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Abstract   

 

We aim to develop a methodology to determine individual optimum cadences for competitive 

cyclists using field data. Cadence is the number of pedal crank revolutions per minute or 

pedalling rate. Currently athletes tend to select a cadence intuitively (choosing a gear that 

permits a cadence that feels comfortable), with some advice from coaches. Literature defines 

optimum cadence based on gross efficiency. However only power output, heart rate and 

cadence measurements from the field are available to us. Hence we determine an optimum 

cadence as the cadence that minimises heart rate for a given power output. In so doing we 

consider heart rate a reasonable proxy for gross efficiency. We fit statistical models of power 

output, heart rate amd cadence, with heart rate lagged behind changes in power output, at 

various lags (though we believe 30 seconds is appropriate). We consider the effect of fatigue 

on optimum cadence through calculation of training impulses or TRIMPs, but do not consider 

the effects of fitness, gradient, or whether athletes are standing or sitting. Optimum cadences 

are found for two athletes (83 and 70 revolutions per minute respectively); these cadences are 

similar to athletes’ preferred cadences (82-92 and 65-75 rpm respectively). Optimum 

cadences do not vary by power output or heart rate in our study, and are relatively insensitive 

to TRIMP. Power output reduces by approximately 2% for cadences 10 rpm above or below 

optimum. The methodology we propose can be implemented by a wide range of competitive 

cyclists to calculate optimum cadence; cyclists need to collect power output, heart rate and 

cadence measurements from training sessions over an extended period (>6 months), and ride 

at a range of cadences within those sessions. Cyclists and their coaches can re-calculate 

optimum cadence, say every 6 months, to take account of possible changes in fitness. 
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Chapter 1: Introduction 

1.1. Background 

Cyclists are able to optimise their race performance by controlling the pace and hence the 

power output at which they ride at different stages within a race (Aisbett et al, 2009; Atkinson 

et al, 2003; Chaffin et al, 2008).  For a target pace (a target power output), a cyclist can select 

a number of different combinations of gear and cadence. Cadence is the number of pedal-

crank revolutions per minute, and is therefore proportional to the speed of rotation of the feet 

when pedalling. Having determined an optimum pace, the cyclist may then seek to further 

improve his or her performance by optimising the choice of gear and cadence combination. 

Cadence is linked to gear selection; the higher the gear, the more resistance encountered, and 

the harder it is to maintain the same cadence. An optimum gear and cadence combination may 

only bring a small level of improvement to performance, but at a professional level a small 

margin of improvement in performance (from optimising cadence) may be significant (Abbiss 

et al, 2009; Coast and Welch, 1985; Foss and Hallen, 2004). Currently athletes tend to select a 

gear and cadence combination intuitively (selecting a gear that allows them to ride at a 

cadence that feels most comfortable to them), with some advice from coaches. We have 

discussed the potential for performance improvement with sports scientists working with the 

same data from the same athletes. Optimising cadence has been identified as potential area 

where athletes can improve performance. 

Current scientific studies into optimising cadence are typically conducted through 

laboratory tests on ergometers (indoor stationary cycling machines); athletes ride until 

exhaustion at a range of cadences, selecting the cadence at which they could maintain the 

highest power output before exhaustion (Foss and Hallen, 2004). However, the use of cycle 

ergometers may not necessarily accurately replicate conditions of road cycling (Jobson et al, 

2007). While much research considers optimum cadence based on laboratory experiments 

with cycle ergometers and biomechanical and physiological theory, this research encompasses 

an empirical approach using power output, heart rate and cadence data obtained from a 

number of competitive cyclists’ training sessions. The use of training data in calculating an 

optimum cadence potentially allows for more precision, as more data are collected, and 

athletes will have ridden at a greater range of cadences than in ergometer studies. In 

ergometer based studies, the purpose of the test is scientific enquiry rather than to improve an 

athlete’s fitness, so the range of cadences tested is decided by an academic rather than a 

training coach – unless the test is carefully scheduled within an athlete’s training schedule, 

researchers must assume that the athlete is not withholding effort or insufficiently motivated 

for a test that, unlike a real training session, is not for his or her benefit. To our knowledge, 

this is the first study that attempts to calculate an optimum cadence statistically from training 

data. 

