
Improvements to Data Transportation Security

in Wireless Sensor Networks

Elias EKONOMOU

School of Computing, Science and Engineering

University of Salford, Salford, UK

Submitted in Partial Fulfilment of the Requirements of the

Degree of Doctor of Philosophy, June 2010

ii

Table of contents

Table of contents ... ii

Lists of figures and tables ... vi

1. List of figures ... vi

2. List of tables ... vii

Acknowledgements ... viii

List of abbreviations ... ix

Abstract ... x

1. Introduction .. 2

1.1 Overview ... 3

1.2 Motivation .. 4

1.3 Contribution ... 6

1.4 Intended audience ... 7

1.5 Thesis structure ... 8

2. Literature review .. 10

2.1 Introduction to Wireless Sensor Networks ... 11

2.1.1 Overview ... 11

2.1.2 Operational scenarios ... 14

2.1.3 Hardware platform .. 19

2.1.4 Software platform ... 23

2.1.5 Networking .. 24

2.2. Security in Wireless Sensor Networks ... 28

2.2.1 Overview of security.. 28

2.2.2 Threat model ... 31

2.2.3 Application of security... 35

2.3 Related work.. 37

2.3.1 Key management schemes.. 37

iii

2.3.2 Data transportation layer security schemes ... 41

2.3.3 Routing security... 45

2.3.4 Other work .. 47

2.4 Discussion ... 50

2.4.1 Baseline requirements .. 50

2.4.2 Aims ... 52

2.4.3 Research Challenges .. 53

2.4.4 Summary ... 54

3. System requirements ... 56

3.1 Basic security requirements... 57

3.1.1 Confidentiality ... 57

3.1.2 Authentication and integrity ... 57

3.1.3 Freshness ... 58

3.2 Additional security requirements .. 60

3.2.1 Regarding routing security .. 60

3.2.2 Availability ... 61

3.2.3 Hardware ... 62

3.3 Operation and efficiency requirements .. 63

3.3.1 Key management mechanism ... 63

3.3.2 Efficiency requirements .. 64

3.4 Other requirements .. 65

3.4.1 Essential deployment requirements ... 65

3.4.2 Other requirements and desirables .. 67

4. SecRose Specification and Design .. 69

4.1 Algorithmic description .. 70

4.1.1 Specification of concepts .. 70

4.1.2 SecRose operation: outgoing packets ... 75

4.1.3 Operation: incoming packets .. 77

4.1.4 Operation: authenticated acknowledgement transmission and reception 78

4.1.5 Operation: intermediate nodes .. 80

4.1.6 Operation: diagrams.. 81

4.2 System design ... 83

iv

4.2.1 System overview ... 83

4.2.2 Encryption component .. 85

4.2.3 Key management component ... 93

4.2.4 Authentication and integrity ... 102

4.2.5 Control component ... 105

4.2.6 Diagrams of system operation .. 108

4.3 Summary ... 111

4.3.1 Simple design, simple operation ... 111

4.3.2 Innovative features ... 112

4.3.3 Chapter conclusion .. 113

5. Implementation .. 115

5.1 TinyOS and SecRose .. 116

5.1.1 Description of TinyOS .. 116

5.1.2 Operation of TinyOS .. 117

5.1.3 Communication model and SecRose’s position .. 118

5.2 Algorithms, code and pseudocode .. 121

5.2.1 Encryption component .. 122

5.2.2 Authentication component ... 124

6. Evaluation .. 139

6.1 Evaluation of security provision ... 140

6.1.1 The threat model again ... 141

6.1.2 Provision of confidentiality ... 145

6.1.3 Provision of authentication and integrity ... 149

6.1.4 Provision of freshness ... 155

6.1.5 Additional security provision ... 157

6.1.6 Evaluation against other solutions .. 160

6.2 Performance evaluation ... 172

6.2.1 Explanation of methodology ... 172

6.2.2 Energy requirements ... 173

6.2.3 Latency .. 178

6.2.4 Memory ... 179

6.2.5 Comparisons .. 180

6.3 Evaluation of non-functional requirements .. 188

v

6.3.1 Essential deployment requirements ... 188

6.3.2 Other requirements and desirables .. 189

6.4 Summary ... 191

6.4.1 Critical security evaluation .. 191

6.4.2 Energy efficiency and non-functional requirements ... 193

6.4.3 Final comparison ... 195

7. Conclusion and Future Work ... 197

7.1 Conclusion ... 198

7.2 Future work.. 199

7.2.1 Provision against current vulnerabilities ... 199

7.1.2 Alternatives on authenticated acknowledgements .. 200

7.2.3 Improvements on key management ... 202

7.2.5 Flexibility and customisation features .. 203

APPENDICES ... 205

IMPLEMENTATION CODE ... 206

File CC1000RadioIntM.ns .. 207

File SecRoseM.nc ... 224

REFERENCES .. 235

vi

Lists of figures and tables

1. List of figures

Figure 1: an advanced sensor node. .. 21

Figure 2: SecRose packets, their fields and their security features .. 71

Figure 3: mixing of the initial key with the counter ... 73

Figure 4: pair key advancement and state preservation sequence .. 82

Figure 5: position of SecRose in TinyOS ... 84

Figure 6: the subcomponents of the encryption component and their interfaces 88

Figure 7: the principle of ciphertext stealing .. 89

Figure 8: the stealing subcomponent of SecRose ... 91

Figure 9: example of stealing applied to a long packet with two bytes data payload 92

Figure 10: key management: interfaces, interactions and subcomponents 93

Figure 11: key request process ... 97

Figure 12: key management tasks after packet transmission ... 98

Figure 13: process after acknowledgement reception .. 99

Figure 14: process after packet reception ... 100

Figure 15: revert to backup counter ... 101

Figure 16: MAC generation process ... 104

Figure 17: MAC validation process ... 104

Figure 18: transmission of packets and reception of acknowledgements by the sender. 109

Figure 19: reception of packets, validation and transmission of acknowledgements. 110

Figure 20: sequence diagram of packet injection attacks. .. 151

Figure 21: key changes and prevention of packet replays .. 155

Figure 22: CPU energy requirements for a SecRose transmitter ... 175

Figure 23: CPU energy requirements for a SecRose receiver. ... 176

Figure 24: radio energy requirements for a SecRose transmitter. .. 177

Figure 25: CPU energy requirements for both nodes. .. 182

Figure 26: radio energy requirements for both nodes... 183

Figure 27: energy requirements for both CPU and radio. .. 184

Figure 28: normalised energy requirements for both CPU and radio..................................... 185

vii

Figure 29: accumulative radio energy consumption for both nodes 186

Figure 30: accumulative CPU energy consumption for both nodes 186

Figure 31: accumulative energy consumption for both nodes .. 186

Figure 32: normalised accumulative energy consumption for both nodes 186

2. List of tables

Table 1: Routing attacks, their requirements and how they can be prevented. 46

Table 2: packet field utilisation by the stealing subcomponent.. 92

Table 3: comparative summary of the provided security for each mechanism 168

Table 4: comparison of the security provision of SecRose and 802.15.14 170

Table 5: executable size of various proposals .. 179

viii

Acknowledgements

I would like to thank my supervisor Dr. Kate Booth for providing inspiration, challenges,

guidance and for showing unlimited patience and trust on myself. In addition, I would like to

thank my family for their love and unconditional support at all levels. My work is devoted to

them. Finally, I would like to thank my friends for the motivational input and the important

moments of joy.

ix

List of abbreviations

ACK Acknowledgement

AES Advanced Encryption Standard

AM Active Messages

API Advanced Programmer Interface

BP British Petroleum

CBC Cipher-Block Chaining

CMAC Cipher-block chaining Message Authentication Code

CNSS Committee on National Security Systems, The

CNT counter

CPU Central Processing Unit

CRC Cyclic Redundancy Check

EEPROM Electrically Erasable Programmable Read Only Memory

GNU GNU is Not Unix (recursive)

GPL General Public Licence

GPS Global Positioning System

ID Identification number

IEEE Institute of Electrical and Electronic Engineers

IP Internet Protocol

IV Initialisation Vector

LIFO Last In, First Out

MAC Message Authentication Code (not Medium Access Control)

MSB Most Significant Bit

NIST National Institute of Standards and Technology

OCB Offset Codebook Mode

OS Operating System

OSI Open System Interconnection

PC Personal Computer

PCB Printed Circuit Board

PKI Public Key Infrastructure

PKT packet

RX receive

SSL Secure Sockets Layer

TX transmit

US United States

USB Universal Serial Bus

USD United States Dollars

WSN Wireless Sensor Network

x

Abstract

Wireless Sensor Networks are computer networks consisting of miniaturised electronic

devices that aim to gather and report information about their environment. The devices are

limited in computational ability, temporary and permanent memory and communication

ability. Furthermore, the devices communicate via a wireless unregulated medium and usually

operate on finite power sources such as batteries.

Security in Wireless Sensor Networks is the research area that seeks to provide adequate level

of security for the limited sensor devices, aiming to increase the possible applications of

Wireless Sensor Networks and allow them to be deployed for a wider variety of tasks,

including monitoring of critical conditions or valuable infrastructure. The area has to solve the

problems associated with the limited nature of the devices. Traditional security mechanisms

are inappropriate for Wireless Sensor Networks, because they were not designed for resource-

constrained environments.

This research attempts to solve the problems associated with secure message exchange via an

open medium without introduction of significant resource overheads. The result of this

research is SecRose, a security mechanism for the data-transportation layer of Wireless

Sensor Networks.

SecRose provides a higher level of security than the existing proposals while it demonstrates

better performance characteristics. In particular, the mechanism introduces authenticated

acknowledgements and key management, improves the provided cryptographic strength and

helps in securing the routing protocols. On the other hand, the mechanism operates without

significant computational or communication overhead and is backward compatible with

existing sensor network applications.

The thesis discusses the requirements, design and evaluation of the mechanism and

demonstrates how its goals are achieved by following alternative approaches to provide the

security properties.

1

Chapter 1

Introduction

2

1. Introduction

3

1.1 Overview

Wireless Sensor Networks constitute a promising technological advance that poses

contradicting research challenges. The networks are limited, miniaturised computers that aim

to sense and wirelessly report information about their environment. Typical networks are

expected to be self-organising and able to operate with little or no human interaction.

Provision of security widens the possible application of sensor networks and is therefore a

desirable marketing feature. On the other hand, security would require utilisation of energy

resources, a precious commodity for the longevity of the battery powered wireless sensor

networks.

This contradiction has posed a significant research challenge aiming to provide adequate

security in a minimalistic resource-constrained environment. An area of research was created

to explore the possibilities of providing Security in Wireless Sensor Networks [1]. A

particular field of this research area is interested in the security of the exchanged messages.

This field is the specific area of our research and is known as security for the data-

transportation layer.

This document describes SecRose, a mechanism that provides security for the data

transportation layer. Briefly, our thesis is that SecRose provides a level of security that is both

better and consumes less energy than similar mechanisms.

4

1.2 Motivation

The security in wireless sensor networks paradox

There is a significant amount of research literature regarding data-transportation layer security

for wireless sensor networks. The literature includes contributions that range from simple

frequency hopping systems to complex public-key cryptosystem attempts. The literature

covers scenarios that range from human heartbeat monitoring military battlefields.

Seemingly, many of these solutions were developed under unrealistic assumptions.

Consequently, only a few of those solutions have made it to actual commercial products.

In our belief, three factors caused this paradox. Firstly, initial research set unrealistic targets.

Secondly, improvements in microprocessors allowed conventional security mechanisms to be

applied in many WSN applications. Finally, but most importantly, the assumptions of what is

possible and profitable were narrowed down as sensor networks progressed.

As a consequence, there is only one proposal considered to be the de-facto standard in our

area of research and that is the TinySec security architecture [2].

Inadequate security systems

TinySec is a relatively old mechanism that was publicly released six years ago and has not

been updated since. TinySec is well designed, documented and most importantly fully

implemented. On the other hand, it does not provide any cover for some of the available

attacks or it provides limited level of security for others.

Other systems that were developed after TinySec attempt to improve it but they use untested

or poorly evaluated innovations while there is no evidence on whether they were actually

implemented on code or not.

5

Our thesis

SecRose is a data-transportation layer security mechanism based on an alternative than the

existing direction. The resulting mechanism provides adequate security in conjunction with

fewer resource requirements.

In brief, SecRose provides:

 Key management to facilitate frequent changing of used keys in a manner that is

energy efficient and does not leak information to adversaries

 Authenticated acknowledgements which can secure third party routing protocols and

validate communication integrity

 Up-to-date cryptographic strength using an established cryptographic cipher that

natively provides appropriate key length

 Alternative solutions for semantic security and freshness that are subject to different

limitations and conditions than other proposals

 Equal level of authentication as any other mechanism which provides acceptable level

of confidence

In addition, SecRose manages all these features without requiring significant resources.

Importantly, the mechanism is more efficient than TinySec, which acts as the primary basis of

comparison.

SecRose is based on generic assumptions that are similar to other mechanisms. Most

importantly, SecRose assumes that the node‟s hardware is secure and it cannot be tampered

with.

Finally, SecRose includes useful non-functional requirements like backwards compatibility,

ease of deployment, scalability and others. Adaptation of SecRose requires minimal effort and

provides optimal results.

6

1.3 Contribution

This thesis contributes SecRose, a data-transportation layer security mechanism, which is

capable of providing a higher than the currently available level of security without introducing

significant resource overhead. SecRose achieves its aims by introducing innovative features

or alternative design or by improving on existing functionality.

7

1.4 Intended audience

This document is intended to computer scientists. In particular, the document assumes that the

reader is familiar with the following topics.

Principles of security

The document does not cover the generic principles of computer security, cryptography or the

required mathematical background. Although complex, formal, explanations are present in

very few sections, an understanding of network security and cryptographic principles is

assumed.

Background reading includes references [3-6]

Computer and telecommunication networks

The mechanism operates on a computer network. Knowledge of computer communication

techniques is assumed. In particular, knowledge of the OSI model and the protocols that

operate at its lower layers is essential to follow the concepts described here. Some knowledge

of telecommunications and the related electronic engineering is also assumed.

Background reading includes references [7-10]

Desirables

In addition to the above background knowledge, knowledge about programming and

processor operation would be beneficial. If the reader wishes to understand the proof-of-

concept and its optimisations code then extensive knowledge of event-driven C programming

and processor operation is required.

8

1.5 Thesis structure

This document is organised in seven chapters each addressing a different problem in relation

to our research.

Chapter 1 introduces the research area, provides background information and gives statements

of our thesis and motivation.

Chapter 2 is a literature review of the area, which includes an overview of wireless sensor

networks, the application security on them and description of similar work. The chapter

concludes by describing our desired research direction and baseline requirements.

Chapter 3 provides the system requirements for our proposal and gives rationale for each

requirement.

Chapter 4 gives a detailed and clean design and operation the SecRose mechanism, its

components and interfaces.

Chapter 5 provides a description of the proof-of-concept implementation.

Chapter 6 evaluates SecRose against the requirements, states the level of security provision

and critically compares its security and performance with other proposals.

Chapter 7 provides further work and conclusion.

9

Chapter 2

Literature review

10

2. Literature review

This chapter presents and evaluates the existing work in the area. A generic introduction to

the role of Wireless Sensor Networks is given first, along with software and hardware. Then

the chapter discusses the security of sensor networks and existing work that is similar with

this thesis. The chapter concludes with a discussion of the baseline requirements and the

challenges of this project.

11

2.1 Introduction to Wireless Sensor Networks

2.1.1 Overview

Terminology definition

The definition of Wireless Sensor Networks can be traced in research work appearing on or

soon after 2000. The term is abbreviated as WSNs while they are also referred to as sensor

networks. The terms are used to describe a network of sensor nodes connected together

wirelessly. The definition of a sensor node was also provided in the same period but the exact

first appearance of both terms is difficult to trace.

The most popular definition of a sensor node came by a survey work from Akyildiz et al. [1]

when they said ―recent advances in wireless communications and electronics have enabled

the development of low-cost, low-power, multifunctional sensor nodes that are small in size

and communicate untethered in short distances.‖ They have also defined a sensor node to

consist of ―sensing, data processing, and communicating components.‖ The work of Akyildiz

et al., cited by a considerable number of authors, is probably the most reputable survey paper

of the area. Additionally, it was published after the field had matured and so their definitions

are considered accurate.

Purpose

Sensor networks are a technologically improved version of the simple electronic sensor

devices used in automation applications. Their main purpose is to monitor one or more

environmental parameters and then report to one or more central locations, called base

station(s) [1].

Their computational and communication capabilities widely broaden the application range of

the simple sensors that they replace. They were initially thought to be useful in military,

health and commercial applications [1]. Since then, they have been commercially advertised

as capable of working in industrial applications, building automation and asset management

[11]. An important application field that has recently become very popular is in assisting

scientific work that requires monitoring the natural environment; various scenarios include

12

bio system monitoring [12], wildfire protection [13], global warming [14] and agriculture

[15].

Characteristics

There is great debate on the detailed abilities and characteristics of sensor networks. Although

most research recognises a set of properties what sensor networks should possess, they

disagree on what the reality allows them to accomplish. The difference of theoretical and

practical limitations fuels the academic debate and recent research tends to deny previous

statements. For example Akyildiz et al. state that ―a sensor network is composed of a large

number of sensor nodes that are densely deployed‖ [1] while Gamage et al. claim that a such

network is ―mythical‖ [16].

Although authors fail to agree on defining limits, there is consensus on a core set of generic

characteristics. The characteristics listed by [1] are in agreement with both early publications,

as in [17-19] and with later work, for example [20-22]. All the above authors characterize

sensor networks as self-organising, able for in-network processing, fault tolerant and scalable.

However, despite the agreement on the concept of scalability, the actual size of a typical

network is a highly disputed property. Gamage et al. in [16] claim that a practical network

size might be one hundred nodes while [23] use examples with network sizes of 10,000

nodes.

Limitations

Every published work agrees that the sensor devices are limited in computational, storing and

communication capabilities when compared with traditional computer networks. However,

the literature does not express a homogenous definition on the exact limitations of sensor

devices.

The ultimate limitation of sensor networks is the fact that they operate on a finite power

source. This argument is extensively supported by the literature as there are publications

attempting to address the problem, for example [19, 24-28] and others that consider it a

limitation, as in [1-2, 16, 21, 29-30]. Since different power sources provide different energy

capacity [11], there is variation on offered abilities.

13

The typical sensor device that dominates the literature is the MICA2 node [11]. It offers an

8MHz CPU and communication capabilities at the rate of 38.4KBps. This device can run

TinyOS [31] and benefits from the TinySec [2] security mechanism. Much more capable [11]

and less capable devices [32] also exist. Thus, differences in capabilities are usually

associated with differences in the devices physical size as well.

Security considerations

The modern world is full of security risks and every networked computer system is a potential

target [6]. Wireless Sensor Networks are no different; security must

be provided by in order to make them suitable for a wider range of applications [33].

Many of the potential application scenarios for wireless sensor networks are either too critical

[34] or too valuable [35] to be run without an acceptable level of security. Therefore, security

can help Wireless Sensor Networks to reach reaching their full potential by making them

more attractive, a prospect that would result in fewer costs and easier use of WSNs

everywhere.

However, the limited nature of the devices is an important obstacle in providing adequate

security [28], sufficient to enable application in most environments [2]. Traditional security

mechanisms cannot operate in sensor networks as they are too demanding in resources [29]. A

new security solution has to be developed to provide an acceptable level of security with as

low as possible impact to the longevity of the sensor network.

14

2.1.2 Operational scenarios

Wireless sensor networks have been proposed for a variety of different applications [1]. This

subsection presents popular application fields and gives a brief description of representing

operational scenarios. The application fields that demonstrate similar characteristics can be

grouped into four categories: military applications, automation systems, health monitoring

and environmental monitoring. Finally, the importance of security in each of the different

application scenarios is discussed.

Military applications

Wireless sensor networks are considered suitable for military applications, since their abilities

make them attractive for C4ISRT
1
 systems [1]. Their ability to be deployed rapidly, self-

organise and then operate while tolerating possible faults was valued as a cheap alternative to

previously used military sensors.

Typical military applications assume that sensor networks are very large and aim to equip

them with methods to resist intelligent attacks by the enemy. Their ultimate target is to allow

the network to remain functional even when it is attacked. Military interests helped promote

research in WSNs and in the area of security in particular. Notably, it has been suggested that

the assumptions and requirements of military applications are unrealistic and that the limited

nature of WSNs cannot support them [16].

The most difficult requirement is to maintain the security of the network using a system that

does not trust any component. This idea posed an intriguing research question that produced

important contributions to knowledge, primarily the probabilistic key management schemes

for wireless sensor networks. Examples include the work presented in [23, 27, 36-39].

A prime example is the work of Eschenauer and Gligor [37] where the authors specifically

designate a solution suitable for military sensor networks. They assume a wireless sensor

network which may be deployed in hostile environments, consists of tens of thousands of

nodes, its size is dynamically scalable, might be subject to eavesdropping attacks and most

importantly; its limited nodes are susceptible to capture and intelligent manipulation by

1
 C4ISRT refers to the concept of Command, Control, Communications, Computers, Intelligence, Surveillance

and Reconnaissance.

15

adversaries. The authors provide a solution that limits the impact of attacks to a small subset

of the network.

The security requirements of such applications are rather obvious; with lives and national

interests at stake, the military cannot rely on a system that the enemy can disable. Current

surveillance systems like satellites and drones are expensive and the WSNs promised a radical

decrease in costs. If WSNs were proved equally secure and reliable, they could replace or

complement existing surveillance methods.

Automation systems

This category includes applications that utilise a wireless sensor network to monitor the

condition of a particular structure or machinery. Possible application fields include industrial

applications and building automation. There are two examples to illustrate their

characteristics.

The first example is [40], where BP uses a sensor network to monitor the vibrations of

rotating machinery onboard a tanker ship. Vibrations are known to be representative of the

condition of any rotating machinery. Therefore, BP can remotely monitor their equipment and

plan servicing only when required. Consequently, both servicing costs and valuable port time

is saved. The wireless nature of WSNs allows BP to retrofit this system on any of its tankers

without special planning.

The second example, described by Huang in [41], is a sensor network that monitors

temperature, humidity and airflow in the rooms of a building. Because of the accurate

monitoring, the system is able to fine-tune the air conditioning parameters to save energy and

produce a more pleasant environment.

These applications share a common set of characteristics. These sensor networks are:

 operated within a controlled environment, in a man-made structure

 composed of a relatively small number of nodes

These similarities are usually present in all automation applications. WSNs provide a modern

solution to the problem of automation, which was tackled in the past by utilising wired

sensors, e.g. thermostats, which reported raw data to a central system. The central location

then analysed the data, made decisions and possibly engaged into corrective action. In the

16

sensor network paradigm, the nodes analyse the gathered data and the central location now

focused in utilising the information rather than obtaining it. The wireless nature of WSNs is

cheaper and allows for much faster and easier deployment, especially in retrospective

installations.

BP expects sensor network applications to make a high impact in the Industrial sector in the

coming years [35] while Rabaey et al. claim $55 billion USD annual savings should air

conditioning monitoring be improved by the use of wireless sensor networks in the US [42].

Those statements, accompanied with the low cost and ease of deployment, suggest that the

generic market of commercial applications for wireless sensor networks will thrive in the

future.

There are pragmatic reasons why security must be provided to automation applications,

regardless of their importance. First and most importantly, any system might be attacked by

anyone for no obvious reason [6]. Secondly, there are increasing concerns that an attack

aiming to facilitate espionage or sabotage might happen in industrial automation systems and

if successful it might incur costs and disruption[43]. Moreover, sensor networks are often

parts of bigger systems. If they are not secured, they are a weak link risk to other systems.

Finally, security-aware organisations are unlikely to invest into systems that are not properly

secured, regardless of the system‟s role. Security might act as catalytic influence when

deciding to deploy a WSN. Consequently, security makes WSNs more marketable and gives

them a higher chance of adaptation by companies.

Healthcare

There is a range of sensor network applications directly applicable to the health and fitness

sector. Usually such applications operate in the Personal Area Network (PAN) domain, as

they are wearable devices utilised to monitor the biological condition of a patient or an

athlete. Although there are many genuine health applications, most of them are commercial

products and are not associated with published academic work. These products are outlined in

[34].

17

References [34, 44] describe healthcare WSNs with the following characteristics:

 they operate in a relatively safe indoors environment

 the network consists of a small number of nodes, usually less than five

 they have to be small enough to be comfortable to wear

 they are not limited by power as their user is able to replace the batteries

An example health application is the one described by Milenkovic et al. [44]. Their system is

a wearable sensor network that has to be secure, reliable and interoperable. Its objective is to

allow patients to live in their home while allowing the hospital to monitor them constantly.

The system consists of few very small sensor nodes, a personal server and a base station. The

patient wears the small sensors and the personal server while the base station can be located

anywhere in the house as long as it is connected to the hospital via the internet. The small

sensors report on the higher-capability personal server, which in turn transmits the

information to the base station. From that point, information can be transmitted to the

hospital. This solution allows the doctors to monitor the patient while they enjoy the comfort

of their home.

Any health record is considered private in many jurisdictions and it is protected by

appropriate legislation. For example, health condition is considered as “sensitive personal

data” by the U.K. Data Protection Act 1998 [45]. Healthcare sensor networks might generate

information classified as health records and thus they must conform to these legal

requirements. On the other hand, fitness systems might not require security but high-end

fitness systems might have security enabled as they can be used for health monitoring as well.

Environmental monitoring

This category includes various applications that aim to monitor some aspect of the natural

world. Examples are applications intended to monitor bio systems [12], wildfire [13], the

effects of global warming [14] and agriculture [15].

The first example, known as the Great Duck Island project, is intended for natural habitat

monitoring in general and more specifically to monitor “seabird nesting environment and

behaviour” [12]. The nodes on this system are deployed in seabird nests to monitor incubation

and other breeding patterns. They also aim to correlate the bird‟s behaviour with other

environmental parameters, such as temperature.

18

In the second example, the authors describe a wireless sensor network deployed in a forest

[13]. The network monitors temperature and humidity and reports to other components of the

system. This information can then be used to determine the risk of fire breaking out while

temperature itself is a clear indicator of an actual fire ignited in the forest. The authors

describe a system capable of accurately reporting the location of a fire.

The third example is part of a scientific project that “focuses on sub-glacial bed deformation”

[14]. This system uses sensors deployed under the moving glacier at a depth of 50 to 80

meters. Once the custom sensors were deployed, they were non-recoverable and their

longevity would rely on their battery. The sensors monitored temperature, pressure and tilt

information.

The final scenario is a representative of systems that might be used in farms to assist in

regular activities like farming and cattle grazing. The systems might consist of either static

sensors that monitor ground moisture or mobile sensors attached to livestock. The authors

describe systems for both objectives and there are companies that selling such systems

commercially [11].

These applications are quite different and each has its own problems and requirements.

However, they share a set of common characteristics:

 the network covers a large geographical area, nodes might be separated by significant

distances

 the nodes are deployed in the physical environment, exposed to harsh conditions

 the network is expected to function for a large period of time

 the individual nodes might remain in network isolation for months

 the nodes might employ data aggregation and batch reporting techniques

 the network needs to be reliable and robust

 the network might sleep for long periods of time before it activates and reacts to

events

 the network needs to be remotely managed

 the nodes might be fully mobile

These common features are usually dictated by the nature of the environmental monitoring

activity. In the glacial monitoring application for example, the difficulty of deployment and

19

the non-recoverability of the sensor nodes required them to remain in operation for as long as

possible.

It is evident that wireless sensor networks might be used in a range of environmental

monitoring applications for scientific, welfare or Health & Safety reasons. Since the current

environmental concerns require even more remote monitoring capability, sensor networks will

probably become a tool to scientists of other disciplines.

Many of these applications require security for reasons similar to the automation systems

discussed before. For example, security is a perfectly justifiable requirement for wildfire

monitoring WSNs. However, others applications might not seem to require security, for

example seabird behaviour monitoring. Security is a desirable requirement even in these cases

since any insecure system might be attacked even if there is no apparent reason or gain [6].

Provision of security in all applications would increase the confidence in the reliability of

WSN-generated information.

2.1.3 Hardware platform

This subsection discusses the hardware in use for wireless sensor networks. The

computational and communication abilities of hardware, the physical structure of sensor node

hardware and the way that they are organised are discussed. This subsection concludes by

analysing the implication of the hardware‟s abilities and limitations to the security of sensor

networks.

Capabilities

One key advantage of wireless sensor networks against conventional sensors is their ability to

process data and wirelessly communicate information only when that is required. In order to

facilitate their advantage, sensor devices are equipped with a modern but lightweight central

processing unit (CPU), and a radio communication component [1].

The CPU of a sensor node acts a central decision maker, controller and coordinator for all

components of the device [1]. As discussed in 2.1.4, the CPU might be limited in

computational power but it is rather complete in features and capable of running miniature

20

operating system. A variety of microcontrollers has been used in sensor devices. Their

computational capabilities range from 16-bit 8MHz[46] to 32-bit 419MHz processors [47].

In addition, the hardware provides temporary and permanent storage. Typical nodes like the

MICA2 node offer 4KB configuration EEPROM, 128KB program flash memory, 512KB

serial flash memory [48].

Essentially, the sensor device is a very small computer with processor, memory and radio

acting as input/output interface. The devices have to be minimalistic because they depend on a

finite power source but current research is implementing features found on larger devices.

Examples of such features are; security [2], fault-tolerance [49], scalability [50], multi-agent

systems [51] and others, as described in [1]. In addition, the CPU allows for energy savings as

demonstrated in [31, 52]. The radio component on the other hand acts as the input/output

interface and enables devices to form a network.

Components and organisation

Sensor hardware follows a modular design where individual components form tailored sensor

nodes suitable for all possible usages. There are four types of modules, as defined by [1];

 main boards; provide computation, communication and storage

 sensing boards; host analogue or digital electronic sensors

 connectivity boards; provide other than radio connectivity like USB

 power sources; provide energy

The typical sensor node consists of a sensor board, a sensing board and a power source [53].

The exact components are determined by the role of the node in the network. Some nodes

might lack a sensing board or benefit from connectivity boards or auxiliary power sources.

The components are connected in the form of a stack and enclosed in a case occupying about

100cm³ of volume. The sensor devices might utilise any existing sensing technology; from the

simplest microphone, to complex cameras or anything else technology can sense [1, 11]. For

an example sensor, see Figure 1.

Each main board consists of four basic components that are connected together using one or

more PCBs [1]. The microprocessor and storage components are usually integrated in one

chip while the radio component might be separate. Figure 2 illustrates how components on

different modules interface with each other. The sensing unit marks components hosted in the

21

sensing board, the processing unit and the transceiver are hosted in the main board. Primary

and auxiliary power sources are also illustrated.

Future sensor nodes might integrate all the

components in a single chip, as shown by Khan et

al. in [32].

Figure 1: an advanced sensor node.

The picture illustrates the sensing board, which

includes a camera, the sensor board in the middle

and a connectivity board on the bottom. The scale

of the picture is close to real life size.

Figure 2: component organisation. Figure is based on similar figure from [1]

22

Security implications

As shown in the hardware explanation and examples, the devices are limited in their abilities

but they are complete computers but they cannot handle large amounts of data, they are very

slow in their processing and extensive utilisation of resources reduces their lifetime.

Therefore, any design of a security protocol must consider three important points in their

proposal; the amount of permanent or temporary memory required to operate, the time it takes

for the security computations to conclude and the energy overhead introduced.

Traditional security mechanisms often require ability to apply complex processing on large

amounts of data. As explained in [2, 28-29], sensor devices lack storage capacity. In fact, they

cannot even hold variables of sufficient size to accommodate a traditional security

mechanism[29] like the Public Key Cryptography described by [54]. The security components

that can be utilised for WSN use have to be selected while taking memory requirements as a

criterion.

Another problem with traditional security is the processing overhead that it introduces.

Although a sensor network‟s processor is capable of executing any calculation, it cannot do so

fast enough. Many sensor network applications would require rapid response [13] from the

sensor network and more significantly, some network communication methods are based on

timeouts, they cannot operate if normal latency exceeds a certain threshold.

A sensor node might eventually execute a computation and might manage to send the

information over its network but continuous execution of difficult computational tasks would

deplete its resources and result to a disabled network. A MICA2 node running on full power

would only last for 2 weeks before its batteries dry out [2]. Therefore, effort must be made so

that security designs o not deplete the battery source as similar efforts were done for other

systems of a WSN, for example [1, 19, 24, 31, 55], accounts for energy consumption in one

way or another.

23

2.1.4 Software platform

Sensor networks are miniature computers that can run software. There is usually an operating

system and an application which runs on it [1]. The software is often developed using PC

simulators. This subsection describes the operating systems, the simulators and the security

challenges associated with operating systems.

Operating systems

The Operating System (OS) provides the underlying mechanisms that allow the applications

to interact with hardware. The purpose of the OS as defined by [31] is;

 manage the limited resources of the device

 perform the requirements of the sensor network in real-time

 balance modularity, flexibility and optimisation

 provide a low power platform to run applications

In order to achieve its purpose, the OS provides reusable APIs to the applications. The tasks

are executed via the APIs as desired by the application, allowing it to become the main

component that controls the device‟s behaviour. This is a typical design found in operating

systems suitable for low end devices, like the TinyOS [31]. High end devices might run

different operating systems that allow for multitasking and are therefore based on different

designs [56].

Although a number of operating system designs have been proposed, for example [56-58],

TinyOS enjoys the highest popularity by researchers, organisations and commercial

distributors, references [1, 12-13, 15, 28, 31, 40, 44, 59] directly or indirectly endorse

TinyOS. It is a flexible, application-specific operating system for sensor networks. It is a

component-based, event-driven operating system written in nesC, a dialect of C. TinyOS

provides a lightweight networking architecture featuring Integrated-Layer Processing, power

management, hardware/software transparency, precise time synchronisation and routing.

Simulators

Due to the nature of wireless sensor networks, development of complex applications might be

a difficult process. Testing small changes in the applications might require many hours of

preparation and expensive hardware [60-61]. WSN simulators have been developed to tackle

these problems. A simulator attempts to represent the behaviour of the sensor hardware on a

24

personal computer in a manner that would assist research on sensor networks and

development of applications.

As discussed in our survey paper on WSN simulators [61], there are many simulators

available to potential developers. The present research has concluded that the TOSSIM [62]

simulator is suitable for development stage and the Avrora [63] simulator should be used for

evaluation purposes.

Security implications

The existence of a miniature OS is advantageous and does not pose any problems far as

security is concern. In fact, the existence of the OS helps in providing efficient security as

much as it helps with other WSN applications.

2.1.5 Networking

This subsection discusses the networking capabilities if hardware and how they are utilised by

the TinyOS operating system to achieve wireless communication. The topology of sensor

networks is also described. Finally, the security implications of the networking model of

WSNs are analysed.

Network capabilities

As explained before, the sensor devices are miniature computers and the radio component acts

as an input/output interface. The combination of radio with CPU and storage creates a

network. Sensor networks benefit from features such as medium sharing [2, 64], self-

organised routing [65] and packet division [64]. These features are similar to what is found in

all computer networks, only greatly optimised and miniaturised for energy efficiency and

better suitability on a constrained environment.

A variety of radio capabilities is observed. The exact details of radio operation and medium

utilisation are defined by the operating system
2
 but the OS may or may not follow an

international communication standard.

2
 Discussed in 2.1.3.

25

Low-end devices use customised communication methods designed for low power

consumption. For example, the popular MICA2 node [48] provides a radio component able to

communicate at 38.4KBps but relies on the operating system to define the method of medium

access.

High-end devices with increased abilities have adapted existing communication standards to

improve compatibility, such as Bluetooth [66] and IEEE 802.15.4 [67]. For example, the

Imote2 [47] node is capable of 250KBps data rate and compatible with IEEE 802.15.4.

Typical network topology

Wireless sensor networks follow loosely defined rules on network topology and deployment.

As explained by [1] and illustrated in Figure 3, the networks are “usually scattered‖ in a

―sensor field.‖ Alternative topologies have also been identified, for example [19, 44, 68].

Nevertheless, each node performs a predefined role; it can be a sensor node, a cluster head or

a base station.

The network design and the application‟s specifics dictate the exact role. Sensor nodes are

devices that act as data generators and they need to communicate this information with the

base station. Since the base station is often out of range, the sensor nodes can utilise

neighbouring sensor nodes or cluster heads [19] to propagate their information [1].

An important role in a wireless sensor network is the base station, or sink. They act as a

gateway between the wireless sensor network and other devices or computers. In order to

facilitate this functionality, they are equipped with appropriate hardware and software.

26

Sink

Task Manager
Node

User Sensor Field
Sensor
Nodes

Internet &
Satellite

E

D
C

B

A

Figure 3: a typical sensor network. Based on similar figure from [1].

Security implications

The devices are capable of communicating information in relatively small packets [29]. They

cannot transfer data fast enough [28] and the act consumes a disproportionate amount of

resources [69]. In addition, the network is prone to various DoS-type attacks [33], including

routing attacks, and it may be unreliable[28]. Therefore, every security protocol must be

designed to work with small packets and be resilient. Ultimately, they have to be energy

efficient.

Security mechanisms require inclusion of additional information to function. For example,

TinySec[2] introduces a 5-byte overhead compared with TinyOS. Assuming maximum

payload of 29 bytes, the security overhead is about 12%. This affects resiliency, energy

efficiency and latency. In contrast, if the packet could carry 200 bytes payload then the

overhead would be 2.5% and its impact would be equally smaller. Clearly, the small packet

size of WSNs affects the operational margins of security protocols.

Resiliency will help the network to cope in cases where reliability issues cause the network to

malfunction and when the network is under DoS-type attacks. However, resiliency is usually

achieved by sending additional information, like parity-based error-correction[67] and replay

of badly transported information [64]. Resiliency is therefore a trade-off with energy

27

efficiency and security mechanisms that operate at the transportation level have to account for

this matter.

Security mechanisms have to select an appropriate trade-off between resiliency, overhead and

level of security provision. Success in this problem achieves energy efficiency and ultimately

increases the longevity of the network and widens the application possibilities. For these

reasons, security mechanism to opt to use computational resources instead of radio because

every bit transmitted is equivalent in energy costs to 800-900 instructions [69].

28

2.2. Security in Wireless Sensor Networks

This section explains what security is, its requirements and how they are applied in WSNs. A

brief overview of security, and how it is applied in Wireless Sensor Networks, is given. Then

the threat model is presented and the section concludes by explaining how different research

groups apply security on different levels.

2.2.1 Overview of security

Definition

References to security in this work are shorthand for Information Security. The U.S. Code

Collection [70] defines the term Information Security to mean “protecting information and

information systems from unauthorized access, use, disclosure, disruption, modification, or

destruction.” The same document defines that Information Security should provide;

 Integrity; “guarding against improper information modification or destruction, and

includes ensuring information non-repudiation and authenticity”

 Confidentiality; “preserving authorized restrictions on access and disclosure,

including means for protecting personal privacy and proprietary information”

 Availability; “which means ensuring timely and reliable access to and use of

information”

The above is an idealistic description of what a secure system should provide. Practice has

shown that computer systems that are operated by humans cannot fully meet the requirements

to be unconditionally secure. For this reason, a system‟s security is considered satisfactory

when it makes the system computationally secure. Various degrees of security like

unconditional security, computational security, ad-hoc security and others are described by

Menezes in [3].

