to the base of the profile, producing a very rigid metbrane by

eliminating the C1.1 flexibility.

For puddle weldingithe slip per seam on roughly 1.2 ran thick

steel sheet may be taken according to Nilson
(3) as,

-3 Da23.1 x 10	 -0.105 mrn,

which if negative, becomes zero. 	 Where Q is the external shear force in kN,

w the weld spacing and a the panel width in lilla.

American standards state that the lateral roof deflection for

masonary walls should be 1Pss than,

h
2
f  • ran

.0004Et

where h, f, E, t are the wall's height r allowable compressive stress, Young's

modulus and thickness respectively.

Sheet shear flexibility is a design parameter in order to determine

the overall force distribution between frame and diaphragm. Underestimating

the deflection in design would in practice attract more force to the frame

and vice-versa perhaps producing a dangerous over-loading in the elastic

range.



1.5.	 A22lications of Corrugated Sheeting in Frameless

Structures

The in-plane and bending properties of profiled sheeting may

be utilized in many frameless forms of construction. Folded plate roofs

as in Fig. (1.9) rely on the beam action of equivalent girders spanning

between stiffened end frames. These inclined deep plate girders are

composed of fold line members which attract the axial stresses, and

sheeting spanning between, which resists the shearing force. Thus the

skin is both stressed and acts as a covering.

The sheeting spreads load back to the fold meMbers, where the

total reactions are split as in-plane components into the neighbouring

roof sheets according to the parrallelogram of forces. Hence, each roof

plate is subjected to uniform, in-plane loading along its length, and

consistent with beam statics, the sheeting is subjected to a maximum

shear force at its ends. The fold lines are naturally most highly stressed

at mid-roof span. In addition the shear proportion of central roof sag

adds considerably to the overall deflection and often represents a

limitation to the permissible roof span.

The overall roof capacity is generally determined by the fastener

resistance along the edges and seams or the shear buckling strength.

Easley 
20) 

derived a useful expression for the global shear buckling load

of,

36 1/4 3/4
=	 Dx Dy

where py and Dx are the major and minor sheet bending stiffnesses respectively,

and b the sheet span.

Thompson
(21)

 studied the effect of variations in fastening arrange-

ment along the roof length. This may be necessary if the cost of fixing

is prohibitively high, especially for the seams, which may reduce in

number according to the decline in shear force.

Hyperbolic paraboloid units may be formed by twisting corrugated

sheets along their length, (Fig. (1.10)). Load resistance, in theory, occurs
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by membrane shear forces generated according to,

ab= w (—)
4c

where w is the normal sheet loading per unit area andttthe sheet shear

flow. c is corner uplift defined by the generators according to Fig. (1.10),

= 2c ab

The overall shear flow is constant and hence the shear deflection

components are of the same form as a flat diaphragm.

In California there are examples of 70m cantilevered folded plate
modules C22 ) used as aircraft hangars. The sheeting spanning between fold

lines is twisted differentally along the roof producing a hyper-shape. An

advantage of curved membranes is not only in their load bearing capabilities
(2g)but also in their buckling strength compared to flat Sheets. Gergely

has studied the buckling Characteristics of highly orthotropic hyperbolic

paraboloids.

Cylindrical sheets as in Fig. (1.11) spanning directly between

end frames utilize the orthotropic properties of corrugated Sheeting.

Stiffening ribs are usually necessary to transfer in-plane forces across

the weak sheet direction, and the sheeting is then subject to shear and

arch action. The non-uniform shear strain suggests that the distortion

an equivalent flat Sheet cannot be used. Abdel Sayedcomponents C1 .1 for

shows that the Shear buckling strength is greatly enhanced by the curvature. t4)

young 5) has studied cylindrical shell barrel vaults which

may be ciPsignedmoxe economically by including the shear stiffness of

the sheeting.

1.6.	 Limitations of Present Knowledge and Aims of this Study

In designing corrugated sheets to resist in-plane forces it is
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necessary to quantify their on shear flexibility which not only controls

the roof deflection but also determines the relative distribution of load

between the frame and diaphragm in traditional buildings. The flexibility

due to distortion is an important factor in shear diaphragm analysis and

its control by suitable choice of profile and fixing arrangement may be

necessary in structures where in-plane forces dominate.

A, number of theories have been proposed to model this shear

distortion, which lack either accuracy or simplicity of formulation in

accounting for the effects of profile shape, sheet length and thickness

as well as fastener pitch.

The use of profiled sheeting is subject to many practical

considerations such as the effect of discrete fastenings, intermediate

purlins, overlapping of sheets, openings for roof lights and the suitability

of the shear transfer between sheeting and rafter.

Diaphragm openings are often necessary and apart from the

finite element method, no analysis is available to predict the effect of

a flexible band within a stiffer roof diaphragm. Light cold formed purlins

are constrained to follow the shear deflection of the sheeting which causes

locally high fastener and purlin bending stresses.

The purlins also contribute to the strength of the seams by

spreading some shear force to the sheet-purlin fasteners. For diaphragms

fastened on two sides only, the lateral bending and torsional stiffness of

the purlins is an important factor in determining the degree of shear transfer

to the sheet purlin fastenings, which had been neglected in the previous

simplified analyses.

In many applications, finite sheet lengths must be overlapped

to produce the complete diaphragm depth. However, the distortion component

of flexibility is extremely dependent on the length and number of sheets,

and this is further camplicated by the interaction of neighbouring

corrugation distortions.

Sheets usually span across purlins, but in otherforms of construction

the corrugations span directly between rafters. The problem of sheet span

across different shear intensity regions makes quantification of the

corrugation flexibility more difficult especially if this is associated with
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overlaps at the/after-points.

Folded plate roofs using mechanical fixings have been examined
(21)

by single plate tests,	 but no full scale building has yet been

constructed to verify the design philosophy, and to show that the basic

diaphragm properties may be extrapolated, for design of a frameless structure.

The shear buckling capacity of corrugated sheeting has been

determined but only for idealized constraints. The effect of discrete

parameter and intermediate purlin fastenings may cause a sizeable deviation

from the simple formulation. Although not normally a failure criterion for

mechanical fixings, welded diaphragms may be sufficiently strong to permit

failure by global shear buckling.

The overall aim of the study is to account for the practical

considerations of roof design using corrugated sheeting, as well as to

more accurately determine strength and deflection, with regard to use in

frameless forms of construction.
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Plate (2.1) Shear distortion of an open profile fastened in every trough

Plate (2.2) Unclad test rig, showing the full range of purlin positions. The
left hand rafter is fixed and all connections are pirmed
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CHAPTER	 2

THE DISTORTIONAL FLEXIBILITY OF TRAPEZOIEAL SHEET PROFILES 

FASTENED IN EVERY TROUGH

2.1.	 Sim2lified A22roaches

The shear flexibility of corrugated sheeting fastened on discrete

points to a bounding member system is dependent on the profile shape, the

panel dimensions and also on the fastening arrangement. The shear

distortion component derives from the fact that the centre of shear

resistance of the profile is different from the plane of force application

and the corrugation is twisted out of shape by its own shear floor. The

individual plates, whilst moving laterally, also rotate and bend inplane

which produces longitudinal warping, and hence shear displacement across

the profile.

Naturally, the degree of end fastening controls the shear

distortion, the every trough fixing case twisting die to movement of the

top and side plates (Fig. (2.1 (b))). Alternate trough fastening,

however, is much more flexible as an additional concertina action occurs,

resulting from the freedom of the unfastened bottom plate (Fig. (3.1)).

The methodsof evaluating the shear flexibility due to corrugation

distortion vary in their complexity, same permitting a whole range of

fastening and end forming conditions to be examined. Others make simpli-

fying assumptions about the physical process of deformation. In general,

energy methods of assumed displacement functions would seem to be the

most suitable for analysing shear distortion as a complicated relationship

exists among the internal forces within the corrugation.

Hlavacedk(20 considered the cross-section to deform due to

a uniform shear flow transferred from the fasteners which causes a linear

movement of the top and side plates along the panel depth. The transverse

bending moments around the profile can be obtained by statics from the

shear flow and hence the bending strain energy is a function of the shear

force only. Equating the internal to the external work gives an expression

for the shear flexibility due to a unit force parallel to the corrugations.
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Is- 	 t3	 per mm sheet length,
12(1 -v2)

where The plate stiffnessrepresents integration around the profile.
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Rigid plate movements, where all sections contribute to the total energy,

generates a shear stiffness in terms of the panel length cubed, as shown

later.

In Hlavacek's analysis the side and tap plates are separately

allowed to move and the flexibilities of the two cases added. The case

where only the top plate shear force is considered, corresponds to the

analysis of Bryan and Jackson. (27) The first attempt to analyse the

shear flexibility of a flat sided corrugated sheet was performed by
(28)

Rothwell	 who considered a pointed profile (42 = 0) which has applications
on the aeronautics industry, where the primary design factor was to

relieve thermA stresses and improve the skin's buckling strength. Rothwell

also assumed rigid plate generators and the derivation is merely a special

case of other theories which make this simplified observation.

•

Amore general extension

movement caused by uniform profile

was able to evaluate the work done

function of the end shear flaw, q.

may be obtained by,

UT	 ds
= fo M2 MO Els

of the assumptions of linear plate

shear flow was presented by Bryan Who

in deforming the cross-section as a

Top and side plate end deflections

or S_
r1 EI

s/2
I	 M M 9— ds0	 0 Els = 952 Els

The bending moments Mo, Mi ,. M2 are shown in Fig. (2.9).

The expression for in-plane warping due to plate movements "r1

and 'UT , as shown in Fig. (2.2 (a)), is,

	

4h lie, _,_
	 TUTA	 -r

= b

where b is the sheet length and the profile geametry is given in Fig. (2.1(a)).
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Hence
2C1.1

dY
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The internal work due to cross-section twist is obtained by

multiplying the side and top plate forces by their respective displacements

at any section y, and integrating over the complete length. Equating to

the external work gives,

A
2	 b/2

- I	 (2b	 +	 ) q. (-Y-) 2 dy0	 T	 S	 b/22C
1.1

The total energy equation yields the flexibility per corrugation as,

, (1 - v2
) c

1.1 = 288 (1102 +	 Et
3
 b

3

The flexibility expression may be rearranged in terms of a

dimensionless parameter K defined by,

0.144 ad4K
C1.1 -

Et
3
b
3

where d is the trough pitch and a is the sheet width. The K value is now

only a function of the dross-sectional shape and the fastening conditions.

This expression for shear flexibility due to distortion has formed the

basis for .Bryan's study (29) of prototype panel and building tests. It

is apparent that the distortion deflection falls rapidly with sheet

length, b, and at about 8 metres for a 35 inn, deep profile is of the

same magnitude as the other factors due to fastener Slip and pure shear

strain.

It should be noted that the deformation pattern assumed in all

the simplified analyses implies that the downward side plate movement is

unrestrained by fastening to a rigid purlin nember, which disrupts the

antisymmetry of deformation as in Fig. (2.1 (a)) and Plate (2.1).

If the aspect ratio of the plates increases Horne and Paslan (341) )

first showed the presence of non-linear plate movements (Fig. (2.2 (b))).
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Rather than assuming a uniform cross-section shear flow, the portal

frame type bending energy was expressed in terms of in-plane displacements

of each plate. Non-linear longitudinal flexure and shear strain were

included as contributors to the total internal energy by establishing

additional simusoidal forms for the movements along the sheet length.

Thus, the overall strain energy may be expressed in terms of

displacement parameters. Minimization of the total energy with respect

to each variable, and including the condition that the shear deflection

should remain constant throughout the sheet length reduces the energy

expression to simultaneous equations in the independent variables to

solve for the corrugation flexibility.

The shear flow is no longer constant but can be redetermined

from the transverse bending moments. Unfortunately Horne and Paslan

only carried out their analysis for the case where side plate uplift is

prevented, but as will be shown later, the approach of assuming displacement

parameters has a number of attractive features.

These same authors 
(31) 

also performed a finite difference analysis

of the controlling differential equations of plate movement in terms of

three chosen plate displacement parameters. Each side is under the

equilibrium of in-plane moments and forces, as in Fig. (2.3 (b)). The

local forces, q, derive from the transverse portal frame bending moments

of cross-section distortion. Thus equilibrium is maintained when the

forces producing in-plane plate flexure are compatible with the profile

distortion. The three resulting fourth order differential equations require

twelve geometrical or force boundary conditions for solution.

Horne and Paslan's energy method analysis may be easily adapted

to dope with rigid plate movements alone and it may be shown that the

results do not differ markedly from Bryan's method. However, Horne did

indicate that above a 2 metre sheet length, plate linearity breaks down,

mainly due to trough bending, and that the flexibility rises above Bryan's

formulation.

The physical interpretation of plate bending is that for long

panels, distortion becomes localized near to the end of the sheet where
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the discrete fasteners absorb the sheet shear force. This phenomena

was also realized by Libove, a summary of whose analysis follows. With

various co-authors he derived a rigorous method for evaluating the sheet

effective shear modulus, which defines its reduced stiffness compared to •

that of a flat sheet of the same thickness.

2.2.	 Methods due to Libove L Strehl and Others

The most comprehensive analysis of the shear flexibility of

corrugated sheeting to date was performed by Libove (32) who established

the total energy of plate distortion in terms of three longitudinal and

three transverse displacements. Portal frame bending, longitudinal

plate flexure, shear and torsion energy were all included by establishing

differential forms such as,

(d111)
2 2 1, 3,„

( 2)	 ""
dy

(which represents the bending energy of an element of the top plate due

to an in-plane displacement ,

Thus, the total energy is expressible in certain orders of

differentials of the parameters and by applying the calculus of variations,
six differential equations are generated correspcnding to the minimized

total potential energy.

The necessary force and geometrical boundary conditions are

obtained, and the six simultaneous differential equations may be solved

in terms of their complementary functions and particular integrals. Any

boundary conditions can be selected to represent, for example, methods

of fastening or processes designed to reduce deformation.

Llbove has studied a number of different cases for both trap-

ezoidal and sinusoidal profiles corresponding to free deformation of

troughs and corrugation ends, the laagitudional restraint of trough bending,

and the effect of purlin restraint on side plate depression.
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Translating his graphical representation of effective shear

modulus into shear flexibility, seems to indicate non-linearity of plate

displacements for panels longer than 1.5 metres. The stiffness, a

function of length cubed for straight line generators falls rapidly to

a power of length squared: for longer panels and the flexibility factor

K increases correspondingly. His experimental results are confined to

relatively short panels, and given that the factors due to fastener slip

and strain on purlins are accurately quantifiable, it does appear that

the flexibility factor K rises with length. However, the relative stiffness

concept used by Libove does not make the results more amenable to inter-

pretation , as he was unable to develop a controlling parametric

equation for the shear stiffness.

Strehl
(33) uses an approach based on the beam on elastic found-

ations analogy. The stiffness of the beam is provided by the inertia

of the plates of the corrugation and the elastic medium is represented

by the effect of cross-section distortion. Of course, the interaction

between the movements of each plate is complex as each one acts like a

beam on its own foundation. The disturbing force is provided by the

trough fastener which both bends the beam and depresses the elastic medium.

A nuMber of other analyses have been presented notably by

Baere, (14) Ting (15) , and Falkenberg 315) , but all lack the confidence of

a rigorous dprivation.

Libure's approach may be summarized by the following section which

uses three in-plane displacements and three shear strains to define the

total internal energy making use of the inherent anti-syrmetry of deformation

as in Fig. (2.1(a)). The method outlined illustrates the collection of

individual energy terms and their minimization to evaluate the shear

flexibility.

Firstly, cross-section distortional energy may be expressed as,

Ed =	 a11qT
2

al2UTUS + a
nyb + a22Urs2 etc., dy

where lt implies integration over the whole sheet and UTps and %, are
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the respective top, side and bottom plate movements. The in-plane

bending energy longitudinally is,

d2U 2	 d2Us 2	 d2UB 2

Eb =	 dY
o d y	 uY

The shear strain energy is,

2E =	 1f b d T +d2yS
2 +d3 y 

B2 
dy

o 

where yT, yS' yB are each plates' respective shear strain.

An additional axial strain component is caused in the side

plates by the bending strain incompatibility of top and bottom plate

movement. It is a necessary condition to ensure similarity between

neighbouring corrugation movement, that the shear displacement A is

constant over the sheet length. So if,

A = 2bT (UIT1 + YT) + 4140sPs	 4. 24E,(UB1	 1111)

then according to Fig. (2.4(b)) the axial strain energy in the side plates

may be taken as,

21
Ea = fbo C1(bTUT11 bTiT

1 b
LUB
11 

bLYB	 dY

where UT1	 dILT etc, and yT
1

2
at'

The total internal energy is E = Ea +Eb + Ed + Es and E = A2/2C, where

C is the shear flexibility which includes both the pure shear strain and

the distortion components.

Taking small changes in each variable corresponding to (SE = 0

when the internal energy is at a minimum, then small changes in the

individual energy components yields, for example,



11 + 
T

y lb
T
 - hLUb11 - brTyBii] o2c 142 00.114 

b/2

dy 
( 61 )
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2	 b/2
6 {.1(1..

1
y-

,
L) dyl	

[
= 4 qr vuT -	 +26UT I U .

 11 d	 111

oT'

111r 1	 11
b/2

+ 617,11 
''B dyand 6

. 
{) U

T
lly

13
1
dy 1 = 2LyB d 613[1, - ' 'B dUT

2
and 6{ 

o
U
T dY
	 =26 UT 

o T dY

where [	 :]b/2 is the function value at the sheet end minus that

in the centre. Combining for eadh incremental displacement OUT, 613s

6yB etc., yields typically.

= 611i jilblo: 2a11141, + algrs + al37B + 210114r11/

lv	 111	 lv	 111
+ 2CibT (bTUT + beT - bLUB - bLyB ) dy

where
n

-lb/2+ sql [	 i 0
3,„UL	 111= d

4
-u.' , yB	 = d '.).B etc

dy
2

dy
2

Fcm:mirdinum potential energy 6E is zero and hence the right

hand side of the equation must also vanish. For 61; 1, non-zero if follows

that at all points along the sheet length.

UT 
+a

12
U
S
 +a

13 
IL

114 
+ 21)..UT11.7 + 2C.i(b,TUT 	

111lv	 1
+ bTyT

11 -Abi lv - bLUB)bT
 -

=0

Similarly the boundary conditions at the sheet end resulting

from the constant terms C	 T3/2]must also be zero for 6E = 0.



- 24 -

At the sheet ends, the axial strain in the side plate is

necessarily zero, as is the plate bending strain and so the boundary

conditions are autanatically satisfied. Solution proceeds by solving

the six simultaneous differential equations which result in twelfth

order differential equations in each of the variables.

Each displacement may be expressed in terms of ccmplementary

functions and particular integrals. The differential equations, themselves,

resulting from this energy method derivation correspond to Horne and

Raslarf s equilibrium analysis for each of the plates of the corrugation,

which were solved by finite difference approximation.

It may be noted that the complementary functions of solution

correspond to the plate bending displacements and the particular integrals

to the linear plate generator theory.

2.3 Eneru  Method of Assumed Displacement Functions

For most practical applications of corrugated steel sheeting,

the fastenings are not merely at the extremities of single span sheets.

Many variations from the simple arrangement are experienced and it is

normal for roof sheets to be continuous over three or four supports. In

addition, due to locally high wind suction forces, fasteners may be more

freqlent near the sheet ends than at the intermediate purlin points.

Fastenings in a multiple of troughs may be suitable from a strength

requirerrent but for insulated panels, the resulting high degree of end

deformation may cause serviceability problems by breaking the bond between

sheet and covering.

All these factors contribute to the difficulty in deriving

the sheet flexibility of a practical shear diaphragm. Often every corru-

gation fastening is preferred at the sheet ends but the internal purlin

fastenings are usually more sparce.

It was for this reason that the analysis of corrugation distortion

due to fastening in every trough was considered by an energy method of
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assumed displacement parameters in terms of Fourier series to represent

the individual plate movements. This method has the facility of

modelling internal restraints by adjusting the variables to satisfy the

geometry of deformation.

Although the shear stiffness of corrugated sheeting has been

the subject of much research, especially with regard to its application

in aeronautics, no comprehensive study has been performed of its use in

relatively long lengths with the possibility of intermediate fixings.

Libove, especially, places rather more emphasis on the types of end

attachment for both sinusoidal and trapezoidal profiles in order to

limit excessive shear distortion for the shorter lengths required for

aircraft applications.

The energy method analysis by Horne and Raslan offers a number

of advantages in that, although by implication approximate, it is a

common property of assumed displacement functions that they often present

a reasonably close answer to the principal displacements providing that

the chosen shapes roughly model the actill deformation. The approach

follows that of a Ritz technique whereby the geometrical boundary

conditions are satisfied, but the internal force conditions can only

be approximated.

As with Libcve's analysis the main energy components must be

expressed in terms of the chosen displacement parameters.

All these may be described by six parameters which are the in-

plane and shear displacement of each plate, taking into account the

inherent geometrical and deformational anti-symmetry, omitting the effect

of end purlin restraint on side plate depression.

The portal frame bending energy of cross-sectional deformation

is determined by the displacements 111 , Us , UB as shown in Fig. (2.3(a)).

If 0B' 0 are the joint rotations then the transverse moments are,C

!B = 3\72	 39B

D	 bL2
	

bt

MC =
 

3V1	 39C— 
D	 b

T
2 b

T
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Et3 	• 
Where D =

	

	 corresponding to the plane strain.hending stiffness
12(1 - v

2
)

and	 VI =	 tan 0 - UB sec 0

V2 = DS tan 0 - Us sec 0

N73 =	 - Ub) sec 0

If equilibrium of the side plate is expressed according to,

Kit . 6V3	 2e
B 	 eC

D (2b5	bs	bs

- MC 6V3
	20c	 eB

D (21s)2	 b

Solving for Mil;   and Mc in terms of US, DB, and 1.11, by eliminating GB and

-8 ' gives,c

mB 	 1

{-GINT + UB) + J(DT - UB) + Ms}
D b 2F

mc 	 1	 { -B1 (112 + uB) -	 - 145) + Bus}

D bs
2
F

where
2b + b bG = _p_ r  s	 s	 S

1	 2d	 bL 	bT

2b +bH _	 s L 
1 2d I	 bT

bs	bT 2b + bT
[3 +	 +2b•

s
 b

	

s	 s

b
s	bL p  • 2bs +	 b(3 +

2b	 bT
bs	 s

2b 2b +b b	 2b 2b +	

be-
S • 	 s	 T	 S 1

.	 ds { 
b
s

}bt	bT '
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2b	 2b
TF = (1 +	 (1 +

3bS	 9bs2

Knowing these cross-sectional bending roments, the distortion energy may

be evaluated by integration around the section according to,

1
Ed = 22x3xD {(b+ 

220s) m 2B + 001, + 213s) mc2 + 2bs MB Mc 1

Using	
MB/D = Al

	+ A
2 US

 + A
3 UE

MCA) =B U+B U+B1T	 2S	 3UB

then	 Ed	= C(11.1)UT
2
 + C(112)UT US

 + C(113)U U
T B

+ C(2,2)Us
2
 + C(2,3)US

U + C(3,3)%
2

where typically,

C(1,2)

	

. -12
•	 --{(b_ + 2b ) 2A	 + (DT 2b) 2B1 B2 + 2b S (k1 B2 + B1zA,) }

	

3•	 Li	 S	 12	 •S 

The individual plate displacements may be expressed as a finite

Fourier series expansion superimposed on linear plate moverents as shown

in Fig. (2.4(a)). Thus,as stated in references (37) and (38),

tir = aly + a2	sin21-1174-al2Lsin	 +ab	 .b	 arlY 
b	 3411-
	 b	 4 61_ sin _L a58 ,1 sin b

+ a6 ri sin 1411-

US
b611

a7y + a8	sin 2C1---73/ + a9 	 sin 4T—LY. + a
10 

b	 .PbY 

	b 	 84y	 .n '10Hy sin	 + a	 i

	

all 811	 L	 12 10ff s
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b gin
/SY. + a	 — b

	

b	 ary	 sin	 15 6il
UB

	

= -13 -FL	 b + 614 411

IDRY
b -

81311 •	 LEiLY + a 7 101I	 1)
4- 0.16	

1

The plate shear strains afe.

a18 
+ a19 cos 21--IY

7T

2r[17:7
s	

a20 
+ a21 

cos

2ff 7	 a22 + a23 cos

The length of the Fourier series for the plate displacements is

a very important parameter, as will be discussed later. The truncation

at the sixth terra was merely an observation fram the convergence of the

solution towards a constant value for the shear displacement at a suitable

length of about 6 rretres. It was found that for longer lengths that more

terms would be needed to model the increased localization of end

distortion.

The influence of the 'purlin prop' end restraint has again been

omitted to be included later as a constant flexibility reduction factor

dependent only on the profile shape and fixing arrangement. It has been

assumed that no rotational restraint occurs at the fastener points but

as may be observed in practice, decking profiles with a relatively narrow

trough width are stiffened by the clamping nature of the fasteners.

The total deformation of the single corrugation is expressed

in terms of the 23 variable coefficients, as a vector V where,

V= (al, a2 , a3 	  a23, a24)

It follows that the end shear displacements is,

A =	 (al - a2 + a3 - a4 + a5 - a6 + an - al9)
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+ 4bs (a7 - a8 + a9 - 
a10 all - a12 a20 a21)

+ 2bi., (-a18 + a14 - 
a15 al622	 23

- a17 + a - a23)

A necessary requirement for compatibility between adjacent

corrugations is that the relative shear displacement between the two

longitudinal edges should remain constant along the total length. Using

—	 0, the above equation may be simplified by grouping each of the
oitY
sine and linear terms together, giving,

A = 2bT
(a
1
 + a

18
) + 4b8 (a

7 
+ a

20
) + 2bL an

0 = 2bT
(a

2
 + a

19
) + 4bS (a

8 
+ a

21
) + 2bL (a13 + a23)

0 = 2bTa3 + 4bsa9 + 2b1„ a14

0 = 
2IDT

a + 4bS
a10 + ZIDL

a15

0 = 2bTa8 + 4bS
a11 + 2b1, a

16

0 = 2bTa6 + 4bsa12 + 2101, a17

Knowing these basic compatibility conditions the total strain energy may

be expressed as the sum of energies due to,

(i) bonding of the cross-section

(ii) longitudinal bending of the plate elements

(iii) longitudinal axial strain on the side plate

(iv) shear strain in the plate elements

	

(7)	 torsion of the sides of the profile.

The distortional energy of cross-section bending has been derived

in terms of the three characteristic plate displacements U T, Us , U. It

follows that the total energy may be Obtained by integration along the

sheet length according to the variation of the assumed displacements.
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b/2
E = 2fC(11

 1)U_2 + C(1
12)USUT

 + C(1
1 	 T
3) u_U

B0

+ C(2 12)uS
2
 + c(2

1
 3)u

S
 + C(313 )UB

2 NI

A typical integration takes the form,

b/2	 b
3

b3
2f C(1 2)US TU_ dy =o	 1	 C(11 2)((2 4 2 (a1a

8
 + a

2
a
7
) + a1a

7

b3 b3 b3• (a1
a
9
 + a3

a
7
) +

• 2(21) 2 a2a8 T-472-1)	 2(411)2 a3a9

b,
-u T672 (a1a10	

b	 b3+ a
4
a
7
) + z TIT2 a4a10 (81) 2 kaiall + a5a7)

b3 - b3 b
3

__
• 2(81) 2 a5a11	

(a,a12 + a6a)
' (10H)-	 /	 2(1011)2 a6a12

The sinusoidal displacements give rise to in-plane bending

energy according to,

2 2EB	 Eli fb/20	 dy

dY

• whEa-e I. refers to the inertia of the top, side and bottom plates

respectively.

Therefore, EB - 
2H2Et

{ bT
3
(a2

3
 + 4a3

3
 + 9a43 + 16a5

3
 + 25ab3 )

3b

+ 2bS
3 (a

8
3 + 4a9

3 + 9a
10

3 
4- 16a11

3
 + 25a,123)123

,	 ,+ 3 (a
13

3 + 4a14
3 + 9a

3 + 16a
16

3 + 25a173)15

The bending displacements imply a longitudinal strain incompat-

ibility at the plate joints, and it is therefore necessary to inclnde the

appropriate membrane extension of the side plate (Fig. (2.4 (b)) which

takes the form,
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1/2
Axial. strain = (bTUT11bT yT1 - bL UB

11 
- biyB

1

Strain energy, EA	 	  {(a2 + a15) bT - (a8 + a23)bL)
2

+ 4(a3bT
 - al4bL)

2
 + 25(a6bT - al7bi) 2 1

The total Shear strain energy is simply,

E = 9- I
s
 fb y2 de dy .S	 .2 o o

where fs means integration around the section

2 bT 	2	 2Es = Etb Nal8 +  a 	 2bsa20 + bsan2

biP222 +14 a232 )

The torsion energy of the sides is given by,

ET	 t3G1 2bT
—6-	

2b1, ib ;	 410s.	 ib ( 77 .47B) 2 dy
b7Z	 o S	 + (2bs)2 o -ir

t3bG 1 + 1	 2	 2	 2	 • 2	 2
ET	 3	 bT 10L 1 (a

7 + ka8 + ka9 + kalo	 kall

t3bG Ca2l6b	 -	 k(a2 a13)2 k(a3 a14
)2 

+ k(a4 - a15)

2	 1
k(a5 al6)	1(a6 a17)

The total internal energy is thus,

E
tot 

= Ed + Eb + Ea + Es + Et = e ( 1 , 1) al2 + e(1 , .2) aia , etc

and may be expressed as,

Etot = V. (D).VT 2C

2)

A2
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where V is the vector of displacement parameters, a(i) and (D) is a square

symmetric matrix whose terms are derived from the coefficients of the

variables according to,

23 23 A
2

E	 a(i).D(i.j).a(j) =.-c-7
i=1 3=1

where D(i, i) = e(i, i)

and D(i, j) = e(i, j)/2 for i y j

The minimum potential energy condition is obtained by different-

iating the internal energy with respect to small variations in each of the

displacement coefficients. The matrix D(ij) is shown in Figs. (2.36) and

(12.37).

Thus,

dE	 = 2da (i). ? 17)(i ' j)*a(j)tot	 3=1

Hoer, due to the compatibility conditions, six of the para-

meters are no longer independent and the 23 equations may be reduced to

17 by applying the conditions in differentiated form according to,

da = -bp (da + da ) - da - 12-11 da-7	 lbs	 1	 18	 20 2b	 22

2bsda13 = -11:T (da2 + da19) - da23 -	 (da8	 21
+ da_ )

-bT da _ 2bs da

bL 3 -b—L 9

bT- da _ 2bs da
-E4 L

I 10

da
16
 =da _ 2bs da

LT, 5 -BE 11

da14

dal5
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Eliminating these differentials gives a set of 17 independent

simultaneous equations in terms of 23 unknowns.

Again, by expressing the dependant displacements in terms of

the others, the 23 unknowns may be reduced to 17 and left in matrix form

as,

(H)-a- = B

where (H) is a 17 x 17 square symmetric matrix and B is a column vector.

a
1
/A

a
2/A

a3/A

•

=
a6/A

a
8/A

a23/

The equations may then be solved in terms of the unit applied

shear force parallel to the corrugations, and reinserting into the total

energy expression, the flexibility c is obtained as,

A2

C - 2Eto
t

To extract the distortional flexibility C1 '.1 , the pure shear strain

flexibility must be subtracted where,
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2(b1-, + 2 bs + bT)C
1.2 

= tbG

Thus, =responding to Bryan's formulation,

0.144ad4

3b3 
KC -1.1 Et

where K is a parameter reflecting the distortion of the cross-section.

2.4 Influence of Sheet Length, thickness and Number of Fourier

Terms

If, in the above analysis only al and a7 are retained then the

solution degenerates to the rigid plate irovement theory, and K remains

at a steady value. Fig. (2.13) shows how, for a typical profile, an

increaseinthenumberofFourierterms(a.)used results in an increase

in the apparent value of the sheeting constant, K. With each additional

parameter the K value rises and flattens off as the length increases,

which physically implies that the model of the localized distortion by

sinusoidal terms becomes less exact. The asymptotic behaviour is

revealed by the six Fourier terms used and it is clear that K becomes

approximately linear with length, and that there is a quick transition

from the rigid plate theory at about 1.5 metre sheet length.

The most important single factor influencing the increase of K

with length appears to be the horizontal displacement of the bottom plate

which is wholly caused by plate bending. If a 13 , am to a17 are removed

from the analysis, consistent with the trough lines being held straight,

then K reduces almost to its base value as given by Bryan's theory.

Indeed, observing the profile displaced shapes (Fig. (2.1)) it is apparent

that the top plate undergoes relatively little bending. The trough width

however, seems to be a more important parameter, as revealed by the

greater number of Fourier terms required, as shown in Fig. (2.14), for

convergence for decking profiles (bey. Physically, this is probably

due to the influence of the discrete fastener force which causes more

localised trough bending as bL becomes small.
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In general, energy methods of geometrically satisfactory

displacement functions give a smaller solution than in practice to the

Chosen characteristic displacement which, in this case, is shear movement

parallel to the corrugations. The only yardstick to the accuracy of

the approadh, apart from Libove's theory, isEome independent technique

such as the finite element method, or experimental testing, which is

itself prone to error.

Figs. (2.15) and (2.16) show how the sheet thickness also

influences the rise of K, for the useful range of thickness between 0.5

and 1.25 mm. In addition the trough pitch is an important parameter as

revealed by Fig. (2.15).

Examination of the variation of Y. with length reveals that

the slope passes through the origin. For lengths of less than 1.5 metres

the rigid plate assumption holds but this is trivial as regards practical

shear diaphragms.

Bryan suggested that,

0.144ad4KC1.1

However, K may be shown to be proportional to length and the

square root of thickness as in Fig. (2.16(b)), and hence maintaining the

dimensionless property of the sheeting constant, a new parameter R may

be derived, according to,

k- = Kd
1.5

-0"b

and	 C1.1 
= ad2.517

Et
2.5

b
2

Qualitatively as the length increases it may be expected that

the shear distortion will be confined to a fixed distance from the end,

and this is consistent with the shear stiffness proportional to b2.
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In the following sections, the energy method solutions for the

distortional flexibility will be separately compared to the alternative

approaches such as Libove's energy derivation, the finite element method,

and experimental observations. Although, the existing K value parameter

will be used as a basis for comparison, the endeavour will be to show

that the proposed formula for shear distortion flexibility utilizing 17

is more suitable as a dimensionless relationship.

In Appendix 2. tables are given of IZ for a range of profile

shapes and fastening arrangements.

2.5. Possible Ener2y  Method of Localized End Distortion

The Fourier series analysis reveals that the flexibility

perpendicular to the corrugations remains constant, which according to the

shear orthogonality factor of (a/b) 2 gives a longitudinal distortion

flexibility in proportion to (1/b)2.

Observing the corrugation displaced shapes, as in section (2.11)

for the energy and finite element methods, justifies the assumption that

for sufficiently long sheets, distortion soon dies out away from the

effect of the fastener force. In retrospect, knowing the physical nature

of corrugation distortion, an alternative theory could have been proposed

whereby deformation is assumed to occur over an end distance xd as shown

in Fig. (2.5).

The influence of the fastener is to cause in-plane bending of the

trough, and as confirmed in section (2.11) the top plate remains relatively

rigid. To simplify the approach, the trough displacement may be assumed

to be parabolic decaying to zero atx d from the sheet edge and the top

plate displacement is zero throughout. The end bottom plate movement is

half the sheet flexibility perpendicular to the corrugations.

The side plates must also bend parabolically to ensure compatibility

for zero longitudinal shear displacement, and hence the only variable

parameter in the total energy expression is the distorted length Xcl . As

previously, the longitudinal and transverse bending energies may be evaluated
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according to the same expressions as in section (2.3). The shear and

torsion energies are neglected.

Distortional energy due to transverse bending varies as t3.

plane bending energy,is in proportion to t, the sheet thickness.

If the trough moverrent is given by a parabolic form as,

uB = (t) 2A1

then the side movement is,

bL x 2
an (T.-) AiS d

where x
d
 is the distorted length.

The distortion energy is thus,

xd
Ed = 2 I o C(212)US

2 + C(3
1
3)UB2 + C(2 13) UsUB d_x

Cd 0	 d x= Cd 5 
A1

2

xd4

The longitudinal bending energy is thus,
2

b
L 	

A
l

,
8gt 3	 3

Eb 3 (bL + 2bS
3 (— )2 ) / xd = C2b

s
	e X

d 
3

If E	 = Eb + Ed only,

therefore,
2

A	 • Ce Cd	 2= {__+ x
d 

1 A

	

5	 1

dE	 3Ce	 Cd
dx
d

	

xd4	 5 =	 Therefore, x
d 
= 4f.15C0

Cd
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thus C m Ce
1	 -3/4 

Cd
-1/4

As	 C
e 

cc t and Cd cc t
3

C
1

omt
-3/2

Using the expression for flexibility parallel to the corrugations

as,

,1 a2
C = —

b2

as indicated from the previous energy method analysis of

Fourier series displacement functions.

2.6. Experimental Determination of Flexibility

Ideally the testing apparatus should have sufficient dinensional

variability to observe the flexibility of as many different lengths of

standard sheets as possible, with widths based on multiples of the trough

pitch. A suitable test rig was developed as in Plate (2.2) with an

ultimate jack capacity of 100 kN when extended to its maximum size. The

left hand longitudinal member and jacking point were bolted down to the

strongflocx, and the right hand member was free to slide over needle

bearings.

The follading provisions were made:-

(a) The framing members were of substantial proportions in order

to limit flexibility due to axial strain.

(b) The joints between the framing members were pinned so that

the unclad rig had negligible resistance.

(c) The rigid body rotations could be measured and subtracted

fram the rafter movement in order to obtain the shear

displacement as in Fig. (2.6).
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(d) The rig width could be altered from 150 mrn to 1,250 m

in steps of 150 nut.

(e) The length could be varied from 1 to 6 metres. Inter-

mediate purlins are shown in all possible positions. In

some tests on very long sheets, a single purlin would also

be used at mid span to prevent excessive sagging.

(f) The tops of the purlins were set at the same level as the

tops of the rafters in order to eliminate any eccentricities

of loading.

(g) Where seams between adjacent sheet widths were necessary,

a large nuMber of seam fasteners were used in order to limit

the influence of seam slip.

A number of sheet profiles were examined with depths ranging from

19 ima to 65 mm, and thicknesses of nominally 0.5, 0.6 and 0.7 rm. Each

sheet was used in both decking (b T>bL
) and roofing (bL

>bT) configurations.

In Plate (2.3) the entire rig is shown clad with a 35 rrm deep

decking profile number 1 which is 1.25 mwide times 6.1 m long. Each

sheet was tested in order to establish the shear flexibility over the

whole range fram one to six metres, as well as for various widths of

sheet. For all tests the load was increased in increments and unloaded

several times until a linear steady response was obtained so that the

bedded-in value of fastener flexibility could be confidently used in

sUbsequent analysis. It should be. noted that 0.07 mm/kNT and 0.03 mm/kN

were taken as the respective slip values of the seam and edge fasteners

respectively after a few loading cycles.

As a standard fixing arrangement, seam fastenings were made at

150 mm centres and longitudinal edge fastenings at 300 mni. The seams

were stiched by 'Tucker' blind pop rivets and for the perimeter fixings,

'Tek 4' self tapping screws, were used.

For each test, the components of shear deflection other than that

due to corrugation distortion were calculated fram current theory and
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deducted from the measured flexibility. The observations were then

expressed as effective values of the sheeting constant K, and the results

and appropriate theoretical comparisons are given in Section 2.15.

Alternatively, the theoretical and experimental total flexibilities may

be compared.

The likely errors are much greater for longer sheet lengths

when the distortion camponent may be of similar magnitude as the minor

flexibilities. On the other hand, for short lengths of about 1 metre,

the inaccuracy of jack loading in the smallforte range is a variable

factor. In general the rig could accommodate shear displacements of

about 100 mm, and proved to be a very versatile piece of apparatus.

2.7. Finite Element Method for Determining Corru2ation

Distortion

Simple rectangular elements may be pieced together to represent the

faces of the corrugation. In order to model the actual deformation the

condition of zero strain must be maintained along the trough centre line,

and the trough allowed to bend freely. This was best achieved by attach-

ment to a hypothetical member of high axial but zero bending stiffness

(Fig. (2.7(a))). The fasteners where replaced by single point constraints

and those an the moveable side given one degree of freedam. In addition,

the effect of purlin restraint on side plate depression could be modelled

by simply removing the vertical degree of freedom of the last element

in the side plate.

Each element has five degrees of freedam per node and a finite

element mesh generator was specially written by Dr. J. M. Davies which

avoided tedious checking and eliminated the possibility of data errors.

Thus only a small amount of data was required corresponding to the geometry,

boundary conditions, material properties and element distribution.

Convergence tests were carried out for two sheeting profiles

to determine the best arrangement of elements. It has been shown 
17) 

that

two elements per face gives a reasonably close approximation to the shear

flexibility, which is remarkably insensitive to the number of elements on

the cross-section.
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The number of elements in the length is rather more critical,

in order to keep a suitable aspect ratio of element size. Fig. (2.7(b))

shows the K value plot against number of elements which indicates that

for maximum economy 60 elements gave sufficient accuracy for practical -

proposes for a length of 4 metres. This corresponds to an element aspect

ratio of about 4 and thus approximately 900 elements would be needed to

represent a length of 6 metres.

2.8. Effect of Edge Beam Restraint on Shear Distortion

The prdblem of edge beam reduction of shear flexibility is due

to restraint against depression of one side plate. As previously outlined,

end deformation occurs by top and side plate movenunt, and the upward

force provided by the edge beam disrupts the basic antisymmetry of

distortion (Plate (2.1)).

The proposed energy nethod in Section (2.3) can only analyse

idealized antisynnetic end movements, but it will be shown that the effect

of edge beam restraint due to 'purlin-propping' may be separately

accounted for as an independent flexibility reduction factor.

A useful model for analysis is to consider the resisting force

at the base of the side plate as the sum of a symmetrical and anti-

symmetrical pair of forces as in Figs. (2.8). The energy method cannot

easily take this effect into account which would require double of the

noMber of parameters for a comprehensive analysis.

An alternative nethod may be suggested based on rigid plate

movements. This is not so unreasonable as it may be expected that, as

all the applied forces are at the ends of the corrugation a direct ratio

of end movements to shear displacement based on more rigorous functions

would be the same as for the linear case. Thus any end forces can be

expected to modify the overall shear flexibility independent of length.

This uniform edge beam reduction factor assumption is in fact
(37)borne out by alternative energy 32 and finite element methods.
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Liba09) has studied the shear stiffness of trapezoidal corrugations

with discrete attachments to a rigid flange. He considers the anti- and

symmetrical components of edge beam uplift force separately which are of

such a magnitude to reduce the free side deformation to zero. His approach

is a comprehensive energy analysis similar to that outlined in Section (2.2),

the symmetrical component of uplfit involving only three rather than six

independent displacements.

The rigid plate movement theory is in principle the same although

it is merely a simple means of extracting a solution to this complex

deformational problem. Its use is really only justifiable by the very

close comparisons with Libove and finite Element results for the complete

range of profile Shapes. Falkenberg (36) did propose a similar energy

method based on rigid generators.

For simplicity alone, Bryan's assumption of a uniform cross-

sectional shear flow was utilized, after it had been observed that Horne's

approach with linear plate movements gave almost identical answers. Thus

the free side plate displacement due to a it fastener force could be

easily determined from the bending moments of Fig. (2.9).

f
s/2

m m	 as = 0 si-
o 1 o EIs	 2 Els

1	 Et
3

where q = -d-, and Is- 12(1 -v2) per mm. length

P1The anti-symmetric loading component due to a force —
2
 as in

Fig. (2.8(b)), gives,

ric 
P1/2s/2 m m 1 

ri = I 	M1M1
	

=
2Els	 w3 EsS1
	

0

	
•

P1
The syrigietriCal 

component due to -2- is, as in Fig. (2.8(c) ) ,

S/2MJ dS
 = P1/2 

-3 3 2a	 Y-4 E,s,
S2

s/2 ds implies integration over the half profile.
where fo
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It should be noted that the symmetrical displacements are in the

same direction at each end of the sheet, whereas the anti-symmetic components

are linear along the length from the centre. Thus, in theory, if uplift is

constant along the length, then 	 will be a much stiffer displacement .

than 11 and% by the ratio 1/2 to 1/6. However, as the symmetrical
1

uplift is only restrained by the end fasteners it may be expected that

the deformation will soon die out some distance into the sheet. As an

approximation all movements are assumed to have the same longitudinal

stiffness factor of b/6 corresponding to linear distortion along the length.

Only the antisymmetric force reduces the warping displacement,

with a consequent reduction in the shear flexibility.

For zero side plate movement,

= U +1-1

S2S1

1therefore, 02 =
	

13

d	 (O3 94)

2°2

P1 =	 / (03 + 04)

P
1ue — iThus the flexibility reduction d to	 s,
2

- 1 , . 1-j 1	 1
(2U .

T2b T
i 2

therefore,

s/2
= f2h I M M ds + 

To 1 1	 2b	 M1M2 ds 1 (03

952 = (2145 21103"
) 
 d(03 + 04)

Carparing with C1.1 
cc 2h02 + 2b103.

for a unit fastener force

the reduction factor due to edge beam resistance is,

(2bTO5 + 2h03 )
	 0

.	 2 
r-

( 2b1,01 + 2 2)	 03 + '4
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So the fl e)dbility factors K and 17 are assured to be both

modified to the form,

17 (1 - r) where r is a function of the cross-section shape only.

The actual value of purlin resistance P 1 may be of some importance

for deep profiles whidh may fail by web crippling due to the high compressure

forces transferred from the purlin as shown by Baere. (34 )

2.9. Effect of Fastening in Intermediate Purlins

In the previous analyses, it has been Observed that above a

certain length, the shear distortion occurs only in a region of less than

1 metre from the sheet end. For practical sheet lengths of about 8 metres,

shallow profiles may span over a number of purlins and to prevent. the

effects of wind uplift, are often fastened at intermediate points along

their length. In order to maintain the uniformity of shear displacement

along the sheet length, the trough plate must be constrained to bend

as in Figure (2.19) which is mathematically defined by 7.2 = 0 at the

intermediate fixings.

Thus the displacement pattern no longer includes a redundant

portion in the middle of the sheet consistent with its asymptotic

behaviour. Now the trough movement and hence distortion follow a curved

path along the sheet. Nevertheless, the great majority of-distortion

may be expected to occur beyond the penultimate purl-in.

The analysis best suited to modification to cope with the fixing

in every trough case at intermediate and end purl-ins is the energy method

of assumed displacement functions. As regards the influence of purl-in

restraint of side plate depression it may be expected that only the end

support has any effect and hence any analytical K or 17 value to represent

the corrugation distortion will be reduced by an amount independent of

the nuMber of intermediate purlins.

At this point it is better to consider each nuMber of intermediate

purlins separately up to a total of four. Naturally, one or no middle
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support does not affect the deformation pattern, and also it may be

expected that the K value for a very large nuMber of intermediate purlins

will degenerate to the case where trough line movement is held straight.

2.9.1. Two Intermediate Purlins:

The basic components of energy and deformation are unaltered,

except for the number of independent variables defining the displacerrent

pattern.

If UB = 0 at y =b /6

then,

II 
a14

a	 +	
s 211 

a
16
	 411 a17	 5il

0 =	 in - — in +	 sin + • '13 
s 3	 2	 3	 4	

3	 35 sin

a14 a16 
a17

or,	 0 = a +13	 2 "	 4	 5

5a14	 5
thus a = 5a +	 --a

17	 13	 2	 4 16

as a17 
has already been expressed in terms of a 6

 and a12 according to

bT	 2bS
a17 =	 a6	

a12

and a13' a14 
and a16 

have been given by,
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LI	
a

bL 9
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T

2bS
a13 

= - 1-_-- (a2 + 
a19 ) - a23 - 1,

	"L	 ...1,

It follows that d12 may also be eliminated from the 17 independent

variables by caMbining the equations for a13, ale a16 and a17.
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a	 = bTal; + 5bT (a2 + a19 ) + 5bL -a23 + 5(a
8 + a

21
)12	 — 2bs	2bs	 2bs

5	 bT+ –' ---a2	 2bs 3
5

+– .
2

a
9
 - 5-

4 
-21.a

52bs
- 5-.a
 4	 11

Thus a, the vector of independent displacements consists of

A to all/A except a7/A and a18/A to a2 3/A

Minimising the total energy expression gives, as previously,

23
dEtot = 2da(i)D(i, j) a(j)Zj=1

da12 may be eliminated in terms of da2 , da3 , da
5 , da6 , da8,

da
9' 

clan' da
19

, da
21 and da23

.

Thus 16 equations for the minimized potential energy result,

in terms of 23 variables. Again, 	 may be eliminated giving,
A

(H) -a- = B

where (H) is a 16 x 16 square symmetric matrix and B is a 16 term column

vector.

Solving for the independent variables, and reinsertion into the

total energy expression

23	 23	 .	 .	 .	 .E.	 E.	 a(i) D(1, 3) a(3) = A
2

1.1 3 =1

yields a value for the shear flexibility C which includes both C1.1 and

2C

C-
1 . 2

(2b + 4b5 + 2b )
 T

btGE
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2.9 . 2 . Three Intermediate Purlins

In this case, the middle purlin has no Ula, displacement, so the

only condition to maintain U r8 = 0 at the quarter points (y = WA) is,

.	
a
15	 . 311	

a17	 . 511
0 =a13 .sin -2- +	 • sin --2- +	 sin --2-

a
15 

a
17

0 = a -13	 3	 5

5
a17 = 5a13 - 73;c9.15

Again, as a17 , a15 and a13 have already been eliminated

consistent with A constant for the no intermediate purlin case,

bT
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= - — a

6 b 
a
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b
T
	2b

sa
4 ---a10a

10a15 

T ,	 2bs
a13 = -	 ka2 + a19 ) - a23 - b (a8 + a21)

It follows that a
12 may be removed fram the previous 17

independent variables by

Ta = - b	 5b
T	

5b
12 2b

s a6
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2 + al9) 
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2bs 
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a
23 

+ 5(a
8
 + a

21
)

5 bT a _ 5

-5 • 2bs 4

Similarly da12 may be expressed in terms of da2 , da4 , da6 , da81da10

da
19' da21 and da23' to give 16 equations for nth-ilium potential energy

in 23 variables.

Thus eliminating a 7 , a12 , a13 , a14 , a15 , a16 and a17 , the

resulting 16 equations in 16 variables may be solved, and on reinsertion

into the total energy expression, the total shear flexibility per

corrugation may be determined.

thus

a
10
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In a similar manner to Bryan's original analysis C1.1 may

be expressed as,

0.144ad
4

C1.1 =
K where a = d in this case

3b3Et

However, K as will be shown later, is no longer constant but

rises with b in a similar fashion to the no intermediate purline case.

2.9.3. Four Intermediate Purlins

The displacement of the trough plate is constrained at y =
3b

and y = which gives two additional compatibility conditions, as well

as those for .6,7 = 0 according to,

H	 a14 • 211	
a
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It follows that a11 and a10 
may also be eliminated fram the

17 independent variables, by

bT
	4b

all =	 a5 - 2b
T 

(a2 al9 )	a 3 - 4 (a8
 + a

21
)

2bS	
2bs 2

b
T	 3 bT	 3--a10 =	 - -2-- 25; a3- 2

a 9
 .

Thus da11 
and da

10 may be expressed in terms of the other

differentials to give 15 equations for the minimized total potential

energy in the 23 variables.

Also a10' 
and a

11 may be eliminated to solve for the 15 indep-

enaerit parameters. The flexibility c follows in a similar fashion to

the other cases.

It may be expected that four intermediate purlins fastened in

every trough will be as many as normally required in practice for

manufacturer's sheet lengths. Typically, for a profile depth of 35 mm.

spanning 1.8 metres the maximum sheet length would be 9.0 metres.

From statical observations, the theoretical shear flow should

have a stepwise increase towards the sheet centre, but must also ensure

compatibility between neighbouring shear strains in each bay. The energy

method, by maintaining a constant shear displacement satisfies the

compatibility requirements but can only approximate the internal rise of

sheer flow within the sheet length.

As the nuMber of intermediate purlins increases, the solution

approaches the case where the trough lines are continuously held straight,

whichhas also been analysed by Libove. (40)

2.10. Sheets Fastened in Intermediate Purlins in Alternate

Trou2hs and in Every Trou2h at their Ends

This situation is indicated in Fig. (2.20) for the two inter-

mediate purlin case, where the middle trough is free to move unconstrained

by the effects of the internal fastenings. Thus, at the intermediate

purlin points the movement is the superposition of the previous cases
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where fastenings occur in every trough, and an additional concertina

action.

As an approximation to the true flexibility, this arrangamant .

could he considered as the mean of fastenings at the ends only, and

fastening in every trough at every intermediate purlin.

A theoretical energy method approach, which has not been attempted

quantitatively, might be to include an additional Fourier series for the

middle trough displacement. Thus the difference between neighbouring

trough lateral movements is accommodated by a concertina action which

is much less stiff than the profile twisting due to every corrugation

fastening. It may be expected, therefore, that quite large relative

moverrents between troughs would occur without much concertina resistance.

Hence, the previous assumption for the shear flexibility may

be taken as being reasonably correct for any number of intermediate

connections. Thus,

K -	
2

EN 
+ K

1	 + 171 and = 2

where KN and K1 etc., represent the flexibility factors due to N and

one intermediate purlin fixings, respectively fastened in every corrugation

throughout. For more sparce intermediate connections it is suggested

that K = K1.
1

2.11. Lon2itudinal Variation of Cross-Section Dis2lacements

2.11.1. Discussion of Energy Method Results

The final displaced shape of top, side and bottom plate moverrent

may be redetermined by combining the relevant Fourier terms times their

respective variables as evaluated from minimum total energy principles.

End purlin restraint has been omitted.

A typical example of the effect of length on plate bending for
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a standard profile is shown in Fig. (2.10). To obtain a dirensionless

parametric forn each movement is divided by the end top plate displacement

("y. For a 1 metre sheet length fastened only at its ends, the rigid

plate movement assumption holds, consistent with UB = 0. At 2 meties

length, trough and side plate bending is noticeable, and this becomes

exaggerated for greater lengths. The asirptotic distortion behaviour

is revealed by UT = UB and Us = 0 for a wide central portion of the

6 metre sheet length, indicating that there is indeed an internal

redundant region which undergoes little or no distortion. Distortion may

be seen to be localized within the last metre of the sheet ends.

It appears that crest bending is quite small and that for a

given profile, the relative value of top and side plate end movement

remains constant independent of length. Bearing this in mind, the ratio

of top to side end displacement may be presented as a function of the -

profile shape for a 1 metre sheet length, as in Fig. (2.12), based on

the rigid plate movement assumption.

For most of the profile range, top plate movement dominates the

side displacement except for 2bk ild values about 0.5 when both are of

similar magnitude. At larger 2bT/d values, as in decking profiles, the

side plate mcvement actually bemires negative, although very small in

relation to top plate displacement. It may be expected, therefore, that

the i purlin-prop' reduction flexibility due to side plate restraint

be in rough proportion to the relative value of side to top plate movement.

2.11.2. Comparison with Finite Element Results for any Number

of Intermediate Purlins

At a 6 metre sheet length, plate displaced shapes as determined

from the energy method in section (2.3) have been plotted for three

different profiles under a unit longiturlinal shear force. Four cases

were considered representing standardly available sheeting, fastened

in every trough to one, two, three or four intermediate purlins. For

comparison finite element predictions for the longitudinal displaced

shapes are indicated.
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In Fig. (2.25) for a 35 ran deep roofing profile, the agreement

between energy and finite element method displacements for trough and

crest movements is acceptable. For side plate movement, however, the

one intermediate purlin case does not degenerate quickly to U s = 0 as

revealed by the finite element results. Nevertheless, the agreement

for actual end movement is very good, which afterall does determine the

resultant shear displacement. Energy methods of assumed displacement functions

it seems, often give a close a answer to the shear flexibility even though

their internal displacements do not accurately follow the actual deformed

shape.

It is apparent that for the two, three and four intermediate

purlin cases, trough bending is essentially confined to the final bay.

However, the internal restraints will tend to disrupt the smooth variation

of shear deformation towards the sheet end, by causing local distortion

around the intermediate purlins fixings as indicated in Fig. (2.19).

It may be observed fram the displaced shapes of Fig. (2.25)

that the top plate remains relatively rigid whilst the trough and side

plates bend in order to satisfy the compatibility and restraint conditiars,

as well as minimizing the total internal energy. Agreement between energy

and finite element method displacements is goad for the two, three and

four intermediate purlin cases.

Fig. (2.26) shows the previous profile inverted for decking

purposes. Again crest and trough movement agreement is quite good, but

side plate movement is not. However, for this case, side plate displace-

ments are much smaller than for the roofing profile.

The final corrugation is only 19mm deep and consequently is

distortionally much stiffer. Finite element comparison was only performed

for the one (or no) intermediate purlin case and the same basic displaced

shapes result as for the previous cases.

The summation of the respective Fourier terms to form the

longitudinal displaced shape shows the relative importance of each

simusoidal term. This may be tabulated below for a 5 metre sheet length

of the 35mm deep profile described in Fig. (2.25) where A is the shear

displacement parallel to the corrugation for a unit applied force.
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Number
Of Inter

Purlins
Y. sin Ira sin lax sin sin _811

b sin

UT/A, 15,9 -1.97
40-45 1°•02 -°.08 4°-10

1	 U S/ 21.0 -9.35 +2,90 -0,79 4°.27 -°-14

UB/A +7.65 -2.33 40.59
4°-06
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2
s 20.0 -5.73 +4.81 -0,77 -0.13

UB/p +4. 15 -3-91 4°-56 40.08 40-17
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-°-82 -0,38

-°-16
-43-08 4°-02
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+1.88 -2.08 +1.56 -0.15 -0.12
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18.1

-°-50
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+D-81

+. 009

+1.22

-°-91

-1.22
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-0.11

4°-86

-0.81

40.11
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2.12. Comments on the Distortional Flexibility as Determined

by  the Eneru  Method

2.12.1. Effect of Profile Shape

The existing theory parameter K, which defines the shear

flexibility due to distortion based on rigid plate mcvement assumptions,

will be used as the basis for defining the sheet shear performance.

However, it is apparent from section (2.4) that this parameter is not

only dependent on sheet length and thickness but also on profile shape.

In Fig. (2.11) the variation of K with length and top plate

width is Shown for a rectangular profile of depth 310mm omitting YDurlin-

prop' effects. Fbr a 1 metre sheet length K rises to a peak at about

2bT = 0.5 and falls to a trough when 2bT =0.7 and then rises steeply.

Ig may be noted that for 2bT = 1 the digtortion behaviour corresponds

to a portal frame under lAeral load. 	 This variation of the K value

reflects the relative magnitude of side to top plate displacement as

shown in Fig. (2.12). For longer sheet lengths K increases, but still

shows the same basic pattern.

, the proposed shear distortion parameter related to the rise

of K in the length, also shows the same variation with cross-sectional

shape, as in Fig. (2.18). The relationship between Shear stiffness

(using 17and profile depth is approximately (h/d) -3/2 for rectangular

corrugations whereas the corresponding sheet inertia varies roughly as

aim 2 . For folded plate applications which require a high profile depth

for buckling restraint and low depth for deflection limitation it is

apparent that only a few millimetres change in sheet depth has a marked

impact on the relative design importance of these two factors.

Tabulations of the R values for a complete range of

profile shapes, both including and omitting I purlin-prop' effects are

given in Appendix 2.
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2.12.2. Effect of Intermediate Purlins

The greater degree of trough restraint, for intermediate purlin

fixings hasthe effect of stiffening the shear performance of the

sheeting. For short lengths, where trough bending does not contribute

to the shear flexibility, the nuMber of intermediate fixings has no

effect. As the length increases to about 2 metres, for two intermediate

purlins, the K value rises to become linear with increasing sheet length.

Thus the same asymptotic behaviour is observed from the energy

method derivation as for the case of simple end attachment. Distortion

becomes localised near to the influence of the sheet7Turlin fasteners

independent of the length. Sheets fastened in intermediate purlins

also display this effect, although coupled with the principal end

deformation is a local trough bending and distortion around each internal

fastener as in Fig. (2.19). As the nuMber of purlins increases so the

internal energy must increase, which is consistent with decreasing shear

flexibility. Thus if each intermediate purlin contributes its own local

deformation then the asymptotic behaviour may again be represented by

the proposed R: parameter, as in Fig. (2.24).

ad2'5,R
where C

1.1 Et2.5b2

If Kl is the value due to one intermediate purlin then the N

may approximately be represented by,

171 

KN	 1 +	 - 1)

where()( represents the contribution of the internal purlins to the

distortional energy and roughly equals 0.3.

As shown in Fig. (2.21) the asymptotic behaviour of shear

distortion occurs at progressively greater sheet lengths as N increases.

Nevertheless, the R parameter may still be used in preference to K for

practical sheet lengths. The effect of intermediate fixings on R may

be seen in Fig. (2.23), and it may be observed that as the number increases,
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so the reduction in the 17 value, from the simple intermediate purlin

case, falls.

EventuAlly, as the nutber of internal restraints increases, so .

the K value will tend to the case where the trough lines are continuously

held straight. This is depicted in Figs. (2.31) and (2.32). K rises

only gradmlly showing that side and top plate bending contribute little

to the asymptotic shear distortion behaviour. Approximate theoretical

reductions in flexibility are for N intermediate purlins.

N = 2
	

KN/K1 = 
0.75

N = 3
	

KN/Ki
	 0.60

N= 4
	

KN/K1

	 0.50

It should be noted for a given span between purlins of say

2 metres, that the K value remains approximately constant independent of

the number of purlins. Thus, the flexibility of practical panels may
2	 .

be more in proportion to b rather than b which perhaps explains why

previous tests on full scale diaphragms did not reveal the large increase

in the shear flexibility parameter with increasing length.

The convergence of the Fourier series for the intermediate purlin

cases appear to be slightly better than for the simple case, as shown in

Fig. (2.22). Camparisons of the K values of standard sheets is included

in the following sections for both finite element and experimental

observations.

R: parameters for up to four intermediate purlins are given in Appendix

for a range of profile geometries. It is assumed that end purlin restraint

effects as determined in section (2.8) may be considered separately.

2.13. Com2arison of Eneru  Method Results with LiboVe and

Strehl Methods

Libcve stuaied both the cases of free antisymmetric profile

distortion with standard trough fixings, and also the effect of end

purlin restraint. Fig. (2.17) Shows the good agraament between Libove's
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published results and the energy method derivation for four different

profiles. Scme deviation from the predicted curve is to be expected

especially for short lengths where graphical interpolation of the author's

small effective stiffness values is difficult. However, the general

pattern indicates the linearity of K with increasing length.

The effective shear modulus may be expressed as,

2h	 d2-5R G
1 + +d	 ' t1 ' 5 bE

corresponding to a shear flexibility of,

ad2.51-(
C1.1 -

Et
2.5

b
2

Strehl apparently did not observe the asymptotic behaviour of

shear distortion which may be represented by a single dimensionless

parameter, R. However, his derivation gave reasonable agreement for the

effective shear stiffness of four published profiles as shown in Fig. (2.28)

for lengths of 2, 4 and 6 metres and sheet thickness of lmm.

2.14. Com2arison with Finite Element Results

Four standard profiles were examined by the finite element

method outlined in section (2.7), which includes the facility for free

antisymmetric end deformation, and also the provision for zero side plate

depression due to the end e purlin-prop effect. The profiles of Figs. (2.29)

to (2.32) cover a range of aepths, thicknesses and trough widths, and

all behave well compared to the proposed energy method. Generally finite

element results are more flexible, except for decking profiles where the

low nuMber of cross-sectional elements probably has a stiffening effect.

Experimental results are alqo indicated which also show reasonable

agreement. For one case, the trough lines were held straight by omitting

the lateral degree of freedom of the centre trough element. Finite element

results (F.E.) are more flexible than the energy method for this very

stiff configuration where K remains approximately constant.

=
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'Purlin-prop' reductions in flexibility support the premise that

this effect may be considered separately from the free asymmetric

deformation.

Intermediate purlin results are shown in Figs. (2.33) and (2.34) •

for typical shallow and deep profiles. Other theoretical finite element

comparisons are given in Fig. (2.36). It is apparent that the experimental

and finite element solutions for 2, 3 and 4 intermediate purlin fixings

are somewhat more flexible than the corresponding energy method prediction.

This is especially true when the nuMber of intermediate purlins is greater

than 2 for decking profiles and probably implies that more Fourier terms

are required to cope with the severe localization of distortion.

As an approximate observation from the finite element results

for roofing profiles (DT < bi) and decking profiles (DT > bL), the ratio

of K values is,

decking	 roofing

	

0.80	 0.70	 2

	

0.70	 0.60	 3K1
0.60	 0.50	 4

Where KN is the value due to fastening the N intermediate purlins.

No finite element tests were performed due to fastening in

alternate troughs at the intermediate points and in every trough at the

sheet ends.

2.15. Comparison of 'Purlin-Pro' reduction of Flexibility

with other Theories

As indicated in the theoretical approach, the simplified idea of

a uniform edge beam reduction factor applied to the shear flexibility,

independent of sheet length, can only be judged by comparison with more

refined theories, notably those due to Libove, Strehl and the finite

element method.
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Fig. (2.18) shims the distribution of the new effective shear

parameter 17 for a range of profile shapes as determined from the energy

method. When the purlin prop reduction factor is included it is apparent

that this restraint is most effective for profile shapes in the range 	 •

0.6 > 2bT/d > 0.3. Indeed for a rectangular profile of 262/d = 0.7 the

reduction factor is very small which probably is related op the relative

magnitude of side to top plate displacement.

Strehl's comparison of effective shear modulus is tabulated for

four profiles, in Fig. (2.28) which indicates the reasonable agreement

for the edge beam reduction factor. ',Move's values are also plotted

for four other profiles over a range of sheet lengths from lm to Gm.

The most important observation is that the reduction factor is essentially

constant with length, which is reasonable considering that all the applied

forces are at the ends of the sheet. The rise of K with length is due.

to the localization of end distortion, and it may be expected that the

purlin restraint forces also display the same localized effect.

Thus having been justifed by these other theories, the simplified

edge reduction shall be used to modify the proposed K parameter to provide

a useful design value for the reduced stiffness of corrugated sheeting.

Intermediate purlin fixings, it is assumed, are also subject to the same

reduction factor due to end purlin restraint. Tabulations of this factor

are given in Appendix 2.

2.16. Discussion of Experimental Observations for Every

Trough Fastening with No Intermediate Purlins 

Test results are shown in Appendix 1. A, number of different

profile shapes, depths and thicknesses were studied over a range of sheet

lengths from 1.1 metres to 6.1 metres. An extra 50itatt overhang was

inclvided over the normal 1 metre purlin centres to reduce the possibility

of local fastener tearing. In order to minimize the effect of seam

slip, initially only one sheet width was chosen for testing, but it became

apparent that the longitudinal fastenings to rigid rafters held the trough

lines straight. As previously discussed, this severely reduces the shear
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flexibility and it may also be expected that this extra stiffness is

spread some way into the sheet due to the lateral bending rigidity of

the purlins.

The experimental and theoretical comparisons are for both the

total shear flexibility and the deduced K value parameter, which was

derived by subtracting the theoretical minor flexibilities due to slip

etc., from the observed total.

Et
3
b
3 
C1.1Hence, K

0.144 ad4

The edge fasteners were consistently set at WO rrm centres and the seam

fasteners at 150 mm centres giving a failure load at 6m length of 80 KN.

Bedded in values of fastener slipv.erellusedforself-tapping screws and

for seam fasteners. The loading range was never applied above 0.3 times

the theoretical fastener failure load and the average slop of deflection

taken for the flexibility. The minor flexibilities were deduced according

to the expressions in Section 1.4.)

In order to observe the actual in situ seam slip during the

loading sequence a dial gauge was set up as in Plate (2.4 ) for the 4.5

metre wide test on profile 10. The results vindicated the use of the

reduced bedding in seam stiffness rather than the design value of 0.35

mmAl in the low load range.

As a more reasonable experimental study, sheet widths of about

1200 mm were used which also had the advantage of limiting premature

shear buckling for very long lengths, and a purlin was used for extra

support. Of course a single intermediate purlin does not affect the

longitudinal deformation.

