Computational Modelling of Inelastic Neutron Scattering for Nanomaterial
Characterisation in GPU architectures

Michael T. Garba®*, Horacio Gonzalez—Vélez®*, Daniel L. Roach”

“IDEAS Research Institute, Robert Gordon University, Aberdeen AB25 1HG, United Kingdom
b Physics and Materials Research Centre, University of Salford, Salford M5 JWT, United Kingdom

Abstract

Inelastic neutron spectroscopy (INS) is a widely used probe of the vibrational characteristics of materials in condensed
matter research; coherent inelastic neutron scattering (CINS) is typically restricted to single-crystal samples, as the
analysis of the very complex data sets obtained from coherent inelastic neutron scattering on polycrystalline samples
(poly-CINS) remains challenging for all but the simplest of structures. However, with the application of computationally
intensive calculation methods (sampling tens of thousands of g-points for a given model) to the simulation of poly-
CINS, it is now becoming possible to interpret such data sets by means of comparison and fitting of experimental data
to theoretical models. A poly-CINS modelling package developed for the General Utility Lattice Program (GULP),
SCATTER has been successfully deployed in multi-core and multi-node architectures. This paper describes a new high-
performance implementation of the SCATTER code that provides the ability to generate theoretical poly-CINS data sets
from semi-empirical and ab initio models in graphics processing unit (GPU) architectures. We present, the computing
framework behind the GPU implementation, applying an example of a semi-empirical model for the dynamics of two

(low and ambient temperature) phases of solid C60 to illustrate the methodology and its successful scalability.

Keywords:

Inelastic Neutron Scattering, Numerical Linear Algebra, Parallel Computing, General Purpose

Computation on Graphics Processing Units, Simulation, Modeling

1. Introduction

Traditionally, inelastic neutron scattering measurements
have involved either incoherent scattering from polycrys-
tals or coherent scattering (CINS) from single crystals.
The reason that CINS from polycrystals has not been em-
ployed to a significant extent is that the process of integrat-
ing the scattering intensity over crystalline orientations is
complex and tends to obscure the useful information avail-
able from the direct measurement of dispersion curves us-
ing a Triple Axis Spectrometer.

Many important materials, particularly nano-materials,
can only be obtained in a polycrystalline form and hence it
is of interest to investigate new methods of interpreting the
coherent scattering from such samples. Due to its complex
nature, the analysis of experimental data sets obtained by
the use of modern neutron spectrometers requires new in-
novative approaches underpinned by advanced computa-
tional infrastructures.

Materials researchers already employ neutron scatter-
ing simulations as a means of validating and refining their
models [1, 2]. Nevertheless, scant research has been de-

*Corresponding author
Email addresses: m.t.garba@rgu.ac.uk (Michael T. Garba),
h.gonzalez-velez@rgu.ac.uk (Horacio Gonzalez—Vélez),
d.roach@salford.ac.uk (Daniel L. Roach)

Preprint submitted to Journal of Computational Science

voted to the systematic application of computational solu-
tions for the modelling of polycrystalline materials in cur-
rent simulation packages (such as a-CLIMAX [3] or PHONON)
that require model output from ab initio software, such
as CASTEP [4] or VASP. The SCATTER code provides
the capability to generate poly-CINS modelling data using
semi-empirical potential models (as well as output from
the DFT codes mentioned) via the General Utility Lat-
tice Program (GULP) software package [5, 6], a popular
lattice dynamics and simulation package in the materials
science community. This capability is crucially important
when the computational cost associated with large unit
cell models (common for many nanomaterials) is further
increased by the need for fine grain sampling of reciprocal
space to create theoretical data sets which compare with
those generated by modern spectrometers. Such computa-
tional costs can arguably be matched by efficiently using
modern parallel architectures.

This paper explores the deployment of the SCATTER
code on a range of modern parallel architectures for the
computational modelling of nanostructures. Its contri-
butions are the formal introduction of the initial paral-
lel implementation of poly-CINS modelling, the effective
exploitation of different parallel architectures—multi-core,
multinode and graphics processing unit (GPU)-and, ulti-
mately, the modelling of nanomaterials, a crucial element,
in the synthesis of new high performance materials.