Training data from four competitive athletes are used. These data comprise measurements 

of power output, heart rate and cadence, recorded within-session and over a large number of 

sessions. Power output and cadence measurements are recorded using an SRM power meter 

on the bicycle (SRM is a power meter developed by the engineering company Schoberer Rad 
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Messtehnik.) Heart rate is calculated using a heart rate monitor. The SRM power meter 

calculates power output and cadence every half second and the heart rate monitor calculates 

heart rate every second, but due to limited storage capacity, athletes collect and store data at 

five second intervals (averages calculated over 5 second intervals, yelding one stored 

averaged measurement every 5 seconds). The data available to us are the calculated averages 

yielded and stored every 5 seconds. As such when we refer to ‘raw’ data throughout this 

thesis, we mean the data (calculated averages) presented to us at five second intervals. Hence 

we consider power output measured on the bicycle, rather than the physical power generated 

by the athletes themselves (the rate at which external mechancial work of the body is 

performed, Winter and Fowler, 2009).  

We develop regression models of power output, heart rate and cadence, in order to 

calculate individual optimum cadences for the athletes in our analysis. Since heart rate can be 

considered a response to changes in power output (Churchill, 2009; Grazzi et al, 1999), we 

consider heart rate to be temporally a response to power output in our models. The statistical 

models we use imply the following definition of optimum cadence: the optimum cadence is 

that cadence which maximises power output for a given heart rate, or equivalently, it is that 

cadence that minimises heart rate for a given power output. We determine the optimum 

cadence under this definition. Ideally we would calculate gross efficiency, which is the 

amount of work done over the metabolic cost required to do that work (Winter and Fowler, 

2009), and optimise cadence with respect to this measure. However laborotory testing is 

necessary to calculate gross efficiency. Although heart rate can be affected by additional 

factors such as dehydration and temperature, we consider heart rate to be a reasonable proxy 

for gross efficiency (Wingo et al, 2005). Furthermore, heart-rate data can be routinely 

collected in the field using a heart-rate monitor. Another commonly used indicator of effort 

exerted is rate of perceived exertion. While this quantity can be routinely measured at a 

session level, this will not be useful for optimising cadence when cadence itself varies during 

a session as is typical for field data.  

There is a delay or time lag between changes in power output and the heart rate response, 

but the length of this delay is not clear from literature (Churchill et al, 2009). Therefore we 

investigate the size of this time lag. However a study by Stirling et al (2008) suggests a 

relatively low heart rate lag (less than 30 seconds) is appropriate for our data.  

The only variables required to calculate an optimum cadence in our study are power 

output, heart rate and cadence.  The gear in which an athlete is riding is not needed. Changing 

gear automatically enables the athlete to change cadence accordingly – the higher the gear, the 

more resistance provided by the bicycle; if a rider selects a lower gear he/she can increase 

cadence for the same level of exertion as he/she encounters less resistance.  

Nevertheless we also consider additional variables that can be calculated from the power 

output, heart-rate, and cadence data, and explore how optimum cadence is related to these 

additional variables. For example, the training impulse developed in the session (up to a 

particular point) is one such explanatory variable, which we use to calculate training load. 

Training impulse refers to the average heart rate in a session multiplied by session duration, 

then multiplied by a weighting factor to give greater weighting to sessions where heart rate is 

particularly high.  

We review sports science literature relevant to our study in chapter 2. We then describe 

the data we use in chapter 3. In chapter 4, we explore a range of regression models of power 
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output, heart rate and cadence; we describe the methods for determining optimum cadence, 

and present the results and discussion of fitting such models. We then consider different data 

processing constants (such as heart rate lag) in chapter 5. In chapter 6, we include training 

impulse calculations (known as TRIMPs) in our regression models. With these calculations 

we aim to capture long term effects of fatigue, and observe how this affects optimum cadence. 