The theoretical and experimental comparisons for 35 mm deep

profile 1 are good, as shown in Fig. (2.31). Two test widths of 7 and

4 corrugations were used, the latter test being proportionally much

stiffer due to the longitudinal restraints. In addition the relatively

narrow trough width suffered some clamping action by the head of the self-
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tapping screw. Profile 2, which is the inverted form of I behaved well,

although the trough width was to some extent more affected by the rigid

side conditions.

Profile 3 was stn(lied for 6 corrugations width and was somewhat

stiffer than in theory. Apart from the previous explanations and the

possible inaccuracy of the fastener slip no reason could be found for

this discrepancy. It is likely that the small deflections were affected

by frictional resistance in the test rig. Amajor problem was that the

tolerance in the corner pin connections gave an initial slip which had

to be omitted in determining the Sheet flexibility. Profile 4 was studied

for three sheet widths of 1, 4 and 8 corrugations as in Fig. (2.32), the

final width behaving well compared to theory. The single corrugation

corresponds to the case of the trough lines being held continuously

rigid and the theoretical comparison is also reasonable. It does appear

that at least six and possibly eight corrugations are necessary in testing

to obtain a consistent Shear flexibility.

A smaller profile 19i	  deep was studied in both decking (5) and

roofing (6) forms. Their performance was also good as revealed in Fig. (2.29)

for profile 6.

Profile 7 of 100 mm pitch was specially designed by Dr. J. M. Davies

to have optimum proportions in bending for material usage. It's experimental

shear performance was considerably more flexible than in theory especially

for the 4 metre sheet length. However, it must be borne in mind that the

number of Fourier terms used in the energy analysis probably do not

accurately model the severe localized end distortion of the very narrow

trough width.

Profiles 8 and 9 of 12 corrugations width were tested on a

previously designed apparatus of Plate (7.1), and showed good agreement.

Test profile 10 was 4.5 metres wide and 6.6 metres long, Whidh

cantilevered by 300 mra each end. The effect of overhanging sheets will

be discussed later in Chapter 5.

A number of deeper corrugations were then examined, profiles 11
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12 being 45 ram deep and 1200 rrm wide and gave very good agreement, which

was probably enhanced by the accurate reading of these retatively large

shear deflections as shown in Fig. (2.30). Finally a 65 nmdeep corrugation

studied in decking and roofing forms as profiles 13, and 14 also performed

exactly as the theoretical prediction.

The K value comparisons for the four profiles of Figs. (2.29) to

(2.32) also indicate the energy method solution with and without the effect

of the end 'purlin-prop' reduction in flexibility. Occasional finite

element results are given including end purlin effects Whidh are generally

more flexible than the energy method predictions.

The overall conclusion from the energy method, finite element

and experimental observations is that 17 is a more suitable shear distortion

design parameter, consistent with the localization of trough bending.

The actual magnitude of 17 ds deduced by the slope of the existing K value

with length, according to,

0.144d
1.5

K -
5b

is reasonably well defined by the energy method solution. Thus for

fastening in every trough with no intermediate purlins, the shear flexibility

may be reliably determined by,

2.5-
ad K

1.1 Et
2.5

b
2

where 17 is a tabulated parameter dependant on three geometrical parameters

only. Theoretical 1<- solutions are given in Appendix 2 for increments of
.top plate widths 2 bT/d =0.1 and sheet depths hjd=0. lwith 5o variations

in side plate slope to the vertical up to 45°.

2.17. Discussion of Ex2erimental Observations for Every

Trou2h Fastening for u2 to Four Intermediate Purlins

The test rig purlin spacings of 1 metre required that only sheet

lengths of 3 and 6 metres could be experimentally studied fastened in two
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intermediate purlins. At the am length, profiles 5, 6, 11 and12 Of depths

19mm and 44nut were tested and for comparison the K values were deduced

by subtracting the minor flexibilities from the observed total. The

flexibility of fixing to intermediate purlins may be expressed as direct ratio

of the simple case of fastening at the ends only and together with

the experimental results are given in Appendix 1.

It should be noted that the maximum sheet width given for each

of the previous tests was used in order to reduce the longitudinal

stiffening effect of fixing to rafters. The general observation from

the results is that the experimental flexibilities due to fastening in

two intermediate purlins are greater than in theory. The approximate

theoretical ratio KN/Ki for N equals two is 0.65 whereas the experimental

value was determined as 0.73. A typical example for profile 6 is shown

in Fig. (2.34) also indicating the corresponding finite element results-

For a 6 metre sheet length as used for profiles 10, 13 and 14,

the theoretical factor was about 0.7 and the experimental, 0.76. Plate

(2.6) shows the 4.5 m wide times 6.6m long test on profile 10 fastened

in two intermediate purlins. It has been assumed in the analysis that

the intermediate purlin points offer complete restraint to trough movement.

However, with all fastener forces there is a corresponding slip and the

relatively small trough bending movements may be accommodated to same

extent. Thus UB = 0 as in Fig. (2.19) may in practice not exist at the

intermediate purlin points.

For three intermediate purlins only a 4.1 metre sheet length

could be used and again 5, 6, 11 and 12 were studied. In this case the

average value of KN/Ki was derived from the energy method analysis to be

roughly 0.48. Experimentally the figure was 0.65 although this again may

be affected by fastener slip at the intermediate purlins. Profile 5 test

results are depicted in Fig. (2.34.)

For four intermediate purlins which were only examined using

profiles 11, 12 and for a 5.1 metre sheet length, the theoretical reductioli

Was about 0.4 (Fig. (2.33)) compared to an experimental value of 0.54.
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Fastening in alternate trough at the intermediate purlin points

and in every corrugation at the ends was examined for profiles 10, 11

and i2. The theoretical K parameter was taken as the average of

fastening in every corrugation throughout and the K value of fastening

in the end purlins only as in Fig. (2.35). An average reduction factor

was 0.8 whereas this was experimentally observed to be 0.9.

The energy method predicts a linear variation of K with sheet

length. Cue to dimensional limitations the number of intermediate purlins

maid not be maintained whilst increasing the overall sheet length.

Hcwever, the agreement between experirrental and theoretical results is

acceptable, taking into account the practical difficulties in establishing

complete restraint at the intermediate purlins.

In a similar fashion to the no intermediate purlin case a new

dimensionless parameter Rmay be prcposed.

ad
2.5 

R. 
c
1.1 

-
Et

2.5 
b
2



Plate (2.3) Test rig is shown clad with profile 1 fastened to one intermediate
purlin

Plate (2.4) Modified test rig is clad with profile 10 fastened in two intermediate
purlins. Also shown is the insitu measurement of seam slip by a
dial gauge connected to neighbouring sheets
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CHAPTER	 3.

THE SHEAR FLEXIBILITY DUE TO DISTORTION OF SHEETS FASTENED IN

ALTERNATE OR EVERY THIRD TROUGH 

3.1. General Solution

A preliminary diaphragm design would normally be performed on the

strength capabilities of a certain nurriber of fasteners usually in every, or

alternate or more rarely every third corrugation. However, fasteners

separated by a multiple of the corrugation pitch cause distortion of a

mudh more severe kind than the pure twisting form of fastening in every

trough.

The force per fastener is assumed to be equally derived from the

profile shear flow integrated over half the fastener pitch both in front and

behind the discrete connection. For fastenings in every two or three troughs

the profile is very flexible laterally, and the effect of this sheet shear

flow is to cause compression and extension of the corrugations by trough

movement as in Fig. (3.1.).

Considering the forces along one corrugation, there will be tension

and compression at each end of the sheet length and it may be expected that

the lateral displacement of the trough plate varies linearly between. Hence

the in-plane rotation of the individual plates results in longitudinal warping,

which is manifested as a shear displacement.

As a simplifying approach the shear flexibility may be considered

to be made up of two quite separate modes.

1. For fasteners in every trough the distortion is due to

profile twisting as examined in Chapter 2 and this added to,

2. An additional concertina flexibility due to the reapplication

of the missing fastener forces. Thus for alternate trough

fastenings, the central trough force is considered separately

from the rest of the profile shear, in compressing the

corrugation. Similarly, for fastenings in every n troughs,
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then (1 - 1) extra trough forces must be reapplied. In
subsequent sections the analytical approach will only be

performed for this concertina distortion Node which is

by far the major contributor to the total shear flexibility

for multiple trough fastenings.

The net force on the ith corrugation flow one end for n troughs
n + 

between fasteners is thus ( 	 i)2 , due to a unit force applied at each

trough. The ends of the profile will be anti-symmetrically compressed and

extended and will contribute to an additional shear warping as in Fig. (3.1.).

Considering the rotation of the left hand trough to be O i 1 and

the next trough, 8 i it follows that, from linear plate displacements, the

extra shear deflection per trough pitch d is:

=d+ (O. - 0.	 ) —
d

0i - 1	 1	 - 1 2

The compressibility of the profile over a small slice of the

sheet length dy due to a unit trough force is:

f . b +2b h2
3 s	 T- 15 • (1Y 

where D -  Et
3

12(1 - v2) per nut length

For linear plate movements the trough concertina deflection due to

a unit end trough force thus becomes.

t . bS + 2bT
 1 h

26 = d —6
3	 o bp

10.D

where b is the overall length, and b, h, bs and b T are defined in Fig. (2.1).

b/6 is the equivalent sheet length to be used in determining end

stiffnesses for linearly antisynmetric plate moverrents.

The longitudinal warping due to the concertina flexibility of the

ith profile is:

6d
o n + 1	 d

( 0i. -	 - 1)2( 	 2	 i)*
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The factor d/b represents conversion from a unit trough force to

a unit shear force parrallel to the corrugations.

Using the conditions that A i = 0, 00 = 0, On = 0, An = nA,

it follows that the concertina flexibility, A, due to fastening every n

troughs may be progressively determined.

It is clear that the greater the spacing between fasteners, so

the flexibility will rise proportional to roughly n 2 . For most practical

applications of 150 mm wide profiles, fastenings are never less frequent

than every third corrugation and usually alternate troughs fixing is

preferred to limit excessive visible distortion.

The final flexibility is determined by superposing the concertina

value and the every corrugation fastening flexibility. Bryan
(4)

 has

tab lulated the K values for multiple trough fastening as determined by

linear plate generators according to,

0.144ad
4
K 

Et 3b3

where C1.1 is the total distortion per panel width, a.

Fig. (3.1) shows a typical case fastened in every third trough.

It is apparent that tensile movement causes depression of the side plates

which implies that in reality there is some restraint by the end purlin

to which the sheet is fastened. This 1 purlin-prop' reduction in flexibility

will be discussed in section (3.6.).

3.2. Alternate Trough Fastening

FOr a unit force parrallel to the corrugations the missing

fastener for alternate trough fastening is d/b. Hence the net campression

and tensile forces at the sheet ends are equally divided between neighbouring

profiles.

Assuming linear plate mcvementsthe concertina component of shear

flexibility, from the expressions of Section (3.1.), is:



where do is the concertina flexibility of the profile due to a unit

coffpiressive force. It follows that for

4d
o = (.= b + 2b ) h

2
S	 T

the shear flexibility due to concertina distortion is

C .1	 3= (
2
— bS + bT ) h

2 
72 d

2 (1 - v2)
1 Et

3
 b

3

Uging Bryan's expression for the shear flexibility the concertina

distortion parameter is

bS 
bT h

2
KA = {-fr 	-3 (1 - v2) 100

Superimposing the every corrugation K value, (KE), the total

shear flexibility for alternate trough fastening is

0.144 ad4K 
C1.1 = Et3 b3

	where K = KA + KE

K is a constant for linear plate movements.

This case is depicted in Fig. (3.2(a)). It was concluded from

Chapter 2, that for every corrugation fastening, the shear distortion becomes

localized towards the sheet extremities due to non-linear plate movements.

In energy method terms this may be explained by the fact that

the increase of plate bending energy is such as to reduce the amount of

sheet distortion until the total energy becomes a minimum. For alternate

trough fastening concertina action is the primary shearing mode rather than

distortional twisting, and is a much more flexible form of deformation.

Nevertheless it was experimentally observed that for sheet lengths

of above 4 metres, the flexibility and hence the K value did rise above the

linear generator theory prediction, which implies that some in-plane plate
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bending does occur. In this case plate bending is sucht p minimize concertina

distortion as shown in Fig. (3.2(b)).

An an analytical technique the energy method of assumed dis-

placement functions will be used to determine the influence of sheet length

on the shear flexibility, and finite element tests carried out to check the

suitability of the approach.

In a similar fashion to the every trough fastening case, the

displaced shapes of the outer and centre trough plates Lk and Un respect-

ively, may be expressed in terms of truncated Fourier series according to

Fig. (3.3). It is assumed that for this concertina mode, all the plate

displacements may be described in terms of these two trough movements where

thevariablesa.tryto reduce the amount of internal concertina action

(Fig. (3.2(b))).

The sinusoidal terms contribute to the longitudinal plate

bending energy and the linear plate movement component is due to al

um. .ay+ a b . 2 ff	 . 4ily
1	 2 -2-11 sin	

by + a3 1-1.1 sin 	 + a /2 sin4 611	 b

= a5 -2-11 in -2-1--1 + a b sin ATIY-+ 	
b	 . 6ily 

Sin 6 411	 6	 a7	 sin b

Top plate displacementsresulting from concertina action are

assumed to be the same for each corrugation and move according to the

average of the neighbouring trough deflections.

a
1 	(a2 + a5) b	 211y

=	 4.	 2	 211 sin 6	
etc

The total internal energy may be evaluated in terms of the

concertina distortion and axial strain energies together with an allowance

for the torsion of the sides of the corrugation.

For ease of interpretation the different magnitudes of the

sinusoidal trough displacements such as a 2 and a5 may be split up into

two modes corresponding to
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a2 - a5 
( 2 ), which is the concertina action due to equal

and opposite sinusoidal trough movements for U T = 0

a2 + a5
2.	 2	 ), which is the component due to equal movements

of trough and top plates, as in Fig. (3.3.).

Mode 1 contributes to the concertina energy per corrugation, which

is defined by,

b/2 2
Ec
 =k I

CO

where Uc is the concertina action such that,

U = ay+ (a 2 -a5)	 sin DIZ + etc1 	 2ll	 b

k 	 the force required for 1 rrrn corrugation compression and equals

Et3

do	12(1 -
2
).(1.33bs

 + 2b
T
)h2

b3 a2 -a5
b
3	2	 b

3	
a2 -a5

1E = k0 	a + kE0	 c 24 1	 c z 1	 2 } + kc —
411

2 {	 2

	

b
3 a

3 -	

a	 k

a6	2

	

1,3 a - ac	
0 a4 - a7al- kc 712 1	 2	 / l	 c lt1-12 1 3 2 ul	 kC 181I2	

2

•
	kb3	2

C 	 a4 - 
a7 

	

9	 1
	36n-	 2

Due to the concertina trough movement there is a consequent side

plate uplift or depression, Usl , given by

1	
bL bS + bT S

T	 4rbs 0.67 b
S
 + bT

• Mode . 2 does not influence the concertina energy as the top and

trough plate movements are equal and may be represented as,

1.

2
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a2 + a5 b	 . 2ily	 ra3 a6 
Ud - { 2 1 211 sin b +	 2	 1 etc.

However, to be consistent with these displacements the side plates

gust move to maintain compatibility according to,

US2	 + bT

U	 2bs

This component of distortion is very similar to the profile

twisting of the every trough fastening case and hence the energy associated

with displacement Us2 is,

Et3 kd	 b/2	 2
E
d 

-	 Us2 dy
of12(1 - v 2 )

where k.
d
D is the side plate force for a lrrm in-plane side plate deflection.

S/2

f0 143,M1 cis
h ) 2

2bS

Again, t, by bS' bT' and h are geometrical properties of the

profile and are defined in Fig. (2.1 ), and M1 is given in Fig. 	 .9).

The distortional displacement U52 will be much smaller than the

concertina form U
S1 

and so in general the magnitudes of a 2
 and a

3
 will be

very similar to those of a 5 and a6 respectively.

The cross-section movements due to fastening in alternate troughs

are relatively large and an allowance must necessarily be made of the

tOrsional energy of longitudinal plate twisting.

The bottom, top and side plate rotations are respectively,

b	 2HY (a 	 a ) b i 411Y +0B =
	 .f_av-i- (a2 - a5) fff ssin. b	 3	 5 	 sinCI 	 b	 etc. )1	 b.f.,

+ 
bT1	 b	 2{ (a + a )	 sin  11Y -F±{ 	 	 (a	 ) b 	 -2Z4/2bs 	2	 5 4n	 b	 3 + a 6	 sin8n 	 b etc}



0 _ i-	 {a-,y + (a2 - as) fff etc }
41ps

Thus the torsional energy is,

deB 2	 de 2

	

b/2 2Gt3	 doT 2Et S 2b
b +	 b +	 S	 dY

f	 3	 dy	 L	 dy	 T
dY

Gt3b f f2 4. 1	 ra 2 (a2 - a5 )
2
	(a, - a,) 2

	(a A - a,)
2

t	 +	 +	 -.' 	 .1- 	 '2	
/ 

3 'IDL 8bs '	 1	 2	 2	 2

Gt3b 1	 1	 131, +)2.1(a2 + a5 ) 2	(a3 + a5 ) 2	(a4 + a7)2is

	

3 {- + b	 (	 8	 8L	 T	 2bS	 8

Cwing to the relatively large distortional deflections, the

energy caused by shear strain has been neglected. The final energy

quantity is the plate axial strain due to the sinusoidal components of

trough movement.

Again separating the parameters into two modes as in Fig. (3.3)

the axial strain energy may be evaluated by,

b/2

	

Ea = f	 I
2 Et dsdy

	

o	 o a

where ciais the axial strain at any section.

Mode 1, due to pure ooncertina action, gives a top plate axial

strain energy of,

2t.Eil
2 
bT .(a, - a5)2	 4(a3 - a ) 2 	 9(a - a ) 2

EAl
6	 4	 7 

(bL
+ 2(24)

S
r{ 	

4 4	 4
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where f derives from the corresponding side plate movement due to

corrugation compression.

The side plate axial strain energy is,

4tEll2bs
	(a2 - a5)

2
-1 2

OD "V(4195, )	 {	 A- etc }
AS	 4

The bending energy in the bottom and side plates is,

2	 tEll
2 3(a2 - a5

) 2

E	 = -- . ITT— (bi, +2(2 b 3) {	 + etc }
AB	 4

mode2 due to equal movements of top and bottan plates gives

top, bottam and side plate bending energies of,

2	
b + b 2

= 2	 (b3 + bT
3 + 2bs

3 ( L	 T) ).EA2	 2bS

(a2 + a5)
2	4(a

3
 + a5

) 2 	9(a4 + a
7

) 2

1	 4 4 4

An additional side plate axial strain occurs, due to the unequal

edge strains across it. As the top and bottam plate movements are equal the

centre strain is,

2n	 . 2ilysin-b-- iJ - 
bT )[(a2 + a5 ) + 	b •	 • 

2	 2

ThusE . 'CEAS	- bT)
2 

f(a2 + a5)
2
 etc

Thus the total axial strain energy due to trough bending is,

Ea
=E +E +E +E +E

Al	 AS	 AB	 112	 AD

The total internal energy, E tot, induces concertina energy 1

pure distortion, axial strain, and torsion,

4
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Etot =Ec + Ed
 +E

a 
+ E

t

The internal work done by a unit applied force parrallel to

the oorrugations is A2/2c and hence,

2
= Etot = e(1r1) a12 + e(112) a1 a2 	 e(515) a5

2
2C1.1

Expressed in matrix form,

5	 5
A2 _	 E	 E a. . d(i,j).aj
2C - i=1 j=1 1

wherea.represents the vector of assumed displacemnt parameters.

d(i,j) are the coefficients of the total energy expression such

that,

d(i,j) = e(i,j)/2
	

for i j

and	 d(i,i) = e(i,i)

Fbr minimum total potential energy,

=0

taking small increments in each variable, 7 simultaneous equations

result where,

7
0 = 2da1	E d(i,j) a(i)

j=1

for i = 1 to 7

However, as for the every corrugation fastening case, it is a

necessary oondition for ocmpatibility between neighbouring troughs that
c
--d—y-= 0. The sinusoidal components of displacement do not contribute to

the shear displacement and hence A is defined by the rigid movement

parameter al where,
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a1-2 = A

thus da1
 = 0 and the six final equations to solve for the six independent

parameters are,

d(i,j).aj = -d(i,l) 2A
	

for i = 2 to 7
j=2

a2	a7
Pesubstituting these values of -E , up to with the total

energy expression yields a solution for the shear flexibility due to

distortion, C1.1.

In a similar fashion to the linear generator theory, the flex-

ibility may be represented by a parameter K A, where,

0.144 ad4KA
C1.1 = 	

Et
3
 b

3

EA, will be constant if solution corresponds to linear tough

movement. The final flexibility factor due to fastening in alternate

troughs consists of adding this concertina distortion to the torsional

form of fastening in every trough as represented by KB,

Thus the total value is,

K=KA+KE

3.3. Fastening in Intermediate Purlins

As for the case of fastening in every corrugation, intermediate

purlin fixings represent an idealized restraint of trough plate movement

sudh that UB2 = O.

For any number of intermediate purlins, the concertina action

is considered separately from the every trough fixing flexibility. Two

internal restraints imply that at y = b/6,
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a5 	a6
2 + 4 =

Thus a6 may be eliminated from the six 
independent displacements

 -
according to a6 = -2a5.

Three intermediate purling correspond to zero trough noverrent

at y b/4. Thus,

a
5	 a7
2	 6

Again, a7 may be removed in the minimization of total energy

process by a7 = 3a5.

Reinsertion of the displacement parameters into the total

energy expression yields a solution for the shear flexibility, from

whidh the KA value may be derived as in Section (3.2.).

However, this only accounts for the concertina distortion. Due

to the torsional form of deformation of shear flad around the cross-

section which has the same flexibility as every corrugation fastening,

an additional KE value must be added.

It is apparent that the corrugations are fixed to intermediate

purlins along one trough and not along the internal trough. As an

approximation KE will be taken as the average of the no and the full

intermediate purlin values, which are Kap and KEN respectively.

1(130 ± KEN 
2

The total parameter value is thus ,

=	 + KA

0

0
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3.4. Effect of Lenath L SheetThickness an3 Number of Fourier

Terms for the Eneray Method Derivation

The alternate fastening shear flexibility is at least five

times greater than that due to fastening in every trough. This is

apparent considering Fig. (3.4) which shows the K value for pure concertina

action and the superimposed, K value for the every trough fixing case,

which caMbine to give the final alternate trough fastening flexibility

parameter.

The concertina action K value is far fram being constant with

sheet length. For short lengths of about 1 metre there is a stiffening

effect due to torsion of the sides of corrugation, and at about 3 metres

the K parameter becomes linear with increasing length. This compares

with 1.5 metres for the every corrugation fastening case. As previously

discussed in Chapter 2 asymptotic behaviour of K indicates that end

distortion has became localized rather than based on a linear generator

assumption, even for this much more flexible type of concertina deformation.

However, the trough movement can only be modelled accurately for

longer sheet lengths by greater numbers of Fourier terms. Fig. (3.5)
6lly i

shows how inclusion of up to sin 	 is sufficiently accurate. Each

successive term causes the apparent K value to rise until its bending

energy is exhausted. Minimization of the internal energy physically

takes place by balancing the increase of plate bending against the

reduction in concertina distortion.

At a length of 6 metres the displaced trough shapes have been
plotted for both roofing and decking profiles at IM longitudinal shear

force in Figs. (3.6) and (3.7).

It is clear that at about 30 kN longitudinal shear force the trough

movement is of the order of 21 num, which may be considered excessive for

insulation fixing. This will be discussed in Section (3.13). The

summation of the Fourier terms shows that the displaced shape asymptotes

= UB2 , consistent with no distortion, until the last metre of the

sheet length.
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The corresponding additional every trough fastening displacenents

are indicated which again are about one fifth of the more flexible

distortion mode. Concertina flexibility increases rapidly with decreasing

trough width and greater corrugation depths.

Sheet thickness and corrugation pitch have the same effect as

in Chapter 2. Fig. (3.10) reveals the linearity of K and the square root

of thickness. Thus a new distortional parameter may be developed

according to,

_ 0.144 di ' 5 K

b

K now represents the localised distortion behaviour as for every

trough fastening. Again, the complete K value for alternate corrugation

flexibility, omitting 1 purlin-prop' effects is given by,

= RA	 RE

where KA and KE are the corresponding values deduced from concertina

and every corrugation fastenings respectively.

Tabulations ofl unaffected by 'purlin- prop' reduction in

flexibility are given in Appendix 2.

3.5. Effect of Intermediate Purlin Fixings

The restraining effect of fastening to intermediate purlins

may be seen in Fig. (3.8) for a typical 35 mm deep decking profile. Only

the concertina component of the K value for alternate corrugation

fastening is considered and it is clear that two intermediate purlins

have about 25% increased stiffness campared to the case of end attachment

only. Three internal restraints cause about a 50% increase of stiffness.

FOr short lengths all three cases behave similarly but as the

sheet length increases sogradually the K value rises to become asymptotic

to a straight line. This occurs at about 6 and 9 metres for two and
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three intermediate purlins respectively which is approaching the limit

of practical sheet lengths. It is expected that for four intermediate

purlins K will remain roughly constant.

Fig. (3.9) shows the corresponding variation of the proposed 17

value again for concertina action. It is clear that R does indeed

become constant and is a more suitable design parameter. However, it

should be borne in mind that for a 2 metre sheet span between purlins

the corresponding K value remains roughly constant whereas 17 falls

steeply. The shear stiffness is thus dependent on the cube of the

overall sheet length for practical panels with uniform purlin spacing.

Any design expression for increasing numbers of intermediate

purlins must introduce the proviso that for short sheet lengths the

constant K value, based on rigid plate generators, is a closer approximation

to the shear flexibility.

The effect of sheet thickness and corrugation pitch is exactly

the same as for the no intermediate purlin case which vindicates the

formula for shear flexibility in terms of 17 for longer sheet lengths.

Plate bending displacements are shown for a typical profile in

Fig. (3.13), which highlight the smaller degree of trough bending for a

6 metre sheet length fastened in two or three intermediate purlins.

3.6. Edge Beam Reduction Factor Due to Fastening in Alternate

Troughs

The accordian-like shear deformation due to multiple trough

fastening not only compresses or extends the profile but also lifts

or depresses the sides of the corrugation as shown in Fig. (3.15). This

free movement is antisymmetric both longitudinally and laterally. In

reality, the fixing to rigid members at the sheet ends will disrupt the

free deformation by preventing downward motion of the side plates. For

alternate trough fastening, edge beam restraint may be represented by

forces P1 and P2 due to a unit trough force at each end of the sheet.



It has been assumed that deformation occurs by linear plate

moverrents, which will be discussed later. Each end force may be

resolved into symmetric and anti-symmetric components of which only

the equal and opposite pair contribute to the warping resistance. •

As shown in Fi5. (3.15(b)), the end displacements due to the
1-'1	 P2anti-symmetric forces -2- and -2- may be calculated below, and the

longitudinal variation of these deflections is linear along the length.

Thus referring to Section (3.1), all end displacements such as 611,

6
13' 

and 633 due to equal and opposite end forces may be derived using

an equivalent sheet length of b/6, corresponding to linear plate movements.

The free side plate uplift, VS, due to a unit trough force may

also be calculated using this factor of b/6. Thus the displacement at

point i due to an antisymmetric pair of end forces at point j is,

6 s
=D0

 Mi ds
Et3

where 12(1 - v2) = D

ds implies integration of the cross-section bending mcments M i times

.around one profile where M. are evaluated in Fig. (3.16). D is the

sheet bending stiffness per mm length.

Vs equals 0.5	 h(bs + bT) 6

for a unit trough force generating linear plate movements.

For the symmetric force pairs at each end of the sheet, the

prdblem of selecting an equivalent sheet stiffness in order to calculate

the end displacements, is rather more complicated.

In theory, the up]ift is constant along the sheet length and

consequently the effect of an end force is modified by an equivalent

plate length of b/2. However, this does not occur in practice as the

sheet-purlin fasteners are only at the end of the sheet and naturally

the cross-sectional bending =rents due to net upward loading must die

away fram the influence of the discrete connection.
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Fig. (3.15(a)) indicates that the likely region of deformation

is close to the fastener and the trough centre line rises due to the

uplift force from cross-section deformation. At all sections other

than the line of fasteners, the theoretical end displacements 62-,
z 624

and 6 44 will decrease, and in fact will decay much more rapidly than

the linear plate movements.

Hence as an analytical expedient the equivalent sheet length
bk ito be taken for symmetrical end displaoem	 ients is	 in which k is less

than unity. This implies that the symmetrical force pair cause prop-

ortionately larger end deflections than their corresponding anti-symmetric

components.

Edge purlin restraint may be evaluated by considering the com-

patibility requirements for side plate depression. On the outer plate,

the net side plate movement is zero.

622	 P1 6 24 1 
P
2x

13
,	

k
VS	 =	 {6 }11	 k	 2	 ' J	 2

And the inner side plate,

6 24	 P1 6
33

6 44 P2
VS =	 { 6	 - } --{

13	 k	 2 k 2

The value aribitrily chosen for k was 0.5, on the basis of

finite element comparisons. The reduction in flexibility due to the end

restraints P 1 and P 2 may be determined to considering the effect of the

anti-symmetric forces. The trough movement is now,

p
26= 6 +	 16	 + 6 —oo	 102	 302

where 6 is the unrestrained horizontal trough movement. Hence theoo
flexibility reduction factor which is dependent only on the degree of

trough restraint is,

rk =  610 P1	 3D P2-	 - 6

00
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and the shear flexibility due to concertina action is C1.1 (1 - rA).

For some profiles P 1 or P2 may become negative in the analysis, in

which case the appropriate restraint is set to zero and the compatibility

condition for P2 = 0 beccmes,

6
22 pl

V = (611 +—k ) ' -2-

Throughout the analysis it has been assumed that the edge beam

restraint only affects the concertina compliment of distortion, which

implies that the equivalent torsional form of every trough fastening

is free to take place. Thus the final flexibility parameter K is.

where

K = KA (1 - rA) + EE

0.144 ad4K 
c1.1 -

Et
3
 b

3

In the previous sections it was determined that above a certain

length, non-linear trough movement occurs and the deformation becomes

localized near to the alternate trough fastenings. This fact does not

complicate the effect of 'purlin-prop' reduction in flexibility which

is assumed to remain independent of length because the relative long-

itudinal stiffnesses of each of the applied and restraining forces remains

constant. In effect, as all the forces are applied at the same section,

their contribution to the shear flexibility may be expected to be just

the same for both rigid and non-linear plate movements.

Thus, 17 =KA (1- rA) +

where C1.1 - 	 2Et
.5
b
2

It will be shown later in Section (3.8) that rA does not remain

completely constant but for the useful range of sheet lengths is

sufficiently accurately determined by the preceding analysis. This

reduction factor is largely unaffected by the number of intermediate

ad2.5K
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purling.

Tabulations of rk are indicated in Appendix 2 for a range of

profile sizes.

3.7. Testing by Ex2eriment and Finite Elements

The experimental test rig has been described in section

(2. 6 ) and a number of profile sizes were examined ranging from 19 In
to 63 mm depth in lengths from 1 to 6 metres. Of course experimental

observations include the effect of end purlin restraint on deformation

which cannot be accurately estimated.

In this case the finite element method is of great value as it

can easily model local restraints. The principle of setting up a mesh

of elements by a data generator is described for the every corrugation

case in Section (2. 7 ). For alternate corrugation fastening, two

elements per face were maintained and the longitudinal trough edges

were attached to hypothetical axially stiff members which satisfy the

axial strain compatibility requirements between corrugations. This whole

process was developed by Dr. J. M. Davies and several comparisons were

run for the profiles under test with and without the effect of 'purlin-

prop' restraint.

Experimental observations and their theoretical energy method

canparisons are given in Appendix 1 for both the total flexibility

including fastener slip effect and also experimentally deduced k' value.

Figs. (3.71 to (3.19) show the corresponding energy method, experimental

and finite element k: value results for a number of different profiles.

The effect of fastening to intermediate purlins could also be

accamodated on the test rig although the one metre pitch of purlin

positions, meant that for two intermediate purlins only the 3m and 6m

lengths could be examined. Similarly, only a tim sheet length could be

studied for three intermediate purlins.
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3.8. Purlin-Prop Reduction Comparison with Finite Elements

The inclusion of the purlin-prop reduction in flexibility is a

rather complicated approximation for the energy method in that it is

assumed only to affect the concertina deformation component. Torsion

of the cross-section similar to the every corrugation fastening

flexibility is assumed to be unaffected by purlin restraint. Thus,

as in Fig. (3.11), the final reducedK value is obtained by

K = KA (1 - rA) + KE

This expression also applies for R as it is to be expected that

rA remains reasonably constant with length. The effect of the profile
shape on R for up to three intermediate purlins is shown in Fig. (3.12),

which indicates both the ex- and inclusion of 'purlin-prop' reduction

in flexibility.

Finite element and energy comparisons are for the K values of

three different profiles as shown in Figs. (3.17) to (3.19), together

with the corresponding experimental observations. It does appear that

the finite element results are consistently about 5% more flexible than

the energy method predictions. However, the proposed reduction factor

the to purlin deformational restraint does reasonably model the actual
decrease in flexibility for most practical sheet lengths.

The rigid plate movement K value coincides with the actual value

at about 3 to 4 metressleetrlength which was the approximate size of

previous test apparatus, perhaps explaining why the increase in flex-

ibility due to alternate trough fastening had never been studied in

depth.

Finite element results are somewhat stiffer for short lengths

of about 1 metre, and indicate an increase in the flexibility reduction

factor. Thereafter, consistent with the localization of end deformation,

the factor rA remains constant irrespective of sheet length.
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3.9. Discussion of Ex2erimental Results for No Intermediate

Purlins

In total fourteen profiles were studied and the experimental

and theoretical comparisons for the shear flexibility and the deduced

K values are given in Appendix 2.

35mm deep profiles 1 and 2 are corresponding decking and roofing

forms and their experimental, finite element and energy method K values

are shown in Figs. (3.18) and (3.19). Two test widths were chosen for

each which, similar to the every corrugation fastening case, reveal the

restraining effect of fastening to longitudinal members.

Even for a test width of two sheets the experimental solutions

are some 20% stiffer compared to theory for the decking profile and 10%

stiffer for the roofing profile. An additional factor is the clamping

effect of the fasteners, which, especially for narrow trough widths, will

stiffen the concertina mode of distortion.

Profiles 3 and 4 also display the same characteristics of the

effect of test width. FOr a 6 metre sheet length, 8 corrugations wide,

the observed K value was some 40% more flexible than the corresponding

test only four corrugations wide.

A 19mm deep profile was experimentally much stiffer in decking

form than in theory, but the roofing value comparison was quite good.

Profiles 7, 8 and 9 behaved similarly. The test width was increased

to 4.5 metres for 38 mm profile ID and for the first time the experimental

flexibility was slightly higher than its energy method prediction. The

greater number of seams may have had an adverse effect, but in general

it does appear that trough bending needs a considerable sheet width

away from the longitudinal member before it is effectively unrestrained.

This explains the apparent stiffness of the previous experimental

observations.

Profiles ID and 11 were 45 mmn deep and 8 corrugations wide.

Agreement in this case was very good right up to the maximum length
of 5 metres.
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Similarly, the 65 m deep profiles 12 and 13 behaved extremely

well which was probably enhanced by the relatively easy recording of

the large shear deflections of this deep corrugation.

In general, the experimental observations and energy method

predictions show reasonable agreement, especially for the deeper profiles.

Most tests were somewhat stiffer than in theory, probably due to the

prevention of trough bending at the longitudinal rembers. For longer

lengths, where trough bending contributes to a much higher shear

flexibility the K value rises approximately linearly with increaseing

length.

Thus R is a better distortion parameter than K for alternate

trough fastening according to,

2 5 -ad K
C1.1 Et2.5b2

However, for sheet lengths below 3 metres the rigid plate

movement theory prediction,

ad4 K 
c
1.1 

-
Et3b3

x 0.144

doss hold and it is suggested that the maximum value of these two

expressions should be taken for the shear flexibility. As a design

expression, the formula including R is the controlling form and for

a given profile shape, K should be represented by the bigger of,

R and 0.144d1-5 K 
O.
t 5b

Tables of K and K for any gearetry of profile are given in

Appendix 2 .

3.10. Discussion of the Experimental Results for u2 to Three

Intermediate Purlins

Four profiles were examined with fastening to two and three
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intermediate purlins. Due to the dimensional limitations of the test

rig only one metre purlin centres could be used for three interval

restraints which offer a considerable resistance to trough bending.

As previously mentioned, for ths number of intermediate purlins

at least 6 metre sheet lengths are required to generate the full

linearity of K with length. For the shallow corrugation depth of 19 urn

as in profiles 5 and 6 the experimental flexibility is about 15% greater

than the theoretical prediction for three intermediate purlins with a

sheet length of 4 metres. The 45 ran deep profile performs rather better

in this respect, although it should be borne in mind that K has risen

by only 20% frau its rigid movement value.

Fbr two intermediate purlins, studied over three metres length

the theoretical and experimental comparisons are good, giving a K value

ratio compared to the no internal restraint case, of about 0.8. A single

test was performed on a 6 metre sheet length which again showed

extremely good agreement.

On the basis of these results, which appear to agree reasonably

well with the energy method predictions, the formula in terms of R will
be taken for the shear flexibility fastened in internediate purlins.

R is thus only a function of the profile geometry, the fastening arrangement-
and the nuMber of intermediate purlins. Tabulations for this parameter

are shown in Appendix 2

However, as in Section (3.9), it is suggested for alternate

trough fastening that the greater of the flexibility formulae including

K and 17 respectively should be used for sheet lengths less than 4 metres.

3.11. Fastening Every Third Corrugation

This case is much more flexible than the previous alternate

fastening case and the resulting concertina deflection may be obtained

by considering the general formulation of Section (3.1), where A is

the average displacement per corrugation.
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dA1
 = 6d -

d! 
(1)

o 
b
3D

12dod

1
b
3
D

d.A 2 = 01d = 12d d
2

b
3
D

02 
=

	6d
2a 	20	dA 

3 
= 6

2d	
- 6dod

	b
3
D	 b3D

d d
2

3A = dA1 + dA2 + dA3 = (6 + 12 -I- 6) 	 3
b D

A 
= 5 6d 2

Therefore, 	 •
b D

The equivalent expression for alternate trough fastening is,

2
A 1	 6dZ- -
2 b3D o

showing that the increased flexibility is 2.67 times compared to alternate

fastening.

For fastening in every fourth trough the shear flexibility

would be,

A = 2.5 —
6d2 d
b3D o

which is five times the alternate fastening case.
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Consistent with linear plate generators the shear flexibility

for every third trough fastening may be represented as,

C1.	
0.144 ad

4
 K 

1 
Et)D3

2 d2	 4
where K = - ' 1000 (1 - v )	 and d = (-ADS + 2b ) h2oiT

However, this approach makes a number of simplifying assumptions

by ignoring the effects of rotation of the central corrugation which

not only gives some torsional restraint, but also contributes to a

degree of warping in the opposite direction to tha . main concertina

flexibility.

These factors may be calculated by considering Fig. (3.1.).

The rotation of the central profile is,

26 =-5 VS/b and hence its warping is,

1
A	 441D +v . 2bT)/b/2s	 S

= { (p + bT) 4bs + 2hbT }/b/2 . G

where

	

VS	 (b + bT) bL 	
2/3 dr,d

, and 6 	 _
- 4	 b/2

	

0	 (jos + 2bT)h

The overall warping reduction is half this value after

subtracting the opposing twists of the outer corrugations. Thus, the

reduction in flexibility compared to concertina action A0 alone is,

1 
(p + bT) 2b

S + 
bT	(bS + bT )

{.6	 h	 d	 (2
-5 bs + bT)

This approximately degenerates to,
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1 (?	 2bT)
6	 d

For decking profiles with 2bT/d = 0.6 for example it follows

that the flexibility is reduced by about 10%. The torsional increase

in stiffness is most noticeable for short sheet lengths but quickly

loses its importance for practical sheet spans. At a length of 2 metres

for a typical profile, inclusion of torsional effects reduces the

flexibility by 15% but this decays to about 4% for a 4 metre length.

To Obtain the final flexibility, the distortion due to every

corrugation fastening must be added. As for the previous cases, the

downward movement caused by profile tension implies that some edge purlin

restraint occurs which serves to stiffen the shear deformation.

3.12. Edge Beam restraint for Fastenings in Every Third

Trou2h

The mode of concertina distortion is more complicated than the

alternate trough fastening cases. Linear plate movements occur for most

sheet lengths and as in Fig. (3.19) end restraints P 1 and P2 are

assumed to prevent downward movement of the corrugation under tension.

The free deformation is shown in Fig. (3.1.) and the respective outer

and inner side plate movements are ,3 Vs and Vs (d + 2bL)/3bL. The

internal corrugation is not subject to any force and merely rotates

be compatible with the concertina deformation of the neighbouring

profiles. VS represents the side plate uplift for a unit trough force.

The forces P and P 2 may be split up into their respective

symmetrical and antisymmetrical components and solution proceeds as

for the alternate fastening case. 611 . 613 , and 6 33 represent the side

plate movements caused by the equal and opposite force pairs, and

consequently are determined by an effectiva sheet length of b/6.

3/2S6	 Et3 

	

-E5 f	 m. m• as

	

0	
12(1 - v2)
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3
/2

S

ds represents integration of the bending moments Mi tires

M.over	 half the pitch between fasteners. The bending narents M.

are defined in Fig. (3.20 and D is the sheet bending stiffness.

Again the syrmetrical uplift components of P i and P2 are

determined as 822 , 824 and 844 which are then modified by a factorp

as for alternate corrugation fastening. All displacements other than

these uniform uplift values are mnsidered to be linearly varying.

Due to the fact that for symmetrical loading there is a net

fastener restraining force a short distance along the trough centre

line, the sheet will begin to rise and the net cross-section bending

moments will decay rapidly along the sheet length.

Hence, these uplift values will be relatively more flexible than

the antisymmetric components by an arbitary factor of 2 (k = 0.5).

This was the value which seemed to give good comparison with finite

element results for alternate trough fastening and it is assumed that

this may be used for the wider pitch of fasteners. So for the outer

side plate,

622 P14	 624 P2
-3- VS = {6 Ll	 —2- {613 + 7c-}

and for the inner side plate,

d + 7b	 8
24 

P
1 	844 

P
2

	 } v = {8 +	 —	 + {8. + —}
13	 k	 2	 33	 k	 2

where Vs = (bs + bT) hip 15

The shear deflection is only influenced by the anti-symmetrical

forces and hence the relative flexibility is,

P
1 

6
10 

P
2 

6
20

1 +
2	 8	 2 • 6	

= 1 - rT
Co	 oo
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where 6 is the free concertina deflection and equals,
co

{-
4 bS + 2bT

2 6 —
3	 bD

rT is the flexibility reduction factor for fastening in every third

trough and consequently the final K value is,

K = KT (1 - rT) + KE

Again, it is assumed that only concertina action is restrained

by the end purlin and that the free distortion effects may be added

separately.

It is considered that the very flexible nature of this deformation

is not oondusiw to localization of shear distortion by trough bending.

Thus the formula for shear flexibility using K as a parametric constant

shall be used for this fastening arrangement for all sheet lengths.

Tabulations of K are given in the Appendix 2.

3.13. Discussion of Test Results for Every Third Corrugation

Fastening

This very flexible mode of fastening was examined for lengths

of 3 and 6 metres for the 35 mm deep roofing and decking profiles 1 and

2. The theoretical flexibility, it is assumed, derives mainly from the

concertina action which occurs linearly along the sheet length. This

is almost three times as much as the alternate trough fastening flexibility

and twenty times greater than the flexibility due to fastening in every

trough.

The experimental observations show quite good agreement with

the theory of Sections (3.11) and (3.12) which includes the reduction

factor due to end purlin restraint. The K value and total flexibility

comparisons are shown in Appendix 1.
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At the 6 metre sheet length, the flexibility was observed to

have risen by about 10% above the rigid movement value, but it is

expected that this is due to the twisting component similar to fastening

in every trough which does rise with length.

At 3 metres, the agreement is quite good, although the decking

profile is probably stiffened by the clamping effect of the fasteners.

Thus on the basis of these results, the flexibility due to

fastening in every third trough shall be taken as,

0.144ad4
C1.1 - Et3 b3

K values are constant for each profile shape and are tabulated

in Appendix 2 with and without the i purlin-prop' reduction factor.

3.14. Excessive Deformation due to Concertina Action

FOr relatively short sheet lengths of less than 4 metres,

corrugations fastened in multiples of troughs may suffer considerable

deformation before the trough fastener capacity is reached.

If the longitudinal shear flexibility is,

0.144 ad
4

C1.1 - Et3 b
3

then the lateral trough movement per unit fastener force, 6, for

alternate fastening is, C1.1 x b/d)
2
x 05

Thus, 6 = 0.0'72,4
3

Et3b K

For every third trough fastening, the trough deflection per unit
2	 3	 1

astener force is C1.1 x (b/d)  x
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Alternatively, if sheet length is bigger than 3 metres for

alternate trough fastening then,

2 .5 -
C1.1	

ad	 K

Et
2.5

b

and the lateral trough movement is again C1.1 (b/d)
2x().5

If the maximum trough fastener force is 6 t kN and x represents

a fraction of this force at the actual working load, then the

corresponding trough displacement is,

d = 0.144 2)
2
 A E . 3x - linear plate movementst b E

d 1.5 Ror	 6 = (E)
	 .3x - localised end distortion

The trough movement represents a measure of the visible

distortion, but it is likely that the corresponding side plate uplift,

S, is more important, where,

b_L ODS bT  )V =	 = fSS	 2h
S + by

It may be seen that f tends to Th- which means that for very

shallaw roofing profiles, the side plate uplift may exceed the trough

movement. The relative movement be-baeen neighbouring crests is 2Vs.

For a typical set of data,

d = 150 mm,	 t = 0.7 run, E = 207 kN/hut2 , R = 1.0

At x = 1	 = 4-6rrm

This is far in excess of the deformation limit of the profile

and it may be necessary to reduce the permissible fastener force in

accordance with the value of R.

Similarly for a typical corrugation fastened in every third trough

with data as above plus K = 20 and b = 4 metres,
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6 = 0.144
122) 2 ( 150  ) 20 x 6 x
0.7	 4,000 207

.36 ram

It is suggested that, even for long sheets, where the distortion

becomes localized towards the panel ends, there should be a serviceability

limit of excessive deformation introduced into the fastener capacity.

The distortion limit should depend, not only on trough movement, but

also on the degree of uplift and depression between crests, which

affects the insulation bond.

This will be discussed in Chapter 5 with regard to the stiffening

effect of insulation and the corresponding bitumen bond strength.
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CHAPTER	 4.

THE SHEAR FLEXIBILITY OF SINUSOIDAL CORRUGATIONS

4.1. Theories due to McKenzie and Libove

The first analysis of the shear deformation of a sinusoidally

corrugated web attached to flanges at discrete points was performed
41)

by McKenzi e. He noticed that trough fastening, rather than continuous

attathrent, resulted in cross-sectional bending deformations which

caused a marked reduction in shear stiffness. For the purposes of

analysis, the corrugations were considered to be made up of a series of

circular arcs fastened to supporting members in every trough.

McKenzie made the important assumptions that shear warping is

the result of linear raoverrents of all points of the corrugation along the

length and that the boundaries between neighbouring profiles remain

rigid. Thus the three strain campatibility conditions, as in Fig. (4.1),

at all points are:

du	 dv
dy	 dx

and also for cross-sectional deformation,

dv w— + - = 0
dy R

where R is the radius of the arc, and u, v and w are displacement

components.

Hence the total absorbed energy may be evaluated in terms of a

cross-sectional function for the out of plane bending displacement w.

By applying the calculus of variations for minimum total potential energy,

a differential equation solution may he determined whose boundary

conditions are controlled by the end attachment.

MbKenzie's results are expressed by a relative stiffness compared

to the case of continuous attadhmntwhidn generates pure shear strain.

0
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Libove studied rather more types of end attadhment but used

effectively the same minimization of total energy principle. The

analysis was much more exact in that the generators were permitted to

move laterally which introduced longitudinal as well as cross-sectional.

bending energy.

Deformation is obviously anti-symetric and it is assumed that

no t purlin-prop' reduction in flexibility occurs for this case of

fastening in every trough. The u, v and w deformations were again defined
duby the above equations except that a = 0 to ensure compatibility of

longitudinal strains, only at the trough lines.

By establishing a functional formibr w and u a differential

equation may be developed fram the total energy expression by the calculus

of variations, similar to the trapezoidal profile analysis of Section

(	 2.3 )-

Again results may be expressed as a relative stiffness concept.
)

Libove 
(42 

has recently extended this work to 'quasi-sinusoidal' corru-

gations, according to a sine wave rather than circular arc form.

Conmrcially available sheeting, it appears, is closer to this modified

shape and hence some extra refinement is claimed.

However, neither author has carried out experimental observations

over a range of sheet lengths to determine the validity of the inherent

assuriptims. In addition, only every trough fastening has been

considered which is relative rare in roofing practice due to the very

small pitch of troughs for sinusoidal corrugations (150 > d> 75 mm).

An alternative energy method solution will be proposed which can

include variations in fastening as well as the possibility of attachment

to intermediate purlins.

4.2. Energy  Method Solution for Every Trough Attachment

A sinusoidal corrugation may be expected to have considerably better

shear distortion performance than a trapezoidal corrugation of the same
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height, as cross-section bending is much reduced. The in-plane shear

flow passes smoothly around the section and distinct top, side and

bottom plate movements cannot be separated.

Any analysis can only be approximate, but an energy method

based on assumed displacement functions will provide a reasonable

solution provided that the corrugation height is not excessive. Firstly,

the cross-sectional distortional energy must be determined in terms of

two arbitary parameters UT and UB , which define the movement of the

crest and trough respdetively as in Fig. (4.1).

If a single'unit force is applied at the crest then the bending

moment M
0 which it creates is:

M
o
 = -

d
 x - k • Z.

where B is the equation of the profile according to,

h "	 211x,
= - - cos2

h and d are the profile height and pitch respectively, and x is measured

fram the trough..

Thus, the crest deflection due to a unit crest force per nyn length

is,

dz 2
1= — 	 MM ds where ds = +dxI al(

EIs o o o

1 12(1 -v2)
andIs=

S is measured around the cross section and hence,

1121,2

ds = {1 +	 sin2 211
x}

dx

d
2

for h/d < 0.4, this is a reasonably accurate approximation.
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Integration reduces the expression to,

, 21 i.02211 2 n d + 0.141I2h4 }
EIs	 16	 16d

12(1 - v2)H2h2d Thus if (3 -	 [0.14 (11)
2 

+ .0221d16t3E

then the distortion energy is,

b/2 
(11r - uB)2f

Ed - (So

The longitudinal warping may be approximately evaluated by

considering an assumed horizontal displacement around the end profile

section, as in Fig. (4.2).

211x	 /
U = — [cos	 + 12

The in-plane displacement is U cos cc and the longitudinal warping

is,

dA	 U cos cc dx
ds	 b/2
	 but ds = 

COS cc

So	 i= 2. I U CCG	 dsb 0

where ,g is the complete corrugation perimeter and ITT is the end crest
novement.

d)2

A
= 4 fuT	 2ilx

7 (1- CCG -7ziA dx

So A= d/b

dx

Cross-sectional displacements of the form below are asssumed:



5
a wY- E an+1 2n11
	  •

117 	
sin2710

n=1

5 	  sin
2nily 

US	
E a, n+1 2n11
n=.1.

In order to maintain compatibility between neighbouring trough

lines, the shear displacement A should remain constant, throughout the
dA

sheet length. Thus, --ci7 = 0 which requires that a l = b/dLI

The longitudinal displacements consistent with axial strain, ca,

should also vary sinusoidally over the cross-section, S, as in Fig. (4.2),

according to,

	

-	 . 2Tis
C = E Sin -
a	

a

At any section y the maximum cross section axial strain is:

ea = E {a2 sin 3-rir + 2a3 sin 41-jY- + 3a4 sija
' etc.,}b 

Integrating around the section and along the sheet length, the axial
strain energy is,

Ea = tE
2 

sin 2..121 etcl dY

2IIS b/2 -§ 2	
2	 21Iy	 1

-s-
2 — f	 { a2	4a./ sin -g

tE	 2
ab {a2 + 4 3

2
 + 9a4

2
 + 16a5

2
 + 25a

6
2 1

where g: is the corrugation perimeter and approximately equals,

112h2 	3 H4h4
d {1 +

4d
2 	d4	 for h/d 4 0.464	 1

The distortion energy is,



- 101 -

b/2	 b	 211y	 b sin 411y etc) 1 2. dy
Ed -1	 1-f{a y - 2 (a2 -27 sin b

	a3 4 7r	 b

6
2 b3

	E -{  b3
an

2	a1
an

Ed =al ( 1)n x
n=2 4(n-1) 21126	2(n-1)

21126

Combining all these energy components but omitting the effects

of profile torsion and shear strain gives,

6	 6
E	 2

.
E
	'e(1 i) a a. + i=1 

e(i
' 
i) a.ETotal	 1=2	 1 1	 1

Minimizing the total internal energy with respect to each variable
dE

such that — = 0, yields,
dal

a2 •	 e(1, 2)	 a3	e(1, 3) 

a = 2e(2,2)	 and	 2e(3, 3)
1

etc.,

but a = bA and ETotal =1 d	
C1.1

So all the displacement parameters ai may be expressed in terms

of A and resubstitution into the total energy expression gives a value

for 
C1.1' 

the flexibility due to distortion.

FOr linear plate generators corresponding to the solution for al

only, the shear flexibility may be written in terms of a dimensionless

parameter K, as in the previous chapters, according to,

C1.1 - Et 3b3

However, the non-linear bending terms are such that they reduce

the internal distortion energy with a consequent rise in the shear

flexibility. In a similar fashionto trapezoidal sheeting, it may be

expected that the K value will rise with length consistent with localized

end distortion rather than linear plate movements.

0.144ad4K 
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For fastening in every trough at the sheet ends and in alternate
troughs at the intermediate purlins, the deformation is obviously only
partially restrained at the internal fixings. One trough line is forced
to bend between intermediate purlin connections whereas its neighbours
are free to distort between the end fastenings without interference
fram the internal restraints.

Hence the actual shear distortion is somewhere between the extreme
cases of fastening at all intermediate purlins points, and attachment
at the sheet ends only. The K value, as an approximation, may be taken
as the average of the two limiting cases for fastening in alternate
troughs internally.

K = (Ki + KN)/2

Where KN and Kl are the every corrugation fastening values due to
attachment in N and 1 intermediate purlins respectively.

4.3. Intermediate Purlin Fixings in Every Corrugation

The Fourier series expression for trough movement may be adjusted
to cope with the effect of attachment to intermediate purlins. Lateral
displacements are prevented consistent with tb = 0.

For two intermediate purlins, movement is prevented at the
third points which implies that.

a2 + a312 - a5 	a6 	0

5 a	 5Eliminating a6 = 5a2 + -2. 3 - -4a5

then minimizing the total energy, it follows that:

dEz17-a = 0,	 {-0(1, 2) - 5e(1, 6)1 al = a2{ 2e(2, 2) + 50(0, 6)1
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25
+ 25e(6,6)a3 - -2- e(6,6)a5

Similar expressions may be derived for,

dE	 dE	 dE-e(1, 4) 
daand da	 but	 -da4	2e(4, 4)3	 5

dE
Solving for a2 , a3 and a4 consistent with dai = 0, it follows

that all the variables may he expressed in terms of a l. Hence resubstitution

into the total energy equation gives a value for C1.1.

For three intermediate purlins movement is restrained at the

quarter points. It follows that,

a4 a6
a2- -T + -s-- = 0

Eliminating a6 and minimizing the total energy,

dE = 0 gives, { -e(1, 2) + 5e(1, 6)1 a l = a2{ 2e(2, 2)da2

+ 50e(6, 6)1 -	 e(6, 6) a4

a2{-N e(6, 6)1dE	 5and	 = 0 gives, {-e(1, 4) - e(1, 6) }a1 =da4

50+. {2e(4, 4) + --§- e(6, 6) 1 a4

a3 and a5 are as in Section (4.2) and hence solving the above two

equations yields a2 and a4 in terms of A. Again reinsertion of these

parameters solves for the shear flexibility.

4.4. Effect of Sheet Length L Thickness and Number of

Intermediate Purlins

The corrugation displaced shape resulting from minimization of

the total internal energy reveals that the distortion becomes localized
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towards points of attachment. Fig. (4.5) shows for a 4 metre sheet span

fastened only at its ends, how the top and trough plate movements are

equal for a great proportion of the sheet length, indicating that the

internal region is redundant as regards shear distortion.

Sheet fastened in in-rmediate purlins also display the same

localized end distortion except that around the internal restraints

there is an additional distorted region. Thus the total internal energy

must be increased and this is consistent with a reduction in the shear

flexibility.

As observed for trapezoidal profiles, the K value is initially
given by the linear generator theory and is constant. However, as end

distortion gains importance so K rises to became proportional to the

sheet length. This occurs at about 1 metre for end attachment only and

rises to 3 m for the two intermediate purlins. It may be seen from

Fig. (4.3) that the K values are extremely influenced by profile height.

Fig. (4.4) shows the linear relationship between K and the square

root of sheet thickness. Hence a more reasonable dimensionless parameter

Rimy be proposed such that,

0.144 di' 5 K
0.5t b

Hence the shear flexibility due to distortion is,

. 2 .5 -ad ' K
Cia	

Et2.5b2

R values are indicated in Fig. (4.5) for a range of profile depths.

R is now a design constant for all practical sheet lengths and thicknesses.

4.5. Comparison of Theory with Libove's i McKenzie's and

Experimental Results 

The linear generator theory due to McKenzie is, compared to

the energy method solution in Fig. (4.3). It is clear that even at a length

of 1.5 metres there is a considerable discrepancy in the K values due to
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non-linear internal movements. Libove's results are also indicated

for sheet length up to 4 metres and these do show very good agreement
with the proposed theory of Section (4.3).

As expected Libove's comparisons are slightly more flexible but

at least the crude assumptions of the energy method approach are

vindicated and it may be implied that the intermediate purlin approach

is also sufficiently accurate for use. It should be noted that both

authors' results were estimated fram graphical presentation of

effective shear stiffness, and neither was able to develop a controlling

parametric equation.

Experimental results are confined to commercially available

sheeting being 75 mm in corrugation pitch, 19Huldepth and nominally

0.6 mm thickness. Only one sheet length of 3.1m was investigated

fastened at its ends and the observed shear flexibility for a 4.2m

panel width was 0.11 mm/kN. Subtracting the estimated effects due

to seam slip etc., which amounted to 0.07 mm/kN, the experimental 17 value

was deduced to be,

207 x 0.56 2.5 x 31002 x 0.04 = 0.090
75

2.5 
x 4200

The theoretical R value for h/d = 0.25, is 0.079. Thus the

energy method approach seems to be reasonably accurate, when compared
-to this test result, and the existing theories. Design K values are

tabulated in Fig. ( 4.5 ) .

It may be noted that the shear flexibility of a sinusoidal profile

is considerably less than that of an equivalent 45° sided trapezoidal

shape.

4.5. Ener2y  Method Solution for Alternate Trough Attachment

The mechanism of concertina deformation accounts for considerable

increase in the shear flexibility. As studied in Chapter 3, the missing

trough fastener resistance causes compression and extension of the

adjoining profiles. The anti-symmetric behaviour along the sheet
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length is consistent with shear warping which may be combined with

the flexibility due to every trough attachment to give the total shear

distortion.

In a similar fashion to the trapezoidal profile case, non-linear

movements may be considered by introducing trough displacements for

concertina action of the form,

UB1	 -	 b	
2 ily 

= 1 Y a2	 sin
• L[y.a3 a S111 b

IY2

b	 2ily	= a2 — sin	 + a3 	• 411Y3 a sin b-,132 	 211	 b

Concertina energy may be 'deduced by considering the cross-section.

bending moment Ro due to a unit force at the base of the corrugation

as in Fig. (4.6), which results in a horizontal deflection,d

thus,

-171"o = '3	 where E = h- (1 - cos 
2il

x)
2	 d

g	 112h2	 2 211x
d = of 

Ti
c,O 

ds and ds = dx (1 + 1/2 ---2- sin -IT)

d

3
-g is the profile perimeter and is 	 - 2 per mm

12(1 - v )

h2 1	 f	 21ix 2	 h
2
d 	 5eh2

Thusi5 =	 "ffs o (1 - 
cos ds = —8.EI {3 + 

8d
2 1

The concertina energy per corrugation is,

b/2	 -2
1	 f

E =	 (UB1 UB2 ) dY

_ 1	 2 b
3 b3	 3	 3

.1

- { a — - —2 a + b3 a a + )2- a 2 + b
1 24 2II la2 —8n z 

a. 3 4112 -2	 —2 a32161

The axial strain energy due to the sinusoidal distribution of

longitudinal movement over each profile perimeter is calculated as in the



f	 S

f 1710 171.0 ds

S is the profile perimeter

— —
; mo mi dS

n2h2	.186 +	 x .039
d
2
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every corrugation case. However, the corrugation crest tends to lift

or depress in sympathy with the trough movement. Thus the sinusoidal

forms of displacement in (Um_ U162L ) which cause axial strain energy-
are increased by a factor (1 + fh/g).

f is the ratio of crest to trough movement and is approximately

represented by,

where Ro = E and RI = x/2

It follows by integrating over the cross-section that,

1121,2
.088 +  2" x .013 .

f= {

The axial strain around the cross-section is given by,

e
a 
= E sin TIS/- where is the crest strain.a

It follows that the profile strain energy may bederime gl as 'EQK

the every corrugation case. However, side plate uplift causes an

additional axial strain dependent on fh and hence the total energy is:

g 
3
tE 

Ea
	(1 +	 (a22 + 4a3

2
)

2b

The ccznbined energy terns may be collected together as,

2
A = E = e(1, 1) a1

2 
+ e(1, 2) a1a2 + e(1, 3) a1a3 + e(2, 2) a2

2

+ e(3, 3) a3
2



a2 =0
-e(1, 3)
2e(3, 3)
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Minimizing with respect to each variable it follows that,

dE so a2 - - e(1, 2)= 0da
2	—
	 2e(2, 2)

a1

As for trapezoidal corrugations only the linear displacement

term contributes to the shear deflection, A

dE
Thus A = d/b al and —

dal 
= 0

Soallthevariablesa.may be expressed in terms of A and hence

reinsertion into the total energy expression yields a value of the shear

flexibility due to concertina action.

4.6. Fastening in Alternate Troughs at Intermediate Purlins

Sinusoidal sheets are usually fairly shallow in profile and,

therefore, span only a short distance between purlins. Intemmediate

purlin attachment causes restraint to trough bending such that for

two internal fixings.

= 0 at y = b/6 and hence a 2 + a3/2 0

Thus minimizing the total energy with respect to a 2 it follows

that,

a2	 -e(1, 2) + 2e(1, 3) 
a1	2e(2,2) + 8e(3, 3)

Evaluation of the C1.1 
proceeds as in Section (4.4).

For three intermediate purlins movement is prevented at the

quarter points which requires that,

etc
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The shear flexibility may be presented as,

0.144 ad4 K 
C1.1 -

Et
3 
b
3

where K is a constant for rigid plate movement but the non-linear

sinusoidal terms will cause K to rise consistent with a reduction in

the internal concertina energy.

The final K value is obtained by summing the flexibilities due

to the twisting effect of every trough fastening uy and this
concertina action (KA),

Thus K = KA + KE

Fbr N intermediate purlin fixings KE is taken as the average of

the value for one and N internal restraints. This is because for

alternate fastenings, one trough line is constrained by the fasteners

whereas the other is not. KEN represents the KE value for N intermediate

purlins,

x	 (KE1 + KEN)
-E	 2

4.7. Discussion of Energy  Method Results for Alternate

Trouah Fixina and Com2arison with Ex2e'riment

Concertina action is an order of magnitude more flexible than the

twisting tendency of every trough attachment. Fig. (4.8) shows how the

K value remains initially constant but rises at about 3 metres sheet

length, to become proportional to increasing length.

Pr intermediate purlin fixings this increase is delayed and

for three internal restraints, does not occur until about 9 metres. As

indicated in section (4.5) the final flexibility is the summation of

the concertina and twisting effects such that K = KA + KE . No 'purlin-

prop' reduction in flexibility is necessary in this case due to the nature
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of the geometry and deformation.

When fastened in alternate troughs to N intermediate purlins

KE is an unknown factor as the internal trough is held only at its

ends. As a crude approximation K is taken as the average of extreme

cases of fastening to N and no intermediate purlins. Of course, the

basic anti-symmetry of deformation is not disrupted by one internal

purlin. KA is much greater than KE and hence the error of any assumption

is reduced.

The rise of K with length is accompanied by an increase of K

with the square root of sheet thickness. Hence an alternatweparameter

may be derived such that,

0.144 d1 '
5
 K 

0.5t b

Thus C1.1	
ad

2
'
5 R

2.5,2
Et JD

However, practical sheet lengths may not always be consistent

with a constant value of R. It is suggested that a bi-linear relation-

ship ought to be adopted according to the maximum value of,

R or 0.144 di ' 5 K

bt05

where R and K are functions of the profile shape and number of intermediate

purlins as in Fig. (4.9). By comparing the corresponding R values with

those for trapezoirlal corrugations it may be seen that sinusoidal

profiles are somewhat stiffer.

Experimental results are confined to available profile geometries

of 19 mm depth, 75 ram pitch and 0.6 mm thickness. A3.1msheet length

and 4.15 nt width was studied, fastened in alternate corrugations and the

observed flexibility was 0.27 mmAN. Subtracting the minor flexibilities

such as seam slip (0.07) yields a shear distortion deflection of 0.20

mmAN. This corresponds to a R value of 0.51 compared to a theoretical

value of 0.57.



At a sheet length of 3 metres 17 is reasonably constant. Design

K values are shown in Fig. (4.9) and on the basis of this single

observation, seem to give a close approximation to the actiial shear .

flexibility.

4.8. Multiple Trough Fastenings in Sinusoidal Corrugations

In practice, the relatively shallow pitch of corrugations means

that for strength considerations, fixings may be placed at three or

even four profile spacings. Referring to section (3. 1 ) it is apparent

that concertina action greatly increases with fastener pitch.

For example, every third trough attadnment, based an linear

generator theory is 2.67 times more flexible than alternate fixing.

Similarly fastening in every four troughs is 5 times more flexible

than alternate attachment. It is likely that the concertina action is

so flexible that localized distortion due to trough bending does not

take place and that linear movements predominate for most practical

sheet lengths.

K values are tabulated in Fig. (4.9) for alternate trough fixings

for a range of profile heights and it is suggested that the above

multiplication factors may be used for any spacing of trough fastenings.

Thus, C1•1 -
0.144 ad4 K 

Et 3b3

where K = S KA
and S = 2.67 for every third trough fixing.

S = 5.0 for every fourth trough fixing.

• KA 
refers to the rigid plate movement value for alternate trough

attachment.



Plate (5.1) Mould made from synthetic material which was used to press closed
end sheeting. The insets permit pressing of short lengths

Plate (5.2) Corrugation folded down at its end
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CHAPTER	 5.

METHODS OF REDUCING SHEAR DISTORTION

The mechanism of shear distortion is very much related to the

fastening arrangement. Attachment in every trough results in distortional

twisting due to the profile shear flag. However, alternately trough

fastened sheets aPform in a much more flexible mode due to concertina

action caused by ccmpression and extension of neighbouring profiles.

In the following sections, a nuMber of methods of reducing the

shear distortion will be discussed for both fastening arrangements.

For every corrugation attachment, the flexibility may be signif-

icantly reduced by producing a 'closed-end' profile, or even fastening

twice in every trough. Similarly for alternate corrugation attachments,

an insulation covering does significantly lessen the concertina action.

The effect of sheet overhangs beyond the outer purlins will be

examined with regard to the effective sheet length to be used in the shear

distortion formula. In addition, special sheeting with curved overhangs

will be studied to evaluate their stiffening effect.

5.1. 'Folded-down' Corrugation Ends

Corrugations fastened in every trough suffer shear distortion

due to twisting of the open profile by side and top plate movements. These

independent cross-section displacements were initially assumed to vary

lirearly along the sheet length. However, it was determined in Chapter 2

that the internal distortion is minimized by longitudinal plate bending which

results in only local end deformation near to the fasteners.

The analysis of the shear distortion component of flexibility is

quite amplicated as an assumed Fourier series of plate displacements has

tomdel the asymptotic shear behaviour for all sheet lengths. The local .

behaviour is consistent with a modified formula for the shear distortion

which gives a longitudinal flexibility proportional to 1/(length)2.