July 22, 2011

Figure 1: Reciprocal lattice vectors @, ¢ and 7 and the Brillouin
zone

2. Inelastic Neutron Scattering from Polycrystalline
Materials

The purpose of an INS experiment is to determine
the scattering function S(Q,w) which carries information
about the relative positions and motions of the atoms in a
target specimen. Neutron spin and isotope effects result in
random variations in the neutron scattering amplitudes of
nuclei, causing the scattering to be divided into coherent
and incoherent parts. The coherent component, depend-
ing on the average value of the scattering amplitude, con-
tains all the information about the relative positions and
motions of the nuclei taken in pairs. The incoherent scat-
tering contribution depends only on the motions of each
atom taken independently. As described in Van Hove’s
seminal writings [7], the resulting cross section can be ex-
pressed in terms of the corresponding scattering functions,
and for the coherent and incoherent scattering functions
respectively. These functions, which depend only on the
interactions between the nuclei, define the corresponding
cross sections (for materials containing only one element)
as in Eqns. (1) and (2) [8].

In Egns. (1) and (2), Seon(Quw) and S;p.(Q.w) are
the respective coherent and incoherent scattering func-
tions, N represents the number of nuclei in the scatter-
ing system, for phonon mode s, reciprocal lattice vector
T, scattering length by, atomic mass My, Debye-Waller
factor Wy, momentum transfer vector Q, atomic posi-
tion r4, for atom d, polarisation vector egs, frequency w,
and phonon wavevector q with neutron energy gain/loss
<ns + % T %> O(w £ ws).

For a momentum transfer vector Q representing the
momentum change between incident and scattered wave
vectors, and a vibrational frequency of the quantised lat-
tice vibration (or phonon) created or annihilated by the
scattering event, the frequency change is directly related to
the modulus of the energy transfer between the target ma-
terial and the scattered neutron, as determined by energy

Figure 2: Reciprocal Space Onion Sampling in ScarTeER. Concentric
shells are traced in reciprocal space as data points are gathered for
increasing magnitudes and orientations of the momentum transfer
vector, Q, in spherical polar coordinates.

conservation and the principle of detailed balance [8, 9].

3. Background

Based on the work of Roach [10], SCATTER models the
interaction of neutrons incident on single crystal and poly-
crystalline samples in reciprocal space, predicting the co-
herent and incoherent scattering intensities of Eqns. (1)
and (2) by extensive use of GULP [11, 9]. The coherent
component of the scattering intensity in Eqn. (1) takes
into account cross-correlative pairwise interactions of the
nuclei in the system and describes inelastic interference
effects which provide information on the positions and vi-
brational modes of planes of atoms. Equation (2) rep-
resents the self-correlative, incoherent component of the
scattering intensity, the vibrational contributions of indi-
vidual atoms considered in isolation, without this inter-
ference term. SCATTER is capable of determining both
cross-correlative and self-correlative components, however
the primary application of this method is for coherent scat-
tering computations and the majority of simulation runs
currently involve this [11].

For single crystal samples in an experimental configu-
ration, it is satisfactory to perform these calculations along
fixed directions in reciprocal space. However, general ap-
plication to materials which may only be available in poly-
crystallline form requires calculation over the full range
of magnitudes and spatial orientations of the momentum
transfer vector Q in three dimensions.

SCATTER implements several space sampling techniques
that determine the closest corresponding lattice vectors q,
and the Brillouin zones for each Q. The Reciprocal Space
Onion (RSO) sampling method, illustrated in Figure 2,
takes values of Q as it is rotated about a series of concen-
tric spheres of varying magnitude |Q| at angles § and ¢ in a

Seon(@Quw) = % Z Z wi Z \/I;CTd exp(—Wy) exp(iQ-rq)(Q-eqs)
s T 51 a
><<ns+;:F;>5(w:tws)5(Q:|:q—T) (1)
Sme@Qw) = S F)?) 2]t[d exp(=2Wa) x 3 (Qwi) <n + % T ;> X 8w =+ wy) @)

d

spherical polar coordinate system [9]. RSO traces concen-
tric shells that correspond to the movement of the triple-
axis spectrometer as it samples scattering contributions at
various orientations around the target in an experimental
setting.

After determining the scattering contributions for each
sampled point, SCATTER performs a polycrystalline aver-
aging. The output may be post-processed with separate
visualisation tools to generate 3D plots (Figure 7) and di-
rectly compared with empirical data. The investigator’s
ability to arrive at deductions on the basis of the model
is significantly enhanced by the generation of a compu-
tational log that details the progression of intermediate
computations at several stages.