Despite the limitations on reaching unconditional security, an acceptable degree of security

can be provided, bit there will always be trade-offs between the desired security provision and

the practical limitations. Despite the fact that it is more correct to refer to security with

relativistic expressions like degree of security or level of security provision, when a system

provides an acceptable degree of security, it is said that this system is secure. The degree of

29

security a system must provide in order for it to be considered secure varies greatly and

depends primarily on the aim of the system and its limitations.

Importance

Security is rapidly becoming an important part of the modern world. Be it protection against

national threats or safe monetary transactions, security is important and here to stay [5].

Wireless Sensor Networks are no different from other computer networks in the level of

security that they must provide. The literature that highlights the importance of security of all

computer systems;

 every networked computer system is a potential target [6]

 security will make WSNs suitable to a wider range of applications [2, 5, 33]

 security and privacy might be legal requirements [45]

 applications may be critical [34] or valuable [35] enough to justify security

Each of the above references makes clear that the type of system is irrelevant to the security

requirement.

Therefore, the security of WSNs has to be regarded as important as any other security system.

The associated problems must be treated equally and the final solution must provide a security

level that is comparable with other systems. After all, sensor networks are often parts of larger

systems. If not equally secured they would become weak links on these systems.

Basic requirements

The aim of security in wireless sensor networks is no different that the aims for any computer

network. As defined by [29], the basic requirements of a secure sensor network would be;

 Data confidentiality; information stored or in transfer on a sensor network should not

be leaked to adversaries

 Data authentication; messages must be authenticated so that trust on them can be

earned. Upon reception of a message, the receiver must be able to determine to trust or

reject it

 Data integrity; a trust requirement is that a receiver must be able to determine if a

message has been altered by an adversary while it was in transit

 Data freshness; messages must demonstrate to the receivers that they are not replays of

older recorded messages

30

These requirements comply with the generic information security definition and they

represent what a basic security system should provide. Provision of these requirements in a

sensor network would protect it from the attacks described in the threat model
3
.

Desired level of security provision

Different applications have different security requirements; there is no level of security

provision uniform for all cases. However, analysis of the literature points to the minimum

level of acceptable protection against security threats.

The level of confidentiality is directly related to encryption strength [3] which is determined

by the effective key length [4]. Acceptable key lengths are provided by various organisation

and researchers. Since they are related to technological advances, they differ for each calendar

year. In reference [71], NIST proposes that that 80-bit keys should not be used after the year

2010, a fact supported by [72]. In addition, this argument is indirectly supported by [73] in

which CNSS stated in 2003 that 128-bits encryption is “sufficient to protect classified

information up to the SECRET level.‖

Authentication and integrity provides an assurance, or confidence, that the messages have not

been forged or altered while in transit. It is suggested that the level of this assurance must be

high enough to match the provisions of confidentiality [3].

As explained by [29], there are three levels of freshness; no freshness, weak freshness and

strong freshness. References [29, 31] agree that most WSN applications require weak

freshness and that it is up to the individual application to provide strong freshness when

needed.

Since WSNs are limited, they should only be matching the minimum level of security but one

might argue that even this is too high and unnecessary. Such argument does not properly

consider the importance of security as discussed previously. In specific, it treats WSNs as less

important parts of a system or as compelled to be unacceptably insecure. Nevertheless,

attempts to provide WSNs with that level of security by a number of researchers are seen in

the literature[30, 74].

3
 Will be discussed next, in 2.2.2.

31

2.2.2 Threat model

In addition to the basic requirements, the individual threats need to be accounted in order to

provide the desired level of security. This subsection describes what these threats are, how

they are carried out by attackers and what the possible evasive solutions are. The threat model

is discussed and proposed countermeasures are explained. Some of these solutions are more

closely connected to this research and thus discussed in detail in the next section.

Attacks on confidentiality

The wireless communication medium that sensor networks use to communicate implies that

any receiver in range is capable of reading all radio traffic [33]. Therefore, data must be

sealed from eavesdroppers and this constitutes the requirement of confidentiality, which is

met via encryption. Sufficiently complex encryption schemes are implemented in WSNs with

care, as strong encryption methods are associated with high computational overheads [29].

Nevertheless, most systems that attempt to achieve confidentiality introduce encryption

schemes with varying computational difficulty. Attacks on confidentiality are known as

cryptanalytic attacks, discussed in [3], and are characterised by a level of required

computational complexity before they conclude by revealing the encryption key.

The most known cryptanalytic attack is the known-plaintext attack, popularly known as brute

force attack. It involves obtaining a plaintext and the associated output ciphertext. By

knowing two of the three inputs of the encryption function, the attacker can tries every

possible key value until the correct key is revealed. Brute force attacks have a complexity

equal to the effective key length of the encryption function. Longer keys provide greater

confidentiality.

Other confidentiality attacks aim to reduce the level of computational complexity required by

discovering a fundamental flaw in the mathematics underlying the encryption function. There

are many types of cryptanalytic attacks in this category [3]. Cryptanalytic attacks usually

require a number of conditions or pieces of the cryptographic input or output data to be

acquired before they can be executed [3].

Cryptanalysis of encryption functions is the ongoing process conducted by the cryptographic

community that aims to discover cryptanalytic attacks in existing algorithms. Using an

32

encryption function that is well analysed by the cryptographic community is a way to further

protect the confidentiality of a secure cryptosystem.

Attacks on authentication and integrity

Communications via an open wireless medium allows attackers to alter or inject messages

into the medium [33]. These attacks involve utilising a carefully crafted and powerful

transceiver to overwrite the radio signals emitted by the network devices. Although it requires

a skilful attacker, it is easier to conduct than a brute force attack on confidentiality, as it does

not require great computational ability.

The efficient solution to this problem is to employ a cryptographic hash function to protect

messages [3]. The function accepts the sender‟s identification information and the data as

input and outputs a cryptographic signature. This is then appended to the data in the form of a

Message Authentication Code (MAC). Each signature is associated with a probability of

failure, known as confidence. Depending on the kind of hash function, the length of the input

data and the amount of unique possible output, the exact probability that the protection might

fail can be determined.

The hash function might be derived by the encryption function itself, as it was for example

proposed in TinySec[2]. Under this solution, a possible attempt to inject authenticated

messages or to alter existing messages would require knowledge of the authenticity

mechanism‟s key, which in turn requires a cryptanalytic attack. Such authentication

mechanism is believed to be as secure as the encryption function upon which is based [75].

Attacks on routing

Routing security is not a direct threat since most routing protocols can be protected if the

security requirements for message exchange are met. However, many attacks become

available if the security mechanism fails to protect the routing messages. These vulnerabilities

are clearly demonstrated by Karlof et al. [76]. The majority of routing attacks is briefly

described here. Many of the routing attacks described here might be classified as Denial of

Service (DoS) attacks in the literature. Other DoS attacks are further discussed later.

If allowed to spoof, alter or replay routing information, an attacker can manipulate the routing

table with bogus routing information. Successful manipulation allows the attackers to create a

33

number of problems including routing loops, attract or repel network traffic, extend or shorten

routes, generate false error messages, partition the network, increase end-to-end latency etc.

Black hole and Sibyl [77] attacks aim to place a malicious node inside the network. This node

will be able to choose whether to forward or drop a packet; it will therefore conduct a

selective forwarding attack. The aim of the attacker is to provide a location on the network,

which would look extremely attractive to the routing protocol and thus trick it to route traffic

via the area under attack. Usually the method involves compromising a node or injecting

nodes in the network. It therefore requires either insecure hardware or weak authentication.

A wormhole attack [78] creates and provides an actual high quality route between two points

on the network using a communication medium normally unavailable to a sensor network.

This route would quickly attract traffic and the attacker can then manipulate traffic in the way

they choose. This attack requires the attacker to be able to inject packets or nodes in the

network.

The HELLO flood attack utilises a powerful transceiver to broadcast a HELLO message that

will trick distant nodes to believe that the attacker‟s node is neighbouring them. A laptop-

class attacker can convince the whole network that they are a preferred route via a HELLO

flood attack and thus it will make other attacks possible. This is another attack that requiring

ability to inject nodes.

The final potential attack documented by [76] is acknowledgement spoofing. The attack

involves recording and then replaying a legitimate acknowledgement message at the attackers

will in order to pretend that a destroyed link is in good working order. That implies that the

attacker can destroy nodes and hide that fact from the network. In addition, the attacker can

trick the routing protocol and make it think that low quality routes are actually healthy routes.

That would lead to higher energy consumption and increased latency. This attack requires the

ability to inject acknowledgement messages.

Denial of Service attacks

The term Denial of Service (DoS) attack is loosely used to describe attacks that cause

complete or partial system failure. Usually, the attacks involve sending a powerful

34

transmission in order to jam the radio channel or to confuse the medium access control

protocol.

Brutal DoS attacks involve completely blocking the communication medium by causing

interference. The low power radio capabilities of sensor networks mean that it is relatively

easy to create a portable transmitter with enough power to jam the network [76]. There is no

easy defence against such attacks [28], although some groups are working on solutions given

particular assumptions [79].

A survey of intelligent attacks and countermeasures is provided by Wood and Stankovic [80]

who describe DoS attacks that do not rely on raw power but flaws in the design instead. It

might be possible for an attacker to inject a small, maliciously structured message that would

exploit a design vulnerability of the system. The target of the attacker is to trigger

asymmetrical resource usage, in the sense that the attacker can cause a great problem to the

system with little effort on their part.

Physical attacks

Secure systems are vulnerable if an attacker obtains physical access in the hardware that hosts

the system. This is as true for sensor networks as for every other system. Initial research in

sensor networks suggested that they would be vulnerable to physical attacks including node

tampering and reading of memory contents.

Such potential attack would be catastrophic for a secure cryptosystem that relies on keys as

those have to be stored on memory and thus revealed to the attacker in case of node

tampering. It is therefore essential to design systems that would sustain physical attacks as

well. Research in this area has taken many directions depending on different assumptions
4
.

Attacks on single points of failure

By definition, every system will have a component, which would be weaker than the other

components. Examples of such components in wireless sensor networks might be cluster

heads and base stations. A carefully designed secure wireless sensor network should disclose

as little information as possible on the location of such singe points of failure. Additional,

non-physical, points of failure might involve poorly designed components of the system.

4
 This topic is further discussed in subsection 2.3.1.

35

The work of Deng et al. [81] analyses the security of the base station viewing it as a single

point of failure. There are other examples in the literature that refer to the importance of

single points of failure but very little published research considers just that.

2.2.3 Application of security

Security is a large area of research with lots of different branches. In sensor network security,

there are at least three major branches: key management, data transportation security and

routing security. There is also work that cannot be categorised, like hardware security or DoS

attack prevention.

Each of these research areas attempt to solve security problems found at different levels. A

uniform level of security must be provided to achieve effectiveness in the final solution. Any

finalised security system will have to either be a combination of solutions from different areas

or at least be compatible with other work. There may be no academic work assessing how

various security systems could be combined to form a uniformly secure sensor network.

Key management

Key management is an important part of security in all computer networks [3]. In sensor

networks, the term refers to the process of key agreement in a protected from adversaries

method. In sensor networks, these keys are indented for use by the security mechanism of the

data transportation layer.

Most key management schemes assume that that no component of the system can be trusted

under almost any circumstance. These solutions expect that at least some component will be

compromised and then used to launch an attack on the system. Sensor node hardware is

believed to be susceptible to compromise, a problem known as node compromise.

Solutions found in the literature aim to limit the impact of a node‟s hardware compromise.

There are relatively old [23, 82-83] and relatively recent [20, 84-85] proposals based on this

assumption. The solutions might be categorised by type in probabilistic solutions and

location-aware solutions. Other types of solutions and hybrids also exist.

36

Data-transportation layer security schemes

This research area attempts to provide security for the process of transporting messages

between the sensor nodes. The solutions apply their security features on the sensor network

equivalent of the OSI data transportation layer [66]. The systems are responsible for providing

security properties like encryption and authentication for the data exchanged information.

These schemes are focused into providing energy efficient security and thus they rely heavily

on the security of other components. Importantly, they ignore hardware and routing security.

These problems are not considered relevant to this research area.

This research area is relatively more recent than other areas and there are not many well-cited

solutions. There are no distinct categories in this research area.

Routing security

Routing refers to how a sensor network is organised and how available message paths are

defined. This process involves exchange of information which if not secured might enable

DoS attacks.

There are a number of proposals tackling the generic routing problem [17, 24, 65, 86-89] but

most research is focused on providing energy-efficient routing. Surprisingly and despite the

fact that most routing protocols seem vulnerable [76], very few articles consider both security

and efficiency of routing.

Other areas

There are also open security questions in hardware security, prevention of denial of service

attacks, management of points of failure and most importantly: cryptanalysis and

benchmarking of encryption algorithms. All these potential problems are related to the

security of wireless sensor networks but not directly related to this research.

37

2.3 Related work

This section describes and critically analyses important work seen in the literature that relates

to the proposed system. The proposal is primarily a security mechanism acting on the data

transportation layer but it includes a key management system as an important part of the

solution.

This section starts with an overview of the research area, explaining how security is applied in

wireless sensor networks. Then it presents work that is both important and directly related to

this proposal; key management and data transportation layer security schemes.

This section concludes by discussing routing security and other work, which is related to

security in sensor networks but not directly related to this proposal, like routing security and

other work.

2.3.1 Key management schemes

This subsection presents established key management schemes found in the literature.

Probabilistic key management

Probabilistic key management schemes work by clustering the network into virtual groups of

nodes. Nodes in a group share the same security state but groups benefit from different states.

This design limits the impact of node compromise to affect only its group instead off the

entire network. The way distinctive groups are created and managed is what differentiates the

solutions. Most of these proposals assume that the sensor network is large and dense.

The work of Du et al. [23] is one of the oldest and probably the most cited. They have

described a system in which nodes are pre-loaded with keys randomly selected from a large

pool of keys. The pool of keys has to be larger than the size of the network but the number of

keys loaded is much smaller than that. The density of the network, i.e. how many neighbours

a node will have on average, defines how many keys should be loaded in each node. For a

given the pool size, network size, density and number of keys loaded on the nodes, the

38

probability of two neighbouring nodes sharing the same key can be calculated. A share

probability greater than one guarantees that the vast majority of node pairs will be able to

discover a common key loaded on both ends of the pair and secure communication can

commence. On the other hand, attackers who compromise one node can only obtain a limited

number of keys, which does not allow them to intercept the communications from the whole

network.

A similar but more efficient approach is proposed by Pietro et al. [84]. The main difference is

that nodes are loaded with keys from the pool while obeying a mathematical relation, which

allows all nodes to know in advance which keys are loaded on every other node. This is done

with the help of a pseudo-random number generator, which accepts the node ID as seed,

effectively selecting keys using the node‟s ID as a selection criterion. Therefore, anyone who

knows the node ID also knows the keys that are loaded on the node and thus nodes know in

advance which key to use for communicating with another node, without the need of a key

agreement process, saving key-agreement radio communication overheads.

Location-aware key management

Discovering the physical location of a node is rather straightforward for advanced nodes that

incorporate GPS receivers in their sensing board. This information is a valuable asset, which

can help improve not only efficiency and information gathering but security as well. The

following are a set of different proposals that enhance the security assuming that the

network‟s physical topology is known.

The authors of [82] claim that by using location awareness they can achieve graceful

degradation of network performance while nodes are gradually compromised. The method

works by dividing the deployment area of the network in a virtual grid. Each cell of the grid

may contain some nodes, which have a certain relative position on the network and use keys,

which are shared only by their neighbours to communicate. The grid is determined by using

the range of the nodes to identify which nodes are nearby and then the cell keys are derived

from a master key, which is in turn deleted. If a potential attacker compromises one node in a

cell of the grid, they only take control over that cell, instead of the whole network. More

compromised nodes mean more compromised grids as well but the process is gradual and not

destructive after a certain threshold of compromised nodes is reached.

39

The work of [20, 85] relies on robots or robot-assisted manual determination of node location

and of the keys that will be loaded in the nodes. After the nodes are randomly scattered in the

environment the area is traversed by robots who note the location of the nodes and load keys

on them using rules defined by the method. The system can provide highly enhanced security,

even compared to public key cryptography but unfortunately, it involves the difficult

requirement of utilising robots.

Other proposals

The literature includes proposals that are simpler that those discussed previously but still

expect network hardware to be insecure. An example is provided here for completeness.

The proposal of Zhu et al. [83] works by categorising types of messages, and security

requirements of these messages. The authors distinguish four types of messages and they

establish four types of keys:

 an individual key shared between each node and the base station

 a pair-wise key shared between other nodes

 a cluster-key shared with multiple neighbouring nodes

 a global key shared by the whole network

They also provide a protocol for weak local broadcast authentication, based on the use of one-

way key chains. The authors claim that they can use a master key for few seconds before an

adversary can capture a node and obtain it. They use this key immediately after deployment to

involve a simple handshake and then they derive a unique pair key using the information

exchanged in the handshake and the master key. Finally, they erase the master key. After

initial negotiation and agreement on the pair keys, the authors build upon this secure platform

to share all the other keys they define in their mechanism.

Discussion

The hardware‟s insecurity assumption that leads to the development of complex key

management schemes has been disputed in other work in the literature. There is strong

evidence that the assumption is both unrealistic and too extreme for pragmatic wireless sensor

networks. Notably, Gamage et al. [16] have strongly expressed their objections to both the

realism of the assumption and the feasibility of systems that attempt to accommodate it. In

40

addition, the work on references [90-92]
5
 indicates that hardware can be secured, effectively

solving the problem of complex key management.

In addition, even if complex key management is adapted, the sensor network will ultimately

fail. Complex key management schemes can only delay the ultimate failure of the system and

maybe allow for more time for corrective action to take place but they cannot infinitely do so.

Therefore, complex key management will eventually fail as well.

In support to the above arguments, there is a clear tendency to ignore this problem by many

other authors [2, 21, 30, 93-94]. This research sides with these authors and chooses not to

actively seek a solution to the supposed hardware security problems.

Implications

Developers of wireless sensor networks are likely to agree with Gamage et al.[16], that

complex key management is not necessary. However, there are few alternative, more simple,

options, for example [83] which is probably too simple.

There is no key management mechanism in between the two options. A mechanism that

would;

 not use the same key for large groups of nodes

 automatically change keys when they are likely to become a security liability

 keep its state secret and operate without leaking information over the radio

 not require storing large numbers of keys on the sensor nodes

Such hypothetical simple key management system would be less complex than other key

management systems while it would provide better security than lack of key management. It

would also require fewer resources than complex key management systems.

One might argue that data-transportation layer security mechanisms do not need to provide

key management as this can be done at application level. Therefore, provision of a key

management is unnecessary. However, a different key management system means that the

cryptosystem is not designed comprehensively; it relies and trusts the security of other

subsystems and it may therefore be inconsistent.

5
 Discussed in 2.3.4.

41

Consequently, the data transportation layer security schemes in references [2, 21, 30, 93-94],

which are further discussed in the next subsection, might not perform securely if they are used

in conjunction with the wrong key management scheme.

2.3.2 Data transportation layer security schemes

This subsection presents the three established data transportation security schemes found in

the literature. The solutions are presented in chronological order; SPINS, TinySec, MiniSec

and SenSec. These mechanisms form the basis of comparison for this proposal, which is also

a security mechanism for the data transportation layer.

The SPINS proposal

SPINS [29] by Perrig et al. published in 2002 was the earliest attempt to evaluate and

implement secure wireless sensor networks. The work provided two protocols, a network

encryption protocol named SNEP and µTESLA, an authentication protocol. At the time of

development, sensor networks were expected to suffer from unrealistically low resources and

thus the authors discuss if a secure sensor network is even a realistic target.

To facilitate the realism argument, the authors list a set of requirements that a system must

fulfil in order to be regarded as secure
6
. Briefly, they are confidentiality, authentication,

integrity and freshness. They define that nodes should never be trusted, they rule out public-

key cryptography as an option and then they proceed into describing their protocols.

From an operational point of view, the authors identify base station to node (broadcast)

communication as the fundamental communication primitive but they also distinguish node to

base station and base station to node communication as possible patterns.

Their security protocols are regarded as security primitives, building blocks. They are

provided in the basis that future work will build upon them to achieve the security

requirements. SNEP provides for all requirements except authenticated broadcast. It operates

6
 The full requirements are discussed in 2.2.1.

42

by encrypting messages using a private key shared by the communication pair. In addition, it

uses a secret counter, which is incremented by 1 after each communication but not transmitted

with the message. µTESLA uses a symmetric encryption mechanism to authenticate messages

from a small number of authenticated broadcasters. Both protocols seemed promising but they

were never implemented[2].

The TinySec mechanism

TinySec [2] was the first protocol to ignore hardware security, ignore key management and

simply provide security at the data transportation layer. It is currently considered the standard

security mechanism for sensor networks by many literature articles [95-97]. TinySec

introduces about 10% increase of energy consumption compared with unsecured TinyOS

operation.

The protocol is built as an extension to the TinyOS platform and it alters the original packet

format to facilitate the security features. TinySec meets each of the security requirements set

by SPINS [29] . It achieves confidentiality by encrypting message contents using SkipJack

[98]. Authenticity and integrity is facilitated with a 4-Byte message authentication code

(MAC) which is also generated by the SkipJack cipher under the CMAC standard [99].

Finally, freshness and semantic security are achieved via an initialisation vector.

TinySec provides two packet types in an attempt to increase energy efficiency: the TinySec-A

packet, which only provides message authentication and the TinySec-AE packet, which

complies with all the basic security requirements.

The MiniSec mechanism

MiniSec improves the performance of TinySec, is more resilient to network error and uses a

different approach to generate and transmit the initialisation vector. MiniSec uses SkipJack in

OCB [100] mode of operation as encryption function. This mode of operation provides

encryption and authentication. MiniSec seems to be an equally secure optimisation of TinySec

while it otherwise offers very few innovative security features.

MiniSec greatly optimises the way the initialisation vector (IV) is implemented by using a

number of solutions including overloading, Bloom Filters [101], epochs and time

synchronisation protocols [102-103]. In further optimises the efficiency of the network by

43

introducing packets that are suitable for different communication types. Figure 4 illustrates

the security-related radio overhead of various solutions.

The SenSec mechanism

The SenSec[30] framework is promoted as a TinySec alternative as well. It is solely based on

TinySec and aims to improve its security provision and some of the performance. SenSec

employs a packet format which is very similar to TinySec [2] but claims that it is slightly

better than it. The major difference in packet format from the TinySec scheme is the way the

IV (Initialisation Vector) is constructed.

A custom and improved variant of SkipJack [98] is used in SenSec. The customisation claims

to provide 144-bit security and is based on the DES-X [104] method. They call this variant

SkipJack-X. They also aim to reduce the computation cost of MAC processing by using a

one-pass MAC computation mechanism. They claim that their MAC mechanism is secure as

long as “the total amount of packets being encrypted and authenticated with the same key is

much less than 2
32

.”

SenSec defines a hierarchical access control scheme divided in three levels and thus they use

three levels of keys; global key, cluster key and sensor key. By using these three keys, they

can produce three packet types for use in the appropriate context. They claim that this method

is resilient to node capturing attack as well since revealing the keys in one node will not

compromise the whole network but only one group of nodes.

Figure 4: Packet overhead of TinyOS, TinySec-AE, MiniSec-U and SenSec.

 Numbers represent the size of packet‟s header and MAC/CRC in bytes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

TinyOS

TinySec-AE

TinySec-…

SenSec-AE

Bytes

44

Other mechanisms

As this research was been conducted, more security schemes have appeared in the literature.

Recent mechanisms like, ContikiSec [93] and FlexiSec [94] will be discussed in Chapter 6.

Finally, an alternative solution to data transportation security is ZigBee [105]. It is the

lightest, fully developed security standard for small devices and it might be suitable for high-

end sensor boards but it is still extremely costly for the low-end devices that this project

targets.

Discussion

TinySec and MiniSec offer 80-bit complexity which is deemed unacceptable by 2010 [71-73]

but both research groups claim that their mechanism can be used with any encryption

algorithm and thus the possibility of higher complexity is not ruled out. The encryption

function is indeed a black-box type of component, which can be upgraded without redesign of

the system. However, the related implications in energy efficiency have to be taken into

consideration. Should such an update be ever implemented, the mechanism would have to be

re-evaluated and comparisons with other mechanisms would need to be discussed again.

On the other hand, the authors of MiniSec apply the key whitening technique to SkipJack and

they call it SkipJack-X. Key whitening is an anecdotal term coined by J. Rivest and it is

briefly explained by Schneier [4]. The scheme is better than plain SkipJack but not as good as

a cipher that would natively offer greater cryptographic strength. This solution poses two

problems, which are discussed next.

The first problem regards the effective key length. According to Schneier‟s explanation,

SkipJack-X should increase the complexity to 2
n + (m/p)

where n is the key length, m is the

block size and p is the number of known plaintexts. Therefore, SkipJack-X does offer greater

complexity but the true effective key length is reduced if the attacker is able to obtain a

number of key lengths. Sensor networks whose purpose is to report a single value to the base

station allow the attacker to guess possible plaintexts and reduce the complexity to

unacceptable standards.
7

7 Suppose that a network measures ambient temperature. The attacker can use a thermometer to find the temperature that nodes should be

reporting and monitor the network for 24 hours. Using the method, the attacker might be able to obtain 10 plaintext-ciphertext pairs. That

would reduce the complexity to ~2^87 bits, way below acceptable standards of 2^128 bits.

45

Secondly, the approach might be problematic because the specific application of key

whitening for SkipJack has not been crypt-analysed. There is no information on the security

of SkipJack-X on the published literature. It is unknown if other limitations of the SkipJack

cipher might cause further reductions to complexity and it is unknown if whitening can

protect the particular cipher from future cryptanalytic attacks. If that is true then MiniSec

might not provide the required 128-bits of complexity.

It seems that no existing data-transportation security mechanism is up to date with modern

security requirements and that none provides a comprehensive solution, as they lack key

management.

Implications

It is rather clear that a system that would provide an acceptable level of confidentiality,

authentication and integrity is missing from the current literature. Even more modern

mechanisms than the established TinySec, MiniSec, SenSec triplet, do not offer 128-bits

encryption while simultaneously being capable of operating in low-end devices like the

MICA2 node.

This research aims to provide a mechanism that would provide acceptable level of security

and meet modern requirements for encryption complexity.

2.3.3 Routing security

Secure routing protocols

There are many routing protocols proposed for use in wireless sensor network but most of

them are proved insecure by Karlof et al. [76] in their 2003 survey paper. Since then a number

of new proposals attempt to tackle the problems revealed. A few recent and more secure

protocols are presented for completeness in this subsection.

Wood et. al describe a protocol family called SIGF in [106]. It consists of two configurable

and secure routing protocols. Along with the traditional routing duties, the authors claim that

their protocols are secure against some of the problems identified by [76]. The protocol family

does not store routing information on a table and therefore attacks that manipulate the routing

46

table with bogus entries are not applicable. In addition, wormholes and HELLO floods are not

possible due to the dynamic route selection of SIGF. However, the authors admit that

protection against other attacks is impossible without a reliable authentication mechanism.

Finally, despite being primarily a key management scheme, the LEAP+ mechanism [83],

supports the use of authenticated acknowledgement packets.

Discussion

The work of Karlof et al. [76] does not take secured networks into account. They made this an

important assumption when they said, ―because sensor networks use wireless

communications, we must assume that radio links are insecure.‖ They also state a number of

other assumptions that equally disregard the possibility that a sensor network can be secured.

The reasons why this assumption was made in 2003 are understandable, but ironically, it was

Karlof et al. who published TinySec [2] a year later, effectively proving their own assumption

wrong.

If a security mechanism existed that would provide a combination of the security features

provided by TinySec, and SIGF and if it was operating on secure hardware, then each routing

attack described by Karlof et al. is impossible. Table 1 provides a summary of each known

attack, the vulnerability it targets, how it can be prevented and which security mechanisms are

not vulnerable to this attack.

Attack Requires ability to Prevented by Offered by

spoofed, altered, or

replayed

routing information

inject messages

alter messages

replay messages

authentication

integrity

freshness

TinySec

MiniSec

SenSec

selective forwarding

node compromise

or node injection

hardware security

or authentication sinkhole / black hole

sibyl attack

wormholes authentication

HELLO floods unauthenticated

broadcast

broadcast

authentication

acknowledgement

spoofing

unauthenticated ACKs ACK authentication SIGF

Table 1: Routing attacks, their requirements and how they can be prevented.

47

An interesting observation can be made; all that is required to protect a wireless sensor

network from all routing attacks is to secure all communication, including acknowledgement

packets, with a security system that would provide authentication, integrity and freshness. As

long as that stands true, and as long as hardware remains secure, routing cannot be

compromised.

Implications

None of the current data-transportation layer security system provides authenticated

acknowledgements. Potential developers who want resilient routing are able to select from

three data transportation security mechanisms but they would have to use SIGF in order to

protect acknowledgements, there is no alternative.

This research aims to provide a mechanism that would offer total protection of all messages

including acknowledgements, broadcast messages and normal messages, regardless of the

layer they originate. That solution would completely protect the network from all known

routing attacks.

2.3.4 Other work

This subsection lists some indirectly related work for completeness and as a basis of argument

for subsequent sections. This work is important but it is not directly comparable to this

research. Therefore, no critical evaluation or any further analysis is made here.

Hardware security

The area of hardware security has little connection with computer science but it interests this

research since the proposed solution does not tackle hardware security problems.

There is great debate on whether hardware is secure or not and great antithesis in the claims of

research papers in the literature. Some articles describe a number of microprocessor attacks

while also advising countermeasures [90, 107]. There are also software-based solutions to the

problem [108].

48

On the other hand, the microprocessor manufacturer Atmel [70] claims that the ATmega128L

microprocessor is secure [46]. This microprocessor is used in many sensor nodes, including

the MICA2 node.

Nevertheless, a significant research interest towards solving this problem is observed. In

addition to sensor networks, other microprocessors are rapidly becoming secure and are used

in everyday life, like for example in Credit Cards. Security of such applications is very

important.

Denial of Service

As explained in the threat model, it is difficult to defend against brutal DoS attacks and thus

current research is focused on reducing the implications of such attacks. Most approaches

consider DoS attacks that affect some parts of the network and propose detecting and

procedures to minimize attack impact. All these solutions work under a number of

assumptions that might not be applicable to all sensor networks.

Gu et al. in [109] propose a system to detect a search-and-destroy DoS attack if nodes are

equipped with a means to detect that they are about to be destroyed, e.g. accelerometers.

When such an attack is detected, an alarm can be sent to signal to neighbouring nodes that it is

under attack. Other nodes can take evasive action.

Another DoS detection system uses game theory to detect when nodes behave maliciously

[110]. The methodology uses a set of parameters and a method to assign reputation to nodes.

The network isolates malicious nodes if their reputation declines. The authors model and

evaluate the methodology to determine a node‟s reputation.

Points of failure

Wireless sensor networks are systems subject to the usual weakest-link and single point of

failure problems. Some of the physical or virtual components of the network might fail more

easily or might cause disproportionate damage. There is research work that attempts to

evaluate such threats at specific locations on the network.

Examples include the work of Deng et al. [81] which proposes and evaluates options available

to protect the security of the base station which is presented as a single point of failure. The

49

authors propose and evaluate three mechanisms that introduce a degree of difficulty in

identifying the location of the base station: multipath routing to multiple base stations,

confusion and encryption of the identification fields and relocation of the base station.

50

2.4 Discussion

This section acts as a summary of what was presented in the literature review. The section

starts by defining a set of baseline requirements, a presentation of what is expected from this

research. This section also explains the aims of the basic requirements and the expected

benefits of meeting them. This section concludes by presenting the associated challenges.

2.4.1 Baseline requirements

All existing approaches suffer from problems that range from unrealistic assumptions to

insufficient security provision. A more modern solution that will benefit from the latest

research and technological advance is required.

Please note, not all the requirements and aims presented in this subsection were met in the

final solution. Some of them were met only under certain conditions. This subsection is only a

guideline of this project‟s intentions. Please read Chapter 6 for evaluation of the final design.

Key management requirement

A key management mechanism that would be designed under the assumption that hardware

cannot be tampered needs to be provided. The mechanism should:

 provide different keys for small groups of nodes

 store at most as many keys as distinct communication endpoints

 frequently change the keys preferably after each time a key is used

 keep its state secret and not leak information that would assist in cryptanalysis

A key management mechanism as such would provide strong semantic security that would

not rely on initialisation vectors which are potentially unsafe [111].

In addition to being a security risk, current systems transmit IVs over the radio. TinySec

transmits 2 bytes, and SenSec transmits three bytes. The described key management would

not need to transmit IVs then the energy required to transmit the IVs would be saved.

51

Routing security requirement

A security mechanism that would primarily protect data transportation but will also prevent

most routing attacks needs to be provided. This requirement can be achieved by

authenticating every communication without any exceptions, including acknowledgement

packets.

Protecting the acknowledgement messages is a complex task and it is expected to require

additional radio transmission. On the other hand, it would enable the developers of each

network to choose a routing protocol that fits best for their network characteristics. Currently,

their only option is to use SIGF but it might not be the most energy efficient routing protocol

for all types of networks. Potentially, the energy gains from selecting an appropriate routing

protocol will be much greater than the small energy loses that will be required for

authenticated acknowledgements.

Cryptographic strength requirement

In order to achieve the acceptable [71-73] level of security provision, 128-bits encryption

strength is required. The requirement must be fulfilled using an encryption function that was

natively designed to provide this level of complexity. The solution should also provide a

similar level of authentication and integrity.

Additional requirements

The mechanism should be:

 similarly or less energy demanding than existing proposals

 easy to deploy, not require changes in existing application code

 demonstrated on code partially or as a complete mechanism

 based on open and well known standards and provided free of charge

52

2.4.2 Aims

Security aims

The baseline requirements aim to elevate the security provision of the proposed mechanism

by providing:

 means for authentication and trust establishment

 an evolving security state

 semantic security and weak freshness without security risks

 resilience against the effectiveness of some cryptanalytic attacks

 protection against known routing attacks

 acceptable level of cryptographic strength for all related components

Energy performance aims

The longevity of the network will be improved by supplying more efficient mechanisms for:

 key management

 provision of weak freshness

 provision of semantic security

 an overall more efficient design

Other aims

The following should be achieved:

1. The integrated key management will allow evaluation the security mechanism as an

comprehensive system

2. Authenticated acknowledgements will enable the base station to obtain health status

reports of multiple nodes by simply sending one packet

3. The ease of use requirements will make the mechanism attractive to existing

installations, increasing the potential for adaptation

4. A direction to open protocols allows comparisons with other mechanisms , promotes

the advancement of knowledge and achieves low cost of ownership

53

2.4.3 Research Challenges

Comprehensive authentication

Provision of authenticated acknowledgements is rarely seen in WSNs but it is common in

other types of networks. It is easy to authenticate forward going messages but it is energy

consuming to assure the sender that the receiver has received its message.

Significant radio overhead will probably be introduced by this requirement and the necessary

energy savings must be found on other components in order to satisfy the requirements.

Strong encryption

Another challenge is the provision of 128-bit strong encryption under the limited nature of

sensor devices. Selecting such an encryption function is not a straightforward process.

An adequately performing cipher has to be selected after considering a number of criteria.

Important criteria include the computational overhead, the block size, memory requirements

and the security of the cipher. Additional criteria will be set in the relevant chapter
8
.

Satisfaction of conflicting requirements

The defined solid requirement on better security with similar energy efficiency describes two

conflicting requirements. Provision of an appropriate solution is an important research

challenge.

This research attempts to solve this problem by using carefully selected components and a

better design. If successful, the solution will form the primary contribution to knowledge.

8
 See Chapter 3.

54

Innovative key management

The key management proposal promises many benefits but it has to remain relatively simple

and very energy efficient. It has to be simultaneously energy efficient, rich in features and

operate without radio overhead.

Other systems satisfy some of the SecRose requirements but there is no evidence of anything

similar to this proposal in the literature. The closest match is SPINS [29], which does not

introduce radio overhead but satisfies only a fraction of SecRose‟s aims.

Key management design and implementation will be a unique research and engineering

challenge and that it will complement existing knowledge.

2.4.4 Summary

Main requirements

The baseline requirements are provided:

 provide an acceptable level of overall security

 protect against currently available attacks

 operate consuming equal or less energy than other solutions

 allow ease of adaption and deployment with minimal costs

General aim

We aim to develop, document and implement a replacement for current data-transportation

layer security mechanisms. The proposed system will have to perform equally or better than

existing solutions, regardless of the basis of comparison.

Main challenges

 design the unique key management system in accordance to conflicting requirements

 provide complete protection of every communication, including acknowledgements

 select a suitable encryption function that offers the required level of encryption

strength

 provide a secure, efficient and easy to deploy overall design

55

Chapter 3

System requirements

56

3. System requirements

This chapter defines security, energy efficiency and non-functional requirements for the

proposed mechanism. The rationale underlining the selection of each requirement and the

consequent benefits or drawbacks are discussed.

57

3.1 Basic security requirements

This section determines basic security characteristics of SecRose. As discussed in the

literature review, there are a number of security requirements [29, 112] and possible threats

[76-78] to wireless sensor networks. Each requirement and its protection it offers against

threats is discussed.

3.1.1 Confidentiality

Requirement

SecRose must provide the accepted level of confidentiality, specified to 128 bits key length,

for all information payload data when a packet is transmitted to the radio medium.

No limitations are set as to what additional packet information might be protected. It is

desirable for SecRose to obscure by encryption or other means as much packet information as

possible, as long as the act does not pose additional energy overhead.

Rationale

As discussed before, sensor networks need to be protected by a security level that is equal to

other computer systems. The current acceptable confidentiality complexity level requires 128-

bit long encryption keys.

3.1.2 Authentication and integrity

Requirement

SecRose must guarantee that all information present to any received packet, including

acknowledgement packets, is legitimate information that originated from the claimed sender,

and was delivered intact to the receiver.

Acceptable level of confidence for this guarantee is defined as that which exceeds the energy

or lifetime capabilities of high-end sensor networks. A potential authentication or integrity

breach attack must cause the network to deplete its energy resources or take longer than the

lifetime of the network to succeed.

58

This guarantee may be provided in any way and is not limited to a Message Authentication

Code (MAC). Packet fields may not be included in the MAC if the design guarantees that

MAC validation will fail when authentication or integrity of these fields is breached.

Rationale

The authentication and integrity requirement aims to protect the network from a range of

attacks, including; injection of bogus or altered packets, injection of broadcast and ACK

packets, injection of attacker-controlled nodes and malicious packet replays. These attacks

can introduce serious implications in the network‟s routing and the validity of reported

measurements, allowing the attacker to completely destroy, alter or cause confusion to the

network.

The level of confidence provided by authentication and integrity is a trade off with efficiency.

Therefore, the confidence of the guarantee is defined pragmatically; the attack would be

meaningless if it depletes the network‟s resources or if it cannot succeed in time. This is

adequate provision that would guarantee authentication and integrity while consuming the

least possible resources.

3.1.3 Freshness

Requirement

SecRose must provide weak freshness; a means to determine whether a packet is definitely

not a replay of previously broadcast packets. Nodes should be able to designate packets as

fresh or as undetermined. For packets that are determined as fresh, the level of confidence

must be equal to the authentication and integrity guarantee.

SecRose is not required to provide information on the exact time elapsed between

transmission and reception of a packet.

59

Rationale

Provision of a weak freshness guarantee is required by most applications as it prevents some

routing attacks and reporting of false information. Strong freshness, which is not required by

all applications, involves inclusion of a timestamp on packets thus allowing the application to

know exactly when a packet was initially transmitted. Strong freshness is not required by all

applications or for every packet. Provision of either type of freshness is an energy-demanding

requirement.