Clearly for short lengths of less than 2 metres the shear deflection

Maybe sizeable. One method of reducing cross-section distortion, which should

have a corresponding influence on the shear flexibility, is to close off the

corrugation ends. The flexibility will tend to the case of continuous

attadaent of all points of the profile, which corresponds to a membrane

suffering only from pure shear strain.

Fig. (5.1) shows an example of a 'folded-down' corrugation which

Can warp to some degree by tdisting of the closed end. However, due to the

rigid end flange, shear displacement can only occur by compatible trough

plate bending. Unlike an open profile, decreasing the sheet length produces

a stiffer membrane due to the fact that the trough plate must bend in order

to allay shear warping.

A corrugation of this type has been developed for folded plate roof

applications and is pressed out of a flat sheet by a dishing process. The

actual shape is shcwn in Plate (11. and Fig. (10.0 which indicates the

transition from the full profile depth to the end flange. Fastenings in

every trough may still be used and the flat end portion also permits a more

freqmnt pitch of attadhment.

The shear distortion may again be modelled by expressing the top,

side and bottom plate movements (UT , Us and UB) in terms of a truncated

Fourier series for each. The displacement variables ai may be used to

establish the total internal energy as in Chapter 2, which is minimized

taking into account the boundary conditions at the closed-end.

b	 . 2ily
uT = ay + a2 sin b

U = ay+a--12
3	 4 211

sin

UB
_ b.	 2ily

sina5 	 b

It was considered that for very short sheet lengths requiring this

'folding-down' process, the number of independent parameters could be kept

small. The nature of the 'folded-down' end is that the shear displacement

can only occur by corresponding rotations of the top and bottom plates as

inFig. (5.1.). Thus,
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A _ dUB 	 dth
	dy	 dy

at y = -2-

A
= -a5 = al - a2

However, as for every trough attachment, it is a necessary condition

for compatibility between neighbouring troughs that the shear displacement is

constant along the sheet length.

dUB 	dU dUTA =	 --d—y + 4b5 — + 2bT dy dy

dA
So it follows from — = 0 that,

dY

A = 2  a1 + 4bS a32 

0 = bTa2 + 2bs a4 + brj a5

where 210T'	 '2b	 L2b are the respective top, side and trough plate widths.
S 

The rotation of the end cross-section occurs as a rigid body and

hence there is a relationship between the displacements a 3 and al such that,

(bT + p) a3 = h a1

So, a3 = gal

All the variables may thus be expressed in terms of A according tpi

A
a =	 where k

1 
= 	

1	 k1	
2bT g.4bs
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= ( I
b
T
2b 

+

.d

b
L	bT  ) Aa4

	

	 2bs• k
1

S

a5 - d

As in Section (2.3) the total energy due to distortion bending,

torsion, shear strain etc., may be collected as the terms of a symmetrical

matrix D(i,j) multiplied by the respective displacement parameters as in

Figs. (2.36) and (2.37).

Thus,

A2

2C =

55
E = iE„1
	

a.D(i,j) a.
=	 3=_L

The solution for the shear flexibility, C derives directly from

this identity without minimization of the energy expression.

ls for the previous analyses, the flexibility due to distortion

may be represented in terms of a K value such that,

0.144 a d4K
C
1.1 

-
Et

3
 b

3

K is constant for rigid plate movements of open profiles but

in this case the shear flexibility parameter must degenerate zero, corresponding

to zero distortion as the sheet length becomes small, due to the fact that

shear displacenent can only occur by trough bending.

5.2. Discussion of Energy  Method and Ex2erimental Results for

Folded Down Corrugations

The effect of closing of 	 profile ends is not the only factor

which influences the performance of this type of corrugation. In addition,

the trough plate is integral with the end flange which necessitates that, for

any shear displacement, the bottom plate is also constrained to bend. Folded

doem corrugations are best achieved by a pressing operation as outlined in
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Section (10.6). A number of companies have tried to fold down the

corrugation end after roll forming as in Plate ( 5.4) and it is expected

that this too will show considerable benefit over open profiled sheeting.

The prototype pressed profile of Fig. (5.2.), which has been

developed for use in folded plate roofs, shows the increased stiffness

to be gained when shear deflection is an important design limitation.

Plate displacements indicate the degree of longitudinal bending which

must take place even at short sheet lengths. The K value variation with

length, when compared to an open profile, reveals that the folded down

corrugation is almost seven times stiffer.

Profile shape plays a large part in the shear behaviour as shown

in Fig. (5.3), for a rectangular corrugation. At large trough widths

the plate bending effects will predominate and for very wide top plate

widths, the restriction of end twisting is more important.

Experimental testing of the pressed sheeting as in Plate (11.2)

gave good agreement with respect to theory. It should be noted that the

curved profile shape was approximated by a trapezoidal form. Using a

testing of 2.1 m length and 4.5 m width the shear distortion flexibility

was observed to be 0.027 mm/kN after subtraction of the effects of seam and

edge slip, cantilever bending and pure shear strain. This corresponds

to a K value of 0.13 compared to a theoretical figure of 0.15.

It also appears that alternate trough fastening shows some benefit

from the effect of folding down the corrugation end. An experimental K

value of only 0.5 was recorded compared to the corresponding value for

open profiled sheeting of about 2.5.

This is probably due to the fact that concertina action is restrained

by the flanged end until the fastener force builds up and the flat end portion

budkles locally.

Thus it appears that pressed Corrugations of the closed end type

have sizeable advantages over open profiles for all types of fastening

arrangenents.
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5.3. Double Trough Fastened Corrugations

In Section (5.2.) it was observed that one of the major factors

which contributed to the increased stiffness of folded do gn corrugations was

the constraint of trough line bending to follow the purlin rotation.

This may also be achieved by double fastening the trough plate at its

ends. Distortion can now only occur by top plate movement as side plate

deflection is completely restrained (Fig. (5.4)).

Again the energy method of assumed displacement functions may be

used to cope with these conditions. Using plate displacements of,

b	 21117U
T
 = aiy + a2 	sin b

b	 . 2ily= a
3 17 

sin

UB = a4 b2lz sin 211/7

The end compatibility requirements are such that,

Similarly, for dy = 0 at all points along the sheet length,

0 = a2 bT
 + 2a

3 bS
 + a b

4 L

and A = a
1
 2b

T

In this case only four equations may be derived for the end

conditions in terms of five unknagn parameters. The total internal energy

is,

A2	 4	 4
E = =4-- = E

i1 
E

1
.	 a. D(i,j)..a.2C	 =	 3= 	 i
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where the coefficients of the energy expression may be taken from Fig.

(2.36).

dE
If a2 is considered as an independent variable then 	 = 0da2

corresponds to the minimum internal energy. Reinsertion of the parameters

ai into E after solving for a2 gives a value for C1.1.

5.4. Discussion of  Theoretical and Experimental Results for

Double Fastened Corrugations

Double fastening in every trough is a very uncommon fastening

arrancprent but it does have the advantage of raising both the ultimate

strength and the shear stiffness for thin sheets. This may be necessary

for very long span folded plates utilizing corrugated steel where the

shear forces are extremely high.

A very stiff rembrane is produoed, especially when the trough

width is large (DL. > bT). The plate displacements are shown in Fig. (5.5),

for the same profile shape of Section (5.2). Trough bending is collvatible

with the end rotation due to the double fixings and side plate uplift is

prevented. This results in a K value of only 0.03 because of the restraint

to top plate warping, compared to a normal figure of 1.06 for an open

profile with single trough fastenings.

However, the variation with crest width reveals that the greatest

benefits are confined to profiles where bL > bT for lengths less than
2 metres. Longer spans, it was considered, would not require such additional

restraining measures as the shear stiffness is proportional to (length)

square d. In addition, the single sinusoidal term only accurately models

longitudinal deformation for short spans.

Experimental testing of a 2 metre length of 0.55 nim thick profile 2

(see Appendix 1 for details) was carried out for a panel width of 2.1

metres. The observed shear flexibility gave a deduced K value of 0.10

amvaed to single fastening value of 0.67. However, the theoretical K

Valle for this 35 mm deep and 105 mm trough width profile was only 0.06.

The discrepancy is probably due to the fact that trough end rotation is
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less than that of the shear displacement due to slip in the fasteners.
Movement is extremely small and is well within the initial fastener
clearance.

5.5. Effect of Sheet Overhang Beyond Purlins

The formulae for the shear distortion component of flexibility
based on linear plate or alternatively localized sheet deformation take no
account of sheets extending beyond the line of purlins. As limits to
the actual behaviour, the effective sheet length could be assumed to be
the distance between purlins or the actual sheet length. The following

anproximate relationship between overhang distance and shear
displacerrent for the case of local end distortion, which is independent
of the fastening arrangement.

For corrugations fastened in every trough the end region suffers
the most severe distortion. As revealed in Section (2.5) the longitudinal
shear flexibility may be evaluated by the considering cross-section
performance under a unit fastener force and multiplying by a factor (d/b 1 ) 2

where d is the fastener pitch and bl is the distance between outer purlins.

Fbr cases where the sheet length, b, equals b l and is bigger than
2 metres, distortion occurs in an approximately parabolic nature over a
constant end distance due to local trough bending. At shorter lengths,
where rigid plate movements apply, the effect of a sheet overhang
() > bl) is to reduce the shear stiffness of the complete sheeting length
from b3 to b(b1) 2 • This is because the lateral stiffness is still
proportional to b, but the longitudinal stiffness is divided by the above
modification factor, as in Fig. (5.8).

As distortion becomes localized, the effect of any overhang becomes
extremely difficult to estimate as the profile is still highly deformed
beyond the line of fasteners. However, the interaction of plate bending
and cross-section distortion is not unlike the beam on elastic foundations
analogy, although the equivalent beam and medium properties are not known.
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The lateral fastener force is considered as the disturbing

tendency, causing a local deformation which decays along the beam as in

Fig. (5.7). The beam on elastic foundation theory ( 43 may be utilized
1	 1 b - 	by considering an overhang distance a where a - 2	 . The

deflection laterally is,

2 1	 2 1
A1 = —{ 1 + 3 cos Ad + sin Xa - 2 sin Xal cosXa11 e-Xa

2k

2xddistorted length for zero overhang. k is the equivalent

However, comparing the deflection A l to the rAse where

ratio of,

•
A	 1	 2 Hal 1 . Hal .
--T =	 + cos.,-,

'd

= CC

xd' the free distorted length, can only be estimated fram the

profile displaced shapes, but a realistic estimate-is about 0.9 m for

every trough fastening.

Uting the modification formula, the longitudinal shear flexibility

becomes,

2.5 -
ad	 cc K 

C
1.1 

-
Et2.5 (b1) 2

Caisidering overhangs of al = 100, 200 and 300 rrm Ipeoanes respectively

0.90, 0:78, and 0.66.

iHowever, if b1 = 4m then ( 01 /b) 2 is respectively 0.90, 0.82
1	 .and 0.75, and for bl = 6m, (b7) 2

 Is 0.94, 0.88 and 0.82.

It appears that, for overhanging sheets, the shear flexibility

is more closely approximated by the overall sheet length rather than the

distance between purlins.

Hence as a design formula, the shear flexibility is,

where X is a property of the elastic medium and is given by

where xd. is the

beam stiffness.
1.b = b , gives a
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2 5 -ad ' K
C1.1 = Et

2.5
b
2

where b is the overall sheet length.

Experinental tests have been carried out on sheeting 6.6. metres

long with overhangscf 250 mm at each end. The value of cc was determined

as 0.72 and (b11k) 2 is 0.85.

This implies that the actual flexibility should be less than the

theory based on the full sheet length. In practice the theoretical and

experimental flexibilities were in reasonable agreement which suggests

that the real value of cc is about 0.85.

However, the analysis is very approximate, not only in assuming

an analogous action but also in the fact that a hypothetical distorted

wavelength has to be used. Nevertheless, it does seem reasonable for every

cOrrugation fixing, that 	 the complete sheet length ought to be used

in design.

FOr alternate trough fastening the distorted length is of the

order of 1.8 metres and the corresponding cc factor is reduced. Again for

the above data (b'/) 2
 
is 0.85 and cc is 0.86. Experimental results using

the full sheet length of 6.6. metres are reasonably in agreement.

Intermediate purlin attachments should not affect the end

distortion pattern where deformation is greatest. So for all fastening

arrangezents the full sheet length ought to be used to evaluate the

distortion flexibility.

5.6. Effect of Insulation Resistance to Deformation

In most practical applications of corrugated sheeting, an insulation

and weather proofing layer is bonded onto the sheet surface. The span

between profile crests is controlled by the properties of the covering

layer, and is usually no more than 75mm. Thus decking profiles ( p,? bL)

have covering bonded to their top surface whereas roofing profiles have

insulation on the underside.
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Decking weather proofing is made up of a number of different

layers usually including a single thickness of soft board bonded by

bitumen and tar to the sheeting (Fig. (5.11)) and finished with two or

more layers of felt.

Shear distortion, as discovered in Chapters 2 and 3, results in

cross-sectional moverrents, which may be considerable for alternate trough

fastening. Concertina action, due to successive compression and tension

of neighbouring profiles, causes large relative vertical movement of

the corrugation crests as in Fig. (5.9).

At a sufficiently great deformation, the insulation layer will

break away, unable to contain such a large relative displacement.

For subsequent loading the sheet and covering will act independently.

Every trough fastening is much stiffer and is generally preferred at the

diaphragm extremities to limit distortion.

For concertina deformation, the insulation will behave in three

independent nodes.

1. Longitudinal warping occurs by rotation of the trough

plate which causes a shear displacement between crests.

Hence the shear stiffness of the covering is mobilized in

the short distance over which it spans.

2. Concertina action causes crest uplift and depression

which bends the insulation and this is probably the major

contributor to the increased sheet stiffness.

3. The third mode is due to the prevention of crest separation.

However, the antisymmetry of deformation implies that this

is small.

(	 )Lapin	 found that a 3.6 m sheet span fastened in alternate

troughs, was approximately 50% stiffer when the insulation layer was

attached. The profile was a decking shape of 35 rrrn depth and 0.7 mm

thickness. The increased stiffness was discovered to be very small for

every trough attachmnt. An important observation was that failure of the

sheet-insulation bond occurred at 20 kN rafter force which is less than
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50% of the theoretical sheet-purlin fastener capacity. Plate (53 )
shows the insulation just prior to bond tearing.

A theoretical investigation of the stiffening effect of insul-

ation is as follows, assuming that deformation occurs by lineAr plate

displacements. This is a more comprehensive approach than that put

forward by Lapin.

The horizontal trough and vertical side plate movements are

considered to be E and V respectively. •and S

Thus the trough movement E per unit concertina force is,

c= 600 - 2P2 610

26 litere 600 = 2(	 + bT) h EISb	 and
h6

6 10 - (bS bT) bL EIsb

P2 represents the crest force due to insulation bending. 600

and 610 are defined in Fig. (5.11) and correspond to the free trough

and side plate movements respectively. Is is the sheet inertia and b

is the equivalent lateral stiffness for linear plate movements over 6

the Sheet length, b

Is
t3

12(1 - v)
2 per rrm length

P2 however, is also compatible with the insulation bending such

that,
3

op 4. b1)
V' = P 	  k.P2 3(EI) i	i2

(EI) i is the insulation bending stiffness per nm length.

Et3 (EI) i - (
12 (1 - v 2

)

The net side plate uplift is
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VB 
= + 6

10 
- P

2 d11

b
L
2 6

where 611 = {2bS + bT + 3	 EIs b

However, the net shearing displacement, 6 , between neighbouring

crests results in an effective insulation resistance P
1 such that,

(4h
S
 V + 2b )
S 	P = G.t.6 = G.t.	 = (a1 VS 

+ a
2
 c)1	 1 1	 1 1	 b/2

whereG.and .t-are the insulation shear modulus and thickness respectively.1	 1

a = Gt. 4bLl
a = G

i
t
i
 8bS 2	 ii

Thus the controlling equations are, for IkN trough force

= 600 (1 - Pl) - 2222 610

V = 610 (1 - P1) - P2 611

V = k. P2

. P1 = al VS
 + a

2 E

These may be solved for E to give,

1 - A
ll 

1c	 (6
00 - 2B 610) 1 1 - BA

where AI = (a1610 + a2 S00)/ (1 + a1610 + a2600)

A2 = (aidli + 2a2 fo)/ (1 + aidio + a261)

B = 610/k. + d
1	 11
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For typical data of,

Insulation: t. = 25 mm, 	 E. = 0.1 kN/am2 ,	 G. = 0.05 kN/m2
1	 i	 1

Sheeting:	 t = 0.7 mm,	 E = 207 kN/mm2 ,	 bL = 20

2bs te 30,	 P =0bT = 55

h = 30 mm,	 b =3.6m

EIS 1
EI.	 23 G.t. = 0.05 x 25 = 1.25 kN/mii

EI„bb
207 x 0. 7

3
 x 3.6 x 103 -	 - 38726	 I2x6x0.91

600 = 13.50 x 10
4  6 6 10 = 4.2 x 10

4  6 
EIsb	 EIsb

63.67 x 104  6 k = 0.27 x 10411	 EIsb	 EIsb

B = 1:142 1.25 x 120a1 =
3.6 x ID3

- 0.042

1.25 x 80 a2 =

	

	 =0.028
3.6 x 103

Therefore, Al = 0.53	 and A2 = 0.41

The Relative Flexibility is,

1 - A1 2B6 10
= {1	 (c	  1	 }

-00	 1 - BA2

4.20	 1 - 0.53 
= {1 - 1.142 x31.50 x 2}
	 ( 1 - 0.41 x 1.14) - 0.30 x 0.88 = 0.26

This implies that the insulation both acts in bending and in

shear to relieve concertina distortion. The free sheeting has an

approximate effective shear modulus of 4.0 and the insulation shear

modulus is 1.25 kN/mrn.It is, therefore, not unreasonable to assume

composi-te shear action, but it is apparent that the major effect is the



• - 126 -

bending property of the insulation. The relatively high stiffness ratio

between insulation and sheeting prevents almost all side plate uplift.

However, the figures used for the insulation are only tentative
•

and indeed there are many variations in the stiffness of covering board

used in practice. It seems from the above equation for relative flexibility

compared to free distortion that there is a 74% increase in stiffness of

which the majority is due to concertina restraint by the bending rigidity

of the insulation.

The recorded figure (44 ) 
of about 50% is reasonably in agreement

considering that slip in the bitumen could account for some degree of

shear relief. In addition, same side plate movement may be permitted by

the campressibility of the board and the elasticity of the bitumen.

5.7. Curved Down Corrugation Overhang Ends

Recently new developments have been made in the techniques for

curving corrugated sheeting into fairly tight radii fram initially standard

straight profiles. This is achieved by indenting the side and trough

plates which causes a local crumpling. At each indendation, there is a

corresponding rotation of the cross-section which eventually makes up

an arc of a circle. Thus long straight sections of roof sheeting may be

finished off by end curved pieces which also act as flashings.

Plate (5.4 ) shows a typical 6.6 m long section under test.
Neigilbouring sheet overlaps are achieved by a slight difference in radii

which in this case is nominally 300 nut.

An additional advantage of using this type of end curving is

thatit -stiffens cross-section distortion considerably for both alternate

arid every trough fastening cases. This due to the fact that vertical

cross-section movements are manifested as sheet shearing displacement at

the end of the curved arc. Fig. (5.12) shags haa side plate uplift beccaes

an in-plane displacement, and hence is restrained by this much stiffer

shearing mode.
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It is likely that alternate trough fastening, involving concertina

action, will be considerably restrained by prevention of side plate

uplift. The mcdel to represent deformation, is in Fig. (5.13) and the

relative flexibility of this case compared to an open profile is,
2

26
10= 1
0011

br	 2dll = (2bS + bT + —3 )

An experimental study was performed to justify this expression

by examining the behaviour of the following profiles where,

bc 38, p = 19, d = 150, h = 38, 21 s = 42, bT = 19 mm

Thus ' d = 9.55 
x 10

4
= 5.78 x ID4 d

11 = 10.54 x 10
4

 00

= 1 - 0.67 = 0.33

A table of results is shown on page 128 which indicates that the

two thirds increase of stiffness in theory is closely in agreement with

the experimental value of 0.63. This restraint of cross-section uplift

is very similar to the action of insulation, as discussed in section (5.6).

For every trough fastening the observed increase in stiffness was

much less but still quite significant. This again may be theoretically

examined by considering that the side plate uplift component of distortion

is prevented.

The analysis is rather more complicated, but is achieved using

the profile bending moment diagrams of Fig. (2.9) by assuming unknown

side plate restraints. For the above profile dimensions .= is 0.10,

whereas the experimental reduction in flexibility was only 25%.
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In practice, therefore, side plate movement is only partially

restrained which is not unreasonable as every trough fastening displacements

are much smaller than those of concertina action. Consequently, the

effect of a stiffening end constraint will be reduced.

The actual mechanism of distortion movement is shown in Fig. (5.12)

where relative side plate uplift is accommodated by in-plane trough

bending.

In conclusion, the stiffening effect of curving down the corrugation

ends is less noticeable for every trough fastening as seen from the table

of results below for 4.5mwide and 6.6 m Iong sheeting.

In practice, alternate trough fastening is greatly stiffened by.

this end forming method and for most diaphragm applications where applied

shear forces require only relatively sparce fixings, the curved end provides

a useful benefit. It is suggested that the action may be theoretically

mocblled by assuming zero side plate movement.

Every trough fixing however, does not conform to such a simplified

analysis as end distortion is only partially restrained by the end curving

technique.

RESULTS TABLE

Test
C observed
mm/kN

C1.2 
+ C

2.1

+C2.2 + C3.1
etc

C
1.1

Deduced
R

Deduced

-K
Theory

K Curved

K Straight

A-straight 0.38 0.05	 . 0.33 0.75 0.72

A- curved 0.16 0.05 0.11 0.28 0.37

E -straight 0.13 0.05 0.08 0.20 0.18

E -curved 0.11 0.05 0.06 0.15 0.75

E - every trough fastening	 A - alternate trough fastening

DATA:	 a = 4500 mm	 b = 6600 mm
	 t = 0.65 mm



Plate (5.3) Sheeting with insulation showing restraint against concertina uplift.
This was taken from reference ( 44 )

Plate (5.4) Sheeting with curved overhangs also reduce concertina action
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CHAPTER	 6.

OVERLAPPING SHEETS

Practical diaphragms may be of considerable depth, for longer

than manufacturers' maximum sheet lengths. Often individual sheets must

be overlapped along their length at intermediate purlins to form the

full diaphragm span.

Fastening arrangements are not standardized and indeed there are

a nurrber of possibilities regarding end and overlap connections. In

many roofs sheetpurlin fastenings may be more frequent at the diaphragm

perimeter, which makes the analysis of the shear deflection more complex

than for the simple fixing arrangements of Chapters 2 and 3.

Unlike a continuous sheet an overlap forms a release, and neigh-

bouring sections distort in an opposite sense with a consequent increase

in the warping flexibility, as in Fig. (6.1).

Hence the limits to the complete panel flexibility are under-

estimated by assuming a continuous sheet, and overestimated by considering

that the individual sheets act independently.

Clearly, for deflection reasons it is better to Obtain a more

realistic value for the overall flexibility especially as the divergence

between the two limits is proportional to the square of the number of

sheets. In addition, where the design relies on sheet-frame interaction,

an over estimate of the sheet's actual flexibility may mean that the panel

would attract more force than it is capable of resisting.

In this Chapter, standard diaphragms will be considered where

overlapping sheets span across purlins and are fastened in every or

alternate troughs. Chapter 7 discusses an alternative arrangement where

sheeting spans directly across rafters.

6.1. Overla2s Fastened in Every Corrugation

For rigid plate movements shear warping occurs by anti -synnetric

profile distortion at each end of the sheet. At an overlap, cross-

section distortions are in opposition and consequently will tend to
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interact when attached to a purlin.

The suggested model to represent the restraining effect at a

corrugation overlap is shown in Fig. (6.2) where side plate depression

is presented, and top plate movement is partially free. These cross-

section forces tend to reduce deformation and hence lessen the shear

warping.

The effect of profile interaction on the overall shear flexibility

may be defined by a factor E, which depends on the cross-section shape

and the fastening arrangement.

For sake of analysis the deformation model is considered at the

end cross-section, and it is assumed that these plate movements vary

Linearly along the sheet length. The profile distortions bear against

each other and ior sloping sided corrugations the compatibility of

movement must be considered as in Fig. (6.2). The restraining forces

are assumed to be equal and opposite at each end of the sheet length.

At the left hand side plate, for zero vertical movement,

0 =	 - X1 844 - X2 
6 22

Sr
Where	 = —

6 	 Jds
13 Ep 0	 iM.  3

X1 and X.2 are the restraining forces for a unit profile shear fluT

are cross-sectional bending movements as defined in Fig. (2.9) and eI ds
1
representsintegrationofthemorreund the half cross-

1
section.

t3
is the sheet bending inertia and equals

b/6 represents the equivalentlongitudinal stiffness due to the

anti-symetric distortion of rigid plate movements.

For the top plate, the net horizontal movement is,

12(1 - v2)
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VT = 620 - X16 42 - X2 622

For the right hand side plate the net uplift is,

V = 6 50 - X1645 - X2625

However, Vs and VT are alco related by the compatibility condition.

2VT = V tan 6

where 0 is the-slope of the side plate. For this final relationship

it has been assumed that lapping over a purlin offers extra restraint

• by preventing side plate depression. This violates the initial compatibility

conditions by introducing an extra purlin prop-force in the equations for

Vs and VT' However, as a mathematical necessity to obtain the restraints
X1 and X2' this force has been ignored, and is introduced merely as a
displacement condition for this simplified approach.

The complete bending moment distribution is,

= No - xim4 x2N2

where Mo is the free profile moment due to a unit shear flow.

The uplift from the edge beam is

V	 6 	 I MeLds
9? 0

Hence, the equivalent longitudinal warping due to Vs and VT is:

2bT
V. — + -
T b/2	 V S b

The top plate distorts	 antisymmetrically. However, considering

Fig. (6.2), the side plate ic only free to lift at one of four points

due to interaction of the profiles resting on a purlin. Consequently,

the warping due to side plate uplfit is reduced to one quarter of its
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free sheet value, which is,

	2bT	 6 2h6

	

20 b/2	40 b/2

The relative longitudinal warping compared to the flexibility of

completely separate sheets is,

VT 
4bT + VS h

6 20 4bT
 + 6

40 
4h

The initial assumption that distortion occurs by linear plate

movements is suspect especially for longer sheets where deformation is

confined to regions close to the fasteners.

However, the only expression which implied rigid movements was the

evaluation of the restraints X1 and X.2 , according to a longitudinal stiffness

factor of b/6. For local end distortion this factor will be reduced, but

all the terms 6.. are modified by the same amount and hence the restraints
13

may reasonably assumed to be independent of the sheet length for a unit

profile shp,Rr flow.

This does not seem sc bad an assumption as all the applied and

resisting forces are at the end sections. In adclition, for local end

distortion the shear displacement is constant throughout the sheet length

and the expression for longitudinal warping is also determined by the end

displacerrents, Vs and VT , as above for rigid plate movements.

The factor E thus represents the effect of profile interaction for

all sheet lengths and may be used as a modification factor for the

individual_ sheet flexibility in order to evaluate the flexibility of a

number of sheets lapped longitudinally.

Values of e have been tabulated for every trough fastening in

Appendix Table ( 3.1) and are a function of the profile shape only. It

appears that the degree of overlap slip, as reflected in the value of el

increases with the inclination of the side plate to the vertical. Similarly,
2b

the slip rises with top plate width until it reaches a peak at, T = 0.4,

and has a typical value of about 0.5, indicating that the deformaqional
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warping of an individual overlapping sheet is reduced by 50% from its

free aistortion value.

6.2. 0verla22ing Sheets Fastened in Alternate Troughs

For every trough fastening relatively small cross-section movements

occur at the overlap. Alternately fastened corrugations, however, warp

by the more flexible concertina action due to trough movement which causes

compression and extension of neighbouring profiles. Interaction maybe

expected at a very low shear load which soon overcomes the clearance or

bad fit between sheets.

The basic action involves opening and closing of the corrugations,

and rectangular profiles would interact completely to form a continuous.

sheet as horizontal trough movement is completely prevented. For sloping

sided corrugations, however, discrete points around the profile are

likely to interfere. Plate ;6.1) and Fig. (6.3(a)) show typical distortion

of overlapping sheets.

The suggested ncdel to represent deformation, as in Fig. (6.3(b))

considers that the end cross-section restraints are forces X1 , X2 and X3.

Top and side plate movement for one corrugation are prevented and X3 is

an inclined force owing to one profile riding over the other.

For zero right hand side plate movement due to a unit trough force,

CI = X1 666 X2
	 + X3 sin 0, 

6 67 660 (1 - 
x3 cos 6 )

And for the right hand top plate restraint,

= X1 668 X26 
88 + X3 sin 6 678 

6 80 (1 - 
X3 cos 0)

6. . is the deflection at point i due to a unit force at jf and is given by,

2S
66	 =

o
f M.M. ds13 1J
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2S
wherefodsrepreserrtsirrtegrationofthebend_ingmoments,14.of Fig.

(3.11) around both cross sections. El is the plate bending stiffness and

b/6 is the longitudinal stiffness factor due to linearly varying anti-

symmetric distortion over the sheet length, b.

The horizontal trough movement E H is,

eH =	 660 + X2 680 + X
3 sin 0 670 4-600 (1 - X3 ccs 8)

Similarly the vertical movement c of the side plate is,
V

Ev = X16 67 + X26 78 + X3 sin 8677 +6 70 (1 - X3 cos e)

However, 611 and ev are related by the compatSbil	 cunatmil_cm

side plate uplift of one corrugation rising over the other such that,

v
tma0 = 2E

H

The attauhment of the corrugations to a purlin means that side

plate depression is prevented. However, this extra restraining force

has been ignored to mathematically derive the overlap forces, and as an

approximate allowance, the effect of I purlin-propping' is only introduced

as a displacement condition.

Hence, the forces Xi, X2 and X3 may be determined and substituting

into the expression for horizontal trough movement, E H, yield's a value

for concertina warping of the overlapped sheets. It is assumed that

deformation is completely anti-symmetric at each end of the shoot.

Hence warping is simply due to the rotation of each plate taking into

account that the right hand top plate movement is prevented.

1	
(2bt + P)	 E

H 
2b

T
26 H 	 b/2

However, the free shear displacement between fasteners is,

(21oL + 2P)	 600 2bT + 
6 00 2bT

2 • b/22A = 600	 b/2	 2 b/2
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Consequently the slip value may be determined which represents the

ratio of the flexibility of the overlapped profile to that of an

individual sheet.

1	 CH	
(bT + P)A

{"T 00

This overlap factor is strictly only due to concertina action.

However, alternate trough fastening flexibility is the sum of the effects

of trough movement due to the missing fastener force and also the torsional

warping of fastening in every corrugation. In general, concertina action

is an order of magnitude greater than the flexibility of fastening in

every trough and it may be expected that the factor c also modifies the

overall alternate fastening flexibility, to reasonable accuracy.

Although linear plate movements were reuLred. -1:n -the analus-12s, k.

may be seen that all the displacements (S ij are determined by the same effective

stiffness factor of one sixth of the sheet length due to anti-symmetric

distortion. However, the restraints Xi are independent of this factor and

hence E., which defines the warping relative to the free sheet value, is

independent of the Sheet length.

Similarly, e may be assumed to be unaffected by the mode of internal

distortion, whether due to localized trough bending or linear plate move-

ments. Longitudinal warping is constant along the sheet depth, whatever

the internal distortion mode, and is determined only by the end displacensnts.

Thus the slip factor may be used for all sheet lengths and values

are tabulated in Appendix Table ( 3.2) for alternate trough fastening.

Rectangular profiles have zero overlap slip, and c also falls with

increasing profile depth. The slip tends to be a maximum for wide trough

widths, but is generally smaller than the corresponding values for every

trough fastening. Typically e = 0.3, which means that for an infinite

number of similar overlapping sheets, the warping of each individual sheet

is reduced. by 70% compared to the free distortion value.

FOr alternate trough fastening, as determined from Chapter 3, dist-

ortion occurs by local end deformation for sheet lengths greater than.



roughly,

3 metres for one or no intermediate purlins

6 metres for two intermediate purlins

9 metres for three intermediate purlins

6.3. General Interaction Formula for Overlain g Sheets

The factor E, as fixed property of the overlap and fastening

arrangement may be used to evaluate the flexibility of a nutber of sheets

of different length and shear force. Considering Fig. (6.5) for every

trough fastening, the overlap restraining forces are such as to satisfy

the plate compatibility conditions for the respective profile shear flows

P1
 and P2'- 

For the general case of neighbouring corrugations of sufficient

length that deformation takes place by local end distortion, the plate

displacements are independent of the sheet length. If follows that the

net interactive force is, (P1
 + P2)/2.

However, if distortion occurs by rigid plate mcvements,'which is

only valid for short sheet lengths, then the top and side plate displace-

ments are dependant on their respective sheet lengths, k l and k2.

Cbnsidering equal and opposite forces at each end of a sheet, the

equivalent longitudinal stiffness to determine plate movements is b/6.

Alternatively, if a force is only applied at one end of thc sheet, then

the displacements at each end are determined by factors b/4 and b/2

respectively. The warping is consequently reduced by half.

For linear plate movements a 'carry over' factor approach may be

used, whereby the joint forces at the discontinuity influence their

neighbours. It may be shown that the general interaction equation for

theithjointbetweensheetsoflengthk.andki+1 withwi cross-sectional1 
shearflowsP.and P.	 is1	 1+1 '

	

P.	 P
+ +1 }(1 C) - X.{ 1 + 1  2 Xi-1 

x
i+1

	

1 k.	 k.	 3k.	 3k.

	

k.	 k.

	

1	 1+1	 1	 1+1	 1	 1+1
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X. is the hypothetical joint restraining force, and neighbouring

joints X1-1 and Xi+1 
carry over half of their effect to the ith joint.

The left hand term refers to the relative cross-sectional deformation of

the overlapping profiles and the right hand term is the effective

restraint depending on the overlap slip, E.

This is a general solution which may be used for any number of

overlapping sheets with variable lengths where the shear flows or forces,

P. andceare normal to the corrugations. Hen, the longitudinal1	 Pi+1
warping, WI, of the ith sheet due to the applied restraining forces is

proportional to,

	

P.	 X. + X.
w. = 	 -1	 1+11	 2

k.
2 2k.

	

1	 1

For a longitudinal shear force Q i , P	 .iki = Qi

The corresponding expression for localised sheet end distortion is

independentofthesheetlength,k.,and the neighbouring joint forces.

Thus,

P. + P.{  1	 1+1	 P.	 X. +X.
1 (1 6 ) = X.	 and W. -	

+1

	

1	 1	 i 
2	 1 k.	 2k.

	

1	 1

These mathematically valid formulae will be used to determine the

overall flexibility of any number or length of sheets by solving for the

effective joint restraints Xi . However, the approach rakes the assumption

that the vector of profile interaction forces may be represented by a

single term. The fastening arrangement and profile shape are only

reflected in the value of E, the overlap slip factor.

6.4. Formulae for a Number of Similar Overla22ing Sheets

The general expression for the flexibility of a number of overlapped

sheets depends on the deformation pattern of the individual sheets. If the

sheet length is sufficiently short that distortion occurs by rigid plate

movements, then for profile shear flows of the ith and (i + 1)th overlapping



8
A = C1.1 (1 + 3E) N = 2

= 
c
1.1 1 + 9EA
27	 1 + 0.1E

N = 3
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sheets of magnitude Pi and Pi+1 , it follows from section (6.3) that,

p. + P. ,	 1{ 	 } (1- &)= x +x
 + 	 + —6 Xlid2	

61"

where X. is the joint restraining force between the two sheets and,
1

X 1 and X
	 are the neighbouring joint forces. E, the overlap slip,

depends only on the fastening arrangement and the profile shape.

.
ahelangitudinalwanclingisprola 	

X + X1
1 	 2

Formulae were developed for a nutber of overlapping sheets based

on the rigid plate movement assumption. The warping displacement is

constant along the sheet length and the total longitudinal shear force is

unity. Considering C1.1 to be the flexibility of an individual sheet,

the overall longitudinal Shear flexibility due to profile interaction

has been determined, forN sheets, as

= C1.1 1 + 18E + E
2

A	 N = 4
64	 1 + 0.75E

If Eis small these expressions degenerate to,

A= c1.1 
(1 + N

2 
E)

which applies when C 1 1 is due linear plate movements. This is only true
1.when 0.144 K d1 

• 5 > K for alternate trough fastening as in Section (3. 2 ).
0.5

bt

For fastening in every third trough & has not been determined

analytically but in this case C1.1 would certainly be caused by rigid

plate distortion.

N
3



A = C1.1 {1 + E }4

C	 {
1 + 3E

}A = 1.1 11 + E

1 + 6C + E
Li- C1.1	 24 + 8E

N = 2

N = 3

N = 4
2

where C1 ad2 ' 5 R 

Et2.5b2

c1.1 (1 + NE)
N2

The expression for overall shear flexibility, A, may be broken

down into C1.1/N
3 which is the component due to compete sheet continuity

and C1.1 /N which is the flexibility due to the slip at the overlap.

However, for most sheet lengths, C1.1 is determined by local end

distortion due to trough bending. In this case the joint restraints are

sudh that,

(Pi pi+li (1 - E.) = x.2

The longitudinal warping, A, is determined by the end cross-section

displacements and is proportional to,

X. + X.
1	 1+1P.

2

Again, for an overall imposed longitudinal shear force of unity

and constant shear displacement, .6 has been determined in terms of

individual sheet flexibility C1.1 for N sheets,

For local end distortion

flexibility is overestimated by

and = 0.5, A = 0.19 C1.1 from

from the exact expression.

	

C1.1	A tends to	 (1 + NE) although the
N
2

this expression. Typically, for N = 4

the approximate formula and 0.15 C1.1

Thus for any number N, of equal length sheets, the overall

flexibility due to distortion is given by,
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E is a property of the profile shape and fastening arrangement as tab-

ulated in Appendix Table (3.4 ). C1.1 is the individual sheet flexibility.

6.5. Formulae for Over1a22ing Sheets of Different Lenaths

COnsidering first two overlapping sheets of lengths in the ratio

k to unity, the overall shear flexibility will be first determined for

linear plate movements. The overlap factor E is considered as an

effective slip due to the imposed profile shear flaw. Using the cont-

rolling equation developed in Section (6.3) for rigid plate distortion,

P	 P	 1	 2{_k1 • .2}(1 _E) 	x1 {_
k 
+

where P1 and P2 are the profile shear flows for each sheet and X 1 is

the joint restraining force.

For a longitudinal shear force of unity,

1 = Pk + P21

The longitudinal shear warping of each sheet are necessarily equal and so

the overall shear displacement is, from Section (6.3).

X1	 X
1 	 1A{ — -1 C1.1 = {P2 -} C

1.1
k
2 2k

However, the longitudinal shear force is unity and so P ik + P2 = 1.

Eliminating X1 gives,

1 - 0.75 (1 -0 
A -	 c13

1 + k
3 
+ - (1 -E) (k

2 
- 1)	 - 1)	 .1

4

where C1.1 is the flexibility of the sheet of length unity.

It may be seen that for k = 1 this expression degenerates to
1A	 (1 + 3 ) which is as in Section (6.4).
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However, in general, shear displacem-nts for -most practical sheet

lengths are caused by local distortion around the fasteners due to trough

bending.

In this case for two overlapping sheets of different lengths,

P + P
1 1	 2 ) ( 1 - E) = X11

For a longitudinal shear force of unity,

Plk P2 = 1

The shear warping of each sheet are equal and so,

P1 X	 X
A ={ k
	 1 )I c1.1 = {P2 - —2

1
 } C1.1

End displacenents are independent of the sheet length and so the long-

itudinal warping is proportional to l/k.

Solving these equations gives,

A = 10 ' 5 + 0.56 1	 .1 + k2 - (1 - E) (c - 1)
2 C11

2

where C1.1 is the Shear flexibility of the sheet length b.

2.5 -ad ' K 
C1.1 - Et 2 D.5,2

The sheet lengths are thus b and bk.

Fbr three overlapping sheets where one is of length k times the

other two, then it may be shown that,

3 (1 _ c)2/16 C1.1A

2 + k2 + (1 - e) 2 k2 - (1 - t) (3k2 - 2k + 3)
16	 4
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C1.1 is the flexibility due to local end distortion of the sheet of

length b and the total panel depth is thus (2 + k)b.

In many practical cases diaphragm depths are not made up of sheets

of exactly the same length. Often a short end section has to be added to

a nuMber of complete sheet lengths and the shear flexibility of the

diaphragm with be modified.

It is suggested that for one sheet of proportionately differing

length, k, from the other N sheets that the overall flexibility due to

local end distortion, is given by,

where C11 again is theA _ 1.1 	 1 + ai + ME)
ai + k) 2
	 individual sheet flexibility

The validity of this expression can only be justified by comparisons

with the exact derivation above due to local sheet distortion for N = 2

and 3.

Values of F

N = 2	 'Exact'
	

A = F * C1.1

-
'Approximate' F - (1	(N k)e) 

+ k) 2

k 1.0 0.5 0.0

1 0.50 0.37 0.25

0.5 0.80 0.60 0.40

0.33 0.90 0.70 0.50

1.0 0.5 0.0

0.75 0.5 0.25

1.11 0.77 0.44

1.32 0.94 0.56

N= 3

N:\ 1.0k 0.5 0.0

2 0.17 0.12 0.05

1 0.33 0.22 0.09

0.5 0.44 0.30 0.11

0.33 0.47 0.31 0.13

1.0 0.5 0.0

0.31 0.18 0.06

0.44 0.27 0.11

0.56 0.36 0.16

0.61 0.39 0.18
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It may be seen that for a typical value of the overlap slip

factor E of 0.3 that the approximate formula fives a reasonably close

solution to the overall panel flexibility and the accuracy should

increase as N increases. Thus the above formula may be used to determine

the effect of a single odd sheet of length kb added to N equal sheets

of length b.

6.6. Effect of Fastening in Every Corrugation at the Panel

Edges and in Alternate Trou2hs as the Overla2s 

Many diaphragm fixing arrangements have evolved through practice

to achieve the optimum behaviour for minimun usage of fastenings. In

this respect sheets are often attached in every corrugation at the

diaphragm edges and in alternate troughs at the intermediate purlins.
Sheet overlaps will thus be more sparcely fastened than at the panel

extremities, which makes the analysis of the shear flexibility extremely

curplex.

However, an approximate mathematical treatment may be performed

using the property of the overlap slip factor, E , and the controlling

interaction expression of Section (6.3). For the outer sheet, concertina

action is prevented at its open end. However, all the internal joints

deform by lateral trough movement and C1 	 is the shear flexibility of

an unconnected central sheet due to anti-symmetric concertina action.

Effectively, the outer sheets behave as though twice as long, due

to the fact that concertina distortion only occurs at one end and the open

end represents the point about which the deformation is anti-symmetric.

This is shown in Fig. (6.8) for both cases of local end distortion, and

rigid plate movements.

Considering first the most likely distortion mode for sheets longer

than 3 metres fastened in alternate troughs, deformation occurs by non-

linear trough bending. The every trough fastening flexibility at the

free sheet edge will be included later in the analysis.

As the outer sheets are effectively twice as long as the internal

sheets, it follows that their shear displacement is defined by k = 2 in



the expression of Section (6.3). In order to maintain anti-symmetry,

equal and opposite forces are applied at each end of the equivalent outer

sheet length.

For three overlapped sheets, where the respective profile shear

flogs are P1
 and P2' the joint restraint is,

P
1 

2 

+P
X1 =	. (1 - t)	 where (2P 1 + P2) b = 1

The longitudinal shear displacement for the outer sheet is (k = 2)

X

f 1	 1 1 r
A =	 - -2— J -1.1A

and for the internal sheet is, {P2 - Xl/ CiaA.

Solving for Pl , P2 and Xi it follows that,

2E A = {I C9 + E	 1.1A

For four overlapping sheets fastening in every corrugation at their

ends and alternate troughs internally it may be shown that,

A - { 2 +3 El C
6(2 +E )	 1.1A

For two overlapping sheets, A = E/4

This theoretical derivation only applies for localized end distortion.

If deformation occurs by linear plate movements, then the controlling

equation, from Section (6.3), for the outer joint is,

P	 1	 X2 Xi
{ 

1
—2 +. P2 }( 1 - E) = X 2 { .f + 1} ++

Again P1 and P2 are the profile shear flows as in Fig. (6.8). X1

is the first joint restraint and it is assumed that an imaginary joint

force X also exists at the oppcsite end of the equivalent end sheet length,

2b, in order to maintain anti-symmetry of deformation.
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The corresponding expression.for rigid plate movement warping is,

P1 X1
'61 = 

1
'4 - 4 'r-1.1A =

X + X-1	 I TP2	I C2	 1.IA

Thus for two and three overlapping Sheets the corresponding

equations for the overall shear flexibility, where C1	
is the individual.1A

sheet value, are

A = 6/8	 C1.1A	
-N = 2

-N = 3
A = 6 + 3E	 1.1A

Approximate formulae have been developed to represent the shear

flexibility due to interaction of any nutber of sheets. This was achieved

by assuming that for N Sheets all the joint forces are the same, which

gives,

2
A = 1

4E + N(3 -	
c
1.1h
	 - local end distortion

t = ( 6c + N(2 - E) C1.1A
	 - rigid plate movements

The total panel flexibility C1.1 is Obtained by addition of the

individual sheet flexibility due to fastening in every corrugation, Clas.

Thus, for a unit longitudinal shear force,

C1.1E
C1.1 

= A + 	

Relative to alternate trough fastening throughout where, for local

edge distortion,

A = C1.1A (1 + N

N
2

it follows that the flexibility reduction factor due to fastening in every

trough at the sheet perimeter is,



— 146 —

2 E N/(1 + NE) 
r = 4E + N(3 — e )

Values of the overall sheet flexibility are listed in Appendix

Table (3.4 ) for a range of E, which is the profile slip factor due

to alternate trough fastening.

Typically r is about 0.4 which indicates that there is a 60% increase

in stiffness due to fastening in every corrugation at the sheet ends when

sheet overlaps are fastened in alternate troughs.

6.7. Com2arison of Theoretical and Ex2erimenta1 Results for

0verla2s fastened in Every Trough

Experimental observations, are listed in Appendix Table (1.7) for

various nuMbers of sheet overlaps and profile shapes. Theoretical values

of the overlap slip factor, E, were derived using the analysis of

Section (6.1), and the overall flexibility, C1.1 , was determined using

the approximate relationships.

C1. 1s
C
1.1 

=	 (1 + NE) — local end distortion

Cl).C1	 =	
,	

N2E )+(1 _ rigid plate movenentsor	
.1 

N3

An overlap length of 1(X) urn was used which, it is assumed, is

sufficient to generate the full profile interaction.

is the experimentally observed individual sheet flexibility
1 . 1s

due to every corrugation fastening and is taken from the appropriate value

of Appendix Table (1.1). By comparing the overall observed flexibility

with those of the theoretical solutions, the mode of overlap interaction

may be infered.

For very short sheet lengths of about 1 metre, rigid plate movements

occur and at greater lengths local distortion due to trough bending

increases the flexibility of the overlapped sheets. In general, individual
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sheet lengths of one and two metres were examined in panel depths of up

to 6.1 metres. The test data for a given profile is the same as in

Appendix Table (1.1).

From the results of Appendix Table (1.7), it may be seen that a •

typical value of e is about 0.4, and that the expression due to localized

end distortion is reasonably accurate for the longer sheet lengths. It

must be noted, however, that sore experimental tests were performed for

narrow panel widths which seriously restricts trough bending. Hence

distortion will effectively behave as though due to linear plate moveirents

independent of the sheet length.

On the basis of these results and the theoretical derivation, the

approximate formula above for local sheet distortion may be used with

reasonable confidence to model the effect of overlapping sheet flexibility.

6.8. Comearison of Theoretical and Ex2erimental Results for

Sheet 0verla2s Fastened in Alternate Troughs 

This situation is similar to the every trough fastening case, except

that a different factor is used to represent the overlap profile slip.

Atypical value of e in this case is about 0.3 and the formula for overall

sheet flexibility is as in the previous section.

The profile slip factor, E was derived using the theory of Section
(6.3) for alternate trough fastening, and the individual sheet flexibility,
for sheet lengths, b, greater than 3 metres, is due to localized sheet

distortion where,

C3.1	 Et 2 5b 2S 

However, experimental tests, as listed in Appendix Table (1.8 ),

for sheets of length 2 and 1 metres in panel depths of up to 6 metres. In

this case, deformation will occur by rigid plate movements such that,

0.144 d15 K 

t9.5b

ad K
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Theoretical results were derived for both cases of linear and

local distortion according to the approximate formulae, based on an

experimental value for the individual sheet flexibility from table

(1 . 2 ). Comparing with the observations for a number of sheet overlaps
it seems that in general, profile interaction occurs by rigid plate

novenen-ts.

The experimental flexibilities are usually mid-way between the two

limiting theoretical cases, and there are indications that the overall

flexibility should tend to the localized distortion theory as the sheet

length increases.

As previouslymentioned, attachment of the sheets to rafters

does inhibit the relatively flexible trough bending of alternately

fastened corrugations, which tends to make deformation behave as though

due to linear plate movements.

Nevertheless, as an upper bound to the sheet overlap flexibility

the formula 6Prived from localized end distortion may be used as a

design expression for any number of similarly fastened sheets.

6.9. Results Com2arison for Sheets Fastened in Every Trough

at their Ends and Alternate Troughs at the Overlaps

The theoretical derivation for the interaction of alternately

fastened overlapping sheets, with every trough fastening at the panel

extremities has been represented by an approximate formula, as in Section

(6.6).

For local end distortion which occurs for sheets longer than 3

metres, the overall panel flexibility may by given by,

2e 
1C1.1	 (4e + N(3 - e)	

C1	 14E

The first term represents the interaction of the sheets at the

overlaps, where C1.1 is the individual sheet flexibility fastened in
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alternate troughs. C1.1E is the sheet flexibility due to every trough

fastening and this second term is an approximate allowance for the

distortion of the outer sheets. The slip factore is due to alternate

trough fastening and may be determined from Appendix Table (3. 2 ).

A similar formula has been presented for rigid plate movements.

Experimental tests were carried out on the sane profiles as the previous

two sections and their observations are listed in Appendix Table (1.8).

In the above formula the corresponding observed values were used for the

every and alternate trough fastening flexibilities.

Comparing the theoretical and experimental results, it may be seen,

that for the basic sheet lengths of one and two metres, deformation is

more closely represented by linear plate movements. In general, the

observations lie between the local and linear distortion cases whiddi.

indicates that if longer sheet lengths had been used, then the formulation

• for localised distortion would have been more exact.

It may be seen that the divergence between the two theoretical

solutions is relatively small, and hence the above formula may be used

as a design expression for the distortion flexibility of this fastening

arrangement.



Plate (6.1) Interaction of overlapping sheets fastened in alternate troughs.
The concertina action is displayed.

Plate (7.1) Three bay continuous diaphragm test rig
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CHAPTER	 7.

CONTINUOUS DIAPHRAGMS 

In a continuous diaphragm the sheeting spans perpendicular to

the imposed shear force. This form of construction has been used for

school buildings and larger framed structures
(45 ) 

where sheeting spans

continuously across rafters, obviating the need for purlins as in Fig.

(1.7). The benefits may be considerable especially for stressed skin

construction where specific shear connections normally have to be made

between purlins and rafters to transfer diaphragm shear forces. For

sheets attached directly to rafters, the shear force and resistance are

both in the same plane. .

In this chapter, the shear displacement of continuous sheets

spanning across rafters will be studied. These are less flexible than

the corresponding unconnected sheets because of in-plane bending. Similarly

overlapping sheets at the rafters also interact to reduce the central

shear deflection resulting from profile distortion.

The web of the girder may also be taken into account as regards

the diaphragm inertia, although the axial strain in the sheeting is

reduced by fastener slip.

7.1. Modified Shear Distortion Elexibility due to Sheets

S2annin2 across a Central Rafter

The shear distortion of an individual diaphragm is due to relative

Movement of the separate plates of the corrugation. For sheets spanning

into different shear fields the cross-section movements not only vary, but

also the slope of shear displacement is theoretically discontinuous at

the rafter points. In-plane web bending is required to maintain compat-

ibility and the shear deflection is reduced.

The shear flexibility Cl , of a diaphragm between rafters is

calculated for a unit force applied along the line of the corrugations and

is then multiplied by the orthogonality . factor of (b/a) 2 , where b is the
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sheet span and a is the panel width. Thus, as in Fig. (1.5),

1	 b 2
C = C(), where C = C1.1 + 

C1.2 + C2.1 etc

5-ad2 K and where C
1.1 Et

2.5
b
2

Considering first a simple two bey case where a central force

is applied to the sheeting spanning between end restraints, the theoretical

shear deflection is linear up to a maximum at the point of loading.

However, the web is made up of corrugations spanning continuously over

the internal rafter and hence the sheeting must be constrained to bend

to maintain slope deflection continuity.

For sheeting fastened in every trough, the plate deformation

pattern is shown in Fig. (7.1). As an approximation, the trough lines

are all assumed to bend equally in a sinusoidal form over the diaphragm

length, 2b, according to,

UB	 b= A- sin ItY 2b

Due to the extra plate bending, it may be expected that the

actual shear flexibility will be reduced compared to the theoretical

derivation of C1 above. The following section outlines a passible energy

method solution for the central shear displacement, which establishes

the basic components of internal energy in terms of chosen plate dis-

placement parameters.

The corrugations will try to distort under the influence of the

fastener forces, similar to the behaviour of an unconnected sheet.

Consequently, the deformational movements of the corrugation plates at

the centre and outer rafters will tend to be in apposite directions,

consistent with the applied and resisting forces.

If the respective tap and side plate movements are as indicated

in Fig. (7.1), then the deflected shapes may also be represented as a

sinusoidal form such that,
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UT = AT + { As - A„ - AT I sin al2b0	 0

Us = A8 - (.4s + As ) sin
0	 1	 0	 2b

where AT0 and Aso represent the deformation at the outer edge and A, and
11

A are the central section movements. Purlin restraint effects on cross-Si
section distortion have been omitted.

The end compatibility condition requires that there is no

lateral movement of the fasteners during shearing. Hence for zero axial

trough line strain,

	

d9B 	 dUT	dUb ._+ bT dy Zip 	0

	

L dy	 S dy

AB (blj + bT) = 2bs (Asi + Aso) + bT (NI + AT)

profile geometrical terns, bL, bs, bT, h etc., are shown in Fig. (2.1).

The cross-section distortion energy may be derived from Section

(2.3 ) and is,

2
ED = 2	 C(1, 1) UT + C(1,2) ulp + c(1, 3) uT U-

-	 2._+ C(2, 2) 
U's

2 + c(2, 3) u
s-B + C( 3 , 3 ) L)B: 

2 
alr

ere UT, US and UB are defined as above.

This distortion energy is approximately equivalent to the

behaviour of unconnected sheets which deform by relative linear plate

movments.

However, in addition, there are components due to the axial

and bending strains absorbed within the sheeting which are a consequence

of the shear displacement, AB.
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The bending strain energy of the plates is,

E11 4t	 2	 3	 3	 2

EB = 48b3 {AB2 bL 1-CAS1 AS0) 2b
5	 bT (AB- AT1 AT0)

However, due to the differing bending strains at either edge of

the side plate there is an additional axial strain energy component of

magnitude,

4Ebstil
E - 	 3	 bLAB -AS 32b

2
bT (Pilr - AT,

-
 AT0) }

These energy expressions may be collected together as a symmetrical

matrix of the form,

where C is the central deflection due to a unit force. However, Asi
may be eliminated in terms of the other parameters by,

-b
T 
+b

L 
AS1	

bT
AB - Aso 	 (Arlo + Na)

 2bs

As in Chapter 2, the total energy may be minimized with respect

to the three independent variables, ATO' AT1' 
and Aso such that,

6FIrot

dAtIO =

Hence, the three resulting equations may be solved and the

parameters determined as direct ratios of the central trough displacement,

AB. The central flexibility C follows from the energy relationship.

For alternate trough fastening of the continuous sheeting, the

deformation is rather more complicated as the trough between fasteners is



free to move. As in Chapter 3, this form of attachment causes an extra

energy component due to concertina action which occurs by compression

and extension of neighbouring profiles.

TO obtain an approximate solution for alternate trough fastening

of continuous sheeting spanning across rafters, the internal trough line

is assumed to deflect as in Fig. (7.2), such that,

uin 	 Ao + { AB - 2Ao} sin E

where Ao is the concertina trough movement at the outer and central sections.

The trough, which is attached to the rafters again moves according

to,

A sin auB2 = --B	 2b

The top plate deflects by aaaition of half this concertina

motion to the every corrugation fastening distortion. Thus,

Ao
U
T =
	 +	 + (AB -	 - Arlo - Ao ) sin y

For end compatibility,

clUb	 du	 dus

"Tfy bir	 + 2b
S 0/7

biA8 bT 65t AT1 ATO) = 2bs (A 	 Aso) + Ao d/2.

Again, Asi may be expressed in terms of the other variables.

An additional energy component must be included due to concertina

action,

n 2	 21
Ec =	 - 2 sin	 )	

„,10
2bo

0

lothermk is the concertina movement due to a 1 kM trough force and equals,
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Et3
(Lk b + 2b ) h

2
/ID 	 D -3 S	 T

12(1 - v 2)

However, an extra effect of conertina movement is that it

modifies the axial strain stored in the sheeting. Lateral movement of

the trough does not occur freely as the relative end rotation of

neighbouring troughs lines causes a substantial additional strain through-

out the corrugation. This is indicated in Fig. (7.2), which shows that

concertina movement can only occur by sufficient axial strain absorbed

within the sheet length.

The increase in top plate axial strain due to concertina

movement, at any section y from one end, is,

2

AO/DL (1)	
Sin 2b

However, due to a lateral trough movement Ao there is a

corresponding side plate uplilt given by,

Vs =1A0 where f	

3

-
.bS + 2b ) h

T

H 2
The top plate axial strain becomes ( rb-) sin 2h	 +2fh).

Thus the total axial strain energy in top and side plates is,

4
EAT = Et —3 A0

2
s.  bir (IDL 2'n) 2jr .2bs	 al) 2 }

•

Due to side plate displacement VS, as a consequence of con-

certina action, there is an extra side plate bending energy component

of magnitude,

Etar 4 2, 2Ao
2 

bs f n
24b'

Similarly, the bending energy in the trough plate becomes,
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2EtH4 3	 2
EBB =	 'DI,	 A + (AB - 2Ao)96b

and the bending energy in the top plate is,

Eteb 3

EBT	
48b 

iT	 AB - Ari Aao Ao }2

Side plate bending and axial strain energy due to As i and Aso

remain unaltered from the previous case.

The total energy components due to distortion, as determined

fran the every corrugation fastening theory, axial strain and concertina

action are collected together as,

2
AB

Etotai = ED + EAs + EAT + Ei3s + EBB + EBT + Ec 2C

AS1 may bow be eliminated using the compatibility condition,

(111, 4- bl)

AS1	 . 2bs 	 AB - Aso	 (Aao + Ala) Ao

Thus differentiating the total energy expression with respect

to each independent variable yields four simultaneous equations.

Solving for the displacement parameters in terms of AB and

resubstituting into Etot gives a value for C, the central deflectional
due to a unit force.

In order to evaluate the effect of in-plane bending on the

shear flexibility of continuous diaphragms, the central displacement may

be expressed relative to the value due to linear plate movements of

unoonnected sheets.

As the span becomes very large it may be expected that the central

shear deflection will decay to the linear plate movement derivation consis-

tent with a negligible internal plate bending energy.
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7.2. Discussion of Ex2erimenta1 and Theoretical Observations

for Two and Three Bay Continuous Diaphragms

For unconnected sheets spanning perpendicular to the applied

shear force and meeting at the rafter points, the shear flexibility of

each panel may be evaluated separately. However, when a sheet spans

conlinuously into different shear fields, shear distortion is partially

restrained by longitudinal sheet bending. Thus, discontinuities in the

shear deflection are smoothed out which results in an increase in the

overall diaphragm stiffness.

A simple two bay diaphragm with sheeting spanning across rafters

has been examined experimentally for a 3.6 metre long test apparatus as

in Fig. (7.4). The shear flexibility will be modified due to sheet

continuity and may be expressed as a ratio of the unconnected sheet flex-

ibility. Two profiles were studied, being 35 urn deep decking and roofing

shapes, and their theoretical performance as deduced from the approach of

Section (7.1), is shown in Figs. (7.5) and (7.6.)

It is apparent that the greater the degree of cross-sectional

movements, the greater the restraint against shear deformation. Concertina

action, due to alternate trough fastening is very much stiffer than its free

sheet flexibility and only decays at about 37 metres sheet length to its
linear plate movement prediction.

Every trough fastening flexibility decays at about 4 metres and

implies that the in-plane bending is small compared to the shear stiffness

of the diaphragm. It should be noted that although the plate displacements

are given in a sinusoidal form their sheet distortion flexibility tends

to the linear movement solution when the plate bending energy is small.

" For sheets spanning across a single internal rafte; experimental

observations of the central shear distortion deflections are listed in

Appendix Table (1.10) for both profiles. These were deduced by subtracting

the simple bending and fastener slip deflections from the measured values.

A number of factors could be readily examined including the effect of

varying amounts of sheet overlap.
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Ideally an overlap ensures complete sheet continuity, but it was

observed that only partial joint rigidity could be maintained for both

fastening arrangements. It may be seen that the experimental relative

flexibilitjes of the continuous diaphragm compared to unconnected sheet-

ingaha considerably less than the theoretical prediction.

The individual sheets, however, do not necessarily deform by linear

plate movements. It was concluded from Chapter 2 that for every trough

fastening localized end distortion occurs for sheets longer than 1.5

metres. Consequently, the deformation pattern assumed in Section (7.1)

is likely to be inadequate to represent the plate displacements of the

continuous diaphragm for this fastening arrangement.

For comparison with the experimentally deduced K parameter, two

theoretrical K values are listed in Appendix Table (1.10). One was .

derived for linear plate movements and the other for localized end dist-

ortion of unconnected sheets. Examining the results it is apparent that

sheets with wide troughs are more stiffened by spanning across the central

rafter, which is due to the increase of in-plane bending restraint.

The experimental and theoretical comparisons for the two profiles

of Figs. (7.5) and (7.6) only apply for the simple case where the individual

sheet flexibility is caused by linear plate movements. For localized end

distortion the beam on elastic foundations analogy as in Fig. (7.8)

provides an approximate solution to the reduced flexibility.

The trough lines must bend to maintain continuity across the

central rafter. The net movement at this point is reduced by one half

of its free distortion value, and hence Le overall central deflection is

0.75 of the unconnected sheet deflection. Hence this figure of 0.75 is

the asymptote of the relative flexibility as the sheet lengths become very

large. -

The relatively poor comparison between experiment and theory

cannot be explained. Nevertheless the consistent increased diaphragm

stiffness in practice does indicate that the benefits may be greater

than even the theoretical prediction.
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No theory has been developed to take account of sheet continuity

for multi-framed diaphragms, although for localized sheet distortion, the3b3y

central deflection ideally tends to 0.75 of the free sheet value. Experi-

mental observations for sheeting spanning over three bays were only

possible for a diaphragm length of 5.4 metres as summarized in Appendix

Table (1.11). The test rig is shown in Plate (7.1).

The reduction in flexibility appears to be less than the two

span case, but the three span continuous diaphragm is still significantly

stiffer than the unconnected sheet value. The effect of sheet overlaps

will be discussed in Section (7.5).

7.3. Inertia of Purlins in Sim2le DiaEhra5ms

The previous derivations deal with the shear flexibility of

sheeting spanning continuously across rafters. This section considers

the bending deflection of standard diaphragms which use sheeting spanning

over purlins. It is merely included as an introduction to the following

section which derives the inertia of a continuous diaphragm by including

the contribution of the sheeted web.

In conventional construction, taking account of the contribution

of the intermediate purlins to determine the overall diaphragm inertia

is important in two respects.

Firstly, the purlins give the diaphragm its bending stiffness

and secondly the internal sheet shear flaw increases towards the centre

of the panel, which is especially important for design of the sheet-seam

fasteners. Fig. (7.7(a)) indicates the formulae for beam inertia and

maximum shear flow for an odd nuMber,n of purlins. The corresponding
P'

expressions for an even nutber of purlins are derived in Fig. (7.7(b)).

It may be seen that as n becomes very large so the beam inertia

tends to,

b2
I = A np

where A is the cross-sectional area of each purlin and b is the overall

diaphragm depth.
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Similarly the maximum sheet shear flow due to a shear force Q

is,

3Q
2b

The sheet-purlin fasteners must: be able to transfer their shear

force into purlin axial force. Hence the maximum shear flow is at the

sheet edge and equals,

Q.bA
21

However, this simplified approach rakes the assumption for

cantilever beams, that the axial strain is linearly varying throughout

the diaphragm depth. This implies that the rafter is sufficiently

laterally rigid to resist the applied forces from the intermediate

purlins. In practice this is unlikely to be so, and it may be that only

the outer purlins contribute to the inertia.

7.4. Inertia of Sheets S2anning across Rafters

Profiled sheeting possesses only small axial stiffness per-

pendicular to the corrugations. For sheets spanning across purlins,

unifonnpurlin axial strain induces no force in the diaphragm and hence

the total roof inertia is simply due to the contribution of each purlin,

according to a linear variation of strain from the neutral axis (Fig.

7.8 (a)).

However, for sheets spanning across rafters the bending

resistance is primarily provided by edge renbers whose axial strain is

transferred in some degree to the body of the diaphragm by the edge

fastenings in the longitudinal sheet direction. For completely rigid

connections the axial stress attracted to the sheeting is given by the

perimeter nether strain times Young's modulus. Thus the sheeting will

contribute to the overall mcment resistance.

For relatively deep diaphragms and light edge members this
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additional sheet inertia may be significant. In practice the boundary

fixings are relatively sparse and the force spread into the sheets is

limited by the inherent load-slip characteristics of the connections.

The linear variation of axial strain is also modified by the presence

of sheet-seams, which cause a step-wise distribution of strain throughout

the roof depth.

In addition to the shear transfer from the longitudinal edges,

the sheet-rafter fixings serve to provide a sheet moment connection at

the ends of the bay. As an example, for a unit edge member strain, the

variation of axial strain in the sheeting is demonstrated in Fig. (7.8(b))

for two continuous sheets which show the effect of longitudinal edge,

rafter and seam fastener slip.

Ideally the overall inertia includes the sheeting as though it

were a web of a girder and a modification factor may be introduced to

account for the effects of fastener slip.

A general formulation of the reduced web inertia as determined

by the nuMber of sheets and the fastener Characteristics is depicted in

Fig. (7.9). Each sheet is subject to the forces transmitted from neigh-

bouring Sheets via the seam fasteners, and also the the local rafter conn-

ections. This movement is controlled by equilibrium and compatibility

requirements which may both be satisfied knowing the load slip parameters for

the fixings.

The sheet is strained by forces P1 and P2 derived from seam

slip, and fram a uniform end force P 3 due to the sheet-rafter slip.

A rafter connection bending component P 4 may also be introduced. At

the outer sheet P
1
 depends on the sheet-edge meMber slip.

The equilibrium condition for the ith sheet is given by,

d. := (4P
1
 + 6P4 + 2P2 1-P3) 2atE

di_i + Si_i = (P3 - 4P2 - 6P4 - 2P,) 	 2atE
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where d. and Si 	defined in Fig. (7.9), and a, b, t and E are the

sheets' width, length, thickness and Young's modulus respectively.

The fastener slip characteristics are, for an odd sheet number,

N,

ns

n
sP2 = Si-1 4S
s

(d. + d.	 +S	 ) n
2(i - 1)	 1	 I-1	 i-1	 e

P3
 = {	 12	 ES

(d. - d.	 -S. )	 n
11	 1-1	 -1 and	 P4 = {	 } 

e
2	 6E8

At the outer sheet,

P1 
= SN 4S

n
e

1
where ns , ne and ne

 are the nutber of seam, edge, and rafter fixings.

It is assumed that the slip, Si varies linearly along the sheet

length from the centre of the bay and hence the average seam fastener

slip is half of the end displacement.