In practice, the quality of results obtained is improved
by the use of a greater number of sample points. Arti-
facts may otherwise begin to appear in the final output
for higher values of |Q| where space sampling is increas-
ingly sparse. Significant computational load results from
the invocation of several GULP routines that generate and
process large dynamical matrices for each determination of
Eqn. (1) over the full range of values for Q generated by
space sampling. A trade-off is typically necessary between
the desired model resolution and the actual execution time.

On the other hand, from a computational perspec-
tive, GPU modules have become a frequent presence in
new high performance computing platforms on account of
their substantial computing potential for the kind of in-
tensive tasks that occur in numerical linear algebra appli-
cations [12, 13]. Offloading computation to these devices
may alleviate the imperative demand created by increas-
ingly complex SCATTER models. However, GPU kernels
with complex control flow, conditional branching and di-
vergent thread execution paths incur a noticeable perfor-
mance penalty [14, 15].

Despite a number of emerging GPU numerical libraries,
no library for eigensystem analysis is available to com-
pletely satisfy our requirements. Admittedly, the more
modern LAPACK, which has largely superseded the orig-
inal E1spacK code [16], may have formed a functionally
superior basis [17]. However, the inherent architectural
complexity and reliance on an efficient BLAS implemen-
tation implies a long-term effort that the immediacy of
our requirements does not allow. The MAGMA library
is such an effort that is in the early stages of providing

hybrid multicore-CPU/GPU implementations of LAPACK
routines [18].

The challenges of achieving efficient performance on a
GPU architecture can arguably justify the development
of custom algorithms suited to the strengths and limita-
tions of the platform [19]. However, we maintain the orig-
inal algorithms of the legacy EISPACK implementation as
this port is motivated by a very practical application for
which the EISPACK eigensolver has proven adequate. Fur-
thermore, the accuracy and numerical characteristics of
E1sPACK have been established by exhaustive application
and testing over nearly 40 years of productive use in com-
putational physics [20].

The problem of creating a data-parallel GPU version is
conceptually similar to that of creating a vector-processor
version of the EISPACK routines. A vector implementation
was created for for the IBM 3090VF by Cline and Mey-
ering [21]. While alternative algorithms used in LAPACK
may possess superior cache usage characteristics and per-
formance in modern processor configurations, they provide
this at the expense of software complexity and reliance on
an efficient BLAS implementation.

Current routines in EISPACK and LAPACK are devel-
oped to efficiently solve dense linear systems. However,
the sparse and predictable structure of the dynamical ma-
trix suggests that the potential exists to apply iterative
solvers for sparse systems, such as ARPACK [22], that may
reduce the computational cost of diagonalisation. Fur-
thermore, since successive dynamical matrices vary by a
bounded Hermitian perturbation, the variation in eigen-
values is similarly bounded by the spectral norm of the
perturbation [23]. While, the eigenvectors share no such
relationship, we are exploring alternative approaches to di-
agonalisation with the use of iterative solvers and custom
pre-conditioners that are specific to this problem.

Therefore, we strongly believe that a custom, opti-
mised port of the required functional subset of EISPACK to
GPUs. It is noteworthy to mention that any optimisation
approach must be applicable to a wider range of models
and, effectively, reduce the dominant aspect of the compu-
tation to eigenvector and eigenvalue determination, leav-
ing a standard numerical linear algebra problem for which
efficient numerical solution techniques, as extensively dis-
cussed in [24, 25].

4.3 Parallelisation
4. Methods

RSO sampling yields a discrete grid of points in spher-
ical polar coordinates over which SCATTER evaluates the
scattering contributions. These evaluations are computa-
tionally demanding for systems of even moderate complex-
ity. Therefore, the practical feasibility of INS modelling
is heavily dependent on the availability of a high perfor-
mance implementation. To achieve this we have under-
taken performance optimisations and parallelisation tar-
geting shared memory multicore and distributed memory
multinode architectures with support for general-purpose
computing on GPUs based on the CUDA platform.

The overall optimisation shown in subsection 4.2 re-
duces the computationally dominant aspects of SCATTER
to the determination of polarisation vectors and frequen-
cies of the phonon modes. These are respectively the eigen-
vectors and eigenvalues of the Hermitian dynamical matrix
for each point in RSO space [8]. SCATTER, as part of
GuLP, makes use of the EiSPACK and LAPACK standard
libraries for linear algebra.