SecRose is required to provide weak freshness for all accepted packets and indirectly allow

the provision of strong freshness to applications that demand it.

In conjunction with the key management mechanism
9
, the weak freshness provision will be

implemented without any additional energy overhead and will be secure for attackers with

realistic computational abilities.

Applications that require strong freshness may include timing information on the packets and

then rely on the authentication and integrity requirements for secure delivery of this

information.

9
 Discussed in 3.3.1.

60

3.2 Additional security requirements

This section clarifies some security issues and describes what is required to solve them. These

requirements are distinct from basic requirements as they are influenced or derived by a

number of factors.

3.2.1 Regarding routing security

Requirements

SecRose must meet its basic security requirements for all communication between sensor

nodes. This requirement is not limited to application packets but it also includes routing

packets and transportation control packets, like acknowledgement packets.

SecRose is not a routing protocol and routing functionality is not required, but its compliance

with existing routing protocols must be evaluated.

Rationale

By meeting this requirement, SecRose will effectively seal the system from known routing

attacks, as presented in 2.2.2 and in references [76-78].

Compliance with existing routing protocols is essential to enable the developers of WSNs

freedom of choice on selecting between various routing protocols. SecRose is expected to

enrich the list of usable routing protocols.

61

3.2.2 Availability

Requirement

The design of SecRose must contribute to the overall availability of a sensor network by not

introducing weaknesses that would enable asymmetric DoS attacks and by not introducing

single points of failure. With the exception of routing, SecRose is not required to protect,

detect or prevent threats to availability.

Rationale

Sensor networks are prone to a number of availability threats. Most of these attacks are

tackled by their own research fields and are therefore outside the scope of SecRose. The

essence of the availability requirement for SecRose is not to introduce additional weaknesses

that would make availability attacks easier.

62

3.2.3 Regarding security by design

Requirement

SecRose is required follow the principles of security by design. SecRose will have to be an

open mechanism and the design will be available for everyone to examine and improve.

Rationale

Security protocols should be based on a secure design. SecRose should follow this principle.

Obviously, this does not refer to the run-time cryptographic state, e.g. the secret key, but on

the design of the mechanism itself.

3.2.3 Hardware

Requirement

SecRose is required to ignore potential hardware security problems. SecRose will assume that

its hardware is trusted and secure.

Rationale

SecRose aims to be based on pragmatic assumptions. The assumption that hardware is not

secure has been disputed and attempts to overcome this assumed problem introduce

significant resource utilisation overheads. SecRose will belong to the group of solutions that

do not attempt to solve this problem and act as a lighter alternative in networks where

hardware security is assumed.

63

3.3 Operation and efficiency requirements

3.3.1 Key management mechanism

Requirement

SecRose must include a key management mechanism. The ideal target of the mechanism

would be to alter every cryptographic key after it has been used once to encrypt a message.

Deviations due to operational conditions are allowed. Key management will enable a number

of other described requirements to be achieved.

Key management must synchronise without transmitting information over the radio. When

communication of a packet occurs, key management will change keys using a secret value,

derived by the last packet content. Knowledge of the used key will be required in order to

derive a new key. Over time, each communication pair will evolve its own state, derived from

the contents of communicated packets.

Fail-over mechanisms must be utilised to ensure successful synchronisation and continuous

communication in case of accidental or deliberate radio interference that would cause packets

not to be communicated properly. This is the case where deviations from the ideal target are

allowed.

Rationale

The key management system will serve as a core component with efficiency and security

objectives. It will provide an efficient platform to achieve a number of requirements that

would normally require radio overhead but it would only introduce computational and

memory overhead. Key changes will achieve semantic security, by changing at least one part

of the cryptographic input and if the changes are frequent then weak freshness can be

provided as well.

64

3.3.2 Efficiency requirements

Requirement

SecRose is required to perform equally or better than TinySec[2] when average values of the

following metrics are compared;

 energy consumption overhead

 introduced latency

 memory requirements

In addition, SecRose must indicate, via a theoretical evaluation, that it would also match or

outperform the efficiency of other mechanisms found in the literature, such as [21, 30, 93-94].

Rationale

Security in WSNs is constrained by the limitations of the devices. SecRose plans to impose no

additional overhead than other solutions while it will improve the security provision and

efficiency. This requirement must be met in order for SecRose to achieve its objectives.

65

3.4 Other requirements

This section describes requirements related to assist with the successful selection, installation,

maintenance and future updates of SecRose. The requirement for a proof-of-concept is also

discussed.

3.4.1 Essential deployment requirements

This subsection defines a set of requirements that aim to increase the marketability of

SecRose to future implementers.

Rationale

Changes to existing systems require planning, time, cost and effort. The allocation of human

resources and the associated costs of such process would deter sensor network owners that

want to deploy a more secure mechanism.

The requirements in this subsection complement each other in order to facilitate rapid and

easy migration from to a secured network. They also give an advantage to SecRose since

alternatives require changes in the applications
10

.

Finally, the customisation requirement is given for those sensor networks that require higher

security and have to commit to the associated problems of adapting a security mechanism.

Please note that SecRose is not required to be backwards compatible with other security

mechanisms. The requirement assumes that the networks under update are operating with

TinyOS in its original form.

10
 For example, TinyOS does not tackle freshness at all, it leaves the problem to the application

66

Backwards compatibility

SecRose must replace the existing transportation mechanism of a WSN in a manner that is

completely transparent to higher layers. SecRose must accept exactly the same input and

provide exactly the same output as the TinyOS operating system. By no means should an

application have to be re-programmed in order to accommodate the introduction of SecRose.

Preconfigured distribution

SecRose‟s distribution package must assist sensor network operators that have minimal

experience with security systems to secure their network easily and rapidly.

SecRose should readily provide a level of security to every sensor network within which is

deployed, without requiring complicated configuration. Thus, it must ship preconfigured with

sensible parameters that would allow secure operation for most applications.

Please note that the pre-configuration options described here will be used for all direct

comparisons in Chapter 6.

Customisation

Some sensor network applications demand higher security. Should these networks decide to

adapt SecRose, they would have to plan before they deploy it on their network. SecRose must

be fine-tuneable to allow their requirements to be accommodated.

67

3.4.2 Other requirements and desirables

This subsection covers the important requirement of providing a proof of concept

demonstration for SecRose. It also discusses low importance, low priority and out of scope

requirements that would be nice to achieve in SecRose but cannot be provided by this

research project. They are documented in order to direct a design with future targets in mind.

Proof of concept

SecRose must come with a proof of concept implementation that would cover communication

between two nodes. This demonstrative implementation will be used for evaluation of

SecRose. It must be complete enough to allow for a fair comparison but it may not be

developed beyond this point.

Scalability

SecRose‟s design should not pose fundamental limitations that will prevent future

developments from scaling SecRose up to use it in larger networks. This will allow SecRose

to scale up and function on larger or different networks.

68

Chapter 4

SecRose Specification and Design

69

4. SecRose Specification and Design

This chapter describes the SecRose data-transportation layer security mechanism. Algorithmic

and systematic descriptions are provided. Section 4.1 defines the protocol and describes how

it operates to achieve secure communication. Section 4.2 gives a systematic explanation of

system, its components and their interactions in order to facilitate the protocol. Rationale of

the various decisions is given in section 4.2.

70

4.1 Algorithmic description

This section gives a plain specification of the SecRose protocol and its operation without

discussing rationale or other matters extensively. The section begins by defining the

assumptions and some concepts and then specifies the protocol‟s operation step-by-step.

4.1.1 Specification of concepts

Assumptions

SecRose assumes a network consisting of a few hundred nodes. The nodes run on hardware

similar to the MICA2[48] sensor node; 8MHz processor, 4KB application memory, 128KB

runtime memory, 512KB permanent storage memory and 38.4Kbps radio communication

capability. The nodes are running the TinyOS operating system [31].

Nodes use tamper-resistant microprocessors such as the ATMega128 microprocessor found in

MICA2 nodes. Thus, in case a node is captured, the attacker is unable to extract data from the

sensor, as specified in the microprocessors technical manual [46].

All nodes are loaded with a 96-bit long random string before their deployment. This will be

used by SecRose‟s key management as the initial key. In addition, they are loaded with a 32-

bit long random string, which will be the initial value of the counter.

Packet categorisation

The communication patterns within a sensor network will be categorised for better allocation

of energy resources. Applications may use any communication direction or pattern but

SecRose designates three distinct communication types, which are based on the flow of data.

SecRose distinguishes and categorises the following communication types: (a) node to node,

(b) node to base station and (c) base station to everyone. SecRose introduces one packet type

for each communication pattern.

All packets are illustrated in Figure 2. SecRose retains and communicates the type, group and

data fields as specified by TinyOS [31] in order to achieve full compatibility with the OS.

The packet management mechanism of SecRose will transparently alter the length, source,

71

destination and MAC fields. Utilisation of the appropriate packet type, depending on the

destination address, will be forced by SecRose for all communications. Higher layers of the

communication stack need not be aware of SecRose‟s operation. All changes will be applied

to outgoing packets at SecRose‟s level while changed incoming packets will be reverted

before those are passed to higher layers.

Length Type Group Data MAC
1 1 1 0…29 4

Broadcast packet

Len Dest. ACK code
1 1…2 4

Acknowledgement packet

Length Source Dest. Type Group Data MAC
1 2 2 1 1 0…29 4

Long packet

Legend:

Normal packet

Length Source Type Group Data MAC
1 2 1 1 0…29 4

protected by the MAC

encrypted and protected

Numbers indicate field byte length

x

z

Figure 2: SecRose packets, their fields and their security features

Numbers express the field‟s size in bytes

SecRose defines a flag-based packet designation method, which allows for identification of

the packet type. The 2-bit flag will be overloaded in the most significant bits of the packet‟s

length, making it the first piece of information on a packet. This will allow nodes to make

swift decisions while packets are being received. Nodes may quickly decide to accept or reject

a packet, saving the radio reception energy. For accepted packets, the flag defines the

expected packet fields and their length, allowing for proper reception regardless of packet

type.

SecRose will use a packet of type normal for communication from any node to the base

station. Normal packets have no destination address in the packet‟s fields. The address of the

base station will be regarded as the default destination of all normal packets. This

optimisation is effectively replacing the 16-byte destination address with the flag, which

introduces zero radio overhead. SecRose chose to utilise this optimisation on normal packets

on the assumption that the most frequent communication will originate from the nodes and be

72

destined to the base station. This assumption is based on the ultimate purpose of sensor

networks; to deliver information to the base station [1].

For point-to-point communication between any pair of nodes in the network, SecRose will use

a long packet. This type of packet retains all the original packet fields of TinyOS and does not

provide any efficiency savings. Long packets can also be used by the base station to

communicate with a specific node.

The third packet is the broadcast packet, which can only be used by the base station. It allows

the base station to reach the whole network in an efficient and secure way. Nodes that receive

broadcast packets are required to forward them once, maximising the potential reach of the

packet. The broadcast packet does not include a source or a destination address; they can

only originate from the base station and are destined to everyone.

Finally, SecRose defines a fourth packet, the control packet, which is a general-purpose

packet for controlling SecRose‟s operation. Currently control packets are only needed to

facilitate acknowledgements of reception and thus they will only be mentioned as

acknowledgement packets in this document. However, the format of the packet is flexible.

Therefore, this packet might facilitate other control commands in future versions of SecRose.

Acknowledgements will be sent by the receivers to the senders in cases where normal and

control packets are received without any errors. Broadcast packets will not be associated with

an acknowledgement.

Key management

SecRose defines a key management system aiming to minimise reuse of the same

cryptographic key. The system represents the network as a set of communication pairs. Each

communication pair has its own pair key, which is derived from a preloaded initial key.

The initial key is stored in the pairs during deployment and can be common for all the pairs.

Even a broadcast communication is treated as a pair, with the base station on one side and the

whole network on the other side of the pair.

73

Pair keys are derived using the initial key and a counter value. The initial key is 96 bits and

the counter is 32 bits. SecRose advances the counter value after each communication,

achieving creation of new pair keys. Counters will not be monotonically advanced. Instead,

the exact update value will be determined by unused meta-bytes of the authentication

component. The actual value that will be used to increase the counter is called the counter

update value.

Key management will mix the initial key with the counter as shown in Figure 3. The process

involves slicing the counter update value and then adding the bits to the blocks of the key.

This functionality will slightly increase the diffusion of the counter‟s value in the key. The

mixing process is only a complement to the cipher‟s diffusion properties.

It is not absolutely required to change keys after each communication. SecRose defines a

failover mechanism, which allows for continuation of communication should packets or their

acknowledgements fail to be delivered. SecRose will store two counters to facilitate failover:

the backup counter and the active counter. It will also store the counter update value.

Figure 3: mixing of the initial key with the counter

Key management exception for broadcast packets

Broadcast packets are a special case that poses conflicting requirements. It is infeasible to

facilitate the full key management features for broadcast packets, without increasing the

74

hardware capabilities of the base station. These packets will not trigger acknowledgements

and will therefore not benefit from the failover mechanism.

The base station, which is the only node allowed to send broadcast packets, will faithfully

advance its broadcast key after each broadcast communication to preserve freshness and the

other properties of SecRose.

The lack of acknowledgement elevates the provided freshness and semantic security but

introduces a potential attack on availability. This topic will be discussed in Chapter 6.

Authentication and integrity

SecRose defines the use of a Message Authentication Code (MAC) to provide authentication

and integrity. The code will be transmitted with every packet.

The MAC will be calculated using the encryption function as specified by the CMAC [99]

recommendation. The MAC will be calculated by utilising all packet fields and it will be

appended to the end of the packet. According to the CMAC specification, the output value

will depend on the key and the input data. As long as they remain constant, the CMAC

method will always produce the same output.

The CMAC method outputs an 8-byte string, equal to the block size of the encryption

function. The first four output bytes will become the MAC code and they will be transmitted

with the packet. The rest will be utilised as meta-bytes, which is reproducible at both

communication ends but is not transmitted with the packet.

The receiver will calculate the MAC code using the same input as the sender used. If the

codes match then the packet is validated, the encryption key can be changed and the

acknowledgement packet can be sent.

The fifth output byte, which is the first meta-byte, will be utilised by key management and

will become the counter update value. The sixth and seventh byte will be sent back to the

receiver, acting as an authenticated acknowledgement value.

75

The authenticated acknowledgement will guarantee to the sender that the receiver has updated

their pair key. As a side effect, acknowledgements also guarantee that the packet has been

received but the lack of an acknowledgement does not indicate the opposite.

Encryption

SecRose will use the XTEA [113] in block mode with 8 cipher cycles. Efficiency

modifications in XTEA‟s code are allowed as long as the mathematical function remains the

same. The number of cipher cycles might be increased to accommodate increased security

needs. SecRose will use MAC stealing and selective encryption of the type and group packet

fields to achieve efficiency gains. These techniques are similar to the ciphertext stealing

technique proposed by [114].

4.1.2 SecRose operation: outgoing packets

Packets are passed to SecRose from the higher layers of the TinyOS. When this event

happens, SecRose will execute the following steps. This subsection does not apply to

acknowledgement packets. These will be discussed later in their own subsection.

Preparation

Each potential destination is associated with an appropriate packet type and consequently

related to a flag. Therefore, both the packet type and the flag can be determined by the

destination, as shown in the following resolution table:

If the destination is … The flag will be …

The base station (usually 0) 0

The broadcast address (usually 65535) 1

Any other address 2

After determination, the flag‟s value will be overloaded to the two most significant bits of the

packet‟s length.

Then the MAC code will be calculated; the packet will be passed to the authentication

function and the 8-byte MAC code will be added to the packet‟s data.

76

Then the packet will be passed to the encryption function to encrypt it. Encryption might

include any of the following efficiency features: padding, MAC stealing or inclusion of the

group and type. The actual case depends on the packet‟s data size.

Packet transmission

After preparation, the packet is ready to be transmitted. SecRose transmits the packet fields

described in the packet categorisation definition and illustrated in Figure 2. For reasons that

will be explained later, only 4 of the 8 MAC bytes are transmitted.

Post tasks

During transmission, a copy of the packet is transferred to the receiver but the original

packet‟s data remain in the sender‟s memory as well. These data will be passed to key

management, which will undertake the following steps.

For normal and long packets, the value of byte 5 will become the counter update value but it

will not be utilised yet, it will only be saved to a temporary memory location. Bytes number 6

and 7 will also be saved for future use. These form the authenticated acknowledgement value.

No keys will be changed unless a valid acknowledgement is received.

All values will be stored in a memory location identifiable by the receiver‟s node ID. Should

the receiver be the broadcast address then a special ID will be used.

Broadcast packets will not utilise acknowledgements. Key management will immediately

increase the active counter by adding the 5
th

 MAC byte to it.

At this stage, the sender can continue with other tasks while it waits for the acknowledgement

packet to be received.

77

4.1.3 Operation: incoming packets

All data transmitted over the radio are passed, byte-by-byte, to SecRose from the lower layers

of the TinyOS. SecRose will detect when a packet preamble is received, and will begin the

packet reception sequence as specified here.

Type determination and appropriate reception

The first byte is the length of the packet and it includes the overloaded flag. The first two bits

of the length are the flag. SecRose will examine these bits to determine the packet‟s type. It

will also remove these bits from the length, allowing it to take its normal value, representing

the actual data length.

Packet rejection or forwarding might happen at this stage. Assuming that neither of these

happens, the receiver will use the flag, which characterises the packet type, to determine

which packet fields it should expect. For normal packets, the destination will be set to the

base station‟s ID. For broadcast packets, the destination will be set to the broadcast address

and the source will be set to the base station ID.

Then the receiver will continue to receive the bytes of the packet in accordance to what

should be expected by this packet type. Upon reception of the MAC, packet reception has

concluded.

Decryption and validation

In the next stage, SecRose will pass the packet to the encryption function in order to decrypt

it. The process will take any efficiency features that were selected during encryption into

account.

When decryption concludes, an attempt to validate the MAC commences. The packet will be

passed to the authentication component and the actual MAC of the received data will be

calculated and checked against the received MAC.

78

If MAC validation succeeds;

1. the packet is accepted and passed to the higher layers of the operating system

2. key management will be informed to update the counter value

3. an acknowledgement will be sent, unless the packet was a broadcast packet

If validation fails, the failover mechanism is invoked. SecRose will ask key management to

revert to the backup key. Then the decryption and MAC validation will be repeated. If the

secondary validation succeeds then the packet will be accepted but an acknowledgement

packet will not be sent. Should secondary validation fail as well, then SecRose cannot process

this packet and it has to be rejected.

4.1.4 Operation: authenticated acknowledgement transmission and reception

SecRose defines a way to exchange authenticated acknowledgements. The method is

computationally efficient but consumes significant radio energy. The additional energy cost is

introduced by the transmission of the preamble of the acknowledgement packet.

Acknowledgements are sent when the transmission and reception process is carried out

smoothly and without any problems. Acknowledgements are not sent if MAC validation fails.

Concept

During packet transmission, a copy of the 6
th

 and 7
th

 MAC bytes was kept by the node in its

memory. In the receiver, the same bytes are also calculated during the packet validation

process when the MAC of the received packet was calculated as well. Therefore, both nodes

have access to these bytes.

These bytes are the acknowledgement value. The receiver transmits them back to the sender

inside an acknowledgement packet. The sender receives them and matches them against its

previously stored data.

When the received acknowledgement value matches the expected acknowledgement value,

the sender is confident that the receiver has successfully received its message and has changed

its key accordingly.

79

Exchange of acknowledgements

Acknowledgement packets will be exchanged using the normal packet transmission process of

any packet. Acknowledgements are initiated within SecRose and its flag is pre-set to value

„3‟.

This flag will be detected by packet management and by transmission/reception control. At

the preparation stage, the normal flag and type identification will be bypassed. In addition,

instead of a MAC calculation, the packet will be populated with the authentication data. The

transmission/reception stage will also be adapted to exchange them. The real differences are

the validation method and the post-tasks.

Post tasks

Acknowledgement validation will happen as described in the concept. The process will be

handled by the key management mechanism, which has stored the acknowledgement

authentication data. The authentication component will not be invoked.

Upon detection of a valid acknowledgement, the key management will add the previously

stored counter update value to the active counter. Before doing so, a backup copy of the active

counter must be kept, in case the failover mechanism needs to be invoked.

At this stage, the pair has exchanged a packet and has successfully advanced the

cryptographic pair key that it uses.

Acknowledgement table size and security limits

The number of values that the acknowledgement table can hold is configurable by the

developer. The actual value should be chosen after accounting for the expected packet

transmission rates. SecRose recommends a default of 10, which should be suitable for all

applications. The value expresses how many packets will be in the waiting stage for their

acknowledgement to be received.

SecRose will keep track of how many packets are awaiting acknowledgement and how many

invalid acknowledgements have been received. If a valid acknowledgement is received then

the invalid counter is reset. If the number of invalid acknowledgements equals the number of

80

awaiting acknowledgements then the whole acknowledgement table is wiped and counting

resets.

4.1.5 Operation: intermediate nodes

Packets are often exchanged over a number of intermediate nodes (hops). SecRose provides

facilities for these nodes to determine their role as receivers, forwarders or terminators of a

packet. This functionality needs collaboration with an appropriate routing protocol.

Path position discovery

The destination of a SecRose packet is always discoverable. Long packets have it written on

the appropriate packet field, which is never encrypted. Normal and broadcast packets contain

an appropriate flag, which can be analysed to determine the packet‟s destination.

After determining the destination, nodes can consult their routing table to determine their

position within the route of a packet.

Forwarding

Nodes that form parts of a route should forward every packet without attempting to decrypt or

validate it. Since sensor networks are half-duplex, the nodes have to receive the whole packet

and then send it again.

Under normal circumstances, all nodes must forward all broadcast packets. Some exceptions

might stand for specific routing protocols or applications. The exact behaviour is neither

defined nor affected by SecRose and it is therefore out of the scope of the SecRose proposal.

Rejection

Nodes that are not in the route of a packet might reject it. Packets can be rejected as early as

after reception of the flag. The flag allows destination determination for normal packets. For

long packets, the nodes have to wait until reception of the destination field has concluded.

81

4.1.6 Operation: diagrams

Pair key advancement and state preservation sequence

Figure 4 illustrates how key management maintains the state of the pair key in accordance

with events that might happen during communication.

The first packet is transmitted and received without any errors. Both ends advance their keys

to K2.

The next packet is secured using K2 but the packet arrives altered to the receiver. Therefore,

MAC validation fails and the receiver does not pass the packet to higher layers. K2 continues

to be the active key.

In the third packet, the sender uses K2 again to send SP3 and this time the packet arrives

correctly. The receiver successfully changes the key to K3 but the acknowledgement delivery

is erroneous, preventing partial recovery. Consequently, the sender does not change to K3.

In the fourth packet shows partial recovery: SP4 arrives correctly and the receiver reverts from

K3 back to K2. However, this is a case where acknowledgement should not be transmitted.

Therefore, there is no change in the sender.

The final packet demonstrates full recovery. The sender is obliged to reuse K2 for a fourth

time to send SP5, which arrives without problems. The acknowledgement is also successful

and thus both nodes advance to K3.

Despite two consequent communication errors, SecRose manages to maintain pair key

synchronisation by reusing K2 four times.

82

Figure 4: pair key advancement and state preservation sequence

83

4.2 System design

This section provides the systematic description of the SecRose mechanism. The components

and subcomponents of the system are described. Initially, an overall system description is

given and then detailed information for each component is discussed. Some of the

components are designed by a method selected among various options. For these components,

the evaluation and selection process is discussed.

Notes

This is the design of the system, not the design of the proof-of-concept implementation, which

will be discussed in Chapter 5. Components are shown clearly here but, due to the structure of

TinyOS, it is impossible or inefficient to retain the design clarity in actual code.

This section makes extensive use of coloured diagrams. The colours in the diagrams provide

important information. All the diagrams include legends in which the meaning of colours is

explained.

4.2.1 System overview

SecRose consists of four fundamental components: encryption, key management,

authentication and the control component. All components interface with each other at various

operation points and the control component interfaces with the rest of the TinyOS system.

This subsection gives a systematic description of the components, the interactions between

them and with TinyOS. A high-level illustration of the system is provided in Figure 5.

Control component

The control component is responsible for (a) interfacing of the SecRose mechanism with other

layers, (b) coordinating the other SecRose components to achieve secure packet

communication. This is the key component of the system. The control component hosts a

number of subcomponents, including the packet management subcomponent, which is

responsible for packet categorisation, reception and transmission.

84

Encryption component

The encryption component utilises a cryptographic algorithm to provide encryption services

to any component that needs it. The component accepts data bytes and a key as input. After

execution, the function returns the encrypted data. The component also facilitates efficiency

subcomponents.

Key management component

The key management component, or mechanism, is primarily responsible for maintaining,

altering and providing cryptographic keys. The goal of the component is to alter the key used

to send a packet after the event has completed. The mechanism keeps a state of the key for

each communication pair and provides the control component with functionality to manage

this state.

Authentication component

The authentication component is responsible for providing and validating a Message

Authentication Code (MAC). The code can be used to both authenticate data and validate

their integrity.

Figure 5: position of SecRose in TinyOS

and the possible internal interactions of fundamental SecRose components.

85

4.2.2 Encryption component

Interfaces and their operation

The encryption component accepts four requests:

1. Encrypt packet with appropriate stealing

2. Decrypt packet while accounting for stealing

3. Encrypt stream of bytes

4. Decrypt stream of bytes

The control component uses the first two requests while the authentication component uses

the raw encryption of data streams. In the cases where whole packets are handled, the

component requests appropriate keys from the key management component. The component

provides a MAC and ciphertext stealing method to reduce radio overhead for small payloads.

The primary subcomponent is the encryption function itself, which for reasons discussed

below, is the XXTEA[113] encryption algorithm.

Cipher selection criteria

A number of selection criteria have been examined in order to select an appropriate cipher for

use with SecRose. Three basic criteria were defined; resource utilisation, cryptanalytic

reputation, non-proprietary and compatible with the GNU licence. In addition, the cipher had

to support the basic requirement of at least 128-bit key lengths and had to be a stream cipher.

The rationale behind these criteria is discussed below.

Resource utilisation was the most important criterion. The final requirement is determined as

a composite of the computational difficulty of cryptographic operations, the memory needed

to function and the minimum block size. The block size is important for the small sensor

network packets as it saves radio overhead. The advantages are greater if ciphertext stealing is

in place.

Secondly, the selected encryption function had to be reputable in the cryptographic

community as resilient to cryptanalysis and as a cipher with strong cryptographic properties.

This criterion automatically disqualifies new ciphers, as they are considered immature.

86

Finally, the cipher has to be free of any patents or other restrictions that would either

introduce additional costs to the deployment of SecRose or be incompatible with GNU

General Public Licence (GPL) [115]. This requirement is forced by legal restrictions

surrounding the licence. The GPL requires software updates of GPL products to be released

under the GPL licence as well. Since SecRose can legally be regarded as an update for

TinyOS, which is GNU-licensed, it has to be GPL as well. Any cipher with licence

restrictions that disallow that is automatically disqualified.

The additional criteria are set by the requirements and the technical limitations of WSNs. The

cipher had to support at least 128-bit keys, a basic requirement, but longer keys are not

prohibited.

Stream ciphers were not considered due to a number of reasons. Firstly, the packet-based

information is essentially information in blocks and thus block ciphers are more suitable for

sensor networks. Secondly, block ciphers are a better fit for SecRose itself as they can be used

for both encryption and authentication. Thirdly, stream ciphers require use of an initialisation

vector to operate securely, which would ultimately affect their radio energy demands. Finally,

block ciphers tend to be more mature and utilised than other types of ciphers.

Candidates and initial evaluation

The initial criterion for considering a cipher was to support 128-bits key length. There are a

number of ciphers that satisfy this; RC4 [116], RC5 [117], RC6 [118], Twofish [119],

Blowfish [120], Triple-DES [121], Rijndael (AES) [122], TEA [123], XTEA and XXTEA

[113]. However, most of are either worse than AES or suffer by some other problem.

The Blowfish cipher was replaced by Twofish, RC4 and RC5 were succeeded by RC6, and

TEA was corrected by XTEA/XXTEA. All these replacements are attempts to address either

suggested or proven problems with the ciphers. Unfortunately, there is no replacement for the

problematic Triple-DES which is considered to have an effective key length of 80-bits [71].

At this stage, the remaining ciphers are Twofish, RC6, Rijndael and XTEA/XXTEA. The first

three were contenders in the AES competition, which concluded that the best cipher is

Rijndael. Therefore, Rijndael, which then is known as AES, is the most reputable and a better

cipher than the other AES competitors are, and there is no reason to dispute that.

87

After the preliminary evaluation and given the problems described, the remaining algorithms

are XTEA/XXTEA and AES. These were examined for their performance and resource

utilisation in the final evaluation.

Final evaluation and selection

There is no published direct comparison of the computational requirements of the final

candidates. However, a relative but inconclusive comparison between TEA variants and AES

can be derived from references [96, 124-128]. With the exception of AES, all TEA variants

outperform other ciphers. On the other hand, AES requires less computational resources while

XXTEA has a smaller memory footprint [96, 126].

However, reference [126] does not account for ciphertext stealing or the increased cycles that

XXTEA uses when data input is small or research showing that 8 cycles are enough [129].

Eight XXTEA cycles will definitely outperform AES by a factor of at least two, without

considering ciphertext stealing and block-size radio overhead.

For these reasons, the XXTEA encryption algorithm will be selected for SecRose and AES

should be considered the next viable alternative should XXTEA be proven insecure.

SecRose will use XXTEA without the gradual reduction of cycles. The cycles of the cipher

will be permanently set to eight, which is proposed by the current maintainer of TEA and is

claimed to be secure for most applications [129]. Additional cycles might be added by sensor

network developers who demand higher security margins.

Alternative ciphers

Although XXTEA was selected and highly recommended for SecRose, the secure design of

the system is not limited to this particular encryption function. Use of any block cipher would

not affect the security of the SecRose protocol but some changes to the system will be

required.

The modular design of the system components allows for relatively easy transition to other

ciphers. Updates on the code will be required on the stealing subcomponent, since it is

optimised for the characteristics of XXTEA.

88

However, any changes will require appropriate efficiency evaluation, since the various ciphers

utilise resources differently.

Component interactions

The encryption component provides four interfaces, which might be utilised by other

components. Possible interactions are illustrated in Figure 6.

Figure 6: the subcomponents of the encryption component and their interfaces

Stealing subcomponent

Block ciphers require data input in blocks of a specified size, which is usually a multiple of 8.

In cases where the actual data are not an exact multiple of eight, the data have to either be

padded with a known value or ciphertext stealing has to be applied [4, 122].

SecRose uses a stealing subcomponent to achieve maximum efficiency. Although the method

is inspired by the ciphertext stealing, it operates pre-emptively, before any encryption

happens, and it primarily relies in the 4-byte MAC and the 4-Byte block size of XXTEA. The

method operates more efficiently than traditional stealing solutions, as it does not require

additional iterations of the encryption cipher.

89

SecRose steals selectively from the MAC field, the type field or the group field of the packet.

The stealing subcomponent allows SecRose to refrain from using any padded data for packets

carrying more than 1-byte data payload.

In addition to efficiency gains, the stealing subcomponent complements the computational

complexity of transmitted encrypted and authenticated packets, effectively increasing the

computational effort required to conduct a brute force attack. However, the exact

cryptographic gains vary in accordance to the packet‟s payload and their true impact was not

precisely analysed. Nevertheless, it remains a complementary feature that is achieved with

minimal impact to energy requirements.

Operation of the stealing subcomponent

Generic stealing subcomponents follow a simple strategy; encrypt the “first” blocks and then

encrypt the “last” block. Initially, the subcomponent encrypts as many full blocks as possible,

given an arbitrary input size. This leaves few bytes that are not enough to form a full block

unencrypted. These bytes are complemented with some part of the already encrypted bytes, as

many as required to form a full block. Then encrypt this “last” block. The process is

illustrated in Figure 7.

Figure 7: the principle of ciphertext stealing

SecRose improves this technique by treating the whole packet‟s data as an array of possible

inputs to the encryption function while only the encryption of the data field is required.

SecRose may include bytes from other packet fields in order to complete the last block. The

selection happens before the encryption and the cipher is only called once, after complete

blocks have been formed. Since there is no double encryption, the method consumes 50% less

90

computational resources than a typical ciphertext stealing subcomponent. The field selection

process consumes insignificant resources.

The design of the SecRose stealing subcomponent is illustrated in Figure 8. The whole packet

is the input. The process begins by stealing the MAC; if the last block of the data field is not a

complete block, SecRose will add as many parts of the MAC as required to complete it. An

example of the effect on a long packet with two bytes data payload is given in Figure 9.

Since both the block size of TEA and the MAC are 4 bytes, the MAC stealing method would

be sufficient to complete any block. However, the minimum block size of TEA is 8 bytes.

Therefore, packets with less than 4 bytes payload cannot be securely completed with MAC

stealing only. In these cases, SecRose will selectively add as many bytes from the other fields

of the packet as needed. In the extreme case when a packet‟s payload is 1 byte, SecRose will

also add a padding byte, increasing the ciphertext. Table 2 illustrates the various scenarios for

the first 13 bytes of data payload.

91

Figure 8: the stealing subcomponent of SecRose

92

Figure 9: example of stealing applied to a long packet with two bytes data payload

Bytes stolen from Total input

to the

encryption
Payload MAC Type Group Pad

1 4 1 1 1 8

2 4 1 1 0 8

3 4 1 0 0 8

4 4 0 0 0 8

5 3 0 0 0 8

6 2 0 0 0 8

7 1 0 0 0 8

8 0 0 0 0 8

9 3 0 0 0 12

10 2 0 0 0 12

11 1 0 0 0 12

12 0 0 0 0 12

13 3 0 0 0 12

Table 2: packet field utilisation by the stealing subcomponent.

All numbers express Bytes.

93

4.2.3 Key management component

Interfaces

The component can accept requests for a key to be provided or be informed about packet

events by the control component. Both operations require a packet to be inputted. Although

the key services interface does not directly interact with the authentication component, it does

rely on information that has been calculated by it.

The control component uses an interface to inform key management when a packet event has

happened. The possible packet events are:

1. A packet has been sent

2. A packet with a valid MAC has been received

3. A packet with an invalid MAC has been received

4. An acknowledgement packet has been received

Key management keeps an active counter and a backup counter. An active counter can be

utilised to create a final key, which is sometimes referred to as the active key. If the backup

counter is utilised the key is called the backup key.

Figure 10: key management: interfaces, interactions and subcomponents

94

State information storage

The component keeps two tables; the counter table, which stores pair counters and the

acknowledgement table, which stores acknowledgement values. The authentication

component calculates update values and content for both tables and provides it to key

management as part of the packet‟s data. The key management applies the information to the

tables.

Keys are composite; they consist of a 96-bit initial key and a 32-bit counter. The counter table

stores two counter values, active and backup, and the counter update value. These values are

mixed with the initial key, which is uniform and preloaded onto all nodes. This way a unique,

128-bit final key is created.

The pair ID is stored, on both the acknowledgement and the counter table. On the counter

table, the pair ID acts as the index of the table and allows the component to find and

manipulate the values of the counters. On the acknowledgement table, the index is the

authentication value and it is used to determine the pair ID associated with this an

acknowledgement packet.

Key management requires 13 bytes of storage for every communication pair present in the

counter table, in order to store active and backup counters. In addition, 32 bits of temporary

storage for each communication are required until the acknowledgement is received.

Operation

Providing keys involves determination of the packet type and its destination. Based on the

destination information the component consults its counter table to retrieve the active

counter, mix it with the initial key and provide the final key for this particular destination.

When a packet is sent, the counter update value is stored in the counter table. When the

acknowledgement is received and validated, the counter update value will be retrieved from

the counter table and added to the active counter. Backups of the old values are also kept.

Broadcast packets are exceptions to this process as they are not associated with

acknowledgements. In this case, the key management component will immediately add the

counter update value to the active counter.

95

When a validated packet is received, key management makes a permanent update on the

counter table, noting the new active counter and backing up the existing active counter. The

process will be repeated when the next valid packet is received and the backup counter will be

completely overwritten then.

However, if the next received packet does not contain a valid MAC, the system can revert to

the backup counter to allow the control packet to try MAC validation again. If this fails then

communication in this pair is deemed broken, as the other end can send packets but it cannot

receive the acknowledgements.

Finally, the acknowledgement table limits the maximum invalid acknowledgements it can

receive to be no more than the amount of acknowledgements it awaits. If the maximum value

is reached, the acknowledgement table is wiped. This limit is imposed for security reasons but

it does not affect the normal operation of SecRose.

Note that for each communication pair, there is only one memory slot for the backup counter.

Each time a valid acknowledgement or a valid packet is received, this slot is overwritten.

Evolving communication pairs

The key management system creates evolving communication pairs between the nodes of the

network. The pairs are called “evolving” because they are constantly changing after each

communication. This functionality allows the key management component to achieve

powerful security characteristics like semantic security, weak freshness, authentication and

integrity. In addition, it reduces the available cryptanalytic options and discourages node-

capturing attacks
11

.

The authentication component relies on the evolving keys to guarantee the identity of sending

nodes to their receivers.

The subcomponent provides failover in case packets or their acknowledgements cannot be

received by one end of the pair. The mechanism reverts from the currently active counter to

the currently backup counter. Inevitably, this leads to the possibility that the same key might

be reused.

11
 The security characteristics of the key management component will be discussed in Chapter 6.

96

Ideally, a system should never reuse keys in any case, under any condition but this

requirement cannot be efficiently accommodated in a sensor network where repetitions of

packets or acknowledgements are energy demanding.

Note that there are no actual backup keys stored in the system. The system holds backup

values of the counters. The backup key is a final key that is created after the old counter has

been restored.

Method rationale

Key management systems aim to agree a symmetric communication key between two

communication points. Other solutions include public key infrastructure (PKI) systems like

SSL [130].

The PKI solutions are much more effective than the described key management. They are able

to provide randomised cryptographic keys, instead of the mathematically related keys that

SecRose provides. In addition, the current key management is based on a pre-deployed shared

key, which can become a security liability. However, sensor networks cannot support PKI

solutions, as they demand too much communication, computation and storage resources.

The proposed method saves the few bytes introduced by other solutions for semantic security

but it potentially consumes many more bytes in the preamble of the acknowledgement

packets. This overhead is accepted as a side effect for the provision of the methods security

properties.

97

Subcomponent diagrams

Figure 11 illustrates the process of retrieving the counter and mixing with the initial key. The

process starts by an external component, shown in red, which is requesting a key. The whole

packet is passed to the component as input. The component will then determine the

destination by reading the destination address or the flag and consequently determine the

pair‟s ID. Then the active counter value will be retrieved from the counter table and mixed

with the initial key, which resides in memory. Then key management can deliver the final key

to the external component that requested it.

Figure 11: key request process

98

Figure 12 illustrates the post-transmission tasks for the key management component. The

control component informs key management that a packet has been sent and it passes the

packet to key management. The packet‟s data contains the flag, the destination address, and

the full 8-byte MAC. Key management determines the packet type and acts accordingly. If the

packet was as broadcast packet, it will advance the counter immediately after saving a backup

of the active counter value. For all other packets, it will only store a temporary value and the

acknowledgement value. Both values are included in the packet‟s data, in the 8-byte output of

the authentication component. When the acknowledgement is received, the temporarily stored

counter advance value will be used.