These equations may be cotbined to eliminate di and to solve

for the slip of the ith sheet in terms of the (i-1) th unknowns. Thus,

2k"
4 (l -F)	 (4+ -

Ne + 2ks
)

S. = -d. di-1 	
ks*	

Si_i	
k

k
+ (4i - 6) e	 2 *

N kS
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for i = 1

cc 1
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At the outer sheet k
s
* = ke1. At all others ks = ks .

This equation forms the basis of a solution progressing fram

known values of the (i - 1)th sheet. The initial conditions are obtained

by considering the central sheet where,

Hence,

k
ed

1
 (1 +	 =	 k_ S +2N	 4	 .1 IA

Si is taken as an unknown value and consequently all the termsI

up to SN+1 and dN+1 may be determined iteratively.
2	 2

For unit edge nenber strain,

dN+1	 SN+1
2	 2

Hence substitution :yields a solution for S 1 and the rest of

the unknown displacements may be determined.

When the number of sheets N is even, the final term in the

controlling equation, above reduces to (4i-4) ke 	 and the initial conditions

are,	 N2
k
s

k
So and S

1	N
_ (2	+ 2ks )d0 = 2	 	  So

kS

So may be considered as an arbitary unknown displacement and con-

sequently all the displacements are expressible in terms of So, which is

solved by equating to the unit edge strain.

The reduced sheet inertia may be represented by,

S t N3a3

d 12	 cc

1



12 2cc =	 E	 I.
N i=1 1

for N even

Ihus
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where is the profile perimeter to pitch ratio, and

Na is the diaphragm depth

cc is a factor due to the effect of fastener slip

The inertia of the ith sheet for an odd number of sheet is,

a
.	 3I

i =	 {d.	 +S.	 + .31 (d - d.	 - S. ) }{ (1 - I) a +
i0	 1-1	 1-1 a	 1-1	 1-1

3	 3Ii
-7 = (d.	 +S. ) {(i - -f)/2 +	 } + di { (i - -f) /2 +1 }a	 J-1	 1-1

N+1
i=2

I = 2a2 E	 'middle
i=2

For unit edge strain,

N22
Io =	 a

Thus,
. N +1

I	 12	
2	 1

cc = -f- = -7 E I. + -5fo r N odd
0 N i=2

For N even,

a
Ii = I { d.	 +S 	 + (d i - d.	 - S. )} {(i-1) a + x dx

0 1-1	 1-1 a	 1-1	 1-1

These two equations for cc as expressions for the reduced sheet
1	 •

inertia are functions of a, N, k s , k, and ke- • The effect of increasing

the number of sheets, N, is Shown in Fig. (7.10) for 1 metre sheet width,

and 4 metre distance between rafters.
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is merely includPd for theoretical corTarison. For all other sheet lengths,

the interaction formulae due to localized end distortion, apply.

To simplify the analysis, unit rafter forces are considered .

and the corresponding overlap rest9ining force X i reduces the individual

sheet flexibility by the ratio 1 	 .2Q	 This factor applies whetheri
deformation occurs by local end	 deformation or rigid plate movements.

As an example, for an even nutber of bays (i = 4), the actual

central deflection, A, divided by the value due to the free distortion

of separate sheets Ao , is,

A 1 - 0.5 (1 - 
= 0.5 + 0.5E= 	 10

Similarly for an odd nuMber of bays (E1 = 5), the joint fastening

forces Xi and X2 due to profile interaction are,

X1 = 1.5 (1 - E)
	

and X2 = 0.5 (1 - E)

Thus,"

3.0 - 2 x 1.5 (1 - E) - 0.5 (1 - E)
A 	 2	 2 {	 }

= 0.42 + 0.58E
3.0

The central deflection may be obtained by multiplying by the

factors,

2 2N2 -
A =	 C	 (1) W - N even	 C	 (1) W - N odd0	 8	 1.1 a	 '60 - 

ai2 
1)

 8	 1.1 a

where N is the nutber of overlapping sheets and W is the local rafter force.
AValues of — are shown in Fig. (7.13) for various values of ELA
0

For linear plate movements, the solution is more complicated.

Typically for N = 5 bays,

2	 1{ 2 + 1 ) (1 - E ) =2 - joint 1
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1	 1	 1
{-
2
 (1 - E) 3 2 u 1 b 2

- joint 2

Therefore, X1 = 2.18 (1 - E.)	 X2 = 0.29 (1 - E)

Thus,

..
A	 3 - 2 x

218 
(1 -)- 029
 (1 - E)2

Ao	
2

3 - 0.23 + 0.77Z

Approximate formulae have been developed for both the cases of

local end distortion and rigid plate movements, which define the relative

central deflection due to overlap interaction compared to the free sheet •

value.

A _ 2	 2
T- 	 N (1 - i4)E0

N - 1 + N - 1 J.E
AO

- local end distortion

- linear plate movements
N - 2A_

The maximum error in both these expressions is no more than 10%.

'Typically for five overlapping sheets with E = 0.4, the central deflection

is reduced by 34% from the simple theory where all the sheets are

unconnected.

Test results are confined to the example of three overlapping

sheets based on a rafter spacing of 1.8 metres. Two profiles were studied

as in Fig. (7.5) and (7.6). Their results and comparisons are set out

below and are listed more fully in Appendix Table (1.11).

The central deflection formulae are,

2
b W	 - for local end distortion, orA = 10.75 + 0.25E1 C

1.1 a

A = 10.5 + 0.5 Cl C1.1 (
b
a-)

2
 W	 - for linear plate movements

The value of the slip overlap factor, E, as determined by the

analyses of Chapter 6 is dependent both on the profile shape and the
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fastening arrangement.

AIn general the theoretical and experimental values for 	 the

relative central shear deflection, are very closely in agreement. 'o

For every trough fastening the formula due to local plate bending is

clearly more applicable than that due to rigid plate movements.

However, for alternate corrugation fastening of the roofing

profile, where the, troughs are relatively wide, sheet distortion more

closely approximates to the rigid plate movement derivation. This is

reasonable for a sheet length of 1.8 metres which, as observed from

Chapter 3, does not deform by local trough bending until a length of

about 3 metres.

Details E Theory
A/40 theory A/A0 Expt.Local	 Linear

A.R. 0.33 0.83 0.67 0.74

E.R. 0.22 0.81 0.61 0.78

A.D. 0.25 0.81 0.63 0.81

E.D. 0.33 0.83 0.67 0.84

A,- alternate trough fastening; E - every trough fastening;

R - roofing profile as in Fig. (7.5.); D - decking profiles as in Fig. (7.6)

Local - localized end distortion;	 Linear - rigid plate distortion.

7.6. Overlaaing Sheets with Variations in the Fastening

Arrangement

The number of sheet perimeter fasteners often varies in proportion

to the applied shear force. In some cases alternate trough rafter fastening

is used at the centre of the span and this changes to every trough fastening

towards the outside.
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Considering just the concertina deformation due to fastening

in alternate troughs at (14- 1) rafters, the outer pair of overlapping

sheets can only distort along their internal edges. This is depicted

in Fig. (7.19). Consequently these outer sheets behave as though they

are double the length of the internal spans because of the effective

distortion anti-symmetry about the first and Mth rafters.

If shear deformation occurs by local end distortion, which is

true for sheet lengths greater than 3 metres, the profile interaction

at a sheet overlap is quite independent of its neighbouring joints.

For panel Shear forces beginning at Q l in the outer panel of

alternate fastening and progressing to Q2 etc., at the neighbouring

internal sheets, the overlap interaction force as given in Sectim 65.3? Ls,

x1	
+ 2 ) (1 - E)
2

where E is the profile overlap factor for alternate trough fastening as

tabulated in Appendix Table (3.2).

Unlike the previous section, the shear flexibility of the outer

sheets is reduced by half and hence the central deflection dLe to

concertina action is,

f Q1 X1 4	 Xi X2	X2 x3 4	 tb)
2

	

A = 2 - 2 • Q2 - 2 - 2	 Q3 - 2 - 2 ""/ C1.1A

This is consistent with the use of k = 2 in the formula of

Section (6.3). C1	2 refers to the free sheet flexibility normal to.IA
the corrugations when 'fastened in alternate troughs to rafters. X.

are the joint forces resulting fram profile overlap distortion.

If sheet distortion is considered to occur by linear plate

moverrents then the analysis of overlap interaction becomes more involved.

In Section (6.3) an interaction formula was developed for one sheet being

k times longer than its neighbour. For sheet shear forces Q
1
 and Q2 at

the first sheet overlap,



The final term is an imaginary joint force to maintain anti-

symmetry of deformation of the outer sheet for which k = 2. The central

shear deflection is represented as for the case of localized end

distortion.

Theoretical analyses of both deformation modes have been

performed. However, as a design formula the roof central shear deflection

may be expressed as a ratio of the deflection due to alternate trough

fastening completely throughout the M bays. Thus,

M2	 b 2
(A

2
 - 1)	 (121 2 - M odd or T3 C1.1Ix (7t) - NE even

A
0	 8	 C1.1A

Approximate formulae have been developed to roughly be equivalent

to the exact theoretical results of the table of Fig. (7.14) such that,

A	 1 + { 2M - 4  /E -
Ao	 4M76	 2M + 1

A	 1. +{M - 2 E- -
Ao

3M-2 M + 3}

local end distortion

linear plate distortion

Over the complete roof diaphragm the central shear deflection

per unit rafter force due to profile distortion may be approximately

given by,

2 2	 2	 2 2

	

b 	 -	 b M 	 1	 2M - 4 

	

A = C1.1E (—a)	 8	 + C1.1A (a) 8 { 4M - 6 +	 + 1)E I
•

where C1.Is (
b
a) 2 is the shear distortion flexibility normal to the

corrugations for every trough fastening.

2
c1. IA (a) is the shear distortion flexibility normal to the

corrugations for alternate trough fastening.

N is the total number of sheet lengths
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M is the number of sheets with alternate trough fastening

on one or more edges

E is the profile overlap factor for alternate trough fastening.



Plate (8.1) Collection of self tapping screws and a tmonel' pop rivet

Plate (8.2) Apparatus for determining the upstand seam fastener strength and
slip characteristics
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CHAPTER	 8.

THE SHEAR STRENGTH OF CORRUGATED DIAPHRAGMS 

The contribution of the sheet-yurlin fasteners to the diaphragm

strength will be examined in this chapter. In addition, the provision

of roof lights is studied with regard to sinole or periodic flexible

bands within a relatively stiff roof diaphragm. This causes purlin

bending stresses and local fastener forces which may limit the overall

diaphragm capacity.

8.1. Connections

A shear diaphragm fastened on all four sides relies on the

strength of the perimeter connections to transfer its uniform shear flow

to reaction framework. Simple expressions have been derived in Chapter

(1. 3 . ) for the ultimate diaphragm capacity based on a characteristic edge

and seam fastener strengths. Welded diaphragms behave similarly although,

the strength per connection is usually so high that local inter-weld

buckling problems are a design limitation, as studied by Luttrell
(12)

In Britain self drilling screws are the usual means of fixing

to perimeter members although bolts and fired pins are suitable provided

that their design shear strength and slip values are reliable for stressed

skin applications. Seam fasteners again may be self drilling screws or

monel 'pop' rivets as shown in Plate (8.1). The individual connection

capacity is a function of the sheet thidkness, width and clamping action.

The latter parameters are properties of the fastener and so, by experimental

testing, the strength may be determined as a characteristic load per mm

of sheet thickness.

Testing of the fasteners themselves has been the subject of much
(46)

investigation	 and at the present time the European Commission on

Structural Steelwork Committee 17
(47) 

is preparing recommendations for

standardization of connection tests.
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nuMber of failure modes for a fastener in shear are apparent.

(1) fastener shearing,

(2) fastener crushing,

(3) tilting and pull out of fastener,

(4) yield of both sheets,

(5) yield of thinner sheet,

(6) sideways tearing.

Mode (4) generally occurs for seam fasteners which is frequently

accompanied by some tilting due to the eccentricity of one sheet thickness.

In this case the clamping action of the fastener is important to delay

excessive twisting and possible premature pull out. A minimum lateral

edge distance of 10 mm is recommended to avoid sideways tearing. Plate

(j2.2) shows typical seam fastener failure.

Mode (5) is the ideal ductile failure for edge fastenings and

the attachment to a thicker member means that the fastener cannot rotate.

A simulated diaphragm apparatus is shown in Plate (8.2) which is

especially useful for testing upstand seams as well as direct sheet overlaps.

Bryan
( 4 ) 

suggests that ultimate shear strengths of 6 and 2.5 kN

per ram sheet thickness should be respectively used as design values for

standardly available self drilling screws and seam fasteners, as in

Plate (8.1). Their slip values are usually much more variable but

Bryan
( 4 )
 again gives design values of 0.15 and 0.35 mm/kN for edge and

seam connections respectively based on the slip at 0.6 times the ultimate

load, which is reasonably close to the normal working load.

However, the initial loading cycle is considerably more flexible

than subsequent tests due to 'bedding-in', and the reloaded values are

only about one third of the above slips. Also, the initial tangent slip,

which is generally important for experimental testing, is smaller still.

A typical load-slip curve for a direct overlap seam is shown in

Fig. (8.1). The sheet thickness was 0.9 mm and the connection was a 4 ram

dimeter monel 'pop' rivet. For comparison the same sheet was formed into

an upstand which had slightly superior ultimate load characteristics of

2.8 kN/lam sheet thickness (Fig. (8.2)). This is probably due to the fact

that an upstand prevents sheet separation and failure must occur by tearing.
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In North America button punched seams are widely used in

conjunction with welded diaphragms to limit the excessive cost of puddle

welding along the sheet connections. This is facilitated hy an upstand

overlap, as shown in Fig. (8.3), and a special tool indents the steel

causing a friction key between the sheets. Preliminary tests indicate

that the strength is highly dependent oh sheet thickness, t, and distance

of the punch from the upstand crest, h.

For closely spaced buttons the nuMber has little importance as

failure occurs by bending of the overlap to pass over the indentation.

Hence the capacity is proportional to roughly * 3 . For 0.9 mm thick

sheet, a rough strength per button is 1.8 kN although this occurs with

very large slip displacements.

Testing has generally been concerned with steel sheets but.

Bryan (48) has stuftied connections in aluminium.

Other fastener parameters of importance, although not necessarily
for stressed skin applications, are the pull out and pull over strengths

for fasteners in axial tension.

8.2. Possible Diaphragm Failure Modes

The strength of a shear diaphragm is not only controlled by the

capactity of the connections. Membrane action is responsible for a number

of design limitations which are summarized below in rough order of

inportance.

1. Sheet tearing around fasteners: This will be discussed

for general diaphragm applications in the next section.

The critical point is usually the outer-sheet purlin

fastener which suffers two shear directions.

2. Local Shear buckling aroundfastener: This mcde often

occurs for wide trough widths of thin sheefing where the

sheet-purlin fastening causes compressive sheet buckling,

as in Plate (9.1). Similarly buckling is possible between

seam or Shear connector fasteners.
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3. Overall shear budding: The most irrportant parameters
are the corrugation depth sheet thickness and distance
between purlins for shear buckling. This mode is not
critical for most applications, but a Chock must be made
to obtain a considerable safety factor.

4. Excessive deformation: As suggested in Chapter 3, a large
degree of corrugation distortion may cause the insulation
to break away producing a serviceability design limitation.

5. Lateral deflection: Short diaphragms are very shear
flexible and it is possible that the strict horizontal
movement limits for buildings could be exceeded. For
large scale diaphragms deflection is not usually critical.

6. Other unlikely failure conditions include compression failure
of the outer purlin due to diaphragm action.

Of course, the framework beneath the sheeting must be capable of
supplying the forces required for equilibrium and the purlin-rafter
connections are very important in this respect.

8.3. Indirect Shear Transfer throu2h Purlins

The strength of a seam is ideally simply defined by the nuMber
of seam fasteners times their characteristic load. However, this takes
no account of the compatibility requirements of purlin movement between
neighbouring sheets. Fig. (8.4) shows how, for an infinite number of
simi]xr sheets, shear displacement resulting from seam slip causes sheet,-
purlin discontinuity. Hence for an exact analysis, the induced forces
in these edge fasteners must be considered as an effective seam resistance.

For linear purlin movement, the sheet is in equilibrium due to the
mcrrent of the applied shear force, the seam resistance and all of the
individual sheet-purlin fastener forces about the sheet centre. Davies (17)

has derived an expression for the ultimate diaphragm capacity, which is
reached when the seam and outer sheet purlin fastener have both failed.
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Considering a unit shear force, the consequent seam slip per

bay has been expressed by Davies, (17) as,

1

1 = nS
Ss	'12S

where ns and n are the number of seam fasteners and purlins respectively.

Ss and S are the seam and sheet-purlin slips respectively.

gi refers to the effect of the number of sheet purlin fasteners, n.

If n becomes very large then will tend to .

A table of 9-1 is shown in Fig. (8.13, which is iNyEl.cet1

whether the fastenings are in the sheet crests (roofing) or troughs (clocking).

It is clear that the purlin will be indirectly subject to lateral

forces which depend on the relative amount of shear force transferred through

the sears. However, purlins are usually laterally very weak as they are

primarily designed for their bending strength spanning between rafters.

Davies (17) inclues a provision for parabolic purlin movements, over the

panel width, a, which modifies the parameter gl. Thus the amount of shear

force effectively attracted to the purlins will be reduced.

He suggests that the dividing line between these two displacement

modes is the relative flexibility of purlin bending (El) and the effective

shear modulus for the sheeting (G1) according to,

a3 
n =	 8 x 103	.< n <4 x 10

5
EI

For 11 below 8000 a linear purlin displacement should be used and

in the above range parabolic movements apply. If r is greater than 4 x 10
5

an effective sheet width based on a parabolic force system is necessary,

given by the value of a at n = 4 x 105.

Davies has carried out extensive finite element analyses of complete

diaphragms to arrive at this conclusion, and by observing the resulting
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purlin movements over a range of panel sizes has Obtained the above

empirical relationships.

He also has derived a similar expression for the slip of the

sheet - sheer connector fasteners, of nuMber nsc . If the perimeter

fixings are all of the saNe type and halie slip, S, then the edge slip is,

A	
nsc + npg1

The case of sheeting fastened on two sides only, as studied by

Bryan, corresponds to nsc = 0 and,

65 
n.n

A tends to for linear purlin movements

The seam fastener capacity, Qs , can only be achieved by tearing

of the sheet-purlin fasteners which pass through the overlap. Ideally,

=nF +nFS s	 pp
•

where Fs
, and F are the Characteristic strengths of the seam and sheet-

purlin fasteners respectively.

However, there is some additional benefit in that the rest of

the sheet-purlin fasteners are contributing to the overall strength by

causing the purlins to absorb some of the applied shear force. A load-

seam slip graph will be bilinear corresponding to the coMbined action of

seam and sheet-purlin fasteners. When the seam fasteners initally fail

due to their higher slip value and lower capacity, the sheet acts as though

fastened only along the purlins until the outer fastener also fails.

Cornplete collapse occurs as the internal sheet,Turlin fastener tear with

little addition to the shear load.

The seams fail at a shear load of,

Q
1 = F	 where A - 1s A	 ns gl n— +

s	 2 S



• 2S

2	 (0p)
where A =
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The end sheet-purlin fastener then fails at an additional shear

load Q2, where,

25

However, at the point of initial seam failure the sheet purlin

fastener force is,

S 
sAQ1

Fpl =	 -F • —
ZS	 s 2S

Thus, 0 =F -F
P P P1

where 0 is the additional sheet-purlin fastener capacity.

The total diaphragm seam strength is thus,

g
1 Ss

Q +Q =F (ri +	 --) +	 - F—) g n1	 2	 s s 2p S	 p	 s2S	 1 p

= Fs
n
s 

+ F
p
g
l
n
p

which tends to F n + Fp n np as n
s s 6

This represents failure of the seam and the outer sheetpurlin

fastener. Complete collapse will occur by tearing of the internal purlin

fasteners but this may be neglected due to the large shear displacements

that:are required.

Davies 
(17)

has derived a rather different expression not based

on the elastic-plastic failure curve, where the shear stiffness gradually

decreases. Using the initial slip relationship throughout for A, it

follows that,

F + n F )ss	 pp 
A	 Ai



	

gib
F +nF)	 	
ss	 pp s

Os	 gl np )
(Ts +	 )
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where A1 assures that the end-sheet purlin fastener and the seam fasteners

act like two parallel springs in distributing the applied shear force

between themselves. Thus,

This formula will give an underestimate to the diaphragm capacity

compared to the previous derivation on page 177.

Strictly the above expression only applies for decking profiles

where seams are in the corrugation troughs. For seams in the corrugation

crests,

k	 s) F
"s '1 S s

Actually, seam failure must also involve tearing of the outer

sheet-purlin fastener even though these are separated from the line of

seam fasteners.

Expressions may also be derived for the sheet-shear connector

strength by replacing ns and Ss by nsc and 2S sc respectively.

The term gl is an important factor for indirect shear transfer

in diaphragms where shear connectors ray not be sea. In this case, the

total applied shear is passed via the sheet-purlin fasteners as a transverse

purlin shear force.

Not only are purlins laterally weak 1-banding but also free to

twist, which is a factor not previously accounted for in finite element

or alternative analyses. In the following section a differential equation

fora will be developed for the contribution of the purlins to the seam

slip and diaphragm strength.
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8.4. Effect of Laterally [teak Purlins

Indirect shear transfer through purlins implies, that for rigid

purlin movement, the shear force must gradually build up in the sheeting

tadard the centre of the panel. Similarly the applied shear force is

amlAetely absorbed by the lateral bending rigidity of the purlins and

the sheet-purlin fasteners spread the load back into the diaphragm. Thus

the sheet shear force at any section x from one end is,

6Q	 -A
(1!/S = —(a- x

a
2

corresponding to a parabolic shear force distribution depending on the

distance x fram the end of the panel width a.

3The central shear force is '--Q where Q is the applied shear.2 

However, for a complete analysis of indirect shear transfer,

the properties of the purlin must be considered corresponding to,

El - lateral bending stiffness and

GJ - torsional stiffness

The general purlin displacements are shown in Fig. 0.4) where,

V and V0 are respectively the tap flange and centroidmovements.

V is the shear shear displacement.

A differential equation solution will be proposed which takes

account of purlin bending and torsion in establishing the seam slip.

Considering an element of a purlin where q is local loading,

the bending equilibrium equation is,

.d4V
0q = n El

dx4

where np is the number of purlins



h2	 d4VID[np c + aTT

dx
4

d2V1	 0 _+ El-
dx

6v
0

e dx6
0
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The simplified torsion equation, omitting warping effects is,

d
20q = - n GJ

dx2

where 0
v - v	 h i	  , and - is the depth of the shear centre from the2

27	 top flange.

The sheet-purlin fastener slip is,

n .n
q	 	 e vs - vE)

where S is their characteristic slip and n
e is the nuMber of fasteners

per mm of purlin length. It is assumed that the individual fasteners
behave as a uniform elastic medium.

Finally the sheet shear equilibrium equation is,

1 d2V
q = -	 S

dx

where C is the panel shear flexibility per mm width. Combining these four

equations and eliminating V and 	 gives,

The solution of this differential equation is given by,

4	 Ajx

V
61 Aje	 + A5x + A6

where Aj are the roots of,

2A
4
 - 2x1 2 + x2

2
For imaginary roots, such that x2 > x1

2
, the solution is,

V
0
 = A sin h a

1
x cos a2x + E cos h a1x sin a2

x + cx
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where x is defined frau the centre of the diaphragm or sheet and observes

the antisymmetry requirements,

7i

2

/x
I + x2 	 /_x

11 + x2a
1	a 2 2

h2
where x1 

= {n C + — }
p	 4GJ

According to the relationships,

d2V diVo 	 d2VE
	d2V

0 E1h2	
d4116

= n EIC	 and

It follows that V and VB must also be represented by the sane

All , Ell respectivelydifferential form, hut. with constants A1, B1 and
replacing A, 4 such that,

dx
2

dx
4

dx
2

dx
2	 4Gj	 dx

4

Al = n CEI { x1 A + y
/2

where y = x2 - x12

El = n CEI {-yA + x.F1

All A 
EIh2

=	
,

4G3 tx1A + y E

E11= 
E _ Elh2

4G3
{-,17A +	 E }

All the linear terms in x must equal the sheet flexibility C,

due to the fact that, if the sheet shear force is unity,

1= dx	 np 
EI dx3

An alternative ddsplaced shape is possible for real roots 04::< x/2)

.which occurs when CZ is very small.

V0 = Ar sin h al
l
x + B sin h a2

1x + Cx



Hence, B = ba A

-x1 sh.cs + y ch.sn
for imaginary rootswhere ba - 

	

	 x
1
 ch.sn + y sh.cs
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where	 a1
 1

Similarly,

1
V = Ar sin h a1 + E 1 sin h a2

1
x + Cx

v
E = At

11	 11
and	 + E

2
where	 A1= n C El (a11) Arr p 

B 1= n C	
2 E

EI (a2 )	 rr p

Ih
2
	1,

2
, AAt

11
= {1 - E
	

141 ) j r

, 2
B 
11 

={ 1 
EIh

2

4GJ 2 j-)	 B

It is a necessary condition for similarity between neighbouring

sheets that,

d2V0	 a- 0 at x = - where a is the panel width.2
dx

2

+Cx

	

a
1a	 a

2
a

sh = sin h	 sn = sin

	

2	 2

	

a
1a	 a2adh = cos h	 cs = cos

	

2	 2

ba = -

alternatively, sin h alla

1
sin h a2 a

for real roots

2



The final condition, to determine the constant A. or A
t , is the

shear force at the seam. The total shear force absorbed into the purlin

is determined by taking mcments about the centre of the panel for the

effect of all the sheet-purlin fastener slips. Thus an equivalent shear

resistance is,

.nn2
F = -	 (V -V)x-9-P- cbca o	 E	 S •	 S

On integration, for imaginary roots, this becomes,

2n n
F = ase P { a2 . ch

a1

-7 	 _ a2--1.44	 sh.sn (32A + all)}

al2

2	 2-
+ch.sn	 2 -	 sh.cs 

((a - al )A22a1 a2A + (a2
2 - a

1
 ) B) +	 2 2a1a2

-14

a12
2

a12

where a12 = a12 + a2
2

=	 Al
	

and 1= En- El

a/2

Similarly for real roots

2n n -	 a	 /
sh	 + Ei i •cho -

	

F= as A{-a-2a/.	 - 1/ 2 • 1	 2a2

	

1	 a1

1
/2

.sh
2 1

a2

a/ari

	

where A = - A
r1 and 1= B - B	 chi = cosh—

	

r r	 1	 2

a/a
sh2

 = sin h-
2
 etc.
2

So the total seam equilibrium equation is given by,

ns
1 = — A + F

the end shear displacement, A, between seams is such that,

A = A {sh.cs + ba dh.sn }a
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1 a	 laor	 A = A
r {sin h al 2- + ba sin h a2 T }2

Thus,

1' A =	 where n = ne .a
.r]Is	 . n
S

+ g np-
S

g is a factor reflecting the influence of purlin bending. For rigid move-

ments g =	 and as non linearity increases so g will gradually fall. It

should be noted that Davies' factor gl is equivalent to 2ng, where n is

the total number of sheet-purlin fasteners in the panel width.

f-
neGJThe factor g is a function of El, 72-, a, C and -but is

unaffected by the nuMber of seam fasteners.

An alternative form for the influence of sheet-purlin fastenings

on seam slip is an effective width concept as represented by,

aeff = a.12g

aeff is thus an effective diaphragm width for localized linear

purlin movements, Characterized by a redundant internal portion of

- aeff).

Hence, the diaphragm capacity from section (8.3), is given by,

Qs = Fns + 2Fp
 g.np.n

8.5. Discussion of Theoretical Results for Diaphragm S trength

The differential equation solution of the previous section has

been expressed in computer form as in Appendix 6.2) in order to determine

. the factor g which represents the proportion of shear force attracted to

the purlins due to sheet or panel shearing. Output is restricted to the

displaced shapes VE, Vo and Vs at eight points from the centre of the

diaphragm, in addition to values of g, and the effective sheet width.
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A factor of importance is the resultant sheet shear force whidh,

for linear purlin movements, rises parabolically towards the diaphragm

centre when added to the shear transferred directly via the seams. For

localized purlin deformation, the maximum shear force is lower, but

rises initially more steeply as in Fig. (8.4).

The proposed analysis may be applied to the equilibrium of

complete diaphragms as well as a single sheet. Indeed once the parameter

g has been determined for a given purlin and fastening arrangement, then

this may be used to evaluate the diaphragm design strength for any width

or nuMber of seam fasteners. For the longitudinal edge capacity, the

seam fastener properties are replaced by those of the sheet- shear

connectors and the effect of the internal seams may be superimposed later

by a local analysis.

However, for very wide panels, most practical purlins will suffer

considerable local bending as implied in Fig. (8.7). For a lateral

inertia of 5 x 10
5
 mm

L4
 corresponding to two 3 mrn thick, 100 mm wide

purlins, it is clear that even the most torsionally stiff members decay

to a constant effective panel width.

The influence of sheet width for an inanitely torsimallu st=1-H

purlin is depicted in Fig. (8.5) and the purlin displacement V0 again

indicates that the end deformation remains constant for increasing panel

width. If the torsional stiffness is reduced to realistic proportions,

the displacements of the purlin tap flange y and oentroid y are

clearly much different, consistent with cross-sectional twisting rather

than lateral bending. As in Fig. (8.6), Vo tends to remain linear wiailst

VE follows the Shear displacement between sheets.

A summary of the purlin performance is shown in Fig. (8.8) for

the relative sheet displacement A, when the number of seam fasteners is

zero, corresponding to indirect shear transfer. The panel width, it is

assumed is large enough so that local purlin deformation takes place. Thus

A is independent of the sheet width and in this case is related to g by,

g	
An
	 and	

aeff = 12.g.a
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Fig. (8.8) may be used as a design chart for both the end

slip A without shear connectors and also indirectly gives a value for

g, which may be used in the expression for overall diaphragm strength

or seam slip.

For n, number of purlins, ns and S s
, number and slip of the

seam fasteners, the actual seam slip will be,

1

Similarly, for seam and sheet purlin fastener capacities F
s and F respectively

the overall diaphragm strength may be expressed as,

Os = Fs.ns.+ 2F
P
.n.n

P
.g

The variation of A, and hence g, shows how the purlin behaviour

asymptotes the two limits of zero bending and zero torsion for every and

alternate trough fastenings. Sheet shear flexibility has relatively

little importance compared to fastener slip. Fig. (8.9) reveals how

increasing the flexibility, C, reduces the effective sheet width. However,

typical values of C are less than 0.0001 mm/kti/uu sheet width, below

which C has little effect on aeff .

In conclusion, for standard sheet widths of less than 1 metre,

the concept of linear purlin movements is reasonable. However, for

complete diaphragms, relying on the inclirect transfer of rafter shear

via purlins, an allowance must be made for the effect of purlin bending

and twisting as given by the factor g.

. For most practical purlin sizes the equivalent panel width acting

in indirect shear transfer is certainly less than 2 metres which suggests

that the overall diaphragm strength is constant and is independent of the

panel width.

Member torsion cannot be ignored as it severly reduces the value

of g which nominally equals 1/12 for linear purlin movements. Davies'

factor gl is determined by taking the influence of the discrete fasteners,



whereas g assumes that the fasteners form a uniform medium. By consulting

Fig. (8.10) it may be seen that g always underestimates the contribution

of the sheet-purlin fasteners and hence represents a safe design formula.

Non-linear purlin movements can only be approximated by quadratic

displacements and the complex interaction of purlin, sheet and fastener

properties means that no single parameter can be used to determine the

point at which rigid purlin displacements break down. Hence the factor

g1 must be considered inaccurate for large scale diaphragms without shear

connectors.

The alternative parameter g which takes into accalmtmenber torsion,

bending, fastener slip and sheet flexibility is a much more realistic value

for practical diaphragms in determining strength and slip. Hcmever, further

work is required to estimate the effect of discrete fastenings compared to

a uniform fastener medium.

Bir adjusting the boundary conditions this differential equation

approach may be used to evaluate the effect of rafter forces supplying a

transverse force to the roof diaphragm via the lateral rigidity of the

purlins.

Local purlin bending and twisting will exist around the rafter as

in Fig. (8.12), due to the eccentricity of applied force and sheeting

resistance when shear connectors are not used.

8.6. Com2arison of Differential Equation and Finite Element

Results for Dia2hram Strength

The equilibrium of both individual sheets and overall diaphragm

are controlled by the same equation which includes the parameter g to

account for the influence of sheet-purlin fastenings on the shear capacity.

Davies (49) has performed a nutber of finite element studies of

the shear deformation of plate girders using corrugated webs, and can

model individual sheets and their fastenings. He has varied the sheet

width, and metber inertia to ascertain the effect of fold line bending

on the seam slip. Results are expressed in terms of sheet-meMber fastener
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forces and their comparison with the corresponding differential equation
solutions are indicated in Fig. (8.11).

Member torsion has been ignored, which is correct of folded
plate roofs where the fold line acts in conjunction with two neighbouring
girders. However, for normal diaphragms: it is likely that purlin twisting
will reduce g and the effective sheet width.

For two purlins each of inertia 1.54 x 105 
1111114 , the effect of

increasing sheet width is to maintain a roughly constant region of member
deformation of 0.8 m compared to the maximum width of 3.34 rrh Wien the
inertia is increased to a very large value of 9.2 x 106 mm4 , the effective
sheet width only rises to 1.6 getzes indicating that a reduced width

concept will apply for most realistic panel sizes.

The seam slip displacement comparisons were made for the penult-
imate folded plate roof sheet as displayed in reference (49) which is
connected to its neighbours by 22 seam fasteners.

The agreement between the theoretical and finite element results
is good especially for the more gross purlin bending cases. Fold line
displaced shapes show that linear meMber movements break down for widths
greater than 1 metre, even for this relatively rigid example of zero
torsion. It may be concluded that the parameter g, as developed in Section
(8.4) is on reasonably exact design value for sheet slip and hence overall

diaphragm capacity.

8.7. Holes in Dia2hragms

Utllin the broad limits of suitable roof diaphragms there are
many practical deviations from that of a simple shear membrane. Quite
apart from the non-homogeneity of the medium due to discrete sheet
lengths, and variations in the fastening arrangement, provision is usually
made for roof lights, generally in same sort of pattern.

Indeed, the poor distribution of a given area of roof lighting
may be a serious design limitation to the shear capacity of the roof
diaphragm.



The design of the openings themselves is also a major factor.

Ideally, the most suitable roof lights span between neighbouring purlins

and the unsupported longitudinal sheet edges are attached to a stiffening

meMber. In order to transfer the sheet shear force, the same nuMber of

seam connectors are used in the reduced diaphragm depth as in the complete

depth and it is assumed that the shear force normally passing through

the hole area, is spread uniformly over the rest of the seam.

Haaever, with some roof lights, conditions may not be so favourable

for smoothing the shear transfer across an opening. For example, a simple

hole cut in a sheet is subject to severe local distortion by the unresisted

profile shear flow.

If all these practical difficulties are ignored in order to obtain

the overall diaphragm performance, then an opening may ideally be zepresented

as a local increase in the shear flexibility of the diaphragm depth. Thus,

a single roof light or periodic distribution of openings may be theoretically

modelled by a flexible band with an overall stiffer medium.

However, in some cases the removed sheeting may be replaced by

a roof hitt_ frame of the same shear stiffness.

As previously discussed in Chapter (2.3) , the distortional

component of shear deflection dominates in all but the largest and most

lightly seam fastened diaphragms. This flexibility is highly dep,_ndent

on the length and continuity of the individual sheets. Dor-example,
halving a sheet length quadrauples its Shear flexibility, and hence the

shear deflection of the reduced diaphragm depth may easily be an order of

magnitude greater than its neighbouring sheet.

The relative flexibility of the reduced to the complete diaphragm
N	 2

obpthisgivenbyb ili b.whereb.is the depth of the individual

sheeted lengths between openings as in Fig. (8.12), and 100 is the complete

diaphragm depth. Each length of sheet attracts shear force in rough

proportion to the square of its length and hence the flexibility of the

reduced diaphragm depth is defined by the reciprocal of the sum of the

sheet stiffnesses.
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Laterally weak purlins are constrained to follow the deflected

shape of the sheeting and their bending stresses are relieved by cross-

sectional twisting and slip of the fasteners. Thus, the purlin to sheet

fasteners are subjected not only to the global transfer of shear but

also the effects of purlin stiffness around a diaphragm opening. A

proportion of the diaphragm shear forcd is hence taken by lateral bending

of the purlins and the induced flange stresses may be very large. In

addition, the shear forces in the seams in and around the hole are subject

to some variation from the simple applied shear force.

For most general applications, two cases may be readily examined

being a discrete flexible band within a stiffer medium corresponding to

a single opening and a periodic distribution of flexible bands. The

parameters of most importance are the properties of the purlin, number

and slip characteristics of the sheet-meMber fasteners, and the flexibilities

of the complete and reduced diaphragm depths.

A differential equation solution assumes that the influence of

the discrete fasteners may be spread out to form a uniform medium upon

whidh the purlin is free to bend and twist.

Considering an element of a purlin as in Fig. (8.13) its equations

of equilihritin may be defined simply as,

d4V0
q = n

p
EI dx

4

	

d20	d4
0andq = - n GJ	 + n ECw

	

P dX2	 P dx4
where q is the local fastener force/Mm

El and GJ are respectively the purlins bending torsional stiffness. The

sheet:-purlin fastener load-slip relationship is,

n n
q	 (vs vE)

where n
e is the nuMber of sheet-purlin fasteners per mm.

S is the slip in mm per fastener force in kN

n is the nuMber of purlins.
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The sheet shear equation is,

1 d2N;

q	 j- 2dx

where V0 and VE are the purlins centroid and tap edge movement, respectively.

V is the sheet displacement.

Also, VE - Vo = 0 2--

For ease of analysis, it has been assumed that the restraint due to warping

term, Cw, may be omitted, although it is appreciated that for wide,

torsionally weak sections there will be flange stresses generated which
'hresist the pure St. venant twisting. 2-represents the distance from the

top flange to the purlin shear centre.

Reduction of the above equations to a single differential equation

for each section yields,

GJ

d6
{ n C. +

'1e dx	 p

cILIV
0 , 1 d2V0—

dx El dx2
4 =0

where x is defined as from the centre of the opening. The factor n is

the to the number of purlins and modifies C i which is the flexibility of

either the stiff, or the flexible region, where C 2 > Cl.

The solution of this differential equation depends on whether

the roots are real or imaginary, and on the inherent anti-symmetry of the

deformation. Also, for a single roof opening, the local purlin bending

must decay to zero away from the flexible region. Assuming a solution of

the form,

4	 Xix

0  
i=1 

1
	 EK C,

the displacement parameters may be adjusted according to the two cases

below.



1-}Li	

2

+ X2
a2 - 	 2
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Case a): A single flexible band in a diaphragm as displayed in Fig. (8.14).
The solution for an opening width a, is,

1

V = e
-b1x

A sin b2 x1 + B cos b2 x
1 1 + Fx1 + A

for the stiffer portion which observes the decay requirement for x1 = co,
awhere x1 = x - 2, A is the displacement to the cente of the opening.

V0 = C sin h a1x cos a2x + D dos h a1x sin a2x + Gx for the flexible region

which is antisymetric about x = 0.

/ EIS

x	 n
ewhere x2 -

\

h
2

n C +
p 2	 4G.7	 ( —ne

1,2X
3 

4- X
2 b -	 x2 = ji npC1 +14-Gj	 / "1"12jL1	 2

b2 -]
-x +3	 2 

2

C and C2 are the corresponding shear flexibilities of the stiff

and flexible portions respectively. The roots in this case are imaginary,
2

sudh that x> x1
2 
and x> x:3

2 
If both set of roots are real fx or x:3

2
2

11	 11- x	 -b x
Vo = A	 +e b1	 Be ,
	

± 1'; x
1
 + A

for the stiffer protion and,

V0 = Cr sin h al
l
x + Dr sin h a2

1
x + Grx

for  the flexible section which again observe the decay and anti-symmetry

requirents.

1	 2	 2	 1	 2	 2a1 =	 1 -1-jx1\
- x2 1.)	 x	 x1	 •	 3	 3

- x2

al -j 1 2
+ x 2

> x2) then,2



- 193 -

2	 2	 2
If x > x3

2
 and x > x2 then the appropriate imaginary and real

forms must be cotbined for the complete displaced shape of Vo given by terms

in A, B, Cr and Dr.

The sheet movement is given by,

d2V	 d4V
- n C. El

Pdx
2	 1 dx

and the purlin top flange movement is,

d2VE	 d2V0 Elh2 
d4V

0

dx
2

dx
2	4GJdx4

J r!i implication 'Vs and VE have the same basic form as Vo with

merely different displacement constants replacing the unknowns A, At, B,

B, C etc. These new parameters are summarized on page 195 and may be

expressed in terms of the above constants.

The joint compatibility conditions are such that equality of,

V ciV0 , d2VO
	d3V0

0'	 and --T- must be maintained at the boundary between thedx dx2 dx

flexible and stiff regions (x=

applied, then,

aydaVID	 1	 S-El n
dx + —
	 - 13

Therefore F = F1 = C1

G =
1 
= Cand

2

0 S
Also,	 - VE)

dx	 "e

dv	 dv	 d
3vo

0, 4GJand	 = EJ_L
dx dx h2 dx

3

In addition, if a unit shear force is
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Hence, all the linear terms in x such as F, G, Fr and Gr must

reduce to their respective sheet shear fIexibilities for the above

equations to hold.

As a final condition V is made equal at the boundary for both

sections implying that no slip occurs in that seam. It is assumed that

the effects of seam slip may be superimposed as these movements are small

compared to the deformation of the purlin.

The five conditions may be solved to evaluate the resultant

displacement, A, at the centre of the hole, depending on the roots of

the controlling differential equation. Each boundary condition may be

represented as a row of a matrix as in Figs. (8.25) and (8.26) and the

parameters A, P, C, D, and A may be solved in terms of the unit applied

shear force and the sheet flexibilities. Different solutions exist for

both the real and imaginary root cases, and if the condition exists

where the roots are real for the stiff region and imaginary for the

flexible region, then the relevant oclumns in each matrix must be coMbined.

The displacement parameter At, pp Cr and Dr apply when the roots of the

differential equation are real.

After solving for these parameters, the net shear force in the

sheet may be redetermined by,

dV	 d
3
V
0

1 is n.
C. clx

dx
3

For the case of an isolated hole it may be expected that the purlin

manbers reduce the seam shear forces around the opening.

. An important design parameter is the tearing force induced in the

sheet-purlin fasteners local to the hole. The maximum force is given by,

\S VS	 E 

The purlin bending stresses may be significant and are represented

as,



2	 2where 171 =ix2 - xl
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d2vE

= EZ • dx2

where w is the overall nember width.

A number of factors detract from the validity of this analysis.

The main sources of error are likely to be,

1. The assumption that the discrete fasteners may be spread

out to form a uniform flexible medium.

2. The omission of warping restraint of purlin twisting.

3. The restriction of free twisting of the meMber due to

attadhment of the tap flange to the sheeting.

All these factors will effectively add to the torsional stiffness

of purlin movement and raise the relative lateral bending to twisting

tendency.

Consequently, the analysis may be expected to underestimate

effects such as purlin lateral bending stress but overestimate deflection.

Displacements of the purlin and sheeting for a single opening

depending on the nature of the roots of the controlling differential equation.

(I) _Roots Imaginary

For the flexible section comprising the hole,

V
0
 = C sin h a

1
 x cos a

2
 x +D cos h a

1
x sin a

2
x + C

2
x .

V = C1 sin h a
1x cos a2x + D

1 
cos h a1 x sin a2x + C2

x

11
ccs h a x sin a

2x + C2
x= C

11 
sin h a x cos a2x + D	 1

1

C
1 
= n

p C2 El { x1C + y1
D }

D1 = np C2 El {-y1C+x1D}
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Elh2C
11 

= C
4GJ	

{x1C + yip }

D
ll 

= D 4a
EIh

2

Y1C x1D}1-

For the stiffer mediurt,

-b1
 x

1
-b1x1

V
0
 = Ae	 sin b

2
x1	 1x1-F Be	 cos b

2
x + C

1
 + A

a
where x

1 = x - -2

-b x
1

-b
V = A

l
e 

1
Sin b

2
x1 + E`e ixi cos b

2
x
1
 + C1 x1 + A

-b x
1

-b x
11

V = A
11

e 1	 .11 1sin b
2
x + b e	 cos b

2
x1 + C xi + A1

l l. ll .1 1 have the sane form as C 1, Di , Cli , Dil
A r E, A , 
hi  respectively,

above except that x3 replaces x1 according to the difference in sheet

flexibility and C 1 replaces C2.

(2) Roots Real

For the flexible region,

V
0
 = C

r
 sin h a

1 lx + D
r 

sin h a
2
1x + C

2
x

=
1 sin h a

1 ix + D
1
r sin h a

2
1x + C

2
xV C 

11	 .
V = C	 sin h a1 1x + D

r

11 
sin h a

2
1x + c

2
x

L
where Cr1 = n

p
C

2 	2 El (al-) Cr

2
D

1
1 = n

p
C
2 
El (a

2
1) D

r

2Elh
2

C
11 

=
r	

CL 4G3 (a1. -") ) C
r

EIh
2	2

D
11

r
 = (1 4G3. (a2l) ) D

r
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For the stiffer medium,

-b2x1 -b1
x

+ B e	 +Cx+AV6 = A re 1

-b1x	
-b x

= A1 re 	 + E le 2 + C1x + A

11 -b1x	 11 
-b2x

V = A re 	 +B e	 +Cx+ A1

where Al,
1r	 r	 r'

that a1, and a2
1
 are

form of Al, Arl

of openings.

r 
have the same form as Cr 1, Dr' etc., except

replaced by bll and b21 and C2 by Cl . The same

,A11 , -1b etc., exist for a periodic distribution

Case (2) •

A periodic distribution of flexible bands within a stiffer 'tedium

corresponding to a uniform pitch of openings as in Fig. (8.15).

The solution of the differential equation for imaginary roots

(N12 and x3 2 <	 is,

V6 = C sin h alx. cos a2x + D cos kaix. sin a2x + Gx

for the flexible protion, where x is measured from the centre of the opening

and for the stiffer region, which again must observe anti-symmetry,

1
V6 = A sin h a1 x . cos a2

x1 + Boos h a1 x1 . sin a2x1 + Fx + A

where x1 =
a + b

2

is the net displacement between neighbouring points of anti-

symmetry and a and b represent the respective widths of the flexible and

stiff regians.

al' a2' lc11 , lc'2 are the roots of the controlling differential

equation and are unaltered fram case (/) •
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If the both sets of roots are real (x i2 and x3
2 > 4 then,

V0 Cr sin h al
lx + Dr sin h a21x + Grx for the flexible section

V . Ar sin h b1 1x1 + B sin h b2 1x1 + Frxl +A for the stiff section

1 a + bwhere x = 2

al
l 
' a2

1
' bl

l
' b2

1 are the same as case W.

The boundary conditions for a uniform applied shear force reduce
the constants G and Gr to C2' and F and Fr to C which are the corresponding
sheet flexibilities of each region.

Again, purlin movement compatibility must be ensured at the
joint between the two regions

dVin matrix form for, V, 00 dx

and hence four equations may be written
, d2V 	d3VO and O

dx2 dx3

Together with a final equation for continuity of sheet displacement,
V ' the matrices of Figs. '(3.27) gnd (8.28) may be solved for the displacementS
pararreters depending on the nature of the differential equation roots.Vs and

VE have the same form as V and the displacement constants are modified
..11to giveC1 ,D1,A11 r.bretc., as for the simple opening case.

If the roots of the fleXible region are real and those of the
stiff region imaginary, then the relevant columns of each matrix may be
patoined to solve for A, B, Cr , Dr and A.

8.8. Discussion of Differential Equation Results for 02enin2s
In Dia2hra2ms 

dV1
On redetermining the net sheet shear force as given by Ci dx

where Ci co	 shear corresponds the sheet she flexibility at the section under
consideration, the expected distribution is shown in Fig. (8.16). For a
periodic pitch of openings the shear force variation must have peaks or
troughs at the points of anti-symmetry. In the more flexible sheeted
region, C2 , the purlins will absorb some of the applied shear, corresponding
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to the transfer of force via the edge fasteners.

The purlins are, in effect, smoothing the shear displacement

around the opening and the degree of force attraction is very much related

to the ratio of purlin to sheet flexibility, C 2 . As determined in the

analysis of indirect shear transfer via purlins, the torsional stiffness

parameter, J is perhaps more important than the lateral bending stiffness,

I, due to the eccentricity of sheet force from the centroid of relatively

flexible purlins, 4. Fig. (8.2.7) shows, for a single opening in an

infinitely wide medium, how the purlin movements are influenced by I and

J. In this case the 2 metre wide region representing the opening is

roughly consistent with the flexibility of a 4 metre long sheet fastened

in every corrugation.

It is clear that, for realistic proportions of J/h2 , the purlin

top flange and centroid movements are widely differing, which suggests

reMber twisting rather than bending.

Considering the case of periodic openings at a 2 metre pitch

with very high shear flexibility, the purlin displacements at the approx-

imate practical limits of J4h2 are indicated in Fig. 0.18). Again,

purlin twisting seems to be a more flexible made than lateral bending.

The central displacement for a unit applied shear force is

reduced considerably indicating that the purlins are attracting a significant

proportion of the sheet hsear around the opening.

Ideally, the periodic and isolated hole solutions should degenerate

to the same solution for a very wide pitch of openings. This is considered

in Fig. (8.19), for hole widths of -1 metre at 3.6 metre spacing and it is

apparent that the two purlin displaced shapes are reasonably close.

However, displacements are relatively unimportant compared to

their related sheet-purlin fastener forces and purlin bending stresses.

Due to the relatively high sheet shear stiffness in practice, the purlins

tend to follow the displaced shape around the opening and the consequent

lateral bending is only relieved by fastener slip and meMber torsion. The

The maximum purlin stress, a, at the boundary between the flexible and

stiff regions rises with opening width until it is constant at about 1.5
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metres. The computer analysis of Section (8.7) was performed for a purlin

width of 100 mm and hence the extreme bending stress must be modified by

w/100 as in Fig. (8.19), where w is the total member width.

Fastening in alternate troughs tends to reduce the maximum

bending stress as the degree of fastener slip increases. Similarly the

maximum shect-purlin fastener force rises with both I and J as in Fig.

(8.20). The variation of purlin bending stress with opening flexibility,

C2' and purlin inertia, I, is shown in Fig. (8.22) , for zero twisting.

The analysis of both isolated and periodic openings has been

written as a computer program and a listing is shown in Appendix 6.3).

Output is restricted to purlin displacements, the maximum purlin bending

stress and sheeb-purlin fastener force, as well as the sheet shear force

at certain critical points.

The nuMber of variables are too great for design Charts and

only typical results have been presented.

8.9 . Com2arison of Differential Equation and Finite Element

Results

To assess the accuracy of the differential equation solution of

Section (8.7), for single or periodic holes in a diaphragm, a typical

practical shear panel was examined by the finite element method. The

geometrical arrangement is detailed in Fig, e.231 which shows how the

sheet seam and purlin fasteners may be modelled by equivalent springs.

A, panel of 5.4 metres depth and 4.5 metres width was chosen, with

a central 0.9 mwide opening spanning between the two intermediate purlins.

For fastening in alternate troughs a typical profile R value may be used

to evaluate the shear flexibilities of the stiff and flexible regions as

.00013 and .00058 mmAN/mm respectively. The four purlins were each of

lateral inertia 5 x 105 nu, and the torsional stiffness was necessarily

infinite for this two dimensional analysis.

The cantilever panel was subject to a unit shear force and the

finite element solution performed to ascertain the purlin displaced shape,
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local bending stress, and the induced sheet,Turlin fastener forces.

Geometrical and member data was fed in for both line and plate elements,

as well as for the fastener springs. Dr. J. M. Davies developed this

finite element program to deal with general diaphragm arrangements.

The differential equation solution was performed for a periodic

pitch of openings based on points of anti-syramtry at the diaphragm edge

and the centre of the panel. Thus a and b equal 0.9 and 3.6 metres

respectively. Purlin displacements are shown in Fig. (8.23) indicating

the observations from the finite element M) and differential equation

0.E.) solutions for J = 00.

It is clear that the central displacements agree reasonably well,

the F. E. and D.E. results being 0.50 and 0.47 mm respectively compared to

a simple shear deflection of 0.51 mm. For comparison a typical torsional

value of J/h
2 = 0.5 was also studied.

bending
An interesting result from the F.E. analysis is the end rafter Adue to

the axial forces transferred from the intermediate purlins. Even though

the lateral inertia is substantial ao7m.) there is considerable degeneration
in the linear axial strain assumption between the outer purlins. In fact,

at the fixed end the intermediate purlins do not seem to contribute to the

diaphragm inertia. This is worth extra investigation as scEe of the

flexibility facbors listed in Chapter a.4) are influenced by the number

ofpylrlins.

The distribution of purlin bending stress is also shown and has a

maximum V.E.) value of 4.1 N/mm 2 . Similarly the sheet-purlin forces are

indicated although the finite element observations are also influenced by

the local sheet slip effects. However, taking an approximate mean the

maximum edge force is 0.09 kN compared to 0.18 kN from the D.E. solution.

Again it should be noted that the differential equation will always

overestimate the sheet-purlin connection forces as it assumes a uniform

fastener medium for solution, yet takes the worst displacement at the

loomdary between the stiff and flexible regions to evaluate the resulting

slip. The seam fastener forces tend to be less than unity and correspond

to 0.89 and 0.92 kN for the F.E. and D.E. solutions respectively.
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In conclusion, openings in diaphragms constrain purlins to follow

the resulting shear displacement with consequent high local purlin and

fastener forces. The differential equation solution presented in Section

(8.6) seems to give a reasonable solution for the displaced shapes and

local stresses and is left in computational form in Appendix (5.3).



Plate (9.1) Local buckling around trough fasteners

Plate (9.2) Buckling wave passes through every fourth trough fastenings at the
intermediate purlin for sinusoidal corrugations
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CHAPTER	 9.

SHEAR EUCKLING OF CORRUGATED SHEETING

9.1. Review of Theoretical Investigations for Flat Dia2hragms

Relatively little research effort has been expanded over the years

into the shear buckling prdblems associated with orthotropic plates,

compared to other plate buckling theory. The first exact solution for

shear buckling of an infinitely long isotropic plate was provided by

Southwell 60) in 1924, who developed the governing differential equation

giving a-solution for the critical shear stress of,

,
where D is the plate bending stiffness Et

3
/12 CL - 

2
JV 

t is the sheet thickness

b is the plate width

ks is 5.35 for a simply supported plate.

61)Stcrwell	 , in 1943, considered the effect of elastic restraints
62)against edge rotation and later authors such as Badianski 	 studied

variations in the boundary conditions of isotropic plates. The buckling

of plates under coMbined stress systems including shear was investigated

by Batdor:f 63) , who developed an interaction formula for shear and compressive

stress.

Using the fact that ks increases as the panel width to length ratio

decreases, isotropic plates may be strengthened by dividing the panel

up by means of transverse stiffeners. This was first studied by Crate (54)

in 1948.

The shear buckling of orthotropic plates was initially examined by

• 65)
Bergmann and Reissner	 who considered an infinitely long plate with

•zero bending stiffness in that direction. A similar analysis was later .

presented which derived the critical shear flow Qcr as'



.Qcrb2

4 (Dx Dy3) 1/4

Is 8.3 simply supported edges
15.3 clamped edges
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where Dx and Dy are the minor and major bending stiffnesses respectively.

Seydel (56) presented a general method of solution allawing for

elastic rotational restraint at the panel edges. The first direct application
57)to obrrugated sheeting was made by Peterson and Card	 who gave

buckling criteria for long clamped corrugated webs with complete restraint

against warping along the edges.

Recently, Hlawacek 58) has studied the shear instability of orthropic

panels by using an energy method approach based on an assumed buckling

wave shape. This was later refined. by Easley and McFarland (59) who used

a wave defined, as in Fig. 0.1), by,

w = A sin 3 - ky) sin-

k is the buckling wave slope to the major bending direction
is the wave pitch and b is the panel length

x and y are the axes directions.

This relationship strictly only applies for an infinitely wide plate,

as it violates some of the lateral boundary conditions for finite dimensions.

Hadever, the acuteness of the buckling wave k, for highly orthotropic plates,

means that for panel widths greater than 2b, no increase in the critical

shear load will be observed.

The solution proceeds by a Ritz technique of establishing the total

energy due to the two directions of bending energy, and torsional energy.

This is equal to the work done by the uniform shear stress in creating the

wave. The total energy is expressible in terms of the wave pitch and

inclination which are independent variables. Thus by differentiation with
respect to each, the minimized energy expressions may be used to develop an
equation for the critical shear buckling load.

For the buckling load (MOH) they(59) obtained,



it follows that, Q	
36 Dx1/4 Dy3/4

cr
b
2

Dx11_If y
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2
t
2

r,(7 . 11
2

ar	 + 3k +	 + Ecc
2--	 2kt-1 b2 2kb

2

where k is the smallest root of,

3
11	 444. p_21--8Dy2k8 +	 Dy.Dxy k6

+ (11 DxDy -	 3DxY '	 DX Dxy) k2 4Dy

.	 2
+ PxY ij3C	 Dx

2
) = 04Dy

where Dy and Dx are again the orthogonal bending stiffnesses and Dxy is

the torsional stiffness.

However, for Dy » Dx and Dy	 Dxy, Easley (20) showed that this

reduces to,

'Dx 1/4
k= 

(li—Dy)	
and also t = b (	

)1/4

PY	 .

H1avacek (58) assumed that t = kb which gives a corresponding critical

shear load per inn, Qcr, of same 14% greater than abnve

ADiaphragm shear buckling has not been studied experimentally to any
that

great extent due to the factA the points of support, such as purlins, are

usually sufficiently close that failure of the connections occurs before

the buckling load can be reached. This will undoubtably be the case for

folded plate roofs, as will be discussed in Chapter 10, shear buckling is an

iirportant design limitation.

055)It should be noted that Reissners'	 equivalent formula for Qcr

has a constant term of 33. However, from experimental observations and

theory, Easley showed there is same post buckling strength which does raise

the buckling load, and hence the above formula is sufficiently accurate for

design use. Plate (12.1) shows a typical shear buckling failure of highly

orthotrepic sheeting.
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9,2. Special Notes on the Shear Buckling Formula

The simplified formula for the critical shear load of orthotropic

sheeting is given as,

36	 1/4 3/4Qcr =	 Dx 

Dx and Dy may be expressed in terms of the dimensional properties of the

corrugation according to,

d "Et3Dx =	 .
12(1 - v'

2
)

and Dy =

where s/d is the profile perimeter to pitch ratio and 75 is the profile

inertia for a 1mm thick sheet. E is Young's modulus, t is the sheet thickness,

and v is Poisson's ratio.

So,4cr-
b -)
2	 1/4

Two practical Observations may be made from this equation in cases

where a diaphragm is subject to hiati shear and normal loading typical of

folded plate roofs using corrugated steel. A, whole range of possible sections

and sheet thicknesses exists and it is not apparent which criteria control
(60)the optimization of the buckling load.

For symmetrical profiles where the top and bottom plate widths are

-re-levant -payareters may he coMbined for constant material volume,

V, and section modulus, E, such that,

V = st
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11	 3/4 1/4 h3/4

rThus
E Q = -2- "	 dc	 b

where h is the profile depth.

If V 1 E and d are kept constant then,

3/4

0 m —
cr	 s



The section which maximizes the buckling load must maximize the

depth and minimize the corrugation perineter.

Fig. (9.2) shows the gain in buckling load for various side slopes

of corrugation of the same section modulus and material volume as a

rectangular profile 1 mm thick and 30 ran, deep. It is clear that a triangular

profile would tend to be most suitable from buckling considerations.

The second observation refers to the possible design problem where

the shear buckling load of the sheeting is above the capacity of the

diaphragm designed on simple bending alone. In this case it is debatable

whether to increase the sheet depth or thickness. Considering a rectangular

profile, it follows that by increasing the sheet thickness, dt, the gain

in buckling load dQ, is,

dV	 3 dV
dQ	 3 1	 —— —	 2 V2 t	 C2h +

A similar expression may be derived by taking a small increment,
h.dh, in the profile depth. For all practical values of	 It may be shown

that it is more beneficial to increase the profile depth than sheet thickness

to raise the shear buckling load.

The formula for Qcr only applies for a uniform orthotropic medium.

Local buckling around the fasteners in relatively wide trough plates is a

severe design limitation. This has been observed for 100 mm wide trough

plates using self tapping screws in 0.6 mm thick sheet, and occurred at

3.7 kN fastener force. A typical local buckling failure is illustrated in

Plate (9.1).

In recent years, many innovations have been made in wall panels

which use flat panels periodically stiffened, as in fig. (9.3). clearly,

dear budding may occur by a ccnibination of local inter-stiffener buckling

and overall failure, which can only be merely approximated by theory.

Profiles, thenselves, may have sufficiently wide troughs that failure occurs

across only one or two corrugations, which consequently have a lower average

Dy value than that assumed in the evaluation of Q. Hence care must be taken

in the use of the buckling formula, especially with regard to the equivalent

orthotropic medium.



9.3. Effect of Periodic Intermediate Purlin Fasteners

The simple theory for the shear buckling of corrugated diaphragms

has been developed by assuming that the buckling wave is made up of

sinusoirWl curves of pitch b and t in the y and x directions respectively,

as in Fig. (9.1).

For highly orthotropic sheeting the wave is at a small angle to

the major bending stiffness direction which may be as low as 5° and hence

the practical boundary conditions may influence the buckling wave. The

fastener spacing may also be close to the pitch of the x direction sine

wave.

Diaphragms usually consist of a number of purlins with sheeting

spanning between. Fastenings are often relatively sparce at the internal

purlins compared to the perimeter members, and may be as far apart as 450

or 600 mm.

Shear buckling is ideally confined to each bay se parately, but the
rg

above conditions are suitable for a wave to pass between the internal

attachnents, over the full diaphragm depth. This may severely reduce

the buckling capacity as determined from Easley's formula.	 However,

the theoretical analysis of a buckleImssirqbetween the intermediate purlin

fixings is only a special case of the energy nethod where, for ti-1)

intenediate purlins (11 > 2).

- the wave pitch equals p /, the internal fastener pitch

k - the wave inclination equals n.mp/b where m is an integer

b - is the overall panel length

	

3	 /
Q =	 II-

2 	
(" 	' IL 	 " 1+ 3ran +	 )	 .	 +

cr	 - -2mn	 2	 b Dx	 2mn
b2

Easley's equivalent formula for this case is,

36n2 3/4 1/4

b
2 PY	 PxQcr



Ii2Loc
=cr	

b
2

..2
{ mg{42- + 3 + cc-2- }y

2c4.

• 1
2.g

3
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Again Dy and Dx are the major and minor bending stiffnesses respectively.

Qcr is in units kN/mm length. Easley's formula may be expressed in terms

of a buckling parameter X, where,

X = 36n
2 y3/4

Dx
Qcr = X --2-

Corresponding values for the two intermediate purlin case are shown

in Fig. 0.8), where m is chosen to minimize the buckling capacity. The

controlling parameters are y and p/b.

However, for one intermediate purlin the slope of the buckling wave,

k, is a variable as it is not confined by the pitch of the internal

fastenings.

di2cr	 3k
2 	

Dx 
- 0; So, Dy f -	 3 -2- I	 2 2 =0dk

where g = p/b. Solving for k/g gives,

k
2 4	 1= - +	 + . (yg4)	 =-2 	 r

Reinsertion into Q

2k	 2g	 2k g

2

This represents the minimum value of the buckling load, for values

of pAo and y as Shown in Fig. 0.7).

It should be noted that this theory is an over-simplification, as

the buckling wave must be free to rise and depress equally. However, due

to the intermediate purlins this condition is violated and only uplift

=occur. Hence, this derivation is a lower bound to the buckling capacity.

A, number of experimental tests were performed on various diaphragm

configurations to justify this theory and the buckling load WOrm) is

expressed in terms of the parameter X. The experimental and theoretical
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comparisons for attachment to intermediate purlins are discussed in

Section (9.5).

9.4. Effect of Scarce Perimeter Attachments

The simple buckling theory requires that all points on the perimeter

act as though simply supported. However, for fasteners at relatively wide

spacing, there is a possibility that a cylindrical shape buckle could form

between the edge attachments. This has been experimentally observed, as

in Plate (9.4). Fig. (9.6) shows how the length and inclination of the

buckling wave are determined by the pitch of the fasteners.

This mode of failure is very possible for highly orthotropic sheeting

where fasteners are in alternate or every third trough. To obtain a

realistic estimate of the shear buckling capacity the deformation is

assumed to occur in the usual sinusoidal mode, but an additional end uplift

corrponent is included. This is because the corrugation is free to rise at

the end purlins but must depress on a sinusoidAl curve, with zero end

movement.

Analytically, the wave form is represented by two equations.

. 
Ey_ sin= A sin b . sin — (x - ky)

211
a sin	 ( 1 - cos	 (x - ky))

is the overall sine wave, and 11 is an additional uplift such that

(i + w) is of constant magnitnrle along the cylindrical buckle shape.

is fixed-ended in the x direction, as shown in Fig." 0.6), which is

the to the clamping effect of the fasteners.

A

The total internal energy is the sum of the orthogonal bending

amTonents and is equated to the work done by the shear flow. Due to the

carioination of waves the average energy is determined by,

_ 2	 2	 1422(hi + h2)	 .1	 2	 .h = 	  +	 = El + W h +2	 2—	 1 2	 2
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The longitudinal bending energy is,

bp

f I d2w
2 0 0 dy

2 dy.cbc

which may be evaluated to give,

4	 k2	2_ab
{ k—. 0.25 + -2- . 0.47 + 0.07 } Dy A a . 

114
4 b

The lateral bending energy is,

b p /

Dx I I d2a
200  dx

2 dy.dx

- 0.27 where g = and m is an integer

The work done by the shear flaw Qcr is,

b pi

I 
f dn. dwl	1 dw2 dw1 1 dw2 dw2 1 dw1 dw2

• 0	
+	

TY0	
_ + _ _ _ _ _

Qcr	 dx ' dy	 2 dx dy 2 dx ' - + f dx dy '

2 k= Q A? . bp II

b
2.	 .	 0.37cr 	 g

Solving for Qcr gives,

k 4	 k 2
x	 .1120,2/k 	 { 0.67	 + 1.27 (4 ) + 0.19 } + 2 '41 j

•where Qcr = XDx

b2

If k = m. ' thenb

3 0 0

X = Y Er { 6.6 m
3 + 12.5m + 9- } + (L" )

P	 m

Usually m = 1 and so,
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1	 3
X= y. (2-) 21.3	 b

	

b	 + (—) . . 7.2
P

If there are Oa - 1) intermediate purlins then,

X = y	 {6.6 (mn)3 + 12.5 (IrTO + 1.9/ 4110 / 	(T/)3 . 7.2/(mn)

where m is an integer to give the lowest value of X.

Again usually m = 1, and so, for 1 intermediate purlin,

b 3X= y	 BD +	 . 3.6

for 2 intermediate purlins,

oI	 b3X= y(4-) 216 + (=,) . 2.4

BOth these equations give a buckling load considerably less than
the accepted formula where,

3/4

X= 36 n2 y	 and Q = X Dx7b2cr

Theoretical curves are shon in Figs. M9) ana .5 or two cases

of no and two intermediate purlins. For end attachment only, it is clear

that length to fastener pitch ratios of 10 would fail at about 310% less than

the above formula. This is an extremely likely situation in practice

typically for a 3 rretre long sheet, fastened in alternate troughs.

The family of curves for the two intermediate purlin case are very

similar to those of Section (9.3) where fastenings are widely spaced only

at the internal connections. It may be infered that the end conditions

have a rapidly decreasing effect as the number of purlins increases, and

that the buckling load is more controlled by the purlin spacing and internal

fastener pitch than end uplift.

9.5. Discussion of Theoretical and Ex2erimental Results for

Shear Euck]ing

For simple diaphragms, fastened in every trough around their perimeter,
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the critical shear buckling load is sufficiently accurately given by,

3/4 1/4
Q = 2-

6 
Dycr 

b
2	 • Dx (kN/mn)

where,

Et
3

Dx -	 and Ey =
12(1 -	 2) s

as defined in Section (9.2).

Experimental results are given in Appendix Table (1.12) which

show that, in general, the actual shear capacity is within 5% of the

theoretical value. If the panel width becomes less than the sheet length

same strengthening may be observed, due to the fact that the rafters

interfere with the free formation of the buckling wave. This is noticeable

for less orthotropic sheeting.