4.1. Predicting SCATTER Performance

We can predict the runtime of a SCATTER model from
the relationship of Eqn. (3) where t is the approximate
completion time, k is a constant for a given execution en-
vironment and model, |Q|maz — |Qlmin is the difference
between the maximum and minimum magnitude of the
momentum transfer vector Q, dQ is the finite increment
in momentum transfer between successive RSO shells and
00 = 0¢ is the finite change in angular orientation of the
momentum transfer vector.

~ |Q|max_|Q‘mzn 2m 2
(B) (5) @

The runtime ¢ is determined by the number of points
P(|QJ,8,¢) in RSO space for a given model resolution as
specified in the parametric inputs to the program. These

integer-valued parameters are (%) for the num-

ber of shells and g—g = % for the number of angular steps.
Figure 3 compares predicted and actual problem scaling
for a 60-atom model. Equation 3 allows the estimation of
full model runtime by calibration against a low-resolution
test case.

4.2. Optimisation

For each unique triple (|Q|,0,¢), corresponding to a
point P in RSO-sampled space, GULP derives a new dy-
namical matrix of phased second derivatives and proceeds

Figure 4: Complex non-zero entries in the dynamical matrix for a
240-atom Carbon nanotube model with 720 modes. The dynamical
matrix is Hermitian and sparse.

Figure 4 is a visualisation of a representative dynamical
matrix based on the potential model of D.W. Brenner [26]
for a 240-Carbon atom system. It illustrates a pattern of
sparsely regular non-zero blocks corresponding to the pair-
wise derivatives of the nth nearest neighbour atoms at a
given phase angle. The Brenner potential is notably ex-
pensive to calculate in GULP as it accounts for all possible
neighbour interactions. As an optimisation strategy, we
cache the intermediate first and second order derivative
vectors for each atom in a space-efficient dynamic linked
list to avoid recalculation. Subsequent dynamical matrices
are generated by summation of the cached vectors at the
appropriate phase angle.

This optimisation significantly lowers the computational
cost for the class of models that use the Brenner poten-
tial, yielding model-dependent performance increases of
between 10x to 50x in overall runtime (Figure 5).

4.3. Parallelisation

The evaluations of scattering for points in RSO-sampled
space are independent operations that allow the adoption
of several possible parallel partitioning schemes. For sim-
plicity, we choose a cyclic space decomposition, with a

to compute the associated phonon modes required by SCATTERround-robin assignment of circles of constant ¢ between

The repeated derivation of the dynamical matrix corre-
sponding to each of these points in the spherical grid is a
computationally expensive operation for potential models
that require large numbers of nearest neighbour interac-
tions.

processes. This decomposition is illustrated in figure X
and provides sufficient independent work units to scale to
a large number of parallel processes. As a potential op-
timisation, block partitioning may eliminate some of the
redundancy associated with the calculation of energies for

1600

1400

1200

1000

800 “/
e
400 //
200 e

P

Execution Time (seconds)

20 40 60 80 100
No. of Shells
(a) (|Q|maz§a|Q|min) shells

Execution Time (seconds)

18000

16000

14000

12000

10000

8000

6000

4000

2000

M/

20 40 60 80 100
No. of Angular Steps

(b) % angular steps

Figure 3: Predicted vs. actual ScaTTER problem scaling by resolution for a 60-atom Carbon model with (a) (M

2m

°Q

) shells

demonstrating linear scaling and (b) 5 angular steps in 6 and ¢ demonstrating quadratic scaling. The predicted scaling is denoted by

the solid line.

Dynamical Matrix Calculation Runtime
2000

mamme Dynamical Matrix
mmmmm Other Routines

1500

1000

Total Runtime in Seconds

500

C40 C40-optimised C60 C60-optimised
Test Model

Figure 5: Pre and Post Optimisation Runtimes for models

a given value of €, however this offers only marginal perfor-
mance gains for current models when other optimisations
are applied.

A final parallel summation reduction over the poly-
crystalline averages of the contributions calculated by the
independent processes determines the scattering function
S(Q,w) for the model and concludes the simulation

5. Implementation and Verification

As part of the General Utility Lattice Program (GULP),
SCATTER relies on the underlying lattice dynamics func-
tionality to perform the bulk of the computations neces-
sary. The most computationally significant aspects of the
simulation are based on this functionality, we have opti-
mised and adapted components of GULP to deliver higher

Figure 6: Parallel partitioning. Circles of constant ¢

5.3 Verification (From Daniel)

performance.