Figure 12: key management tasks after packet transmission

99

Figure 13 illustrates the process on the key management component after the reception of a

valid acknowledgement. The control component informs the key management that an

acknowledgement has been received and it passes the packet on. The packet contains two

bytes of acknowledgement value, which is used as the index to query the acknowledgement

table. When a match is found, the component can retrieve the pair ID, since the

acknowledgement value acts as the index of the table. The component then retrieves the active

counter value and the counter advance value, which is used to advance the counter. The next

packet for this pair will use the new counter.

In case the received acknowledgement value is not found in the acknowledgement table, the

component does not do anything. Note that if a value is found then the component will also

remove it from the acknowledgement table. This activity is not shown in the diagram.

Figure 13: process after acknowledgement reception

Figure 14 illustrates the key management activities after a valid packet has been received. The

process is initiated by the control component and the whole packet is passed to key

management. The packet‟s data contain the destination and the full 8-byte MAC as calculated

by the authentication component. Key management examines the destination to determine the

pair‟s ID. After that is found, it will initially create a backup of the active counter. Then it will

read the 5
th

 MAC byte to determine the counter advance value and use it to advance the active

100

counter. The new active counter is finally saved on the counter table. The next packet for this

pair will use the new counter.

Figure 14: process after packet reception

101

Figure 15 illustrates how key management reverts to the backup counter after request of the

control component. The control component should attempt packet validation using the backup

key if it received a packet that cannot be validated normally. In order to do so it asks the key

management to revert its currently active counter to the saved backup. The effect of the

process is permanent and affects all future packets. The simple diagram explains this process.

Figure 15: revert to backup counter

102

4.2.4 Authentication and integrity

Interfaces and their operation

This component interfaces with all the other components in various ways. Its primary

functionality is to provide Message Authentication Codes (MAC) of outgoing packets and to

validate the MACs of incoming packets. In order to achieve this functionality the component

requests keys from the key management component and encryption services from the

encryption component. In addition, the authentication component provides key update and

acknowledgement values to key management after processing a packet. The component uses

the CMAC [99] specification to calculate MACs.

The component relies on the key management component to provide authentication and trust.

In particular, the authentication component guarantees that the sending node is a node that

possesses the pair key while the evolving communication pairs guarantee that other nodes do

not use the same keys.

In order to calculate a MAC the component requires provision of the related packet by the

control component. Then it requests the active key from key management in order to request

encryption services correctly. The MAC is then calculated and a string of eight signature

bytes is produced. This stream is unique to distinctive input.

The first four of these bytes will act as the MAC of the packet. The fifth byte is the counter

increase value and the sixth and seventh bytes will be used for the acknowledgement value.

All the information is appended to the packet for utilisation of the control and key

management components. The 8
th

 byte is currently not used by SecRose.

A packet that has been altered in transit results in a different input to the MAC component of

the receiving node. Since the resulting string of bytes is unique to each distinctive input,

altered bytes will cause MAC validation to fail. Therefore, the authentication component

guarantees packet integrity as a side effect.

103

The CMAC process

The CMAC [99] specification generates a message authentication code by invoking the

encryption function to (a) derive three keys and (b) reduce the input text into the size of a

cipher block by sequentially encrypting it. The command that facilitates this process is

sometimes called the MAC function. The CMAC specification guarantees the creation of a

MAC that is as secure as the encryption function used.

Collision probability and confidence

MACs are associated with a collision probability, or otherwise they provide guarantees with a

confidence level. A 32-byte MAC facilitates 2
32

 distinctive outputs. The MAC guarantees that

a received packet is authentic and intact with a probability of error equal to 1 in 2
32

.

Therefore, a collision will occur, on average, after 2
31

 calculations that involved equal unique

inputs. An attacker might attempt to send 2
31

 packets with a random MAC in order to forge

authentication or integrity. The smallest possible packet is a broadcast packet with 0 data

payload, which equals to a total of 7 bytes, without counting the preamble. A node powered

by a typical AA battery will cease to operate before 2
16

 such packets are received [69]. The 4-

byte MAC provides confidence that greatly exceeds the capabilities of the sensor nodes.

Selection rationale

There are two ways to provide digital signatures: use a cryptographic hash function or use a

block cipher to generate them. The later method is selected primarily because it allows for

code-reuse and subsequently provides better code size optimisation. Using a block cipher,

there are only three options to generate MACs; CBC-MAC [131], OCB [100] and CMAC

[99].

CBC-MAC is secure only for fixed-length messages and is therefore not recommended. The

OCB mode of operation for block ciphers could be a promising solution but the security of

this method is unclear.

CMAC is the secure successor of CBC-MAC and it is recommended by NIST [132] for all

applications. Therefore, the CMAC mode is selected for the current version of SecRose.

104

Further evaluation and possibly redesign of authentication and key management is required to

accommodate OCB in SecRose. Future work might evaluate and possibly use OCB in

SecRose. This topic will be further discussed in Chapter 7.

Component interface diagram

Figure 16 illustrates the steps required to calculate a packet‟s MAC. The packet is the input.

The process is initiated by the control component while it requires interaction with every

other component. The general method is to derive three keys and feeding of the packet‟s data

to the CMAC calculation function for sequential encryptions. MAC validation is illustrated in

Figure 17 and it is simply a MAC generation and a comparison.

Figure 16: MAC generation process

Figure 17: MAC validation process

105

4.2.5 Control component

Interfaces and operation

The control component interfaces with TinyOS and every other SecRose component in order

to coordinate secure communication.

When the higher layers of TinyOS wish to send a packet, they pass it to the control

component. The packet‟s contents are then built and processed to facilitate packet

management, encryption and authentication. This process is done by requesting the related

services of other SecRose components. Finally, the packet is passed to the lower TinyOS

layers for transmission.

Packets are received by the lower layers of the TinyOS and are then passed to the control

component. The component then decrypts and validates the packet. Valid packets are passed

to the higher layers of TinyOS.

Note that packet data is a superset, which includes the packet fields and other information.

Some of the packet data are not transmitted.

Packet management

The packet management system is an important subcomponent. It facilitates the three basic

packet types: normal, broadcast and long packets. It also recognises and handles

acknowledgement packets. Every packet has to be processed by packet management before

any other action takes place.

Outgoing packets are given a flag value, depending on communication type. For incoming

packets, the flag is examined and the actual destination address is derived from the flag.

Outgoing packets are then passed back to the control component to continue the operations.

Incoming packets continue to be handled by packet management until their reception is

completed.

Packet management has to coordinate the actual transmission and reception because

transmitted packet fields depend on packet type. Outgoing packets are given back to the

packet management component when the other components have finished processing and the

106

packet is ready for transmission. Only the relevant packet fields are selected from the packet

data for transmission.

The flags that are utilised by the packet management can be used for additional efficiency

savings by facilitating early rejection of unwanted packets. The rejection happens in this

component.

Outgoing packets

After packet management has processed the packet, the control component requests a MAC to

be calculated by the authentication component. When this concludes, the packet is sent to the

encryption component to encrypt it.

The packet is then passed back to packet management for transmission and when that finishes

the control component informs the key management system that a packet transmission event

has concluded. Finally, the control component is ready to process the next packet.

Incoming packets

When a packet arrives from lower layers, it is initially processed by the packet management

subcomponent. The finalised packet is passed to the control component and the encryption

component is invoked to decrypt the contents of the packet. Then the packet is passed to the

authentication component to validate the authenticity and integrity of the packet. An

acknowledgement packet is sent if the validation succeeds.

If validation fails, the control component asks the key management system to revert to the

backup pair key and repeats the decryption and validation steps again. An acknowledgement

packet is not transmitted in this case.

Acknowledgement packets

Authenticated acknowledgement packets are sent when packets are received and validated

with the first attempt. The process is straightforward and invokes the control component and

the packet management subcomponent only.

107

Acknowledgement packets do not contain any data and thus the encryption component is not

invoked. The authentication component is not needed either, since it has already processed the

received packet and has produced the required authentication data.

The control component feeds packet management with the acknowledgement packet data and

the acknowledgement packet is generated on the fly by the field selection of packet

management.

As it has been discussed already, there are cases where acknowledgement packets are not

transmitted. This behaviour is a consequence of the original intentions of the

acknowledgement packets and the subsequent system design.

The aim of acknowledgement packets is to maintain pair key state, not to confirm proper

reception of a packet. Packet reception is a side effect of the acknowledgements. With the

current SecRose operation specification, transmission of acknowledgement packets, when the

initial MAC validation has failed, would result in loss of synchronisation.

If a receiver is required to use the backup key to validate a packet, it makes a permanent

change in the counter table, promoting the backup counter to active counter. The system is

not in ideal state but it is operational because the two active counters are synchronised.

Transmission and reception of acknowledgement at this point would cause the sender to

advance its active counter using the counter update value. It will therefore cause complete

loss of synchronisation, since no counter will be synchronised after that.

SecRose intentionally operates in this way to avoid using energy-expensive

acknowledgements when the key cannot be easily updated. It might be that both

communication ends have calculated the counter update value and can therefore update the

active key. However, the sender would have to acknowledge the initial acknowledgement in

order to let the receiver know that it received that acknowledgement.

That would be an unnecessarily energy-expensive and complicated process with little benefit.

Consider that the acknowledgement of the acknowledgment would also have to be

acknowledged and so on. This research did not find a solution to this problem and thus

SecRose is required to allow some key reuse to happen.

108

The SecRose proposal might be different from the usual but it is still consistent with the

TinyOS acknowledgements. TinyOS includes a data-link layer acknowledgement mechanism,

in which neighbouring nodes report that they have received the outgoing transmission. It does

not give any information about what happened in the rest of the hops until the final receiver.

SecRose‟s acknowledgement operates in the transportation layer, informing the sender that

the final receiver has received the acknowledgement or that some kind of error had occurred.

Further work in SecRose might improve it to give acknowledgements with specific errors but

they need to be carefully considered in terms of energy consumption.

4.2.6 Diagrams of system operation

Figure 18 and Figure 19 illustrates the steps and the system interactions initiated by the

control component in order to achieve packet communication. The figures illustrate the

process in the sender and the receiver covering every activity: packet transmission, reception,

validation, sending of acknowledgement and the reception of it. Arrows indicate flow of data,

logic or both. The colour of the boxes indicates the component in which the step is carried

out.

The colour of the arrow represents the kind of flow. When the data of a packet is carried along

in the system‟s logic, a black arrow is used. After transmission, the packet is copied on the

receiving end but the packet‟s data remain in the sender as well, so the logic flow continues to

complete the post-transmission tasks. The same applies after passing the packet to higher

layers and before transmission of the acknowledgement. The actual transmission of data over

the radio is indicated with a red arrow.

Orange coloured two-sided arrows indicate system component interactions. These are

request/reply type of interactions and they are associated with data exchange between the

components as well. A one-sided orange arrow represents an “informative” message between

components. It is only present in Figure 19 when the control component informs key

management that a packet with a valid MAC has been received.

109

The boxes describe the steps of the flow and their colour represents the components in which

a step is taking place. This diagram focuses on the communication, which is coordinated by

the control component, represented in purple.

All the other components are considered “external” and are illustrated with a red box. For

clarity reasons, most interactions between external components are either not shown at all or

simplified.

Figure 18: transmission of packets and reception of acknowledgements by the sender.

See Figure 19 for detailed receiver process.

110

Figure 19: reception of packets, validation and transmission of acknowledgements.

Packets arrive from the sender, which is further illustrated in Figure 18.

111

4.3 Summary

4.3.1 Simple design, simple operation

Simplicity is a key quality of SecRose, which allows it to achieve both the security and

energy efficiency targets. The same simplicity is adapted at every part of the design, from the

way the cipher is coded to the MAC stealing mechanism and the acknowledgement

validation.

Simplicity of operation

The basic operation of the SecRose mechanism is very simple and it can be described in a few

lines:

 Sender: authenticate, encrypt, transmit, note future key, note bits of the un-transmitted

MAC, wait for acknowledgement

 Receiver: receive, validate, decrypt, update key, send back bits of the un-transmitted

MAC as an acknowledgement

 Sender: receive acknowledgement, validate, update key

The rest of SecRose has to do with the security level and the performance. The main unique

security features of SecRose are visible; there is no other proposal that provides either

authenticated acknowledgements or key management.

Clarity of design

SecRose consists of four, relatively small, components:

 Encryption; provides 128-bit encryption and the stealing techniques

 Authentication; provides digital signatures for packets

 Key management; changes the used keys as frequently as possible

 Control; controls the sequence of events and interfaces with other components

The existence of SecRose is invisible to the rest of TinyOS. The control component is

implemented in the data transportation layer, mimicking the functionality of the part it

replaces.

112

Relationship with existing proposals

TinySec was the only security mechanism for the data transportation layer of sensor networks

when this research commenced. Inevitably, some of the TinySec features were good enough

to not need changing and thus SecRose has retained some of TinySec‟s features.

Some of the TinySec features remain largely unchanged. For example, SecRose retains the 4-

Byte MAC, and the CBC mode to calculate it, as it is deemed sufficient for most of the

applications.

MiniSec was developed, probably in parallel with SecRose, as an alternative to TinySec.

SecRose does not adapt any features introduced by MiniSec but the proposals share the data

overloading technique. However, the idea is used it on different data; SecRose uses an

overloaded flag while MiniSec overloads the counter part of the IV.

SenSec is an attempt to improve TinySec and build on this platform. It does not provide

important new features other than the increased key size and the one-pass encryption and

authentication method using a cipher in OCB mode. SecRose does not relate to SenSec any

more than it relates to TinySec.

4.3.2 Innovative features

Innovations in security

SecRose provides unique security features designed to elevate the overall security provision.

SecRose‟s main security contributions are:

 128-bit encryption strength supported natively

 Key management with frequent key changes

 Authenticated acknowledgements

Each of these features addresses an important security issue. The 128-bit security is the least

acceptable strength. The key changes provide freshness and semantic security in an alternative

way and the authenticated acknowledgements enable many routing protocols to function

securely.

113

Innovations in energy efficiency

SecRose includes important energy features like:

 three packet types to fit communication patterns better

 utilisation of data overloading

 unique ciphertext stealing implementation

 key synchronisation by meta-information with no radio data exchange

4.3.3 Chapter conclusion

SecRose provides a simple, secure and efficient design, which retains good security features

of other proposals while it solves problems that have not been addressed in the past.

The implementation of these features on code is discussed in the next chapter while the

evaluation of the security provision and energy requirements is presented in Chapter 6.

114

Chapter 5

Implementation

115

5. Implementation

The implementation of SecRose in the TinyOS Operating System is discussed in this chapter.

Technical information on TinyOS and its relationship with SecRose is given in the first

subsection. The second subsection discusses the algorithms used to produce the code,

pseudocode of the whole implementation and some examples of actual code. The final

subsection illustrates the running of the application in TOSSIM and Avrora.

116

5.1 TinyOS and SecRose

5.1.1 Description of TinyOS

The TinyOS Operating System

TinyOS is a miniature operating system designed for use in sensor networks and other

embedded systems written in the nesC programming language [31, 53, 64]. TinyOS is a

flexible, application-specific operating system, which follows a component-based, event-

driven model.

The system is built from a set of reusable components that are assembled into an application-

specific executable, capable of running in a sensor board. Instead of multithreading, TinyOS

provides an event-driven concurrency model, which utilises components that interface with

each other.

Component model of TinyOS

Every TinyOS program is a graph of components, which interact together using three

computational abstractions: commands, events and tasks. The programming model of nesC

provides component creation and access in the form of services, which are called interfaces.

An application connects components using a wiring specification, which defines which

components will be used by the application. This mechanism excludes the components that

are not required from the executable.

Commands are requests for a component to perform some service. When the operation

concludes, an event informs the commanding component of its success or failure. Commands

and events might also post a task to be executed at a convenient time by the operating

system‟s scheduler. Both hardware and software resources are abstracted by TinyOS as

components. The component system manages the underlying software and hardware

interfacing at low level while the application is only waiting for an event to inform it that the

command has finished.

Each component defines a number of interfaces that it provides or uses. The interfaces specify

how the component may interact with other components. Interfaces contain both commands

117

and events. A command is a function implemented by an interface provider while an event is a

function implemented by its user

Components can be modules or configurations. Modules contain the actual code of the

component while configurations connect this component’s code together with other

components. The connection process is called wiring. Via this process, a configuration might

wire a number of components, which in turn may be configurations that wire more

components resulting to the creation of a tree of components. The tree is then called a

supercomponent and in that case, the module of the component in the base of the tree is

controlling the tree. Essentially, applications are supercomponents.

5.1.2 Operation of TinyOS

Programming and execution model of TinyOS

TinyOS itself and the applications that run on it are written in nesC; an event-driven dialect of

C. NesC is a dialect of C, it is no different from C other than in the way that functions and

libraries are defined and linked. As opposed to C, there is no linking in nesC. The linking

process is replaced by the wiring of components.

TinyOS provides a scheduler, or execution model, which coordinates simultaneous commands

and events that run between the components. The scheduler also manages energy

consumption, puts hardware components into sleep mode and other housekeeping tasks. The

scheduler allows for real-time task execution and for low priority execution.

NesC and the scheduler are designed to solve a number of engineering issues regarding event-

driven execution. The system for example can detect data races statically. The execution

model consists of run-to-completion tasks for computation and asynchronous interrupt

handlers signalled by the hardware. The scheduler might execute tasks in any order but it

must obey the run-to-completion requirement.

Simulators

Due to the nature of wireless sensor networks, development of complex applications might be

a difficult process requiring expensive hardware [60-61]. A number of development tools and

118

methodologies have been proposed to assist the process and minimise the development

constraints.

The most important are the simulation tools. They consist of software that attempts to

represent the behaviour of the sensor hardware on a personal computer. They create instances

of virtual hardware and deploy them on a virtual network. The development of SecRose used

the TOSSIM [62] and Avrora [63] simulators and the avr-gcc compiler [133] and the

associated debugging modes and tools.

TOSSIM [62] is the pc simulator that comes with TinyOS as a tool for development and

testing using a desktop computer. It works by abstracting the hardware-specific functions, e.g.

the memory, into C functions with similar input and output. TOSSIM is able to produce a pc

executable, which simulates the WSN when run, allowing the sensor network applications to

be run as if they were normal executables for the pc architecture.

Avrora [63] uses a different, slower but highly accurate approach to simulate sensor networks.

Its authors describe it as an instruction-level sensor network simulator, which runs the actual

microcontroller programs in a simulated environment. Avrora implements an event queue

[134] to coordinate events. This preserves the accuracy and correctness of the simulator. In

addition, it utilises a radio synchronisation technique, which allows the nodes to communicate

with precision timing.

5.1.3 Communication model and SecRose’s position

Communication facilities of TinyOS

TinyOS provides a networking architecture, implemented as a combination of communication

components. These components define how packets are requested by the application,

constructed by the operating system and handed to the hardware radio component for

transmitting.

The communication facilities of TinyOS are much lighter and they look different from

traditional communication protocols and specifications. However, it is apparent that the

119

design has been influenced by (a) the OSI model [66], (b) the TCP/IP protocols[9, 135] and

(c) the 802.11 MAC protocols [67].

TinyOS uses a layering model but since it is extremely lightweight, some of the OSI

definitions are missing and others are combined. One or more components are used to achieve

the computational tasks involved. The following layers can be distinguished:

 Application layer, expressed by the application

 Transport layer, multiple components achieve the functionality of generating and pre-

processing a packet with its headers and data. Key components are;

o AMStandard, initially generates a packet with its header and data

o MicaHighSpeedRadioM, for mica2 nodes, is responsible for sending the

packet to lower layers on a byte-by-byte basis

 Network layer, also facilitated in a number of components, most importantly;

o ChannelMonC, responsible for monitoring the channel for idleness and/or

transmissions

o SpiByteFifoC, is responsible for sending the packet to the hardware in a

bit-by-bit stream

Note that there is no physical layer. Medium access is controlled by the transport layer and the

network layer is responsible for the actual data transmission.

TinyOS packets are defined to have the following fields:

Destination Type Length Group Data CRC
2 1 1 1 0...29 2

The numbers express size in bytes. The Type field, sometimes referred to as AM, is

equivalent to the TCP port field, the Group field is intended to allow clustering or other type

of node grouping. The data contain the packet‟s data payload, which ranges from 0 to 29

bytes. The exact size of the payload is defined in the length field. Note the lack of a source

address.

The acknowledgement packet is a simple stream of four identical bytes, which operates in the

physical layer, and is sent by every node that happens to receive any packet.

120

SecRose in relation with TinyOS

SecRose updates the transportation-layer components of TinyOS and it is therefore facilitated

in the MicaHighSpeedRadioM component. It also introduces and interfaces with a new

nesC component, called SecRose.

The MicaHighSpeedRadioM component accepts outgoing packets from the

AMStandard component and sends them to radio via the SpiByteFifoC component.

Incoming packets are intercepted by ChannelMonC and are sent to

MicaHighSpeedRadioM as well.

SecRose‟s implementation replaces the most significant parts of MicaHighSpeedRadioM

and communicates with SecRose for additional functionality. The control component of

SecRose
12

 is primarily implemented in MicaHighSpeedRadioM while all the other

components reside in SecRoseM.

12
 Described in Section 4

121

5.2 Algorithms, code and pseudocode

Files

The nesC component SecRoseM provides a series of SecRose-specific commands, which are

used either internally by this component or by the MicaHighSpeedRadioM component.

These commands are self-contained and can be described individually. This section describes

those self-contained SecRose commands. They are defined in file SecRose.nc and

implemented in file SecRoseM.nc.

Notes

Most commands described in this section do not return anything. The implementation of

SecRose is based on passing pointers, instead of passing data. Commands manipulate the data

pointed by the pointer and return control to their parent command, which then utilises the

data. This is practice is more efficient and consistent with the rest of TinyOS and allowed by

its race protection and by the AVR microprocessors.

In the cases where actual code is provided, effort is made to reduce its size. The actual code is

retained in the appendix.

This section contains integer values expressed with alphanumeric constants, like for example

TRUE, FALSE, PKT_SENT and many others. These are automatically generated using C-

style enumerated list like:

enum { TRUE, FALSE }

Such code can be placed in header files or other a globally scoped location and the pre-

processor will automatically assign integer 0 to TRUE and integer 1 to FALSE. The enum{}

definition can enumerate many items.

122

5.2.1 Encryption component

Commands

The encryption component, as described in Chapter 4, is implemented in code using four

commands:

- bteaCipher() – the implementation of XXTEA

- packetEncDec() – called by the control component when it requires encryption of

a packet with stealing

- stealEncDec() – called by packetEncDec(), facilitates stealing

XXTEA for TinyOS – bteaCipher()

The XXTEA [136] implementation for TinyOS and other AVR microprocessors is provided.

This code differs from other published versions. The MC constant is hardcoded, the cycles are

fixed to 8 and the n-1 is calculated only once, instead of once for every cycle. The code for

decryption is not provided here since it is the exact reverse of encryption.

Input

vl – the pointer to the plaintext data

n – the length of the data

k – a pointer to the key

Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

async command void SecRose.bteaCipher(uint32_t* vl, int32_t n, uint32_t* k) {

uint32_t z, y=vl[0], sum=0, e, DELTA=0x9e3779b9;

uint8_t n_minus_one; uint32_t p, q;

n_minus_one = n-1; q = 8; z = vl[n_minus_one];

while (q-- > 0) {

sum += DELTA; e = (sum >> 2) & 3;

for (p=0; p<n_minus_one; p++) {

y = vl[p+1];

z = vl[p] += (z>>5^y<<2) + (y>>3^z<<4) ^ (sum^y) + (k[p&3^e]^z);

}

y = vl[0];

z = vl[n_minus_one] += (z>>5^y<<2) + (y>>3^z<<4) ^ (sum^y) + (k[p&3^e]^z);

 }

}

Remarks

Line 1; illustrates one of the main differences of nesC and C. The line declares an

asynchronous command with void output named bteaCipher, which resides in the

SecRose component. The rest of the code is essentially C code.

123

Lines 2, 3 and 5; declare and assign values to temporary variables and constants.

Line 6; the XXTEA cycle starts. Since q=8 it will be run 8 times.

Packet encryption or decryption – packetEncDec() and stealEncDec()

The commands packetEncDec() and StealEncDec() are part of the encryption

component. packetEncDec() is called by the control component when packet encryption

service is required. It accepts a packet‟s data as input, and asks the key management

component to provide a key. Then the command StealEncDec() is called to examine the

payload size, decide and apply any efficiency optimisations.

This pair of commands could have been one command but they are left as two commands to

allow for easier transition to different ciphers and different stealing methods. The current code

splits other tasks from the actual encryption task. However, the process given below describes

both commands as a uniform process.

Input

data – a pointer to a packet struct

action – a Boolean. Can be set to ENCRYPT or DECRYPT to define the desired

action

Process

1. If data->length is zero then exit.

2. Determine the destination from the flag and the data->addr field

3. Request the pair key from key management, assign it to array fkey[]

4. Declare array v[], populate it with the whole array data->data[]

5. If the last block of v[] is not a full block
13

 then add up to four bytes from data-

>mac[] to v[] in order to make it complete. Note how many bytes were added

6. If the last block is still not full; add data->type to v[]. Note the action

7. If the last block is still not full; add data->group to v[]. Note the action

8. If the last block is still not full; pad v[] with zero. Note the action

9. Encrypt or decrypt v[] according to what the action variable was

13
 The “full block is considered to be 4-bytes long in this case. See Remarks.

124

10. Take data->length bytes from v[] and place them on data->data[]

11. If data->type was stolen, take a byte from v[] and add it to data->type

12. If data->group was stolen, take a byte from v[] and add it to data->type

13. If padding byte was used, take the last byte of v[] and add it to the end of data-

>data[]

Remarks

Line 1 and 9; Padding will only occur in packets with 1 byte payload only. The complete 8-

byte block is formed by; 1 data byte, 4 MAC bytes, 1 type byte, 1 group byte and 1 pad byte.

Packets with zero data payload are obviously not encrypted since there is nothing to encrypt.

Lines 2 and 3; on reality packetEncDec() ends in line 2 and StealEncDec() starts in

line 3

5.2.2 Authentication component

Commands

The authentication component, as described in Chapter 4, is implemented in code using four

commands:

- calcMAC() – accepts a packet and calculates its MAC code, called by the control

component

- validateMAC() – accepts a packet, calculates the MAC of it and compares the

result with the MAC written on the packet

Mac calculation – calcMAC()

The command that implements the CMAC specification is algorithmically described here.

This command is the vital subcomponent of the authentication component.

Input

data – a pointer to a packet struct

node – the true source/destination node (data might lack this information)

action – a Boolean set to true if the packet is outgoing.

125

Process

1. Request the pair key from key management, assign it to array fkey[]

2. Declare array v[] add data->data[], data->source, data->type and data-

>group to it (these are all the available fields of the packet)

3. Declare array kbuffer[]. Populate it with the encrypted output a string of eight

zeroes.

4. Note if the most significant bit (MSB) of kbuffer[] is 0

5. Shift the whole kbuffer[] one bit to the left

6. Declare array kalpha[], copy kbuffer[] to kalpha[], shift it 1 bit left

7. If the MSB of kbuffer[] was not 0, then XOR kalpha[] with 0x1b

8. Declare array kbeta[], copy kalpha[] to kbeta[], shift it 1 bit left

9. If the MSB of kbuffer[] was not 0, then XOR kbeta[] with 0x1b

10. If the last block
14

 of v[] is a full block then XOR it with kalpha[]

11. Else append 1 set bit after the last bit of v[]

12. XOR the last block of v[] with kbeta[]

13. XOR a string of 0‟s with the first block of v[], place the result in kbuffer[]

14. XOR the next block of v[] with kbuffer[], place the result in kbuffer[]

15. Encrypt kbuffer[] using key fkey[]

16. Repeat steps 14, 15 for all blocks of v[]

17. Copy the first four bytes of kbuffer[] to data->mac[]

18. Copy the next byte of kbuffer[] to data->count_value
15

19. For outgoing packets, copy the next two bytes to data->ack_value[]

20. Else copy them to data->ack[]

Remarks

The block is considered 8-bytes long. kbuffer[], kalpha[] and kbeta[] are all 8-

byte long arrays. A “block” in the CMAC specification refers to a string of bytes equal in

length to the minimum block size of the cipher. XXTEA‟s block size is 4 bytes but the

minimum input size cannot be less than 8 bytes. The CMAC process is invoking the cipher

with the minimum input. Therefore, the minimum block size for this case is 8 bytes.

14
 The “full block” is considered to be 8 bytes long in this case. See Remarks.

15
 This is going to be the counter update value.

126

The process uses the data on fkey[] to create two more keys which are stored in

kalpha[] and kbeta[]. Their creation depends on the input‟s size in relation to the block

size.

kbuffer[] is a temporary array which SecRose uses to store output and process it later.

MAC Validation – validateMAC()

The command validateMAC() accepts a received packet as input and validates the Mac

written on it against the MAC that can be calculated by the received packet fields.

Input

data – a pointer to a packet struct

Process

1. Create a copy of the data->mac[] as received, place it in mac_tmp[]

2. Call calcMAC(), with data as input, to calculate the received MAC. The result

will be placed in data->mac[] as normal

3. Compare data->mac[] with mac_tmp[]

4. Return TRUE or FALSE accordingly

5.2.3 Key management

Commands

The key management component, as described in Chapter 4, is implemented in code using

four commands:

- mixKey() – obtains the counter from the counter table and mixes it with the initial

key. Called by any component that requires the key of a pair

- counterHandle() – handles the counter table, provides the three SecRose system

interfaces that relate to the counter table. Also calls the ackTable() command in

order to consult the acknowledgement table

- ackTable() – handles the acknowledgement table, called by counterHandle()

127

Structure of the counter table

The counter table is represented as an array of struct with the following fields:

Definition:

typedef struct ROSE_counter

{

 uint32_t active;

 uint32_t backup;

 uint8_t temp;

} ROSE_counter;

The active field stores the active counter, the field backup stores the backup counter and field

temp, which is only 8 bits, stores the counter update value. The initialisation adds 1 to the

total number of nodes to reserve a place for the broadcast pair.

After initialisation, the table is accessible as an array of structs via commands like:

counter[node].temp = cur_counter;

The node variable represents the node number. For a node sitting on one side of a pair, the ID

of the other node is effectively the ID of the pair.

Structure of the acknowledgement table

The acknowledgement table is represented as an array of structs with the following fields:

typedef struct ROSE_acks

{

 uint16_t addr; /* 2 DESTINATION addr */

 uint8_t ack[2]; // 2 needed in all packets

} ROSE_acks;

The field addr stores the destination address to which the packet went. This is also equal to

the pair ID, as discussed before. The array ack[] stores the two uint8_t integers which are

provided by the authentication component and represent the acknowledgement value of the

packet.

After initialisation, the table is accessible as an array of structs, like the counter table.

However, there is no known index, like the node‟s number, as in the counter table. The array

has to be parsed and the value stored in ack[] is checked against the received

acknowledgement value in order to relate it with a node id (stored in the add field).

128

Key requests - mixKey()

Key requests from the encryption and the authentication components are handled by

command mixKey() which retrieves the active counter from the counter table and mixes it

with the initial key.

For the requirements of this proof-of-concept, the 96-bits initial key is hardcoded into the

memory. A temporary placeholder for the final key is also defined as fkey[]. Both arrays

are global and are defined with a random value.

The command accepts the destination of the node as input. The clear systemic design

represents this command as an interface that should accept the packet as input. Precisely

applying this to code would have resulted in unnecessary performance loss since the

destination is readily known in all cases where this command is called.

Handling of the counter table – counterHandle()

The four interfaces defined in Section 4 are all implemented in command

counterHandle().

Input

data – a pointer to a packet struct

action – an integer representing the action

Process if action is PKT_SENT (system interface ―Packet sent‖)

1. Determine the value of the flag and put it in variable flag

2. If flag = 0 then set variable node = 0

3. If flag = 1 then do the following, otherwise go to step x

4. Set variable node equal to the maximum number of nodes (SECROSE_MAX_NODES)

5. Retrieve active counter and copy it to the backup counter:

counter[node].backup = counter[node].active;

6. Retrieve active counter and add the counter update value to it
16

:

counter[node].active += cur_counter;

7. Set: counter[node].temp = cur_counter;

16
 The value is determined by the Authentication component in step 18 of command calcMAC().

129

8. Call ackTable() with input the data packet struct, action set to ADD_VALUE and

the node variable

Process if action is PKT_RECV or CNT_REVERT (system interfaces ―Packet received‖ and

―Invalid packet received‖)

1. Examine the value of data->addr. If it is the broadcast address set node =

SECROSE_MAX_NODES. Otherwise set node = data->source

2. If the action is PKT_RECV then back-up and increase the active counter (as in the steps 5

and 6 of the PKT_SENT process)

3. If action is CNT_REVERT then copy the backup counter to the active counter:

counter[node].active = counter[node].backup;

Process if action is ACK_TEST_START (system interface ―Acknowledgement received‖)

1. Loop around acks[] until a value that matches data->mac[] is found in

acks[].ack[].

2. If a match is found then:

a. increase the active counter by the temporary counter value
17

:

counter[node].active += counter[node].temp;

b. Call ackTable() with input the data packet struct, action set to

REMOVE_VALUE and the node variable which contains the position in the

acks[] table where the received acknowledgement value was discovered

Remarks

Step 2b passes the discovered position to the ackTable() command to save from repeating

the search.

Handling of the acknowledgement table – counterHandle()

The command is called by the counterHandle() command. The command branches

depending on the value of the action input, which can be ADD_VALUE or

REMOVE_VALUE. The command uses the global variable num_acks, which stores the

total number of acknowledgement values that the sender expects.

17
 Stored in the temp field in step 7 of the PKT_SENT action.

130

Input

data – a pointer to a packet struct

action – an integer representing the action

node – the node/pair ID under handling

Process if action is ADD_VALUE

The concept is to push the whole array one place to the right, like a LIFO table.

1. Increase variable num_acks by 1

2. If num_acks has reached its maximum value then decrease it by one. This will cause the

older acknowledgement value to be overwritten

3. Loop around the whole array and shift it one place to the left so that all the fields in

acks[0] will be copied in acks[1] and so on. The location acks[0] will be freed

and the location acks[SECROSE_MAX_ACK] will be overwritten if it exists

4. Add the values of data->ack_value[] to acks[0].ack[] and the value of node

to acks[0].addr

Process if action is REMOVE_VALUE

The concept is to push the parts of the array that are on the right of the discovered

acknowledgement value one place to the left. Decrease num_acks by 1

1. Start at the position node and copy the fields of position node+1

2. Repeat step 2 until the end of the table is reached

Remarks

Under normal operation, the position of the acknowledgement value of the last sent packet is

in acks[0] and thus discovered immediately by counterHandle()

5.2.4 Flag manipulation

The following commands are used by any system component and any command that needs

flag handling or querying. They facilitate reading, writing and deleting of the flag on the

length field of the packet.

131

Determine flag from whole packet - findFlag()

Accepts a packet‟s data as input, reads the data->addr field and determines what the flag

should be for this destination address. This command is suitable for flag determination of

outgoing packets, needed at various stages of the mechanism.

Read flag from length only – readFlag()

Accepts the length field of a packet and determines the flag by examining size of the field.

This command is used by the control component to understand the packet type immediately

after receiving the length – the first field of the packet.

Determine and write – writeFlag()

This command is similar to findFlag() but it also facilitates overloading of the flag in the

packet‟s length field. In case the packet is an acknowledgement, the flag cannot be read by the

addr field but it was pre-set by the control component. The function will write the

acknowledgement flag on the length regardless.

Determine and extract the flag - fixFlag()

The command examines the length of the inputted packet, determines the flag and then deletes

it from the length field.

5.2.5 Control component

Files

The component MicaHighSpeedRadioM is the TinyOS component that facilitates the

transportation layer. SecRose‟s control component is implemented in this file. The component

calls commands from the SecRoseM component. The component is defined in file

MicaHighSpeedRadio.nc and implemented in file MicaHighSpeedRadioM.nc.

Notes

This subsection discusses the PC version of the component. SecRose was also implemented

for the MICA2 architecture. There are minor differences in the component names and the

overall flow of control between different architectures but the concept ideas remain the same.

132

The component is based on events and thus there are time delays in the execution of the flow.

The position of the events, tasks and commands in the file does not match the position of their

explanation in this subsection. The subsection groups packet sending tasks and packet

reception tasks. The file does not follow any particular grouping, since the order does not

matter.

This description does not include radio-timing tasks, which are irrelevant to SecRose.

Global variables

SecRose defines a number of temporary global variables for this component. The important

ones are described here:

States

There are two variables regarding states in this component. The variable state controls the

various stages where the sending or receiving process is. The variable send_state

determines whether an outgoing packet is being processed by MicaHighSpeedRadioM.

This is used to deny higher layers from sending subsequent packets until the current packet

finishes.

Other variables

- next_data contains the next byte, to be transmitted shortly

- data contains the byte that was just received

- rec_ptr is the pointer to the received packet‟s data struct

- send_ptr is the pointer to the outgoing packet‟s data struct

Interfaces

This component uses and provides many interfaces. Some of the provided interfaces are

important to SecRose. They are defined on other components but implemented in

MicaHighSpeedRadioM under the SecRose design specification. These are:

BareSendMsg (defined with the name Send) – the interface to send packets, SecRose

implements the command Send.send() which is triggered when higher layers want to

send a packet.

133

SpiByteFifo – the interface that controls this component with the radio component

SecRose (defined with the name rose) – the SecRoseM component described in the

previous subsection

Pseudocode structure of dataReady()

The command dataReady() is both complicated and important. It is common to both

sending and receiving packets. The exact action is controlled by the state variable. The

command is called by the SpiByteFifo component continuously, after 8 bits could have

been received or sent, regardless if they actually did. In receiving mode, the command is

called with the received byte as the value of the data variable. In sending mode, the data

variable is set to 0.

The structure of the SpiByteFifo.dataReady() command is as follows;

event result_t SpiByteFifo.dataReady(uint8_t data) {

 if(state == TRANSMITTING_START) { ... }

 else if(state == TRANSMITTING){ ... }

 else if(state == RX_STATE) { ... }

 else if(state == SENDING_STRENGTH_PULSE){ ... }

 else if(state == REC_STRENGTH_PULSE) { ... }

 return 1;

}

Depending on the state, a different process is initiated. This subsection has grouped the

distinct processes of sending and receiving and it will only describe the relevant branch of

SpiByteFifo.dataReady() for each one.

Outgoing packet

When a packet arrives from the higher layers, it triggers the command Send.send(). Then

the process of sending a packet initiated, involving various events, tasks and commands. The

input to the process is the pointer to the packet‟s data, which is stored in variable send_ptr.

The process explanation follows.

Process of command Send.send()

1. Check if there is not another packet in the process of being sent. If yes then return FAIL

and exit.

2. Set state = SEND_WAITING

3. Set the source of the packet (send_ptr->addr) to the ID of the local node

134

4. Calculate the MAC or the ACK of the packet (depending on type) by calling

rose.calcMAC() or rose.calcACK()

5. Encrypt the packet by calling rose.packetEncDec() with action ENCRYPT

6. Determine the exact size of the packet‟s fields, and the total number of bytes in the packet

note the values for use later

7. Write the flag on packet‟s length by calling rose.writeFlag()

8. For normal packets, set the destination field to the ID of the local node
18

9. Call ChannelMon.macDelay() and exit

The command ChannelMon.macDelay() is listening to the radio medium for a gap in

transmission. The command is implemented in another component but when a gap is found it

triggers the event ChannelMon.idleDetect(), which is implemented in

MicaHighSpeedRadioM.