The theory assumes that the corrugation may be hypothetically

represented by an orthotropic medium. Thus for a given profile shape,

the buckling load shonld be independent of whether the sheeting is used in

its correct or inverted form. In addition, vertical loading should not

affect the performance of the diaphragm. Both these statements were

experimentally verified.

A range of y(=	 ) values were examined, ranging from 2 x 103 to

12x 103 kNmm. For diaphragms involving sheets spanning across a number

of intermediate purlins, a considerable reduction in the theoretical buckling

load was apparent. In theory a buckling wave will form in each sheet

between purlins, independently of the neighbouring spans. Thus the above

buckling formula will be increased by a factor n2 where (n - 1) is the

nutter of intermediate purlins.

For example, attachment to a single internal purlin ought to increase

the buckling capacity of a sheet length b by four times. However, as out-

lined in Section (9.3), with sparce intermediate purlin fixings, it is

possible for a buckling wave to pass between the internal aonnections and

to span over the full diaphragm depth. The critical buckling load may be



expressed as,

Dx
Qcr = X —f

The variation of this buckling parameter, X, is shown in Figs. (9.7)

and (9.8) for one and two intermediate purlins for a range of values of

b/p, where p is the pitch of the internal fasteners. It is clear that

for practical values of b/p, there is a considerable reduction in the

shear buckling load. The experimental results are above this lower bound

prediction, which assumes that the intermediate purlins do not prevent

depression of the buckling wave. This extra restraint to the formation

of a wave over the complete panel depth will raise the buckling capacity.

In general, the observed failure loads seem to be roughly mid-way

between the upper and lower bounds defined by X = 36 n2 y3/4 and the

proposed theoretical curves. Nevertheless, inmost cases the experimental

results were about 30% less than simple theory. An aluminium diaphragm

was also tested which showed the same behaviour. Plates (9.2) and (9.3)

show typical failures.

Another limitation to the buckling load is the possibility of a

cylindrical buckle, rather than a sine wave, forming over the diaphra
depth due to periodic perimeter fixings. An approximate energy method

solution has been outlined in the previous section. Plate (9.4) shows

how uplift has occured uniformly along the sheet depth with slope and wave

length determined by the pitch of the perimeter fasteners.

Sample theozyreauctians of about 20% were Observed . for this case,

for no intermediate purlin. In addition, tests were also performed with

intermediate purlins attachments, which also appeared to give lower results

than the more frequent perimeter fastening cases.

In every case of intermediate purlin attachment the failure load

was less than the simple formulation. However, the recorded buckling

capacities did agree remarkably well with the energy method approach of

Section (9.3) considering the approximate nature of the assumed buckling

wave.
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Typically a b/p ratio equal to 10n, where (1 + 1) is the number
of purlins seems to be the most critical case, which corresponds to a

3m span between purlins with alternate trough fastening.

As a conclusion from the experimental and theoretical investigation,

many practical diaphragms fail below the simple shear buckling formulation.

It may be suggested as a reasonably safe design value for diaphragms

with - ntenmediate purlins or sparce perimeter fixings, that the design

buckling capacity should be nO more than 50% of the value based on the

simple formula for sheet buckling between neighbouring purlins. However,

for single span panels fastened in every trough, Easley's shear buckling

foneWaL may be used with confidence. This is used as a design equation

for folded plate roofs utilizing corrugated steel where the actual sheet

_capacity is often a critical factor.

9.6. Shear Buckling of Hyperbolic Paraboloid Shells

Hypar shells have pleasing architectural properties and due to their

double curvature, uniform out of plate loading may be transmitted as in-

plane stresses. Another advantage is that the surface may be constructed

fram straight line generators which are twisted relative to each other

along their length. This corrugated sheeting is ideally suited for these

types of membranes both from a practical and theoretical viewpoint. (61)

The surface is defined by a rise of unit c over panel widths a and

b, and hence,

z = c ab

which produces an in-plane shear flow of 	  , where q is the normal loading

per unit area.

Abypetbolic paraboloid shell is subject to a uniform shear stress

and thus its inplanè deflection and shear buckling properties will be very

similar to those discussed for flat diaphragms.



36 DX /4 Dy3/4
cr =

b
2
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The effect of the curved surface will raise the shear buckling

capacity above that predicted by,

where b is the span of the sheeting.

Hypars have only recently been studied theoretically and experimentally,

and in 1970 a huge 70 metre cantilever module structure
(22)

 was built for

American Airlines in San Francisco. Although essentially a folded plate

form of design, the sheeting spanning between the fold lines was warped

along its length to give added buckling strength.

Gergely (62) has made model studies, and proposed a finite element

analysis (63) 
which takes into account sheet instability. However, his

most useful contribution was the adaptation of Easley's shear buckling

theory to this doubly curved shell (23) . Nevertheless, he was unable to

develop an equation showing the advantages of a hyper curvature over the

capacity of a flat sheet. The subsequent analysis follows Gergerly's

approach but goes one step further by dpriving a controlling equation for

the shear buckling strength of a hyperbolic paraboloid shell, utilizing

single span corrugated sheeting.

The buckling wave is again defined by,

W=Asinab sin Z (x kY)

where and k are the pitch and the slope of the wave respectively, as

in Fig. (9.11).

Due to the curvature of the surface an out of plane movement, wr,

creates a Shear strain given by,

2W
d2	2C

2 

	

— w
dxdy	 ab

Thus the total energy due to the formation of the buckling equation

not only includes the orthogonal bending stiffnesses, but also an additional

catponent due to the absorbed Shear strain of magnitude.
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2
1	 2 c

4.Gt - w	 dx dy

where Gt is the shear stiffness of the sheeting. This does not include

sheet distortion, which can only occur when the shear strain is constant.

Gergerly (23) used the effective shear stiffness which is in error.

Thus equating to the work done by the shear flow Q.

II2 	Dx
=	

'
--2-	 + Dy ( 
	 113 + 3k) + 2 g) 2 a g

2

2k	 2	 a	 4 • k 1irb	 2kg 	 zg

where g

TO obtain the critical shear flow, Qce 
the expression in terms of

k and g must be minimized. Hence,

dQ	 c14—	 vus.a — —
dk	 dg

If a = fcb? Gt
'a' ' 4

Eliminating the term in Dx it follows that,

45	 2k4 3k
2

2 1}
= DY 

g
4

k
2

= -O. 75 + 1// 1.06 + 2 -/by
2

= CC

As Gt tends to zero, so k/g = 0.53, which is correct for a flat

sheet.

2	 dQ _
Similarly, substituting = into 	 0, it may be shown that,dk

= 	
1 

Dx 41 - 1 - 4 Zg	 ADar + 3=
4 + 6. 2 1
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Again if -a = 0
Dx

1
---71 which is true for a flat sheet.

Insertion into the formula for Q gives,

2Dx
Qcr	 g

1	 1	 . 3	 2 a
.
4 Y{ r: + +	

+—

2g	
17Ty }

1/4 314 0.32{= 36 Dx	 Dy	 .	 { 1 + 4 ,/.ioy + 3. 2 } 0-75

b

Thus the gain in the critical buckling load is given by this second

tam in brackets where,

= jt- 0.75 + ,I1.06 + 2 G

For a rectangular profile of height, h,

th2E	 Et
Er tends to	 and Gt is 2.6, which consequently gives 15—y

in proportion to (fi)2.

Fig. (9.11) shows the variation of the	 parameter in terms of
Ey

the factor F where,

36 1/4 3/4Q = Dx Dy . F

%Iran-- equals about 2, the buckling capacity is almost doubled.
Dy

For large values of corner uplfit, c, the factor F rises in proportion to

mughly (c/h).

For experimental comparison Gerger1y (62) listed the failure load

of a single skin hypar of dimensions 1.8 m square and 0.36 m corner uplfit,

as 3.35 kNAm2 .

This corresponds to an inplane shear flow of,

- .abw 1.82 x 3.35 
q =
' 2C 2 x 355 - 0.015 IdVirm

The corrugation data, for a sheet thickness of 0.4 mm, is,

Dy = 1180 kNmm; 	 Dx = 0.85 kNn'm

kN/rrm



a	 cb2 Gt	 3602 x 80 x 0.4 
b-y = (-T)

II
4
DY ii 	 1180	

= 36.0

=1- 
0.75 + j(1.06 + 36.0	 . 2.30

3/4
0.32

F -	 {1 + 4 x 36.0 + 3 x 2.302 } 	 =6.282.30

36 x 0.850.25 x 11800.75=x 6.28 = 0.013 kNAmm
•	 1800

2

This is reasonably in agreement and the extra strength in practice

is probably due to restraint at the panel edges.

The assured buckling wave concept may be applied to any curved

surface, providing that the in-plane shear flow is uniform. Cylindrical

shells, where corrugations span around the surface, deform by an additional

in-plane shear strain due to normal displacements. Thus the total energy

not only includes the simple orthogonal bending energies but also requires

an additional camponent due to the effect of curvature.

=

This is illustrated in Fig. (9.12). However, due to the very

flexible nature of the sheeting perpendicular to the corrugations, any

shear strain generated due to buckling displacements is partly relieved by

lateral inplane movement. Abdel-Sayed (24) has studied the shear buckling

performance of cylindrical shells by solution of the controlling differential

equations in terms of Fourier series.



Plate (9.3) Buckling wave passes through alternate trough fastenings at
two intermediate purlins

Plate (9.4) Buckling between alternate trough perimeter fasteners
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CHAPTER	 10.

FOLDED PLATE ROOFS 

10.1. THE FOLDED PLATE CONCEPT

Molded plates may be defined as structures which rely on the
mutual support of a nuMber of laterally flexible flat surfaces, to transfer
loading into in-plane forces. The changes of geometry are termed fold
lines.

Prismatic folded plate structures are the classical form of
ccnstructicn which have been developed with the use of reinforced concrete.
Tae name 'hipped' connotes folded plate construction when applied to roofs
and other forms have been used for box beams and grainbins. Plates neeting
at a shallow angle may be pieced together to form cylindrical shells.

Fig. (10.1) shcws the various gemetrical arrangements of hipped
roof ranging from the simple prismatic shape to a warped hyper form.
Circular folded plats axe a pleasant architectural form supported only on
pudneter columns and an inner campression ring. This construction has
been used for a large arena in Madison, Wisconsin, U.S.A. (64)

The basic structural action is one where applied loads are resolved
Into two components, one perpendicular and one parallel to the plate
surface. Normal loads cause slab action, which spread the out of plane
fones back to the fold lines and the net fold reactions are resolved
parallel to the plate surfaces.

This in-plane loading is then transmitted longitudinally to the
supports by plate action. The free movement of the fold lines means that
for caltinuous slab action, moments are generated at the fold lines
similar to a beam on elastic supports. Any analysis must also provide
for canpatibiLity of both stress and deflection at the fold lines.

Curing the 1950's and 1960's a considerable amount of work was
carried out on concrete hipped roofs to account for the effect of continuous
Slab action.



The first design of concrete folded plates was suggested by
(65)

and Pei	 in 1947. This was followed. by Craenar
(66)

Winter	 and later

Gaafar (67) in 1954 who proposed the most clear method of analysis. The

lateral bending is considered in two steps - firstly moment distribution

for unyielding supports and then applying unknown displacements at each

joint to find the resulting in-plane plate forces. The longitudinal action

must produce displacements which are compatible with the transverse action.

(68)

	

A number of authors suctlas Thadani, 	 ch

	

.	 Ketum
(69)

 and Simpson
(70)

followed this approach and Traum in 1959 summarized the iterative -

corrective techniques, and the exact slope deflection methods. He also

proposed the method of particular loading. Baer (72) designed a steel folded
plate roof with inplane trusses.

In 1961 Shapiro Q3) performed an insitu load test on a 14 metre

steel folded plate roof using double skin corrugated Sheeting of 1.1 mm

thickness and obtained a safety factor of 3.

Nilson ( 74) at Cornell University initiated a study of the use of

=migrated diaphragns in folded plate oonstruction, and a number of companies

began to market the standard materials for design. The first problems were

net between responsibility for design and supply of materials, as frau this

tine onwards the roofing contractor had to ensure the safety of the whole

With the advent of computers, Scordelis (75) in 1961 proposed a

matrix method of analysis and also performed some ncdel tests. Yitzaki(76)

In 1962 used Traum's method by which he first considers the fold lines to

be spatially fixed and calculates the resultant in-plane forces. Consequently,

the longitudinal plate deflections may be determined using the theorem of

three shears as outlined by Born (7) TO remain in this deflected shape

certain unknown fold line forces have been generated. By the method of

particular loads each force system may be applied in turn until the out

of balance reactions are set to zero, consistent with a modified deflected

shape.

(78)Meek	 also presented a matrix derivation in terms of the slab

and plate actions and Fialkaa
(79) 

developed an energy method solution.



In 1963 the American Society of Civil Engineers summarized all the
previously presented analyses. Follaaing the simplified methods for
long span folded plates, a number of authors turned their attention to
short spans where slab action occurs in two directions. Notably Goble, (343 )

Setharamalu, (81) Ee Fries, (82 )	 (33 and Reiss (34J developed stiffness
approachesapproaches of general application.

Powell (85) compared all the existing theories in 1965 which
marked the end of the 'hand' method of analysis. Beaufait (86) studied
oartinuous folded plates over a number of supports and Farner (87) developed

(88)
a nan-linear approach. Mast`	 claimed to have presented an 'exact'

)analysis in 1967 and Johnson (89 began a theoretical and experimental study•
of ncn-prismatic folded plates. Lee (9C analysed the effect of the support

1)anditions and in 1969, Cheung (9 introduced the finite strip method.

Nbanwhile steel folded plates had gradually been not only researched
but also constructed in increasing numbers frau the early 1960's. A, number
of articles describe their inherent simplicity, for all forms of application
such as halls, banks, (S42) and gymnasia with spans generally ranging from

(93)Mt° 30 metres.

Conferences in cold formed structures highlighted the increasing
eloonaries of using steel rather than concrete especially with a double
skin construction which is also the finished underside of the roof. The
laser flat sheet, spot welded to profiled sheeting, is perforated. to
improve its acoustic properties.

An advantage in the design of all steel folded plates is that
the fold line joints are effectively pinned laterally which obviates the
need for complex analysis. Up to no almost 83 folded plates have been
o3nstructed in regions where the sic loads are very high. In recent years
the high cost of in-situ welding have reduced the material eccnanies and
it 	 for this reason that it was decided to build a prototype folded
plate roof using nechanical fixings at Salford University. Following the
Work of Thampson (21) and Davies C94) the basic data for using open profiled
sheeting are known and a full scale test demonstrates that the design
criteria may be extrapolated accurately.



Hyperbolic paraboloids using corrugated sheeting received world-
wide notice with the construction of 70 metre cantilevered Jumbo Jet modules

(22)in San Franscisco in 1970, saving 40% by weight over conventional designs.

Moeller et al C95) in 1972 proposed a finite element technique
for steel folded plates which could be applied to all shapes of roof.

At the present time the American Iron and Steel Association is
ccrnpiling a design manual for folded plate construction using welded steel
decking.

The erection of steel folded plates has generally been a ncdification
of that used for concrete, by shoring under the fold lines. Hadever,
construction at ground level and lifting into position, as revealed by the•
Junbojet aircraft hangars, does have advantages.

In Europe, steel folded plate construction has only been used in
one or two cases, notably for an 18m hall in Nantes, France. A building
of interest utilizing a form of folded plate resistance has been developed
for nursery school units in Surrey, England by PLA-C.E.* (96) . In this case
UN:building is 11 metres square with a central roof light supported on an
Inner ompression ring. The walls provide local support for an outer
tension ring and folded plate action occurs by tranferring in-plane loads
back to corner diagonal members.

10.2. Folded Plate Analysis as Ap2lied to Concrete Roofs

The problem of lateral bending continuity around the fold lines
makes the analysis of concrete folded, plates very difficult. As previously
discussed 4 considerable ntrnicer of authors have proposed theories for the
effect of fold line bending moments) sate based on matrix techniques, others
Cn energy solutions, and still more on iterative methods.

A simplifying assumption is that the length to width of the plates
is sufficiently large, so that each act as longitudinal girders without

tropo lit an Architects Consortium for Education
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any deep beam effects, and have an approximately sinusoidal deflected

shape.

In general, the analyses take the following form, whereby the

in-plane forces are a function of their own displacements as well as the

applied loading. Three distinct parts may be described corresponding to

the lateral and longitudinal actions which are complexly inter-related.

	

1.	 For the imposed loading on each plate, the inplane

component is separated, and the roof shape spread out

to form a continuous beam where supports exist at all

the fold lines. The normal loading causes joint reactions

as determined by the joint bending morrents resulting fram an

analysis of the beam. Thus the net support reactions are

separated vectorially according to the actual roof

gecmetry and are combined with the previous in-plane

loading. The total is given as a resultant applied load

WI in the direction of each of the plates.

	

2.	 The second part of the analysis refers to the effect of

in-plane joint displacements d i on the cross-sectional

bending moments and are assumed to occur sinusoidally along

the roof length. Each displacement S i of the i th plate

is an unknown, but according to the Williot diagram of

Fig. (10.3) the out of plane displacements V11 and Vi2 at

each end of the plate may be determined in terms of 6i.

Thus the fold line bending noments are functions of

6. 'and.
01

, the joint rotation, according to,



The rotations of the fold lines, ei may be then

eliminated. Hence, the . cross-sectional bending moments

cause fold line forces which again may be separated

vectorially into in-plane components. Consequently, the .

effective uniform in-plane force of the ith plate may be

given as,

W =.
1
	W. + 2/ (a. & + a. 6 + a. 6. )1	 1	 II A. .1.	 i2 2 	 mm

where the factor 2/II represents the modification of a

sinusoidal form of loading, resulting from the joint dis-

placements, to a uniform loading. The constants a. 3. reflect1
the influence of the in-plane displacenent of the jth plate

on the effective loading of the ith plate.

13.	 The effective in-plane loading W. causes a central bending

=rent given by,

M. = W.
1 2/8

which is assumed to decay sinusoidally.

Consistent with this bending natent is a linear stress

variation of maximum value,

6M.
.o =l	 2td.

However, at neighbouring joints there is a consequent

incompatibility of axial strain. This is relieved by longitudinal

shears T. giving a net stress distribution of,

2	 1a = 001 + — T
i +

	 . 13 	 3
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Solving for each plate, yields simultaneous equations in T i and
thus the final stress distribution may be determined in terms of, etc.oi

The in-plane deflection is my controlled by the stress difference
across a given plate and is represented as,

-	 1) L 2
6 -	 ( - )Ed.

1But a. is a function of W. which is in turn dependent on the
loading W, and the joint displacenents, di . Thus for n plates, n equations
maybe solved for each of the in-plane displacerrents in terms of the applied
loading. The cross-sectional bending mcments may be recalculated.

The edge beams are usually designed to be torsionally stiff so
that the final joint rotation does not cause large outward displacements.
It has also been assumed that the internal plates are very thin, so that
torsional effects have been neglected.

10.3. Folded Plate Roof Design using Corrugated Steel Sheeting

The basic behaviour of a folded plate is to resolve out of plane
forces into in-plane components which are resisted by longitudinal beam
action. This is a very simple concept when applied to corrugated sheeting
gaming between fold line members.

For a saw tooth roof design, a typical internal bay acts like
a girder spanning between end awes. Bending resistance is provided by
the fold line members to which the sheets are attached and the sheets
themselves, act as an inclined Te,eb. Thus, the corrugated sheeting must
transfer the complete roof shear force to the end gables. (Fig. (10.2)).

According to folded plate action, the sheeting serves to spread
local forces back to the fold lines, which resolve the net resultants
Itctorially into in-plane loading. Hence the corrugated sheeting acts in
its tmonost stiff modes - shear and bending, and relies on the strength
of the connections.



A simplifying advantage of using corrugated sheeting is that

there is little lateral rotational continuity at the fold lines which

means that the sheet span merely acts in simple bending. The roof action

is thus internally statically determinate and the fold line deflections do

not influence the internal force system, which is not true for concrete

folded. plates.

As with all beam deflections, both axial strain and shear camponents

are incluand. The in-plane deflections of the neighbouring plates are

added according to the Williot principle of Fig. (I0.2) whereby out of

plane movements are assumed to be completely flexible.

The shear deflection of corrugated sheeting has been studied in

Chapter 2 when fastened in every corrugation. It is considered that this

shouRI be the usual fastening mode whatever the roof length due to the

relatively short sheet span which greatly increases the shear distortion

amporent of deflection. Fbr smaller roof lengths, alternate fastening

maybe used towards the centre of the span if the deflection limitation

pmnits.

Fbr the case of variable fastening along the roof lengths with

relatively stiff fold members, some reduction from the simple theory is

possible and this will be discussed in Section (11.3). Similarly holes

In folded plate roofs are theoretically possible in the region of zero

shear force, and this is examined in Section (11.1).

Fbr vertical imposed loading the separation into in-plane forces

Is depicted in Fig. (10.2) for a typical folded plate roof. It may be

seen that at the outer plate, an edge beam is required to absorb the local

out of plane forces.

Wind loading, which may be represented as a horizontal eaves force,

Is split vectorially into in-plane components and the edge beam suffers

an lift force which implies that the compression chord is laterally

unsupported.

All the internal fold members are completely restrained from



instability which means that, neglecting local buckling of the member,

the full axial stress may be generated.

The axial stress pattern itself can only be determined by studying

the folded plates acting in combination. A simplifying approach is to

assure half the fold area acting with each plate, but for variable in-plane

loads and fold area sizes, this is a very crude assumption.

The exact solution is outlined in Fig. (10.4) where the ith plate
is subjected to in-plane loading Wi and has fold areas Ai and Ai 1• Its

inertia may be determined by a simple expression and hence the (i + 1)th

fold line stress is controlled by the superposition of the axial stresses

due to the bending of neighbouring plates. It should be noted that the

section modulus for the (i + 1)th fold of the ith plate is A11 di where di

is the plate width.

COnseguently, the bending stress resultants may be determined at

all fold lines, and the bending deflections are dependent on the stress

difference across a plate. The deflection of the ith plate may be given

by the expression of Fig. (10.4) showing the effect of loading of the

neighbouring plates, which is represented as a modification factor applied

to the simple bending deflection.

Corrugated sheeting must have sufficient strength in its connections
(96)to withstand the maximum shear force. Davies	 has produced expressions

for the capacity of seams and end gable fasteners. However, the usual

maximum capability is determined by the strength of the sheet-fold fasteners

Alich are themselves controlled by the corrugation pitch and the sheet

thickness.

In addition the shear buckling capacity represents a severe design

Limitation, and in this respect, Easley's forimila (20) gives a reliable

figure for the buckling load of highly orthotropic sheeting. A decision

' table for design of a typical folded plate roof is shown belaa.

1.	 Is the clear span between end frame less than 25 metres?

If not, a folded plate roof using mechanical fixings is

likely to be unsuitable.
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2. Choose pitch of columns between 3 and 5 metres.

3. Choose a roof slope between 20° and 45 0 remembering that'

structural efficiency increases with roof angle.

4. Knowing the column pitch and roof slope design the roof

sheeting to span between fold lines.

5. At the design roof span, split the loading into in-plane

components and evaluate the maximum shear force and central

bending moment which fixes the required fold line area.

6. Fbr fastenings in every trough evaluate the ultimate strengh

of the connections reduced by the safety factor. If this

is too Iow then the sheet thickness and/brroafsloope must

be increased. The required number of seam fasteners can

also be determined.

7. Knowing the sheeting profile and thickness, the shear

buckling capacity can be evaluated. If this is too small

increase the sheet depth or reduce the column spacing.

8. The design information may now be used to evaluate the

central roof deflection which includes the pure bending.

Shear distortion and fastener slip components. An

appropriate deflection limit may be selected and if this

is exceeded, the fold area may be increased. Otherwise

the sheet thickness and/or column spacing niust be increased.

10.4. Formulae for Steel Folded Plate Roof Design

For two or more bays subject to a uniform vertical loading the

Internal plates are the most important consideration in design. However,

the edge conditions are likely to be the most critical for wind loading.

As previously discussed each plate acts as a longitudinal girder



and has the same failure criteria of bending, shear and deflection.

Each of these factors has been studied for flat diaphragms and •

design formulae merely represent an extrapolation to uniform in-plane .

loading oanditions.

Thus after vectoral separation of fold line reactions into in-plane

components, the following steps in the analysis are required.

1.	 The fold line area is determined by simple bending conditions

and the girder section modulus is,

'there a is the full yield stress.

wB 	 ,q is the in-plane loading and equals 2 sin 0.

;there w is the vertical loading, B is the column spacing and e; the roof
slope.

For each plate A represents only half the total fold area and

for tmequal fold lines A is modified to,

2A1A2 
A— + A2

• Ai and A2 are also half the fold line area at each flange of the

plate, which may be the case where some effective area reduction is necessary

for the compression chord.

As indicated in Section (10.2), this is only an approximate approach

for the axial stress distribution over the oomplete roof.

2.	 The shear strength of a typical panel is controlled by the seam

capacity, the end gable fastener strength and the sheet-fold strength.



The end shear force reaction is given by,

wBILF 
4 sin 0

where F is the safety factor.

As in Chapter ( 8 ) the design seam strength for seams in the

corrugation troughs is given by,

(119 -I-

QS	

(1'Vs + 2Frs' 'Ss .`33! x(. nsh  )

+	
nsh-2

Ss S

where ns is the number of seam fasteners

Ss , s are the slip of the seam and edge fasteners respectively

nsh is the nunber of sheets in one span

F, F are the ultimate strengthscf the seam and perimeter fasteners
s p

respectively

(his a factor dependent on the nuMber of sheet-fold fasteners -

dee Chapter (8).

Fbr seams in the corrugation crests, this formula becomes,

nsh.1%	 Cris + gl Ss/s) F. taT...2)

Similarly the strength of the sheet-end frame fasteners is,

oSC	 (r1SC 
2 + 2g1) Fp

where nsc is the number of end gable fasteners.
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It is assumed that the same fasteners are used for the sheet-fold

and sheet-gable connections.

The strength of the sheet-fold fasteners is simply /2 where b is

the sheet length along the slope and p is the fastener pitch. P

3.	 The shear deflection of the folded plate roof is determined by

the components due to fastener slip, pure shear strain and shear distortion

as determined in Chapter 2.

The in-plane shear distortion deflection is given by,

d K 	 L2 wB =where a
Et2.5 b2	 q' 8	 - 2 sin e

and d is the trough pitch, t is the sheet thidkness„and E Young's modulus.

The panel pure shear strain deflection is,

(1 + v) ( 1 + 2h/d)	 L2

d1.2	 Etb	 q 4

v is poisscn's ratio and (1 + 2h/d) represents the corrugation perimeter

to pitch ratio.

Sheet-fold line slip is given by,

d2 -.1	
sp q L

2

4b2

Sean slip, for a constant nuMber of seam fasteners along the length

is,

d2.2 - 
(nsh - 2) 

4) 8
'Ss

In many cases ns will vary linearly with the applied shear force



and so d2.2 will be doubled. Thompson (21) studied a step wise variation

of seam fastenings but it is suggested that the worst case, as above, is

selected.

The sheet-end gable slip is,

•L.S 	 where n are the number of
d2.3 - 2(n5c - 2 + 2g1 ) 	 sc

sheet-end gable fasteners. Hence the total panel shear deflection is

d1.1 d1.2 d2.1 d2.2 d2.3.

The axial strain in the fold lines contributes an additional

bending deflection given by,

d1.3 38.4 EAb2

A is the half the fold line area which is again represented by

2A1 A2 for unequal fold areas.

Al +A2

The total panel deflection is modified by the factor (1/sin 0)

to give the vertical fold line movement as shown in Fig. (10.2).

4.	 The shear buckling capacity has been reliably determined by Easley
)and McFarland 0

(2	 as,

36 D 11D 3/4

-	 x	 Y 

_	 sgli
4

where D. -
x

t3 E 
12(1 -v2) (1 + 2h/d)

E

where D and D are the sheets' major and minor bending
x_

respectively. 11 represents the cross-sectional inertia

not including the sheet thickness. The European Design

stiffnesses

of one corrugation,

Becomendations (4-7)
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suggest that, die to the sudriPn nature of buckling, an extra 25%. reserve

of safety should be used for this node of failure.

5.	 The sheeting itself must simply be designed to span between fold

lines, with the appropriate effective width reductions in bending. This

is covered in the Metal Roof Deck Associations Manual. (98)

10.5. Prototype Folded Plate Roof Design

It was decided to test the folded plate design philosophy using

corrugated sheeting by constructing a three bay roof of 21.6 net/es length.

The roof was selected to comply with a 3.6 metre square module size as

used by the S.E.A-C. and C.L.A-S.P. building systens and had a total

width of 10.8 netres. The clear distance between end frame represents

the approximate maxim= permissible span for chosen roof slope of 35 0 .

Structural performance increases as the tangent of roof angle,

as will be discussed later, and a balance had to be sought between

aesthetics and material useage for such a small pitch of bays.

It is clear that, although the roof is statically determinate,

nehy of the design factors such as buckling strength and roof deflection

are highly infltenced by the choice of oolumn spacing, profile depth and

thickness. For large roof spans it may be that only a narrow band of

permissible geonetrical arrangements is feasible.

• This particular folded plate roof design of 21.6 m span and 3.6m

cob= centres could have utilized 35mm . deep ordinary corrugated sheeting

•of 0.9 rcrn thickness. This would have satisfied the fastener strength and

Silear buckling requirements but the central deflection, due mainly to the

distortion of the open profile, VIKAIld be much greater.

It was for this reason that a closed end profile was developed which

has shear stiffness approaching that of a flat sheet. In addition, by

pressing rather than rolling the corrugation frau the originally 1.0 ran

South East Architects Collaboration

Consortium of Local Authorities Special Projects



thick material, the profile perimeter to pitch ratio is equivalent to
that of a 0.8 rrrn sheet, without reducing the trough thickness which controls
the fastener tearing strength. The small reduction in crest thickness
only slightly influences the simple bending and shear buckling strengths.

The chosen profile shape is shown in Fig. (10.6) and is 32 mm
deep. Section (10.6) outlines the pressing operation and the shear
flexibility derivation is developed in Chapter5.1. Detailed design
calculations follow in Appendix 3 and by using this pressed sheeting,
central deflections are limited to about 56 rrm at the working load of
1.2 KN/m2 .

The required fold line area is determined fram the simple bending
relationships and in order to fasten the sheets easily to the fold, a 5 mm
thick cold pressed channel section was used as in Fig. (10.22). The
canpressicn member was checked for width reduction of the relatively thin
section due to local budding according to B.S.449 addendiank). 1.

Overall compression buckling of the fold member is prevented by
the shear stiffness of the sheeting transferred via the fasteners, which
implies that the full yield stress may be used in design.

The lower fold member also serves as a gutter with suitable pre-
caMbering of the roof, and slope run off is facilitated by the flat ends
of the pressed sheeting.

Sheet shear force is transferred directly to the end frames, the
outward component of thrust being relieved by a tie bar. The vertical
force frcrn neighbouring bays is thus passed to columns which need only
be designed for axial stress.

It is important that the axial strain in the fold line members
is not transferred as a bending =trent to the relatively light columns.
For this reason a suitably large clearance was used for the bolted
connections between end frame and fold lines.

Rectangular hollad sections were used for all the end frame members,
being,



101 x 101 x 6.3 ran thick for the columns

101 x 51 x 3.2 rrm thick for the gable and tie members.

The folded plate concept hehaves well for internal changes of roof

slope, but at the outer span, one edge will remain unsupported. In the

prototype design local forces are accommodated by a vertical edge beam

Whidh again utilized the corrugated sheeting as a shear web.

Another suitable method for providing local edge support is to

use periodic columns and to rely on the bending strength of the fold

member. This has an additional advantage in that normally side sheets

require side rails and posts for fixing. In same cases in U.S.A. an

upstarld side beam has been used tied back to the nearest apex member which

also provides stability against lateral buckling of the edge beam.

Detailed drawings for the general layout and end frame connections

are shown in Figs (10.24) to (10.27).

It should be noted that the internal roof slopes attract twice

the force of the external slopes for uniform vertical loading. For wind

loading, however, the horizontal eaves force is split up as in-plane

carpcnents into the edge beam and outer slope.

The edge beam must also be checked for lateral instability even

though its press ion flange is restrained. It was for this reason that

a torsionally stiff rectangular hollow section was used for the lower

chord. An approximate analysis is shown in Section (113).

The net horizontal wind force is passed as carpression force in

the tie bar to end bracings. Similarly longitudinal wind forces are passed

by the roof diaphragm to the eaves and then to corner braces.

Column end frame connections used a bolted gusset arrangement which

facilitated the erection procedure by allowing free sliding of the roof

• during the lifting operation which is described in Section (/).7). For •

extra strength at the very hiqhtestloads the joint was Ntilded.



The ultimate load, as previously indicated, is controlled by

the connection strengths, the buckling capacity, sheet bending strength,

and deflection limitations. The seam fastener strength was derived by
04)Davies,	 and the buckling capacity by Easley. to) Central deflection

incluaPs the experimentally derived shear distortion component for the

folded down corrugation ends.

It should be noted that the fold line nenbers were over designed

so that failure should occur by a mode associated with the sheeting. The

loaest design safety factor was for seam failure, folia ged by sheet fold

fasteners tearing, and shear buckling. An accepted seam fastener strength

of 2.5 KN/mm sheet thickness was taken for the tearing of the pop rivets,

although it was expected the failure might occur at a higher value due to

the superior performance of an upstand seam compared to a direct overlap.

The corresponding strength of self tapping screws is 6kNium sheet

thickness.

The folded plate idea as applied to corrugated steel and cold

formed members is very efficient in that each component is subjected to

its most ideal form of loading. Even the columns need only be slender in

order to resist axial force alone. Material wastage occurs only at the

extremities of the fold lines where axial stress is low, and it may be

that in prefabrication, thinner sections could be used in this region.

Edge fasteners need to be in every corrugation for deflection limitation

but seam fastenings may vary in proportion to the applied shear force

as studied by Thcmpson. (97)

The performance of the closed profile sheeting was studied in

individual shear panel tests and also by a 21.6 metre long plate test

which shall be described in Chapter (11.4).

10.6. Design of S2ecially Pressed Sheeting

The main design criterion for the roof sheeting was simply to

provide the required section modulus to span 2.1 metres between fold lines

for a 150nm trough pitdh. However, an open profile is free to distort



and warp under shear and it was observed that by closing off the sheet

ends, the shear stiffness could be raised dramatically. It was for this

reason that it was decided to produce a corrugation with the full depth

at the centre for bending rigidity, decreasing to a flat portion at the

sheet ends.

Some companies have tried to fold down the corrugation ends after

roll-forming, but for this application a pressing operation using a

mould was prefered.

Preliminary tests were carried out on a small scale wooden former

(1m x 0.6a) in which the corrugations were hollowed out. It should be

borne in mind that the full profile depth is produced by elongation rather

than bending of the metal, as very little material is drawn in flow the

sides during the pressing operation. The profile shape has thus to be

designed with very shallow sides (45°) in order to keep within the

elongation capacity of the metal. The final chosen profile is shown in

Fig.00.9). A, number of different grades of metal were tested from

ordinary mild steel to extra deep drawing quality and it appeared that

any material with an elongation to failure greater than 30% would be

suitable. The end transition had to be sufficiently smooth to allow

the material to gradually elongate without wrinkling.

The pressing operation, itself was carried out at Hawker Siddeley

Aviation Company Limited of Greengate, Manchester, and used their high

capacity rubber press of maximum table size 1.2 x 2.4 rn. The technique

of pressing is to push the female former into a solid bed of rubber which

moulds itself within the corrugation indentations. Thus the sheet of

metal lying across the form is first gripped as it rreets the rubber and

then the required profile depth is drawn as the table is pushed further and

further inwards. It was clear after the first trial operations, that the

quality of the metal was less important than the pressure build up on the

shalt. Both low and high elongation metals failed if the pressure was

applied too quickly.

Eventually a pressure of 1,000 tonnes/hetre2 was selected for

this full scale production. The metal chosen was a special drawing quality



steel of yield stress 160 N/nm2 and elongation to failure of 50%. A
total of 190 sheets were supplied by the Product Eevelopment Centre of
British Steel Corporation, Shotton, Clwyd. The stress-strain relationship
of this sheeting and a typical mild steel curve is shadn in Fig. (.0.28)..

A special mould was constructed for the full scale sheet of
dinensions 2150 x 1050 urn. This was scmewhat in excess of the sheet
size (2110 x 900), but it allowed the curved edge restating floulthe
slight drawing in, to the trimmed. The mould was made fruu a very hard
synthetic material called 'delaron' which doss not split during pressing
process. Again the corrugations were hollowed into the material, as
sham in Plate (5.1).

During the production run which maintained about 20 sheets per
hour rate, a mild steel sheet was inserted and behaved exactly the same
as the better elongation material. The neasured cross sectional extensions
and reduced thicknesses for the two sheets are shawn in Fig. ao.l. Lines
were etched on the flat sheets and the separation of each pair was
measured after pressing Coupon tensile tests were also performed on
samples of the sheeting to determine this elongation capaicty at failure.

By °comparing the actual profile shape and the mould dimensions it
is clear that some elastic rebound takes place and that the depth is almost
10% less than the mould depth.

The method of seam fastening posed some problems in that one
sheet could, not be easily lapped over another. This was not such a dis-
advantage as it is difficult to ensure a secure placing of fastener by a
direct overlap. Hence, it was decided to develop an upstand trough seam
inclined at 30° to the vertical which allowed placement of a ' monel' pop

ANJEA: without interfering with the neighbouring corrugation. A. punch
rattler than drill could, be used which speeds up the whole fixing operation.
The seam may later be sealed for watertightness._

An additional advantage as discussed in Chapter 8 is that the
Tstand has slight superior shear capacity characteristics compared to a
direct overlap. The sheet longitudinal edges were trimmed and each end



folded upwards in a single operation, at a rate of 50 sheets per hour.

The load-slip characteristics for a segment cut out of the

actual sheeting upstand seam is shown in Fig. (10.29). Two 'pop' rivets

were placed in the same fashion as on the prototype roof and at the same

spacing. The ultimate strength was observed to be 2.6 kN compared to

the accepted design value of 2.4 kN (2.5 kNimm sheet thickness). However,

the special drawing quality steel stress-strain curve has different

characteristics to mild steel which have been the basis of previous

fastener tests.

Finally, for the longitudinal edge beam a shorter length of sheet

had to be pressed which was achieved by inserting a section within the

full scale mould to produce the folded down end. This may be seen in

plate (52). The edge beam depth was im and this also had to be designed

as a longitudinal beam.

10.7. Erection of Prototype Folded Plate Roof

The stressed skin nature of the folded plate roof concept requires

that the surface be continuous to spread the self weight of the roof back

to the end frames. Thus during construction the complete roof structure

must be supported on temporary framework.

• In the U.S.A. where a considerable number of welded deck folded

plate roofs have been built, construction takes place at the final roof

height on scaffolding. However, the erection of the 70 metre cantilever

hyperbolic paraboloid modules in San Fransisco proved that a more viable

system is to set out the roof geometry on the ground and lift a complete

unit into place by jacking against the columns. (22)

Thus it was decided to build the prototype folded plate structure

which was in some degree novel in design, by a relatively untried erection

method. The whole roof would be built at ground level and jacked in

stages on the end columns to the full height.
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Firstly the end columns and frames were set out. Then four
triangular wooden trestles were positioned at 4.3 m centres along each
span and the fold line channel members lifted into their respective
pcsitions by a small stacker truck. The folds were each one third of.
the full span which meant that after welding for continuity, the most
highly stressed region would not coincide with the weld position. The
weight of each section was suitable for lifting by four men.

After the full roof compliment of fold line members had been placed
as shown in Plate(0. 1) and their extremities attached by bolts to the end
frames, the centre of the span was raised to provide a 200 mm camber. It
was estimated that 100 rrm would be needed for rainfall runoff (1:100)
and that another 10Crrm would be lost due to the elastic sag and also the
effects of testing to collapse which results in considerable permanent
deformation.

It should be borne in mind that although the roof was to be
tested to failure, the more catastrophic forms such as column buckling
and fold line yield le,ire designed against, so that the building could be
revised as a storage area after replacing the damaged sheets.

Cambering was achieved by a hand operated jack applied under each
frame in turn. The main roof sheets were now attached, the end frame
member width allowing a maximum of 200 rim total deviation in overall sheet
span. Edge fastenings were 5.5 rim diameter Teks 4 self drilling and
tapping screws which are suitable for the 5 rim thick fold manbers, and
have a nominal ultimate strength of GicN/mm sheet thickness. Plate (8.1)
typical screw fasteners, which could be placed by a hand drill.

Seam fastenings were 4 ran diameter Tucker	 'pop'-rivets which
were attached through an upstand seam as shcwn in Fig. (10.9). The
preparatory holes were punched and the fasteners placed by an air gun.
This rrethod was extremely fast, same 300 fixings per hour being achieved.
Havever, cat-ladders were necessary to avoid damaging the sheets during
hastening. The upstand seam could also be sealed after fixing.

At this stage only the roof sheets were attached, and the attachment
of edge beam was left until the final roof height had been reached. Thus
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the eaves were longitudinally unsupported, and the wooden erection trestles

had to be designed to resist the local inward component of self weight

thrust. The total roof weight was 0.22 kN/m2 .

Lifting took place at the end frames by eight hand operated

jacks which each had a maximum stroke of WO mm. This jacking had to

be carried out in stages which required fixing the end frame at each

new height. This was achieved by predrilling the columns at 250 mm

centres and locating a 12 rim diameter rod through the gusset plates

which were bolted to the end frames. Special 'knees' were fabricated

which could be reset at each new position to support the jack, and thus

the roof raising operation could take place on a 'lift-reset-lift'

pattern as in Plate (102). The complete lift took four nen, operating two

jacks each , about six hours.

During the entire erection process each line of columns was

stiffened by external bracing. At the final height, all the connections

were bolted dawn and the actual wind bracing positioned. Before the

temporary erection trestles could be removed the edge beam had to be

fixed. Firstly, the lower rectangular hollow section chord was lifted

into place at the required 1 metre depth from the eaves and bolted to

the corner columns. Straps held the flexible member along its length until

the side sheets could be attached.

The wooden trestles could then be removed and for a system building

are prdbably reusable. The loading system was then positioned and the

total applied weight prior to testing was determined to be 0.45 kN/m2.

The roof camber settlement was observed to be of the order of 15 mm at

this stage.

It should be noted that the weight of the loading system approximately

equals the allowance for deadweight of 0.25 kNim 2
. Hence the jack force

represents only the theoretical imposed load.

10.8. Design of Loading System

Due to imposed vertical loading, the equivalent collapse force,

uniformly distributed, is 2.2 kN/m 2 . After removing an allowance for the



deadweight of roof, the required total jacking force becomes about

450 kN.

The choice of the number of jacks needed for testing was

influenced by the amount required for roof erection ( eight). It was

decided that nine 80 kN capacity jacks with a 300 mm movement would be

suitable for both operations. The overall layout of the jacking points

is shown in Fig. (10.7).

A, hydraulic pump was specially purchased for the task of remotely

loading the roof and was linked via four three way connections and considerable

lengths of high pressure hose

The roof loading points had to be sufficiently close to minimize

the risk of premature local sheet bending. For this reason the sheeting

was chosen to be slightly thicker than necessary, but more importantly,

it was considered from preliminary tests, that loading points ought to be

based on a 0.9 metre square grid.

Thus 72 wooden trestles as shown in Plate (10.3) were necessary to

distribute the applied load, each having four pads which rested in the

corrugation troughs. To equally simulate the bending and end shear effects

of a uniform out of plane loading, the point loads were set at the quarter

positions on each sheet span. The applied force is vertical and to prevent

these wooden trestles sliding down the slope, angle strips were fastened

across neighbouring corrugation crests. Their resistance at roof failure

needed to be about 0.9 kN each.

The load per point at roof failure was about 1.6kN and for each

trestle a rod had to be passed through a hole in the roof sheeting to

the first layer of spreader beams. Thehading jacks were each associated

with eight rods and hence three types of simply supported spreader beams

were necessary to transfer the applied force by the 'tree' arrangement

of Fig. PD - 7 ). It should be noted that failure of one part of this

system during testing meant complete collapse of the 'tree'.

Each element was designed as a beam reaching 150 Wiall2 at the

theoretical roof failure load. Channel sections were used throughout,



generally back to back to allow a rod to pass between, and where

appropriate, web stiffners were used. The jack reaction members were

arranged to prevent lateral buckling of the long thin jack compression,

and four ground points spread the force into the slab base.

As the first part of the construction operation,a 225 mm thick

reinforced concrete base had been laid. The reinforcement consisted of

a lower 300 mm square grid of 12mm diameter bars and an upper 150 mm

square grid of 6 immesh. Thus the load per raalbolt of 12kN, it was

felt, would be spread out into the slab without local uplift.

To account for the roof camber, the 19mm and 22mm diameter rods

connecting the individual beams had to have a screwed portion at each

end of 75 Rm. In total 108 separate steel members, 72 trestles, and 192

rods were required for the complete loading system.

To simulate side wind loading five 3.5 metre high frames were

constructed as shown in Plate 00.4) and positioned along one side. A

steel wire was attached to the eaves and passed over a roller to a hanger

upon which 55. kgweights were hung. The overturning monent had to be

resisted by raalbolts fastened to the slab.

In fact, the applied load is opposite to actual wind conditions

but for this type of roof, the load direction is elastically reversible.

10.9. Testing Procedure:

The elastic performance of the folded plate roof was studied

tuxbr working imposed and eaves wind loads of 1.2 kN/m2 and 0.78 kN/m

respectively. Each test was initially loaded, unloaded and then reloaded

to determine the effect of fastener slip on the elastic response.

For the imposed vertical loading, the sag in the roof due to the

self weight and the spreader system was estimated as 15mm by measurement

frau the initial roof camber of 200nm. However, the theoretical deflection

ate to 0.45 kN/m2 should have been 20mm. It should be noted that the

design deadweight due to insulation almost exactly equals the spreader
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system equivalent uniform loading.

Increments of loading were taken up to the working load, and it

was noticed that on unloading, some residual deflection remained.

Reloading merely retraced the unloading line. Some outward movement

of the bottom chord of the edge beam was apparent due to the rotation

continuity of the sheeting at the eaves which twists the relatively

flexible side beam.

The central and outer bays were then separately loaded to show

the spread of deflection laterally. In all tests vertical readings were

to be recorded at all centre section points and at the centre apex quarter

span points.

For wind loading the same sequence of loading un- and reloading

was applied in six increments by application of approximately 55kg

weights.

An optical level and suspended tapes were used to measure the

changes in vertical movarent. Lateral displacements at the edge beam

were recorded by a theodolite sighted on to horizontal scales.

10.10. Discussion of Ex2erimenta1 Results

The elastic test results for uniform vertical loading are shown

In Fig. (10.9). The central apex deflection is plotted to demonstrate

the overall roof performance. It is clear that the structure stiffens

by about 20% on reloading 'which is totaly due to the 'bedding-in' of the

perimeter and seam fasteners. This reloaded flexibility reappears in

all subsequent tests.

Fig. (10.10) shows the vertical load-deflection plot for the edge

beam and the quarter points of the central apex. At the working load the

central deflection is only 35mm (L/620), and the dead weight settlement .

was measured to be an additional 15mm (theoretical 20mm). The complete

cross-sectional displacements are to 0.75 kN/m2 are shown in Fig. (10.11)

which shows the decay of defcrmation towards the outside of the roof.

This is because of the change of plate loading and fold line areas, which

causes fold line stresses as determined in Fig. (10.5). The beam type



deflections are caused wholly by the fold line axial strain and these

may be added for each plate to give net vertical deflections according

to the Williot diagram principle.

The axial strain component of deflection together with the :hear

deflection is shown in Fig. (10.13) and their summation closely approximates

the initial loading deflection curve. It should be noted that if open

profiled sheeting had been used together with more realistic fold member

sizes then the total deflection would have been roughly 70% greater.

The theoretical shear deflection includes an allowance for the

seam and edge fastener slip of 0.35 nm/kN and 0.15 nimAN respectively.

Fig.(10.28)shows that on reloading these become about 0.12 and 0.05 mm/kNI

respectively. Hence theoretical results for the total reloaded deflection

may be calculated as in Fig. (10.11) for test 2 showing the influence of

fastener slip and the good agreement with the observed deflections.

In addition, the centre and outer bays were separately loaded,

and their theoretical comparisons, for initial fastener slip, are indicated.

Fr the wind loading, applied at the eaves, the behaviour is about

30% stiffer on initial loading and about 40% stiffer on reloading, compared

to theory (Fig. (10.12)). The most noticeable discrepancy is in the edge

beam uplift which is somewhat lower than in theory. In practice, the

stiffness of the fold nenbers probably has a significant effect. The

five loading points may also not sufficiently accurately represent a uniform

lateral distribution, and of course frictional resistance of the suspended

weights on the tunner bearing may have some importance. Lateral deflection

was measured as 16 mm and the outward end column sway was approximately

1mm.

The test to failure under imposed load was carried out before a

large audience on 13th July 1976, and to monitor the roof performance a

running plot was made of the central apex deflection (Fig. (10.15)).

Severe non-linearity first became apparent at 2.0 kN/m 2 and at

this stage the loading increments were reduced. Seam failure occurred at
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2.3 kN/M which compares well with the failure theoretical load of 2.2

kN/M
2 

corresponding to a seam fastener strength of 2.5 kN/mm sheet

thickness. Preliminary tests indicated that the upstand seam had slightly

superior load bearing characteristics of 2.6 kN and this gives better .

agreement.

The other failure modes, as seen fruiti the design calculations,

have a higher safety factor. The actual failure seam was at the end of

the internal bay and occurred by ductile tearing of the 22 seam fasteners.

By extrapolating the elastic response and subtracting from the deflection

just prior to collapse, it may be seen that the total magnitude of seam

tearing is about 25 mm. The experimental load-deflection curve is

initially about 20% stiffer than in theory.

Fig. (10.16) also shows how, by comparing the pure elastic

deflection with the actual roof displacement at failures, the area of likely

failure is apparent. By studying the apex quarter point movements it is

clear that one side is some ID% greater than the other which is precisely

where failure occurs.

Failure represents almost twice the working load andthadicates the

design philosophy.(9911°°)

Diuing the testing operation, the large seam displacements caused

local bending, and twisting of the neighbouring fold members at failure

as shown in Plate (10.6) which was exacerbated by the surge of the stored

energy in the jack and spreader systems as theload decreased.

Replacement of the damaged members has not yet been carried out,

but it is suggested that the folds could be locally supported and cut off

before rewelding, and positioning of new sheets. The loss in camber of

the undamaged portion was only 75 of the initial 200 rall.

10.11. Limits of Viability of Folded Plate Roofs

The structural action of folded plate roofs utilizing corrugated

steel sheeting has been discussed in Section (10.3). It is clear that
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the longitudinal action is essentially that of a plate girder spanning

between end frames. Hence, for each geometrical configuration there will

be a definite span to depth ratio above which folded plate action is

likely to be unsuitable. In the U.S.A. where double skin sheets are

used, the web becomes extremely stiff, and welded perimeter fixings to

relatively thick gauge steel will raise the permissible spans greatly.

However, in Britain, mechanical fixings to standard gauge open

profiled sheeting are the only generally available materials for folded

plate construction. The failure criteria may be divided up into:

1. Properties of the sheeting for simple bending, shear

distortion, and shear buckling requirements

2. Properties of the connections for strength and slip

requirements

3. Properties of the fold lines for bending resistance and

deflection limitation.

TO determine the limits of viability, the most important design

pararteter must first be considered, which is the tearing strength of the

perineter fixings. It is assumed that the trough pitch of corrugations is

150 irm and that this only accommodates one self-drilling screw of shear

capacity 6 kNALlit sheet thickness.

The chosen parameters which determine the limits of roof span,

L (metres), are:

B - spacing of columns m

e - roof slope
t - sheet thickness, mm,

h - profile height, nut

It should be noted that Young's modulus (E) is 210 kN/mm2

Roof loading (w) equals 1.2 kN/m 2

The deflection limit is L/360
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The corrugation is a standard shape with 75 mm trough width and

15° side slope. Hence its shear distortion property 17 may be determined

as a function of h.

The in-plane force component, R is resolved vectorially and the

end shear force in kN is,

RL	 wBL 
2	 4 sin 01

The sheet length in metres is

2 oos e'

RL
therefore the shear flag 275

wL 
2 tan 0'

6t wL 
Thus F - 2 tan 0/ x 0.15 where F = safety factor = 1.75

The maximum span is Ls = 46 tan 01= 38t tadand is independent

of B.

Fbr bending strength the fold area may be evaluated by considering

the central bending moment RL 2/8 and the section modulus Ab where A is

half the fold area.

Thus A = 
wL

2 
x 1038 tan W. a , again independent of B

a is the permissible axial fold line stress (= 1501,11km2).

The bending deflection due to beam action is given by,

10 RL4 	
1 

Ab =	 1E1b• 	x sin 01

where the factor (sin e) -1 represents the translation from in-plane to

liertical deflection.



Thus, after insertion of A, and R,

x 103 mmAb = 12 '
 at? cotO'

EB

The shear distortion deflection is,

1502 5
.1T RL2 1 

A
d 

= 	 	 x
Et2.5b2	 8	 sin 6

„...2•5 — 2	 2 /
JD° • K wL .cot 0 mm
Et2.5 B x 10 3 x 4

It is assumed that the minor sources of shear flexibility such

as seam slip may be neglected, which is in some way accounted for by

the relatively severe deflection limitation. The loading w for deflection

only includes the live load component of 0.75 kN/m 2
. Thus, the maximum

span for deflection limitation is,

Ad Ab = 360

1	 0.75 0.25 17So	 360 = E oot 610.30 x12 +	 cot dl. 	 t

10
3 x B tan therefore,	 Ld — 360 10.19 + 0.2517 

cot Eq.

t2.5

2.78 B tan el 

(0.19 + c°2t5ei x 0.25 )
t

However, iT is a property of the sheeting given in Fig. (U0L7)

which has a single parameter h. If profile heights of 20, 30, 40 and 50 ran

are considered, then the corresponding IT values are .067, .133, .194 and

.246.



The profile shape also determines the sheet bending and shear

budding strengths. Fr simple bending it is assumed that no effective

width reduction need be applied to the compression plate, which is merely.

a crude simplifying assumption.

The neutralaxis is given by

(76 - 0.53 h) h + 1.04 h
2

x = 150 + 1.55 h

The sheet inertia is thus,

-2h3 h
D=76	 + (76 - 0.53 h) (h - 7)2 + 2.08 -y-2 	 X) X 2.08 h

The sheeting merely spans between fold lines and hence,

wb acos2 6 =8	 150 ' (h -

Mt therefore, Bb =14(11 _ 3i) .025

The shear buckling capacity is determined by the minor and major

sheet bending stiffnesses, Dx: and D respectively,

DtE
D - -i-5-0 per urn

3
t E (1 - .01 h)
12 (1- Q2)

According to Easley's formula for shear buckling,

Dx

3/4 
D 

1/4
36 D RL 	 Y	 x =

2;	 b.F where F = safety factor of 1.75

(1 - .01 h) )
mt 3/4 t3

1/4 207 x 2 cos 0'
w81, 
4 sin e , = 36	 (7.Er150

B x 1.75
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. 0.36 Ty4 t3/2
- .0O25 h) cos 0 1 .sin e'

It ShOUid be noted that D h2 and hence the permissible span due
to budding Lt is proportional to,

B2

h3/2 t3/2

LB cc	 2
. sin 2 0/

The design criteria outlined are the shear strength of the

connections, the deflection limitation, the shear buckling capabilities

and the sheet bending strength. The maximum permissible roof span is

determined only by four geometrical properties, - B, 	 h, and t.

For folded down corrugations it is suggested that 17/5 ought to be

taken for the corresponding Shear distortion parameter.

Thus L as a function of B and h may be plotted for various t and

h as in Fig. (10.18). An envelope of the four limits may be drawn and

it is apparent that the maximum covered area L times B is generally

determined by the coincidence of the fastener and buckling strength lines.

However, the European Code of Practice dces indicate that shear buckling

failure should have an extra 25% reserve of safety. It may consequently

mean that the fastener tearing capacity is not the primary limitation.

When fastener strength is the main criterion Fig. (10.20) shows

the effect of sheet thickness and roof slope. Great spans are possible

for 45 degree slopes, of the order of 35 metres. At any roof length

the required fold line area may be calculated in Fig. (10.21).

It may be seen that for the prototype test structure of column

spacing 3.6 metres, the failure nodes and deflection limit are very close

for open profiled sheeting. Closed end sheeting greatly reduces the central

deflection.

It is assumed that the number of seams fasteners is adjusted so

that failure occurs simultaneously with the tearing of the sheet-fold

fastener.



Some reduction in

30° but it is assumed for

dead and imposed load for

roof load is possible for slopes bigger than

simplicity that 1.2 kN/m2 represents the total

all roof angles.

10.12. Com2arison with Portal Frame Construction

The prototype test folded plate roof utilizes cold formed fold

line members of sufficient cross-sectional area for bending strength,

and corrugated sheeting spanning between. Fbr comparison with conventional

construction, (Fig. (10.23) indicates the approximate weights of steel

required for both folded plate and portal frame buildings of size 20

metres x 10 metres.

The same sheeting would be used for each although the folded plate

requires 0.8 mm thick steel for the fastener strength based on a 3.3 metre

column spacing as determined from Fig. (10.19). Conventional sheeting,

it is assumed is 0.7 nu thick.

Portal frames span 10 metres although the roof structural dimension

is 20 metres. A number of simplifications have been made in the design

and cost comparison is only for the roof portion and not the completed

building. The portals are at 5m spacing.

The calculated steel saving is about 33% in this case and as a

casual observation, the cost of the fold Renters is about that of the

purlins. On the debit side for folded plate construction, more fasteners

are required and construction time might be greater. In addition, the

longitudinal edges, it is assumed are supported by perimeter sheeting posts.

On the credit side, the end frames allow side sheets to be

attached, as sheeting rails and posts are normally required for portal

framed buildings. Amain advantage is that there is no need for roof

wind bracing in folded plate construction.

It should be noted that for square buildings the material savings

are even greater.



For a 10 m x 10 m square building the fold line weight reduces to

465 kg. Lighter end frames can be used (647 kg) , as well as 0.7 mm thick

sheeting.

Three portal frames are required which, reduces their weight to

1953 kg, and the ratio of steel costs is nod only 0.57.

For a 20 m x 20 m roof the folded plate concept really becomes

structurally very efficient. Its cost merely varies linearly with

increasing width as the structural span remains unaltered (4406 kg).

However, a portal frame spanning 20 netres requires almost double the

weight of steel per netre. (356 x 174 x 45 kg/m R.S.J.).

The frame weight soars to 6210 Kg and the purlin weight is 2112 hg

making a total of 8322 kg. The ratio of weights of steel is now only

0.53.

Taus, the optimun folded plate plan shape is where there are a

large number of repeating bays with a span of about 20 netres and it

may be expected that this saves in excess of 40% by weight of steel over

conventional construction.

However, balanced against this obvious material advantage must

be determined the lack of roof lighting (mid. span only), the difficulties

In erection, and the increased number of fastenings.

The cost advantage can only be maintained by prefabrication of

longitudinal panels and a standard erection techniqtE whereby complete

sections may be fastened at ground level and lifted into place. Detailing

and weather proofing must also be devised to suit folded plate construction.

10.13. Design Summary for Folded Plate Roof Using 02en

Profiled Sheeting

Data: Span, L=21.6 metres

Bay width B=3.6 m

Profile depth, h7,35 nut;	 0.17



Sheet thickness, t 0.9 mm (actual 0.85 miT)

Loading, 1.2 kN /M2 at working load 110.75 kN/M2 imposed)

Roof slope, ()=350

Safety factor, F on fasteners = 1.75

Sheet span, b = 2.1 m

Young's modulus E == 207 kNAitu2

The design is carried out according to section (10.4) using the

notation previously stated.

wE The in-plane loading q - 2 sine - 3.76 kNim

91,
2

Area of fold line is A	 = 700 mm28ab

where a = 150 N/mm2

Total fold area is ZA = 1400 mm2

Fastener Strengths: End seam

Decking profile ns = 24, Ss = 0.35 mm/kN, S = 0.15 mm/kN,

(31 = 1.56 (see table 8.10) 	 n 	 24

Fs - individual seam fastener capacity = 2.5 x 0.85 = 2.13 kN

F - individual fold fastener capacity = 6.0 N: 0.85 = 5.10 kN

ns	. g1	 r nsh 	1(17-7 + -17)
4 = (nF + 2F.10) 	ss	 nsS	 1 

1 nsh - 2 = 74 kN

e+ 7. )
S

Qs represents the equivalent end frame reaction which should be

bigger than 3.764F where F = 1.75

71 kN



Roofing profile; ns = 30 gl = 0.97 (see table 8.10)

= 	 gl Ss/s) Fs {
nSh 
n - 2 } = 74 kN

sh

Sheet-fold fasteners: d = 150 rim

Q = F = 71 kNF	 a p

Sheet-end frame fasteners are of the same pitch as the sheet-fold

fasteners (150 mm).

Deflections: At imposed loading of 0.75 kN/m2

q 2.35 kN/M

Distortion: d2•5K 	 qL2
d1.1 Et2.5 b2 	 8

= 10.6 mm

(1 + v) (1 + 2h/d) qL2Shear strain: d1.2 - 	Etb	 = 1.3 mm4

Sheet	 afold slip:	 --2.1 _ 
	

2	
.sdq L2	 1.5 um

4b

Sean slip: (rish - 1)	 s Ss 
d2.2 - nS+g S/	 = 4.0 mm2 is

for a linear variation in seam strength.

sqL 
=Sheet-end frame slip: d2.3 - 2(nsc - 2 + 2g1)	 rrm0.2

10	 ,T4
	Simple bending deflection: d1.3 = 384 •2	  - 20.8 an

EAb

Total in-plane shear deflection = 17.6 'mm

s

Therefore, total in-plane deflection = 38.4 mm
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Vertical deflection of fold line = 38.4/sin 35° = 67 mm

= L/322

Shear buckling capacity 

Corrugation data, d = 150 inn, 2bT = 47, 2b = 76, h = 35mm

f)
D--.tE = 260E	 D -	 t

3E	 1 	
= 0.38E0.

Y d	 12(1 - v
2
) (1 + 2h/d)
x 

3/4 1/436 D	 Dy	 x - 101 kN

wbL =F = 71 kN
4 sin 0'

So shear buckling is not critical.

Summary of design requirements for roof of 350 slope, 21.6 m

span and 3.6 m column spacing.

1. 35mm deep corrugations of 150 urn trough pitch and 0.9 mm

thickness. The sheet width is 900 mm and the length 2100 mm.

2. Sheet-fold line fasteners in every trough with self drilling

screws; 5.5 mm diameter (ultimate strength 6kNAtia sheet

thickness).

3. For decking profiles, with a trough overlap seam ) 24, 4 mm dia-

meter 'pop rivet' seam fasteners at 85 nut centres (ultimate

strength 2.5 kN/mm sheet thickness) are required in the

final seams. For roofing profiles with a crest overlap,

30 seam fasteners are necessary at 70 mm centres. A linear

variation of seam fastenings is possible towards the centre

of the roof span down to a suggested minimum of six.

4. 14 sheet-end frame fasteners similar to 2 are required at

150 mm spacing.
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5. The minimum fold line total area is 1400 mm
2
. It is

suggested that the thickness should be 4 ram giving a

fold perimeter of 350 mm which is sufficient to allow

sheet attachrrent without mudh width reduction of the

compression member.

Failure should occur by seam or sheet-fold fastener tearing at

a roof load of 2.1 kN/mL2
 which includes the self weight of fold lines

and sheeting totalling 0.14 kN/m
2

.

Roughly 8 self drillings screws are required per square metre

and also 8 seam fasteners per sq. nh of roof plan area.



Plate (10.1) Sheeting between fold lines in operation. The fold lines are held in
position by wooden trestles which are set to the correct roof camber

Plate (10. 2) Jacking of the roof in stages from moveable knees. External
bracing was temporarily attached
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Plate (10.3) Roof ready for testing with side sheeting and loading system attached

Plate (10.4) Side wind loading system connected to eaves fold line member
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Plate (10.5) Failure occurred by seam tearing of the central bay. This
caused excessive twisting of the adjoining fold line members

4

4

Plate (10.6) View along the valley member towards end failure. Also shown
are the angle pieces which prevented sliding of the loading trestles



CHAPTER	 1 1.

SPECIAL PROBLEMS RELATED TO FOLDED PLATE ROOFS 

This chapter deals with some factors not normally considered in

the idealized behaviour of folded plate roofs. Firstly, the most

important practical problem is the provision of roof lights in the

sheeting skin. The initial investigation concerns the likelihood of

strut buckling of the fold line in compression where there is only

partial restraint from the sheeting on either side of the gap. This

is follaaed by a more exact analysis which includPs the Shear flexibility

of the sheeting to determine the fold line pre-buckling response to

local loads and axial forces.

Variations in the sheet-purlin fastening arrangement along the

roof span may be encountered and often the fold line members are

sufficiently shear rigid to smooth out the change in shear flexibility.

The central roof deflection may be quite substantially reduced and a

finite difference method has been developed to take account of this

effect.

Problems exist also at the plate extremities where, in some

designs, an edge beam is required to absorb local forces. For a down-

stand edge beam the bottom chord will usually be in tension, but even

so it is free to buckle sideways and an approximate expression has been .

developed for lateral instability of this very long thin girder.

11.1. Holes in Folded Plates

A serious disadvantage in the design of corrugated steel folded

plates is that their surface must be complete for longitudinal transfer

of shear to end supports. This does not seem to have unduly concerned

the designers of existing roofs who offset this inability with glazed

sides between the end columns.

However, for industrial buildings requiring completely covered

walls, roof lights are necessary. In theory, the low shear force at the
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centre of the span should obviate the need for a load carrying membrane.

Roof lights may be designed to span between fold line members, and the

central sheets ideally can be removed. In general, however, some shear

resistance must be introduced to account for the effects of uneven

roof loading.

A low central shear field is a very useful property of beam

action under uniform loading, although. in this region the relatively weak

fold line members are subject not only to local bending forces but also

to the effect of the extremely high axial forces. Their combination

may cause local fastener failure, additional fold line bending stresses,

excessive deflection or even buckling of the fold line.

It is assumed that the free edge of the sheeting bordering the

roof light is stiffened in same way to prevent buckling between fold

lines due to the high sheet-fold fastener force.

The first analysis concerns the critical buckling load of the

fold line in compression spanning across the opening. Failure will

occur ideally by buckling as an encastr‘member, although in practice

tearing of the sheet fold fasteners will occur as in Fig. (11.1).

In this analysis, sheet shearing is neglected and it is assumed

that the effect of the discrete fastener forces is to provide a uniform

elastic medium upon which the fold line is free to bend.

For the portion of the fold line affected by the restraining

stiffness of the fasteners, the following differential equation holds,

where v is the vertical displacement of the fold line.

El	 +div 	 d217	
2n sinn	 v 

0
P

dx	 dx2	 S

I is the fold line inertia about a horizontal axis and E is

Young's modulus.

P is the fold line compressive force

Si n2Sin u represents the component of fastener stiffness vertically

for a roof slope 8:



and

n is the number of fasteners per rm, and

S their dharacteristic slip.

Due to the effect of a local fold line vertical uniform loading,

qf, the centre portion has a differential equation of the form,

d v	 d2v

	

El4 ' P--•	 qfdx	 dx

2n	 2 /Considering -rT . sin to be represented by k the solution of
the first equation is given by,

4
X-xV = E A.e

i=1

where X. has four values given by,

. ±/72.- ± i I k	 -2---„ 2
X
i	 2EI -,-1 a k2E1)

However, if x is defined as outwards fromthe centre of the hole

then vnmst decay as x tends to infinity,

So	 V = {A sin M (x - a) + B cos M1 (x - a) le - M2 (x a)
(a is half the hole width)

where	 8 2 + 74pEl

and	 M2 = 10 2 ir

The second differential equation has a rather different solution,



qf 2V = -2-p- x + C ccs	 x + D where M =)773	 EI

This observes the necessary symmetry of deformation about x = 0.

The first and last terms in V refer to the particular integral of

solution.

The four unknown of the solutions require four geometrical
dvboundary conditions at the edge of the opening sudh that, V, -d---x

d2v

dx2
are continuous.

, and

An additional condition is that the applied loading, 2g f .a equals

the total fastener resistance along the fold lines.