5.1. MPI

We base our parallel implementation of SCATTER on
the SPMD approach taken in GULP. The absence of data
dependencies between successive evaluations of Eqns. (1)
and (2) allows a replicated-data-with-reduction pattern on
a supporting a task-parallel algorithmic structure.

Program input is distributed to cooperating processes
by the root process in a MPI broadcast operation at pro-
gram initiation. With complete details of all execution
parameters, each process independently computes S(Q,w)
over an appropriate subset of the global sample space in a
rank-based domain-decomposition of the primary SCATTER
loop iteration space. A final global reduction operation
communicates these local contributions to the root pro-
cess in a summation that merges the data generated from
each process into a final polycrystalline average for the
scattering system before output.

As the intermediate results of these calculations are
of analytical importance, MPI/IO provides scalable, dis-
tributed, simultaneous output of this large dataset from
the parallel processes. MPI/IO allows nodes in a cluster
environment to take advantage of specialised MPI-aware
hardware that is capable of significantly reducing the as-
sociated communication overhead.

5.2. CUDA

For compatibility with the C-based CUDA SDK, the
Fortran E1SPACK source code has required source-level trans-
lation into equivalent C sources. These functions serve as a
basis for the creation of three functionally equivalent GPU
kernels. Performance gains emerge as data-parallel inten-
sive loops are distributed between cooperating threads in
a block and race conditions are avoided by the insertion
of synchronisation primitives. These loops are identified
from source-level line-profiling on the original CPU version
of EISPACK, the assumption being that CPU performance
is strongly indicative of potential performance bottlenecks
in the GPU kernels. This is a necessary workaround as
CUDA profiling tools provide relatively limited function-
ality. To achieve reasonable performance benefits, it is
necessary to augment traditional development techniques
with low-level knowledge of the underlying GPU architec-
ture.

A number of thread blocks independently handle the
solution of multiple eigensystems in parallel. In our im-
plementation, a thread block or cooperative thread array
(CTA) is mapped to an input problem set, allowing paral-
lelism at both independent block and cooperative thread
levels. Some performance optimisations applied include:

1. Asynchronous transfers to and from the host over
multiple streams allow concurrent kernel execution
and overlapped 1/0.

6

2. Algorithm reorganisation for improved coalesced mem-
ory access. Matrix layout is transposed in some code
sections to achieve higher memory transfer band-
width.

3. Extraneous register variables are eliminated or reused—
when appropriate-to improve GPU occupancy and
facilitate latency hiding on the streaming multipro-
Cessors.

4. Costly global memory access is limited when possible
by explicit caching in shared memory.

5. The launch configuration is determined heuristically
by trial and error. While, the guidelines recommend
that thread blocks sizes should be multiples of a warp
size to allow latency hiding for multiple warps, it is
necessary to determine actual optimal block sizes by
testing. The different kernels performed optimally
at distinct block dimensions.

5.3. Verification (From Daniel)

Testing models with high performance version.

The models with brief descriptions: (i) C40 model? (ii)
C60 models, (iii) C2407. Questions. Why are they inter-
esting? This is also an opportunity to describe the relevant
entries in the output file for future users. Theoretical vs.
actual S(Q,w) plots if available. What does the output of
SCATTER reveal about the models? Is a molecular visuali-
sation of any model available? May be able to plot one in
3d with atom locations and bonds if it does not exist.

6. Performance Analysis

To establish the performance characteristics, we con-
ducted performance testing of an early SCATTER version
on the Huygens supercomputer [27] at SARA and, subse-
quently, the optimised version on an IBM JS21 BladeCenter—
a multi-core and multi-node platform based on the IBM
Power Architecture technologies. The GPU implementa-
tion, despite being at an early stage of integration with
GULP, was evaluated on a single workstation with an NVIDIA
Tesla C2050 GPU. Table 1 lists relevant hardware specifi-
cations of the testing configuration.

6.1. Parallel Scaling

Figure 8 presents the execution times for the 60-Carbon
atom model with 4,8, and 16 processes on the IBM JS21
BladeCenter. SCATTER demonstrates linear scaling across
multiple cores and multiple nodes. Scaling is compared
against the estimated sequential runtime obtained from a
calibration run with a coarse RSO grid as predicted by
Eqn. (3).