Process of ChannelMon.idleDetect()

1. If state is SEND_WAITING, do the following;

2. Set variable rx_count = 0

3. Set send_state = IDLE_STATE

4. Set state = TRANSMITTING_START

5. Call SpiByteFifo.send() to send the first byte of the preamble

The command SpiByteFifo.send() accepts one byte input and sends it to the radio. The

command is implemented in another component but when it completes its task it triggers the

event SpiByteFifo.dataReady() which is implemented in

MicaHighSpeedRadioM. That means that the event SpiByteFifo.dataReady(),

described in the following lines, will be triggered a number of times, at least once after

SpiByteFifo.dataReady() is called and concluded.

Transmission process of SpiByteFifo.dataReady()

1. If state is TRANSMITTING_START, follow the steps to send the preamble

a. Send the next preamble byte by calling SpiByte.Fifo.send()

18
 Normal packets do not need a destination address; their destination is the base station. However, they do need

a source address. SecRose sends the source address in place of the destination address. Swaping of address in the

packet‟s data struct simplifies the code.

135

b. Note how many preamble bytes have been sent

c. If all preamble bytes have been sent

i. set next_data to the first byte of send_ptr

ii. Set state = TRANSMITTING

2. If state = TRANSMITTING, follow the steps to send the packet‟s bytes

a. Send next_data by calling SpiByte.Fifo.send(next_data)

b. If there is more bytes, set next_data to the next packet byte
19

c. Otherwise set state = SENDING_STRENGTH_PULSE

3. If state = SENDING_STRENGTH_PULSE and follow the steps to send the signal

strength bytes:

a. Send two signal strength bytes one-by-one by setting them to next_data and

then calling SpiByte.Fifo.send(next_data)

b. Set state = IDLE_STATE

c. Call SpiByteFifo.idle()

d. Call ChannelMon.startSymbolSearch()
20

e. Trigger event packetSent()

Process of event packetSend()

1. Set send_State = IDLE and state = IDLE

2. Inform higher layers about the packet send event

3. Call rose.counterHandle(send_ptr, PKT_SENT)

Incoming packet

When at its normal state, the radio component listens to the channel for packet preambles.

When a preambles is found it triggers the event ChannelMon.startSymDetect(),

which is implemented in MicaHighSpeedRadioM.

Process of ChannelMon.startSymDetect()

1. Set state = RX_STATE

2. Reset temporary variables to default values

19
 Uses the information about the total size of packet‟s fields, as determined in step 7 of Send.send().

20
 The command ChannelMon.startSymbolSearch() returns the radio component to its normal state.

SecRose‟s control flow continues at event packetSent().

136

At this stage, SecRose is ready to receive the bytes of the packet. All bytes “appear” in the

MicaHighSpeedRadioM component as triggers of the SpiByteFifo.dataReady ()

event. The reception and triggering is implemented in the SpiByteFifo component.

SpiByteFifo.dataReady() in the MicaHighSpeedRadioM component is triggered

every 8 radio bits.

The reception process of SpiByteFifo.dataReady() is executed when state =

RX_STATE and it is as follows;

Reception process of SpiByteFifo.dataReady()

1. If this is the first byte then

a. Place the received byte at the beginning of rec_ptr

b. Call rose.readFlag() to determine the flag

c. Call rose.fixFlag() to extract the flag

d. Determine packet‟s faith; accept/forward/reject
21

e. Determine the exact packet fields size note for later use

2. If it was not the first byte and not the last byte

a. Determine the location that the next received byte should be placed in rec_ptr

and place it there
22

b. Place the received byte at the next location

3. If it was the last byte, initially execute the following tasks

a. For normal packets, swap destination address with source address. Then set source

address to the address of the base station

b. For broadcast packets, set destination address to the broadcast address. Then set

source address to the address of the base station

c. For acknowledgement packets

i. Call rose.counterHandle() with action ACK_TEST_START to

check the validity of the acknowledgement

ii. Set state = REC_STRENGTH_PULSE

iii. exit

21
 The rest of the process assumes that the packet is accepted. SecRose des not currently implement forwarding

or rejection.
22

 Uses the information about the exact fields size, noted in step 1a.

137

4. Then execute the decryption and validation tasks (for all packets except

acknowledgements)

a. Create a copy of the packet as received

b. Decrypt packet

c. Call rose.validateMAC() to validate the MAC

d. If the MAC is not valid, do the following

i. Call rose.counterHandle() with action CNT_REVERT to revert

the counter to the backup counter

ii. Decrypt the copy of the packet

iii. Call rose.validateMAC() to validate the copy of the packet with the

new counter

iv. If mac_valid is now TRUE then keep the copy of packet and discard the

original

e. If the MAC was valid then note it down in order to send an ACK later

5. Set state = REC_STRENGTH_PULSE

Process of SpiByteFifo.dataReady() when state = REC_STRENGTH_PULSE

1. Trigger event packetReceived()

2. Set state = RX_DONE_STATE

3. Call SpiByteFifo.idle() to set radio state to idle

Process of packetReceived()

1. Call ChannelMon.startSymbolSearch()
23

2. If the received packet was an acknowledgement packet then do nothing

3. Otherwise do the following

a. Inform higher layers about a packet reception event

b. Call rose.counterHandle() with action PKT_RECV

c. Create an acknowledgement packet, call TrueSend.send() to send it

23
 The command ChannelMon.startSymbolSearch() returns the radio component to its normal state. SecRose‟s

control flow continues at event packetSent().

138

Chapter 6

Evaluation

139

6. Evaluation

This chapter evaluates the security provision and the performance of SecRose while it

compares it with the existing proposals.

140

6.1 Evaluation of security provision

This subsection presents attacks on potential vulnerabilities of each security requirement and

documented methods of conducting them. The operation and effectiveness of the provided

countermeasures is then discussed and evaluated.

This subsection begins by discussing how the threat model is perceived in SecRose and how it

relates to the requirements for confidentiality, authentication and freshness. Possible attacks

are also discussed.

The provision for each of the requirements is analysed in subsection 6.1.2-6.1.4 while 6.1.5

discusses the additional security requirements. The correctness of the implementation of

XXTEA and CMAC is also demonstrated briefly.

The subsection concludes with an evaluation of SecRose against other solutions.

141

6.1.1 The threat model again

This subsection relates the threat model, presented in the literature review, with SecRose‟s

basic security requirements of confidentiality, authentication and integrity, freshness and

availability. Vulnerabilities to each of the basic security requirements lead to a number of

attacks documented in the literature but the attack nomenclature is inconsistent. In order to

preserve consistency, this document refers to attacks by the name of the requirement in which

they exploit vulnerability.

This subsection gives a short description of the attacks on the threat model, explains how they

are perceived by SecRose‟s security requirements and relates them to the relevant

requirement. The alternative attack names for known attacks in each sub-subsection are

provided where applicable.

Attacks on confidentiality

Attacks on confidentiality, also known as eavesdropping attacks, lead to revelation of the

plaintext input, usually after retrieval of the encryption key. Attacks on confidentiality that

target the computational complexity of the encryption function are generally known as

cryptanalytic attacks.

Resilience against cryptanalytic attacks is provided by the theoretical level of complexity,

which is directly related with the length of the key, and by the mathematical perfection of the

cipher. Every cryptanalytic attack is associated with some level of difficulty. The aim of the

cipher is to provide an infeasible level of computationally difficulty, which should be greater

than the perceived computational ability of the attackers [3].

Known-ciphertext attacks

The attacker has access to the encrypted output of the cipher but the input, key and plaintext,

are unknown. The attack aims to reveal the plaintexts, the key or partial information about the

plaintexts. This attack is rarely used nowadays as modern ciphers are specifically designed

against it, making it exceptionally difficult to conduct the attack.

142

Known-plaintext attacks

This is a widely used attack but its possibility on sensor networks depends on the kind of

application that runs. The attacker must have knowledge of both the encrypted output and the

plaintext input, while the key is the only unknown variable. The attacker then conducts an

exhaustive search of all the keys in order to find the one that created this combination of

input/output. The complexity of this attack is equal with the length of the key. The size of the

key affects the number of required matching attempts and therefore the required time before

the attack concludes. This attack is popularly known as the brute-force attack.

Chosen-plaintext attacks

The attacker can “query” the cipher with specific ciphertexts of their own choice and obtain a

number of outputs that relate to the chosen inputs. If the cipher is not mathematically perfect,

the attacker might then utilise some computation in order to obtain information about the key,

reducing the theoretical complexity of the cipher. If the attack can be conducted with

relatively low computation, then the attack is successful for the attacker and the cipher is

considered insecure.

Related-key attacks

This attack requires the attacker to obtain two or more ciphertexts encrypted with different

keys that are unknown to the attacker but share a known mathematical relationship. Similar to

the Chosen-plaintext attack, the attacker might exploit weaknesses of insecure ciphers to

reduce the theoretical complexity and reveal the used keys in a relatively easy way.

Semantic security

This attack requires the attacker to obtain enough ciphertexts that can be related with known

or predicted plaintexts. After an initial observation period, the attacker can deduce plaintexts,

or information about them, without knowing anything else than the resulting ciphertexts.

The attack is possible when there is a predictable relation between all given plaintexts and all

resulting ciphertexts [29]. The use of a symmetric cipher normally enables this attack, unless

the system introduces a non-constraint bit of information to the ciphertext.

Advantages of this attack include that it does not require any significant computational effort

to be conducted and does not allow the security system to detect that it is under attack.

143

Semantic security is considered important to Public-Key Cryptography but there is no

documentation regarding its importance in sensor networks or in other symmetric-key

cryptosystems. The usefulness and feasibility of such attacks in sensor networks is highly

dependent on the level of variability on the data that the sensor network reports.

Attacks on authentication and integrity

Attacks on the authentication and integrity of the system aim to forge malicious data or nodes

that are then inserted into the network. If a system is vulnerable to these attacks, then a

number of routing attacks is possible and under certain conditions, the cryptographic key

might be revealed. The system is protected by the time complexity required for these attacks

to happen. The time complexity property refers to the number of randomised attempts

required before the attack succeeds. The computational complexity is insignificant if the

attacker is equipped with a modern computer.

The resource-constrained nature of sensor networks allows a relatively small number of data

that to be transferred before depleting the energy resources. In addition, data can only be

transferred at a relatively slow rate. Protection that requires resources or time that exceeds the

capabilities of WSNs is considered sufficient. Injection attacks are dangerous for any security

mechanism and are particularly dangerous for the key management component of SecRose.

A successful packet injection or alteration attack allows the attacker to manipulate the routing

protocol enabling a number of routing attacks. Currently documented attacks are; selective

forwarding, sinkhole, black hole, wormhole and Sybil attacks [76]. In addition, the attacker

might force illegitimate messages to be delivered to the base station.

An acknowledgement injection attack allows for acknowledgement spoofing; making a node

appear healthy while it might have been destroyed or compromised [76]. In addition, due to

the way SecRose‟s key management operates, such attack would lead to key de-

synchronisation and thus communication failure.

An attacker who is capable of systematic packet injection has essentially managed to

represent herself as a node injected in the network. Such an achievement enables the

wormhole attack and practically renders the cryptographic functionality meaningless. In

144

addition, if the attacker can record all possible keys that allow packet injection, she might be

able to work out the initial key.

Specifically for SecRose, packet injection attacks might lead to failure of subsequent

communication. If an attacker manages to inject a broadcast packet then the receivers will

change the key to a new value, which might be unknown to the base station. Therefore, the

pair key will be de-synchronised and the receivers will be unable to receive further,

legitimate, broadcast packets. The same problem is possible for normal or long packets but

only if two or more packets are injected subsequently. Otherwise, the failover mechanism of

the key management component can desynchronise the pair.

Attacks on freshness

These attacks involve recording of legitimate valid packets and replaying them later, at a time

convenient to the attacker. The attacks aim to report falsified information to the base station

or to fiddle with the routing information.

Apart from the routing attacks described in [76], there are no other documented attacks that

exploit freshness vulnerabilities. However, the importance of preventing information replays

is considered in every proposed data-transportation layer security mechanism [2, 21, 29-30].

A typical attack is described with an attacker who is able to replay packets with a powerful

transmitter and has recorded the network‟s activity under “normal” conditions. When the

sensor networks‟ sensing capabilities are truly needed, the attacker replays the “normal” pre-

recorded packets with a strong transmitter, which is able to shadow the node‟s transmitters in

order to prevent the network from reporting the real event.

There are two kinds of freshness. Weak freshness guarantees that messages are not replays but

does not give any information on the time elapsed between transmission and reception of a

packet. Strong freshness includes time information and it can confidently guarantee not only

that a packet is not a replay but also that it is actually a recently transmitted packet.

145

6.1.2 Provision of confidentiality

Provision for known-plaintext attacks

Protection against a known-plaintext attack relies on the theoretical complexity provided by

the cipher, which is directly related with the length of the key. The current agreed key length

that would provide sufficient security is at least 128-bits [72]. This is also considered secure

by references [4, 71]. SecRose utilises XXTEA to provide keys of that length. Longer keys

would currently be an unnecessary waste of resources in a resource-deprived sensor network.

The 128-bits key length provides enough computational complexity to retain the secrecy of

the encrypted data for the next 50-100 years [4, 72]. In addition, the cipher can operate in

DES-style modes, allowing for longer keys to be used in the future if required, in similar

fashion as in Triple-DES [129].

Provision for other cryptanalytic attacks

Other, more sophisticated, cryptanalytic attacks involve exploitation of fundamental cipher

vulnerability in order to decrease the computational complexity of exhaustive search attacks.

The mathematical integrity of the cryptographic cipher is responsible for protection against

these attacks.

As a modern cipher, XXTEA is considered resilient against chosen-plaintext, known-

ciphertext and related-key attacks. Even if these attacks are allowed by the rest of the SecRose

system, the cipher does not have any known mathematical imperfections that would allow

reduction of the computational complexity and thus are meaningless. Additional discussion on

the security of the cipher follows.

Security of TEA

The security of a cipher against cryptanalytic attacks is a theoretical task, which cannot be

tested practically. The security of TEA and its successors has been analysed thoroughly, since

it was first published in 1995. Various problems were found with the first TEA and were

promptly corrected. XTEA and XXTEA are currently considered secure. A summary of all

the cryptanalytic work in XTEA and XXTEA is presented in reference [129].

146

All TEA variants demonstrate strong diffusion and confusion and they are surprisingly simple

[129]. In addition, it was demonstrated that TEA resists various cryptanalytic attacks and

differential cryptanalysis. The simplicity of the algorithm itself adds credibility to the cipher,

since it is easy to analyse it mathematically.

Provision of semantic security

Semantic security is provided in SecRose by the frequent key changes introduced by the key

management component. Even if the same ciphertext is input for two communications, a

different key will be used and that change will be reflected in the resulting ciphertext.

However, semantic security is provided only if the previous communication was successful

and an acknowledgement was received. An attacker who wishes to attack the semantic

security of SecRose will initially have to block acknowledgements. This pre-requisite allows

SecRose to detect that an attacker is present, depriving the attacker from the ability to remain

undetected. Therefore, the attack is available to attackers but detectable and less significant.

Note that the above attack is not possible for broadcast packets, which always advance their

counter after every transmission. SecRose can transmit up to 2
32

 broadcast packets without

reuse of the same key. According to calculations, which will be discussed in 6.1.3, this

amount of packets cannot be transmitted in typical sensor networks and therefore broadcast

packets benefit from permanent and unconditional semantic security.

SecRose already keeps track of how many acknowledgements are in waiting, and this

information could be passed to applications that can utilise it, via the packet‟s data struct.

However, the facility to report on missing acknowledgements is not implemented in the

proof-of-concept demonstration.

SecRose has chosen to provide semantic security via a mechanism that differs from the other

proposals, which utilise an Initialisation Vector (IV). This choice is further discussed in 6.1.6.

Time complexity attack on TEA

A 2010 publication, in a non-scientific, non-peer-reviewed medium, claims to have reduced

the time complexity of XXTEA under certain conditions [137]. The attack is a chosen-

147

plaintext attack requiring 2
35

 queries when applied to 6 XXTEA cycles. The time complexity

increases to 2
59

 chosen plaintexts for 32 XXTEA cycles.

Our thesis regarding this claim is that SecRose is not vulnerable to these attacks, since the

time complexity is always greater than the time complexity introduced by the size of a

packet‟s MAC. As will be discussed in 6.1.2, it is impossible for an attacker to make 2
35

queries on a typical sensor network.

Prof. S.J. Shepherd, the author of [129] and unofficial maintainer of TEA, and has dismissed

the validity of this attack in a personal communication. Prof. Shepherd has repeated the views

expressed on his paper; XXTEA is safe for all practical purposes.

Relation with requirements

The requirement of 128-bit long security has been met by utilising a secure cipher, which

natively supports this key length.

Correctness of the implementation

Due to the asymptotic nature of exhaustive searches, the operation of the cipher cannot be

tested conclusively. However, some experiments have been conducted to test the cipher. The

experiment is set up so that node 0 is the attacker and node 1 is the node under attack. Node 0

knows part of the key and attempts to find the rest of the key by sequentially searching all

combinations.

For the first experiment, the following key is loaded to node 0 (in hex format):

32A3D709 2A83F848 D2F6F4B3 AB211500

This is a randomly selected value except that the last 8 bits are set to zero. Node 0 will

pretend to be the base station and attempt to send broadcast packets to node 1. The node

increases its key monotonically. Node 1 is loaded with the following key:

32A3D709 2A83F848 D2F6F4B3 AB2115FF

This is the same value except that the last 8 bits are set to one. Node 1 should reject the first

255 packets and accept the 256
th

. Otherwise, the cipher has produced the same ciphertext

from a combination of different plaintext and key. Discovery of the key will be tested by

determining when a matching MAC is found and the packet is accepted.

148

The test was run on a modified code that would send the packets and (a) report when a MAC

is found, (b) report the number of sent packets, (c) report the used key and (d) exit the

simulation. The simulator outputted the following:

Evidently, all the objectives of the experiment were satisfied but further experiments were run

to validate that the findings are not a product of chance. The experiment was repeated by

using the non-randomly set bits at the ends of the remaining 32-bit chunks of the key:

Experiment Node Key

2 0 32A3D700 2A83F848 D2F6F4B3 AB211509

1 32A3D7FF 2A83F848 D2F6F4B3 AB211509

3 0 32A3D709 2A83F800 D2F6F4B3 AB211548

1 32A3D709 2A83F8FF D2F6F4B3 AB211548

4 0 32A3D709 2A83F848 D2F6F400 AB2115B3

1 32A3D709 2A83F848 D2F6F4FF AB2115B3

Node 0 was set to increase the relevant part of the key monotonically, for example, in attempt

2 it increased 2A83F800 to 2A83F801, then 2A83F802 and so on. After running the

experiments, the simulator produced the following output:

Experiment 2

149

Experiment 3

Experiment 4

It is observed that Node 0 was always able to find the expected key after exactly 256 tries and

remained completely consistent with the theoretical expectations.

6.1.3 Provision of authentication and integrity

Conditions for packet injection attacks

In order to inject normal, broadcast or long packets on the network, an attacker needs to

guess a valid MAC, associated with the packet content. Attackers are able to attempt that by

transmitting a packet with a seemingly random MAC and hope that the MAC was validated

by chance. The theoretical probability of this happening is discussed.

The specified SecRose MAC length is 4 bytes and there are therefore 2
32

 possible MACs.

Therefore, any MAC, even those that are randomly generated, would have a 1 in 2
32

 chance of

matching a MAC that is generated by actual input and proper procedure. When this happens, a

MAC collision is found. On average, a collision is found after n = 2
31

 packets are exchanged.

SecRose can protect a network as long as this number of packets is not received. This level of

complexity is selected in accordance with the requirements for the authentication component.

The requirements state that the mechanism has to provide complex enough authentication to

150

render such attacks useless by forcing them to deplete energy resources in order to be

successful. As will be discussed, reception of 2
31

 packets would require greater resources than

what is available on sensor nodes, therefore making the node to cease to operate due to lack of

available energy.

The utilisation of available energy resources needs to be calculated in practical terms in order

to determine if the system can satisfy the security requirements. Assuming total energy E is

required to carry out an attack on a node with capacity C, the system is secure as long as E >

C. Failing to meet this condition means that the node‟s energy resource is drained out before

the attack concludes.

Assuming packet length L, energy e is required to transfer one bit and total packets n need to

be transferred, then the required total energy E to receive the packets is E = L*e*n. Therefore,

the system is secure as long as [E = L*e*n] > C.

It has already been discussed that n = 2
31

. The real-terms value of the other variables can also

be found in the literature or drawn by SecRose‟s design:

 SecRose‟s minimum packet size L = 152b
24

 the required reception energy e = 2028nJ/b (nanojoules per bit) [69]

 the node is provided
25

 with capacity C = 30,000J (joules) [138]

Under these conditions, E = L*e*n = 152 * (2028 * 10
-9

) * (2
31

) = 661974J, which is about 22

times than C and therefore the system is considered secure. Further calculations indicate that

the energy resources will be depleted after about 2
26.5

 packets are transmitted. The above

calculations do not account for the computational energy that is additionally required to

validate the packets.

In addition to energy constraints, there are time constraints as well. For example, a MICA2

node communicates at 38.4Kbps and it can therefore receive about 253 packets per second.

Without accounting for medium access delays, the 2
31

 packets required before a collision is

found would take 98 days.

24
 As defined in SecRose‟s design, the minimum length of broadcast packet with 0 data payload is 7 bytes. There

is also a 12-byte preamble defined in TinyOS for every packet. A total of 19B = 152b.
25

 There is little published information on the exact capacity of commercial batteries. The 30,000 Joule figure for

two AA batteries is a very generous estimation derived by a number of sources in addition to the referred article.

151

Therefore, even if unlimited power supply is assumed, the 4-Byte MAC can still provide

some protection. However, the current configuration of SecRose, including the length of the

MAC, is optimised for nodes with a limited power source. If a network enjoys unlimited

energy resources then SecRose can be configured to use a 5-Byte MAC, which would

increase time complexity by a factor of 256, resulting in time complexity of 68 years before a

packet is injected.

A diagram of how a packet injection attack might be conducted is given in Figure 20. The

attack begins with the attacker sending a packet containing a MAC calculated using the key

K1. As this will probably fail, the attacker continues sending packets with MACs calculated

with various keys, until a match is found with Kn. In this case, the receiver will update its

active counter. Note that even MACs that are selected randomly could in fact have been

calculated using a key. Therefore, the diagram notates all MAC as to have been calculated

with some hypothetical key.

Figure 20: sequence diagram of packet injection attacks.

The attacker keeps sending invalid packets until packet encrypted with Kn is sent.

Conditions for acknowledgement injection attacks

SecRose‟s authenticated acknowledgements are protected by theoretical confidence

guarantees and practical limitations. Acknowledgements contain two authenticated bytes and

therefore there are 2
16

 distinct values. Forged acknowledgements can cause key de-

synchronisation and prevent subsequent communications. Since the 2
16

 complexity is not an

152

asymptotic value, SecRose does not rely on the complexity and it sets a limit to how many

invalid acknowledgements it can receive.

An attacker would be able to transmit all distinct 2
16

 acknowledgements without consuming

significant energy. However, a sender can only receive as many invalid acknowledgements as

many packets it has sent and waits for an acknowledgement. Therefore, the sender can receive

a theoretical maximum of 10 acknowledgements, as this is the maximum size of the

acknowledgement table
26

.

This limitation prevents the attacker from managing key de-synchronisation using brute force

but a chance of achieving the attack remains. For a 2
16

 complexity and a sender that is

constantly expecting 10 acknowledgements, the attacker has a 10 in 2
16

 chance of success

when she sends random acknowledgement values after a communication. Therefore, de-

synchronisation will occur after 3276.8 forged acknowledgements.

In practice, the chance is even smaller because the acknowledgement table is rarely expected

to reach its maximum size of 10. The actual size depends on various factors but it can be

calculated that as long as the senders do not send more than one packet every second then the

size of the table would remain 1.

Conditions for node injection by packet injection

Most of the documented routing attacks that require what is described as “node injection”

could be conducted by just injecting one authorised packet on the network. The actual

feasibility depends on the routing protocol and its resiliency. Therefore, SecRose‟s level of

resiliency to node injection attacks equals the 1 in 2
32

 chance of managing a packet injection.

Conditions for key de-synchronisation by sequential packet injection

SecRose is susceptible to key de-synchronisation and communication disruption should the

attacker manage to inject two packets with the same destination on the network. The worst-

case scenario is when these packets are broadcast packets, where the whole network will be

affected.

26
 Discussed in 4.1.4.

153

Such an attack can happen with half the probability of injecting one packet, since any packet

has the same probability, two packets are required and there is hypothetically no restriction on

how many attempts are made. Therefore, an attacker has, on average, 1 in 2
32

 + 2
32

 = 2
33

chance of succeeding on this attack. This value is asymptotic enough to claim that the level of

provided security is acceptable.

Such attack would require double the time or double the energy to succeed and upon

completion would only affect the packet type used to launch it.

Conditions for key revelation

An attacker might conduct a coordinated attack, which aims to find and document all possible

MAC collisions and the hypothetical keys that created them. The chances of succeeding are

unrealistically low but this attack is discussed for completeness.

To conduct this attack, the attacker has to know when a packet was successfully injected.

Therefore, the attack cannot be conducted with a burst of broadcast packets transmitted

without time interval. The attack has to allow nodes to respond and send an

acknowledgement. According to the TinyOS specification, nodes respond with a medium

access delay, which is always greater than 100 msec. Even if the actual transmission did not

take any time at all, the attacker would only be able to send 10 packets per second. At this

rate, it would take 6.8 years to transmit 2
31

 packets and manage to inject one.

Even if this is not a problem, the attack cannot conclude until a great many packets are

injected. Since a MAC is 32 bits and the minimum acknowledged packet is 72 bits, there are

2
72

/2
32

 = 10
12

 possible collisions. The attacker has to collect about half of them to reach the

average number of collected collisions before the initial key can be revealed. Under these

conditions, it is assumed that SecRose is not vulnerable to this attack.

Relation with requirements

SecRose meets the authentication and integrity requirements. Indirect authentication was not

needed as all packet fields are directly authenticated via the MAC.

154

Correctness of the implementation

The protection against packet injection such attacks relies on the Authentication component,

which in turn relies on the CMAC function and the encryption function. If the encryption

function does not evenly diffuse key and plaintext then the CMAC function will not provide

a homogenous output and thus the probability of an attacker finding a valid MAC by testing

random values will be greater than the theoretical 1 in 2
32

 that SecRose should provide.

The full test of the MAC collision probability requires exchange of at least 2
31

 packets. Due to

the limitations of medium access control, the full range of this experiment cannot be run by

exchanging packets, as it would require 25 days to conclude. A number of smaller

experiments were run to test the operation of both the CMAC and XXTEA simultaneously.

The used keys were:

Node 0: 32A3D709 2A83F848 D2F6F4B3 AB000000

Node 1: 32A3D709 2A83F848 D2F6F4B3 ABffffFF

Using these keys, the experiment should exchange 2
20

 packets. The experiment was run

successfully and the expected output was produced. The output was:

155

6.1.4 Provision of freshness

Operation of the freshness provision

Freshness is provided to SecRose via the key management component. Each time a packet is

successfully transmitted, the cryptographic state chances and attackers cannot learn any

information about the new state, unless some other attack was successful.

The new state designates a new “era” and the first packet that is exchanged in this era cannot

be a replay of a packet exchanged in a previous era. If that packet was received in the past,

then the state would have changed back then and the current era would not be operative under

this state.

The key change and state transition is illustrated in Figure 21. The attack begins with the

attacker recoding a valid packet. The system progresses to a new era as the new key K2 is

stored and will be used for the next communication. Later, the attacker replays the packet.

This packet is not valid anymore since it was generated with K1 but now the received has

advanced to K2.

Figure 21: key changes and prevention of packet replays

156

Conditions and levels of provided freshness

The freshness mechanism provides weak freshness upon the condition that the last packet was

successfully exchanged and the key was properly advanced. Therefore, various packets might

enjoy different levels of freshness. This provision is in accordance with the requirements. The

advantages and disadvantages of the SecRose solution against other proposals will be further

evaluated 6.1.8.

Definitely fresh

The first packet exchanged after a successful communication is weakly fresh, with probability

of error equal to the probability of packet injection
27

, which equals 1 in 2
32

. This is equal to

the probability of packet injection, since a replayed packet in these cases is no different from a

randomly generated packet in a packet injection attempt.

Broadcast packets are always definitely fresh, since they do not trigger acknowledgements

and the broadcast key is always advanced. Effectively, each broadcast packet is the only

packet that can be transmitted on a given era.

Unknown status

Subsequent packets transmitted in the same era, prior to key advancement have an

undetermined freshness status. SecRose might loosely guarantee that these packets belong to

this era but the system cannot tell if these packets are replays from the same era. Depending

on the application, this might or may not introduce important consequences.

Regarding strong freshness

Inclusion of time information on a packet in order to provide strong freshness is not a

requirement of SecRose and it is deemed an unnecessary resource-consuming feature since it

is not required by every sensor network application
28

. Applications that require strong

freshness are able to include timing information on their packet and rely on the rest of the

security properties of SecRose for authenticated and confident delivery of this information.

27
 As discussed in 6.1.3.

28
 As discussed in 2.2.1.

157

Relation with requirements

SecRose meets the freshness requirements as expected. Packets can be determined as

confidently fresh or undetermined. In addition, packets can be associated with an era.

6.1.5 Additional security provision

Destructive attacks

Protection against destructive DoS attacks is out of the scope of SecRose and is therefore not

provided. The following is discussed for completeness. These attacks have been discussed and

addressed by other security research groups [109-110]. The typical sensor networks, which

SecRose aims to operate at, are probably not suited to respond to such attacks and the

SecRose mechanism is helpless in detecting or avoiding them.

Sensor networks are particularly vulnerable to radio jamming Denial of Service (DoS) attacks.

An attacker can use a powerful transmitter, which is able to transmit at much higher energies

than a sensor node. Such transmitter is neither difficult to make nor expensive.

In addition to radio attacks, the SecRose mechanism cannot detect or protect a sensor network

from node destruction attacks.

Asymmetric DoS attacks

The requirements state that SecRose should not enable intelligent DoS attacks that an attacker

can execute with little effort but would cause an asymmetrically great response from the

sensor network, forcing it to consume high amounts of energy. To the best of our knowledge,

this requirement has been met.

Transmission of a small, randomly generated, invalid packet does cause the receiver to

undergo the effort of MAC validation twice, but this response is essential to the correct

operation of the failover mechanism and it is not a greatly asymmetric effort. Nevertheless,

the completion of double validation consumes less time than the time required transmitting

the malicious packet
29

.

29
 Further discussed and supported in 6.2.3.

158

The system design appears to have no loops. The failover mechanism is not repeating any

packets and there are no acknowledgements to the acknowledgement. If such features were

present, they might have allowed a malformed packet to cause an infinite loop on the system.

Packets with incorrect length do not have an adverse effect on the energy consumed by the

receiver either. Firstly, input validation is a task that should be done at code level. Secondly,

the flag-based packet management system does not allow packets of greater than 64-bytes

payload to be received. Any packet with a malicious 64-byte data payload will be perceived

as a broadcast packet with 1-byte payload. Similarly, packets with 129-bytes payload are

perceived as long packets with 1-byte payload. Finally, packets with 193 bytes payload cause

even less energy damage as they are perceived as acknowledgement packets with 0-payload

and their processing does not involve any encryption operation.

Points of failure

SecRose‟s design does not designate any node to be of additional importance to the sensor

network and it therefore does not introduce any single points of hardware failure. Note that

the base station of any sensor network is inherently a single point of failure [81] and this

status is not affected by SecRose.

In addition, SecRose does not appear to have any particular weakness in the design. It might

be true that acknowledgement forging is easier than packet injection, but this attack is also the

easiest to prevent as well.

Node compromise

Hardware security has been discussed in 2.3.2 and 2.3.5. The subsections conclude that

SecRose should not aim to provide resiliency against node compromise attacks. Such research

is primarily directed to electronic microprocessors and is not a research problem of our area.

Therefore, SecRose should not be considered as a mechanism that provides protection against

attack to hardware security.

However, SecRose includes a key management mechanism, which demonstrates potential to

prevent node compromise attacks in the future. Currently, each node keeps the initial key in

order to be able to initiate creation of new pairs. An attacker who gains access to the initial

159

key can initiate communication with the whole network and thus the system is vulnerable to

node compromise.

A future version of SecRose, or an application built for SecRose, may implement a

mechanism that would not require a pre-loaded initial key to be present on memory at all

times. The existing control packet infrastructure
30

 may support the introduction of this feature.

Combined with the existing variable cryptographic state, the feature would create

functionality that is similar to other key distributions schemes [23].

Security of the changing keys

It is stressed that the key management mechanism of SecRose does not provide additional

cryptographic complexity, other than 128-bit key length provided by the cipher. Since the

derived keys are mathematically related with their predecessors, ability to reveal one key

grants access to all derived keys as well. For this reason, the computational complexity is not

based in the changing keys feature.

Guaranteed deliveries

SecRose offers an authenticated guarantee of packet delivery via the authenticated

acknowledgements. The guarantee is provided to the sender with 10 in 2
16

 probability of

error. However, lack of acknowledgement does not necessarily mean lack of delivery. An

acknowledgement might have simply been lost while in transit. Appropriate utilisation of this

feature, e.g. retransmission of seemingly lost packets, is the responsibility of the application.

This behaviour is backwards compatible with TinyOS.

Security of broadcast packets

Secure broadcast communication is very difficult to achieve efficiently in sensor networks

[29]. Although SecRose provides secure broadcast packets, they are vulnerable to a DoS

attack that might render them inoperable. The attack involves blocking some of the broadcast

packets, which causes key de-synchronisation, and breakdown of further broadcast packets.

Unfortunately, SecRose cannot guarantee the reliability of broadcast communication without

compromising efficiency.

30
 Discussed in 4.1.1.

160

On the other hand, the provided level of security in broadcast packets is higher than in both

normal and long packets. Since there are no acknowledgements, the base station will always

advance the key after each transmission. This method guarantees unconditional semantic

security, a sub-property of confidentiality, and weak freshness as it is not subject to the

conditions introduced by the blocking of acknowledgements.

As a conclusion, it is guaranteed that the nodes will receive a broadcast packet through secure

transmission, but the base station is not guaranteed that its broadcast attempt will reach the

nodes. The topic will be further discussed and compared with other proposals in the next

subsection.

This behaviour does not violate the availability requirements of SecRose and is consistent

with other broadcast communication methods found in traditional computer networks, for

example in the ARP [139] and ICMP [140] protocols. In these and many other cases,

broadcast communication is a “cheap” mechanism of unreliably addressing multiple network

nodes.

Relation with requirements

SecRose unconditionally meets the additional security requirements.

6.1.6 Evaluation against other solutions

Candidate alternatives

This subsection evaluates and compares the security of SecRose against the similar TinySec,

MiniSec and SenSec. The 802.15.4 (ZigBee) [10, 105] and ContikiSec [93], are also

discussed despite the fact that they are intended for high-end sensor nodes and therefore

dissimilar to SecRose. The more recent proposal, FlexiSec [94] is critically evaluated as well.

The SPINS [29] proposal was not accounted for since it seems partially complete and

abandoned by its creators.

161

Confidentiality: ciphers and key lengths

As discussed, the confidentiality provision is directly related with the length of the key and

the mathematical integrity of the cryptographic cipher. The systems under evaluation use

either XXTEA or SkipJack. Both ciphers are considered secure if used properly [129, 141].

In particular, the best-known cryptanalysis of SkipJack is only computationally beneficial if

the cipher is used with 31 rounds. However, the design of SkipJack recommends a minimum

of 32 rounds to be used and therefore the imperfection does not affect real-world proper

implementations. It is certain that TinySec uses SkipJack with 32 rounds. However, it is only

assumed that the same is true for MiniSec and SenSec as well. On the other hand, there is no

known and peer-reviewed cryptanalysis on XXTEA. The only known possible vulnerability is

yet to be validated.

Therefore, the essential differences in regards with provision of confidentiality lie in the

selected key length. SecRose uses a 128-bit key, which is natively supported by the cipher.

TinySec and MiniSec use SkipJack in its 80-bit native mode while SenSec uses key whitening

to operate SkipJack with a non-native key length, which is variable between 80-144 bits.

When whitening is used, the effective complexity is 2
n+(m/p)

, where n is the key length, m is

the block size and p is the number of known plaintexts [4]. Under these conditions, an

attacker who acquires one plaintext in order to conduct a known-plaintext attack would face

an effective computational complexity of 2
144

. However, this complexity is drastically

reduced if the attacker can obtain more than one plaintexts. For example, if 10 plaintexts are

known, then SenSec can only enjoy a complexity of 2
86.4

. The effective complexity reduction

is less drastic after this point.

In addition to the complexity problem, whitening, and especially its use with SkipJack is not a

well-documented technique and therefore it is open to potential cryptanalytic attacks. If

proven secure, it can also be applied to SecRose and increase its complexity to a variable 128-

160 bits.

SecRose is the only protocol that provides an unconditional solution that adequately satisfies

modern complexity requirements. For these reasons, SecRose provides better confidentiality

than the alternative proposals.

162

Confidentiality: semantic security

The alternative proposals utilise an Initialisation Vector (IV) to achieve semantic security.

SecRose relies on its key management mechanism for the same task. These are significantly

different approaches with different advantages and drawbacks.

The IV approach appears to have the advantage of unconditional operation; it will always

provide a level of semantic security. However, IVs offer their security on condition that the

IV value will not be reused. All the proposals arrange their IVs so that they appear long

enough but in reality, the truly variable parts are much shorter than presented. For example,

TinySec uses an IV that appears to be 32-bits long but the authors admit that for a particular

pair, IV reuse will happen after 2
16

 packets are exchanged. Similarly, SenSec will reuse its IV

after 2
24

 packets. Unfortunately, the authors of MiniSec do not clearly state their IV

variability.

The proposals do not seem to have permanently tackled the problem of IV reuse and therefore

their security is conditional. In addition, the IVs introduce a potential for vulnerabilities [111].

Since the IV is both transmitted in the clear and a part of the ciphertext input, it is essentially

input data leaked to attackers, a piece of known-plaintext that is always available.

163

On the other hand, SecRose provides a 32-bit variable counter as part of the key. The

counter‟s length is enough to prevent reuse but it only operates properly on the condition that

packets and their acknowledgements are received. However, if attackers block the

acknowledgements consistently, they reveal their presence to SecRose and therefore the

attack is less serious as it loses the advantage of remaining passive.

Other proposals can also detect when IV reuse will happen, since it can be tracked on their

system configuration. Therefore, all proposals offer semantic security, which is based on a

detectable condition.

The true advantage of SecRose‟s approach is that the seriousness of the attack is reduced and

that it does not introduce additional radio energy. For these reasons, SecRose provides a better

overall performance, as far as semantic security is concerned.

Authentication

All proposals use a 4-Byte MAC, which provides the same probability of collision and

therefore the same probability of packet and node injection. Differences exist in the way the

MAC is calculated since SecRose, TinySec and MiniSec use two-pass CMAC authentication

while SenSec uses a one-pass OCB authentication, which supposedly uses less energy but has

no effect in the security of the MAC.

Both modes appear to be secure and therefore the security of the authentication for all

proposals is considered the same.

Freshness

There are different levels of freshness provided by different proposals. MiniSec provides

weak freshness and guarantees that a packet is not a replay of a previously transmitted packet.