Fbr equality of displacement v

qf 2
B = 7.13 a + C cos M3a + D

Similarly for

qf _-M2B +14.2k	 —.a C M3 Sin M3a
P

d2vAnd for
dx2

qf
•	 (14 -	 B - 2M M-A =	 -	 cos M3a1 z

Solving for B and A in terms of C

M32 cos M3a + 2M2M3 sin M.,a	 q, (2M2a +1)
B = C { 	 	 r 	2 p yi 2 +7;7

M2 + 2M1	 ' 1	 -2
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A=C
M32 M2 cos M3a + M3 sin M3a (M222)1

m1(N12 N[22)

qf {(422 - mi
2
) a + M2}

mi (1412 
+ 2).

The final condition concerns the equality of applied and

resisting forces.

So qfa	 (A sin Mix + B cos Mix) e- 2. . k

	

clfa	 M2 . B

2	 2

	

•	 mi. 4- m2

/4
1 	 . A

M12 + M
2
2

Thus inserting A and B and solving for C.

) clf/0

2M 1432 COS M3a +	 (3M22 - Mi2) sin Msa

At the critical buckling load C will tend to infinity and thus

the denominator will become to zero.

Knowing the parameters M1, M2 and M3 in terms of P, El and k,

the denominator may be rearranged to give,

NL3 = -(32M2 	 M12)

2M2
tan M3a

P _ (26
2
 - PI8I)

2 
tan2 M3aSo EI	 4(43 - P/4EI)

If the Euler load for an encastrEr strut is given by,

P R
2 

EI 
E 

a
2
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which is consistent with complete end fixity at the edges of the opening,

then,

.	 2
(2a Pt	 PEFE = 4a2a2 n2 p/rE)

Solving for P/PE this becomes,

22
Pa 11 4.
pE	 2	 tan2 ip

/PE

PE	 n2 /Ei	 {1 + COS n } =	 + COS
So	 P	 1  

2n	 .2
where k = —s sin 0

It is a well known solution for a strut continuously supported

on an elastic medium, (43)

pcn.
.t = ylcEI

It may be seen thatas PE becomes very large consistent with a

tending to zero

112E1

a2
and PE -

and hence the equation does degenerate to the above case a typical

solution for a practical folded plate is as follows:

If I = 5 x 105 mm4, E = 200 kN/mm2 , a = 1000 mn

-1
n = 1/150 mu	 S =0.15 nm/kN, sin el = k

=	1 ,ifka	 lo

	

4	 1 j( 	 12x 2 

n
2 EI = 9.9 4 x 5 x 102 x 2 x 105 x 22.5

= 1.5



WL2

TT:Z.-ET
II2 . ElPE = a2

PE

2n2k = -- sin 6

hole width = 2a
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For a span L of roof and 2a hole width.

Typically, L = 20 m ; cot 0 /-= 2; I = 5 x 10 5 mm4

w = 2 kN/m
2 overall u.d.l.

P	 100
So ' 1000 - 0.10

For = 1.5 the critical value of P/PE is 0.18.

6 Pcrit/PE Effective
length

50 0.65 1.2 a

20 0.58 1.3 a

ID 0.43 1.5a

5 0.35 1.7 a

2 0.22 2.1 a

1 0.14 2.7 a

0.5 0.08 3.5 a

0.1 0.02 7	 a

The above table represents the iterative solutions for P/PE

knowing a value for 6 which represents the ratio of the fastener

stiffness to the effective lateral stiffness of the fold neither spanning

across the opening.

Of course, the analysis can only be approximate in that it

neglects imperfections, roof camber and other effects which tend to reduce

the practical buckling load. This obviously requires future research,

but at least it does give an indication of the likely opening widths

based on a suitably high safety factor.



For the example indicated, it seems that a hole width of less than

2 metres in a 20 metre span would be flexible. As a safe design approx-

imation the total applied load on the roof light may be assumed to be

absorbed by the last fastener on each side of the opening. Thus the.

maximum opening span is given by,

	

2F sin e wBa	 where B is the bay Width. F is the fastener

	

2	 strength.

Typically B = 4m, w = 2kNI/M, Fp = 4kg , sin e l= and so the

maximum value of a is 1m, corresponding to a 2m hole width.

11. 2. General Aaroach for Holes in Folded Plates

The previous analysis of strut like buckling of the fold lines is

an upper bound to the failure load. Prior to this, severe bending mcments

and sheet-fold line fastener forces may be generated due to the coMbined

effect of the local loading and axial force.

A, modified analysis takes into account the shear flexibility of

the sheeting as well as the effect of axial force an the deflection of

the fold line.

The equiLibriun equation for member bending is:

d2N)+ EId4 V 
+

E
Pq =

_4	 2
ux	 • ux

where V is the movement of the fold line

q is the local vertical force per um

P is the compressive axial force

For sheet shearing:

d2Vs
2

1	 . 2 / d.	 . 2 sin 0 =q =	 2	 2 •

	

dx	 YX



For fastener slip:

q =	 - Nis)	 . 2 sin2 6/ = k(VE - Vs)

where V is the vertical sheet movement and C is the in-plane sheet shear

flexibility. As in Section (11.1) the factor 2 sin 2 0 is the modification

fram an in-plane to a vertical fastener or sheet stiffness due to two

plates meeting at an angle 20!

By solving these three equations for the sheeted portion it follows

that:

	

d6V	 1 d4VE	 - c
	6	 + k.EI

d x

(1 - CP) d2VE
El	 0

d14

The internal unsupported fold line deflects according to:

d2v
P	 q;

dx
4 +

dx

where	 is the local vertical uniform loading on the fold line.

As previously, the solution for the sheeted part, which must decay

as x tends to infinity away fram the centre of the opening, is:

(x - a)
= e	 {A sin M (x - a) + B cos M (x -a) }

Again a is the half hole width.

Using the fact that:

/

	

d2V	 d	 d2
S - C EI	 + C P 22

	

d x	 dx
4

dx

El



M1 =J 	 2
+ x2
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Vs must also be represented by a similar form.

-M2 (x - a)	 1
{A sin M1 (x - a) + B1 cos M1 (x - a)}V

s
= e

_j k (1 - CP)Using xi = (Ck - P/EI) and x2 -

I X1 +X2
M2 -	 2

Consequently, A?- and B1 are related to A and B by equating terms

in cos and sin according to:

, 22	 1
kM2 -	 ) B - 2M1-2m- A1 = r C El (M 4 

- 6M12 M22 + M24 )
2

(M2
2 

- 1411
2

) }B + ICEI(-4142
3 
Mi + 4M13 V - 2M1M2 CP IA

4and	 (M22 - 2
) A1 + 2M1 M2 B1 = {CEI (143 - 6M1

2 PL2 + M2 )-z

+ CP(M22 - 2) 1 A + {CEI (4M23 Mi - 4M13 Ny + 2M11A2 CP 1 B

Thus A1 = AA.A + AB.B

and
	

B1 = BA.A + BB.B

The solution for the internal portion is again:

qf 2VE =	 x + D cos M3x + E

which is consistent with the syraretry about x = 0 where M3 =,,/

Solvinq for PL, B, D and F requires boundary conditions such that
dV

V
E
 , E and
 clx are equal for each differential form at x = a,



which is the edge of the opening, as in Section (12.1).

An additional relationship is that the sum of all sheet-fastener

forces equals the applied load on the opening. Thus,

qfa	 (VE - Vs) d x

qfa	 NI	
11 M2 	  { A A I2	 2	 2	 2

Ni + M2 	 M1 + M2

{B - B1}

where k is the equivalent vertical fastener stiffness.

Bence, A, B, D and F may be solved in terms of q f and P as in

Section (11.1). The bending stress at the centre of the hole is an

important design factor and is given by:

a = y d2VE
2d x

where y is the distance from the neutral axis of the fold line section.

qfThus a = y{-- - 1432D 1

The central deflection is (D + F) and the maximum fastener force

is:

(B B1) sin 0
	 where S is the characteristic

fastener slip and Cis the roof slope.

A copy of the program developed for this general hole in folded

plebe solution is given in 2ppendix5

As a typical example, the program has been run for a folded

plate panel suffering an in-plane load of q f =1kNim as shown in Fig.

(11.2(a)). The hole width (2a) was selected as 1.5 metres and the influence
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of the axial compressive force on the central deflection is indicated

for a realistic fold line inertia of 105 mm4 . It should be noted that

the theoretical buckling load for B = 3.8 in this case, is about lID kN

(see Section 11.1) and the Euler buckling load for an equivalent fixed

ended strut is 355 kN. In this case fastening is locally in every

corrugation and the effect of fold line inertia and hole width on the

central deflection is also shown in Fig. (11.2(b)).

For zero axial force it may be expected that the displacements

behave linearly with the applied loading qf• However, when axial force

is inclilded the deflections and stresses becone non-linear due to the

eccentric effects of compressive loading. Thus for higher values of qf,

so a given axial force will have an increasing effect.

The local fastener forces around the hole are depicted in Fig.

(11.3(a)) for alternate and every trough fastenings. The assumption

that the discrete fastener restraints may be spread out to form a uniform

elastic medium will tend to over-estimate the outer fastener force where

the displacement is largest.

Naturally the degree of sheet-fold line fastening has a masked

effect on the local fastener forces around the hole.

As a design parameter, the fold line bending stress is probably

most valuable and this is shown in Fig. ((11.3 (b)) for a hypothetical

100 nm deep member. FOr a general nenber the stress at any distance y

from the neutral axis is a .y/50. It . is clear that quite large additional

stresses are generated of the order of 40 NALui
2
 for a 2 metre hole width.

11.3. Lateral Instability of Edge Beams

The extremities of a folded plate roof span are worthy of special

notice. In concrete roofs the edge plate is usually sufficiently

torsionally stiff so that the penultimate fold line transverse moment

does not cause large outward twisting movement.

For corrugated steel folded plates with effectively pinned joints,



the problem is more one of the possibility of lateral buckling of the

very slender edge beam spanning between end frames. Unlike the internal

joints the final fold line member is unsupported. The bottom dhord of .

a downstand beam will be in tension for vertical loading (Fig. (10.2))

but in compression for leeward wind suction.

This lateral instability chord is free to move sideways. Two

modes of failure are apparent and the actual buckling load is a function

of the two, providing that rotational continuity can be maintained at

the lower dhord.

1. Where the edge beam acts as a rigid number developing the

full torsional resistance of the fold lines.

2. The bottom chord does not twist, and lateral movement occurs

by web bending of the edge beam

Por the prototype roof design the lader chord was selected as

a IOD x 50 rectangular hollad section which increases the torsionally

rigidity.

Assuming that the edge beam rotation is:

OO sin 111

The bending energy of the bcttam chord is:

L/2
d20	 .2

Eb = (JD' El (--70 h2 d	 114
x: = El 	 h

2 	 2

4L

where I is the lateral inertia of the lower chord

h is the edge beam depth

L is the span between lateral restraints

The torsional energy is:

L/2

de2	 2H	 -2
ET = 0 GJ (-(Td dx = GJ



where J is the lower chord torsional stiffness.

Work done by axial stresses where a = ; sin a and the axial
Shortening at any point is:

h2 (do 2

2 431

L/2	 2 a
CO6	 dy

EA =
-	 2	 .a At:22 11i	

of

- A 2
—
3	

.

where A is the lower chord area and.

cr. is the central axial compressive stress

= wL2aAh8

w is the in-plane loading producing compression in the final chord.

Work done by the imposed loading, w is:

_2
EL = wh 6	 I sin' 2	 dy

2 o

Case (1)
2wth -=	

71 • g

(a)For unsupported tension chord EL - EA = ET + EB

(b)For unsupported compression chord EL + EA = ET + EB

This gives:

n2 h 112EI	 GJ
w =

F L2 
{ 

L
2 h2

for the case where F= 1.52 for case (b) and F = 0, 48 for (a)



Ter =
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It should be noted that if no special provision is made for sheet-

end fold rotational continuity, then J tends to zero.

Case (2): If the lower chord remains torsionally rigid and the sheeted

web has morrent continuity at the lower chord by periodic double fastenings

as in Fig. (11.8), an additional energy component results.

The sheet bending energy over the complete length is:

L/2
Eis u2

. 2 113	 sin

where I is the sheet inertia per mm width.

This gives a corresponding expression of:

H2h 112EI	 3E1s 
L
2

w -	 {
FL2 L2 H

2 
h
3

where again F = 1.52 for the compression chord and 0.48 for the tension

Chord.

However, these two cases represent only upper bounds to the

instability mode which will occur by partial web bending and fold line

torsion providing there is no relative rotation between the sheeting and

final chord member.

Ety. 

IEB +	 1Es + ET

E
s dY

where:
M

I
S 
L2 GJ	 R2EI

S	 11
2 ,	 = — and	 -

h2	 1.12

h
3

F= 0.48 or 1.52 as above.



ET = 80 x 1.1 = 883 x 200 x 150 x 21.6
2

ES = I? X 103

For the actual roof data of:

= 0.47 x 106 nu;	 = 1.1 x 106 mm4 , L = 21.6 m

h = 1 IT4	 I = 150 mm4Aum

EB g x 200 x 0.47	 ESET-	 - 2	 =86
Es + ET21.6

2

w = H
2 
x 88	 = 1.22 kNilm uplift or 3.86 kN/m downward

F x 21.6
2

Actual imposed working loads for the prototype test building

of Chapter 10 are respectively about 0.5 and 1.1 kN/m.

11.4. Variations in Sheet Flexibility along the Roof Length

In relatively short span folded plates, where fastenings in

every corrugation to standard sheet thicknesses have sufficient reserve

of safety, the fixing pattern may be changed towards the centre of the

roof. Alternate ocrrugaticn fastening, however, is much more flexible

and this will result in a considerable increase in the roof deflection.

The rapid change in shear flexibility causes local bending of the fold

meMbers which, therefore, absorb same of the panel shear force.

It may be expected, that the fold line members, which are

relatively wide to facilitate attachment of the sheets, will provide a

shear stiffening effect. The central deflection may thus be reduced to

same degree.

A theoretical investigation was initiated by the method of

finite differences which allaaed an abrupt change in the sheet flexibility

to be acccmmodated easily. The roof panel is split up along its length



into segments which each behave according to a predetermined differential

equation.

It is assumed that fastener slip effects are small compared to .

the large shear deformations which are present in folded plates.

For a shear force Q. on an element the differential equation of

equilibrium is:

d3v-El 3
d x

1	 dV„
Ci d

4i

This implies that the applied shear force is split between the

sheeting, of flexibility Ci, and the fold line of bending stiffness El.

For two plates of slope e to the horizontal reeting each other,

this equation is modified to cope with a vertical movement V of the fold

line, rather than an in-plane displacement as in Fig. (11.1). Thus,

	

alv	 dv	 2 sin
2
0' - .-2E1	 +

dx
	s 	 d?c	 C.	 ul

. 2C is the individual sheet flexibility and 2 sin 0 represents

modification to an equivalent vertical flexibility.

I now is the inertia of an individual fold line about a horizontal

axis.

6i - 	 2
	 -average force per element

0 now represents the vertical roof shear force per bay and- i
varies linearly along the span fram a maximum value of Q 0, which equals

the total applied load an half the span times one bay width. If the

elammt width is dj then the i shear force according to Fig. (11.4) is:
th

Qo. =	 -41	 o	 dj3=1	 L/ 2



But V3 x(2, 3) + V2 x(2, 2) +. V1 x(1, CO =

and so V3 is also a function of Vl.

In general, if,

= A(i) + B(i) V
1

then,

V	 = V { -x(i, i)	
x	 17.41 i+1)	 A (i-2)

i+1	 1 x(i,	 A(1)	 1(ir	 A(i-1)x(i, +1)

+ 	 •	 x(i, 
1- 	 etc.,{ x(i, i+1)	 x(i, i+1)

At the centre of the span, the deformations are purely symmetric.

If the centre displacereat is VMS then V14+3. = Vivi _ 1, etc.

Finally, the last equaticn of equilibrium is,

Vm+1. x(M) 14+1) + Vmx(M,	 etc., =

but all the displacerrents arelmuma in termscf V1 and hence the absolute

value of V1 may be determined. Reinsertion into the general equation for

V yields the displaced Shape of the fold line.

The general nature of this approach means that the sheet

flexibility may be changed for a selected number of elements, as may the

individual eleuent widths.

It should be noted that as an approximation, includes all the

sheet flexibility components rather than just distortion and shear strain.



dV
iV.-V.

- 1d x	 d.1

The equivalent vertical element flexibility may be redefined by:

C.

.2i2 sin la

.	 dV	 d3,VThe differentials — and 	 may be represented by:dx

ci

dV. r.

dx3 d + 1

1 	 + 1 2	 1{	 + Vi2	 1

1	
1+1 1 +V.1 - 1 d + d. t d.

i 
i	 1 -1

V - 2

The total finite difference form may be collected together to

give, for element i

-+	 x(i,	 + 3.) +	 x(i,	 +	 _ r x(i, - 1)

+ V _ 2 . x(i, i -2) =

where x(i, i) represents typically,

1	 1	 12B1 { + 2- + 	  +d
d. / 	 1cL	 .1	 + 1

	

1	 1

The initial conditions are determined by the free end fixity which

observes anti-symmetric deformation. Therefore,

Vo = 0; V_1 = -Vi; V1.2 = -V2, etc.,

V2 . x(1, 2) + V1 (x(1, 1) - x (1, -1) =

Thus assurning V1 to be an unknown,

V2 = A •+ BV1



• A, number of typical Bolded plate examples were analysed using

this rrethod which coincided with experimental plate test data. The

camparisons of theoretical and experimental results for a number of

individual plate tests are described in the next Chapter.



Plate (11..1) Plate girder test showing buckling failure of open profiled sheeting
under uniform in plane load

Plate (11. 2) Seam failure of pressed sheeting in equivalent plate girder
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CHAPTER	 12

EXPERIMENTAL TESTING OF CORRUGATED WEB GIRDERS

12.1. Tests on Pressed Sheeting and Standard Open Profile •

Folded plate roof action may be simulated by flat plate tests
under uniform in-plane loading. Thompson ( 'a1) has carried out a
nuMber of tests on horizontal plate girders of 18 metre length but
suffered from having too few loading points. Consequently, the modes
of failure were associated mainly with local deformation.

To examine the deflection and strength of folded plate roofs
it was decided to construct a 21.6 metre corrugated web girder of the
same span as the prototype building of Chapter 13. The plate depth of
2.1 rretres was also the same as the roof sheet span and so the deflection
and failure load may be directly related to a practical folded plate
structure.

The flanges of the plate girder were rectangulAr sections of
szie 100 x 50 x 3.2 rrrn thick, and the sheet ends were fastened to
channel sections which were bolted to a solid floor. To prevent lateral
buckling of the flanges, runners were provided in the middle of the span at
2 metre spacings, and the in-plane load was provided by nine jacks
separated into eihteen points uniformly along the length.

kview of . tletest rig is shown in Plate ( 12.2 ) and is clad
with the pressed sheeting actually used for the prototype folded plate
roof. Deflections were measured at the centre and quarter points along
the span as well as at the ends.

" In addition, a range of 1-Pqts was performed on a 35mm deep
roofing profile to determine the effect of variable fastening along the
sheet length and also to study the occurence of the failure mcdes such
as fastener tearing and shear buckling.

The test data for the pressed sheeting is,

A Fold line area 940 mu
2



• Sheet length	 2.1 m

L Plate span	 21.6 m

t Sheet thickness	 0.97 rrm

ng	 Number of seam fasteners on end seam is 24 and this varies

linearly along the length

Ss	Reloaded slip value per seam fastener is 0.07 mm/kN

Reloaded slip value per edge fastener is 0.03 mmAN

Seam fastener strength	 2.43 kN

Edge fastener strength 	 5.82 kN

E Young's modulus 207 kNOunt2

d Trough pitch 150 mm

The bending deflection at a distance x frau one end due to an

in-plane load w, is,

	

3	 42WL4
d1.3 -	

I :a_ Y_ 
AEb

2 •	12	 24	 24

The shear distortion component is,

2.5 -d K	 wL2d1.1 -
Et2.5 b2 '	 8

R for a 'folded-down' corrugation is much reduced from the

open profile value, and has been experimentally determined as 0.020

for this 2.1 metre sheet fastened in every corrugation.

The minor factors due to seam slip, pure shear strain etc., have

been determined from the expressions of section (10. 4 )

The Observed and theoretical deflection comparisons are shown

for w = 1 kN/m on page 284 and are in good agreement. It is clear

that the bending deflection is by far the biggest contributor to the

total. The complete load-deflection plot to failure is shown in Fig.

(12.1).

The alternative test data for the open profiles sheeting is,

I Fbld line lateral inertia 1.19 x 106 am
2



b Sheet span	 2.05 metres

t Sheet thickness 0.57 ran

Fs Strength per seam fastener 1.43 kN

F	 Strength per edge fastener 3.42 kN

ns Number of seam fasteners on •the end seam equals 33 and

this varies linearly along the length

d Trough pitdh 178 ran

R for the various fastening details have been theoretically

determined and experimentally verified as,

0.022 for double trough fastened sheets

0.110 for every trough fastening

0.747 for alternate fastening

0.066 for double fastening and every trough fastenings,

alternately (approximate)

The theoretical component deflections are also given on page

for w = 1 kN/m for a number of different fastening arrangements, which

axe summarised below. The figures in brackets represent the fastening

distance.

Test 1	 Every (5.4 n), Alternate (5.4 n)

Test 2	 Every/double (4.1 in), Every (5.1 in), Alternate 1.6 in)

Test 3	 Double (5.4 n), Every (5.4 n)

The load-deflection curves for eadh test are given in Figs.

(12.2) to (12.4).

12.2. Discussion of Deflection Comparisons

It is apparent from all the load deflection graphs for the four

tests that initially the movements at all points are stiffer than in

. the mid load range. This is due to the bearing of the flanges of the

beam on the runners which provide the lateral buckling restraint. In

addition the test rig was constructed in the open which meant that over
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a period of weeks there was an unavoidable increase in the frictional

resistance.

Nevertheless, the deflection per kN at about half the failure

load was measured for comparison with the theoretical deflection.

On page .234 the tabulations assume that all the shear force is absorbed
by the corrugated web.

For the closed profile the total shear deflection is only about

20% of the bending deflection which reaffirms that this corrugation is

indeed extremely stiff. In the actual prototype roof the fold line

areas are some 25% greater but if the plate test rroverrent is reduced

by the extra beam inertia and multiplied by (sin 35°) -1, then the

predicted deflection for a load of 0.75 kN/m2 is 25 nut. The corresponding

recorded deflection during the roof test on reloading was 28 IMIL

This correlation does indicate that the main frictional resistance

is only of an initial nature, and hence the observed deflections may

be taken as being reasonably accurate.

The deflections for the open profiles often differ considerably

from the simple theory. However, this may be accounted for by including

the effect of fold line inertia which implies that some of the shear

force is taken by the fold lines where the web is very flexible.

Below the Ioad-deflection plot for each test, the theoretical

shear displacements along the sheet length are indicated. For the

appropriate data, the finite difference analysis of section (11.4) has

been performed and the corresponding solutions are superimposed.

. Test 1 is for a typical fastening arrangement of equal regions

of every and alternate trough attachment. In this case the observed

central deflection is some 30% less than its simple theory prediction..

The quarter point deflections, however, are reasonable and this indicates

that some central flange restraint does occur. The finite difference

comparison agrees well with the observed deflection as in Fig. (12.2).

Test 2 is a rather more complex form of fastening but it again

highlights the flange stiffening of a relatively narrow flexible band.



The observed deflection is about 25% less than in theory but again the

finite difference analysis presents a reasonably close approximation.

Test 3 represents a mudh stiffer web where the shear deformation

is less than that due to flange axial strain. Double trough fastening,

studied in Section (5. 3 ) almost eliminates shear distortion and

as expected the flange bending stiffness makes little difference to

the theoretical deflection.

The observed shear deflections were obtained by subtracting the

theoretical bending deflection flonithe measured total. It should be

borne in mind that the shear deflection of Test 1 is almost 5 times

the bending deflection, indicating the importance of accurate quant-

ification of the distortional flexibility.

Test 4 on the pressed sheeting shows good agreement between the

observed and theoretical deflections which are some 50% stiffer than the

previous test 3, for the open profiled sheeting of roughly the same

proportions.

12.3. Corrugated Web Beam Test Results

1EST 1: Open Profile - (Fig. 12.2).

Points 1 and 2 are mid and quarter span readings respectively. All

deflections are nut per 1 kNjm distributed load.

Point Observed Bending Distortion Shear	 tTotal Shear Theoretical:
Deflection Deflection Deflection Strain Deflection . Deflection

Slip etc

2 13.2 4.5 9.5 1.2 10.7 15.2

1 26.6 6.5 29.5 1.8 30.3 37.8



TEST 2: Open Profile - (Fig. 12.3)

Point Observed
Deflection

Bending
Deflection

Distortion
Deflection

•

Shear
Strain
Slip etc

Total Shear
Deflection

Theoretical
Deflection

2 9.6 4.5 6.8 1.1 7.3 12.2

1 13.7 6.5 11.6 1.7 11.3 18.8

TEST 3: Open Profile - (Fig. 12.4)

Point Observed
Deflection

Bending
Deflection

Distortion
Deflection

Shear
Strain
Slip etc

Total Shear
Deflection

,
Theoretical
Deflection

2 7.2 4.5 2.0 0.8 2.8 7.3

1 10.8 6.5 4.8 1.2 6.0 12.5

TEST 4: Pressed Sheeting with Folded down Ends - (Fig. 12.1)

Point

.

Observed
Deflection
mm

Bending
Deflection

Distortion
Deflection

Shear
Strain

Slip etc

Total Shear
Deflection

,
Theoreticall
Deflection

5.5 4.5 0.4 0.6 1.0 5.5

1 7.2 6.5	 . 0.5 0.9 1.4.	 . .7.9

NOTE: The theoretical deflection does not include the flange lateral

bending stiffness.



12.4. Comparison of the Failure Loads with Theory

Each test will be considered in turn and the theoretical failure

loads are indicated for each of the observed collapse modes. The 	 •

contribution of fastener slip to the central deflection is quite small

and severe non-linearity in the load deflection plot is really only

noticeable for the large tearing deformations just prior to collapse.

Test 1: Sheet-flange fastener failure occurred at the boundary between

the alternate and every trough fastening regions. This was observed at

an equivalent end shear of 41 kN.

The theoretical end shear capacity at this point is,

10.8	 2050x 3.42 x 3 	= 46 kN5.4	 00

Failure was probably exacerbated by the closeness of the jack

loading point of 4.6 kN.

Test 2: Failure occurred by seam tearing at 49 kN. The theoretical

end failure shear, according to Section (10.3), for roofing profiles

where fastenings are along the corrugation crest, is,	 •

Q = I  sil 	 {ns + g, ss	 1
nsh - 2	 S b

where n = 30	 gl = 0.8
sh

Q = 1.07 x 34.8 x 1.43 = 53 kN

Test 3: Fbr this test an extra five seam fasteners were introduced

and failure occurred by global shear buckling at a load of 54 kN.

The theoretical failure load in this case is 51 kN which was

determined according to Easley's formula
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36 D 
1/4

D
 3/4

X	 x 
crit=

where D =(143 mm44ull.E D _ 	 0.57
3
	 - .013 E1.2412 (1,- v

2
)

Test 4: In this case the pressed sheeting was used with Bolaed down

ends, and failure occurred in three stages. Firstly, due to the flat

portion of sheeting around the sheet-fold fasteners, local buckling was

noticed at about 90% of the actual collapse load. Secondly, slight

shear buckling was noticed at about 95% and finally failure of the end

seam ocdured at an end shear of 94kN.

Local buckling cannot be estimated although the fastenings are

still able to carry additional load. The theoretical shear buckling

load, as above, for,

D =174 E	 D 
= 150150	 0.97

3 	
0.071E

	

x 171	 12 (1 - 0.2 2) =

is Q	 = 89.5 kNcrit

The seam failure load for an upstand seam, where edge fastenings

lie on either side, constitutes a decking profile for analysis sake.

Therefore,

n„,	 n g
( + _2,_2n
'S	 2S

4 — 
(nsh) S {2F + n F }

(en 4. in )	 p S S(n
sh 

- 2)

S

where nsh = 24	 gl = 1.56,	 n =2

Q = 1.09 x 1.10 x (2 x 5.82 + 24 x 2.43) = 84 kN

However, the upstand seam has been shown to have slightly superior

load carrying characteristics of 2.7 kN/mm sheet thickness and in this

case,



- 2 8 8 -

Q = 1.00 x 1.10 x (2 x 5.82 + 24 x 2.62) = 89 kN

The discrepancy of 5 kN between observed and theoretical

failure is probably due to frictional resistance of the runners. For

the actual prototype roof test 22 rather than 24 seam fasteners were

used in order to ensure that failure occurs by seam tearing.
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CHAPTER	 13

CONCLUSIONS TO THESIS 

13.1. Summary of Main Observations

The purpose of this thesis has been to present approximate analyses

for the behaviour of corrugated sheeting in shear. This includes the

in-plane deflection and the strength of the connections, as well as the

shear buckling capacity of the profile spanning between purlins. In

many cases the diaphragm strength is controlled by local effects such as

deformation around an opening.

More emphasis has been placed on deriving approximate design

formulae for the basic components of flexibility and strength, which may

be verified by experimental and more accurate theoretical Observations.

Chapters 2 to 7 deal with the shear displacement of diaphragms. Chapters

8 and 9 consider the strength of the sheeting and connections, and Chapters

10, 11 and 12 apply the design information to folded plate roofs utilizing

corrugated sheeting.

The main conclusions are listed below in points, to be follaved by

design examples.

1.	 A new formula has been developed for the shear flexibility of

corrugated sheeting for fastening in every or alternate troughs. This

also takes into account fastening to intermediate purlins. Profile dist-

ortion, due to the eccentricity of fastener resistance, accounts for the

majority of the in-plane deflection and it has been found that deformation

is localized near to the sheet ends rather than being linearly varying

along the sheet length. Hence the flexibility due to distortion, parallel

to the corrugations is,

ad
2.5 R

C1.1

Et2.5b2

where 17 is a dimensionless parameter depending on the profile shape and

fastening arrangement only, as tabulated in Appendix 2. The parameters are

defined in Section (1.4).
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A considerable range of profile shapes and sheet lengths were

experimentally studied to verify this design formula. However, for

sheets fastened in every third trough or for short lengths of alternate

trough fastening, distortion may be more accurately treated by assuming

linear plate movements. For these cases R is taken as the greater of the

tabulated value or,

0.144	 K 
0.5t b

All the factors R and K are reduced by the influence of end

attachment to purlins which restricts free anti-symmetric profile distortion.

Sinusoidal profiles distort in a similar fashion and their corresponding

parameters are shown in Fig. (4.1).

For sheets overhanging beyond the outer purlins, the complete sheet

length should be used in the distortion design formula. Insulation

attachment reduces the deformation of alternately fastened corrugations,

but this relies on the bitumen bond, and can only be justified by exper-

imental varification.

2.	 Sheets often have to be overlapped along their length to form the

full diaphragm depth. To establish the overall panel flexibility, an

overlap slip factor E may be used. Where deformation occurs by local

distortion, consistent with the use of R in the individual sheet flexibility

formula, C1.1' the complete diaphragm flexibility is,

c1.1 (1 + NE)

A different formula exists for linear plate movements. These

relationships apply for uniform fastening throughout, but a corresponding

expression has been developed for every trough fastening at the sheet ends

and alternate fastening at the overlaps as in Chapter (6.6.).

3.	 Diaphragms need not necessarily comprise Sheets attached to purlins.

For Sheets spanning normal to the applied shear force across rafters the

distortion shear flexibility is modified to,

C1.1	 )
2

T:

N
2
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Due to the variation of shear force across rafters cantinuous

sheeting can only shear deflect differentially by in-plane bending, which

does contribute to an increase in the shear stiffness. Sheets normally

have to be overlappedat the rafters and the central deflection is reduced

by profile distortion interaction. For shear flexibility caused by local

plate deformation, the central deflection for N overlapping sheets is

approximately,

	

b 2 N2	 2	 2

	

C1.1 (—a) —8	 —N +(1 - —NW

Corresponding formulae have been developed for linear plate move-

ments and variations in fastening arrangement. The inertia of the

continuous diaphragm beam may also be increased by including the web of

the girder multiplied by a reduction factor due to fastener slip.

4.	 Diaphragm strength is usually controlled by the capacity of the

seam connections. However, in order that the seams may slip during failure,

the strength of the sheet purlin fasteners is nobilized, which is

transfered via the lateral rigidity of the purlins. A new formula has

been developed for the seam flexibility and strength which takes account

of the lateral bending and torsional stiffness of the purlins in terms of

a factor g.

The seam slip is,

1
C2. 2	 ns

—
Ss 

+ g.n. S

g is ideally 1/12 for linear purlin movements, and the parameters

are defined in Section (8.4). g may be determined from Fig. (8.8) for the

various .purlin properties, which is related to the effective width of

sheet-purlin fastening acting with the seam.

The ultimate seam strength may be given by,

QS = FSns + 2.g.n.ro

This formula gives a more realistic estimate for diaphragm strength,

especially for the case of indirect shear transfer where shear- connectors
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are not used. In general, most panels broader than 3 metres require an

effective sheet width approach which implies that the longitudinal edge

capacity is independent of increasing diaphragm width.

Openings in diaphragms cause locally high sheetrTurlin fastener forces

and purlin lateral bending stresses, which may be determined using the

computer program of Appendix (5), as derived from the solution of the

controlling differential equation.

6.	 Shear buckling between purlins is not normally a design criterion,

but it has been experimentally and theoretically shown that buckling is

highly influenced by the pitch of the purlin fastenings. For sheeting of

single span, b, fastened in every trough the shear buckling load (120m0

is reliably given by,

36 nx1/4 py314
Q—cr	 b2

However, for lightly fastened intermediate purlins, there is a

liklihood that a buckling wave can pass along the full diaphragm depth

rather than between the points of support. As a suggested design formula

for multispan sheeting, of overall length b, the design capacity should

be no more than 0.5 Qcr .

For edge fasteners in alternate or third troughs, the capacity is

also reduced.

7.	 Folded plate roofs using corrugated sheeting spanning between fold

lines may be designed as a girder, according to the fastener strength, shear

buckling and deflection criteria of the previous sections.

Same additional problems have been studied such as the effect of

variations in the shear flexibility which are smoothed by the stiffness of the

fold lines. Holes in folded plates are an important design problem. Ideally,

the central sheets may be removed and the fold lines checked for compression

buckling taking into account the elastic restraint of the sheet-fold

fasteners.
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A nuMber of panels of 21.6 metre span were studied experimentally
and varified the design formulae. The central shear deflection may be
reduced by using corrugations which have closed ends and a prototype
pressed sheet was developed which was observed to be seven times stiffer
than the corresponding open profile.

A full scale folded plate roof was constructed which deflected and
failed :t.amost exactly as according to theory. At the working vertical
uniform load of 0.75 kNAita2 , the central movement was only 36 mm, and
seam failure occurred at a load of 2.3 kN/m2 which corresponded to a maximum
panel shear of 78 kN. A summary of the design is shown in Appendix 4.

A number of typical calculations for the flexiblity and strength of
practical diaphragms follow.

13.2. Design Examples

Flexibility design examples for profiles with a trough pitch of 150 mm,
sheet thickness of 0.7 rrra and Young's modulus of 207 kN/hut2.

1. 1 sheet 4.5 metres long, fa=tened in every trough to two inter-
mediate purlins	 = 0.2). The distortion flexibility is:

2.150 5
A 

C1. =	 -.000032 mm/kN/ittit;1 0.72.5 x 45002 x 207

8.8 kN/mm2 - effective shear modulus

2. 1 sheet 4.5 metres long fastened in alternate troughs to two
intermediate purlins, R 1.0, K = 16

144 x di ' 5 KChoose greater of R or 0. 	 - 1.120.5t b

1502.5 x 1.12 
c	 -	 .00018 mm/kN/mm;1.1 .7' 5 x 45002 x 207 -

= 1 . 8 kN/Iita2
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3.	 3 overlapped sheets each of 4.5 m length as in 1, fastened

in every trough throughout (E = 0.3). The overall flexibility

is,

C1.1	 .000032 (1 + nE	
32

)	 (1 + 0.3 x 3) = .0000068;
n2

= 13.1

The flexibility of unconnected sheets is .000011 mmANbill

and for continuous sheeting is .0000036 mm/kN/hiat.

4.	 3 overlapped sheets each of 4.5 m length as in 2, fastened

in alternate troughs throughout (E = 0.2). The overall

flexibility is,

C1.1	 .CC018(1 + n2 E) =	 (1 + 0.2 x 3
2
) = .000019;

n3 3

= 5.3

It should be noted that the deformation of the individlial

sheets in this case corresponds to linear plate movements,

consistent with the use of K rather than R. The overall
flexibility is expressed by this modified form.

5.	 3 overlapped sheets each of 4.5 m length as in 2, fastened

in every trough at the diaphragm ends and in alternate

troughs at the overlaps (E = 0.2, N = 3).

. = .000015:C1.1 = .00018 x 	 000032

6E + N (2 - E)

a = 6.4

This formula is given in Appendix Table (3.4) and applies

to linear plate movements. An alternative expression has

been developed for localized end distortion.



6. 1 sheet, 7.5 metres long, fastened in every trough at its

ends and in alternate troughs at 4 intermediate purlins.

R for 4 intermediate purlins is 0.2

R for no intermediate purlins is 0.08

This case corresponds to the average of the above values.

150
2.5
 x 0.14 

- .0000081;
0.7

2.5
 x 75002 x 207

a	 17.6

7. Three overlapping sheets in a six bay continuous diaphragm

of 18 m length as in Fig. (13.1). Fastening is in every

corrugation at the diaphragm edges and in alternate troughs

internally.

The flexibility of the individual sheets spanning 6 m perpend-

icular to the applied shear force is, (17 = 11

and2.5	

132

	
150

2
'
5

2.5 2 ( 2 ) =	 = 0.54 mm/kN
Et	 b	 a	 207 x 0.72.5 x 60

The central deflection is the superposition -of two cases.

Firstly due to the overlapping sheets, fastened in alternate

troughs as in Fig. (7.14).

8 2 = 0.54 14	 1 	 .,_ 2M - 4 8{ 4M - 6 ' 2M + 1 E } x2

For M= 3, E = 0.2; . therefore, s 2 = 0.28 nuAN rafter force.

Due to the deflection of the centre of the sheet between

overlaps, (S l = 0.54 mm"N.

Therefore, the total central deflection due to shear distortion

is 0.82 mm/kN rafter force.
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For alternate trough fastening throughout, the central

deflection would be,

2	 2A = 0.54 x	 + (1 - pOE 1 x 2 + 0.54 = 1.33 mm/kN

8.	 The diaphragm with a central opening as in Fig. (8.23) is

part of a 4 bay beam of 18 metre span. Fig. (13.2) shows

the general layout with shear connectors only at the outer

rafters. Using the differential equation solutions of

Fig. (8.24), the local forces induced around the opening

may be used to evaluate the diaphragm capacity for realistic

purlin sizes.

The maximun sheet-purlin fastener force is 0.09 kN and this may be

combined with the local force fram seam slip (0.09 kN) and the perpendicular

simple shear camponent (0.06 kN) to give a resultant of 0.19 kN/kN shear

force. If the sheet-purlin fastener capacity (Fp) is 4 kN then the maximum

rafter force is 4/(1.5 x 0.19) = 14.0 kN.

For indirect shear force from the rafter to the purlins the induced

sheet-purlin fastener force is determined using a value for g based on a

typical effective sheet width of 1.5 metres. Thus,

1	
aeff 1g

12	 a - 36

For four purlins as in Fig. (13.2) the diaphragm capacity, determined

by the extreme sheetpurlin fastener force is,

= 2g.n.np Fp where n = number of sheet-purlin fasteners (= 16)

= 14.2 kN rafter force

Thus failure will occur in the sheet purlin fasteners almost

simultaneously around the opening and at the rafter, corresponding to a

maximum shear force of 21 kN.

The distortional flexibility of the panel is 0.5 mm/kN. Other factors

such as the fastener slip, axial strain, etc., amount to 0.55mm/kN. Hence

the total central deflection per unit rafter force is 2.1mm/kN.
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FINITE ELtMENT COMPARISONS FOR UP TO FOUR INTERMEDIATE 
PURLINS FOR EVERY TROUGH ATTACHMENT 

I 

Prof ile No. 'of Length K K 
inter m Finite Energy 
purlins Element Method 

A3 1 6 1.70 1.76 

105 ýýýý35 2 1.27 1.22 

178 
3 0.93 0.83 

t= 0,57mm 4 0.83 0.65 

3 4.8 0.70 0.66 

2 3.6 0.68 0.69 ' 

105 
3 4.8 0.82 0.69 

178 1381 2 6 30 0.76 0.78 
t*0,57mm 

98 ý7 
9 

,j Jý: ý- L 3 4 0.45 0.32 

,r 7 1 150 11 ' 2 3 0.40 0.40 
t=0,46nTn 25 

7 
45 

3 4 . 1.73 

L 150 2 3 1.65 1.74 

=0,67mm' 

L6 
L 3 4 L. 84 1.83 

150 0= l 2 3 1 1 1 , i ' , . 89 . 79 - 76 t=OG7mm 
25 

4 5 0.29 0.28 

3 4 0.27 0.28 

t=0,46 mm 2 13 1 0.29 0.27 

K does not include purlin restraint 

F IG (2.38) 



FASTENING IN MULTIPLE OF TROUGHS 
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ALTERNATE TROUGH FASTENING 
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ALTERNATE TROUGH FASTENING 
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ALTERNATE TROUGH FASTENING 

VARIATION OF K WITH LENGTH 

K value 
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ALTERNATE TROUGH FASTEN. ING 
DISPLACED SHAPES OF TROUGHS 

concertina action onty 
- 
-1kN shearforce Iong1tudinally 0'4 U B1 

mm 

0,3 

ub 0ý 
Lb2ý 631 

1 kN shear 12 1 final sha e. 1 4ýj 
40nýY 

347r 

-02 
final shape 

UB2 

sin 54 2" 09! 8 

t-0,67mm roof ing, 
b=6m prof iIe, 

0. 

L- 150 rnm 7 r, 

COMB IN ING CONCERTINA AND EVERY TROUGH 
FASTENING DIEFLECT I ON Su 

B2 

extra troughbending 0,2mm 

Concertina 
,x................................................. def lect i on 

U-r U 
-, T 

LBý2j UE31 
r- 1ý1 'j B2 

UT 
every trough f. ixin 
disp'lacemen' 

concertina movement 

0,3 
us 

fin'al displaced 
shape at A 

12 

'l- 

IG (3.6) 



ALTERNATE TROUGH FASTENING 
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ALTERNATE TROUGH FASTENING 

-EFFECT OF LENGTH AND NUMBER 
OF INTERMEDIATE PURLINS, N 
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ALTERNATE. TROUGH FASTENING 
EFFECT OF SHEET THICKNESS AND TROUGH PITCH 
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ALTERNATE CORRUGATION FASTENING 

-EFFECT OF FASTENING TO END PURLIN 
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ALTERNATE -TROUGH FASTENING- - 
DISPLACED SHAPES FOR 2,3 INTERMEDIATE PURLINS 
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PURLIN PROP REDUCTION IN FLEXIBILITY 
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BENDING MOMENTS USED IN ALTERNATE TROUGH 
FIXING ANALYSES 
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FASTENIN*G EVERY THIRD TROUGH 

-PURLIN PROP REDUCTION IN F LEX IB ILI TY 

no restraint 
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SENDING MOMENTS USED IN EVERY THIRD TROUGH 

FIXING ANALYSES 
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SINUSOIDAL CORRUGATIONS 
-GEOMETRY IN Mý-KENZIE! S ANALYSIS 
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EFFECT. OF PROFILE LENGTH, AND NUMBER OF 
1,2 
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INDIRECT, SHEAR TRA'NSFER 

PURLM DISPLACED SHAPES 

---------- 
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INFLUENCE OF SHEET FLEXIBILITYIC. ON 
EFFECTIVE SHEET WIDTHS 

llom 1 =2.105 m M4 
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1 12 
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.6 1,40 1,22 0,97 0,71 
7 1t56 1,33 1414 Oý4 
8 1 f7l 1,45 1,31 Oý7 
9 156 1900 1,56 1948 1,10 
10 2104 1168 1165 1,23 
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COMPARISON OF DIFFERENTIAL EQUATION WITH 
FINITE ELEMENT RESULTS-REF(49) 
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OPENING-$. IN DIAPHRAGMS 

e. 
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OPENINGS IN DIAPHRAGMS 
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HOLES IN DIAPHRAGMS 
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SINGLE, DIAPHRAGM OPENIN'G (a =2m) 
PURLIN DISPLACEMENTS FOR 

.1 
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COMPARISON OF PERIODIC AND. ISOLATED HOLE SOLLITIONS 
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VARIATION OF EDGE FASTENER FORCES 
0,4 -WITH J AND I FORCES INDEPENDCNT 
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FINITE ELEMENT REPRESENTATION OF A 
SHEAR PANEL WITH AN OPENING - 
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HOLES IN DIAPHRAGMS- FINITE ELEMENT RESULTS 
AND THEORETICAL COMPARISCNS -FIG (823) 
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SHEAR BUCKLING OF CORIýQGATED SHEETI NG 
INFINITELY ME PAýEL -BUCKLING WAVES AB 
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BUCKLING OF VARIOUS PROFILE SHAPES 
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LllýAITATIONS OF SHEAR BUCKLING FORMULA 
BUCKLING BETWEEN INTERMEDIATE PURLIN FASTEýERS 
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LIMITATIONSOF SHEA-R BUCKLING FORMULA 
POSSIBILITY OF UPLIFT BETWEEN SPARCE DASTENINGS 
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BUCKLING BETWEEN 
116 FA$TENERS 
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BUCKLING BETWEEN' PERI, METER FASTENERS 
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SHEAR BUCKLING OF HYPAR SHELLS 
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FORMS OF FOLDED PLATE ROOFS 
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FOLDED PLATE ROOF- RESOLUTION 
OF FORCES AND DEFLECTION 
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FOLDED PLATE ROOF- WIND LOADING 
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AXIAL STRESS AND DEFLECTION IN FOLDED PLATES 
-GENERAL FORMULATION FOR NO TRANSVERSE BENDING 
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AXIAL STRESSES IN PROTOTYPE FOLDED PLATE ROOF 

35 4 05x 
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175. xlo 

_-L- *6 N/mm 2 
115., 2.1 8 

1 06, _ý 
22 1ý = -66 N/mm "5 

8 

WIND LOADING DURING TEST 
0 54' 2 

-L = 34'- N /MM2 0 01-7 tov, 
18 

2 0,78kN/m 
0 0r2 
195., o', 10 

CF (0,95JI! 3=17 
N/rnm2 0 

IN PLANE BENDING DEFLECTION OF FOLDED PLATE ROO F 
2 

using di 48 E 
--7 17 19 

verticat joint V movemen t 

=Xmm T-\. *V 
r. eaves 7, s, read 6V 32m, m 

17 AT 112 W/ýnZ UDL 
2 mm inwards 

0,78 kNm 
17 

76 eaves V 
17 spread 

17mm outwards 

1 (10.6) 7r= WIND LOADING 
G5 



FOLDED PLATE ROOF- PRESSED S. H EETING 

REDUCED SHEET THICKNESSES (originqtty1rnm7-0,056 tv. gcl 

actual profile shape 10 
o mould shape 

02 

25 upstand op 32 mm, 
sheet 

35 
seam 

0 7. 

25 
0,94 

0,90 

Oý3 

centretine, of fotded-Oown'end 102 

EfXTENSIONS AROUND 'PROFILE- 
-deep drawingste 

. 
el 

failure elongation 50% 
30% 

perimeter 175mm 

21T 20% 

10% 10% 0170 

EXTENSIONS AROUND PROFILE mild. steel' 

30 lo perimeter 174mm 

10 % 
'20* 200/0 

0 
Ole 10 104)1.10% 0010 010 0010 

failure elongation 31 *1o 

FIG (10.6) 



VERTICAL, LOADING SYSTEM FOR RO 0FT ESTS 

8 roof 
01 9ý 0,9 

column 
trestles : -. ý: 
perjack tooded. areci --32point loads 

per jack per jac k 

2m ý6rn 7 
-y- 

orientation c'ý-4 ground bolts 
of member A JA 1,5 

per jack 
4 

X1 x 
ROOF'LOADED BY NINE JACKS roof trestle 

to roof trestle 

f-V L- 
EIOOX51 

0. 

- 27. - G4 1 Ei- 

127.64[% 

r. c. sta b 
225mm 

IF-100-51 

jack 

22 mm 
dicim, rod 

*127,. 
6 

=I 

SECTION XX, \ SECTION YY 

SEýTIONS THýROUGH ROOF LOADING (TREE'. SYSTEM 
FIG (10.7) 



V. 

VERTICAL LOADING SYSTEM -CONTINUED 
ROOF TRESTLE 

ROOF 

lVkN I 

6 6ýM 

/kN 

ý7 
ROOF WEIGHT 0,22 kN/rn2 

-25k LOADING SYSTEM-0 23 

AA ROOF FAILURE=2,3 kN/m2 

NET JACK FORCE =1,852,6.7 
FIG (10.8(0)) JACK -48kN 

', --UPLIFT 12 kN /EOLT 

7ZA 71 

FORCES IN'TREE' LOADING SY STEM AT FAIWRE OF ROOF 

pqd corr gation ýy 

0ý 

y 

std p'- 

E: 
17 

so 05 
L 'EX =37 AF 0,9m 

stdp*0,9 1,0m 
1)25 kN VALLEY /. 

rod 

J5 
1,25W 

x 
VIEWON XX 

VIEW ON YY 
WOOD ROOF LOADING 'TRESTLEý-AT 1,8m SPACING 

3 4k N 
10OU51 EAVES TENSILE FORCE E 

5 FRAMES 

FIG(10,8( AT 4,3 m SPACING 

NET THRU ST AT W. L. 418 kN. 

75,35 1 
rciwt bolts HOR I ZON TAL WIN D 

FORCE SIMULATION, 

loo. 51 IE 



EG. UIVALENT ROOF 
LOADING (kN/m2) 

113 

L 

workinc 

110 

0,8 

OIG - 
wo 
45 kNZm2 zero jack -A 

; 

-. o-,::. -zero 094 

k., 

05 10 15 
FIG (10.9) 

LOADI NG (kN/m2) 

EDGE BEAM 

ip 

ABkN/rrý-decd lo'ad 

/0 

0AE 

05 10 20 
FIG(19,10) 

ELASTIC TESTS. ON FOLDED-PLATE ROOF 
UNIFORM I. OADING. OVER COMPLETE ROOF 

CENTRAL APEX DEFLECTION 

TEST 1 
untocid 

theoreticat def lectior 

a, o-mecisurements 

DEFLECT 10 N 
DURING TEST rnm 

25 30 35 40 

-APEX(quarter APEX (centre) 
, , o^ -points) , o-, O', span 

TEST 2. VERTIC4 
MEASUREMENTS . 

DEFLECTION mm 

25 . 30 35 



ELAST. IC TESTS ON FOLDED-PLATE ROOF 
-CENTRE SECTION DEFLECTIONS AT. WORKING LOAD (mm) 

JACK LOADING- 1,2 minus 0,45 equals 0,75 Wm2 

-theoretical design values in brackets; initial slip values used 

11.0" -00" -, ý -"* ý3q- (33) - "*- , 
(16)20 135 16 (16) 

TEST. l. UDLOVERALL (initialloading) 

-extra dead wt. sag (045 kN/m2) ! 2= 15 mm'mecis6redi 4. 
(. 

Ii : in- 

", 
9c, D[19 

(13)17 7 130,5(13, ) 13 (2)2 

TEST. 2. U. DL. OVERALL (reload) L2Q4 
)includes retoaded slip values for this test ony 

RO-\ 

(V2 (6) 

17ý (17) 

2 TEST. 3. CENTRE BAY LOADED 2 

4z 

67) 

TEST. 4. OUTER BAY LOADED 

324 (3 32 3 
133 30, oo"'ý 18 (IG) 

U. D. L. OVERALL 
ýbl superpositionof 3. +4.. 20 

FIG ('10.11) 

11 



ELASTIC TESTS ON FOLDED PLATE ROOF 
WIND LOADING -TENSILE FORCE APPLIED AT EAVýS. 

km N/r eaves toad 
0 
, 
8'- WORKING LOAD 

U, b 

initial loading 
0ý retoad+ unlqadiný unload 
0,4 0 

measurements 0ý 
0 

Oý theoretical 
clef I ect ion 

D'i ct DEFLECTION mm 
DURING'TEST 

2468 10 12 14 16 

7 EAVES HORIZONTAL MOVEMENT 
AT MID-1-SPAN 

CENTRE SECTION DISPLACEMENTS ATWORKING LOAD 

-minus column sway 

0 

I. 

OX kN/. -n 

15mml 

10. 

.9 
-0/78 kN m,, - 

LZ1 5 4,3 m 
in td 

10 (R) 

INITIAL LOADING 

SUBSECUENT LOADING 

load 

mm (14) 

FIG00.12) MOVEMENT ALONG EAVES 

13,35 M per load point 

end cotumn 
10) ? Sway 

015) 



THEORETICAL CENTRE SECT[ON'DEFLECTiON. - S- 
Q75kN/m2 UNIFORM VERTICAL LOADING UP TO WORKI NG LOAD) 

IW FROM DEAD LOAD ) 

loý 

00) 

6(3) 

'20 

AXIAL STRAIN DEFLECTION 

ý(7 
Fl-)- 

lt3 

f 1, ýoucres ind te 
Ld Sti p vu. u es re d 

SHEAR DEFLETION. -initiat tociding 

due to'i'mposed 
Innr4 nf n 7r, i-, ýjL? Jýý w-ý- %W iI%. # M, 

'M 
(19 34 mm ý ý635 (28 

(27) 

TOTAL DEFLECTION L 
16 
(111. for dead load, theoretical deflection =20mm 

F IG (10.13) apex movement at 1,2 kN/m2 is 54'mm ( Y400) 

0,78 kN/m-WIND WORKING LOAD AT EAVE'S 

17 

0,78k% 

17 AXIAL 5 FRAIN DEFLECTION T 

23 

0178 kN/rn 

- FIG(10.14) 221 
_ 

H TOTAL DEFLECTION (. /152 

I 

SHEAR DEFLECTION 
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0 

TEST TO FAILURE ON FOLDED PLATE ROOF 

CENTRE SECTION DEFLECTIONS JUST PRIOR -TO COLLAPSE (mm) 

LOADING 2,3 minus 0,45 equals 1,65 kN/m2 

failure 
span 

--. i- 10, 

36 37 

3T 

CENTRE APEX DEFLECTION ALONG LENGTH (mm) 

0. 

failure occurred 
in sheet at this en 

178 194 i70 
j 

LA i. LA 
I. F 10 _rg I-I 

EXTRAPOLATION OF ELASTIC DEFLECTIONS (mm) 
OF TEST 2. ( 0,75) TO 1,85 kN/M2. -CENTRE SPAN 

J 174 144 

42 174 172 3 

zil 
4 49 NB quarter point§ of centre ppex 52mm 

FIG (10.16) 



VIABILITY OF FOLDED PLATE ROOFS 

L4 -38. tan E). t shear strength 1. 

L< 7,78 *B* tan6 
-deflection 2. (0119 +K cot P. 0,255 

t 2.5 

L 0,180 0,75 tl 15 (1- -0025h)-sin 28 buckling 3. 
B2_ 

B 
2h 0,025 sheet -bending 4. 

LOADING -12 kNI 2 ym 76-0,53h 
7- 

STANDARD t 

PROFILE 5- Vj. 
'7 r, 

150 mm 

h 
ffim mm mm4 

. 20 a067 915 1143.104 

30 "1 33 1319 3151.104 

40 -194 1810 6,26.104, 

50 - ý4ý 2214 9,82,10ý 

ENVELOPE OF 
FAIWRE CURVES 

-given O, h, t 

m 
1. 

UG I 

2. 

FIG(10-117) 

B 

DATA 

e9 

MIN - FOLD ARF-A(mm2, ) 

2 L2 cot 8 

OTE-- L, B -metres] 
h, t -mm 

OPTIMUM LXB 

Lc4 

x 

P ble 
dc eEs! ign 



FOLD-ED PLATE ROOF, DESIGN 
L 

h" t 
12 150 [L 

10 

m 

8 

61 

4[ 

2 

. 20, 
m 

16 

l. -STRENGTH 
2 .- DEFLECTION 
3 --BUCKLING 4 . -SHEET BENDING 

12 

2 

8 hm2O 
30/ 

4 7 
4 

2. 

FIG (10-18) 

40 

1ý 

3 
=20 3 0\ý 

h=20 
t =0,6 mm 301 

4 
34 56 Bm 7 



FOLDED PLATE ROOF DESIGN continued 

24 -L 

m 

20 

16 50\ 

5 

121 
h-20 3 

hm-20 

4 G=450 
bIZ20 

ý. t =0,6mm 
234 5- G 

Bm 
7 

24 lp 
m 

201 

Jr. 
16, 

'50\N 
40 

12 h- 30 h-20 

0 

h-20'ýý 3, 
> 

4 G=350 
t-019mm 

Bm 
?345G7s 19 

FIG (10-. 19) 



MAXIMUM POSSIBLE SPANS FOR FOLOED PLATE ROOFS 

- INFI IIF W('F nF 1; 1 OPF T 14 1 C'VWFcl; 
40, 

35- 

mL shee H otd 310. fasten"er. 
capacity =6kN/mm 

25, 

A=Imm 
20,18 

16 

. 15 

loll 

5P 
so 

10 '20 30 40 50 

FIG(10.20). 
I 
-FOLD AREA AT MAX IMUM ROOF SPAN 

2. FOLD. AREA AT ANY ROOF SPAN)Lo.. --* 
%0000 
Area \30 

2500 

MM2 \2. \25 

2000 
20 

1500 M 

000 1 \L=IOM '10 1 

500 t=0,6mrn 

10 20 30 40 50 
P FIG (10,21) 



TYPICAL SECTION THROUGH FOLDED PLATE ROOF BAY 

0 

2, lm lm 
5 5mm mim 

350' 

36 m 
100 

150 35 

. 
OM A5 150 

5mm 

12 9,,,, r- rr. 
5rmi 

12 

--" U"-101., 50, c3,2 R. H. S. 

FIG (10. ýý 
WEIGHT OF STEEL COMPARISON FOR 

ROOF AND PORTAL FRAME 

3,5 

TOTAL FRAME WEIGHT -507.6.25 =2200 kg 
TOTAL PURLI N AREA 8 x20,6,6 = 1056 kg 

3256 kg 

20xlO m FOLDED PLATE 

5 FRA M E5 
AT 5m SPACING 

PURL[ NS 

200mm 
ý- G, 6kglm f4-O-' 

FOLDED PLATE 0-350 i COLUMNS @ 3,3m SPACING 

FOLD AREA REQUIRED -1200MM2' 
TOTAL FOLD LINE WEIGHT =G. 20-9,3 k9/rn =1116 kg 

8 COLUMNS 100,100-6.3 (198 kglm) =554 kg 
G END FRAMES 100-50.3,2 MS. ,- =375* 

929 kg 

0,1 mM EXTRA SHEET THICKNESS 158 k9 
(Q, 8 mrn) TOTAL = 2203 kg 

. *. COST IN STEEL - 67% 
F IG (10.23) 
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STRESS-STRAIN CURVES FOR STEEL USED IN FOLDýD PLATE ROOF 
SHEETINGAND MILD STEEL (M. S. ) 

Gult =310 0 Ný nj2 'a 290 
ult 3009- 

Oy=260 tAS- 

2501, 

special drawing 
200o, quality steel (S. D. 0) 

. 31, 
failure 

150 -, y =1 'o 

100 
50 

/ ov, 
, 

ELONGATION 
0 

10 20 30 40 50 

RG (10.287 1 
TYPICAL LOAD-SLIP CURVE FOR UPSTAND SEAM IN S. QQ. SHF-ET 

loor 2 
ýp 

"2 
2,6 kN failure 

-215. kN 000 t=0,96rrm 

2pop'rivet 
FORCE, PER fasteners 

2, OFASTENER 

'FAILURE Vk Nlm m 
sheet 1hicknem 

15 _ý, 
6 FutL 

per fastener 

10 so 
so-initial stip -0,22mqkN 
s _relotdstip--0,09 

S 

0,5 
SLIP mm 

01 0,2 03 0ý 015 0ý_ 0,7 
FIG (10.29) 



HOLES IN FOLDED PLATE kOOFS 

BUCKLING OF FOLD LINES IN COMPRES-90N 

HOLE IN CENTRE SPAN 

f -LOCAL U. D. L. 

ýP` P 
x 

I faýstener 

IV 
slip b 

I 

P 
2a 

p 

ACTUAL DEFORMATION 
ON ROO FP 

P ýOPENING 

KK 

MODIFICATION FOR FASTENER 
STIFFNESS VERTICALLY., 2 K-2K sinO F-1 

'ZI 

FOLD LINE MOVES 
VERTI CALLY 

.. < 
X_a i. 

VS 
ELASTIC V, q2q -Vý e RESPONSE 

d Ix 
-sheet shear 

. .Px- told Vs 
P sheet P_ -fold movement Ve 

ELEMENT 
FIG (11.1) 



HOLES IN FOLDED PLATE ROOFS 
qf: =l kN/m 

SHEET 2c, HOLE 
WIDTH-1,5mr 

FOLD LINE 
INERTIA J 

P-0 = 105 MM4 gn 
I 

40 CENTRAL 2 
60 DýFLECTI ON' 
so 

v3 
mm . 100 kN 

FIG (I 1.2(c)) 

W 12 pD 8D 

p 
190 

L 

P- 0 40,80 kN 
Y 25 HOLE WIDTH., 
mrh 2d = 1,5m 

q,. l kw/m 4)U 

115 

2a -1,0 in 

110 

05 Za =05 rr 
P-0- 

0 FIG(I 1.2(b)) 

EVERY TROUGH 
F! X I NG 

J= 5,104,105- 11,105 ý 
5.10b 10 LOGIO I 



LOCAL FASTENING FORCES AROUND A HOLE 
A '(q, =l kN/M) 

'I 

1.2 F- dU k %. -1 0 

40 F kN 
0 

110 

EVERY TROUGH 
o. 8 FIXING 

2b-1,5 m 
ALTERNATE 

06.8(ý 
-40 0 

20-1,0 m 0,4 

0,2 
2a. Q 5m 

lk 

FIG(113a)) I-5.104 10 5,2.10 

C7 ýmrn2 

130 

120 

10 

FIG(113V) 

P-0,40,80kN 

2a6O. 5 

2a-l, o 

P-2,0 m 

ACTUAL STRESS 

- (y. member widthmn 

1- 5.104 105 06 02-105 5.10 06, 
-- 

2,. 1* LOG I 10 
FOLD LINE BENDING STRESS 

5,10- 106 2.10 b 
LOG10 
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a 

FOLDED PLATE ROOF-VARIATIONS IN FASTENING 

fixing 
every 9L 
troug h atternate every 2 

fastener 
ýhear. capcicity 

.. I 
becim sýear force 

FINITE DIFFERENCE REPRESENTAPON 
. 

d d- Vjr, *CýN,, 
ý _dLý 

da_ 1"llio J_, ,Q 

0. 

RL, GL 
2 

II IV, 1-22 lVz Ci I Ci-til Cn Cn 1 V, 
lVi 12 IV' 

1+1 lvi+2 I 
clpptied shear 

it, 
lVn I l itl Yni ý-j jVn-2 

q5l QQ li. +z 
A- A 

.., 

T, 

GL d gj v---shear disptacement, 

GL 
V2 li-fold inertia, ' 

2 
Ci-sheet ftexibitity 

INXa, 
A 

including 
fold stiffness 

free deflection 

SHEAR DEFLECTION 

uttimate design ! pad 

DIFFER EN T! AL EQUATION 

-Elidv+ dy. GLI 

FIGO 14. ý 
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LATERAL INSTABILITY OF EDGE BEAM 

WIND SUCTION 

p. 

IA 

h 

1. RIGID 
MOVEMENT 

NEB 
3ENDING 

4 

h f 

I 

-JR, H. si 

UPSTAND EDGE BEAM' FASTENINGs bN LOWER CHORD 
M U-ST BE TI ED BACK FOR ROTATION CONTINUITY 

FIG (11.5) 



12 

10 

8 

FOLDED -PLATE ROOF TESTS - 
- ECLUINALENT BEAM 

kN 

22 

, 20. 

, 18 

TEST WITH PRESSED-OUT SHEETS, 

FO R CE/ 
J, JACK 

I 

p 

2ý3 mm/ý jack, failure 94 kN shear. 

theoretical deflecti-on 
at mid span -3,3mm/kNjack 

1 kN/m= Z4 k j ack 

3,0 mm/kN jack 

likely frictional fail'ure 86kN) force ( DEFLECTION 

?n -, An 4n 9; 0 7n mm 

% EVERY TROUGH FIXING 

21 

jns=2i 

21.6 

54 m 5.4m 

UO) 

2,4m- IT 

1- LOCAL BUCKLI NG 

2. SHEAR BUCKLE -theory 19.8 kN/jack (89 kN) 

3 SEAM FAILURE -. theory 18. GkN/jack (84kN) 

FIG (12,1), 



FOLDEb PLATE ROOF TESTS 
10. -EQUIVALENT BEAM kN 

8 FORCE 2,3 //JACK 1-FAILURE AT 
EDGE FIXING(4lkN'., 

theory10,1 kN/jack 
5,5 M 
W jacV. 