An early version of the program was deployed on the
Huygens prototype supercomputer at SARA in 2010 and
demonstrated near ideal scaling at up to 1024 MPI Pro-
cesses [28]. Subsequent improvements in efficiency and
optimisation have reduced runtime by up to two orders

6.1 Parallel Scaling

Figure 7: C60 Nanotube Model, S(Q,w) Plot. Experimental vs

. ScarTer model (PLACEHOLDER

. Needs actual plots from Daniel)

Dell Precision XX

IBM BladeCenter JS21

IBM pSeries 575

Workstation... (Huygens)
Nodes 1 4 101
Processing Elements 4 4 32
per Node
Processor Clock 2.0 GHz 2.3 GHz 4.7 GHz
Architecture Intel x86-64 IBM PowerPC 970MP IBM Power6
Total Memory 4 GB 16 GB 128 GB
Network FastEthernet 100Mbps FastEthernet 100Mbps Infiniband 160 Gbit/s

Operating System

Ubuntu Linux ...

Redhat Linux (kernel
26.18-8)

GNU Linux (kernel
2.6.27)

Compiler

GCC gfortran 4...

GCC gfortran 4.1.2

GCC gfortran 4.3.2

MPI Version

OpenMPI 1.3.3

Table 1: Test Machine Specifications

Figure 8: Scaling for the C60 model across cores

of magnitude, nevertheless the scaling characteristics re-
main consistent. As an illustration, the Huygens super-
computer completed the C40 model in 15 minutes using
1024 processing elements at 4.7GHz and a notably effec-
tive auto-tuning compiler. In contrast, the smaller IBM
JS21 BladeCenter, with 16 2.3GHz processing elements
and the GCC gfortran compiler, requires 6 hours with the
current version of the program.

6.2. GPU Performance

Performance evaluations have been carried out using a
64-bit Dell Precision T7500 Server with 4 Intel Xeon 2GHz
CPU cores, 4GB RAM a host CPU machine and a NVIDIA
Tesla C2050 GPU with a PCI express interface running
Version 3.2 of the CUDA SDK on 64-bit Ubuntu 10.04
Linux. Given that the second generation NVIDIA Tesla
C2050 GPU is designed specifically for scientific and nu-
merical computing applications, it furnishes 14 streaming
multiprocessors (SM), each providing 32 streaming pro-
cessors (SP), and offers 448 parallel cores in total. While
earlier GPUs completely lacked double precision support,
the Tesla GPU provides improved double-precision float-
ing point performance.

Using a dedicated test program, the execution times for
1000 N-order input matrices with EISPACK and LAPACK
on a single CPU core and on the GPU are shown in Fig-
ure 9. GPU times have been collected via the platform
timers and are inclusive of memory transfer overhead.

Within a critical window (N = 512—2048), the cur-
rent GPU implementation is capable of yielding perfor-
mance increases of between 50—100x over the reference

8

EispPACK implementation, a result of performance gains
at both thread and block levels. As the matrix order in-
creases, the GPU memory is able to accommodate fewer
matrices to provide any block-level performance advantage
and resources begin to idle. Therefore, the scalability of
the approach is restricted for higher values of N by the
hard limit that memory places on GPU occupancy despite
the still-observable benefits of thread-level parallelism.

The superior LAPACK cache behaviour delivers consis-
tently higher performance over EISPACK for larger values
of N. While equivalent routines in both LAPACK and
EISPACK are of storage order O(n?), LAPACK reuses the
same input matrix memory for output and is therefore
more memory efficient.

These performance results reflect expectations from an
ideal implementation. However, architectural considera-
tions create challenges in the effective integration of these
routines with GULP. In a mature implementation, CPU
and GPU execution may be overlapped to prevent resource
idling. Nevertheless, we have tested these routines with
the C240 model at coarse resolution and obtained a two
order of magnitude performance gain over the CPU imple-
mentation (Figure 10).

7. Conclusions and Outlook

The current parallel SCATTER implementation has demon-

strated ideal linear scaling and makes it possible to model
INS systems of unprecedented size in affordable computa-
tional platforms. Nevertheless, it is our experience that the
size and complexity of these models rapidly outgrows the
computational capabilities available, as the demands for
enhanced resolution in nanomaterial characterisation in-
creases. This reflects the strong demand not only for com-
putational tools of this kind among materials researchers,
but also for the interdisciplinary link between computa-
tional and material scientists to evolve the emerging field
of computational materials science.