However, MiniSec cannot determine the time elapsed between transmission and reception in

any way. TinySec does not provide freshness, and the authors of SenSec do not even mention

freshness in their paper.

SecRose provides conditional weak freshness, which always gives some timing information.

As explained, the key change mechanism clusters time in eras and SecRose can be confident

about the freshness of the first packet transmitted in every era. For this first packet, SecRose

164

does not only guarantee its freshness, but can also guarantee that it could not have been

originated at a previous era. It therefore provides some information on when the packet was

transmitted. However, SecRose cannot guarantee that subsequent packets are not replays but

it can still determine the era in which they were transmitted.

While it is clear that for the first packet of an era SecRose is better than any other proposal,

subsequent packets are problematic. MiniSec also uses an epoch-based system, which can

guarantee the freshness of up to 256 packets on each epoch. Until that point, MiniSec

performs better than SecRose and then it performs similarly.

However, if attackers wish to block the freshness guarantee of SecRose, they cannot remain

passive. The block of acknowledgements is a detectable situation. Thus, MiniSec offers a

higher level of freshness only when a detectable attack is conducted. On the other hand, if the

attacker wishes to remain passive, both protocols offer the same level of freshness.

Each solution has its own advantages and both might be of equal importance but SecRose has

opted for the conditional solution since it introduces zero energy overhead and potential

Attacks on freshness generate a detectable condition.

Secret state versus open state

As evident by the evaluation of freshness and semantic security, SecRose has opted for a

secret-state type of mechanism, which has certain advantages and drawbacks. The primary

advantage of a secret state is that is leaves less room for potential attacks while the drawback

is that some security features are conditional. However, this problem is less important since

attacks can be detected.

All proposals offer a fair level of semantic security and freshness, and they all operate

conditionally. The essential difference between SecRose and the other proposals is that the

conditions for correct operation differ. SecRose maintains its security as long as the attacker

wishes to remain passive. Other proposals maintain their security for a number of packets.

Additional advantages of the SecRose approach is that it leaks less information to attackers

while it consumes less energy and always allows for detection of attacks. Future applications

165

will be able to make the most of SecRose, fully accommodate the detection capabilities and

benefit from a full range of security features while consuming less energy.

SecRose constitutes an alternative solution, providing the benefit of choice to the field and

therefore making an important contribution. Security features that are currently “conditional”

are due to SecRose‟s choice to provide a closed cryptographic state and offer the associated

different advantages.

Key management

SecRose provides a limited key management mechanism in order to provide for its own

functionality. The mechanism lacks some of the functionality provided by complete key

management solutions but makes SecRose comprehensive and allows it to be evaluated as

such.

In addition, the key management mechanism of SecRose demonstrates great potential for

future versions to update and achieve further increases in the security and efficiency of

SecRose.

Other proposals, like TinySec rely on external key management and are therefore functionally

incomplete.

Routing

SecRose is the only proposal to provide authenticated acknowledgements. The provision

introduces significant amount of radio energy but it is essential for both the security and

integrity of the mechanism. The authenticated acknowledgements enable SecRose to secure

all messages, including the routing messages and therefore allow it to provide a highly

elevated level of security.

SecRose‟s requirement is to secure all exchanged packets, including acknowledgements and

therefore including all routing messages. SecRose enables sensor network developers to

choose from any of the available routing protocols, which in turn could allow utilisation of

energy-efficient routing that suits their network.

166

All other proposals are vulnerable to routing attacks that exploit vulnerabilities in the

acknowledgement. As described in [76], these attacks are all kinds of selective forwarding

attacks; nodes that may or may not forward a packet while pretending that they did. Most of

the existing routing protocols rely on the acknowledgement mechanism and are therefore are

vulnerable to selective forwarding. Sensor networks that use any of the following routing

protocols are vulnerable; TinyOS beaconing [64], Directed Diffusion [18], geographic routing

protocols like GPSR [17], cost-efficient protocols like [142], clustering protocols [89, 143]

and rumour routing [88].

The only protocols that are resilient to these attacks require special capabilities from the

sensor node. For example, SIGF [106], which natively uses authenticated acknowledgements,

requires location awareness while topology maintenance routing protocols, SPAN [25], GAF

[87], CEC [144] and AFECA [145], are not intended for typical sensor networks.

While it is true that other proposals increase the security and authenticity of outgoing

messages, their failure to protect the acknowledgements is detrimental to the security of all

typical networks. No sensor network that utilises typical, low power, low capability and cheap

nodes, like an out-of-the-box MICA2 node, is secure against routing attacks, unless it uses

SecRose.

Delivery guarantee

The packet delivery guarantee offered by SecRose is a unique feature provided by the

authenticated acknowledgement mechanism. The feature makes selective DoS attacks on the

radio medium easier to detect. There is currently no other proposal offering this additional

functionality.

In fact, every other proposal is vulnerable to attacks in this area. All proposals use a link-layer

acknowledgement; the first forwarding node informs the sender that their packet is received.

This acknowledgement is not authenticated; it is simply a stream of four specific bytes. No

proposal provides any way of confidently determining what happened next and if the packet

finally arrived to the destination.

167

Other proposals are vulnerable to acknowledgement injection [76], selective forwarding and

sinkhole attacks [76]. These attacks are not detectable but can cause disruption or total

communication breakdown, depending on the routing protocol used.

SecRose can detect such attacks and most importantly is not vulnerable to communication

breakdown under any circumstance due to this problem. However, SecRose only utilises this

feature for self-synchronisation. Actual exploitation of this feature and implementation of it as

a complete transmission control mechanism, as the one found in TCP, is left to the

application.

Security of broadcast communication

SecRose provides a special broadcast packet, which benefits from a higher level of

confidentiality, authentication and freshness than the level offered by normal and long

packets. On the other hand, this packet does not offer availability.

Other proposals offer broadcast communication in the same way, and the same level of

security, as with any other packet type. They are therefore not subject to the availability

problems of SecRose but they are subject to attacks on confidentiality and freshness.

Neither SecRose, nor the other proposals were designed to accommodate the property of

availability and it is not in their requirements. The attack was discovered on SecRose because

it was the only proposal evaluated against availability, despite the fact that it was not designed

to provide the property. Whether availability attacks exist in other mechanism is unknown.

On that basis, a comparison would only be fair if vulnerabilities on availability are excluded.

Under this assumption, SecRose provides a much higher level of confidentiality, semantic

security and freshness than the other proposals.

As with other packet types, SecRose offers a different approach, which is subject to different

conditions.

Summary for TinySec, MiniSec and SenSec

The following table presents a summary of the security properties of SecRose, TinySec,

MiniSec and SenSec. The table is compiled by the information discussed up to now in this

168

subsection. Note that authentication complexity is not listed since it is the same for all

proposals.

 Effective

key length

Semantic

security

Freshness Key

management

Authenticated

Acknowledgements

State

TinySec 80 Limited at 2
16

packets

Not

provided

Not provided Not provided Open

MiniSec 80 Limited to 2
8

packets/epoch

Weak

freshness

Not provided Not provided Partly

secret

SenSec Theoretical:

80-144

Actual: ≅85

Limited at 2
24

packets

Not

provided

Not provided Not provided Open

SecRose 128 Unlimited,

conditional

Weak

freshness

Yes, limited Yes Secret

Table 3: comparative summary of the provided security for each mechanism

The table illustrates how SecRose provides equal or better security than the other proposals.

The effective key length of SecRose remains consistent at 128-bits and while MiniSec might

provide a better theoretical limit, it is not proven that this is either necessary or truly more

secure.

The semantic security of SecRose is not limited by reachable packet counts but it is

conditional to whether the attacker wishes to remain passive or not.

A similar condition applies for the freshness requirement when comparing SecRose with

MiniSec. On the other hand, TinySec and SenSec do not provide freshness at all.

SecRose provides a basic key management with potential for future radical improvements that

could capitalise on the energy savings of other areas. Other proposals do not provide key

management at all.

Finally, SecRose keeps its security state secret and avoids potential, documented, risks

associated with revealing part of the security state of secret key cryptography systems.

Comparison with FlexiSec

Reference [94], published in June 2009, describes the FlexiSec configurable link-layer

security architecture. This is a recent work and thus it is evaluated separately.

169

FlexiSec recognises the importance of 128-bit computational complexity and the authors have

evaluated XXTEA and AES as possible ciphers. The final solution is using AES at a speed

optimised or a size optimised mode. This level of complexity is equal with SecRose.

However, the SecRose evaluation has shown that AES uses more energy than XXTEA.

For authentication, the authors propose the use of a MAC with a variable size between 4 and 8

bytes. Our evaluation has proven that it is unnecessary to use MACs that are longer than 4

bytes, unless the network benefits from an unlimited power source. In this case, SecRose is

ready to use a 5-byte MAC, which would be sufficient for all realistic applications. To

provide freshness, the authors use a technique similar to the technique used by MiniSec.

FlexiSec does not provide authenticated acknowledgements or any form of key management

either.

It appears that the contribution of FlexiSec is on the provided flexibility only and that the

mechanism does not provide any new features or solves any existing problems.

Comparison with 802.15.14 and ContikiSec

The IEEE 802.15.14 (ZigBee) [10, 105] standard is a generic, secure, communication protocol

for small devices. The ContikiSec [93] is proposed as the security mechanism for the Contiki

OS [57]. They are both suitable for sensor networks consisting of nodes with high-end

capabilities, like the Imote2 [47].

SecRose‟s assumption was that it operates in low-end devices like the MICA2 node and it is

optimised for the requirements of such devices. A comparison of SecRose and 802.15.4 is

presented for completeness only.

The Imote2 benefits from features like a scalable processor capable of 416MHz and 250Kbps

communication rate. SecRose was designed for nodes like the MICA2 node, which operates at

4MHz and can communicate at 38.4Kbps. The Imote2 is more than ten times more capable

than the MICA2 node and, obviously, there are similar differences in pricing and energy

consumption.

ContikiSec does not provide freshness, key management or authenticated acknowledgements.

In addition, the mechanism operates via a random IV and thus it is considered to have an open

170

cryptographic state. For this reasons, ContikiSec is inferior to SecRose and will not be

discussed further.

On the other hand, the security of SecRose is directly comparable with 802.15.14 especially if

the protocols are used in low-end devices. The following table compares the security of

SecRose, 802.15.14 and ContikiSec:

 SecRose 802.15.14 ContikiSec

Key in bits (cipher) 128 (XXTEA) 128 (AES) 128 (AES)

MAC length (Byte) 4 4/8/16 4

Semantic security Unlimited,

conditional

Unlimited,

Conditional

Limited to

2
16

 packets

Freshness Weak freshness Weak freshness Not provided

Key management Yes, limited Yes, full Not provided

Authenticated

Acknowledgements

Yes Not provided Not provided

State Secret Partly secret Open

Table 4: comparison of the security provision of SecRose and 802.15.14

As illustrated in Table 4, there are mainly three differences of SecRose with 802.15.14 (a)

supports multiple MAC lengths, (b) provides a fully functional key management scheme with

key provision authority and (c) does not support authenticated acknowledgements.

As discussed in 6.1.3, the length of the MAC in SecRose is optimised for nodes that operate

on finite power sources and communicate at low rates. The less confident authentication

provided by SecRose is not a drawback but an optimisation choice for a low requirement

design. Both SecRose and 802.15.4 provide authentication that is secure for their assumed

operational environment. SecRose could have provided 8 or 16 bytes long MACs if that had

been a requirement.

However, SecRose does lack in the key management area, as it does not provide a scheme for

key distribution. However, it does provide a limited key change mechanism, which might

form the base for a complete key management scheme in the future.

171

On the other hand, 802.15.4 does not provide authenticated acknowledgements. In our

opinion, this is a serious drawback for a generic, high-end security mechanism and it does not

appear consistent with other provisions of the protocol.

Our thesis is that although SecRose was never intended to contest with 802.15.4, the

evaluation shows that the two mechanisms provide comparable security when used with low-

end sensor networks.

172

6.2 Performance evaluation

This section discusses the performance of SecRose and compares it with TinySec.

Unfortunately, we were unable to find working implementations of MiniSec, SenSec, SPINS

and FlexiSec. These mechanisms are either abandoned by their research groups or not yet

implemented. For this reason, our comparative results are limited to experiments between

SecRose and TinySec.

This section begins by a presentation of the energy requirements from CPU and Radio. Then

the latency issues are addressed and the section concludes with comparisons of SecRose,

TinySec and TinyOS.

Notes on scale

All figures have been scaled on the y-axis to improve the visible information. The scale is

different for all figures and thus it is important to note the value range when reading the

figures.

6.2.1 Explanation of methodology

Application for measurements

In order to conduct the measurements of this section, a test program was created, which could

be run on both the Avrora [63] and the TOSSIM [62] simulators. The program was adapted

for each measurement type in a way that it would conduct a reflective simulation. Each

subsection begins by describing how the measurement was taken.

Effort has been made to standardise and minimise the impact of the external variables that

would affect our measurements. All measurements were taken using two nodes and no routing

protocol. This allows SecRose to be the only truly “variable” variable while measurements

were taken.

Attention has also been paid to the validity, integrity and consistency of measurements. When

possible, the same application was used with only the simulation parameters changing. This

173

allows a wider picture to be built for the overall performance of the simulator. All results are

directly copy-pasted from the simulator output to excel where the diagrams were created. This

minimises possible errors in the illustrations.

Validity of simulators

Both TOSSIM and Avrora were used for double validation where possible but the presented

results were generated with Avrora. Both simulators are highly respected for their accurate

operation and validity of results. TOSSIM has been used by the majority of the research

community and has been cited by many publications; including [1, 63, 146]. Avrora, on the

other hand, enjoys less success, as it is more recent but it is used by sensor networks

researchers [147-148].

The Avrora simulator is highly accurate and can provide energy usage analysis based on the

energy model presented on [149]. Comparative results that demonstrate SecRose‟s

performance against TinySec are deemed fair since any simulation inaccuracies would equally

affect both mechanisms.

6.2.2 Energy requirements

Description of experiment

The Avrora simulator can report the energy used by the CPU and the energy used by radio to

execute a simulation. A sensor network application was created to run the experiments.

The application sends one packet with a set data payload. Thirty applications, one for each of

the 0…29 data payloads, for each packet type were created.

Results: CPU energy requirements

The following figures illustrate the CPU energy consumption. The x-axis represents the

increasing data payload while the y-axis is the CPU energy consumption in Joules. The red

line is for broadcast packets, the green line is for long packets and the purple line is for

normal packets. The diagrams also illustrate the different CPU energy requirements for each

packet type.

174

Figure 22 shows the CPU energy requirement for the transmitting node. The energy is

increased in steps, which relate with either the block size of the cipher or the performance of

TinyOS. For example, the difference of payload 5 and 6 is due to one additional call to the

encryption cipher, which is initiated by the MAC component. The same is visible after every

four bytes – the length of the cipher‟s minimum block size. The difference between payload 8

and 9 is due to one additional block of data input on the block cipher due to the payload‟s

size.

On the other hand, the odd difference between 14 and 15, where 15 bytes payload consume

less energy than 14 is an artefact of when TinyOS decides to put the radio on sleep. Note that

radio consumes energy at both the CPU and the transmitter itself.

Figure 23 shows the CPU energy requirement for the receiving node. In this Figure, TinyOS

is less influential on the shape of the line and the actual differences SecRose‟s in data

handling are more visible.

175

Figure 22: CPU energy requirements for a SecRose transmitter

Values express energy in Joules (y), versus data payload in Bytes (x).

0.27576

0.27577

0.27578

0.27579

0.2758

0.27581

0.27582

0.27583

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Broadcast Long Normal

176

Figure 23: CPU energy requirements for a SecRose receiver.

Values express energy in Joules (y), versus data payload in Bytes (x).

0.27574

0.27575

0.27576

0.27577

0.27578

0.27579

0.2758

0.27581

0.27582

0.27583

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Broadcast Long Normal

177

Results: radio energy requirements

Figure 24 illustrates radio energy consumption. The x-axis represents the increasing data

payload while the y-axis shows the energy consumed by the radio in Joules. The red line is for

broadcast packets, the green line is for long packets and the purple line is for normal packets.

The diagram illustrates the differences in radio energy consumption when sending various

packet types.

Figure 24: radio energy requirements for a SecRose transmitter.

Values express energy in Joules (y), versus data payload in Bytes (x).

Note that the transmitter energy does not include the acknowledgements.

The difference between payload 0 and 1 is actually two bytes, since there is one added

padding byte for payload 1. This is also the reason why payloads 1 and 2 appear the same. At

payload 2, both bytes are useful information and there is no padded byte.

The diagrams for reception energy are omitted since they do not provide significant

information. Radio reception consumes the same listening energy regardless if set or unset

bits are received.

0.748319

0.748329

0.748339

0.748349

0.748359

0.748369

0.748379

0.748389

0.748399

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Broadcast Long Normal

178

6.2.3 Latency

Description of experiment

This experiment aims to prove that the latency introduced by SecRose, or any other

mechanism, is not an important factor in the overall time required for an event to arrive from

the sensor network to the base station.

The Avrora simulator was used for this experiment since it keeps extremely accurate timing

information of the simulated seconds. An application that sends one long packet with 29 bytes

payload is used to run the latency measurements at various stages of packet reception and

transmission.

The experiment showed that 0.0244 seconds were required to process the packet, while

0.2431 seconds were required to transmit it over the medium. Therefore, SecRose could

prepare 9.9 packets for every packet it transmits.

TinyOS does not implement a packet queue and so SecRose has time to prepare more packets

than the radio can transmit. In addition, the TinyOS medium access introduces a delay

between 100 and 163 milliseconds. In the minimum of 100 milliseconds, SecRose would have

prepared 41.2 packets. Finally, SecRose can prepare one packet for as much time as required

to send 5.2 bytes
31

. This is about 1/3 of the minimum packet length and thus SecRose would

not have any problems sending bursts of 0-payload broadcast packets either.

Results: acknowledgement

The acknowledgement is transmitted and received separately as a packet. Its existence does

not affect the sensor network application and therefore its delay is less important. The latency

of the acknowledgement is not important for most WSN applications, as it is an internal

SecRose feature that does not interfere with the rest of the application.

31
 A 29-byte long packet requires actual transmission of 52 bytes. 52 / 9.9 = 5.2.

179

Unless the sensor network sends bursts of packets very quickly, acknowledgement latency

does not matter. However, bursts of packets might affect the frequency of key changes, since

acknowledgements will not have time to arrive.

Conclusion

The results indicate that SecRose does not introduce significant latency in a sensor network.

Considering that the medium access latency is at least 100 milliseconds and the longest

SecRose packet is prepared, exchanged and validated in less than 25 milliseconds, any latency

introduced by SecRose does not constitute more than 25% of the whole packet transmission

process in any case.

6.2.4 Memory

Program sizes

The following table compares SecRose, TinySec and TinyOS program sizes. The same

simulation application is used in all cases.

 Executable size (bytes) ASM lines

SecRose 28868 6802

TinySec 28362 7478

TinyOS 28366 7477

Table 5: executable size of various proposals

Although there are small differences, all proposals are easily accommodated at the 128KB

program flash memory of a typical sensor node like MICA2.

Runtime memory

The Avrora simulator reports that the runtime memory for all proposals peaks at 4351 bytes.

The homogenous value, regardless of which proposal is measured, means that there are

factors that affect the stack size other than the security mechanism.

180

Memory energy

Since sensor networks use Flash memory, the percentage of it that is occupied is irrelevant to

the energy consumption. Flash memory consumes the same energy for every stored bit

regardless of whether this it set or unset. Therefore, this metric is irrelevant to SecRose.

Conclusion

SecRose and TinySec do not impose any significant limit to the operation of the sensor

network if compared with TinyOS. Further evaluation of memory usage in regards to

scalability is discussed in 6.3.

6.2.5 Comparisons

Methodology

The same applications used for the discussed measurements were also used to measure the

performance of TinySec and the plaintext TinyOS, for reference and further conclusions. To

make differences more visible, the applications used for comparisons exchanged 1000 packets

instead of 1. This reduced the influence of other tasks, like node boot-up, to the measurement

results. Note that TinyOS does not transmit packets with zero data payload but SecRose and

TinySec do. The 0-payload values for TinyOS are therefore out of scale in many of the figures

and should be ignored.

This subsection presents accumulative diagrams for both nodes in contrast with the other

proposals. Since long packets constitute the least well performing packets of SecRose, they

were selected in order to represent the worst-case scenario. Similarly, the TinySec-AE packet

was selected, as the only packet that provides sufficient security to be comparable with

SecRose.

181

Energy consumption: CPU

Figure 25 illustrates the energy consumption of the CPU of the nodes. SecRose is represented

in red, TinySec in green and TinyOS in blue. The advantage of SecRose in CPU consumption

is clearly visible in this figure.

The difference between SecRose and the insecure TinyOS can be explained by the optimised

and streamlined code in the whole network stack, which SecRose replaces. These engineering

solutions have not been referred to in the past since they are out of the scope of this document.

The differences of SecRose with TinySec are mainly in the performance of the cipher and the

stealing mechanism. TinySec uses padding to complete the first 8 bytes – one SkipJack block

– therefore it appears to make the same effort for all the first 8 bytes.

The conclusion from this figure is that SecRose is not only a security mechanism; it is a good

replacement for the network stack of TinyOS.

182

Figure 25: CPU energy requirements for both nodes.

 Values express energy in Joules (y), versus data payload in Bytes (x).

0.56

0.565

0.57

0.575

0.58

0.585

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

TinySec-AE SecRose-Long TinyOS

183

Energy consumption: radio

Figure 26 illustrates the energy consumed by the radio. SecRose is represented in red,

TinySec in green and TinyOS in blue. Note that the figure is accumulative of the energy

consumed for both reception and transmission.

Figure 26: radio energy requirements for both nodes.

Values express energy in Joules (y), versus data payload in Bytes (x).

The disadvantage of the authenticated acknowledgements is visible. SecRose is required to

send 16 acknowledgement bytes for each packet it sends, while SecRose and TinyOS will

only send 4.

The operation of the stealing mechanism is also visible in the figure. TinySec‟s padding

requires a whole block to be transmitted; regardless of how many of the data is useful

information.

1.504

1.506

1.508

1.51

1.512

1.514

1.516

1.518

1.52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

TinySec-AE SecRose-Long TinyOS

184

Energy consumption: total

Figure 27 illustrates the total energy consumption. SecRose is represented in red, TinySec in

green and TinyOS in blue.

Figure 27: energy requirements for both CPU and radio.

Values express energy in Joules (y), versus data payload in Bytes (x)..

2.073

2.078

2.083

2.088

2.093

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

TinySec-AE SecRose-Long TinyOS

185

Energy consumption: normalised

Figure 28 is the same as

Figure 27 but normalised to illustrate the differences in relation with TinyOS, which is

presented as the 100% baseline. Note that this graph does not include packets of 0 bytes since

TinyOS does not send these packets and thus it consumes significantly less energy.

This figure illustrates energy consumption in relation with TinyOS for each different payload.

For example, a packet with 14-bytes payload requires 0.08% more energy than TinyOS. The

figure also illustrates that the difference between TinySec and SecRose is greater for small

payloads.

The figure highlights the exceptional performance of SecRose, which can even consume less

energy than the unsecured TinyOS for payloads of up to 5 bytes.

Figure 28: normalised energy requirements for both CPU and radio.

Values express energy in Joules (y), versus data payload in Bytes (x).

Note: 0-payload is not displayed.

99.95

100

100.05

100.1

100.15

100.2

100.25

100.3

100.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

SecRose-Long TinyOS TinySec-AE

186

Average performance differences

The following figures illustrate the accumulative total of reported energy consumption for all

packets, all data payloads and both nodes. Energy in Joules is indicated on the vertical axis.

Figure 29: accumulative radio energy

consumption for both nodes

Figure 30: accumulative CPU energy

consumption for both nodes

Figure 31: accumulative energy

consumption for both nodes

Figure 32: normalised accumulative

energy consumption for both nodes

Figure 32 is the same data as Figure 31 normalised in relation with TinyOS, which is

presented as the 100% baseline. On average, TinySec utilises 0.074% more energy than

TinyOS while TinySec utilises 0.258% more. As with Figure 28, this figure does not include

packets of 0-payload.

45.1

45.15

45.2

45.25

45.3

45.35

45.4

45.45

45.5
45.55

16.8

16.9

17

17.1

17.2

17.3

17.4

62.35

62.4

62.45

62.5

62.55

62.6

62.65

62.7

100.074
3898

100.258
4068

100

99.85
99.9

99.95
100

100.05
100.1

100.15
100.2

100.25
100.3

187

Impact of security on energy

The results indicated that any differences between the proposals are minimal if compared with

the energy of the rest of a sensor node. For example, consider the two extremes of the results;

the difference between 1000 unsecured TinyOS packets with 1-byte data payload and equal

number of TinySec-AE packets with 29 bytes payload. TinyOS would consume 2.076574791

Joules while TinySec would require 2.096097628 Joules. TinySec requires only 0.94% more

energy than TinyOS, when everything else is taken into consideration.

6.2.6 Discussion

Importance of efficiency

SecRose appears to be more efficient than TinySec and it enables further energy savings via

the routing choice freedom that it provides by its authenticated acknowledgements. However,

SecRose is a security protocol and it must be evaluated as such.

For these reasons, the actual energy performance figures are not important. After all, the

differences are not great. As illustrated, the difference of SecRose with TinyOS is 0.074%

while the difference of TinySec with TinyOS is 0.258%.

Our thesis is that the 0.074% difference with TinyOS is not significant in any way compared

with the advantages of security provision. In addition, SecRose introduces less energy

overhead than TinySec.

188

6.3 Evaluation of non-functional requirements

6.3.1 Essential deployment requirements

Backwards compatibility

SecRose has been developed as a replacement of the TinyOS network stack. As shown in

other parts of this chapter, the replaced code performs better and achieves the security targets.

As explained in Chapter 5, SecRose is perfectly compatible with existing applications that

have been designed for TinyOS and TinySec. The only requirement is re-compilation of the

application with SecRose‟s files and re-deployment. No change is required in the application

code. However, the current code of SecRose is only a proof-of-concept. Additional

engineering work is needed to make it fully usable in a real environment.

SecRose introduces extra security features, which are optional and may be used by future

applications. The existence of the features does not affect existing applications in any way.

However, it is recommended that applications be updated to be able to communicate with

SecRose better.

Note that the alternative proposals are not fully compatible with TinyOS because they do not

include the Group field in their packet. SecRose has retained the Group field and thus it can

transparently operate with existing applications.

Preconfigured distribution

SecRose is pre-configured with appropriate security parameters that would allow it to operate

efficiently and securely by operators who have little connection with the area of security.

SecRose has pre-selected values like the cipher‟s cycle count etc and there is no need to

manipulate them unless a specific requirement is present.

189

Customisation

Sensor network operators who have specific security requirements can change the security

level provided by SecRose dramatically. The code is written with appropriate constants,

which reside on one header file, and can be changed at will.

6.3.2 Other requirements and desirables

Proof of concept

SecRose‟s proof of concept was developed and it is presented in Chapter 5 of this document.

The evaluation in this subsection is done using the proof-of-concept.

Scalability

As per the requirements, SecRose does not pose any fundamental difficulty in scaling it up for

use in larger networks. Although the mechanism is currently optimised to work on small

networks that do not require clustering, it is not difficult to substitute the role of the base

station with a cluster head and continue using SecRose in a clustered, scalable environment.

SecRose can scale up to large network sizes already. The state information required for each

communication pair is 13 bytes
32

 on each node. The typical MICA2 node offers 128KB

program memory, of which about 30KB is used by the program itself. SecRose can

accommodate ≅7,000 pairs on the remaining memory. Additional scalability is also possible,

depending on the application, if the 512KB serial flash memory can be used as well. The

upper scalability limit is about 40,000 pairs, meaning that networks of 80,000 nodes would be

operational.

The current addressing scheme of TinyOS uses 16-bit address. Therefore, SecRose can cope

with more nodes than TinyOS itself. Even if the serial flash memory is excluded, and

assuming that nodes form pairs with only 10% of the rest of the network, SecRose can operate

in networks with ≅70,000 nodes, still higher than TinyOS.

32
 Assuming 16-bit memory addressing, which is what is required to manage 512KB of memory.

190

However, all these calculations are indicative and real networks of such sizes, if they ever

come to existence, should not use SecRose in an out-of-the-box basis.

Free of charge

SecRose is provided in an “as is” basis and free of any charges. This practice follows both

ethical considerations and legal restrictions of the TinyOS licence upon which SecRose is

based. In addition, care has been taken not to include any proprietary algorithm in SecRose, as

that would cause legal problems and introduce royalty costs.

191

6.4 Summary

This section is a generic summary for SecRose comparing where it stands against the other

proposals. The presented information is compiled from all previous chapters.

6.4.1 Critical security evaluation

Identical features

SecRose was developed after TinySec and it retained some of its features, as they were

deemed adequate. The most important of these are the provided authentication guarantee and

the assumption that hardware is secure.

The level of authentication guarantee is equal in all proposals, a 4-Byte MAC. The differences

are in the ways the MAC is produced, SecRose and TinySec uses the cipher in CBC mode

under the CMAC [99] recommendation by NIST [132] while SenSec and MiniSec use one-

pass OCB by Rogaway et al. [100]. The two methods may provide different level of diffusion

but any differences become much less important when a, relatively short, 4-Byte MAC is

used.

Therefore, the only important characteristic is the Mac‟s size. Since this is identical in all

proposals, the error rate of authentication is also identical and equal to 1 in 2
32

.

In regards to hardware, all proposals assume that their non-transmitted secrets can remain

secret, or in other words, that they operate in secure hardware.

Our thesis is that SecRose provides equal level of authentication as other proposals while it is

designed to operate under the same assumptions.

192

Controversial features

SecRose provides data confidentiality in a radically alternative way. That includes all aspects

of confidentiality: encryption strength, semantic security and freshness.

SecRose‟s 128-bit encryption is provided natively by a cipher designed and evaluated for this

key length. In contrast, SenSec uses key whitening to provide a theoretical maximum of 144-

bits encryption strength. However, this level of security is (a) potentially unnecessary and (b)

reduced radically if the attacker obtains more than one plaintext/ciphertext sets in a known-

plaintext cryptanalytic attack and (c) untested in SkipJack. On the other hand, TinySec and

MiniSec do not provide an acceptable level of cryptographic strength.

Our thesis is that the cryptographic strength provided by SecRose is better than the other

proposals since it satisfies the acceptable level unconditionally.

Data confidentiality is also about semantic security. SecRose provides semantic security in an

alternative way, via its key management, which operates on a different condition than other

proposals. Other proposals are limited by the number of exchanged packets while SecRose is

unlimited but vulnerable to a detectable attack, making it less important and allowing a

reaction by SecRose.

On the other hand, the solution is provided by SecRose without leaking any cryptographic

state data to the attackers. It is difficult to draw a conclusion on which method is potentially

weaker, as the conditions are not formally comparable.

A similar condition applies for freshness. Freshness is provided on SecRose and is effective

under a different condition than MiniSec. SecRose‟s packets are all guaranteed to be weakly

fresh as long as the attacker does not block acknowledgements, which is a detectable

condition
33

. Note that TinySec and SenSec do not provide freshness at all.

Our thesis is that SecRose uses alternative methods to provide semantic security and

freshness. The solutions are characterised by different advantages and operate under different

conditions.

33
 Broadcast packets are not subjected to this condition and are always fresh unconditionally.

193

Unique features

SecRose provides authenticated acknowledgements, which is a feature unique to it and is not

provided by any other proposal. This feature is very important since it secures various routing

protocols, which are currently unusable in a secure environment due to their security

weaknesses.

In addition, this feature can be utilised by future applications and allow them to enjoy greater

confidence that their message was received. If used appropriately, the feature can also provide

trustworthy information on the health of the network.

Our thesis is that authenticated acknowledgements are an important feature, which constitutes

a significant contribution of SecRose.

The second unique feature of SecRose is key management system and the way it preserves

and synchronises its state, without leaking any information to attackers. It is desirable to keep

the cryptographic state secret because there have been documented attacks on other

cryptosystems that exploited problems like initialisation vectors [111].

Our thesis is that SecRose‟s key management provides comparable security but demonstrates

greater potential for future developments.

6.4.2 Energy efficiency and non-functional requirements

SecRose provides packet categorisation with three different types that optimise the

communication patterns of sensor networks. The types are implemented using an overloaded

flag to characterise them and different packet fields, enabling energy-efficient addressing

using default source/destination fields where available. In addition, the flag enables early

rejection of unwanted packets, allowing further energy savings.

The whole packet type creation and categorisation is completely transparent to the application

or the routing layers and fully compatible with existing applications.

194

Other proposals provide some categorisation between normal and broadcast communication

but they do not provide the resolution of SecRose. In addition, no other proposal is fully

compatible with all existing applications as they have not retained the Group field of TinyOS

and thus they cannot operate in clustered applications, which work by partitioning the

network in groups.

SecRose provides a radically new ciphertext stealing implementation as well. The solution is

evidently more efficient than typical ciphertext stealing, like the one used in TinySec.

Finally, SecRose benefits from important engineering optimisations in the network stack of

TinyOS, using much more efficient and streamlined code. All the parts of the code that

consumed a significant portion of energy are heavily optimised in a per-line basis. The

resulting code is much more efficient than the original TinyOS network stack and this is

evident in the simulated results.

195

6.4.3 Final comparison

The following table is a rough illustrative estimation of the security provision of each

proposal using a generalised scoring system. This table is provided as a summary and

overview only. In reality, many features are difficult to quantify and compare.

To preserve fairness, the table is compiled supposing a worst-case scenario for SecRose and a

best-case scenario for the other proposals, where the most impactful attack are launched

against SecRose while the least impactful attacks are launched against the other proposals.

Other advantages of SecRose‟s proposal have not been accounted either.

The mechanisms score:

 0 points for non-protection: the attack will succeed easily

 1 point for inadequate protection: the attack is difficult but not impossible

 2 points for limited or conditional protection; the attack may succeed

 3 points for full protection: the attack is infeasible

 4 points for more than adequate protection: the attack is infeasible and will remain so

in the future

 Confidentiality Authentication

Weak

Freshness

Authenticated

Acknowledgements

Total

Encryption

strength

Semantic

security

TinySec 1 3 3 0 0 7

MiniSec 1 3 3 2 0 9

SenSec 4 3 3 0 0 10

SecRose 3 1 3 1 3 11

Despite the worst-case assumption for SecRose, it appears to be the less vulnerable

mechanism, primarily due to its authenticated acknowledgements. However, and most

importantly, all mechanisms are still vulnerable under the right –for the attacker – conditions.

Conclusively, more work is required to improve the security provision.

196

Chapter 7

Future Work and Conclusion

197

7. Conclusion and Future Work

198

7.1 Conclusion

SecRose is presented as an alternative to existing security mechanisms that operate in the data

transportation layer. The mechanism benefits from a simple and efficient design, which

provides for the basic security requirements of confidentiality, authentication and weak

freshness.

The mechanism provides unique features like authenticated acknowledgements and key

management, alternative solutions to existing features, like secret cryptographic state, and

improvements to existing features, like 128-bits encryption strength. The mechanism secures

all communication and allows developers to utilise routing protocols that are currently

insecure. The design follows different directions that existing proposals and is therefore

subject to different conditions and limitations.

SecRose introduces an average overhead of 0.074% compared with TinyOS while it is always

more energy-efficient than the widely accepted TinySec proposal. SecRose requires less

energy than TinyOS for packets with small data payloads.

Our thesis is that SecRose offers a security solution, which provides better overall security, is

subject to different limitations and introduces less energy overheads than similar solutions.

199

7.2 Future work

7.2.1 Provision against current vulnerabilities

SecRose is vulnerable to certain low-impact attacks, affecting freshness and semantic security

that need to be addressed in the future. This is essential in order to provide a better and more

complete security mechanism, which would not be vulnerable in any computationally feasible

way.

Freshness

SecRose provides conditional freshness. The feature is based on correct operation of the

acknowledgements and on the fact that the attacker cannot block them and remain passive.

There are a few possibilities that would improve this situation but they would all affect at

least the energy consumption. A method that would provide unconditional freshness without

energy overheads is the ideal target.

A straightforward solution would be to add an ordering counter, which would be transferred

with the packet and advance with each sent packet. The counter can also be reset after each

acknowledgement, since the key advances and a new era begins. However, the presence of the

counter would consume radio energy and SecRose is already heavily influenced by the radio

energy consumed by the acknowledgements.

A different key mixing method would also provide better freshness. Key mixing is currently

done in the same way every time. The mixing can change so that it would be determined by

how many packets were transmitted since the last key update. That would work efficiently

under normal conditions but would require multiple validation attempts if something goes

wrong. An attacker could deliberately cause errors and possibly create an asymmetric DoS

attack by causing the nodes to undergo multiple packet validations in vain.

200

Semantic security

The ordering counter proposed above does not improve semantic security, unless the counter

is included in the cryptographic input. On the other hand, if that happens then plaintext

information is leaked to the attacker and this is unacceptable for SecRose.

A possible solution would be to include a highly diffused and encrypted IV. A potential

candidate for this kind of IV is the last meta-byte generated by the MAC of the previous

communication. This is a potent feature but it needs careful consideration, design and

evaluation. If possible then it would provide semantic security at the expense of little

additional cryptographic effort and slightly higher memory requirements.

7.1.2 Alternatives on authenticated acknowledgements

Authenticated acknowledgements are a completely contradictive feature. They elevate the

security provision greatly, but consume significant amounts of energy. This is the first version

of SecRose and thus the first design of the authenticated acknowledgements. A number of

ideas that would improve this feature are presented.

Alter preambles

Packet preambles are a set string of bytes used to designate the start of a packet. They are 12

bytes long in the MICA2 nodes but theist size is not necessarily fixed. Improvements on the

preambles are possible but further research on preambles is required.

The size of the preamble can be greatly reduced if they are combined with cryptographically

strong randomisation. Our research has proven that a 4-byte MAC is variable enough to

authenticate a packet and thus there is no reason why a similarly sized stream of bytes could

not authorise the start of a packet as well. However, the string has to be both randomised and

uniformly known to the network.

Alternatively, the size might be reducible without provision. Our research has not found

justification on the current preamble size since the literature does not explain the criteria

behind the selection of that size. On this basis, an academic study on the proper preamble size

201

might be required. However, this research is out of the scope of security and thus we were

unable to conduct it in this context.

If none of the above ideas is effective and preambles have to remain that long, then maybe

SecRose can utilise them to provide additional features. For example, a preamble that is

created via a cryptographic authenticated process might include an initialisation vector or an

ordering counter. This option could improve freshness or semantic security or both.

Multilevel solution

SecRose could use a combination of link and network layer acknowledgements. Under normal

conditions, nodes would use a short link-layer acknowledgement to designate that a packet

was forwarded. If that does not happen, then the last node can send a long network-layer

message similar to the “host unreachable” message of the IP protocol.

In order for this technique to work securely, both messages need to be authenticated. This

increases the length of the “short” message. The “short” message would be longer than

TinyOS-style link-layer acknowledgements, as it would be required to include both a credible

message and information on the ID of the originator.

In addition, such system would introduce slightly more processing for all forwarding nodes.

On the other hand, this potent feature might be the solution to the authenticated

acknowledgement problem. The exact details regarding operation and energy consumption of

this idea need to be evaluated.

202

7.2.3 Improvements on key management

Key management incorporated with data transportation is also a new idea introduced by this

version of SecRose. As with the authenticated acknowledgements, there might be room for

improvement in this area as well.