4 k N/m 2,4 kN jack 
110mm, W jack 

21 

DEFLECTION, mm 

20 40 60 80 100 120 

2 
7_ 

ea lal. ternatci [every trough 2,1 m If ixing 

5,4 m 5,4m 10,8 M 

SHEAR 
1- 105 

DEFLECTION t.. 0,57mm 
ALONG ROOF 
(theory) 

17 8 mm I TEST PROFILE 
o30 M M/k N/m 

WFREE DEFLECTION Cý20 
(h)INCLUDING 

4,5 kN end shear FOLD, INERTIA 
-1 kN jack 

. 10 
a -obserwd 

minus bending 
deflection 268 10 12M 

FIG(12, ý 
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FOLDED PLATE ROOF TESTS 
12 continued 

FORCE 7JACK 
10 

kN 
213 -. 2. FAILURE IN 

8 END SEAM(49kN) 

theoryll; 8' kN/jack 
410 mm (53kN) 

6 '*kN jac' 

5,7 Mm/kNjack, 
1 kN/m 2,4 kN/jack 

4 

.0 10 ->O 

5,4m 54'm 

DEFLEMON mm 

30 40 50.60 

loj8m 

4,1 m 5,1 m 
li, 6(n, 

eld-everyand doub'l*e trough fixinqs alternatýly 

15 m m/k 
týr n THEORETICAL SHEAR DEFLECTION 

ALONG EQUIVALENT BEAM 

. 10 
- 0--- o-observed 

(i) FREE DEFLECTION minus 
(if) INCLUDING Ild 

bending 
FOLD INERTIA 05 

detlection 

68M 

FIG(12.3) 



FOLDED PLATE ROOF TESTS 
4 kN continued 

3., 
JACK FORCE - 12, 

2.3 3. FAILURE DUE TO 
SHEAR BUCKLING 

10 
theory 11,5 kN/jack 

3,0 mm/ 1 kN/m 24 kN/jack 
6 kNjack 

4 4,5 rn MAN jack 

2 
DEFLECTION mm 

10 20 30 40 50 60 70 

ý2 ý3 
double 

de every trough 
11fixing 

10,8 M 5,4 m 5,4 m 

M M. 
1 k N/ 

THEORETICAL SHEAR DEFLECTION (M 

6 
W FREE DEFLECTION 5 
(it) INCLUDI NG FOLD 4 

1 NERTIA 3o -o bserv( 
minus 

2 bending 
deflection 

02468 10 M FIGý124. )_ 



DESIGN EXAMPLES FOR PROF11 ED SHEETING 

77 

6m. E tA A 

H 

3m. 3m 

Ism - 
0- overlap; E-every trough fixing 

A-atternate n 71 

superpos . ition of +S 

FIG(13.1) DEFLEE-TION OF TYPICAL 
CONTINUOUS UAPHRAGM 

I 

21 
21 

shear --7- ------5: ýeinectors 
71 

urtins *no shear opening tj 
connectors 

L 
5ý n 

rm 
,, ýtternate troughf ixing 

n! f. 10/\1 kN qý-5,11 1 
11 

18nr- 
SHEET-PLJRUN FASTENER FORCES AROUND OPENING: 

F, -009 kN 2)- 

'INDIRECT SHEAR 

ý. -0,06 
( Fý, 7- 

U'p\' 0018 
OPENING 061 NET 

FORCEAN shear 
TRANSFER . -infiernal ruf ter 

Ss-%M 

F, - 
r) '5 

. gý. ns 
Ir . is 

=0,09 kN 

F, = 0,5 F- = OL Ocff=15ir, i 1= 
05 =0,28 kN/kNrciftc 

7tTl? ýK-) forc( n. n p. g n p. ýaýFt. Li n= 16 
QQ4.512 

FIG ( 13.2 )DIARIRAGH wrrH OPENNGS -FlGS(8.23)-)(8-21#) 

r-1O 



APPENDIX 1. EXPERIMENTAL RESULTS 

Table (1.1) Every corrugation fastening tests 

(1.2) Alternate corrugation fastening tests 

(1.3) Every corrugation fastening to intermediate purlins 

(1.4) Every trough fastening at tho sheet ends and alternate 

troughs at the intermediate purlins- 

(1.5) Alt ernate trough fastening to intermediate purlins 

(1.6) Every third trough fastening tests 

(1.7) Sheet overlaps fastened in every trough 

(1.8) Sheet overlaps fastened In alternate troughs 

(1-9) Sheets fastened in every trough at their ends and in 

alternate troughs at the overlaps 

(1.10) Two bay continuous diaphragm tests 

(1.11) Three bay continuous diaphragm tests 

(l. '12) Shear buckling of one bay diaphragms 

(1.13) Shear buckling through Intermediate purlins 

4, 



TEST RESULTS FOR EVERY CORRUGATION FASTENING 

Prof ile Length Observed C +C 1.2 2.3. K C 1.1 Theoretical Experimental 
In Flexibility 

2 etc +C 2 
theory 

theory 
Flexibility K value 

. mm/kN 

6.1 0.038 0.011 1.58 0.030 0.041 1.42 1 

r-- 178 138 1 0 014 43 1 0 049 0 063 1 1 20 5. 0.055 . . . . . 

t 0.57mm 
4.1 0.084 0.017 1.20 1 0.081 0.098 1.00 

a 1250mm 
3.1 0.141 0.027 0.91 0.142 0.163 0.77 

3.1 0.069 0.012 0.91 0.079 0.091 0.66 
A b sa ove 

2.1 0.130 0.018 0.61 0.167 0.185 0.41 
700 a= mm 

1.1 0.720 0.036 0.32 0.812 0.848 0.27 

2. 
35 

6.1 0.036 0.011 1.50 0.028 0.039 1.34 

178 1()5 5.1 0.052 0.014 1.25 0.043 0.057 1.10 

t=0.57mm i1 
4.1 0.073 0.017 1.00 0. OG7 0.084 0.84 

a= 1250mm 
3.1 0.121 0.021 0.75 0.115 0.136 0.65 

3.1 0.030 0.009 0.75 0.032 0.041 0.49 
A b sa ove 

2.1 0.052 0,013 0.50 0.068 0.081 0.29 
a= 350 mm 1 

1.1 0.357 0.027 0.39 0.494 0.521 0.26 

TABLE (1.1) 



TEST RESULTS FOR EVERY CORRUGATION FASTENING 

Profile Lcngth Observed 2 +C 2 
C1 1' 

K C1 1 
Theoretical Experimental 

m Flexibility . . 
+C etc 

theory . 
theory 

Flexibility K value 
2.2 

mm/l,. N 

3 . 76 6.1 0.013 0.0066 2.76 0.013 0.020 
. 
1.57 

ýL5 
47 150 5.1 0.020 0.0080 2.39 0.019 0.027 1.51 

4.1 0.029 0.010 1.94 0.029 0.039 1.27 

a 900mm 3.1 0.055 0.013 1.46 0.051 0.064 1.20 

t=0.67mm i 
. 

tý 

2.1 0.14 0.020 0.97 0.1ý9 0.149 0.90 

1.1 0.50 0.040 0.49 0.384 0.424 0.59 

4 . ý74 6.1 0.0085 0.005 3.09 0.0095 0.0145 1.14 

35 

1.76.. 1 150 
4.1 0.019 0.008 2.09 0.021 0.029 1.02 

3.1 0.033 0.010 1.57 0.037 0.047 0.98 

a= 600mm 

2.1 
1 

0.085 0.015 1.03 0.078 0.093 0.92 
t, = 0.67mm 

1.1 0.35 0.031 0.63 0.33 0.361 0.61 

6.1 0.028 0.012 3.09 0.018 0.030 2.74 
As above 

5.1 0.039 0.014 2.59 0.027 0.041 2.40 

a= 1200mm 
4.1 0.060 0.018 2.09 0.042 0.060 2.09 

3.1 
1 

0.092 0.024 1.57 0.073 1 0.095 - 1.4G 

2.1 0.170 0.036 1.03 0.149 0.185 0. '93 

As above 
6.1 0.003G 0.003 3.09 0.0023 0.0053 0.81 

a= 150mm 4.1 
. 
0.0078 0. OOG 2.09 0.0052 0.0112 0.72 

2.1 0.019. 0.009 1.03 0.019 0.028 0.54 

TA13LE (1.1) (Continued) 
'. & 



TEST RESULTS FOR EVERY CORRUGATION FASTENING 

Profile Length Observed C 1.2 +C 2.1 K 'C 
1.1 Theoretical Experimental 

M. Flexibility 
+C 2.2 etc 

theory theory 
Flexibility K value 

mm/I-. N 

5.1 0.028 0.009 0.76 0.021 0.030 0.69 
B9 

150 2b 4.1 0.050 0.012 0.67 0.036 0.048 0.70 

t=0.46mm 3.1 0.094 0.016 0.57 0.071 0.087 0.62 

a= 1050mm 
2.1 0.150 0.023 0.41 0.165 0.188 0.32 

5.1 0.022 0.009 0.61 0.017 0.02G 0.47 

4.1 0.035 0.012 0.50 0.027 0.039 0.43 '150 98 

t=0.46mm 3.1 0.060 , 0.076 0.37 0.046 0.062 '0.35 

U 
a= 1050mm. 

2.1 0.120 0.023 0.25 0.100 0.123 0.25 

4.1 0.018 0.012.0.5331 0.003 0.015 1. OG 

t. = 0.55MM 
2.1 0.050 0.023 0.311 0.014 0.037 0.60 

a= 1000mm 

I 

8. B2 
. 4.1 0.065* 0.016 1.49 0. 

. 
045 0. OR - 1.62 

150 l1q. 
t=0.67mm 2.1 0.261' 0.031 0.94 0.211 0.242 1.03 
a= 1800mm 

9.119, 4.1 0.076.0.016 1.64 0.050 0.066 1.96 
0 

t=0.67mm. 2.1 0.284 0.031 , 0.81 0.245 0.276 0.84 
a= 1800mm 

10. A7, 
^ 

6.6 1 0.130 

0.65mm 
a= 4500mm 

0.045 1 3.29 1 0.076 0.121 3.67 

TABLE (1.1) (Continued) 



TEST RESULTS FOR EVERY CORRUGATION FASTENING 

Prof ile Length Observed C 4C KC lbeoretical Experimental 
1.2 2.1 1.1 

m Flexibility theory Flexibility K value 
-fC 2.2 etc theory 

mm/1-. N 

76 5.1 0.041 0.010 3.37 0.035 0.045 2.98 

Lj 4.1 0.066 0.014 2.71 0.054 0.068 2.61 
150 45 

3.1 0.120 0.018 2.03 0.103 0.121 
. 
2.01 

A 0.67mm 2.1 0.210 0.027 1.35 0.200 0.227 1.22 

a= 1200mm 
1.1 0.86 0.054 0.71 0.739 0.793 0.77 

12.48 F=j 5.1 0.051 0.010 3.75 0.039 0.049 3.94 nT45 

4.1 0.075 0.014 3.01 0.058 0.072 3.16 
150 76 

t=0.67mm 3.1 - 0.130 0.018 2.25 
1 

0.106 0.124 2.33 

a 1200mm 
2.1 0.290 0.027 1.48 0.256 0.283 1.49 

1.1 1.06 0.054 1.04 1.00 1.054 1.10 

6.1 0.036 0.009 4.81 0.029 0.038 4.47 

63 
I 

Lj- - 5.1 0.051 0.011 4.1G 0.042 0.053 3.96 

150 60 
4.1 0.075 0.075 3.35 

1 
0.067 0.082 3.00 

t=0.67mm 3.1 0.140 0.019 2.49 
1 

0.128 0.147 2.3 

a= 1200mm 
2.1 0.300 0.029 1.65 0.247 0.276 1.78 

14.1 3b 6.1 0.042 0.009 5.71 0.035 0.044 5.38 
63 

5.1 0.060 0.011 4.77 0.030 0.061 4.67 ý761 
-- 

4.1 0.093 0.015 3.87 0.077 0.092 3.87 

t=0.67mm 3.1 0.170 0.019 2.82 0.131 0.150 3.25 f, 

a= 1200mm 
2.1 0.340 

1 
0.029 1. DG 

1 
0.293 0.322 2. OG 

TABLE (1.1) (Continued) 



TEST RESULTS FOR ALTERNATE CORRUGATION FASTENING 

Prof ile Length Observed C +C 22 1 1 K C 1 Theoretical Experimental 
M. Flexibility . . theory 1. Flexibility K value 4C etc 2 2 theory 

. mm/kN 

105 6.1 0.195 0.011 11.2 0.224 0.23 5 9.20 
ý 

Lj I 
178 '38 5.1 0.268 0.014 9.4 0.321 0.335 7.44 

a 1250mm. 4.1 0.451 0.017 7.8 0.514 0.531 6.59 

3.1 0.820 0.021 6.7 1.02 1.04 5.42 

3.1 0.475 0.012 6.7 0.572 0.584 5.32 
As above 

2.1 1.19 0.018 
1 

5.9 1.62 1.64 4.33 

a 700mm 
1.1 7.84 0.036 5.4 10.3 10.34 4.14 

- 2.38 6.1 0.121 0.011 5.8 0.116 0.127 5.50 1 
35_.., L 

5.1 0.164 0.014 4.9 0.168 0.182 4.38 
178 105 

a 1250mm 4.1 0.275 0. '017 4.3 0.283 0.300 3.80 

3.1 0.505 0.021 3.7 
1 

0.504 0.585 3.20 4" 

3.1 0.130 0.009 3.7 0.158 0.167 2.83 As above 

. 2.1 0.386 0.013 3.4 0.4G7 0.480 2.72 
350 a mm 

1.1 1.86 0.027 3.1 2.9G 2.99 1.92 

TABLE (1.2) is 



TEST RESULTS FOR ALTERNATE CORRUGATION FASTENING 

Prof fle Length Observed C 1.2 +C 2.2 
K C 1.1 Ilicoretical Experimental 

In Flexibility 
+C etc 1 2 

theory. theory 
Flexibility K value 

. mm/kN 

3. 6.1 0.064 0.007 16.20 0.074 0.083 12.5 

T35 11 0 1 5.1 0.103 0.008 13.51 0.106 4 0. 2. 

4.1 0.18 0.010 11.03 0.167 0.177 11.2 

a 900mm. 3.1 0.33 0.013 9.19 0.322 0.335 9.1 

2.1 0.93 0.020 7.98 0.900 0.920 8.01 

1.1 5.6 0.040 6.99 5.51 5.54 7.06 

6.1 0.032 0.005 13.29 0.042 0.047 8.55 

4.1 0.087 0.008 9.16 0.093 0.101 7.78 
i -1 1 76 150 1 

3.1 0.19 0.010 7.70 0.182 0.192 7.61 

a 600mm, 
2.1 0.52 0.015 6.65 0.505 0.520 6.52 

2.8 0.031 5.87 3.10 3.13 5.30 

6.1 0.085 0.012 13.29 
1 

0.081 0.093 12.00 

As above 5.1 0.12 0.014 11.07 0.115 0.129 10.17 

4.1 0.22 0.018 9.16 0.184 0.202 8.24 
a 1200mm. 

3.1 0.37 0.024 7.70 0.358 0.382 7.75 

2.1 1.07- 0; 036 6.65 0.994 1.03 6.90 

TABLE (1.2) (Continued) 



TEST RESULTS FOR ALTERNATE: CORRUGATION FASTENING 

Profile Length Observed C 4C KC Theoretical Exp6rimental 
1.2 2.1 1.1 

In Flexibility theory Flexibility K value 
+C 2.2 etc theory 

mm/l-. N 

L 19 
5.1 0.162 0.009 7.34 0.205 0.214 

150 4.1 0.29 0.012 5.90 0.318 0.340 

3.1 0.50 0.016 4.46 0.556 0.572 
a= 1050mm 

2.1 1.02 0.023 3.40 1.36 1.38 

6. 
ý2ý5 5.1 0.071 0.009 2.52 0.070 0.079 

- 9 1 I f 111- 1 
4.1 0.11 0.012 2.01 0.108 0.120 

3.1 0.20 0.016 1.57 0.195 0.211 
a= 1050mm 1 

2.1 0.55 0.023 1.29 0.517 0.540 

7 
20 2.1 1.00 0.023 5.46 1.13 1.15 

a 1000mm 4.1 0.08 0.012 12.02 0.073 0.085 

8 76 
2.1 2.42 0.031 10.22 2.30 2.61 

a 1800mm 4.1 0.50 0.016 17.12 0.512 0.53 

9.19 7 
38 2.1 1., 02 0.03 4.86 1.09 1.12 

a 1800mm' 4.1 0.23 0.016 6.64 0.2011 0.22 

10. A -re) 
6.6 .10.377 

1 0. -045 113.55 1 0.311 1 0.356 
a =4500mm 

5.48 

5.16 

3.82 

2.5 

2.23 

1.82 

1.45 

1.31 

4.73 

11.2 
.. ....... . . .. 

9.37 

1G. 1 

4.41 

6.97 

14.4G 

TABLE (1.2) (Continucd) 



TEST RESULTS FOR ALTERNATE CORRUGATION FASTENING 

Prof ile Length Observed C +C 1 2 1 
K C 

1 Theoretical Experimental 
m Flexibility . 2. 

+C * etc 
theory 

1. 
theory Flexibility K value 

2.2 
mm/kN 

76 5 1 0 20 010 0 46 19 0 203 213 0 18 49 
- 

. . . . . . . 
ý 45 L 

4.1 0.34 0.014 16.35 0.328 0.342 16.88 

150 '48 
3.1 0.70 0.018 14.20 0.66 0.68 14.60 

a= 1200mm 

I 2.1 2.02 0.027 12.83 1.92 1.95 13.36 1 
t- = 0.6 7mm 1 1 

1.1 9.01 0.054 11.52 
1 

11.9 11.95 8.71 

12. 5.1 0.16 0.010 14.85 0.155 0.165 14.37 

4.1 0.32 

1 
0.014 12.76 1 0.321 0.355 12.36 

' ' ' 150 76 
3.1 0.56 0.018 11.24 0.522 0.540 11.60 

a= 1200mm 
2.1 1.62 0.027 10.10 1.51 1.54 10.71 

t=0.67mm 

1.1 7.52 0.054 9.22 9.59 9.63 6.73 

2. 6.1 0.23 0.009 37.5 0.228 0.237 37.5 

F 
5 1 0 37 0 1011 32 6 0 340 0 351 33 3 L . . . . . . f . 

150 4.1 0.64 0.015 29.0 0.583 0.598 31.0 

a= 1200mm 
3.1 1.18 0.019 25.2 1.17 1.19 25.0 

t=0.67mm 
2.1 3.23 0.029 24.3 3.63 3. GG 21.4 

14. 
35 6.1 

. 1 0.18 25.7 1 0.157 0.166 27.3 

6.1 0.26 0.011 23.0 0.242 0.251 24.0 

150 76 
4.1 0.47 0.015 21.0 0.421 0.44 22.5 

a= 1200mm ' 
3.1 0.95 0.019 19.6 0.910 0.930 20.1 

t=0. G7mm 
2.1 

1 
2.61 

1 0.029 1 8.4 2.75 2.78 17.2 



TEST RESULTS FOR EVERY CORRUGATIONTASTENING - 
INTERMEDIATE PURLIN EFFECTS 

Prof ile No. of Length Obs. C+ 
1.2 

K C 
1.1 

Thcor.. Ilieor. Expt. 
inter. m Flex. C theory, theory 

flex. reduc-- reduc- 
purlins mm/kN 2.1 tion tion 

19 
3 4.1 0.038 0.012 0.299 0.016 0.028 0.45 0.68 

190 
2 3.1 0.075 0.016 0.387 0.048 0.062 0.68 0.73 

rD 

19 3 4.1 0.027 0.012 0.241 0.013 0.025 0.49- 0.66 

19o 198 1 
2 3.1 0.048 0.016 0.244 0.030 0.046 0.66 0.73 

14 63 2 6.1 0.032 0.009 3.86 0.023 0.032 0.68 0.70 

2 6.6 0.115 0.045 2.36 0.052 0.092 0.72 0.82 

2 6.1 0.029 0.009 3.58 0.022 0.031 0.74 0.74 

76 
5 3 4.1- 0.048 0.015 1.29 0.026 0.041 0.48 0.63 

150 4BI 
2 3.1 0.090 0.019 1.37 0.064 0.083 0.67 0.71 

4 5.1 0.026 0.010 1.27 0.014 0.024 0.38 0.52 

12 - 4B 
3 4.1 0.055 0.015 1.38 0.028 0. Ob 0.46 0.65 

45 
150 76 2 3.1 0.10 0.019 1.42 0.066 0.085 0.63 0.73 

4 5.1 0.033 0.010 1.36 0.015 0.025 0.38 0.56 4 

TABLE (1.3) 
TEST RESULTS FOR EVERY CORRUGATION FASTENING AT ENDS AND IN 
ALTERNATE TROUGHS AT INTERMEDIATE PURLINS 

lp 

2 A 
- 3 4.1 0.031 0.012 0.37 0.620 0.032 0.74 0.83 

T19 t---u5 
4 2 3.1 0.055 1 0.016 0.31 0.038 0.052 0.84 0.00 

10. 
U 

1 

ýýO 
s 

2 6.6 0.125 0.045 2.82 0.062 0.107 
1 

0.86 0.9-1 

5. 
_gL, 

- - 

4.1 0.042 0.012 0.48 0.025 37 0. Ö 0.73 0.83 

12 1 3.1 0.086 1 0.016 10.47 10.059 0.075 1 0.82 10.89 

TABLE (1.4) 



TEST RESULTS FOR'ALTERNATE CORRUGATION FASTENING - 
INTERMEDIATE PURLIN EFFECTS 

Profile No of Length 01ýs. C1 
2+ 

K c1 1 Theor. Theor. Expt. 
1 

inter - In Flex . 
c theory . 

theory 
Flex. Reduc- , Reduc- 

purlins mm/l-. N 2.1 tion tion 

5. 
19 

ýe 
-7- ýL 3 4 1 0 19 0 012 2 74 148 0 160 0 46 0 0 54 

- L 
. . . . . . . . 

150 2 ;, 

a= 1050Mm 2 3.1 0.36 0.016 2.84 0.350 0.37 0.64 0.73 

25 6 , r--4 
3 4.1 0.087 0.012 

1 
1.27 0.068 0.080 0.63 0.75 

150 199 1 
a 1050mm 2 3.1 0.16 0.016 1.24 0.154 0.170 0.79 0.83 

3ý 2 6.6 0.26 0.045 9.80 0.22 5 0.270 0.72 0.67 

ZE 
3 4.1 0.31 0.014 14.1 0.283 0.302 0.86 0.91 

150 
a 1200mm 2 3.1 0.62 0.018 12.8 0.590 0.611 0.90 0.88 

, TABLE (1.5) 

TEST RESULTS FOR EVERY THIRD TROUGH FASTENING 

Pr of ile Length Obs. C+ 
1 2 

K c Theor. Expt. 
In Flex. . 

C + 1 
theory 1.1 

theory 
F lex. K value 

mm/kN 2. 

1 
238, 

3.1 1.34 0.021 8.2 1.52 1.54 8.7 

a 125 Omm 6.1 0.22 0.011 8.2 0.20 0.21 10.6 

I. +-IIL---4 

'ý- 
ý17835 - 

3.1 2.31 0.021 17.5 2.66 2.68 15.2 

a =1250mm* 6.1 1 0.39 10.011 1_17.5 0.35 0.36 19.0 

TABLE (1.6) 

Experimental and theoretical reductions refer to "ýNl 

where IýN Is the K value for N intermediate purlins 
and K, Is the K value from Table (1.1) or (1.2) 

This applies for Tables (1.3) to (1.5) 

L 



EFFECT OF OVERLAPPING SHLEETS - EVERY CORRUGATION FASTENING 

Profile Length No. of Observed +C C Individual Total C 21 1.2 
In overlaps flexibility 

-+C etc 
0 theory c 1 1 

mm/kN 2.2 . Rigid Flexible 

6.1 1 0.025 0.006 0.33 0.043 0.017 0.020 

178 4.1 1 0.038 0.009 0.33 0.100 0.034 0.043 

a 7QOmm 6.1 2 0.022 0.006 0.33 0.100 0.023 0.029 

2.1 1 0.23 0.018 0.33 0.680 0.19 0.24 

4.1 3 0.07 0.33 0.680 0.072 0.084 1 

6.1 5 0.04 0.006 0.33 0.680 0.043 
. 
0.060 

2. 6.1 1 0.013 0.006 0.22 0.019 0.010 0.012 

4.1 1 0.019 0.009 0.22 0.039 00,017 0.020 
--ý 178 38 

6.1 2 0.010 0.006 0.22 0.039 0.010 0.015 

a 350mm 
2.1 1 0.083 0.018 0.22 0.330 0.087 0.120 

4.1 3 0.029 0.009 0.22 0.330 0.033 0.048 

6.1 5 
. 
0.017 0.006 0.22 

. 
0.330 0.010 0.027 

3 2 4.1 1 0.050 0.010 0.47 0.12 0.048 0.055' 

a= 900mm 

--- 
6.1 2 0.031 0.007 0.47 0.12 0.030 0.042 

7. - AE' ' 
Azri(y) 

4.1 1 0.030 0.012 0. GG 0.0'2 7 0.022 0.024 

a 1000mm 

4.1 1 0.032 0.010 0.37 0.01 0.029 0.034 

L-190 1 76 

a 600mm 6.1 2 0.024 0.007 0.37 0.07 0.018 0.024 

-- 

I 

TABLE (1.7) 



EFFECT OPOVERLAPPING SHEETS - EVERY CORRUGATION FIXING 0ý t 

Profile Length No. of Observed C +C Individual Total C 
l fl ibilit 1.2 2.1 th C In over aps ex y +C t eory 1 1 

mm/kN e c 2.2 . Rigid Flexible 

45 I 4.1 1 0.060 0.012 0.45 0.183 0.055 0.065 

ir-0 
a =1200mm 6.1 2 0.032 0.007 0.45 0.183 0.031 0.048 

12. -'A6-1 45 P 4.1 1 0.080 0.012 0.30 0.260 0.059 0.086 
150 %. 

a= 1200mm 6.1 2 0.038 0.007 0.30 0.260 0.034 0.057 

13,7c; 4.1 1 0.080 0.012 0.10 0.270 0.045 0.074 
L 

a= 1200mm 6.1 2 0.050 0.007 0.10 0.270 0.022 0.049 

A. -a 63 4.1 1 0.090 0.012 0.15 0.310 0.054 0.088 

a= 1200mm 6.1- 2 0.052 0.007 0.15 0.310 0.026 0.062 

5, 
50 4.1 1 0.041 0.012 0.17 0.127 0.025 0.038 

a. =-1050mm 

4.1 1 0.027 0.012 0.29 0.097 0.023 0.031 

.a 
1050mm 

C RIGID Is the flexibility deduced from table (3.3)Juc to rigid plate movements 

car +n 
2 

+(C +C 
n31.2 

2.1 

c PLEMBLE is the flexibility due to locallsed and distortion 

tt--= +nE) + (C +C 
n21.2 2.1 

c 1.1 is the measured individual sheet flexibility duo to fastening In every 
trough throughout 

TABLE (1.7) (Contiziucd) 



ýFFECT OF OVERLAPPING SHEETS - ALTERNATE CORRUGATION FIXING 

Prof He Length No. of 
l 

Obscr-ved 
fl ibilit 

C 
1.2 +C 2.1 

th 
Individual 

C 
Total C 

In over aps ex y 
mm/kN 

+C etc 2.2 
eory 1.1 

Rigid C Flexibl '! 

105 
6.1 1 0.12 0.006 0.25 0.463 0.108 6.151 

iI 
ý-k 

178 38 
4.1 1 0.26 0.009 0.25 1.06 0.242 

1 
0.342 iI 

1 , 
6.1 2 0.15 0.006 0.25 1.06 0.128 0.240 

a 700mm 
2.1 1 1.7 0.018 0.25 G. 00 1.33 1.90 1, 

4.1 3 0.55 0.009 0.25 6.00. 0.483 0.585 

6.1 5 0.35 0.006 0.25 6.00 0.310 0.425 

6.1 1 0.041 0.006 0.33 0.121 0.030 0.045 

T-ýrz 

I-AIL 78 38 
4.1 1 0.091 0.009 0.33 0.373 0.102 0.131 

1 
6.1 2 0.054 0.006 0.33 0.373 0.058 0.093 

a= 350mm 2.1 1 0.52 0.018 0.33 1.83 0.48 0.62 

4.1 3 0.19 0.009 0.33 1.83 0.173 0.2101 

6.1 5 0.10 0.006 0.33 1.83 0.115 0.151 

76 
j35 4.1 1 . 0.25 0.010 0.11 0.93 0.169 0.265 
ý 7j 

-4 
a= 900 mm 6.1 2-, 0.18 0.007 0.11 0.93 - 0.073 0.174 

JL 
35. L 11 T 

L 150 76 
4.1 1 0.15 0.010 0.12 0.50 0.095 0.15 0 

-- 

a 600mm 6.1 2 0.075 0.007 0.12 0.50 0.0,14 0.099 

7. 

a 100mm 

4.1 1 0.42 0.009 0.84 0.98 0.44 0.47 

TABLE (1.8) 



EFFECT OF OVERLAPS - ALTERNA TE CORRUGATION FIXING 

Profile Length No. of Observed C +C 1 221 
4 Individual Total C 

In overlaps flexibility . 
+C etc 2 2 

t cory c 
1.1 Rigid Flexible 

mm/kN . 

W; 

45 
6.1 2 0.24 0.007 0.08 1.97 0.13 0.34 

n 4B 
7n 
1 

, 1,1 1 4.1 1 1 0.52 0.012 0.08 1 1.97 0.31 0.55 
a= 1200mm 

12- 0, 

4 
6.1 2 0.20 0.007 0.09 1.57 0.12 0.27 4"7 

7L 
4.1 1 0.38 0.012 0.09 1.57 0.25 0.44 

a. = 1200mm 
- 

63 6.1 2 0.35 0.007 0.04 3.2 0.15 0.57 

, so 
4.1 1 0.80 0.012 0.04 3.2 0.42 0.84 

a= 1200mm 

14.35 
66 

r- 
6.1 2 0.30 0.007 0.05 2.6 0.14 0.41 

4.1 1 0.60 0.012 0.05 2.6 0.35 0.68 
a 1200mm 

5 C 

. 19 
iS O 4.1 1 0.34 0.007 0.57 1.00 0.34 0.39 

a 1050mm 
f 

6.4- 
4.1 1 0.16 0.012 0.64 0.52 0.17 0.22 

a 1050mm 

C RIGID is the flexibility deduced from table(3.3) due to rigid plate movements 

+n2+ (C +C+ 3 1.2 2.1 
n 

c 
FLEMBLE is the flexibility'due to localised end distortion 

(I +nC (C +C 
n21.2 2.1 

c is the measured individual sbectl flexibility due to fastening in alternate 
troughs throughout 



EFFECT OF OVERLAPPING SHEETS - EVERY CORRUGATION FIXING AT ENDS, 
ALTERNATE AT THE OVERLAPS 

Prof ile Length No. of Observed C 1.2 +C 21 
Individual Total C 

In overlaps flexibility theory c F 
mm/kN 

+C etc 1.1 Rigid Flexible 
2.2 

105 6.1 2 0.075 0.006 0.25 1.08 0.087 0.103 

178 1ýý 4.1 1 0.120 0.009 0.25 1.08 0.117 0.150 

a 700mm 6.1 5 0.24 0.006 0.25 6.00 0.246 0.344 

4.1 3 0.31 0.009 0.25 6.00 0.306 0.376 

2. 6.1 0.10 0.004 0.33 1.86 0.126 0.167 

, 178 1105 
- 

V- Ii 4.1 3 0.13 0.007 0.33 1.86 0.131 0.170 
a= 350mm 

T36 6.1 2 0.063 0.007 0.11 0.93 0.066 0.077 

a 900mm 4.1 1 0.084 0.010 0.11 0.93 0.038 0.097 

4. 
: 
(ýp 38 

-150ý 
6.1 2 0.041 0.007 0.12 0.50 0.040 0.052 

6.1 2 0.11 0.007 0.08 1.97 0.090 0.11G 
150 

1A2. 

- 6.1 2 0.10 0.007 0.09 1.57 0.107 0.118 

76 
6.1 2 0.12 0.007 0.04 3.17 0.128 0.138 

F 

150 --4 3V 4.1 1 0.20 0.012 0.04 3.17 0.174 0.194 

14. TE63 6.1 2 0.13.0.. 007 0.05 2.57 0.083 0.088 

so 
4.1 1 0.19 0.012 0.05 2.57 0.110 0.13G 

4.1 1 0.19 0.007 0.57 1.00 0.152 0.221 
1 -150 

I-, 

- 
-4 

j 6. ; ýi-- -- -- 
%. -FIJ-19., 

4.1 1 0.097 0.012 0.64 0.63 0.105 0.162 
ý-LD--j 

- 

f 

TABLE (1.9) 
C 

Total is the value deduced from Table (3.4) 

11, 



TEST RESULTS FOR TWO BAY TEST OF CONTINUOUS DIAPHRAGM 

Description 
of test 

Observed 
Flexibility 

C 
1.2 +C 2.1 

+C 2.2 etc 

C 
1.1 

mm/kN 

K 
Cxpt 

K 
rigid 

K free 

A. D. C. 1.60 0.02 1.58 3.00 5.4 5.8 

A. D. O. (150) 2.02 0.02 2.00 3.80 5.4 5.8 

A. D. 0. (5 0) 2.24 0.02 2.20 4.18 5.4 5.8 

A. D. 0. (0) 2.61 0.02 2.59 4.92 5.4 ' 5.8 

E. D. C. 0.19 0.02 0.16 0.30 0.32 0.53 

E. D. 0. (15 0) 0.19 0.02 0.17 0.32 0.32 0.53 

E. D. 0. (5 0) 0.21 0.02 0.19 0.36 0.32 0.53 

E. D. 0. (0) 0.25 0.02 0.23 0.44 0.32 0.53 

A. R. C. 0.58 0.02 0.56 1.06 3.1 3.3 

A. R. 0. (150) 0.72 0.02 0.70 1.33 3.1 3.3 

A. R. 0. (5 0) 0.86 0.02 0.84 1.60 3.1 3.3 

A. R. 0. (0) 1.40 0.02 1.38 2.63 3.1 3.3 

E. R. C. 0.12 0.02 0.10 0.19 0.35 0.47 

E. R. C. (15 0) 0.13 0.02 0.11 0.21 0.35 0.47 

E. R. C. (5 0) 0.16 0.02 0.14 0.27 0,35 0.47 

E. R. 0. (0) 0.25 0.02 0.23 0.44 0.35 0.47 

KEY as for Table (1.11) 
t 

Frame flexibility 15mm/kN 

I 

ýi4 

TABLE (1.10) 



TEST RESULTS FOR THREE BAY TEST OF CONTINUOUS DIAPHRAGM 

Description 
of test 

Observed 
flexibility 

C +C 1.22.1 
+C 2.2 etc 

C 
1.1 

mm/kN 

K 
expt. 

K 
rigid 

K free 

A. D. C. 3.40 0.04 3.36 3.20 5.4 5.8 

A. D. O. (150) 4.20 0.04 4.16 3.95 
. 
5.4 5.8 

A. D. 0. (0) 5.22 0.04 5.18. 4.02 5.4 5.8 

E. D. C. 0.37 0.04 0.33 0.31 0.32 0.53 

E. D. 0. (150) 0.42 0.04 0.38 0.36 0.32 0.53 

E. D. 0. (0) 0.50 0.04 0.46 0.44 0.32 0.53 

A. R. C. 1.68 0.04 1.64 1.56 3.1 3.3 

A. R. 0. (15 0) 2.10 0.04 2.06 1.94 3.1 3.3 

A. R. 0. (0) 2.80 0.04 2.76 2.62 3.1 3.3 

E. R. C. 0.30 0.04 0.26 0.25 0.35 0.47 

E. R. 0. (150) 
. 
0.39 0.04 0.35 0? 33 0.35 0.47 

E. R. 0. (0) 0.50 0.04 0 . 46 0.44 0.35 0.47 

Key: K 
rigid 

K value due to linear plate movements 
K free K value due to free. localized end distortion 

A alternate trough fastening 

E every trough fastening 

D de eking prof He of F ig (7.6) 

R roofing profile of Fig (7.5) 

C continuous sheeting across rafters 
0(150) sheeting overlapped by 150mm, 

0(0) unconnected sheet overlap 
Frame flexibility 30mmAýN 

TA 13LE (1.11) 



EXPERIMENTAL RESULTS FOR THE SHEAR BUCKLING OF CORRUGATED 
SHEETING - SIMPLE DIAPHRAGM TESTS 

Profile Fastening Length D D 7 Theoretical Observed 
bm y 

x, 03 
X 3 

X1 0 Failure buckling 
Qb kN 

cr 
load kN 

i", 

35 
17A Q 

D 2.0 30.6 2.60 11.75 53 50 

a=i. -25m 
1 

t=0.57mm : 

As above 2 
with 0.75Wm D 2.0 30. G 2. GO 11.75 53 49 
u. d. 1. 

As above 

a=1.25m 
D 3.0 30.6 2.60 11.75 3G 39 

As above Local buckling 
E 2.0 

next to fastener 53 42 

5:: 
-ý35 

E 2.0 30.6 2.60 11.75 53 52 
m 1.2m In '38' 

t=0.57mm 

T35 
E 2.0 42.4 3.95 10.73 75 71 

a 1.2m 
t=0.67mm I 

98 

im im E 2.0 6.0 1.53 3.92 13 12 
a=1.05m 

j -- 0.46mm I 

As above E 3.0 6.0 1.53 3.92 9 10 

. 19 
2.0 6.2 3.02 2.05 17 21 

a=1. Oom 
t=0.56mm 

1/4 3/4 
1 

36D D 
er 2 

double fasteners per trough 

E- every trough fastening 

TABLE (1.12) 



EXPERIMENTAL RESULTS FOR THE SHEAR BUCKLING OF CORRUGATED 
SHEETING -N INTERMEDIATE PURLINS 

Prof ile N Fastening Length 'Y Theoretical Observed Expt '0 b / 
bm 

3 1 
Failure 

b 
Failure Ratio pý 

X 0 Q 
cr 

W 
: 

.9 
EE 2.0 3.92 52 42 0.81 13.3 

150 
a 1.05m 1 EA 2.0 3.92 52 35 0.67 6.7 

' t 0.46mm 

2 AA 3.0 3.92 78 45 0.58 10.0 

2 EA 3.0 3.. 92 78 50 0.64 10.0 

15 1 
. 21 

- 
AA 4.0 4.05 49 40 0.81 13.3 

a= 4. ý5m 
t=0.56mm 

2-A - 
35 FU 2 EA 6.0 11.75 159 106 0.67 20.0 

178 1105 1 
a=4.35m 
t=0.56mm 1 EA 4.0 11.75 106 

I 
75 0.70 13.3 

i 

0 A 3.0 11.75 36 26 0.72 10.0 

16. 
1 AF 3.0 3.25 72 49 0.68 10.0 

a=4.15m 
t=0.57mm 

7 
19 1 ET 3.0 3.44 22 13 0.59 13.3 

7ý5ý 12ý 
Aluminium 
a=1. Om 0 T 2.0 3.44 ý5 7 0.82 8.7 

, t=0.56mm , I I I I I I II 

Fastening: 

EE every corrugation throughout A- alternate fastening at ends 
EA every at the ends, alternate internally T- every third trough fastening 

AA alternate throughout b/ý - sheet length/fastcner pitch 
AF alternate, at ends, every fourth trough internally Internally 

ET every at ends, every third trough internally 

TABLE (1.13) 



APPENDIX2. 'TABULATIONS OF THE FLEMBILITY FACTORS 'RAND K 

Table (2.1)' values for every trou 
, 
gh fastening at 50 side slope intervals 

(2.2) values for every trough fastening with two Intermediate purlins 
(2.3) values for every trough fastening with three intermediate 

purlins 

(2.4) K values for every trough fastening with four Intermediate purlins 

(2.5) 'R 
values for every trough fastening, excluding 'purlin-propping' 

effects, at 15 0 
side slope intervals 

(2.6) values, as above, for two Intermediate purlins 

(2.7) values, as above, for three Intermediate purlins 

(2.8) values, as above, for four intermediate purlins 

(2.9) Values of the 'purlin-propl reduction factor for every trough 

fastening 

(2.10) values for alternate trough fastening at 50 side slope Intervals 

(2.11) values for alternate trough fastening with two intermediate 

purlins 

(2.12) values for alternate trough fastening with three Intermediate 

purlins 

(2.13) 'R 
values for alternate trough fastening, excluding 'purlin- 

propping' effects, at 15 0 
side slope Intervals 

(2.14) R 
values, as above, for two intermediate purlins 

(2.15) 'R 
va lues, as above, for three Intermediate purlins 

(2.16) Values of the 'purlin-propl reduction factor for alternate 

trough fastening 

(2.17) K values for alternate trough fastening including 'purlin- 

prop' reduction factor 

(2.18) K values for every third trough fastening 

(2.19) K values for every third trough fastening, excluding 1purlin- 

propping' effects 

41 



The shear flexibility due to distortion is given by 

2.5- 
cadK mm/kN 

Et2.5 b2 

where b 

t 

a 

d 

E 

is the sheet length, mm. 

Is the sheet thickness, mm 

is the panel width, mm 

Is the profile pitch 

is Young's modulus, kN/mm 2 

K Is determined according to the above tables. 

For alternate trough fastening R Is taken as the greater of 

and 
0.144 d 

1.5 
K 

t 
0.5 b 

0.144 d 
1.5 

K 
For 

. 
every third trough fastening, K=t0.5 

b 



K -VALUES FOR EVERY TROUGH FIXING 
ONE 0-*R, - NO INTERMEDIATE FURL-INS; I NCWDING END 'RESTRAINT 
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VtýLUES FOR EVERY TROUGH FIXING 
TWO INTERiAEDIATE'PURLIOS ; INCLUDING END' RESTRAINT 

0. J. 0.2, 0.4 0.5-1 0.7 C; ýa 0.9 
Oll , -0// - 0.21ý . 034 03E -0s.? 
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_ý 
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.0 

F 
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--- 

-3.572 
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K VALUES FOR EVERY TROUGH FIXING 
THREE INTERMEDIATE PURLI NS; INCLUDING END RESTRAfNT 
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5_ý 3-59 4-A 3-4/ 

0-30 

/c, %a C, 
I 

O. /M 0-20c. 0- 2q C, 0. ?.? r 

0-ýn 
I I 

'o. 3ýv tj 0.93 C, 1-08- 

35' 1. &3 

/. 4 CY 
I 

I. ;T . 2-11 ,. &* - 2.49 

945 

0-117ý 0.1 14 0- lýS, 0-142 0. Is-? 0-244 

o, 3ý't 0.497- OS68 0.942 0 

0. 

TABLE(2.14) 



K VALUES 'FOP\ ALTERNATE TROUGH FIXING 
THREE INTERMEDIATE RJRLINS-, NOT INCWDING END. RESTRAINT 

0.1 0-2 a 0.5 0.6 0.7 0.8 0. c3 
0.02s, J. OS-3 0.091 0-03ý 0-10& - CI-/0& CP i Is- 0.20 e. 

0.2 0-1017 0-2-13 0. -Zio 0. -393 0-4 27 0. ý43 0-ýSi 0.41: ý 0.9-1,7 

0.3 0.290 t-"S-13 0. g2ý. ' O. siv O-Ito 1.03 1. of, 

0. All - 
C4S 02-ý3 01-7o 3.4o 4.42 

0.031 0.05--, 7 0. e/ c-OIG 0.16'b 0-0'2. r 0. Im ö. 12t 0.239 

O-IS4) 0.23-r Su 0. ' 0-3«)s- O. 3l(. a0 

0. (441 0-637 o. Vite 1.9(1 
1 

O-eil c).: 3»1 1. /ý, 

1-22 42 

E)=30' 

. C. 0ýl 0.0697 O. c)8, ý 0.038 
1 

0.04n oýog-? 0-0,52 0.14c, 
0.2j(7 0.301 0- 2ýt( 0.2t7 a- 2(. 4 - 

0.3; 2- 0.23v 

1 

1 
0.!;. )4 

1 0,9s3 0- esb 0.87 ý 0.31( 
1 0.693 

Z . 39 

&45 

I 

v 

or3 0.076 0-10'L O-ClIa 0.09,0) O-Irb ., 
o-34.3 2& 1 

0- 41ý3 

TABLE(2.15) 



EDGE BEAM REDUCTION FACTOR ('-A) 

-CONCERTINA COMPONENT OF ALTERNATE TROUGH 
FASTENRIG FLE. XIBILITY 

F 2J2r 
ezoý 

/ýF, -,, CNI 0.1 
_I 

0.2 0.5 1-- o. 6 f 767- 7 0.1 0.2 a3 0.4 0.5 0.6 0.7 0.9 
0.1 

0 

0.06 0.00 0. /0 0.12 0-/4 0. A5 0. A, 0. . /EI , C>. IE) * 

0.2 o. og 
-- 1 0-/0 0.11 0.13 0. /Z/ 0. /s» 0.14 0. fý 0. /e. 

0.3 0.0 -9 0. lo 0.11 0. /, 3 0.14 0. is' 
-- 

0. /6. 0.1: 7, o. IR 

0.10 0-11 0.12 0. /, 3 0.14 0. /s" 0.14 0.12,2 
10ý5-1 

_o». 
ll_ , 0. IZ 0.13 0.1 0. /4L c) . /57 0.14 0.14 

11 . 
()--150 

.oi 

0.06 0.0 
3 

0. 

0.07 0.10 0.12 0.1,3 0. /, 5, oý /4 0 . 
17 

0. /0 0.12 0.13 CL 14 0.15, 0. /6 0.17 
0.11 

1 0-19 , 
. , 

0.12- 
Eolz 

1.7 
-- 1- - 

. 
- 

9 

0.07 0.09 
1 

0. /1 
FO 

- /j . 0.16 0.1? 0.19 
0.09 0.11 o. 1,3 
0. /. 2 o. 13 0.14 
0.. 13 0.19 

1 O. IS- 0.4 0. lý 

1 ". lq 1 0.1)- . 16 O-lb 

0. oS, 
1 

0-/0 0. /2 c. lij c. Is- -0 /ýI 0.112 

0.11 
1 

0-/-3 0.14 ib 0.11 
0. /9 

f 0. is' 0.16 

TA BLE(2.16) 



K VALU ES FOR TERNATE T AL ROUGH FIXING 
' P RLINS ANY MB NU ER OF INTERM EDIATý U 

I NCLUD IN G' PURLIN- PROP ' REDUCTION FACTOR - d 

R/c, 
4 0.1 

1 1 0.2 0.3 0.4 1 0.5 0.6 0. ý 0.8 0. 1. (3 
0.1 0.4ý /-41 94 2. .2 04 ' 

946a 

0.2 C2.3-5 sscl 4 V,. ") 7-. Lt. 0-To 

o-3 4. L 11f. I Is- 213 

0.4 14, 24.3 . 27-4 iZ>J? . 38. / 357.7 

L 
05 Z4.1 

-41-8, 

r62.9 
/ 5551 6-f -. 2 5-7. 

0.44 0.7-2 1-02- /. fg 1,3(3 t-6,5 /-9'o R-0 7 

, 2.5Y 3.62. 's 

coo 9.9" it J3. /. /4-9 16-4. /9.9 2.2. f, 

15.3 19.6 W. 9 . 25'-V Aý?, 4 -30.4. 24.1 

, ý7- f", 34.3 -Rq- 
4 4a S SI. C3 L. 2. o 

6 

6 
-. -3 P, 0 

0.41? 0-2ý 0.99 14 f-20 1-5s A-08 

0.61 -3.60 
4.4fo 57-13 . 5-78' '6.6 3 S-01 

I. 5Z . 9-68 1/3 12.9 145 16.9 

/9. / 2 t. t? .2 4'. . 29.1 

o2y. S 32.7 
- 

T 

E&45 
0.52 0.7& 0,99 /43 

, ý-w -9-70 4.44 

(217 TABLE 



K VALUES FQR EVERY THI. PýD TROUGH FIXING 
ANY NUMBER OF INTERMEDIATE PURLINS 
INCLUDING ePURI-IN-PROP" REDUCTION FACTOR. 

E)--O'o M/to--l 
1 0.2 1a310.4 1 0.5 1--o. 6 o'. f 0.1 0.2 a3 0.4 0.5 0.6 0«. ý 0.8 0. (3 

o. 1 O. n 1. s»q 1.17, 2. p7 3.34 4.07 4.6,3 r'4 6.42 

0.2 4. cv'tl lýL S'VZ 9.8,4e 1--. > /57,3 17. & 4-2C)., Pý a zl. 4 20. Cý 

0-3 13 ,. 9 19.8 Zý. 07 e. 5- jýL. 43. o C. ca. 13 

9.4 3c;.. ý ! ý>. f. c3 f : 7.7.2 
1 

92-S» 94. c> 
1 

/0, C. c> 
. 

a r. 0, , 

e, c> 

TABLE (2.18) A: ýA n 
0.92 /-C-2 2.21 . 2-79 3.39 -0ý 4.7t. 

9.02 /0.9 1.2.9 /S-.: ý 17.4 2o.. 2 

-17-4 . 323 37-00 il 3. 

5'9.4 (. 3.2 -: ý 3. q 

C. ff. 8 :79- q/. 2. /0ý-. o 

'PURýIN-PROO REDUCTION FACTOR - 
(rT) 

EVERY THIRD TROUGH FASTENING 
oto 

0.1 o-27 0-115 0.1-7 0.16 0. /zý 0. /2 0. /1 0.05 0.07 

0.2 0-2-3 0.20 0.18 0. IG 0.15, 0.1.3 0.12 0.10 0.05 

0.3 
. 

0-Z3 . ö. 2-1 0. Iff 
ý 

c7-17 0.6 0.4? 0.11 , 0.10 
0. lý 0. Ozý 0.41 cp. 19 0.17 0.16 0.14 0.13 0.12 0. // 

0.22 0.20 c). 16 

e 0-30 6 

o.. 12 1 
o. ID 0.16 0.15- 0.13 0. // 0. /0 0.08 

0.. 21 1 
0.19' C. g, 0.1.5 0-1.3 0.1,2 0.10 
0.19 0- 1-ý O-c- 04 

0. -21 0.19 0.9 0.4 
0,22 0.20 ý 0.18 0. lý 

TABLE(2.19) 



APPENDIX3. SHEET OVERLAP DESIGN DATA 

Table (3.1) values for every trough fastening 

(3.2) (f values for alternate trough fastening 

(3.3) Overall panel flexibility for any number of sheet overlaps 
(3.4) Overall panel flexibility for every trough fastening at the 

sheet ends and alternate trough fastening at the overlaps 

Design formulae for shear distortion flexibility: 

1. N overlapping sheets , parallel to the applied shear force 

1.1 8 (1 +NC) 

N2 

where C1.1 Is the individual sheet distortion flexibility 
s 

2. N overlapping sheets, where fastenings are in every 
trough at the sheet ends and alternate troughs at the 

overlaps. 

2E E Cie, =C+ 1.1 A13N+ (4 - 
-IT) T-r N 

C Individual sheet flexibility fastened in alternate 
A 

troughs 

c individual sheet flexibility fastened in every trough 

3. N overlapping sheets spanning perpendicular to the 

applied shear force, with overlaps at the rafters 

7be central shear deflection per unit rafter force, is 

+2N2 1)2 
Ný C 

1.1 
[1 

- N8a 

(bý 2 

s 
C F) is the panel flexibility perpendicular to a 

the corrugations. 

4 



OVERLAP SLIP FACTOR, E.. -FOR FASTENING 
IN EVERY TROUGH ý-2 

2Jý, r M 
0.1___ 1.0.2 1 Ct .310.4 

1' 0.5 . 0. cl 1 0.6'__l ý O. 
's 

o. 1 o. 2 a 0.4 0.5 0.6 0.1 0.8 0.., C) 
0.1 0.04 0.07 c). 12 0--19 0.2r 0.2r 0.1q 0.0,3 0.00 
ö. 2 0.04 0-08 0.13 0.. 20 0,2(., 0.24 0.1(. 0.03 o. oo 
0.3 0.09 -0.0 o. 14 0.21 0.27 o. 2-ý 

1 
al/ 7 0.04 0. tro 

9.4 0. OC 0.10 0. IS- 0- 229 0.2<ý 0.29 0.19 0.04 0. OC) 

10.5 10 -0ý 1 0.1 c> 1 0.15 1 0.22 1 0.. 29 0.28 0.113 1 0.05 0,00 

0: 150 

O. oq 0.14 0.33 0. S2. 0-5? 0.49 o. 21 0.03 0-00 

0.04 0.12 o. 2r o. 4o 0-510 0.37 
-0.12 

0.01 

1 

C). 15, 0.3v 0. e43 0.30 0.0 g» 0.0 0 

0 0.. 3-9 0. 0,20 O. oz 

0. DeiL 0.13 0- 4r i o. 39 0.10 0.00 

Gx3Oo 
og 0-3ý 0. b9 0. tii O-ed 0. szt a Ir 0., 01 

O-So 
os" 0.2zý 0.4,9 0.53- 0.31 0. ö1 

d. 52 0.4.3 0-07 

A 

S 
I. 

A--Lr-)o 

O-IS- 1-00 /-00 0.99 0. gg -a 
0. // o. 44 0,4-ý 0.43 0. IL 
0.20 0.5-6 D- 44 

oýSo 

TA B LE (3.1) 



OVERLAP SLI P FACTOR, C. - , 
FOR FASTENING 

IN. ALTERNATE TRQUGHS. 
0-00 

0.1 0.2 0.3 04 0.5 0-6 0. ý 0.8 0. cj /ýd 
NE 

o. 1 

0.2 
0.31 '411 VOL " CLI 

ýlz 0.0 
10,51 

- I' 1 
.11 

E)45'0 

0.47 0. -2& o. 33 a 23 0.21 0.2.7 0., 23 C. 1.20 0. Ig 

c>. /-9 . 0. /s- 0. f-; 0.10 0.0-9 0. OP 

1 

0.09 0.08 C. vl 0.0! 7 0.05- o. 0 4 

s 0. o',; L 0.0, ý 0.02 0.0.3 0.02 

10 

L. 

O ýI 0.02 

NO 

0 . (95 0,62 o., 5»A ý 
0. sl: y% 0. Slý 0 -53 0 

0,43 0,38, 0,33 0.31, 0.3o 0-2«r 

0.21 0,2ý 0.2a 0.2c, 1 0.1 9 0 0.10 

0. ri 
1 

0. fý 0.13 c). 1.2 
1 1 

0.12 0. /1 1 0. /o 1 0.09 
LA 1 

0 n. 1 50 U14 
0. 0- 795' 

c, -5At cl. 52- 

TA BI F (3.2) 



TABLE OF FACTORS FOR OVERLAPPING SHEE TS 

Flaxibility 6=0.0 0.2 0.4 0.6 0.8 1.0 
Formulae "? i 

I 

c1 12 C, 
. (11 +n 0.125 0.225 0.325 0.425 0.525 0.625 

n n 

+ 1L. ( 

r 
C: L .1 

(1 + Ur ) + . 
0.125 0.200 0.275 0.350 0.425 0.500 

7_ 8 8 8' 
Cl cI 

1'. 
(1 + nE 0.250 0.350 0.450 0.550 0.650 0.750 

ýn2 
c -I 0.250 0.300 0.350 0.400 0.450 0.500 

4, 

2 
+n 0.037 0.104 0.170 0.237 0.303 0.370 

n3 

c +96 0.037 0.101 0.163 0.222 0.278 0.330 
27 +3V 

c 
(1 .+ nf 0.111 0.178 0.244 0.311 0.378 0.444 

n2 
r- 11 

II +3e Cl 0.142 0.216 0.250 0.341 0.395 0.444 
. 7 +2C 

C2 
. -1-1 

(1 +n e) 0.016 0.066 0.116 0.166 0.216 0.266 
n3 

2 
1 

(1 +1 E+96 ý) c c1 0.016 0.068 0.108 0.162 0.196 0.250 
. 64 + 48E 

+n LO 0.063 0.113 0.163 0.212 0.263 0.3i3 
2 

1+ 66 +E2 0.041 0.086 0.131 0.182 0.211 0.230 
+ 

2 
+n 0.008 0.048 0.088 0.128 0.168 0.208 

n3 

+n(f 0.040 0.080 0.120 0.160 0.200 0.240 
n 

- cl. 12 
+n a 0.005 0.038 0.071 0.105 0.138 0.171 3 

I 1 
ý- (1 +nC) 

r 

I 0.028 0.061 0.094 0.128 0. lGl 0.194 2 
X 
- I I I I- 

-1 

n- number of sheets 
c 1.1 - individual sheei flexibility 

R- rigid plate movements 
A approximate formula 

TABLE (3.3) 

6 -'overlap factor 

ILA 

RE 

n=2 

FA 

FE 

RA 

RE 

n=3 

FA 

FE 

RA 

RE 

n=4 

FA 

FE 

RA 

n=S 

FA 

RA 

n=G 

FA 

localized end distortion 

E exact expression 



TABLE OF FACTORS FOR OVERLAPPING SHEETS WITH EVERY CORRUGATION 
FASTENING AT THE ENDS AND ALTERNATE FASTENING AT THE 
INTERMEDIATE PURLINS 

overall shear 0.0 0.2 0.4 0.6 0.8 1.0 
flexibility formulae 

c 1.1 A 
E/ 

8 
0.0 0.03 0.05 0.08 0.10 0.13 

c1". 1A E/ 
4 

0.0 0.05 0.10 0115 9.20 0.15 

c 

11 1A '6 +3J 
0.0 OoO3 OoO6 0008 0010 0.11, 

c 1.1 
f 2e 

/1 
A (9 + 

0.0 0.04 0.09 0.13 0.1G 0.20 

c 1.1 A[ 
68 

+2EJ 
0.0 0.02 0.05 0.07 0.08 0.10 

c K/ 
0.0 0.03 0.07 0.10 0.13 0.17 

6 A 

c 1. V1 /60 
+, )ý 0.0 0.02 0.04' 0.06 0.07 0.09 

C1.1.12E/ 
A (15 -C 

0.0 0.03 0.06 0-08 
1 

0.10 0.14 

6n 3 /a +n 
2 

0.0 0.39 0.43 0.42 0.40 0.38 
6C +n(2-E 

26n 
2 

(1+nE ) 0.0 0.27 0.43 0.47 0.49 0.54 
+ 4C +11(3- 

R 

n=2 

F 

R 

n=3 

F 

R 

n=4 

F 

R 

n=5 
r. 

It 

n=4 
(example) 

F 

C individual sheet flexibility fastened in alternate troughs 

C individual sheet flexibility fastened in every trough 

n number of sheets 
R- rigid plate movements F- localized end distortion 

- overlap factor for alternate trough fastening 

r- reduction factor compared to alternate trough fastening throughout 

General formulae for any number of sheets: 

C 2, f C1.1A 
+ 

Cý. 1E 
or C 

C" 'A C1.1 

1.17 4c +n(3-E n 6E +n(2 -E) n 

for localized end distortion or rigid plate movements respectively 

TABLE (3.4) 



FOLDED PLATE ROOF DESIGN ---7APPENDIX 4 

Summary 

baý 

elllý 

l. A + J. 34. 

Loading 

Snow Load 

Insulation 

Self weight 

Total 

/. 2W 

,f 

ý1. ogl. j 

K 

d, 

2 Actual stress 53 N/mm 

4 

0.75 kN m2 
0.2ý kN/m, 2_ 

same as loading system 

0.22 kN/m 2 

1.2 kN/M 2 

For design bending stress in sheet of 
150 N/mm 29 

Required section modulus is 

(1.2x1 03 X1.8) x 1800 33 Z=8x 150 .= . 3.24 x 10 mm 

In fact, pressed sheeting of Fig (10.6) has 

properties I= 174 x 10 3 
mm 

4 /mm 

Z=9.27 x 10 3 
mm 

3 /mm 

-9 
L/I. 

- 2 

I. 



Axial stress in fold line members: 

Off 

2R = 3.78 UT/m. 

Section modulus of 
Inclined girder 

=A1x 2100 mm 
3 

2R =2x1.08/sin 35 

0003.78 
x 21.6 

2x 10 6=Ax 
2100; A= 700 mm 

2 
8x 150 

Fold line area required for stress of 150 N/mm 2 is 2A, = 1400 mm 
2 

Chosen fold line area is 2400 mm 
2 *, stress is 88 N/mm 2 

(The fold line is continuously supported) 

Fold lines for edge member: 

1.08 x 21.6 
2x 10 6Ax 

1000 A 420 mm 
2 

8x 150 22 

Chosen fold line is 100 x50x3.2 RHS . which has area 95 0 mm 
2 

From section (11.3) lateral buckling occurs at 3.8 kN/m 

End frame members 

oýo. 4 3.78)c ioL 9- 4o. 9W 
All members - 
100 x 50 x 3.2 IRTIS 

40-& 

M 

ýZ- "' 4 "7 

3 
Member AB. Axial stress 

40.8 x 10 
- 43'N/mm, 2 

950 

2200 2 If AB acts as a strut /r 
20.7 106; permissible= 73 N/mm 

y 
3 33 x 10 2 Member AC. Axial stress 950 35 N/mm 



Columns - interior, assume load eccentricity of 100 mm from face 

of column with half column load 

Axial force = 40.8 sin 350 = 23.4 kN 

Bending moment = 23.4 x 10 3 (100 + 50) = 3510 x 10 3 Nmm 

i 
/I - 

3500 
= 93 Colunm - 100 x 100 x 6.3 RHS 

y 38.1 

0p0=87 N/mm 2; 
Pbe = 165 N/mm 2 

Axial stress = 
23.4 x 10 3= 

10 N/mm 2; Bending str%-, ol. ) - 
3510 

2340 68.2 

= 52 N/mm 2 

0 10 52 
Q0 87 - 165 = 0.12 + 0.31 = 0.54 

Sheet Strength - thickness 0.97 mm 

40.8 x 103 2 Maximum shear stress is -= 20 N/mm. 
2100 x 0.97 

2- or Combined stress with bending is (53) + 
1- F53 

+4x2 22 

= 59 N/mm 2 

Shear buckling strength Q 36D 
x 

1/4 
Dy 

3/4 
1 kN. 
b 

D =E. 174 mm 
4 /mm; D- 

15 0 0.973 E 
yx 171 " 12(1-0.25; 4) 

= 0.71 mm 
4 /mm 

36 x 0.71 
1/4 

x 174 
3/4 

x 210 
= 89.5 kN 

erit 2100 

Load factor against shear buckling is 
89.5 

- 2.2 40.8 



StrengLh of sheeting fasteners 

Sheet - fold line fasteners: - Each has capacity 6x0.9 7=5.8 2 kN 

40.8 x 150 
The actual force/fastener is wpL 

= 2.91 kN 
2b 2100 

- wL 
where i- = 40.8 kN; p= 150 mm; b= 2100 mm 

Load factor Is 
5.82 

_ 1.99 
2.91 

Seam fasteners: Using the formula of section (10.4), the seam failure 

force is 
s 91 

nsS sh S (n F+ 2F 
n 

sh -2 n1SSp 
.A+ SS 

SJ 

where g 1.5G for 7 sheet-purlin fasteners, as in F Ig (8.10); 

n 
sh = 24; s8=0.35 mm/kN; s=0.15 mm/kN 

ýF9, Seam fastener capacity Is 2.5 x 0.97 =2.43 kN; ns= 22 

Failure force Is 
24 

22 /0.35 + 
1.56 /0.15 

22 
( 

22 /0.35 +1 /0.15 
.0 

(2.43)= 75.0 kN 

Load factor is 
75' 0=1.84 
40.8 

Sheet-gable fasteners; failure force for n sc = 14 

(n +2) sc se -+ 
zgl 

sc F 

sc 2 

sc 

Load factor is 99.6 
- 2.44 40.8 

14 +2xl. 56 

14+2 
5.82 x 16 = 99.6 M 

Note. same fasteners used as 
for fold lines 

0* 0 ese =8= 15 MMAN 

**. Critical roof load Ing Is 1.84 x 1.2 = 2.2 kN/m 2 



Roof deflection - using formulae of section (10.4) 

'R d 2.5 2 
Shear distortion: d 

101 Et 2.5 b28 

K for closed prof He from section (12.1) is 0.019 

(For a similar open profile, this would be 0.14) 

For 1.2 kN/m 2 loading, the in plane component Is 3.78 kN/m 

2.5 23 
0.019 x 150 x 3.78 x 21.6 x 10 

= 1.4 mm 
207 x 0.97 2.5 

x 2100 2x8 

Shear strain: d (i +0 )(1 + 
2h /d) wL2 

1.2 4Etb 

d 
1.2 `2 1.25x1.2x3.78x2 -2 /(4 x 207 x 0.97 x 2100) 

= 1.6m 

Axial strain In flanges: 

4 
WL -A fold line area = 1200 mm2 

38.4 xExAx 

= 
3.78 x 21.6 

4 
X10 

9i= 
19.3 mm 

38.4x21Ox12OOx21OO 

Sheet-flange fasteners: 

223 
d _spwL - 

0.15xI5Ox3.78x21.6 x1O 
- 2.3 mm 2.1 

4b 24x 2100 
2 

Seam fasteners: no of seam fasteners varies with the shear force 

2. wL n 
sh- 1 
2 

2.2 n. 

s 

3.78 x 21.6 x 11 
= 6.1 mm 22 1.56 

. 15 2+ j- 0.35 "15 



Sheet/gable fasteners: 

wL 
d 

/2 
2.3 n 

sc 
2g 

s+s 
sc 

3.78 x 10.8 
-, =0.4 mm 14 2xl. 56 1 

0.15 -v 0.15 

Total deflection in plane of roof slope is 

1.4 + 1.6 19.3 2.3 + 6.1 + 0.4 = 31.1 mm 

A= 31- 1/sin 
350 = 54.2 mm 

If an open profile had been used 

together with smaller fold line area 

(150 N/mm 
2 

at failure), then In-plane 

deflection is 

10.5 +1.6 +33.1 +2.3 + 6el + 0.4 

= 
*54. O'mm 

so 0 
54 /sin 35 0= 94.1 mm 

Eaves deflection : Vertical deflection of edge beam in isolation from 

rest of roof Is 47.6 mm 

As the outer plate is only subject to half 

the shear force the central deflection Is 

31.1 /2 mm. 

Thus the inward component is 

13.9. mm 

7his simplified folded plate deflection 

analysis ignores the true axial strain 
in the fold lines. The actual deflected 

shape is shown in Fig (10.11). 



APPENDIX S. COMPUTER PROGRAMS 

General solution for shear distortion flexibility of evory and 

alternate trough fastened sheets for up to four Intermediate 

purlin atLachments as in chapters 2 and 3. I'lic flexibility Is 

output in terms of the'R parameter 

(5.2) Strength of diaphragms due to Beam or Bhect-slicar connector 

failure. CNtput is In terms of a factor g such that tho soam 

slip Is 

C 
2.2 nnn. g 

-+a s 
a 

All the terms are defined In section (B. 4). 

Similarly the diaphragm strength is(n 
sFs+ 

2gn 
P 

n. F 
PI 

(5.3) Diaphragm openings, as In section (8.7). Both isolated rind 

periodic pitches of flexible bands may be studied and output Includes 

local fastener forces and purlin bending stresses. 

(5.4) Holes in folded plato roof solution with rchp. rd to critical fold lino 

buckling, and fastener tearing as In section (11.2). 

(5.6) Varkitions In folded phtc stiffness duo to chnnges in tho shcot- 
fold lino fastening arrangement ns developed In section (11.4). 



Pkfj(. WAm FRfU /h/16 (41al TkACE tin 4"N#420 e9109170 
AGt 

FS-HUR FLEXIE31LITY OF PROFILED SHEETINN 
PPOGDAm P kfl)( It PUI ULj1t1U I, TAPE I al-JIU? ,I APE 2xtUl PUT) 
Pf Al L 
01 "t "S I 
DIMENSION FA(j7)vPU(l? )*Z(24) 
DI MEN 51 ON FC( 17 )oE 1) ( 17 )v 1) DC23 
DI-ENSIOP4 ACJ), P(3)*L(3#4)#AA(3#3)odt$(J*3)#Ab(3#3) 
F)IMENSION AlktAP(/)pAXHAIIR(7)ot(/#? )#NCV) 

08 PIADC1,100) bL#EkT#P#"eT#ky*AL 
IF lpd FORMATC? P11.4') a-,,, 

-ý 
" 

PTTF(7,1011 eL. HT, P, ", T, tY, AL 
- lot. F V, R PA T(7L 15 . b// ) ýi- ;-, -- 

If CEIL. LQ01,0) G0TV 51 bL L. L 
P4 

ALAa2*C 1ý L# Is I#P) 
08x0.3w of T( pq * ý- 0P*P 
CO 82 lmlvL13 

00 61 J21#23 
ot 1, J) mo, v 

61 C0NIINUI 
2F 62 C (J NTIN L) f 

X4xfY*T**3/(l2, V*f, 91) 
#+L 

25 

X7xP/C2sv*mP Ei 5 ts TbLb66T 

30 A(j)2X4/X! 3*(X7-X6) 
A(2)nx4/xb*Xb 

--- ACJ)ZX4/xb*(*X6*X? ) 
B(I)XX4/Xb*(+Xg*Xlt)- 
9(2)2+X4/Xb*XIH 

DO 12 laI13 

DOII Jtlo, 3 p 
A 18 1 
jF(l. NE, J)GOTV3e, 
GOT031 -f 

3,4 AIRP*ia 

31 AA(l, J)aA(j)*A(J)*AI 

C C, 0aI, rd /C3.0a X41 
C(I, J)ZCOU*(CHL42te! *tl3)*AACI*J)#(BT#2, d*83)*88(1, J): - 

IIC (INT I NUE - 
12 CONTINUE- 

YAZEY*3.14**4/AL**3*2#07*T 
FALaA(, /6@28 

FALLLXAL/18.84 
55 GmEY/2.6 

PROGRAM FAEO 76/76 OFTXI TRACE FIN 4o5#42V F9/49170 
AGE 

D(lo16)r. C(t#2)*AL*A21ttlot$4*FALLL 
D(lpl7)=CCIP3)*At. **2/16,84*FALLL- 
DC3ol5)-'C(1*2), iAL*62/lbob4ifALLL 
D(3,16)'. C(2#2)*ALA*2/9.42*FALLL 
D(3#17)cC(2o3)*AL*'12/16*84*FALLL 

65 Dflfsp It))2(C(2*2)*AL/2*fd+l62. vl*03*63*YA)OFALLL**P 

D(17,17)2(C(3*3)*AL/2og+81.4'*CYU*ULA*2#VAOOL**3))*PALLL**2 
I+P. 25/BS*GG 

D(l5vt6)mC(l#2)*AL/2@0*FALLL**2 
F D(Ibpl7)2(Cft#3)*AL, 12. Ll"tb2oi'*bL*UT*Y@)*FALLL*02 

-P . S/HS*G(; 
D(16,17)RC(2#3)%ALi2. fA*FALLL**2 

D(1#2)--C(I#l)*AL%*2/J, j4*FAL 
D(1#4)tCCI#2)*AL**? /bgdd*FAL 

1) (2# 2 r)(2.2) 0AL4 42 00.2b/H3*66 

D 2. xC (134 AL 17 0-2. rl *bI* t4L * Yd 
0 2, a0 (2,5 *PA0 2-0 ! Vto 5a GO 
t)(4@4)XC(2tP)*Atf?. U+YA*2. wetigii*3 

D(4, 'j)xC(2t3)4AL12qP*PAL**2 
as 0C5s !)) 19C (3# . 3) *AL 12 s 0# VAa tsL **34V0 s4L 2 

0 00) a 00 t 5) *F A L* *2+0#2 *1 tl$ a 
FALLUAL112. bb 

9F 

1 . 1,460,55S 

1464robbi 



64 r) I. I) mc (IpALa6 J/ I ;, .1 
()(3,14) o *ý (p"AL"" 211 ýý 9 "' &0 At L 

7)4, Lt """ho2b04LL 
"C L*" 211 ýý 0 56 AýALL 

(1( (2#, *) *At* 
('10 

"* IJ I ft *2 01 V At. 4A2 V 2 ,1 4 * ' 4 '/ L * 
b 

L 
* b D 10 14 p 1 *Y 8 A F A L*62 

D(12,, 12)xU*T*AL*h3 
0(13# II)I'G*T*AL*"L 

Jos ()(14,14)XL, *I*AL, 161/2.0#Vti*tIL6620FAL*$2 
n (bto )I (L (It I) "L/i *0*16 046 ( Vd*ts f* *W+ VAAdl **J) )*FALL 662 

sit +kl. 2b/1jb*', G 
D(bol ) VC, (1 s2) *At /?. i4*FALL*, %2 

lit D(4ý#8)a(C(I*J)AAL, 02ow-J2@, Jodl*hL*yd)*FALL**2 
. 0.5/HS*G(, 
DCIP7)8(C(2#2)*AL12gio+j2.0*8b**J*YA)*FALL**2 
+GG*(0.5/h I +t'. S/UL ) 

64 D(7p8)aC(2, J)*AL/2.16*ýALL**2 

I+GG40.25/133 
O(5. j4)vYd*2.0*BL**2 StAL-2 y lu D(5#jV)z-YH*2. V*8TA8LAPALA*2 
0(2,14)-"Yd*29H*d7kdL*rALk*2 
DCIVI, 14)c-yti*2. P*PTAtsLAFAL**2 

Ft=AL/(A, W*3.14) 
t6 

D( 19p 19 )a CC (2#2) *AL/2,0*2 004 jo**4*d3**3*VA) *FL**2 
125 l+GG*(0. b/tjT+o. b/8T) 

20 0 (20*20) MCC (. 3f 3)*AL/290+4 10*64*( Y8*dLA*2+VA*k! L**3) W010 
I s(A. 25/143*GG 

t3o 0(1#20)=-CCip3)*AL**2/tS. i6o3, l4)*FL 
0(3,18) ---C CI 12) * At * It 2/ (S. 1A *3,14) *FL ---- 

0C 18*21a)r CC(I *3) 135 1.0.5/8s*GG 
D(j8tl9)zCClp2)*AL/2, o*FL**2 

- D(19#20)ZG(2#3)*AL/2, e*FL**2 
FIL;, AL/(31.4) 
D (21 j, 21 )a (C (IPI) *AL*'2qd+5p0**4* C YB*Btk*2*YA*bT**3) )*FLL**2- 

4 It 1+0.2! )/BS*GG 
0(22,22)a CC(2#2) *AL/2.0+2.0*b. bk*4*YA*b$*43)*FLL**2 

l+GG*(P. b/bt+0. b/dL) 
D(23*23)2(C(J*3)*AL/2. fOIP5.46**A*CYB*dL**2+YA*bL**3))*FLL**2 

I+P. 2b/85*GG 
45 011,21)2C(1,1)*AL**2/(b, 0*4,14)*FLL -- --- -- . - 

DC1,22)xC(lo2)*AL*, A2/4j, 4*FLL 
O(lr23)--C(lPJ)*AL**2/31,4*PLL 
O(3#21)2C(l#2)*AL**2/31.4kFLL 

0)*FLL D(3@22)BC(2#2)*AL**2/(i. 14*5 
150 . 