From a computer science perspective, we expect this
work to eventually shed light on more fundamental parts
of parallel and distributed computing. Firstly, the evalua-
tions of independent scattering contributions can be re-
garded as a divisible load, and therefore tackled using
divisible load theory [29]. In fact, our ongoing research
investigates allocation and scheduling heuristics to opti-
mise system performance in complex dynamic heteroge-
neous computing environments with processing elements
of variable capability and cost [30]. Subsequent SCATTER
versions will therefore seek to examine the possibility of
adaptive scheduling based on the structural and paramet-
ric characteristics of the physical models and execution en-
vironment. Secondly, we envision an eventual deployment
using algorithmic skeletons [31], possibly in the form of a
refined task farm [32], to achieve closer-to-optimal resource
utilisation. Finally, it has become clear that achieving ef-
ficient utilisation of GPU resources is a challenging propo-
sition in nanomaterial chracterisation, given the need to

Execution Time (seconds)

le+08

1e+07

1e+06

100000

10000

1000

100

Total Runtime in Seconds

10

I I
CPU EISPACK —+—
CPU LAPACK ---X--- : :
Tesla C2050 - EISPACK ---%---

651953

-
.-

Pt

- .

e TS0

5824843

- _.-%829380 |
612060

4 4

’
.

i i i i i i]
128 256 512 1024 2048 4096
Matrix Order N
Figure 9: CPU v GPU
GPU vs. CPU Runtime
CPU ===~
GPU -+ %:--
o
1000 S
100 et
,.r"/ x
I . ! | .
1.2 1.4 1.6 1.8 2
Test Model

Figure 10: GPU Performance with test model

balance between CPU and GPU computational potential
and these are closely tied with the parametric details of the
actual model under consideration. Larger models tend to
use GPUs more efficiently. Therefore, we will strive to in-
vestigate generic approaches to synthesise large parametric
problems and their extension in heterogeneous CPU-GPU
architectures in our future work.

8. Acknowledgements

The authors would like to thank the Partnership for
Advanced Computing in Europe (PRACE) for their sup-
port and grant of computing time in the SARA super-
computing facilities. The PRACE project receives funding
from the EU’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. RI-211528. The Au-
thors would also like to acknowledge the support of a
collaboration travel grant awarded by the STFC Collab-
orative Computational Project 5 (CCP5), NVIDIA Cor-
poration for the donation through the Professor Partner-
ship programme of the GPU Tesla equipment employed in
this work, and Julian Gale of Curtin University in Aus-
tralia for making the GULP source code available. One of
the authors (Roach) would like to acknowledge the sup-
port of EPSRC (EP/G049130) in the development of the
SCATTER code.

References

[1] W. F. van Gunsteren, A. E. Mark, Validation of molecular dy-
namics simulation, Journal of Chemical Physics 108 (15) (1998)
6109-6116.

[2] B.-L. Huang, M. Kaviany, Ab initio and molecular dynamics
predictions for electron and phonon transport in bismuth tel-
luride, Physical Review B 77 (12) (2008) 125209:1-19.

[3] D. Champion, J. Tomkinson, G. Kearley, a-CLIMAX: a new
INS analysis tool, Applied Physics A: Materials Science & Pro-
cessing 74 (2002) 1302-1304.

[4] M. Segall, P. Lindan, M. Probert, C. Pickard, P. Hasnip,
S. Clark, M. Payne, First-principles simulation: ideas, illus-
trations and the castep code, Journal of Physics: Condensed
Matter 14 (2002) 2717.

[5] J. Gale, GULP: A computer program for the symmetry-adapted
simulation of solids, Journal of the Chemical Society, Faraday
Transactions 93 (4) (1997) 629-637.

[6] J. Gale, A. Rohl, The general utility lattice program (GULP),
Molecular Simulation 29 (5) (2003) 291-341.

[7] L. Van Hove, Correlations in space and time and born approx-
imation scattering in systems of interacting particles, Physical
Review 95 (1) (1954) 249.

[8] G. Squires, Introduction to the theory of thermal neutron scat-
tering, Cambridge Univ. Press, 1978.

[9] D. L. Roach, J. Gale, D. Ross, Scatter: A New Inelastic Neutron
Scattering Simulation Subroutine for GULP, Neutron News
18 (3) (2007) 21-23.

[10] D. L. Roach, K. Ross, J. D. Gale, The application of coher-
ent inelastic neutron scattering to the study of polycrystalline
materials, Physical Review B(Under Revision).

[11] D. L. Roach, Computational investigations of polycrystalline
systems using inelastic neutron scattering techniques, Ph.D.
thesis, University of Salford, Salford M5 4WT, UK (2006).