Better mixing

As discussed, the current mixing is invariable. Better mixing might improve freshness but it

should also be designed in a way to improve counter diffusion as well. The counter value is

currently initialised to a random number to address this problem but since the counter update

value is a limited 8-bit value, the mixing is not ideal. Design and evaluation is required to

provide semantic security, freshness and better diffusion in the same time.

Key update provision on key management

Key management may benefit from a key provision protocol, which would allow the nodes to

request a key from an authoritative node or the base station, in similar fashion as SSL.

On the other hand, such functionality might be unnecessary for the data transportation layer.

Effectively, if implemented, it would complete the key management mechanism. However,

would that be useful enough to all applications to justify its energy expenses?

7.2.4 Regarding energy and performance

SecRose is already highly optimised and this is evident in the performance evaluation. Further

optimisations might be possible after more engineering or research work.

One-pass encryption and authentication

The possibility of implementing OCB encryption and authentication in one-pass should be

studied. The current mechanism uses more than one encryption interactions to encrypt and

authenticate 8 bytes while an OCB style solution would be use only one interaction plus some

additional processing

203

It is unknown what the impact of the additional processing is, compared to an encryption

interaction. The security of OCB does not enjoy NIST recommendation status, as does the

currently used CMAC, and therefore any such system should include a study on the security

as well.

Further software engineering work

The proof-of-concept implementation does include optimisations in energy-demanding parts

of the code but the rest of the implementation does not enjoy the same level of functionality.

The related work should be conducted before SecRose is publicly released.

7.2.5 Flexibility and customisation features

Some features might be added to provide flexibility and a wider variety of options to match

different sensor networks.

Acknowledged broadcast

Currently SecRose does not provide acknowledgements for broadcast packets as it was

deemed unnecessary and energy consuming. The optional provision of these

acknowledgements will improve the fitness of SecRose to some applications.

However, proper introduction of the feature would require appropriate research before the

design and careful evaluation of the outcome. Special attention must be given to the

evaluation of the impact on security and energy consumption if the feature is provided.

The semantic security and freshness advantages will be lost. The base station will require

greater memory resources and there will be a significant impact in the energy requirements of

the base station and its neighbouring nodes.

Backward compatibility

SecRose has retained the Group field of TinyOS in order to maintain backwards

compatibility. We believe this feature should gradually be phased out and eventually replaced

by other grouping mechanisms.

204

Making the feature optional is mainly an engineering challenge but the field is used by the

stealing mechanism as well. Redesign of the stealing mechanism and subsequent evaluation

of the effects is required.

Longer MACs

SecRose does not utilise one of the eight bytes of the MAC in any way. Our research has

shown that utilisation of this byte will increase the security provision in networks that benefit

by an unlimited power source. Functionality to use a 5-Byte MAC, when this is beneficial,

would be a minor improvement in SecRose.

205

APPENDICES

206

IMPLEMENTATION CODE

The two important files of the proof-of-concept implementation are appended for reference

and completeness reasons. The file that contains the control component is named

CC1000RadioIntM.nc on the MICA2 implementation and MicaHighSpeedRadioM.nc for the

pc target. The file listed here is the native MICA2 version since the code is better structured.

The second important file is the SecRoseM.nc file, which contains every other component of

SecRose. Note that some comments may be truncated.

207

File CC1000RadioIntM.ns

// $Id: CC1000RadioIntM.nc,v 1.23.2.8 2003/08/26 22:33:30 philipb Exp $

includes crc;

module CC1000RadioIntM {

 provides {

 interface StdControl;

 interface BareSendMsg as Send;

 interface ReceiveMsg as Receive;

 command result_t EnableRSSI();

 command result_t DisableRSSI();

 command result_t SetListeningMode(uint8_t power);

 command uint8_t GetListeningMode();

 command result_t SetTransmitMode(uint8_t power);

 command uint8_t GetTransmitMode();

 interface RadioCoordinator as RadioSendCoordinator;

 interface RadioCoordinator as RadioReceiveCoordinator;

 }

 uses {

 interface PowerManagement;

 interface StdControl as CC1000StdControl;

 interface CC1000Control;

 interface Random;

 interface ADCControl;

 interface ADC as RSSIADC;

 interface SpiByteFifo;

 interface StdControl as TimerControl;

 interface Timer as WakeupTimer;

 interface Leds;

 interface SecRose as rose;

 interface SendMsg as TrueSend;

 }

}

implementation {

 enum {

 IDLE_STATE,

 TX_STATE,

 DISABLED_STATE,

 POWER_DOWN_STATE,

 PRETX_STATE,

 SYNC_STATE,

 RX_STATE,

 };

 enum {

 TXSTATE_WAIT,

 TXSTATE_START,

208

 TXSTATE_PREAMBLE,

 TXSTATE_SYNC,

 TXSTATE_DATA,

 TXSTATE_CRC,

 TXSTATE_FLUSH,

 TXSTATE_DONE

 };

 enum {

 SYNC_BYTE = 0x33,

 NSYNC_BYTE = 0xcc,

 SYNC_WORD = 0x33cc,

 NSYNC_WORD = 0xcc33

 };

 enum {

 TX_HEAD, TX_DATA

 };

 uint8_t RadioState;

 uint8_t RadioTxState;

 uint16_t txlength;

 uint16_t rxlength;

 TOS_MsgPtr txbufptr; // pointer to transmit buffer

 TOS_MsgPtr rxbufptr; // pointer to receive buffer

 TOS_Msg RxBuf; // save received messages

 uint8_t NextTxByte;

 uint8_t lplpower; // low power listening mode

 uint8_t lplpowertx; // low power listening transmit mode

 uint16_t preamblelen; // current length of the preamble

 uint16_t PreambleCount; // found a valid preamble

 uint8_t SOFCount;

 union {

 uint16_t W;

 struct {

 uint8_t LSB;

 uint8_t MSB;

 };

 } RxShiftBuf;

 uint8_t RxBitOffset; // bit offset for spibus

 int8_t RxByteCnt; // received byte counter

 int8_t TxByteCnt;

 uint16_t RSSISampleFreq; // in Bytes rcvd per sample

 bool bInvertRxData; // data inverted

 bool bTxPending;

 bool bTxBusy;

 bool bRSSIValid;

 uint16_t usRSSIVal;

 uint16_t usSquelchVal;

209

 int16_t sMacDelay; // MAC delay for the next transmission

 volatile uint16_t LocalAddr;

 // Secrose variables:

 uint8_t flag; // the flag of the packet

 bool ack_send = FALSE; // packets that fail to be MAC'ed with primary key must not send ACKS. This var controls the process

 struct TOS_Msg ack_ptr;

 int j, k; // temp

 uint8_t rec_stop; // when to stop receiving data

 bool handle_flag = TRUE; // to know if flag needs attention

 bool handle_index = FALSE; // to know when to "jump" the index of the recv ptr to a more apropriate pos

 uint8_t header_len = SECROSE_HEADER_LENGTH; // total size of packet headers (source, dest etc), 56 by default

 uint8_t max_data_len = TOSH_DATA_LENGTH; // maximum data length, 29 by default

 uint8_t mac_len = SECROSE_MAC_LENGTH; // length of the mac address, 4 by default

 uint8_t actual_data_len = 0; // length of data to be sent in the current packet (variable)

 uint8_t stream_len = 7; // length of actual stream = header_len+actual_data_len+mac_len

 uint8_t partial_stream_len = 0; // the first part of stream length = header_len+actual_data_len

 uint8_t mac_tmp[SECROSE_MAC_LENGTH]; // for storing the mac

 uint8_t mac_pos; // for looping around the mac while storring

 bool mac_valid; // for checking the MAC

 TOS_MsgPtr rxbufptr_copy; // copy of pointer to receive buffer

 char Byte; // instead of localy redefining this variable for every byte, define it once.

 // thsi has to be implemented, although we don't need it to do anything. It is triggered when an ACK is sent.

 event result_t TrueSend.sendDone(TOS_MsgPtr m, result_t s) { return s; }

 task void PacketRcvd() {

 TOS_MsgPtr pBuf;

 atomic {

 if (flag != 3) {

 // do normal TinyOS tasks

 atomic {

 rxbufptr->time = 0;

 pBuf = rxbufptr;

 // EWMA to determin squelch values

 usSquelchVal = (((5*rxbufptr->strength) + (3*usSquelchVal)) >> 3);

 }

 pBuf = signal Receive.receive((TOS_MsgPtr)pBuf);

 atomic {

 if (pBuf)

 rxbufptr = pBuf;

 rxbufptr->length = 0;

 //RadioState = IDLE_STATE;

 }

 call SpiByteFifo.enableIntr();

 // SecRose tasks

 if ((rxbufptr->crc==1) && (ack_send)) {

 // update counter

 call rose.counterHandle(rxbufptr, PKT_RECV);

210

 // send ACK only if the packet was not broadcast

 if (rxbufptr->flag != 1) {

 ack_ptr.source = TOS_LOCAL_ADDRESS;

 ack_ptr.flag = 3;

 call TrueSend.send(rxbufptr->source,0,&ack_ptr);

 }

 }

 }

 } // end atomic

 }

 task void PacketSent() {

 TOS_MsgPtr pBuf; //store buf on stack

 atomic {

 txbufptr->time = 0;

 pBuf = txbufptr;

 }

 signal Send.sendDone((TOS_MsgPtr)pBuf,SUCCESS);

 atomic bTxBusy = FALSE;

 // SEC-ROSE counter handling

 // Call counterHandle() in order to store the counter value

 if (txbufptr->flag != 3) {

 call rose.counterHandle(txbufptr, PKT_SENT);

 }

 }

 command result_t StdControl.init() {

 bool temp;

 atomic {

 RadioState = DISABLED_STATE;

 RadioTxState = TXSTATE_PREAMBLE;

 rxbufptr = &RxBuf;

 rxbufptr->length = 0;

 rxlength = MSG_DATA_SIZE-2;

 RxBitOffset = 0;

 PreambleCount = 0;

 RSSISampleFreq = 0;

 RxShiftBuf.W = 0;

 bTxPending = FALSE;

 bTxBusy = FALSE;

 bRSSIValid = FALSE;

 sMacDelay = -1;

 usRSSIVal = -1;

 lplpower = lplpowertx = 0;

 usSquelchVal = PRG_RDB(&CC1K_LPL_SquelchInit[lplpower]);

 }

211

 call SpiByteFifo.initSlave(); // set spi bus to slave mode

 call CC1000StdControl.init();

 call CC1000Control.SelectLock(0x9); // Select MANCHESTER VIOLATION

 temp = call CC1000Control.GetLOStatus(); //Do we need to invert Rcvd Data?

 atomic bInvertRxData = temp;

 call ADCControl.bindPort(TOS_ADC_CC_RSSI_PORT,TOSH_ACTUAL_CC_RSSI_PORT);

 call ADCControl.init();

 call Random.init();

 call TimerControl.init();

 // don't enable SPI interrupts until the radio is running

 //call SpiByteFifo.enableIntr(); // enable spi and spi interrupt

 LocalAddr = TOS_LOCAL_ADDRESS;

 return SUCCESS;

 }

 command result_t EnableRSSI() { return SUCCESS; }

 command result_t DisableRSSI() { return SUCCESS; }

 command uint8_t GetTransmitMode() {

 return lplpowertx;

 }

 command result_t SetTransmitMode(uint8_t power) {

 result_t Result = SUCCESS;

 if ((power >= CC1K_LPL_STATES) || (power == lplpowertx))

 return FAIL;

 atomic {

 // check if the radio is currently doing something

 if ((!bTxPending) && ((RadioState == POWER_DOWN_STATE) ||

 (RadioState == IDLE_STATE) ||

 (RadioState == DISABLED_STATE))) {

 lplpowertx = power;

 preamblelen = ((PRG_RDB(&CC1K_LPL_PreambleLength[lplpowertx*2]) << 8)

 | PRG_RDB(&CC1K_LPL_PreambleLength[(lplpowertx*2)+1]));

 }

 else {

 Result = FAIL;

 }

 }

 return Result;

 }

 command result_t SetListeningMode(uint8_t power) {

212

 result_t Result = SUCCESS;

 // valid low power listening values are 0 to 3

 // 0 is "always on" and 3 is lowest duty cycle

 // 1 and 2 are in the middle

 if ((power >= CC1K_LPL_STATES) || (power == lplpower))

 return FAIL;

 atomic {

 // check if the radio is currently doing something

 if ((!bTxPending) && ((RadioState == POWER_DOWN_STATE) ||

 (RadioState == IDLE_STATE) ||

 (RadioState == DISABLED_STATE))) {

 // change receiving function in CC1000Radio

 call WakeupTimer.stop();

 if (lplpower == lplpowertx) {

 lplpowertx = power;

 }

 lplpower = power;

 // if successful, change power here

 if (RadioState == IDLE_STATE) {

 //RadioState = DISABLED_STATE;

 call StdControl.stop();

 call StdControl.start();

 }

 if (RadioState == POWER_DOWN_STATE) {

 //RadioState = DISABLED_STATE;

 call StdControl.start();

 call PowerManagement.adjustPower();

 }

 }

 else {

 Result = FAIL;

 }

 }

 return Result;

 }

 command uint8_t GetListeningMode() {

 return lplpower;

 }

 event result_t WakeupTimer.fired() {

 uint8_t oldRadioState;

 uint16_t sleeptime;

 bool bStayAwake;

213

 if (lplpower == 0)

 return SUCCESS;

 atomic {

 oldRadioState = RadioState;

 bStayAwake = bTxPending;

 }

 switch(oldRadioState) {

 case IDLE_STATE:

 sleeptime = ((PRG_RDB(&CC1K_LPL_SleepTime[lplpower*2]) << 8) |

 PRG_RDB(&CC1K_LPL_SleepTime[(lplpower*2)+1]));

 if (!bStayAwake) {

 atomic RadioState = POWER_DOWN_STATE;

 call WakeupTimer.start(TIMER_ONE_SHOT, sleeptime);

 call CC1000StdControl.stop();

 call SpiByteFifo.disableIntr();

 }

 else {

 call WakeupTimer.start(TIMER_ONE_SHOT, CC1K_LPL_PACKET_TIME*2);

 }

 break;

 case POWER_DOWN_STATE:

 sleeptime = PRG_RDB(&CC1K_LPL_SleepPreamble[lplpower]);

 atomic RadioState = IDLE_STATE;

 call CC1000StdControl.start();

 call CC1000Control.BIASOn();

 call SpiByteFifo.rxMode(); // SPI to miso

 call CC1000Control.RxMode();

 call SpiByteFifo.enableIntr(); // enable spi interrupt

 call WakeupTimer.start(TIMER_ONE_SHOT, sleeptime);

 break;

 default:

 call WakeupTimer.start(TIMER_ONE_SHOT, CC1K_LPL_PACKET_TIME*2);

 }

 return SUCCESS;

 }

 command result_t StdControl.stop() {

 atomic RadioState = DISABLED_STATE;

 call WakeupTimer.stop();

 call CC1000StdControl.stop();

 call SpiByteFifo.disableIntr(); // disable spi interrupt

 return SUCCESS;

 }

 command result_t StdControl.start() {

214

 uint8_t chkRadioState;

 atomic chkRadioState = RadioState;

 if (chkRadioState == DISABLED_STATE) {

 atomic {

 rxbufptr->length = 0;

 RadioState = IDLE_STATE;

 bTxPending = bTxBusy = FALSE;

 sMacDelay = -1;

 preamblelen = ((PRG_RDB(&CC1K_LPL_PreambleLength[lplpowertx*2]) << 8) |

 PRG_RDB(&CC1K_LPL_PreambleLength[(lplpowertx*2)+1]));

 }

 if (lplpower == 0) {

 // all power on, captain!

 call CC1000StdControl.start();

 call CC1000Control.BIASOn();

 call SpiByteFifo.rxMode(); // SPI to miso

 call CC1000Control.RxMode();

 call SpiByteFifo.enableIntr(); // enable spi interrupt

 }

 else {

 uint16_t sleeptime = ((PRG_RDB(&CC1K_LPL_SleepTime[lplpower*2]) << 8) |

 PRG_RDB(&CC1K_LPL_SleepTime[(lplpower*2)+1]));

 atomic RadioState = POWER_DOWN_STATE;

 call TimerControl.start();

 call WakeupTimer.start(TIMER_ONE_SHOT, sleeptime);

 }

 }

 return SUCCESS;

 }

 command result_t Send.send(TOS_MsgPtr pMsg) {

 result_t Result = SUCCESS;

 atomic {

 if (bTxBusy) {

 Result = FAIL;

 }

 else {

 bTxBusy = TRUE;

 txbufptr = pMsg;

 txlength = pMsg->length + (MSG_DATA_SIZE - DATA_LENGTH - 2);

 // initially back off a message + [0,127] radio bytes

 sMacDelay = MSG_DATA_SIZE + (call Random.rand() & 0x7F);

 bTxPending = TRUE;

 }

 }

 if (Result) {

 uint8_t tmpState;

 atomic tmpState = RadioState;

 // if we're off, start the radio

 if (tmpState == POWER_DOWN_STATE) {

215

 // disable wakeup timer

 call WakeupTimer.stop();

 call CC1000StdControl.start();

 call CC1000Control.BIASOn();

 call CC1000Control.RxMode();

 call SpiByteFifo.rxMode(); // SPI to miso

 call SpiByteFifo.enableIntr(); // enable spi interrupt

 call WakeupTimer.start(TIMER_ONE_SHOT, CC1K_LPL_PACKET_TIME*2);

 atomic RadioState = IDLE_STATE;

 }

 // SecRose tasks to prepare packet

 atomic {

 txbufptr = pMsg;

 TxByteCnt = 1;

 }

 // from ChannelMon.startSymDetect() :

 atomic {

 // from ChannelMon.idleDetect()

 flag = call rose.findFlag(txbufptr);

 }

 // normal packet. allways set the source address so that it will be included in the MAC calculation

 txbufptr->source = TOS_LOCAL_ADDRESS;

 if (txbufptr->flag == 3) call rose.calcACK(txbufptr, txbufptr->addr); // For ACK packets calculate the ACK

 else call rose.calcMAC(txbufptr, txbufptr->addr, SEND); // For all other packets calculate the MAC

 // encrypt packet

 call rose.packetEncDec(txbufptr, ENCRYPT);

 atomic {

 handle_index = TRUE;

 actual_data_len = txbufptr->length + txbufptr->pad_size; // calculate data+pad length

 partial_stream_len = header_len+actual_data_len; // calculate header+data+pad subtotal

 stream_len = header_len+actual_data_len+mac_len+1; // calculate grand total

 // overload the len with the flag

 flag = call rose.writeFlag(txbufptr);

 // normal packet. we have to replace destination addr with source addrr

 if (flag == 0) { txbufptr->addr = TOS_LOCAL_ADDRESS; }

 }

 }

 return Result;

 }

 async event result_t SpiByteFifo.dataReady(uint8_t data_in) {

#ifdef ENABLE_UART_DEBUG

216

 UARTPutChar(RadioState);

#endif

 if (RadioState == IDLE_STATE) {

 if (data_in) {

 if (((data_in == (0xaa)) || (data_in == (0x55)))) {

 PreambleCount++;

 if (PreambleCount > PRG_RDB(&CC1K_LPL_ValidPrecursor[lplpower])) {

 PreambleCount = SOFCount = 0;

 RxBitOffset = RxByteCnt = 0;

 rxlength = MSG_DATA_SIZE-2;

 RadioState = SYNC_STATE;

 }

 }

 }

 else if (bTxPending && (--sMacDelay <= 0)) {

 bRSSIValid = FALSE;

 call RSSIADC.getData();

 PreambleCount = 0;

 RadioState = PRETX_STATE;

 }

 return;

 }

 switch (RadioState) {

 case TX_STATE:

 {

 call SpiByteFifo.writeByte(NextTxByte);

 TxByteCnt++;

 switch (RadioTxState) {

 case TXSTATE_PREAMBLE:

 if (!(TxByteCnt < preamblelen)) {

 NextTxByte = SYNC_BYTE;

 RadioTxState = TXSTATE_SYNC;

 }

 break;

 case TXSTATE_SYNC:

 NextTxByte = NSYNC_BYTE;

 RadioTxState = TXSTATE_DATA;

 TxByteCnt = -1;

 signal RadioSendCoordinator.startSymbol(); // for Time Sync

 break;

 case TXSTATE_DATA:

 if (TxByteCnt <= stream_len) {

 if (flag != 3) {

 if (handle_index) {

 // normal packet, only has source addr

217

 if ((flag==0) && (TxByteCnt==3)) { TxByteCnt += 2; handle_index = FALSE; }

 // broadcast packet, does not have source or dest

 if ((flag==1) && (TxByteCnt==1)) { TxByteCnt += 4; handle_index = FALSE; }

 }

 if(TxByteCnt == partial_stream_len){

 TxByteCnt = MAC_POS;

 stream_len = MAC_POS+SECROSE_MAC_LENGTH;

 }

 NextTxByte = ((char*)txbufptr)[TxByteCnt];

 }

 else { // control packets are less generic in mica2 due to lack of time

 if (SECROSE_MAX_NODES > 255) {

 switch (TxByteCnt) {

 case 3: NextTxByte = txbufptr->mac[0]; break;

 case 4: NextTxByte = txbufptr->mac[1]; break;

 case 5: RadioTxState = TXSTATE_FLUSH; break;

 default: NextTxByte = ((char*)txbufptr)[TxByteCnt];

 }

 }

 if (SECROSE_MAX_NODES < 255) {

 switch (TxByteCnt) {

 case 2: NextTxByte = txbufptr->mac[0]; break;

 case 3: NextTxByte = txbufptr->mac[1]; break;

 case 4: RadioTxState = TXSTATE_FLUSH; break;

 default: NextTxByte = ((char*)txbufptr)[TxByteCnt];

 }

 }

 }

 signal RadioSendCoordinator.byte(txbufptr, (uint8_t)TxByteCnt);

 }

 else {

 RadioTxState = TXSTATE_DONE;

 }

 break;

 case TXSTATE_FLUSH:

 if (TxByteCnt > 3) {

 RadioTxState = TXSTATE_DONE;

 }

 break;

 case TXSTATE_DONE:

 call SpiByteFifo.rxMode();

 call CC1000Control.RxMode();

 bTxPending = FALSE;

 if (post PacketSent()) {

218

 // If the post operation succeeds, goto Idle

 // otherwise, we'll try again.

 RadioState = IDLE_STATE;

 }

 break;

 default:

 break;

 }

 }

 break;

 case PRETX_STATE:

 {

 if (((data_in == (0xaa)) || (data_in == (0x55)))) {

 // Back to the penalty box.

 sMacDelay = (((call Random.rand() & 0xf) + 1) * (MSG_DATA_SIZE));

 RadioState = IDLE_STATE;

 }

 else if (bRSSIValid) {

 if (usRSSIVal > PRG_RDB(&CC1K_LPL_SquelchInit[lplpower])) {

 // ROCK AND ROLL!!!!!

 call CC1000Control.TxMode();

 call SpiByteFifo.txMode();

 TxByteCnt = 0;

 RadioState = TX_STATE;

 RadioTxState = TXSTATE_PREAMBLE;

 NextTxByte = 0xaa;

 call SpiByteFifo.writeByte(0xaa);

 }

 else {

 // Russin frussin freakin frick o frack

 sMacDelay = (((call Random.rand() & 0xf) + 1) * (MSG_DATA_SIZE));

 RadioState = IDLE_STATE;

 }

 }

 }

 break;

 case SYNC_STATE:

 {

 uint8_t i;

 if (bInvertRxData) data_in = ~data_in;

 if ((data_in == 0xaa) || (data_in == 0x55)) {

 // It is actually possible to have the LAST BIT of the incoming

 // data be part of the Sync Byte. SO, we need to store that

 // However, the next byte should definitely not have this pattern.

 // XXX-PB: Do we need to check for excessive preamble?

 RxShiftBuf.MSB = data_in;

219

 }

 else {

 uint16_t usTmp;

 switch (SOFCount) {

 case 0:

 RxShiftBuf.LSB = data_in;

 break;

 case 1:

 case 2:

 // bit shift the data in with previous sample to find sync

 usTmp = RxShiftBuf.W;

 RxShiftBuf.W <<= 8;

 RxShiftBuf.LSB = data_in;

 for(i=0;i<8;i++) {

 usTmp <<= 1;

 if(data_in & 0x80)

 usTmp |= 0x1;

 data_in <<= 1;

 // check for sync bytes

 if (usTmp == SYNC_WORD) {

 if (rxbufptr->length !=0) {

 call Leds.redToggle();

 RadioState = IDLE_STATE;

 }

 else {

 RadioState = RX_STATE;

 call RSSIADC.getData();

 RxBitOffset = 7-i;

 signal RadioReceiveCoordinator.startSymbol(); // Time sync

 // reset some variables for proper packet reception

 j = 1;

 RxByteCnt = 0;

 ack_send = FALSE;

 handle_flag = TRUE;

 }

 break;

 }

#if 0

 else if (usTmp == NSYNC_WORD) {

 RadioState = RX_STATE;

 RxBitOffset = 7-i;

 bInvertRxData = TRUE;

 break;

 }

#endif

 }

220

 break;

 default:

 // We didn't find it after a reasonable number of tries, so....

 RadioState = IDLE_STATE; // Ensures we wait till the end of the transmission

 break;

 }

 SOFCount++;

 }

 }

 break;

 case RX_STATE:

 {

 if (bInvertRxData) data_in = ~data_in;

 RxShiftBuf.W <<=8;

 RxShiftBuf.LSB = data_in;

 Byte = (RxShiftBuf.W >> RxBitOffset);

 ((char*)rxbufptr)[RxByteCnt] = Byte;

 RxByteCnt++;

 signal RadioReceiveCoordinator.byte(rxbufptr, (uint8_t)RxByteCnt);

 if (handle_flag) { // we have just received the first byte. this is allways the length+flag

 handle_flag = FALSE;

 flag = call rose.readFlag((uint8_t)Byte); // find the overloaded flag

 Byte = call rose.fixFlag(rxbufptr); // remove the overloading

 rxbufptr->length = Byte; // set the correct length of data_in

 if (flag == 0) { // this is a normal packet

 /* TODO: broadcast or discard packet (depending on route) */

 rxbufptr->addr = 0; // manually set the destination addr

 }

 else if (flag == 1) { // this is a broadcast packet

 /* tasks to implement:

 1. re-send packet

 */

 rxbufptr->addr = TOS_BCAST_ADDR;

 rxbufptr->source = 0; // only the base station might send broadcast pkts. source HAS to be 0.

 }

 else if (flag == 2) { // this is a long packet

 /* tasks to implement:

 1. forward packet (depending on route) */

 }

 if (flag == 3) { }

221

 else { ; } // reserved, we should never reach here

 // now determine how much is there to be received

 handle_index = TRUE;

 actual_data_len = rxbufptr->length; // length as reported

 stream_len = header_len+actual_data_len+mac_len+1; // add header length and mac length

 if (rxbufptr->length == 1) actual_data_len++;

 partial_stream_len = header_len+actual_data_len; // note the length before MAC

 rec_stop = MSG_DATA_SIZE; // when to stop receiving data

 } // end flag handling

 if (handle_index) {

 // Jumps regarding the packet headers, determined by the packet type and reported by the flag:

 if ((flag==0) && (RxByteCnt==3)) { RxByteCnt += 2; handle_index = FALSE; } // normal packet, only has dest addr

 if ((flag==1) && (RxByteCnt==1)) { RxByteCnt += 4; handle_index = FALSE; } // broadcast packet, does not have source or dest

 if (flag==3) { // control packet does not have type, group, source

 if ((SECROSE_MAX_NODES > 255) && (RxByteCnt==3)) {

 if (rxbufptr->length == 0) { RxByteCnt = partial_stream_len; }

 else { RxByteCnt = DATA_START_NUMBER; }

 handle_index = FALSE;

 }

 if ((SECROSE_MAX_NODES < 255) && (RxByteCnt==2)) {

 if (rxbufptr->length == 0) { RxByteCnt = partial_stream_len; }

 else { RxByteCnt = DATA_START_NUMBER; }

 handle_index = FALSE;

 }

 }

 }

 // we have reached the end of headers+data. Now we need to jump to receive the mac

 if (RxByteCnt==partial_stream_len) {

 RxByteCnt = MAC_POS;

 if (flag == 3) { rec_stop-=2; } // MAC of control packets is 2 bytes less

 }

 if (RxByteCnt==rec_stop) { // just received the last byte. now we do the MAC validation etc

 if (flag == 0) {

 rxbufptr->source = rxbufptr->addr; // rxbufptr->addr actually contains the source addr on normal pkts

 rxbufptr->addr = 0; // and the dest addr should be zero

 }

 else if (flag == 1) {

 rxbufptr->source = 0;

 rxbufptr->addr = TOS_BCAST_ADDR;

 }

 else if (flag == 2) { ; } // long packets. No need to do anything

 else if (flag == 3) { ; } // control packets are better handled bellow

 else { ; } // reserved

222

 // ACK Implementation (counterHandle() will do most of this for us)

 if ((flag==3) && (rxbufptr->addr==TOS_LOCAL_ADDRESS)) {

 // update the key AND the rxbufptr->source field on data

 call rose.counterHandle(rxbufptr, ACK_TEST_START);

 RadioState = IDLE_STATE;

 RxByteCnt = 0;

 return 1; // Control packet STOPS here.

 }

 // make a copy of rxbufptr to rxbufptr_copy

 rxbufptr_copy = malloc(sizeof(TOS_Msg));

 memcpy(rxbufptr_copy, rxbufptr, sizeof(TOS_Msg));

 // decrypt with active key

 call rose.packetEncDec(rxbufptr, DECRYPT);

 // MAC validation, first set some vars, assuming that MAC is not valid

 mac_valid = FALSE; ack_send = FALSE; rxbufptr->crc = 0; // the crc is left for compatibility

 mac_valid = call rose.validateMAC(rxbufptr); // attempt to validate

 if (!mac_valid) { // if MAC is not valid

 call rose.counterHandle(rxbufptr, CNT_REVERT); // revert to backup key

 call rose.packetEncDec(rxbufptr_copy, DECRYPT); // decrypt the copy of rxbufptr with backup key

 mac_valid = call rose.validateMAC(rxbufptr_copy); // attempt to validate again

 if (mac_valid) { rxbufptr = rxbufptr_copy; } // make rxbufptr point to rxbufptr_copy then

 }

 else { ack_send = TRUE; } // first validation attempt was successfull, so send ACK

 // end of MAC validation. mac_valid now contains TRUE/FALSE info if MAC is valid or not

 // respond to the result of MAC validation, send ACK etc

 if (mac_valid) {

 if (flag != 3) { // was not a control packet, prepare for higher layers

 rxbufptr->crc = 1; // left here for the shake of compatibility

 }

 }

 else { // MAC still not ok! (but we do nothing about it here, packetReceive() will discard the packet)

 dbg(DBG_USR1, "%i. Cannot validate MAC for received packet from node %i.\n", TOS_LOCAL_ADDRESS, rxbufptr->source);

 }

 free(rxbufptr_copy);

 // end SecRose RX. Continue with CC1000 stuff

 call SpiByteFifo.disableIntr();

 RadioState = IDLE_STATE; //DISABLED_STATE;

 rxbufptr->strength = usRSSIVal;

223

 if (!(post PacketRcvd())) {

 // If there are insufficient resources to process the incoming packet

 // we drop it

 rxbufptr->length = 0;

 RadioState = IDLE_STATE;

 call SpiByteFifo.enableIntr();

 }

 #if 0

 if (bTxPending) {

 sMacDelay = (((call Random.rand() & 0xf) +1) * (MSG_DATA_SIZE));

 }

 #endif

 }

 }

 break;

 case DISABLED_STATE:

 break;

 default:

 break;

 }

#if 0

 RSSISampleFreq++;

 RSSISampleFreq %= (preamblelen + 2 + offsetof(struct TOS_Msg,data) + 3) >> 1);

 if ((RSSISampleFreq == 0) && (bTxPending || (RadioState == RX_STATE))) {

 call RSSIADC.getData();

 }

#endif

 return SUCCESS;

}

async event result_t RSSIADC.dataReady(uint16_t data) {

 //rxbufptr->strength = data;

 atomic {

 usRSSIVal = data;

 bRSSIValid = TRUE;

 }

 return SUCCESS;

}

// Default events for radio send/receive coordinators do nothing.

// Be very careful using these, you'll break the stack.

default async event void RadioSendCoordinator.startSymbol() { }

default async event void RadioSendCoordinator.byte(TOS_MsgPtr msg, uint8_t byteCount) { }

default async event void RadioReceiveCoordinator.startSymbol() { }

default async event void RadioReceiveCoordinator.byte(TOS_MsgPtr msg, uint8_t byteCount) { }

}

224

File SecRoseM.nc

module SecRoseM {

 provides interface SecRose;

 uses interface Leds as l;

}

implementation {

 uint32_t iKey[] = { 0x00A3D709, 0x0083F848, 0x00F6F4B3, 0x00211578, };

 uint32_t fKey[4] = { 0 };

 ROSE_counter counter[SECROSE_MAX_NODES+1]; // counters table

 // vars for acks

 ROSE_acks acks[SECROSE_MAX_ACK+1];

 uint8_t num_acks = 0;

 enum { ADD_VALUE, REMOVE_VALUE };

 // arrays for calcMAC() and calcACK() and btea. By allocating them here we use less memory

 uint8_t kalpha[8] = { 0 }; // key K1

 uint8_t kbeta[8] = { 0 }; // key K2

 uint8_t kbuffer[8] = { 0 }; // buffer for keys

 uint8_t v[56] = { 0 }; // temp v[] array to pass to btea.cipher(). Size value is not optimized

 uint8_t ack[2] = { 0 }; // temp array to store the last prepared ack for use by the ACK paacket in a while

/* FUNCTIONs */

 // function to mix iKey+counter and produce fKey

 async command void SecRose.mixKey(uint32_t dest) {

 if (dest == TOS_BCAST_ADDR) {

 dest = SECROSE_MAX_NODES;

 }

 atomic fKey[0] = iKey[0] + counter[dest].active >> 24;

 atomic fKey[1] = iKey[0] + counter[dest].active >> 16;

 atomic fKey[2] = iKey[0] + counter[dest].active >> 8;

 atomic fKey[3] = iKey[0] + counter[dest].active >> 0;

 }

/* FUNCTION SEPARATOR */

 async command void SecRose.counterHandle(TOS_MsgPtr data, uint8_t action) {

 uint8_t flag = call SecRose.readFlag(data->length);

 uint8_t cur_counter = data->count_value;

 uint16_t node = 10000;

 uint8_t pos = 0;

 atomic {

 if (action == PKT_SENT) {

 if (flag == 0) {

 node = 0;

 }

 else if (flag == 1) {

225

 node = SECROSE_MAX_NODES; // a virtual node on last pos of table

 counter[node].backup = counter[node].active; // keep backup

 counter[node].active += cur_counter; // update active counter

 }

 else if (flag == 2) {

 node = data->addr;

 }

 else { ; }

 counter[node].temp = cur_counter;

 // prepare an ACK using the temp counter, not the active. The fastest way to do it

 // is to temporarly set the active counter += temp counter

 call SecRose.ackTable(data, ADD_VALUE, node); // and store the value.

 }

 else {

 if (data->addr == TOS_BCAST_ADDR) {

 node = SECROSE_MAX_NODES; // set to be the virtual node

 }

 else { node = data->source; }

 if (action == PKT_RECV) {

 counter[node].backup = counter[node].active; // keep the backup first

 counter[node].active += cur_counter;

 }

 else if (action == ACK_TEST_START) {

 data->ack = 0; // default is to assume invalid ack

 for(pos=0;pos<=SECROSE_MAX_ACK;pos++) {

 node = acks[pos].addr;

 if ((data->mac[0]==acks[pos].ack[0]) && (data->mac[1]==acks[pos].ack[1])) {

 counter[node].active += counter[node].temp; // add the temp

 data->ack = 1;

 call SecRose.ackTable(data, REMOVE_VALUE, pos);

 break;

 }

 }

 }

 else if (action == CNT_REVERT) { // revert to backup (old) counter

 counter[node].active = counter[node].backup;

 }

 else {;}

 }

 }

 }

/* FUNCTION SEPARATOR */

 async command result_t SecRose.ackTable(TOS_MsgPtr data, uint8_t action, uint16_t node) {

 uint8_t pos, pos2; // temps

 if (action == ADD_VALUE) {

 num_acks++;

226

 if (num_acks >= SECROSE_MAX_ACK) { num_acks--; }

 pos2 = num_acks;

 for (pos=(num_acks-1);pos<SECROSE_MAX_ACK;pos--) { // shift whole array 1 place to the right

 acks[pos2].ack[0] = acks[pos].ack[0];

 acks[pos2].ack[1] = acks[pos].ack[1];

 acks[pos2].addr = acks[pos].addr;

 pos2--;

 }

 // now set the first location

 acks[0].ack[0] = data->ack_value[0];

 acks[0].ack[1] = data->ack_value[1];

 acks[0].addr = node;

 }

 if (action == REMOVE_VALUE) {

 num_acks--; // by decreasing num_acks we cause the rest of the code to remove the oldest entry

 // shift table one place to the left after num_acks

 pos2 = node+1;

 for (pos=node;pos<=(num_acks+1);pos++) {

 acks[pos].ack[0] = acks[pos2].ack[0];

 acks[pos].ack[1] = acks[pos2].ack[1];

 acks[pos].addr = acks[pos2].addr;

 pos2++;

 }

 }

 return 0;

 }

/* FUNCTION SEPARATOR */

 // The top function in the encryption suite. Provides interfacing with the other components

 async command result_t SecRose.packetEncDec(TOS_MsgPtr data, bool action) {

 uint16_t tmp = 0;

 uint8_t end, pos;

 data->pad_size = 0; // make sure this is reset by default

 // 1. mix the key according to conditions (only if we got some data!)

 if (data->length != 0) {

 if (data->flag == 1) { tmp = TOS_BCAST_ADDR; }

 else {

 if (action == ENCRYPT) { tmp = data->addr; }

 if (action == DECRYPT) { tmp = data->source; }

 }

 call SecRose.mixKey(tmp);

 }

 else { return 1; } // when there is no data, do not encrypt anything

 // call steal + encrypt function

 call SecRose.stealEncDec(data, action);

 return SUCCESS;

 }

227

/* FUNCTION SEPARATOR */

 // Function to apply encryption and stealing.

 async command result_t SecRose.stealEncDec(TOS_MsgPtr data, bool action) {

 uint8_t pos, pos2, stolen_mac_bytes, stolen_header_bytes;

 pos = pos2 = stolen_mac_bytes = stolen_header_bytes = 0;

 // add all data to v[]

 for (pos=0;pos<data->length;pos++) {

 atomic v[pos] = data->data[pos];

 }

 // complement v[] with data from mac[] untill the last 4-byte block is complete

 pos2 = 0;

 while ((pos % 4) != 0) { // check last block size

 atomic v[pos] = data->mac[pos2];

 pos++; pos2++; stolen_mac_bytes++;

 }

 // for very small packets, add more data to v[] from mac, group, type or pad

 if ((data->length+stolen_mac_bytes) < 8) {

 // not all 4 bytes of MAC are always used 10 lines above. Continue using them here. This code needs improvement/debug

 while ((pos % 8) != 0) {

 atomic v[pos] = data->mac[pos2];

 pos++; pos2++; stolen_mac_bytes++;

 if (stolen_mac_bytes == 4) break; // max MAC size is 4 bytes

 }

 // is the block complete?

 if ((data->length+stolen_header_bytes+stolen_mac_bytes) < 8) {

 atomic v[pos++] = data->type; // no ? add type

 stolen_header_bytes++; // kep track of count to use later

 }

 // is the block complete?

 if ((data->length+stolen_header_bytes+stolen_mac_bytes) <8) {

 atomic v[pos++] = data->group; // not yet? then add group

 stolen_header_bytes++;

 }

 // still not complete? add a pad byte

 if ((data->length+stolen_header_bytes+stolen_mac_bytes) < 8) {

 if (action == ENCRYPT) { // do not destroy pad byte when a packet is received

 atomic v[pos++] = 0; // when sending, pad byte is simply a 0

 }

 else { // on reception (decryption), the pad byte includes information

 atomic v[pos++] = data->data[data->length]; // so we use it. put it on v[]

 }

 stolen_header_bytes++;

 data->pad_size = 1;

 }

 }

 // call btea section

 if (action == ENCRYPT) { // encrypt or ...

 call SecRose.btea(v, pos, fKey); }

 if (action == DECRYPT) {

228

 call SecRose.btea(v, -pos, fKey); } // ... decrypt

 // now place the contents of v[] to apropriate fields of packet

 pos2 = 0; // put start of v[] to data[]

 for (pos=0;pos<data->length;pos++) {

 atomic data->data[pos] = v[pos2++];

 }

 for (pos=0;pos<stolen_mac_bytes;pos++) { // put middle of v[] to mac[]

 atomic data->mac[pos] = v[pos2++];

 }

 if (stolen_header_bytes > 0) { // if there were bytes stolen from header

 atomic data->type = v[pos2++]; // replace type

 stolen_header_bytes--;

 if (stolen_header_bytes > 0) { // replace group if more

 atomic data->group = v[pos2++];

 stolen_header_bytes--;

 }

 if (stolen_header_bytes > 0) { // replace pad if even more

 atomic data->data[data->length] = v[pos2];

 }

 }

 return SUCCESS;

 }

/* FUNCTION SEPARATOR */

 async command void SecRose.btea(uint8_t* vs, int32_t n, uint32_t* ks) {

 int pos;

 call SecRose.bteaCipher(((uint32_t*)vs), n/4, ks);

 }

/* FUNCTION SEPARATOR */

 async command void SecRose.bteaCipher(uint32_t* vl, int32_t n, uint32_t* k) {

 uint32_t z, y=vl[0], sum=0, e, DELTA=0x9e3779b9;

 uint8_t n_minus_one; // optimisation

 uint32_t p, q;

 if (n > 1) { // Coding Part

 n_minus_one = n-1;

 q = SECROSE_TEA_CYCLES;

 z = vl[n_minus_one];

 while (q-- > 0) {

 sum += DELTA;

 e = (sum >> 2) & 3;

 for (p=0; p<n_minus_one; p++) {

 y = vl[p+1];

 z = vl[p] += (z>>5^y<<2) + (y>>3^z<<4)^(sum^y) + (k[p&3^e]^z);

 }

 y = vl[0];

 z = vl[n_minus_one] += (z>>5^y<<2) + (y>>3^z<<4)^(sum^y) + (k[p&3^e]^z);

 }

 }

 else if (n < -1) { // Decoding Part

229

 n = -n;

 n_minus_one = n-1;

 q = SECROSE_TEA_CYCLES;

 sum = q*DELTA;

 z=vl[n_minus_one];

 while (sum != 0) {

 e = (sum >> 2) & 3;

 for (p=n_minus_one; p>0; p--) {

 z = vl[p-1];

 y = vl[p] -= (z>>5^y<<2) + (y>>3^z<<4)^(sum^y) + (k[p&3^e]^z);

 }

 z = vl[n_minus_one];

 y = vl[0] -= (z>>5^y<<2) + (y>>3^z<<4)^(sum^y) + (k[p&3^e]^z);

 sum -= DELTA;

 }

 }

 return;

 }

/* FUNCTION SEPARATOR */

 // Get the ack vzalue from ack[] and place them on mac[] because MHSR reads from mac[] only

 async command void SecRose.calcACK(TOS_MsgPtr data, uint16_t node) {

 uint8_t tmp;

 atomic data->mac[0] = ack[0];

 atomic data->mac[1] = ack[1];

 }

/* FUNCTION SEPARATOR */

 // Function to calculate the MAC of a packet.