D(J#2J)MC(2oJ)*AL*, k2lJl. 4AFLL 

D(21#23)9(C(IoJ)*AL/2.0-2.0*5.0**4*@T*dL*Vb)*FLL**2 
1.0,5/mS*GG 

O(21,22)VC0#P)*AL/2, A*FLL*s2 
DC22v2J)xC(2s3)*AL/2, W*PLL**2 

155 00 21 mst#4 

- 00 32 181#23 
-- DO 33 J21#23 

IF(I. GT. J)0(loJ)gDCJ#I) 

IFCIotQq, J) D(IvJ)22, W*UtIvJ) 
33 CONTINUE 

14 32 CONTINUE 

DO 71 Im1#23 
Ztl)80.0 

165 F(P#l)xC)(2pI)"hl/PL*PCbpI) 

62 
F(5vID (7 p12.0b S/ 8LCdI 

170 
.. 4 

66, _ 

2 

4 

6 

10 

PROGRAM FRED 78176 0PTwl TRACE 
AGE 4 

Ft 12s 1 )%tl( Ibo 1 

IIG t1Q91)42. wl 0 HS/ MLt 0 t20 #1) 

71 CVNT Z NU 
lf Cm J, n .1) Nzt 

F Cm. E rie Wo OW @M. f 0.3) Na 16 
F Cm F (1.4 ) Na 1 !ý 

t4 

, 16 

Ul 

fIN 4954420 pig/ 09/ 13 1 at 41A ODS p. 

I'l-S 



DO 22 1XI#21 
1PCM. F 14.11 Glil 1) 22 

IF (". ttid) Will) H9 
IF (10. ff.. 4) Gw7(j "I 

(2.1 )at U# I )-;, * 3*b1/f1bftu(2w* 1) 

F (11,1 )0 
Poe 

Fft'), 1)20* Iss 1)-l @250)(22s 1) st, 

4, 
205 

GOTO 22 
F(2#1)aFt2ol)+2*btfiTlbb*0(22#1) 

C A4 

A?, 

215 
52 

I+BT/BL*D(23pI) 
220 GOTO 22 

c 
F-7 60 

F(4, I) cF (4 ,I12 io *ts$ IIbC0t 16 11 +2 Sb/bL*D tIII 
225 

6A 

-230 

ý 
F(14,1)-F(16#1) 

:. -. ---- I) - I)zf(I7 F(I5 12 
1ý ý 

-ý- -- . - ý p , 

rr - 
22 CONT INUE 

DO 24 Zxt*N--' 
235 IF(". EG. 2) FA(I)XF(I, 22)+2.? *0S/bL*f(1,2J) 

1 16 IFCmEG. 3) FUC19FCI2; f It2. 'A a0 S/ d %, F123 
IF(M, EG, I) Gun 74 

13 IF(". EG. 2) COTO ?b 
74 FA(t)--P, o - 

240 IF(MIL094) GOTO ?6 

IFCM. EG, 4) GUTO 

76 FC(I)Z0.0 
FDCII no .0 245 77 IF(M. EC. 4) FC(I)cF(Is19)+2.0*8S/bL*F(1#2J) 
IFCM. EU. 4) 

:3 
25@ 

I-4. (1*FC(I) 
X(I+J*N)OFCI#6)-BI/BL*F(leb)-l. 2b*BT/d3*FACT) 

I+I. b*HT/C2. @*H3)sF0(j) 

260 

265 IF(M. EQ. 4) GOTO 66 
GOTO 67 

270 
GOTO 68 

61 

275 (1, lw)+2, k*'kWbL*F (IP20)-l . 2! 5*F All) 

tI#22)+2@, P*dS/tsLiP(I#2J) 
68 V(I1vF(IvJ)*uq2bjb5 
24 CUNIINUk 

28a 7v DO 25 ImI#N 
DO Ph j8jpN 

26 CONTINUt 

2* CCISTINUL 
285 CALL XINV1(N, Xpts#0jj) 



PROGRAM Faro 7 F) CFT6j TRACt PIN 4,50420 09/09/70 
AGE 6 

On 36 LLItth 
DO 37 981th 
Z(LL)xl(LL)fU(Lt#K*(A-IJ)*Y(f0 

31 CONTINUE 
29P 38 CONTINUE 

DO J6 LL91#P- 

36 C04TINUt 
IF (". t 0.1) Z(72)81(17) )- 

295 wf IP(M. P. (;. 4) Z(22)vj(Ib) 
IF(m. FG. 4) 1(21)xZ(14) f 
IF(M. EQ. 4) Icialml(IJ) 
IF( - PIE94) z(pl)x7ct6) 
1ý(M: NE94) ZEIQ)21(15) 

30P IF(M. NF. 4) Z(18)CZ(14) 
IF(M, Nt. 4) Z(16)aZ(Ij) 

Z(14)XZCII) 

305 Z(12)81(9) 
ztll)zZ(S) 

z (9)zi (6) 

31P Z(6)SZ(4) 
Z(4)21(3) 

315 IF(M. LO. 2) Z(22)25.10*Z(4)+2. b*Z(? )-i. 2baZ(19)-2,5*IJT. 4db*t 
IZ(2)#0; 5*Z(6)-V. 25*Z(16)-o. 2*Z(21)) 

-320 F(M. f0.4)Z6xZCIb tsT/ (2.0 *bS I. b*ZC7) +81 /C2* 10 *0 b16 
ZC3) 28 T of (2 ,0 *bS) 2CI -oo 25/d b+ IC9d 1/ 2. (d *851CIII 14) 

I-ZC 12 2 . 16 *8Sý6L1 14 
325 Z(6)Z-Bl/bL*Z(b)+24v*05/8L*Z(7) 

's Zft? )N-BTIBL*Z(15)+2*iioiiS/BL*Z(tb) 
Z(2tl)Z-BT/BL*Z(18)+2. ki*86/dL*Z(19) 

Z(23)=-ST/8L*Z(21)42.0*dS/dL*Z(22) 
1 (24) o0old 

AF 391 .0 --- - 
DO 34 131123 
DO 35 J%1#23 
IFCI, GT, J) GOTO 35 
IF(I, EQ. J) DCI#J)RfAob*L)CIPJ) 

335- AFRAF+D(Ioj)*Z(I)*Z(J) 

- 35 CONTINUE 
34 CONTINUE 

Z(l)*Z(I)*AL/2*1P 
Z(2)zZ(2)*AL/b. 2d 

3AP Z(J)cZ(3)*AL/2,0 
Z(4)xl(4)*AL/6,28 
Z(5)BZ('))*AL16,28 

() 

PROGRAM FRED 76/76 OPTS1 TRACE- PIN 4, b#420 
AGE 

Z(j? )wZ(j7)%AL/18, S4 
Z(lR)xZ(j8j*AL/(8#e*3*14) 
Z(j9)mj(jY)*ALl(S. vaJ. 14) 

Z(23)BZ(24)*AL/31#4 
Z(22)--Z(22)*AL/31.4 
Z(21)sZ(21)*AL/31.4 

355 CXCA. 5/Aý 

C)(UCI-Ckl 
AKCCX*tV$IT**3*AL*031(ýi. 144*ALA*65) 

A1482.06m*8LIALA 
365 8P'? x-2. ia*h*KTlALA 

p. 



lit 

Jim 

lop 

1844 

39F 

391% 

CI x&-4ý/ 1 (4* t (ý Ih Am I# Am? * h, A)* AMC I J. P 
I& I fit* A 014 A .: P# flýl 42. m*ms I) 

D2 aA -0.4 1. V6 t (Pj 4?. v*k,, Sj *14" 1A PC/ 3.0 

A*RT)/(EYaAL**3#T*s3) IF vi (D I *?. ot m. 1*02*1 
Amnv(P#"Tl*7. P*Pj/AjA 

AWCR2 . Pe (p#f4T I* It, oit I/ALA-P 

vL (, -. c- bA 
4PAvv%n/(DFFj; #DFFP) 'Lu 
r6lf; &H/Al A*AI 

j 

forx-14TO01/41 A -. Lj 

I *PP4 IMi Y* I* *3 112 . 11 12 141 AL 

PF OwFFL F X/F It XI 
Atý*FLnAf(ml 
A it RA u2f")z A', RArorm I* (I. ? -RFD I 

v.;? TIE(2.133ýAPF46R(M), AKRARRIMI, CX#Ak 
113 FnPm4TfAEl'3.6//l 

I)M NS NL 3 '1001 
P'LaFt flAT(Ni )/8'. 0 

I yf I I; )* STN(0.4; )* A lyl )+? (I A)* SIN( 12, rsh* A vL 1+? ( 21 is, % IN( I A'. 84*ANL) 

nT('JLIvMTtNl)*AIA*CX 

--- r- -- _- -: -- ! --- -= ar-r-. --r-r' -; '-v - -- .. 

-. - PRfJG9 A I* IrRF0- ---I A/? 6 --- L)PTS I TO A CF- FTN '41.50420, "--, - P9 /? IQ MIC. 2p. 35, - -- -p .-0. -, -- 

FS ONT I MLIF 
17 F8171 Iq IPLI, 8 

dolk: IPO FORMOM 1 5.6//1 

LEAL 

72312LlALA*(PL#P) 

JAInAL 

42P 7PIZAL 7rf 
7P22AL 
7Fk3zFtL 
7P4z9l. 

jC4aFlL**2iAtA 

7()2 '41ppe 
43p-- 

7 P4 am . 9. 

nI 2vR AKI* SnMP (7RIa 7142 # 783 &7 144 s7AIpIA2a7AI#7AA, AL #94s81+ 1P, 'l*Altl*7A4#ZP4*Fkl *P. Okl+ 

1: 4.1)*Sn, P(ZCl#7CP&7C3#? C4#Zlo? PoZ3tZ4o9L#B$o%TI 

44P 

I)P2a, ll', N*SnmP(7Ci. 7C7.7Cls7C4. /CI, ZC2, ZC3, IC4. PLORSOPTI# 
AV *0 b I+ 

IA02 "'. 5* S"P ( 79 1.7ýP. ? HA , 70 A. 78 1,7P2 . Z8 I, Z S4 , Pl. . Ft 3, PII 
"Ia vs *( 1%2: ). n 12 11 (riI* npp. n IP *P; $l 1 

441% PPXVS *(n2l-Mll)l(rl2*n2l-Mjl*P22) 
IF( p1 .1T. P. Pl N'TI, 72 

j TF(P2.1. T. O. P) rPTr IR 
rMyn 71 

72 PI XtA tA 
ASP p: odvslnp2 

rnyn 73 
74 ppulh. ft 

plovsIP11 

rr aF ytp Im 1** 3 

All 8FY6T&*. A/f 11.0k&Po 0 a( I. 



PROGRA14 FRFD 76/16 DPI2I TRACE FIN 4,5442d 

AGI 9 

G AN HL* &J/36140i I* *3/6914* (KL#2*V* V*t5b ) **We hT/2.0 

480 GA86A*LTftT*9@fi/L 

(FIL+? o"4v*d3#H I )#f-bL-doIdftV*t%$-u I)$ (So ki A hL*2q0*V*db-s I) 
(041 flit -2o %I* V*nS) * (04 T+ftL+2@-1AV*"S) 

GC96C*ET*Ifi9, "IL 
465 

I #FIS/fto-j* ( tmL+2off*v*ti3ofs1 )**2* 1 JoO a bL#Jo0*V*"b-b 1 )**2 
1 +1 ttiL-?. P a V*bb#oT) **2* 1 90/3#4* (bL+2. V*V A bS+ts 1) **2) 

G"3GA*EY91*V. 8/L 

(111 +2.0*db)1J. irf (2.00 (11#ts I )Ot-L/ A6 A) *2. Ot 61 *HL/AL A* Re %i*USjJ, d 

Et It 3) MAKAL* 42/ 
415 Efj. 4)m-L(1v2) 

E (2 p2) XAn*L**3/ f 9.8 1116 0 +L*(iG* (e 5/60 V*42+P . 25/PS /4 O+GA+1,0 
480 

to. 25*GD 

I 9.0*GA+ 10419.0 *GO 
EC4,4)vL(2,2)#Gb-GA 

485 Ef5o5)XE(3,3)+4. P, *G8-4. WhGA 
E (7.7)zk (bvb)+9. fJ* c6t: 1-tPA) 

- -- E(2p4)8-2.0*k(,? #2)+GC+2.6*GO+2.0*(GA+GD) 

Eta, 7) z-2901k (bob) +9.0*GC+2. dIV. VI*G0+2. lb* (9.1ý*L. A+t . 10/9,10GO) 
490 

to 14135#7 
IF(m. EQ. S) GOID 94 

- GOTO 91 
495 94 DETx4s0*EC2#2)*ttdP4)-E(2r4)**2 

ZCI)x(-2. io*E(1#2)*E(4t4)+E(2#4)ot(t#4))/DET 
Z(Jlx(+E(1,2)*F(2#, 4)-2. LA*E(2o2)*L(1#4))/DET 
z(2)r(-2. ki*E(1#3)*L(boo)+E(Jpb)*t(lob))IDAT 

50ek 

GOTO 98 
91 IF(MOEO, 6) GOTO 95 

GOTO 92 

----505 95 
k%(2)mE(2v4) 

*(4M(2#4) sal- 

PROGRAM FRFD 76/76 OPINI TRACL ýIN 4*5+420 
AGE 18 

yIc2. rdiE(1,3)-EtIo2) 
515 -7 Y22-E(1*4) 

-- Y3x-E(tt5)- - 
-- - AINY3/W(9) - 

AP---W(3)/WC9) 
A38Y2/W (3) 

520 A4Z-4(2)/W(5) 

Zt4)zAj#A2*7C1) 
Z(3)XA3+A4*jCj) 
Zf2)x-2#V*ZCI) 

525 

GOTO 95 
92 IF(M. [0.7) GOTO 96 

GOTO 90 
530 90 

Wf3)w3.0*tCb#? ) 

YIa-E(j, 2)-3. P0CI#6) 

AIXY3/wtg) 
A2u-scj)/"(9) 
A3aY2/%(5) 

54F 
1151183.0*1(1) 
ZfjjvA3#A4*j(j) 



j(b)mAI*A2*j(j) 
Z(2) xf. P. o off I J)*t (boo) #ý (30)*tf I ob) )/DA I 

545 1( 4 Is (-W. Wat ( 1.3) Ot (I h) 0 (1* J) *L (3p b) )000A I 
od usý (It I )+t ( 102) o4f I )#ý (ItJ) *1(2)+t (1# 4) It I( J)4t (1# 5) *Z(4) 

I #k (2, ; 1) *1( 1)* %p+t 13 p. 3) *1 (2) a *W+ý (4 4) A 1( 3) **k *t ( 50b) *114 )*4; 1 

10 (03.6 ) *i tb)**2#t (I*/) *1 (6) *62+k (bo I) *i(5)*Z(6) 
55p 

CXm(ALA/0**2d-v,. VU 

CKGCX*tV*L**2/(buki(ALA**Y/Y*tb)) _Lyf &, 144 0 0-- 

A118PLUA I(") 

560 AhUaCX*L/ALA 
Z(I)mZ(I)AA80 
Zf2)wl(2)*Al4O 
Jfj)XZ(3)*AhU 
Zf4)wZ(4)*A8O 

565 Z(5)sZ(b)*A(40 
Z(h)x1(6)*Ab0 
IP (AN. E Q. b. 0) GOTO V 
IF(AN. E9, JP. 0) GOIC5b 
If CAN. EG, b. 44) Gotc 59 

570 57 AKBAH(5)xCK+AKVAR(I)--- 

GOTO 60 - 
59 AK 13 AR(6CK+AK0ARfI10.5AKPAR 12 5 

AKHARRCO)BCK*tl . (O. k)+AABARCI)*U. b+AKbAR(2)*0.5 
575 GOTO IS7 

5d AKBAR(7)XCK+AKHAR(I)*W, b+AKdARCJ)*io. 5 
AX8ARW(? )zCK*(j ji. R)+ApkFkAR(j )*V. 5+AK8AR(3)*@s5 

64 CXmSQkj (ALA **b/I **b)*AKHARRfM)/ (tYeL*42) 
- ARITE(2, IJJ)AKOAR(M)#AABARR(M)pCX#AN 

500 00 56 NLU1.8 
dl:., 

AKL--FLOATjNL)/8.0 
-- UPI (NL) =AbO*ANL+t (2) *31NO. 14*ANJ. ) +Z (4) $SIN (0.28*ANL) 4 

IZf6)ASIfy(9.42*Ah0 
U62(NL)OZCI)*SIK(3#14*ANL)+Z(3)*SIN(6,28*ANL)#Z(b)*31N(9942*ANL) 

585 56 CONTINUE 

i%RItE(2, I88)(U02(IJpImI, lj) 
Id CO. NTINUL 

GO T0 88 
51 31 

END 

FUNCTION bOmPfAl, A2#A3, A4,01#82od3od4pt$Ltb$#bT)* 

I /3, Rl+A4*84/3.0* (tsL+2.0*63) + (A4*dJ+AJ*d4) 03/3,0 
RETURN 
END 

SLBROUTINE XINVT 76/75 CPTcI TRACE FYN 495+420 09/09/76 P 
kGE 

SUBROUTINE XIhVI(IP, tj*C#UET) 
nIMENSION G(289)*'C(2d9) 

5 00 2 121,1W 
2 c(lize 

Do 3 IsIllp 
CfI#Ip*cIwI))xI. 0 
IwxIpll 
Do b jQxI#Iw 
KCIP-10+1 
APz8(K*IP*(X-I)) 

DO 5 Ivj#l'K 
ATQBCI+IP*(K-1))/AP 
no 5 julf1p 

C -MATRIX NOW WtVUCFD 10 UPPER TkIANGLE FUHm 
20 00 6 IQvIvIw 

APz"(I0+IPk(IQ-W 
IKAIQ+I 
DO 6 IaIK#IP 
AI3A(I+IP*tIQ-I))/AP 

2A on 6 Joillp 

b 
C MAIRIX NUW HLOUM tO UlAt. 0NAL ýUKM 

31 no I 12101p 
1)0 12 J@I#IP 

Of Tmf)ET*14(1#IP*tl'l 
GO IU 8 

35 C(I)V1.0/1401 

A wf TPON 

............. W-ý -1 11 .II. --- Iý- -- --ý 



EO-U. TPUT FOR PROFILE ISHEAR DMTORTIONI 

ur 

L'A2 Oaf J>11 us --! p 

us 
d.; ý 

&cu"týh m 
ke- Act" 

-1, ý t 

-4 lv"4-4 
,c ;--, 

-)I , K 
21 ,, -t 

A43 - 91 )q 910 03 
Aj- At i, -*&w-Z2-&A: x 
IV- 

( IAOOPPIF+IA2 '. tA OF OPF40111 - j9PoPOF+v2 . 3A&1Pv? t+d2 61floovF4,00 *. 2PYa: §PE#S13 . 60004F+P4 
. , -PA-r, 4 bl bx ý&r 11 & -. - F A4 

I., , . 219302F+00 '. 173-090F#Pcl 01748vo. P4 . 101POPPE041 - k 
-vcý(-f K. P-t--; -f-7 A. &4k6L-ý- -- 

A cx Aj R(, 
-, -) -Vt,;. * fv f- P"? &A4 tT-ý 

. 16086PF. pl . 269105F-01 . 33792AL-01 ', 4A? Q3lF-Al 

ur -rl p (a; L f, Lc--t-t - 0-1., " 
-377ý90 F-ml . 601823F-P2 . 10149'MoOll . 113AMPF-01 

L)u 
-- - 

SAk 
fc.: A, ct-:. Pt---4 

-, 
. %SP4 P 6F-012 I P2 P 64F st . 17P703F. Pt . 218! 91E-01 . 29024st-pi . 377702i. al '. 11()SMAE-03 

SAS112FOO, I : 04P4 I F#cn(x 
GJA ot:, f LA (A. -t- 

1 483 F 04 . 2 5 . 

'. 226446k-gl OPS75ASEOPI 
'. 341046PEoPt 

. 94829AE-02 . 733? OPF-92 . 50,9464F. Op . 19t434F-011 . 3(lAjkopr. ol 

. 114242F-012 -. 13273AE-Plý 
. 36184IF-P2 '. 944021? E-02 t82lW-P1 *. 2620JOt-of . 167174toot tr-6ts8TE-@4 

j 11249F+Fla -874771kF-01 OMK4P4F-P5 
- 

. 186506F-012 . 4P301OPE-00 o634389F-P2 . 854486F. 02 gIP94? 9f-Pl '. l383? 4E-91 8188304F. Olt I amn. il I 

1 . Svj1678F. n3 . 757019F-P2 13? E -P I 3PE-P V 
if 

c k21MFIF2 . 3P6. l. 1PIF*a2-- . 400244F-P 3 o44276PE-03 . 659809F-P2 . 13510AF-01 *130431E-Pt '. WPAM-114 

*A31307F-Ml a 6832919F. P5 . 4011IPr. vlf +pj Iýrt.; - 

-. 
2-171,67E-O: 42Pj'%2F-V2 . 5497191-02 o? Pl? 8PlFoP2 . q51s$pf-Q,: o . 11441al-ol . 112P53t. ri 

c 
''WEAV -VR2 . 265011PEo? ') . 29A433F-P2 . 725972f. ep 9417APIF. Pp *. 602931F*Pýl '. 170440, F-Pl 

*423t%PF-P3 . 66275ot-ov, 

21 K TC Ck 
5plpm? F+? J . 

JrYý, - 
, 

. 
068W. Pil '. 9ppollar. ml 13 21P6Fp LA 71pP, 9F+o p 021131? F+oo *. 254107F *PO- 

US 
:P 19 P0AF-. 11 132 8 2? f 

61117 P3F0 'obO'2f%R2F; 
FF, 0692NIF-F4 

. 6pq'pppF+ol ro 
o 

34 
p75247F. mi 9 se4r»ipF. (41 . 93t%79ilp-pt . 11 2e71 F*(, (, 143109F*P9N *. 1y ? je lp 6pig . 21 A1 3iF#t%A .? ggiggF4pe, 

4ýi . 1157176F. 01 o. 740530F-P2 IASPICE-01 63$e094r-pl 
'. 4534 3ge -0-1 IP4%QJFOOI i34A1AF-03 

.. 977, NR#Mtl '. %0 mi 
. 4114>Ago04 l(49,0, P0t *o 1 



0005 PASUR STRENGTM FS-TRUýH OF DIAPHRAGMS 
0006 kJAL N 
k4say 01"ENSION M1005MOVO(b) 
0.448 C%, AITeLT@&&N 
@jog lF(cx, Efj, 0, w) G010 bv 
valf kEADC1#1611) A%koA%3#5EvS5 
VIAlt 
OW12 

FUJOAAI(boh, w) 
A, 41*, WIf6? *A/AhE : X, - rkAf. I(uv; 

4 
1 &-ý 

- . 1/4.1 /0-" 
0013 READC1#102) Gom*AJ 4 ' 
0014 ld2 FUW"AI(pS, v) Atv- Dt-..: , &%*- 
oil$ lot FURMAIC4F860) Ia 
Dole tollIM2,113) CK, AIY, EYoA#N Er 

- 
*, 

--ij ~a-" , iý- I- 

out? 
Me 

113 pok"ATMI566M 
*RITERpIlki) ANE#AhSv3E#S5 A 

Oslo ate FOR14ATC015, W) 
Qe21 WHITH2020) G*M#AJ 
v021 120 FORMAMElbobM V-k. *A 4 0 m**2 Od22 J* EGBLY*Aly/(G * / ) 
8023 CS2Cx+P, 25*f4**2/(G*Aj*Pv) hX 'S OW24 910 Xl3N&CS6V0W(A*SUANL) 

Od2b 
0026 

X2ul, U/(EV*AlY*AA5E/ANt) A. V- (L4 
DC80 0 

0027 
0 YIB-Xle*2#x2 Ss- j-- -- #"Lr- c Lf 

0028 lFtYleVeBeg) GOTO 69 
0029 GOTO 78 

. 4ar X. 0033 
Vail 

69 Dcaled 
Tlxxl**2-X2 40VF - 4, L. ý- 

0032 
0133 

- YISS(ATCY0 Av 4-" 
0034 
0035 GOTO It .2 0036 
003? 

70 YlaSQRT(YI) )v 
AIMCXI+SGRTCXIO*2+Yl**2)3*d@5 

OW38 AIXSQRTCAI) 

A2s5GRTCA2) 
Oa4l 71 CAISCOSCAI*A*0,5) 
0042 SAlm3lN(Al*k*0S5) 
0043 CHlzC05H(Al*k*0,5) 
0044 
0045 

CA2xC0SCA2*A&w&5) 
CH2mC0SH(A2*A*W, 5) 

0046 
6 1 

SHIBSINHCAI*A*845) 
2 ( 2*A*f 5) 0 4 

0048 
SH zSlNH A , SA22SlN(A2*A*J. 5) 

0049 IFCDC, EG, IoO) GOTO 72 
0056 GOTU 13 
0051 72 BAS. Al**2*SHI/CA2**2*SH2) 
0052 AtSzCX*EV*AIV*AI*62*N 
0053 BTSaCX*EY*AIVOA2**2*$A*N 
0,054 ATE8tl, 0-Al*ft2*LG) 
0055 uTEvh, P-A2**2*EG)*BA 
01056 Abu(STI-MMAIE-ATS) 
0057 FEs29J/A**2*(A*0.5/AI*CHI-SHI/Alt*2#Ad*(Akh#5/A2*CH2,3H2/A2**2)) 
0058 F$aSml#AB*SH2 
0059 V3lxAl*A2*STS/ATS 
0050 V529AI*CHI+A2*CH2*BTS/AT3 
0051 VMAIBSHI*BYE/ATE*SM2 
01062 VMAXnaSHI*BA*SH2 

01853 DSkEARxATS*5"l+8T3*3m2 
0064 FE3x(CNI-lsV)/CAI*A)+AB*CCH2-IoO)/tA2*4)OFE 
OM GOTO 74 
0066 73 A12841**2*A2**2 
9067 BAZ(-(&I**2-A24*2)t%smt*CA2*2. U*AI*A2*CHI*3A2)/ 
0068 ICCAI**2-A2**2)$CHI*SA2+2, UAAI*A2*SHI*CA2) 
01069 ATEal, M-EG*CXI+YI*BA) 
0070 STfwBA-EG*(-Vl*BA*Il) 
0071 AT3xCX*EV*AIY*C. 11-BA*Yl)*N d-I)L 
61872 hY3nCk*EV*AIY*(VI-BA*Xt)*N 
0013 ATS*-A13 
0,874 BTSm-BYS 
00? 5 ABO(BYE-STSMATE-ATU 
0076 SlvUe5AA*C"l*CA2*(Al-A2*AU)/Al2 
0077 B28kigboAtSO41*SA2*CA2+AI*Ah)/At2 
0018 HJBCMIOSA2*(-290*Al*A2#(A? **2-AI*62)*A$)IA12**2 
0079 0485HIsCA2*CA2**2-Ale*2+290*AI*A2*Ab)/AI2002 
glass FE92, u/A**2*(BI+R2#0J+H4) 
, loot F343Hl*CA2+AH*C"l*SA2 
0052 AlloCA2*$HIOSA2+Al*(CMI*CA2-1.0))/AI2 
01083 A12at-126(CHI*Ctcý-Itio)#Ale$ml*SA2)/Ala 
0084 FL322, elA**26(4*095*(All#AI2*Ad))-FE 
0085 VSI*AI*BT3/ATStA2 
0056 V32MAJOCHItCA2-A2*$HI*SA2#BTS/AYS*C3A2*$HI*At+A2*CMI*CA2) 
easy VMAX8Smj*CA2*ATL/ATt. *CHl*3A2 
PRO$ VmAXCa54l*CA2#S&*Clql*SA2 
9089 DSWEANvATS*Sml*CA2+hT3*CMl*3A2 
0090 ?d ANsANE*N/SL 

OL491 SKlml, A/tAS*A/j2, w*ANSi3S*A) 
0092 fJK2m0(FL6Aw+2,0*ANS/S5*F3)*d%I 



0093 bK3fCX*(I. fJ+AN*b9l*A/24@16) 
0094 PK49. VSIIA134CX*(ATk-ATS)*CAN*Ft3#hK2*A/24@0*AN) 
0095 ADB(HK3/CXOANS/SS*KKI*A)IC(ATE-ATS)*AN3/SS*t2, d6F5+bK2*A) 
01696 I-ATS*VS2/CX-MK4/CX) 
0097 FES(ATE. Alb)*Ff*AD+(hKI*Bot2etATE-ATS)*AD)GA/12*0 
aV9a ý 58ý S* (A Tf -A TS) *AU# (fJK I *00W* (A IE-ATS) 6AV)fjA/2si0 
0099 D9HKl*i4K3+AD*(BK2*(ATL-ATb)#bK4) 
0100 DEL&2., A*ATE*VmAX*AD+D*b 
01,41 ULL3&(HK3#HK4*AD)*AIUEL 
0102 O5HLAWv. D5hLAW*ADs2qiI+Dtl, J*DEL 
0103 DELLNDSUEL-DSHEAR 
01.14 FEBFE/DELE140 
0105 FSEF51DELEND 
0106 AFFal2, ki*FE*A 
0147 GsFE 
0108 SSFEI, M+(AI*AY3+A2*BT3)*AD/CX 
0109 BU92.0/A*AD*CATE*VMAX-VMAXO)+D 
(Alto DEL48BD*A/DEL 
0111 DO 55 lot#& 

0112 ANN8FLOAT(l) 
0113 AAIXAI*A*Oo5*ANN/Ssg 
0114 AA2xA2*A*095*ANN/8g@ 

0115 IFCUC, Eq, l) GOTO 46 
3116 VE(I)BAU*CSINMCAAI)*CDSCAA2)*ATE+HTLACOSS(AAI)*51N(AA2)) 
0117 j*U*ANN/8@0*A*(6,5 
Otte I-CX*ANN*A/16.0 
0119 VU(I)XAD*C31NH(AAI)*CDSCAA2)+HA*COSMCAAI)*SINCAA2)) 
0124 J+r)EL4*DLL/A*ANN/$IiA*A*ids5 

0121 I-CX*ANN*A/16,0 

o122 VSCI)N&D*CSINHCAAI)*COSCAA2)*ATS+CO3H(AAI)*SINCAA2)*BT3) 

o123 I*UEL3*DEL/A*A'qN/8q@*A*16,5 

ial24 I-CX*Af4N*Ail6.0 

@125 GOTO 55 
0126 46 VE(I)GAD*(SINH(AAI)*AYE+SINH(AA2)*BTE)+D*AN14/8.0*A*Wo5 

g127 I-CX*ANN*A/16,61 
0128 VL)CI)RAD*CSINýICAAI)+BA*SINHCAA2))+DEL4*DEL/A*ANN/b, WAA*J#5 
o129 I-CX*ANN*A/16.0 

0132 VSCI)ZAD*CSINHtAAI)*ATS+BT$*SINHCAA2))+DEL3*DELIA*ANN/BoO*A6Oob 

ol3l I-CX*ANN*A/16,0 

0132 b5 CUNTINUE 
*klTE(2 ll6 G ,a 133 # ) pAFFoDCtDELENDpSSF 

0134 116 FURMAT(bEl5s6//) 

o136 
0137 WRITE(2#l21)(VS(l), l*l, Ij) 
0138 121 F0RMAT(8jlb, 6//) 

0139 92 G070 Be 
0149 89 STOP 

0141 E NO 

0,15440@t 06 0,2,1100fiE 03 

-2) 
4-, r JLW 

a, 210et52lE 02 0,350000E 00 

li Ax 
. 0,800000E 02 0,100000E ei 0,100000E 04 

-p q-4 E" wl c 
0,53504lE. d1 0,915914E 03 0,00003a au 

20418? gEs03 0@49663OEoO3 0,97MOEwO3 

0920290$E-03 0,49866YE003 @g9? 8O28EwW3 

@@l3l? 36C-fj3 0,26077SE-03 0,381114E-L43 
2 

A Al 
00152000E 04 00200000E (01 

. St 

04350000E @0 

ki 

w 

1 

Vj 
- 

ALJ W, 
-? 

"I. AJ 

01647465[-02 

4,0087043 00 
7111A. 

141 1 

A 
ir ý--ez 01162452c901 0,10i6695t tot 

PW, 
-. ý AV 

0417214bE. 02 

160172521E002 

00480094t. 03 
414 

t: a ct-ý( ru. ý t L. U. 4, ct L--ýj 
-of33 t4ýý, 

I 
JC 

tz- 
&--I 

1.2 X'3 
C. K. , 

', Vg - I&A 

Val Cut 



-- a- - .. S SS 5- 5 S__ - S5 

4 

6 

4 

0006 MASTFR OPENINGS IN DIAPHRAGASI 
owi47 DIMLIJSJON X(25)vP(2! ))#1(7)vV(b) 
04,40 DIMENSION 
0009 DIMENSION Vii(ld), VECIW)#Vb(lki]*W(4)*U(4) 
viq 10 01,4ENSION ACN(b) jAA I (b) #AAJ(h) #DLL( 116) *LSIGMA (116) FLMAX( 10) 

0011 be NLAD(lolOO)AIY*AJpM, ti, A, CXI, CXii$AN 
0012 low FORMAT(BFt@, @) 
OW13 IF(AIY*LQ@fdsW) GOTU 99 
106414 WRIM2001) AlYpAJt$4, BfA#CXI#CX2#AN 
0015 FURHAT(HLjb, 6//) 
OL416 AIYEAIY*AN 
16,417 AJxAJ*AN 
Palo RLAD(I*I(69)3EvD#FYpG 
OJI9 Id9 FURMAT(4FtW, (J) 
0020 WRITE(2*110) SEpDpEY*G 
01621 ASEBOASE/Ah Aiy- 
0022 110 FURMAT(4EI5901/) 
01623 OCS016 
0024 FGSEY*AIY*H*02*0925/(G*AJ) "mltj- otyjk% , ,,. 
01625 C59CX2+0*2b*m**2/(G*Aj) 

&J . *CUL 'r 
g. IL pav to- 

0026 CTBCXI*0,2b*M**2/(G*Aj) -1 '-TJ 
ki d27 XIBCS*0$b/ASE fitax C4 fw -'r. ) te CIA- 
0028 UImCT*0, bjfA3E 
0029 X221 901CE Y* AI Y*ASE) A- &ý- --I - d, I, 

- , M% " 

0036 Yin-xl**2*X2 
0031 Vl*"UI*02+x2 0 rv #U "A 

11-4 /. 

1 Jý% 

0032 IF(YI. LT, 090) COTO 69 'c, " 

OldJ3 COTO 79 cxz 

0034 69 DCRI 0a 
0035 Ylxxl**2 . X2 AAJ 
0036 VIIBSGRT(YI) 
oklil AIRSORT(XIVYI), 4.1 -SkLtý -I'al-Z A29SORTCXI+yl) 0038 
0.639 COTO It 01 J 4A 

0040 70 Y123GRT(VI) 

0041 AIZCXI+SGRT(Xtk*2+Yl**2))*4,5 i irt. 

OoA2 AlvSQRT(Aj) 

0043 A2*(-XI: OSQRTCXI**2*Yl**2))*0#5 5- s4-c&, 
- 

Afnt. I .,, 
I-- 

0044 A23SORTCA2) 

0w45 71 IF(VI. 093mid) COTO 72 

OL446 COTO 73 

0047 72 IF(OC. EQ, I, 0) OC82,0 

0048 VI$Ullt*2. x2 

0049 VI; SQRT(VI) 

0050 8lxSQRT(UImVl) 
P-j 

0051 82xSQRT(UI+Vl) 

00b2 GOTU 74 c,, 44 44J 4L*-'7. 
.0 

0053 73 VIOSORT(VI) 
0054 8Iv(UI+SQRT(UI**2+VI**2))*@, 5 OV I 
0055 BI*SURT(BI) 
00bb b2n(*UI+SGRTCUI**2+Vlt*2))*Bo5 
OW 822SQRT(82) 
0058 14 CAIACOSCAI*A) 
00bg SAI=SIN(AI*A) 
00613 CHI'sCUSHCAI*A) 

-------- 
0061 CA2xCOS(A2d'A) 
0062 CH2XCOSH(A2*A) 
0063 SHISSINH(AI*A) 

SH2., SINMCA2*A) 
Cx 0065 SA2xSlNCA2*A) 

0066 00 36 lot#? 
cxz 

OiW ZM2090 - 
0068 36 CONTINUE - 
0069 CdI c*COSCIII *8) -- 
0070 C82vpCOS(B2*8) 
0071 CKINOCOSHCUI*B) 
0072 CK2BeCOSHCB2*8) 
0013 361031NCSI*B) 
0074 $828SINC82*8) 
0075 SKIaSINHCBI*B) 
0076 SK285INH(82*8) . 

6=0. 
c) ft&-- ft. & 

T 
VSID-A2*SHI*SA2+AI*Cml*CA2 

0070 VS2$A2*CHI*CA2#AI*Sml*SA2 
9079 IF(B, Nk, i5,0) COTO 49 
0081a X(I)vUI*b2-vI*BI 
O(Ael X(2)§-CXI*EY*AIY*Vl 
016132 -X(3) a-2s, 6*61*82 
0483 -. IC4)mtl2 .. -. I-.., - okiS4 xcs)@060 .-- 0085 xcb)G-vIf1B2wUI*8I 
00d6 X(Y)XCXI*LY*AIY*Ul 
0087 1(8)m8l**2s82fj*2 
0068 xcg)xeol 
0,689 x(Mul, h) - 0094 COTO bg 



U th 91 
VOV2 
0 id 93 
0094 
0095 
01496 
id A97 
0098 
01399 

0102 
01 uj 
Olo4 
olU5 
01(46 
Olol 
oloa 
0109 
Oita 
0111 
0112 
0113 
0114 
0115 
0115 
oily 
Oita 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
Ij 138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
(3147 
0148 
0149 
Olbo 
albi 
0152 
0153 
0154 
M5 
0156 
0157 
0158 
0159 
0160 
OlbI 
0162 
0163 
0164 
Olb5 
0166 
0167 
0168 
0169 
aI 7a 
0171 
0172 
0173 
0174 
0175 
0176 
oil? 
0176 
0119 
glee 

49 USIsMaSKIWABIACK1602 
Ub2$H2*CKjQb2+0j*5Kj*&U2 
xCl)v*(UI*USI-vlQu52) 
X(2)0+EY*AIY*CXI*(UI*SKI*CU2-VI*CKINS82) 
XCJ)B+Cbl**2-b2*62)*SKI$Cb2-2o66bloo2*LKI*382 
XCOSUSI 
Xtb)SSKI*Cb2 
X(b)a+(VI*USI*UI*US2) 
XC? )B+LY6AIY*CXI*(Vl*SKI*CB2*UI*CKt63b2j 
X(8)2+2,0*bl*82*3Kl*Cb2*tdl*02-b2h621*CKI*SU2 
WPM 
XCIO)MCKI*882 

bw xtll)n-Cxl*vS%-Yl*vs2) 
IC12)6-LY*AIV*CX2*(XI*BHI*CA2! YI*CHI*SA2) 
XC13)a-(Att*2eA2**2)03MI*CA2+2,0*Al*A2*CHlo3A2 
XC14)SoVSI 
Xtlb)z-Sml*CA2 
XC16)cotyl*vst*xt*v32) 

X(19): -VS2 
X(20)avChl*SA2 
X(2t)noeo 
X(22)nl, e 
x(23)sfa, O 
XC24)PO, B 
XC25)ol, W 

IFCB, NEoW@U) Y(2)4CXI*B#CX2*A 
IFCB#EG, Wo(O) Y(2)RCX2*A 

YC4)"CX2-CXL-. 
-- Y(5)BY(2) 

IF(DC. EQ. l, @, OR, DC, EQ*2, v) GOTO 81 
GOTO 82 

at XC153a-SHI 
X(11)2-AI*43*CHI 
X(12)*-CX2*EY*AIY*Al**2*$Hl 
X(133*-Al**2'Sml 
X(14)*-AI*CHI 
X(16)m-A2**3*CH2 
X(17)ZoCX2*CY*AIY*A2**2*SH2 
X(ld)n-A2**2*SS2 
X(19)r. *A2*CH2- 
X(20)s-SH2 
IFCDC, EQ, 190) GOTO 82 

a A. vvý 

F ar too r w, woui %pu iviv 
we I %. -Rl *., t*r it I 

; -. Pl- jrtýrzm. -j 

x iii a, CXI*EY*'Aiyo8l--213K% 
X(3)a-81**2*$Kl 
X(4)3*81*CKI 

X(5)x-SKI 
x(6)s-82**3*CK2 
X(? )a-C)LI*EY*AIY*82**2*SK2 
X(8)2-82**2*SK2 
XCg)aoB2*CK2 
XCIO)E-SK2 

GOTO 82 
19 X(l)g*Hl**3 

XC2)rCXI*LY*AIY*81**2 
XC3)aBl**2 
XC4)a-BI 
XM8162 
X(6)8-B2**3 
XcljzCXj*EY*AIY*52t, %2- 
x(8)aB2**2 
X(9)zwR2 

82 EYr2Wl, W 
CALL XINVTC5oX#PoDET) 
DO 38 LxlP5 
DO 37 K91#5 
ZCL)qZ(L)#P(Lsb*(Kwl))*Y(K) 

37 CONTINUE 
38 CONTINUE 

Z(6)gZ(5) 

97 
Z(5)aCX2 
ZC7)gCX2*A+CXI*B -4 VOCI)X-ZC6) 
VOC2)nZ(3)*SINHCAI*A*0925)*CO3EA2*A*4. 25) 

&. 1 "M, 6 

-I 

I* Z( 4) *COSH( A 14 A *W o2b) *SIN ( A2*A*ids 2b) +Z (5) #AflJo2bQZ to) 
VO (3 3Z (3 ) OS I NHC AI *A*0 ob) *C(3S( A2fA*W . 5) 
#Z(4 *COSHC A I* A*095) *S IN (A2k% A*i3, b) +Z (b) *A*045-Z(b) 
VU(4)01(3)*SINHCAI*A*k)*/b)*CUSCA2*A*Iholb) 

I+Z(4)*COSHCAI*A'Nkio7b)*SINCA2*A*il$75)+Z(*)*0975*AoZ(O) 
VU(b)sZ(3)*SINH(AI*A)*CUS(&2*A) 

I+Z(4)*COSHCAI*A)*SINCA2*A)tl(b)ttA-1(6) 
VOCOMM) 
VU(7)xEXPCo8ltA*f492bl*(Z(2)*COS(82*A*oo25)#Ztl)*3lNCB26A*@o25)) 

I+CXI*A*W, 25 



VU (8) GEXP Ceti I *A*fJ, b) *(1 (2) *C03 CB2*AOJ, 5) OZ (t) *31N(82 *A *Vlsb) 4 
I+cxi*A*0,5 

VU(9)aEXP(-BI*A*0,7b)*(Z(2)*CO3(U2*&*j, lb)#Zil)*31N(82*A*IJS? 5)) 

14clitA60,75 

VU(IO)aLXPC-BI*A)A(Z(2)*CU3(b2*A)Oltt)*3lN(b2*A)) 
I#CXIOA 

oC3)nZ(3)-EG*CXI*Z(S)#Yl*Z(4)) 
k(4)sZ(4)-LG*C-YI*Z(J)+XI*Z(4)) 
VL(l)&-Z(6) 
VE(2)3w(3)*SINHCAIiA*Oo25)*CO3CA2*A*4,25) 

1+0(4)*CDSH(AI*A*d. 2*)*SINCA2*A*0,2b)+CX2*A*0125-Z(b) 
VE(3)no(3)*Slt4HtAt*A*Wgb)*COSCA2*A*; Oob) 

1+0(4)*CDSH(AI*A*Usb)*SINCA2*A*V, b)*CX2*A*16#b-Z(6) 
vo 

VE(4)no(3)*SINH(AI*A*ki, 7b)*COS(A2*A*13,15) V. 
1+4(4)*CUSHCAI*A*Os? b)*SINCA2*A*Oslb)+CX2*A*Og? 5*Z(6) e 

VE(5)*0(3)*SlNH(Al*A)*CuS(A2*A) 
I#Pi(4)*CDSH(AIOA)*SlNtA2*A)+CX2*A*Ztb) 

VE(b)aw(2) 
VLCY)OEXPCO(it*A*Wo2b)*(4(2)*CO3Cb2*A*4925)#W(l)*SIN(82*Ak(io25)) 

I+CXI*A*0,25 
VEC8)&EXPC-BIOA*14.5)tto(2)*COS(02*A*18#5)#W(&)*SIN(82*A*i, 95)) 

I+CXI*A*0.5 
VE(9)*EXPC-81*A*097b)*Co(2)*CUS(82*A*Ds? b)00(1)*SIN(82*A*gs? 5)) 

I*CXI*A*oo? 5 
VE(IiO)NEXPC-81*A)Oto(2)*COS(82*A)+wtl)*31NCU2*A)) t. 

I+CXI*A -- ---- UCI)RCXI*EYAAIY*CUIAZ(I)+Vl$jZ(2)) 
U(2)--CXI*EY*AIY*C, VI*Z(I)+Utkl(2)) 
UC3)XCX2*EY*AIY*CXI*Z(31#YI*ZC4)) 
U(4)&CX2*EY*AIY*C-YI*1(3)+XI*Z(4)) 
vs(Wa-z(b) 
VS(2)ZU(3)*SINHCAI*A*kl. 25)*CCS(A2*A*id, 25) 

I+UC4)*CDSHCAI*A*0,2b)*SINCA2*A*0.25)#CX2*A*0925oZ(6) 
VS(3)aU(3)*SINH(AI*A*O. b)*COSCA2*A*095) 

I+U(4)*COSH(AI*A*0.5)*SINCA2*A*0,5)+CX2*A*0,5wZ(6) 
VS(4)ztl(J)*SINHCAI*A*W,? b)tCO3(A2*A*0,75) 

14*U(4)*COSt4(AI*A*0.7b)*SINCA2*A*kdo? b)+CX2*A*4,? 5oZ(6) 
VS(5)8UC3)*SjNH(Al*A)*COSCA2AA) 

I+U(4)*COSH(AI*A)*SINCA2*A)+CX2*A-Z(6) 
VS(b)xUC2) 
VS(7)XEXPCOBI*A*0#25)*(U(2)*r. OS(B2*Ata, 25)+Utt)*SIN(82*A*0,25)) 

I+CXI*A*0.25 
VS(B)REXP(OBIAA*L4*5)*(U(2)*COSCB2*A*Jsb)+Utt)*SIN(02*A*W#5)) 

I#CXI*A*095 
VSCY)ZEXP(081*A*0*7b)*(U(2)*COSCB2*A*0,15)#Utl)*SIN(82*Aefdol5)) 

I#CXI*A*0,75 
VS(IgInEXP(oBI*A)*CU(2)*COSCB2*A)+UCII*SIN(t$2*A)) 

I*CXI*A - -- I-. 1. 
IFCU, LQ90*0) GOTO 33 
VSC 10) a (a III VECIO)SO92 

VO(Y)CZCI)*SINH(01*B*16,2b)*COS(82*8*0.25)*(-Ioti) 
19Z(2)*CO$14(81*8*LI, 2b)*SlNCb2*6*0,25), PCX1410,25*B 

VU(8)941(1)*SINHCUI*Btleob)*COSCB2*6*0,5) 
IPZC2)*COSH(bl*b*id. 5)*SlNtb2*8*095)OCXIOO*5*8 

LOVE. 
C. 0? &-A-fJ 

VO(7)4-Ztl)*SINH(BI*B*0,7b)*COS(82*D*Oe75) 
lwl(2)*COSHEBI*b*0.75)*SIN(62*6*Ue7b)*CXI*B*Oslb 
VC(6)*-Ztt)*SINH(bl*B)*COS(02*ti) 

IOZ(2)*CDSHCBI*B)*SIN(82*6)OCXI*B ---- VEC(J)zm(l)*SINHCBI*U*fo*2b)*CDS(82*0*0.2b)*Cetog) 
1-4(2)*CUSHCBI*6*0#2b)*SIN(t$2*0*0.25)*CXt*4t25*5 

1-0(2)*COSHCUI*B*Oeb)*SIN(82*B*Oqb)-CXI*OI5*5 
ýLCY)r. -Wtl)*SINH(Blab*0,75)*COSC"2*B*Jo75) 

1*4(2)*CDSH(bl*0*0.7h)*SIN(82*640s? b)-CXI*B*Ws? 5 
VE(6)p-wCl)*SINHCUI*B)*CUSCU2*6) 

to4(2)*COSH(Ulkb)*SIN(82*b)*CXI*B 
VS(9)gUft)*SINHCAI*b*0.2b)*COS(82*B*4,25)*Celeg) 

19U(2)&COSHCBI*8*0.2b)*SlN(b2*060925)oCXI*w, 2568 

19U(2)*COSH(81*B*0#5)*SIN(b2*modqb)-CXI*0*5*8 
VS(7)X-U(I)*SINM(bl*6*0.7b)*COSCK2*8*Js? 5) 

VS(6)4-U(I)*SINMCHI*B)*CUS(132*ti) 
1-U(2)ACUSH(81*0)*SlNCb2*U)wCXI*g 

33 FMAXR(w(3)-U(3))*SINH(AI*A)*COSCA2*A)+(W(4)-U(4))*COSHCAI*A)It 
ISINCA2*A) 

FMAX*FMAX/0,15 

SPORCElsieu#(U(3)*CAI*CHI*CA2oA2*SHI*3&2)+U(4)*CCHI*CA2*5Nt$SA2)) 
I/CX2 
SFORCEU0.11 



d265 
0266 
0261 
14268 
0269 
027ki 
0271 
02? 2 
d273 
0274 
0275 
0276 
fj2? l 
0278 
M2? 9 
1628d 
10251 
02U2 
0283 
0204 
0285 
0286 
0287 
0288 
ld289 
0293 
0291 
0292 
0293 
8294 
0295 
15296 
0297 
fA298 
0299 
d3wia 
(d3ol 
0302 
03163 
0304 
0305 
0306 
L4307 
0338 
0309 
0310 
0311 
0312 
0313 
0314 
(6315 
0316 
0317 
0316 
0319 
J320 
13321 
0322 
0323 
0324 
0325 
0326 
0321 
0328 
0329 
0331 
0331 
0332 
0333 
9334 
0335 
0336 
1333? 
0338 
9339 
0340 
0341 
0342 
0343 
0344 
0345 
0346 
0347 
0348 
0349 
0330 
0351 
0352 

ZF tu tdtv iß ; &0 ) SF ÜMCLie tu 0* JUC 13 *BI *U(2) *b2)IC Xt 

Golg 

VU (2)213 Slttm A1 OA*o 925 #Z C4 *3 INH t A2*A *k1.2b) *Z (b) tätd*2buZ (e) 
VO t3)ZZ351 NS A1 *k*O 5Zt451 NH ( A2 6A *0 ,5) #Z t 5) *A 00 @5-Z (6) 

VE (2) BW 3t51 NH AI äi *IJ 2b *W t4 *SINH ( A2* A*O . 25 ) +CX2*A*W@250Z tb 3 

5*Zcö) 

ZFCDC, EQ, Ioo) GOTO 34 
v3(6)zuttj*u(2) 
VSCI)gU(1)OEXP(wßl*A*0925)#U(2)*tXPC-82*A*i), 25) 

1#CXI*A*0.25 

1#CXI*Ä*0,75 
VS(ZUJBUCI)*EXPC-61*A)+U(2)*EXP(962*A) 

j*Cxt*A 

VE(6)zwtl)#wt2) 
VE(7)INCI)*LXP(981äA*09251+W(2)*EXP(*82*A*0@2b) 

1#CXI*A*005 
CX2 1+CXI*A*0,75 CAI 

VOC6)zZCI)*Z(2) 
VUC? )BZCI)*EXP(eBl*4*0925)#Z(2)*EXP(oB2*A*0,25) 

I+CXI*A*0,25 d-ý 
VO(O)nl(t)*EXPC*51*A*095)+Z(2)*EXP(082*A*Iiob) 

I+CXI*A*Oob 
VO(9)BZCI)AEXP(oB%*A*Oo? b)#Z(2)*EXPC*82*A*g, 15) 

I+CXI*A*Oo? b 
VOCIO)XZCI)*EXP(oSI*A)+Z(2)*EXP(052*A) 

I+CXI*A 
IFCB, Eg, @o@) GOTO 34 
VOCIO)SO10 ke., l ý7 
VE(JO)aO, S 
vs(IO)SO10 

A, ý 
VO(9)c-Z(I)*SINHCBI*B*io, 2b)-ZC2)*SINHCb2*titkio2b)*CXI*10*2btS 
VOCO)Z-Z(I)*SlNHCBI*Btii@5)-Z(2)*SlNM(tS2*8*4#b)-CXI*Oob*tI 

VU(6)9-Ztt)*SINH(81*b)-Z(2)*SlNtitb2ed)-CXI*kI 
VE(9)GoWCI)*SINH(81*8*10,2b)-W(2)*SINH(82*8*do2b)-CXI*0,25*6 
VE(d)9-WCI)*31NM( t3 I*s* im ,b)-4C2)*31NH(621b*0,5)-CXI* id vb*6 
VE(7)0-w(l)*SINH(61*tlkde? b)ow(2)*SINHCb2kb*do7b)*CXI*B*Wo? 5 
VE (6) too( I) *SINH(til M-0 (2) *5lNH(82*, J)"CXI *B 
VSCV)B-UCI)*SINH(dltd*i3,25)-U(2)*SINHCB2*8*0*2b)*CXI*0@2568 
VS(8)8-UCL)*SINHCBI*8*11*5)-U(2)*Slh"(b2*U*Oob)-CXI*tdo5od 
VS(I)B-U(I)*SINMCHI*d*W, Yb)*U(2)*SINH(ti2*8*0975)-CXI*S*d*Yb -- ------- 

34 FmAkatw(3)eU(3))*5114m(AI*A)#CWC4)wU(4))t3lNhIA2*A) 
FMAXSFMAX/lAgl5 
SFORCLIXI, kd*(UC3)*AI*CHI*U(4)*A2*C)42)ICX2- 
SýORCE2%lolb+(U(3)*AI*U(4)6A2)/CX2 
SFORCE380eg 
IF(B@NL, ii@ld) SFORCE381,0+(U(I)eat+U(2)*t32)/CXI 
3IGMAS(Z(J)*Al**2*$INH(AI*A)+ZC4)*A2**26SINHCA2*A))*LVoifo. 0*100dold 

-92 EYx2U?. O 
WRITFC2pl93J(VOCl)pl8lvlf6)#DC - -- -. -., -. -- - 

103 FLIRMATCIIEII*3//) 
WWITE(2*102) FmAxo3tGMApSFORCE2#SFORCEI#SFORCE3 

102 FORMATOL15,6/1) 
IFCAIY@NE. W, 18) GOTO 88 

99 3TOP 
END 

A-4 



0353 
U354 
(A 313 5 
di! lb 
W357 
di5a 
0359 
U36if 
0361 
wjb2 
0363 
0364 
9365 
0366 
W361 
0368 
P369 
U370 
0371 
16372 
0373 
0374 
0375 
0376 
0377 
IWO 
0379 
visa 
0381 
0382 
0383 
0384 
0385 
0386 
035? 
9388 
0389 
0390 
0391 Air 

0,200000E 07 

su8kUUTjhE XINVICIPSUSCOULT) 
UIPLNSION 0(25)#Ct2*) 
IF(IP, ffj, I)GO to 9 
1021pelp 
uu 2 leapt" 

2 C(I)SW 
DO 3 Jwl*lP 

DO 5 Igstolw 
118 IP-14#1 
APSb(K#IP*(KwI)) 
IKSKOI 
DO b Ixj#IK 
ATs8(: *IPh(Kwj))/AP 
Du 5 jalelp 

5 C(Itipt(J-1))aC(I*lp*(J. I)). C(K#IP*(J-1))*AT 
C MATRIX NOW REDUCED TO UPPLk TRIANGLE FORM 

DO 6 IQXI*IW 
AP8B(IQ#IP*(IQ 
IKSIQ+j 
DO 6 IxIKvIP 
AICB(I#IP*CIQ-I))/AP 
DO 6 JsIvIP 

6 C(191P*(J-I))ncCl+lp*Cj. l)). CCIGtIp*(Jet))*At 
C MATRIX NOW REDUCED TO OIAGONA4 FORM 

OETwl, @ 
DO 7 ImI, jP 
DO 12 JvI#lP 

12 C(I+IP*cj-l))*Ctl+lP*(J. I))/Bcl+lp*(Iol)) 
7 DETZDLT*6(1+IP*Ilel)j 

GO TO 8 
9 OETxB(I) 

C(Untle/act) 
to FORMATC21H LOCAL DETERMINANT 4 E10,4) 

a RETVRN 
FPJM 

U, OJOOJOE 25 0,100000E at 0000000E ad 8004000E 03 

A 

ILA 

Id'D 

IV XWCI, 3 sr... -I Xr, ý, -z 
4, - 

2-'. 1: 
CX2 

0,4bk9000E904 ißt 

JLW lp Ef q 
0,154000E 00 0,150000E 03 0,207800E 03 VOOMOE 02 

Ac PW-L_ 
dý4 p (--, --4c fv,, - cp--,, k vt op4-- ýj t-.: -1 

C. % 

-0,117E 00 eO, 624CeOj 90@49BEool -4o2l6L-01 *OmRM-04 od, 29bEvO4 0,13JE-01 0,19bLeldl 0,218ENOI 

X= (; p Ai4 47 A 
p2 

A F t S/t AI A -4A 
I 

WMA17r Ala *0. 824E*01 oO. 49BE-01 -0.21bEoOl 09,2dOE-04 oW@2WVL-04 0,131E-01 0,196E*ol w, 218L*Ot 

-0.117E (00 -09861E-01 eO563E. oj . 0,284E901 -0924bEeO2 -09245E902 00,50bE"03 

0,16209E-01 -J*612750E 01 0,554607E to Us996129L 03 0,4009000E WO 

A ir Ax 4 16 -4 
0,513000JE 06 0,2000JOE 05 OSPOPOPE tat 0,180000E 04 0,5001600E 103 

a, 1 3bEs02 16 9 30bL, 02 

Lis 21A wO I ki mdjE 10 

2A ý, i. 
0,21JE-01 WoUbt 0. , 

VS 
094bbtoiQ 

OVY i; , cil CX2 
(616WOOL004 W 00004E*43 0940000kit 

jp- 7 Er C7 
0,15004DE ga 0,150060E 23 09207000E 03 k3,80002WE 02 

P. q" f-v-Le-, ý -1 -P--, JJ 
mOsI63E 00 wOel28E 04 wJ9958E-01 wO, 6? 1E*J1 9J9439ta4l %W9439LsOi -4@987E-02 "Vs? 41E*J2 *0#457E*02 

A A, AA -0 J/, 
)(. 0 

.t 
14 f+ '4Z 1 3/4 A 

), IA9A -t '64 )94,6 

, @ol63E 00 -0,128E VJ s0,95SE-01 mo, 67lEeOl QdOUEaOl wd, 439E901 eJ, 9S? EmJ2 -6,74lEeW2 -W64b7EwW2 

'd "W --- , 6sj63E WO a0#129E Wil ags95YE-01 -de6VE-01 wOsI98twol 94,19SLoot *O, j4oEwJj 09@894E*42 *4144IE902 

F;. *. 41 S-'I--*. -67e. :, Aýj SA.., I J" J 
408,1607 

'IJE 
ed 00,45b538E 01 0,604721E do Ol9223699 Od O, IU@270E 01 

. 921 

W6000L 

jtg v 

ld, WWWE oti 0,244L 

v 
0,101OUL 04 



MA&TER WORKOUT IHOLES IN FOLDED PLATES 

.... a b 
000JOWOE 03 

kkAL K 
DIMENSION VE(F) 

be REAo(ltlok4)HFAIYOCXOSLPPFVPPN, TH X; 
ý114 CloAL : 

GO70 09 

EV6207od 

100 FURMAT(bFlW*V) V. I, #4-ocAi fold /lj%e *A M 

NRITE(2#101) HvAIYPCXv3E@PFoP*wsTH cx 
tat FORt'AT(8Flb*&l/) 

SLIPDPF*SL/(2#69'k(St, 4(T"))N*2) 
CXsCxl(2. ('*CSINCTH))**2) PF- Jýa4h- 

Xto*(CX-P*SLIP/(LY*AIY))609blSLIP ?- *410C " Vw, bd w, 
" 

X2aCl, O-CX*P)/CEY*AlY*3LIP) 
Yls-XI*624, X2 w- /fr^/ /a" V. ý ta ", 6/"m- 

YlasupTcyl) 
AIv(XI4SQRT(XI'h2*Vj**2))*0o5 

ZY 410? -- 
AISSOWT(Al) 
A20tuXl#SQRTCXI**2#Ylk*2))*@o5 
A2a3QRTCA2) 
A12nAI**2+A2**2 
8Um&K2(B*AI/J. @+0,5)/AI2 

AUs&K*(B*CAI**2vA2**2)/690+AI/2,0)/(A2*AI2) 
AO: 2@0*(Al+b*(Al**2oA2**2))/(A2*Al2)*(l, l#O) 

8 XmC X*EY*AIY*Yt 
Bbr. CX*AIY*EY*Xt 

p 

AABCI(*AIV*EY*Xl & 
ABECX*EY*AIY*Yt 
IF(P. NE. O. 0) GOTO 19 
11 ORA2*AO*ClgiO-AA)*A2*AU*80+BU*Al*(1,18-0b)-AI*BA*AO 
IGRA2*AG*CI*10-AA)OA2*Ad*6G+UG*ClsUoSB)*AlOAI*SA*AG 
G%m*8*Al2*5LIPjhG. %O/wG 
ACsAO+AG*G 
BCOBO*BG*G 

U- aA- C. -. A--tl IIA4 D*BC, 2s0*8**2*G+AKi24s0*U**2 -7 
DIN-AK*B*B/24o0+2@W*G*8*5+D 
SIGMAw2, @*G*Ly*IojW*@*5o, @ 
GOTO 80 

79 Kn$GRT(P/CEY*AIV)) 
BFx(K**2*COSCK*B)+2,0*AI*K*31NCK*B))/AI2 
6FOf-C2.0*Aj*e+I. 0)*W/(P*Aj2) 
AFOF"CCAI**2-A2**2)*B+Al)*%/(P*A2*AI2) 
AFFCK**2*AI*COSCK*B)+K*SIN(K*B)*(Al**2*i2**2))/CA2*AI2) 
Fg(BFO*(-Al**343. FZ*At*A2**2)+AFO*(J, J*Al**2*A2-A2**S))/ 

t(K**3*3IN(K*B)oDF*(oAl**, 3+3@lh*Al*A2**2)-AF*(3,16*Al**2&A2eA2*63)) 
ACBAF*F+AFO 
BC*oF*F+BFO 
Dc8C9F*CO3(K*B)-m*B**2*005/P 

80 FMAX*CBC, (HA*AC+84*BC))ISE*SINCTH) 
Zz(5/3,14)**2*SQRTCI#ii/(EY*AIY*SLIP)) 
PEx9t$*EY*AIY/B**2 
--.. @-I t'Aa 

uw cr Ira aav 

P1zPLOAT(! PlW; l00e6 &L 
p2vZ*(j, 0+COS(3, j4*3QRT(Pl))) 
PABABS(PIPP2) 
IFCPA, 09003) GOTO 21 

20 CONTINUE 
21 PCRITXP2&Pt 

IFCP*NEoki*O) SIGMAPCW/PoF*K*62)*EY*50,0*liaeo, o 

vEC2)s-AK*B**21(24,0*3,0*64)+2#0*GAB**2/9 +D 
VE(3)3-AK*B**2/(249U*1,5**4)+89U*G*B**2/9: o+D 
IF(P, NF, 0,9l) VE(j)RD+F 
IF(P, NE, i6.0) VE(2)BD*F*COS(Klk8*Oe33)$W*Ideb/P6(Us33*ti)*62 

IFCP@NE, 0@0) 
vE(4)sBC 
VE(5)xEXPC-Al*lý*0.33)*CAC*SINCA2&B*Wo33)+BC*CDSCA2*8*0*33)) 

VEC? )NEXPCwAl*R)*(AC*SINCA2*8)+BC*CO3(A20H)) 

PRITE(2plO3)PCRITPPEt3lGt4A#FMAX 
102 FORMAT(? Elbob//) 
I V3 FURMAT(4EI5,6/1) 

GOTO 88 
89 STOP 

Ar,, ENQ C/ ir pp 
-;, -bkloouwi 06 U. 300kl6jJEoJJ 0050000E 00 d, lbojidoL 103 UsIVOOOOL 04 

0 Ict 4: r 
0,952758E 00 0,895? 12E 00 0,733005E WO 
&AUM ted, tw I 7ýýr/82 ; LP, )4**-J9La 'Y/-' 
8,137563E 04 0,405720L 04 skie442869E 02 

"[ 4e Q"&. Z '-" . �»-e / 0051842bE et 0031465it 010 
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