[12] V. Volkov, J. W. Demmel, Benchmarking GPUs to tune dense
linear algebra, in: SC ’08: ACM/IEEE Conf on Supercomput-
ing, IEEE, Austin, 2008, pp. 1-11.

10

[13] S. Tomov, J. Dongarra, M. Baboulin, Towards dense linear al-
gebra for hybrid GPU accelerated manycore systems, Parallel
Computing 36 (5-6) (2010) 232-240.

[14] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
J. Phillips, GPU computing, Proceedings of the IEEE 96 (5)
(2008) 879-899.

[15] D. Kirk, W. Wen-mei, Programming massively parallel proces-
sors: A Hands-on approach, Morgan Kaufmann Publishers Inc.
San Francisco, CA, USA, 2010.

[16] B. T. Smith, J. M. Boyle, J. Dongarra, B. S. Garbow, Y. Ikebe,
V. C. Klema, C. B. Moler, Matrix Eigensystem Routines—
EISPACK Guide, 2nd Edition, Vol. 6 of Lecture Notes in Com-
puter Science, Springer, 1976.

[17] J. Dongarra, V. Eijkhout, Numerical linear algebra algorithms
and software, Journal of Computational and Applied Mathe-
matics 123 (1-2) (2000) 489-514.

[18] S. Tomov, R. Nath, H. Ltaief, J. Dongarra, Dense linear algebra
solvers for multicore with GPU accelerators, in: IPDPS 2010
Workshops, IEEE, Atlanta, 2010, pp. 1-8.

[19] F. Vazquez, J. J. Fernandez, E. M. Garzon, A new approach for
sparse matrix vector product on NVIDIA GPUs, Concurrency
and Computation: Practice and Experience 23 (8) (2011) 815—
826.

[20] B. Garbow, EISPACK—a package of matrix eigensystem rou-
tines, Computer Physics Communications 7 (4) (1974) 179-184.

[21] A. K. Cline, J. Meyering, Converting eispack to run efficiently
on a vector processor, Tech. rep., Pleasant Valley Software,
Austin, Texas (1991).

[22] R. Lehoucq, D. Sorensen, C. Yang, ARPACK users’ guide: solu-
tion of large-scale eigenvalue problems with implicitly restarted
Arnoldi methods, Siam, 1998.

[23] Z. Bai, Templates for the solution of algebraic eigenvalue prob-
lems, Vol. 11, Society for Industrial Mathematics, 2000.

[24] V. Hernandez, J. Roméan, A. Toméas, V. Vidal, A sur-
vey of software for sparse eigenvalue problems, Techni-
cal Report STR-6, Universidad Politécnica de Valencia,
Www.grycap.upv.es/slepc/ (2006).

[25] J. Dongarra, I. S. Duff, D. C. Sorensen, H. A. van der Vorst,
Numerical linear algebra for high-performance computers, 2nd
Edition, STAM, 1998.

[26] D. Brenner, Empirical potential for hydrocarbons for use in sim-
ulating the chemical vapor deposition of diamond films, Physical
Review B 42 (15) (1990) 9458.

[27] SARA, Description of the huygens system, Web page, Dutch
National High Performance Computing and e-Science Sup-
port Center, http://www.sara.nl/systems/huygens/description,
(Last Accessed: 20 Jul 2011). (2011).

[28] M. Garba, H. Gonzalez-Vélez, D. Roach, Parallel computa-
tional modelling of inelastic neutron scattering in multi-node
and multi-core architectures, in: IEEE HPCC-10: Int Conf
on High Performance Computing and Communications, IEEE,
Melbourne, 2010, pp. 509-514.

[29] V. Bharadwaj, D. Ghose, T. G. Robertazzi, Divisible load the-
ory: A new paradigm for load scheduling in distributed systems,
Cluster Computing 6 (1) (2003) 7-17.

[30] H. Gonzalez-Vélez, M. Cole, Adaptive statistical scheduling
of divisible workloads in heterogeneous systems, Journal of
Scheduling 13 (4) (2010) 427-441.

[31] H. Gonzalez-Vélez, M. Leyton, A survey of algorithmic skele-
ton frameworks: High-level structured parallel programming en-
ablers, Software—Practice and Experience 40 (12) (2010) 1135-
1160.

[32] H. Gonzalez-Vélez, M. Cole, Adaptive structured parallelism
for distributed heterogeneous architectures: A methodolog-
ical approach with pipelines and farms, Concurrency and
Computation—Practice and Experience 22 (15) (2010) 2073—
2094.