 // Implements: http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

 async command result_t SecRose.calcMAC(TOS_MsgPtr data, uint16_t node, bool action) {

 uint8_t pos, pos2, end, flag; // temp and control variables

 bool condition;

 // mix the key for "node"

 if (data->flag == 1) { call SecRose.mixKey(TOS_BCAST_ADDR); }

 else { call SecRose.mixKey(node); }

 flag = call SecRose.findFlag(data); // we need to know the flag, so that we know what to hash

 // reset v[]

 for(pos=0;pos<14;pos++) {

 ((uint32_t*)v)[pos] = 0;

 }

 // reset kbuffer[]

 for (pos=0; pos<2; pos++) ((uint32_t*)kbuffer)[pos] = 0;

 // fill v[] with what we want to hash

 atomic {

 // all packets, add data

 end = data->length;

 memcpy(v, data->data, data->length);

230

 // add .source.

 if (data->source > 255) { v[end] = ((uint8_t *)data)[3]; end++; }

 v[end] = ((uint8_t *)data)[4]; end++;

 // all add .type

 v[end] = data->type; end++;

 v[end] = data->group; end++;

 }// end atomic

 // Key set-up

 // step 1: kbuffer = encrypt a block of 64 0's with key fKey

 call SecRose.bteaCipher(((uint32_t*)kbuffer), 2, ((uint32_t*)fKey));

 // step 2: (a) if the MSB of kbuffer is 0 then kalpha = (kbuffer << 1)

 // (b) else kalpha XOR (kbuffer << 1) with 0x1b

 atomic {

 condition = (kbuffer[0] & 0x80); // keep a copy of the result on the check if MSB of kbuffer == 0

 // The code below does kalpha = (kbuffer << 1) (shitss the whole kbuffer one bit left)

 // This is needed in every case.

 // Also the code below fulfills step 1a

 pos = kbuffer[0] << 1;

 kalpha[0] = pos;

 for (pos=1; pos<8; pos++) {

 kalpha[pos-1] |= kbuffer[pos] >> 7;

 kalpha[pos] = kbuffer[pos] << 1;

 }

 // to fullfill step 2a we need to check the original MSB, we use our pre-obtained condition result

 // note: if condition is met then the contents of alpha assigned above are OVERWRITTEN here

 // this means that this might not be the most efficient way to do this

 if (!condition) {

 for (pos=0; pos<6; pos++) {

 kbuffer[pos] ^= 0x0; // bitwise XOR with 0 on first 7 bytes

 kalpha[pos] = kbuffer[pos]; // assign to kalpha

 }

 kbuffer[7] ^= 0x1b; // for last byte we XOR with 0x1b

 kalpha[7] = kbuffer[7]; // and assign

 }

 // step 3: (a) if the MSB of kalpha is 0 then kbeta = (kalpha << 1)

 // (b) else kbeta XOR (kalpha << 1) with 0x1b

 // In essense it's exactly as step 2 with "kalpha" replacing "kbuffer" and

 // "kbeta" replacing "kalpha". The rest of code remains the same. See above for comments

 condition = (kalpha[0] & 0x80);

 pos = kalpha[0] << 1;

231

 kbeta[0] = pos;

 for (pos=1; pos<8; pos++) {

 kbeta[pos-1] |= kalpha[pos] >> 7;

 kbeta[pos] = kalpha[pos] << 1;

 }

 if (!condition) {

 for (pos=0; pos+1<7; pos++) kalpha[pos] ^= 0x0; kbeta[pos] = kalpha[pos];

 kalpha[7] ^= 0x1b; kbeta[7] = kalpha[7];

 }

 }// end atomic

 // use

 // Step 1: if the last block is a full block then XOR it with kalpha

 atomic {

 if ((end % 8) == 0) { // check last block's size

 pos2 = 0;

 for (pos=(end-8); pos<end; pos++) {

 v[pos] ^= kalpha[pos2]; // do the XOR

 }

 }

 // (b) else append 1 set bit after the last bye and 7 unset bits.

 else {

 v[end] = 0x80; end++; // append 10000000 to v[end]

 while ((end % 8) != 0) { // while v[]'s last block is not a complete block,

 v[end] = 0; end++; // apend 0's to it untill it is

 }

 // and XOR the last block of v[] with kbeta

 pos2 = 0;

 for (pos=(end-8); pos<end; pos++) {

 v[pos] ^= kbeta[pos2];

 pos2++;

 }

 }

 }//end atomic

 // Step 4: XOR and encrypt the whole v[] (in blocks) using:

 // block of v[] for plaintext

 // kbuffer to store the result of encryption

 // fKey as key

 // use 0's for the first time (when kbuffer is not filled)

 pos2 = 0; // pos on kbuffer[]

 for (pos=0; pos<end; pos++) {

 if (pos < 8) {

 atomic kbuffer[pos2] = 0 ^ v[pos]; // initialisation, use 0's instead of kbuffer[]'s value

 }

 else {

232

 atomic kbuffer[pos2] ^= v[pos]; // step 4a

 }

 pos2++;

 if (pos2 == 8) {

 pos2 = 0;

 call SecRose.bteaCipher(((uint32_t*)v), 2, ((uint32_t*)fKey));

 }

 }

 // Step 5: return the calculated MAC

 // assign first 4 bytes of kbuffer in the mac position of the packet

 for (pos=0;pos<SECROSE_MAC_LENGTH;pos++) atomic data->mac[pos] = kbuffer[pos];

 // assign last byte of kbuffer in the count_value position of the packet

 atomic data->count_value = kbuffer[SECROSE_MAC_LENGTH];

 if (data->count_value == 0) { data->count_value++; }

 // if this is a packet that is going to be sent, store the ACK in data->ack_value[].

 // this will then be used by counterHandle()

 if (action == SEND) {

 atomic data->ack_value[0] = kbuffer[5];

 atomic data->ack_value[1] = kbuffer[6];

 }

 else { // if it is a received packet store it to ack[] to be used by calcACK() in a while, when the ACK packet will be prepared

 atomic ack[0] = kbuffer[5];

 atomic ack[1] = kbuffer[6];

 }

 return 1;

 }

/* FUNCTION SEPARATOR */

 async command bool SecRose.validateMAC(TOS_MsgPtr data) {

 uint8_t mac_pos; // a temp counter var

 uint8_t mac_tmp[SECROSE_MAC_LENGTH]; // for storing the mac

 // First make a copy of the received MAC value

 for (mac_pos=0;mac_pos<SECROSE_MAC_LENGTH;mac_pos++) mac_tmp[mac_pos] = data->mac[mac_pos];

 call SecRose.calcMAC(data, data->source, RECV); // calculate what the MAC should be based on the received data

 // compare MAC's

 if ((mac_tmp[0]==data->mac[0]) && (mac_tmp[1]==data->mac[1]) && (mac_tmp[2]==data->mac[2]) && (mac_tmp[3]==data->mac[3])) {

 return TRUE;

 }

 else {

 dbg(DBG_USR1, "%i. MAC Missmatch\n", TOS_LOCAL_ADDRESS);

 dbg(DBG_USR1, ".");

 return FALSE;

 }

233

 }

/* FUNCTION SEPARATOR */

 // Determines and returns the flag of a packet based on the .addr field of it

 // if it is a control packet pending to be sent it will determine the flag by the .flag value

 // Also, this fucntion writes the flag down in the data->flag location of the packet

 async command uint8_t SecRose.findFlag(TOS_MsgPtr data) {

 uint8_t flag = 5;

 if (data->flag == 3) { flag = 3; }

 // control

 else {

 if (data->addr == 0) { flag = 0; }

 // normal

 if (data->addr == TOS_BCAST_ADDR) { flag = 1; } // broadcast

 if ((data->addr < TOS_BCAST_ADDR) && (data->addr > 0)) { flag = 2; } // long

 data->flag = flag;

 }

 return flag;

 }

/* FUNCTION SEPARATOR */

 // determines the flag and overloads the .length value to include the flag

 // it also updates the .flag field

 async command uint8_t SecRose.writeFlag(TOS_MsgPtr data) {

 if (data->flag == 3) { // control packet

 data->length |= 0xC0; // flip both the first and second bits of data->length by OR-ing with 0xC0

(= 11000000)

 }

 else { // all other packets

 if (data->addr == 0) { data->flag = 0; } // normal packet means the first two bits will remain unchanged,

 // so, just set the data->flag field and nothing else

 else if (data->addr == TOS_BCAST_ADDR) { // Broadcast packet

 data->length |= 0x40; // flip second bit of data->length by OR-ing with 0x40 (= 01000000)

 data->flag = 1;

 }

 else { // Long packet

 data->length |= 0x80; // flip the first bit of data->length by OR-ing with 0x80 (= 10000000)

 data->flag = 2;

 }

 }

 return data->flag;

 }

/* FUNCTION SEPARATOR */

 // determines the flag from the overloaded .length value, returns the flag

 async command uint8_t SecRose.readFlag(uint8_t data) {

 /* normal packet defaults to do nothing */

 if (data < 64) { return 0; }

 /* Broadcast packet for lengths of the range 64 - 127 */

 if ((data >= 64) && (data <= 127)) { return 1; }

 /* Long packet for lengths in the range 128 - 191 */

234

 if ((data >= 128) && (data <= 191)) { return 2; }

 /* Control packet for lengths in the range 192 - 255 */

 if (data >= 192) { return 3; }

 return 5;

 }

/* FUNCTION SEPARATOR */

 // determines the flag from the overloaded .length value, fixes the overloading and returns the flag

 async command uint8_t SecRose.fixFlag(TOS_MsgPtr data) {

 /* normal packet defaults to do nothing */

 if (data->length < 64) {

 data->flag = 0;

 return data->length;

 }

 /* Broadcast packet for lengths of the range 64 - 127 */

 if ((data->length >= 64) && (data->length <= 127)) {

 data->flag = 1;

 return (data->length)-64;

 }

 /* Long packet for lengths in the range 128 - 255 */

 if ((data->length >= 128) && (data->length <= 191)) {

 data->flag = 2;

 return (data->length)-128;

 }

 /* Control packet for lengths in the range 192 - 255 */

 if (data->length >= 192) {

 data->flag = 3;

 return (data->length)-192;

 }

 return 5;

 }

} // end implementation

235

REFERENCES

1. Akyildiz, I.F., et al., Wireless sensor networks: a survey. Computer Networks, 2002. 38.

2. Karlof, C., N. Sastry, and D. Wagner. TinySec: A Link Layer Security Architecture for Wireless Sensor

Networks. in Second ACM Conference on Embedded Networked Sensor Systems (SensSys 2004). 2004.

3. Menezes, A.J., P.C.V. Oorschot, and S.A. Vanstone, Handbook of Applied Cryptography. 1996: CRC

Press LLC. ISBN 0-8493-8523-7.

4. Schneier, B., Applied Cryptography Second Edition. 1996 ISBN 0-471-12845-7 John Wiley & Sons.

5. Schneier, B., Schneier on Security. 2008: Wiley

6. Schneier, B., Secrets & Lies: Digital Security in a Networked World. 2000: John Wiley \& Sons,

Inc. 304.

7. Dierks, T. and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. 2008; Available

from: IETF Network Working Group. RFC5246. http://tools.ietf.org/html/rfc5246.

8. Postel, J. SPECIFICATION OF INTERNET TRANSMISSION CONTROL PROGRAM. 1981; Available

from: IETF Network Working Group. RFC791. http://tools.ietf.org/html/rfc791.

9. Postel, J., RFC 793: Transmission control protocol. 1981, September.

10. IEEE. 802.15.4-2006. 2006; Available from: http://standards.ieee.org/getieee802/802.15.html.

11. Crossbow Technology Inc. http://www.xbow.com

12. Mainwaring, A., et al. Wireless sensor networks for habitat monitoring. in Proceedings of the 1st ACM

international workshop on Wireless sensor networks and applications. 2002. Atlanta, Georgia, USA:

ACM.

13. Li, Y., Z. Wang, and Y.Q. Song. Wireless sensor network design for wildfire monitoring. in 6th World

Congress on Intelligent Control and Automation (WCICA 2006). 2006. Dalian (China).

14. Martinez, K., J.K. Hart, and R. Ong, Environmental sensor networks. IEEE Computer, 2004. 37(8): p.

50-56.

15. Wark, T., et al., Transforming Agriculture through Pervasive Wireless Sensor Networks. IEEE

Pervasive Computing, 2007. 6(2): p. 50-57.

16. Gamage, C., et al. Security for the Mythical Air-Dropped Sensor Network. in Proceedings of the 11th

IEEE Symposium on Computers and Communications. 2006.

17. Karp, B. and H.T. Kung. GPSR: greedy perimeter stateless routing for wireless networks. in

International Conference on Mobile Computing and Networking 2000. Boston, Massachusetts, United

States ACM Press.

18. Intanagonwiwat, C., R. Govindan, and D. Estrin. Directed diffusion: a scalable and robust

communication paradigm for sensor networks. in International Conference on Mobile Computing and

Networking 2000: ACM Press.

19. Heinzelman, W.R., A. Chandrakasan, and H. Balakrishnan. Energy-Efficient Communication Protocol

for Wireless Microsensor Networks. in Proceedings of the 33rd Hawaii International Conference on

System Sciences-Volume 8 - Volume 8. 2000: IEEE Computer Society.

20. Ren, K., W. Lou, and Y. Zhang, LEDS: Providing Location-Aware End-to-End Data Security in

Wireless Sensor Networks. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2008.

21. Luk, M., et al. MiniSec: a secure sensor network communication architecture. in Proceedings of the 6th

international conference on Information processing in sensor networks 2007. Cambridge,

Massachusetts, USA: ACM.

22. Yoon, S., C. Veerarittiphan, and M.L. Sichitiu, Tiny-sync: Tight time synchronization for wireless

sensor networks. ACM Transactions on Sensor Networks 2007. 3(2).

23. Du, W., et al. A pairwise key pre-distribution scheme for wireless sensor networks. in Conference on

Computer and Communications Security. 2003. Washington D.C., USA: ACM Press.

24. Ganesan, D., et al. Highly-resilient, energy-efficient multipath routing in wireless sensor networks. in

International Symposium on Mobile Ad Hoc Networking & Computing 2001. Long Beach, CA, USA

25. Chen, B., et al., Span: an energy-efficient coordination algorithm for topology maintenance in ad hoc

wireless networks. Wireless Networks, 2002. 8(5): p. 481 - 494.

26. Çam, H., et al. Energy-efficient security protocol for wireless sensor networks. in IEEE VTC Fall 2003.

2003. Orlando, USA.

27. Jolly, G., et al. A Low-Energy Key Management Protocol for Wireless Sensor Networks. in Proceedings

of the 8th IEEE International Symposium on Computers and Communication. 2003: IEEE.

236

28. Walters, J.P., et al., Wireless sensor network security: A survey., in Security in Distributed, Grid,

Mobile, and Pervasive Computing. 2006, Auerbach Publications, CRC Press. Available from:

http://www.cs.wayne.edu/~weisong/papers/walters05-wsn-security-survey.pdf.

29. Perrig, A., et al., SPINS: security protocols for sensor networks. Wireless Networks, 2002. 8(5): p. 521

- 534.

30. Li, T., et al., SenSec Design. Tech. Rep. 2005, Institute for Infocomm Research: Singapore. p. 15.

31. Levis, P., et al., TinyOS: An Operating System for Sensor Networks, in Ambient Intelligence. 2005. p.

115-148. Available from: http://dx.doi.org/10.1007/3-540-27139-2_7.

32. Kahn, J.M., R.H. Katz, and K.S.J. Pister. Next century challenges: mobile networking for "Smart Dust".

in Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and

networking. 1999. Seattle, Washington, United States: ACM.

33. Perrig, A., J. Stankovic, and D. Wagner, Security in wireless sensor networks. Communications of the

ACM, 2004. 47(6): p. 53 - 57.

34. Wartena, F., J. Muskens, and L. Schmitt. Continua: The Impact of a Personal Telehealth Ecosystem. in

International Conference on eHealth, Telemedicine, and Social Medicine, 2009. eTELEMED '09. 2009.

35. BP. Condition Monitoring. 2009 5/2009; Available from:

http://www.xbow.com/General_info/Info_pdf_files/BP_Intel_Sensor_Networks.wmv.

36. Shamir, A., How to share a secret. Commun. ACM, 1979. 22(11): p. 612-613.

37. Eschenauer, L. and V.D. Gligor. A key-management scheme for distributed sensor networks. in

Conference on Computer and Communications Security. 2002. Washington, DC, USA ACM Press.

38. Huang, Q., et al. Fast Authenticated Key Establishment Protocols for Self-Organizing Sensor Networks.

in 2nd ACM international conference on Wireless sensor networks. 2003: ACM.

39. Liu, D. and P. Ning. Establishing pairwise keys in distributed sensor networks. in Conference on

Computer and Communications Security. 2003. Washington D.C., USA: ACM Press.

40. Intel. Sensor Networks Research 2009 [cited 2009; Available from:

http://techresearch.intel.com/articles/Exploratory/1501.htm.

41. Huang, S.-C., et al. Comfort of air conditioning using sensor networks with game theory. 2007;

Available from: http://dspace.lib.fcu.edu.tw/bitstream/2377/3589/1/ce07ics002006000135.pdf.

42. Rabaey, J.M., et al., PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking. Computer,

2000. 33(7): p. 42-48.

43. Teumim, D.J., Industrial Network Security. 2nd ed. 2004: ISA.

44. Milenkovic, A., C. Otto, and E. Jovanov, Wireless sensor networks for personal health monitoring:

Issues and an implementation. Computer Communications, 2006. 29(13-14): p. 2521-2533.

45. Data Protection Act. 1998: UK. http://www.opsi.gov.uk/acts/acts1998/ukpga_19980029_en_2#pt1-l1g2

46. Atmel, ATmega 128 & ATmega 128L. 8-bit AVR microcontroller with 128K Bytes in-system

programmable flash. 2004.

47. Crossbow, Imote2 Datasheet, in High-performance Wireless Sensor Network Node. 2010, Crossbow

Technology. http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/Imote2_Datasheet.pdf

48. Crossbow, MICA2 Datasheet, in Wireless Measurement System. 2010, Crossbow Technology.

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf

49. Krishnamachari, B. and S. Iyengar, Distributed Bayesian Algorithms for Fault-Tolerant Event Region

Detection in Wireless Sensor Networks. IEEE Trans. Comput., 2004. 53(3): p. 241-250.

50. Estrin, D., et al., Next century challenges: scalable coordination in sensor networks, in Proceedings of

the 5th annual ACM/IEEE international conference on Mobile computing and networking. 1999, ACM:

Seattle, Washington, United States. p. 263-270.

51. Sandhu, J.S. Wireless Sensor Networks for Commercial Lighting Control: Decision Making with Multi-

agent Systems. in AAAI Workshop on Sensor Networks. 2004.

52. Pottie, G.J. and W.J. Kaiser, Wireless integrated network sensors. Commun. ACM, 2000. 43(5): p. 51-

58.

53. David Gay, P.L., David Culler, Eric Brewer. nesC 1.1 Language Reference Manual. 2003; Available

from: http://nescc.sourceforge.net/papers/nesc-ref.pdf.

54. Diffie, W. and M. Hellman, New Directions In Cryptography. IEEE Transactions on Information

Theory, 1976. 22(6): p. 644 - 654.

55. Lai, B.C., et al. Reducing Radio Energy Consumption of Key Management Protocols for Wireless

Sensor Networks. in Proceedings of the 2004 International Symposium on Low Power Electronics and

Design. 2004.

56. Bhatti, S., et al., MANTIS OS: An Embedded Multithreaded Operating System for Wireless Micro

Sensor Platforms. Mobile Networks and Applications, 2005. 10(4): p. 563-579.

57. Dunkels, A., B. Gronvall, and T. Voigt, Contiki - a lightweight and flexible operating system for tiny

networked sensors. 29th Annual IEEE International Conference on Local Computer Networks, 2004,

2004: p. 455- 462.

237

58. Beutel, J., et al., Prototyping Wireless Sensor Network Applications with BTnodes, in Wireless Sensor

Networks. 2004. p. 323-338. Available from: http://www.springerlink.com/content/5lanjx6utqy7e8q7.

59. Crossbow Technology Inc; Available from: http://www.xbow.com.

60. Khemapech, I., A. Miller, and I. Duncan, Simulating Wireless Sensor Networks

61. Ekonomou, E. and K. Booth. Simulating Sensor Networks. in 6th Annual Conference on the

Convergence of Telecommunications, Networking & Broadcasting (PGNet). 2005. Liverpool / UK:

Liverpool John Moores University.

62. Levis, P., et al. TOSSIM: accurate and scalable simulation of entire tinyOS applications. in Conference

On Embedded Networked Sensor Systems 2003. Los Angeles, California, USA

63. Titzer, B.L., D.K. Lee, and J. Palsberg. Avrora: Scalable Sensor Network Simulation with Precise

Timing. in 4th international symposium on Information processing in sensor networks. 2005: IEEE

Press Piscataway, NJ, USA.

64. Berkeley, U. TinyOS. 2004; Available from: http://www.tinyos.net.

65. Kulkarni, S., A. Iyer, and C. Rosenberg, An address-light, integrated MAC and routing protocol for

wireless sensor networks. IEEE/ACM Transactions on Networking, 2006. 14(4): p. 793-806.

66. ITU. Open Systems Interconnection - Basic Reference Model: The basic model. 1994; Available from:

http://www.itu.int/rec/T-REC-X.200-199407-I/en.

67. IEEE. LAN/MAN Wireless LANS. 2009; Available from:

http://standards.ieee.org/getieee802/802.11.html.

68. Juang, P., H. Oki, and Y. Wang. Energy Efficient Computing for Wildlife Tracking: Design Tradeoffs

and Early Experiences with ZebraNet. in Tenth International Conference on Architectural Support for

Programming Languages and Operating Systems. 2002. San Jose, CA.

69. Hill, J., et al., System Architecture Directions for Networked Sensors. ACM SIGPLAN Notices, 2000.

35(11): p. 93 - 104.

70. ARM. ARM7TDMI. Available from: http://www.arm.com/products/CPUs/ARM7TDMI.html.

71. NIST. Recommendation for Key Management – Part 1: General (Revised). 2007; Available from:

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf.

72. Lenstra, A.K. and E.R. Verheul, Selecting Cryptographic Key Sizes, in Proceedings of the Third

International Workshop on Practice and Theory in Public Key Cryptography: Public Key

Cryptography. 2000, Springer-Verlag. p. 446-465.

73. CNSS, CNSS Policy No. 15, Fact Sheet No. 1 - National Policy on the Use of the Advanced Encryption

Standard (AES) to Protect National Security Systems and National Security Information. 2003.

74. Watro, R., et al. TinyPK: securing sensor networks with public key technology. in Proceedings of the

2nd ACM workshop on Security of ad hoc and sensor networks. 2004. Washington DC, USA: ACM

Press.

75. Bellare, M., J. Kilian, and P. Rogaway, The security of the cipher block chaining message

authentication code. Journal of Computer and System Sciences, 2000. 61(3): p. 362-399.

76. Karlof, C. and D. Wagner. Secure routing in wireless sensor networks: Attacks and countermeasures. in

First IEEE International Workshop on Sensor Network Protocols and Applications. 2003.

77. Douceur, J.R. The Sybil Attack, Revised. in Papers from the First International Workshop on Peer-to-

Peer Systems. 2002.

78. Hu, Y.-C., A. Perrig, and D.B. Johnson, Wormhole detection in wireless ad hoc networks. 2002(Tech.

Rep. TR01-384).

79. Xu, W., et al., The feasibility of launching and detecting jamming attacks in wireless networks, in

Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing.

2005, ACM: Urbana-Champaign, IL, USA. p. 46-57.

80. Wood, A.D. and J.A. Stankovic, Denial of service in sensor networks. IEEE Computer, 2002. 35(10): p.

54–62.

81. Deng, J., R. Han, and S. Mishra, Enhancing Base Station Security in Wireless Sensor Networks.

Technical Report CU-CS-951-03. 2003, Department of Computer Science, University of Colorado.

82. Yang, H., et al. Toward resilient security in wireless sensor networks. in Proceedings of the 6th ACM

international symposium on Mobile ad hoc networking and computing. 2005. Urbana-Champaign, IL,

USA.

83. Zhu, S., S. Setia, and S. Jajodia, LEAP+: Efficient security mechanisms for large-scale distributed

sensor networks. ACM Transactions on Sensor Networks 2006. 2(4): p. 500-528.

84. Pietro, R.D., L.V. Mancini, and A. Mei, Energy efficient node-to-node authentication and

communication confidentiality in wireless sensor networks Wireless Networks, 2006. 12(6): p. 709-721.

85. Zhang, Y., et al., Location-based compromise-tolerant security mechanisms for wireless sensor

networks. IEEE Journal on Selected Areas in Communications, 2006. 24(2): p. 247-260.

238

86. Yu, Y., R. Govindan, and D. Estrin, Geographical and Energy Aware Routing: A Recursive Data

Dissemination Protocol for Wireless Sensor Networks. UCLA Computer Science Department Technical

Report UCLA/CSD-TR-01-0023, 2001.

87. Xu, Y., J. Heidemann, and D. Estrin. Geography-informed energy conservation for ad hoc routing. in

Proceedings of the Seventh Annual ACM/IEEE International Conference on Mobile Computing and

Networking. 2001.

88. Braginsky, D. and D. Estrin. Rumor routing algorthim for sensor networks. in Proceedings of the 1st

ACM international workshop on Wireless sensor networks and applications. 2002. Atlanta, Georgia,

USA ACM Press.

89. Manjeshwar, A. and D. Agrawal. TEEN: A routing protocol for enhanced effeciency in wireless sensor

networks. in 1st International Workshop on Parallel and Distributed Computing Issues in Wireless

Networks and Mobile Computing. 2001.

90. Kömmerling, O. and M. Kuhn. Design Principles for Tamper-Resistant Smartcard Processors. in

SENIX Workshop on Smartcard Technology. 1999. Chicago, Illinois, USA.

91. Hess, E., et al. Information Leakage Attacks Against Smart Card Implementations of Cryptographic

Algorithms and Countermeasures. in EUROSMART Security Conference. 2000.

92. Skorobogatov, S.P., Semi-invasive attacks - A new approach to hardware security analysis, in

Computer Laboratory. 2005, University of Cambridge: Cambridge.

93. Casado, L. and P. Tsigas, ContikiSec: A Secure Network Layer for Wireless Sensor Networks under the

Contiki Operating System, in Proceedings of the 14th Nordic Conference on Secure IT Systems: Identity

and Privacy in the Internet Age. 2009, Springer-Verlag: Oslo. p. 133-147.

94. Jinwala, D., D. Patel, and K. Dasgupta, FlexiSec: A Configurable Link Layer Security Architecture for

Wireless Sensor Networks. Journal of Information Assurance and Security, 2009. 4: p. pp 582-603,

ISSN 1554-1010.

95. Zia, T. and A. Zomaya. A Secure Triple-Key Management Scheme for Wireless Sensor Networks. in

Proceedings of the 25th IEEE International Conference on Computer Communications. 2006.

96. Jinwala, D., D. Patel, and K. Dasgupta, Optimizing the Block Cipher Resource Overhead at the Link

Layer Security Framework in the Wireless Sensor Networks. Lecture Notes in Computer Science, 2008.

5352/2008.

97. Koo, W., et al. Implementation and analysis of new lightweight cryptographic algorithm suitable for

wireless sensor networks. 2008.

98. National Institute of Standards and Technology. SKIPJACK and KEA Algorithm Specifications. 1998.

99. Dworkin, M. Recommendation for Block Cipher Modes of Operation: The CMAC Mode for

Authentication. 2005; Available from: http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-

38B.pdf.

100. Rogaway, P., M. Bellare, and J. Black, OCB: A block-cipher mode of operation for efficient

authenticated encryption. ACM Trans. Inf. Syst. Secur., 2003. 6(3): p. 365-403.

101. Bloom, B., Space/time trade-offs in hash coding with allowable errors. Communications of the ACM,

1970.

102. Sun, K., et al. TinySeRSync: Secure and resilient time synchronization in wireless sensor networks. in

ACM CCS.

103. Ganeriwal, S., et al. Secure time synchronization service for sensor networks. in WiSe. 2005.

104. Kilian, J. and P. Rogaway. How to protect DES against exhaustive key search. in Advances in

Cryptology. 1996: Springer-Verlag.

105. ZigBee Alliance. Zigbee specification. 2005.

106. Wood, A.D., et al. SIGF: A Family of Configurable, Secure Routing Protocols for Wireless Sensor

Networks. in The Fourth ACM Workshop on Security of Ad Hoc and Sensor Networks. 2006.

Alexandria, VA, USA.

107. Becher, A., Z. Benenson, and M. Dornseif, Tampering with Motes: Real-World Physical Attacks on

Wireless Sensor Networks in Lecture Notes in Computer Science. 2006, Springer Berlin / Heidelberg. p.

104-118.

108. Suh, G.E., et al. AEGIS: architecture for tamper-evident and tamper-resistant processing. in

Proceedings of the 17th annual international conference on Supercomputing. 2003. San Francisco, CA,

USA: ACM.

109. Gu, W., et al. Defending against search-based physical attacks in sensor networks. in IEEE

International Conference on Mobile Adhoc and Sensor Systems. 2005.

110. Agah, A., M. Asadi, and S.K. Das. Prevention of DoS Attack in Sensor Networks using Repeated Game

Theory. in Proceedings of the 2006 International Conference on Wireless Networks. 2006. Las Vegas,

Nevada, USA.

239

111. McCubbin, C.B., A.A. Selcuk, and D. Sidhu. Initialization vector attacks on the IPsec protocol suite. in

In 9th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaboraitve

Enterprises (WETICE 2000). 2000: IEEE.

112. U.S. Code collection. Available from: http://www.law.cornell.edu/uscode/44/3542.html.

113. Needham, R.M. and D.J. Wheeler. TEA Extensions. in Technical Report, Computer Laboratory, University of

Cambridge, Cambridge, MA. 1997.

114. Daemen, J., Cipher and Hash Function Design, Strategies Based on Linear and Differential

Cryptanalysis. 1995, Katholieke Universiteit Leuven. Ph. D. Thesis. Sections 2.5.1 and 2.5.2.

115. GNU, GNU General Public Licence version 3, GNU, Editor. 2007.

http://www.gnu.org/licenses/gpl.html

116. Rivest, R.L., A. Shamir, and L.M. Adleman. U.S. Pattent 4405829 (RSA). 1977; Available from:

http://www.google.com/patents?vid=4405829.

117. Rivest, R.L. The RC5 Encryption Algorithm. 1997; Available from:

http://people.csail.mit.edu/rivest/Rivest-rc5rev.pdf.

118. Rivest, R.L., et al., The RC6 Block Cipher (Version 1.1; August 20, 1998). Available at

http://people.csail.mit.edu/rivest/Rc6.pdf, 1998.

119. Schneier, B. Description of a new variable-length key, 64-bit block cipher (Blowfish). 1993: Springer.

120. Schneier, B. Twofish. 1998; Available from: http://www.schneier.com/twofish.html.

121. TripleDES. NIST Data Encryption Standard (DES). 1999; Available from:

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

122. Daemen, J. and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard. 2002:

Springer-Verlag. ISBN 3-540-42580-2.

123. Wheeler, D. and R. Needham. TEA, a tiny encryption algorithm. 1995 [cited 2004 10/11/04];

Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.281.

124. Guimaraes, G., et al., Evaluation of Security Mechanisms in Wireless Sensor Networks, in Proceedings

of the 2005 Systems Communications. 2005, IEEE Computer Society. p. 428-433.

125. Jinwala, D., D. Patel, and K. Dasgupta, Investigating and Analyzing the Light-weight ciphers for

Wireless Sensor Networks. 2009(available online:

http://www.dcc.ufla.br/infocomp/artigos/v8.2/art05.pdf).

126. Rinne, S., T. Eisenbarth, and C. Paar. Performance Analysis of Contemporary Light-Weight Block

Ciphers on 8-bit Microcontrollers. in 3rd International Symposium on Industrial Embedded Systems —

SIES 2008. 2008.

127. Rinne, S., T. Eisenbarth, and C. Paar. Performance Analysis of Contemporary Light-Weight Block

Ciphers on 8-bit Microcontrollers. in SPEED 2007 2007. Amsterdam.

128. Law, Y., J. Doumen, and P. Hartel, Survey and benchmark of block ciphers for wireless sensor

networks. ACM Transactions on Sensor Networks (TOSN), 2006. 2(1): p. 93.

129. Shepherd, S.J., The Tiny Encryption Algorithm. Cryptologia, 2007. 31(3): p. 233-245.

130. Kessler, G.C. An Overview of Cryptography. 2004 04/11/2004; Available from:

http://www.garykessler.net/library/crypto.html.

131. Frankel, S. and H. Herbert. The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec. 2003 [cited

2008 July]; Available from: http://www.rfc-archive.org/getrfc.php?rfc=3566.

132. NIST. National Institute of Standards and Technology. 2010; Available from: http://www.itu.int/rec/T-

REC-X.200-199407-I/en.

133. GNU and Atmel. AVR32 GNU Toolchain. Available from:

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118.

134. Lamport, L., Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 1978.

21(7): p. 558-565.

135. Postel, J., Internet protocol. 1981, STD 5, RFC 791, September 1981.

136. Wheeler, D. and R. Needham, Correction to xtea. Unpublished manuscript, Computer Laboratory,

Cambridge University, England, 1998.

137. Yarrkov, E., Cryptanalysis of XXTEA. 2010.

138. Douglas, M., Alkaline single cell batteries and rechargers: results of preliminary tests.

139. Plummer, D., An Ethernet address resolution protocol. 1982, STD 37, RFC 826, MIT.

140. Postel, J., Internet control message protocol. 1981, September.

141. Biham, E., A. Biryukov, and A. Shamir, Cryptanalysis of Skipjack Reduced to 31 Rounds Using

Impossible Differentials. J. Cryptol., 2005. 18(4): p. 291-311.

142. Ye, F., et al. A scalable solution to mininum cost forwarding in large sensor networks. in Tenth

Internation Conference on Computer Communications and Networks. 2001.

143. Lindsey, S. and C. Raghavendra. PEGASIS: Power-efficient gathering in sensor information systems. in

IEEE Aerospace Conference. 2002.

240

144. Xu, Y., J. Heidemann, and D. Estrin. Energy conservation by adaptive clustering for ad-hoc networks.

in Poster Session of MobiHoc 2002. 2002.

145. Xu, Y., J. Heidemann, and D. Estrin, Adaptive energy-conserving routing for multihop ad hoc networks.

Research Report 527, USC/Information Sciences Institute, 2000.

146. Shnayder, V., et al. Simulating the power consumption of large-scale sensor network applications. in

2nd international conference on Embedded networked sensor systems. 2004. Baltimore, MD, USA:

ACM.

147. Han, C., et al., A dynamic operating system for sensor nodes.

148. Ganeriwal, S., L. Balzano, and M. Srivastava, Reputation-based framework for high integrity sensor

networks. ACM Transactions on Sensor Networks (TOSN), 2008. 4(3): p. 15.

149. Landsiedel, O., K. Wehrle, and S. Gotz. Accurate Prediction of Power Consumption in Sensor

Networks. in The Second IEEE Workshop on Embedded Networked Sensors, 2005. EmNetS-II. 2005:

IEEE.