In chapter 7 we present a model of power output, heart rate excess and cadence – where heart 

rate excess is the current heart rate minus the resting heart rate. Finally we summarise the 

research undertaken in chapter 8 and conclude (in chapter 9) with key findings of the study 

and how the methodology can be implemented. 

 

1.2. Aims and objectives 

Our overall aim is to develop and apply a methodology to determine an optimum cadence for 

an individual cyclist using power output, heart rate and cadence data collected in the field, 

This leads to the folowing objectives:  

- To develop a statistical model that relates heart-rate to power output and cadence and 

that allows an optimum cadence to be determined. 

- To apply this statistical model and determine optimum cadences for a number of 

athletes for whom we have heart rate, power output and cadence data collected during 

competition and training.  

- To explore what other factors may affect optimum cadence, where such factors may be 

calculated from field data, and to describe how such factors influence optimum 

cadence. 

- To compare the optimum cadences yielded with the preferred cadences of the athletes in 

our study, and to compare optimum cadences with those typically found in 

experimental literature. 

- To describe how the methodology should be used by a coach and athlete to determine 

optimum cadence. 

- To describe what future work could be undertaken to further develop our methodology. 
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Chapter 2: Sports Science background 

2.1. Introduction to sports science literature 

In our study we aim to develop statistical models of power output, heart rate and cadence 

(collected from training data for competitive professional cyclists) that yield an individual 

optimum cadence – that is, a cadence that maximises power output for a given heart rate. To 

do this we use power output, heart rate and cadence measurements taken directly from power 

meters on the bicycles athletes in our studies have used. We expect optimising cadence in this 

way to bring a small but significant gain in performance as studies have suggested cadence is 

important in maximising power output (Abiss et al, 2009; Coast and Welch, 1985). In this 

section we present a review of existing literature into optimising cadence in road cycling, and 

related issues that affect cycling performance, including optimal pacing strategies, and, more 

broadly, investigations into the relationship between key variables such as power output and 

heart rate. We aim to develop our understanding of key physiological and sports science 

aspects that underpin professional road cycling, and to familiarise ourselves with relevant 

literature and theories that could aid the development of our statistical models. Firstly we 

present literature for optimising pace in 2.2. Next in 2.3. we present definitions used in the 

literature for optimum cadence and experimental conditions in such studies, and how these 

compare to our study. We explore relationships between other key variables in our analysis 

(such as power output and heart rate) in 2.4. In 2.5. we explore other factors that could 

potentially affect cadence. We summarise the key literature for our study in 2.6. Finally, in 

section 2.7., we describe the variables required to calculate a mathematical optimum cadence 

in our study. 

Broadly, road cycling races can be classified as time trials, in which all athletes take turns 

to complete a course in the fastest time possible, or, alternatively, races in which all athletes 

start and compete together at the same time (de Koning et al, 1999). Professional cycling 

races can be run outdoors on roads or other terrain, or on tracks or circuits in an arena, in 

which athletes complete a number of laps of the circuit. The athletes in our study compete in 

road races and in individual time trials.  

 

2.2. Optimising cycling pace 

2.2.1. Introduction  

Cyclists are able to optimise their race performance by choosing an appropriate pacing 

strategy, and regulating  the power output they produce at different stages within a race 

(Aisbett et al, 2009; Atkinson et al, 2003; Chaffin et al, 2008).  Indeed much research exists 

into optimising pacing strategy in cycling; studies have investigated a range of different 

pacing strategies, for a variety of different test durations. The terms ‘pacing strategy’ and 

‘pacing pattern’ tend to be used in literature to broadly represent the distribution of variation 

in power output with a race. For example, pacing strategy was defined by Atkinson and 

Brunskill (2000) to be ‘the within-race distribution of work rate (power output)’. Hence 
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throughout section 2.1, when we use the terms ‘pacing’ and ‘pacing strategy’, we are referring 

to the variation in power output throughout a race. 

To our knowledge, studies that investigate optimising pacing strategy have tended to 

focus on time trials (in which athletes race individually against the clock), possibly because 

optimal performance in races in which athletes compete together at the same time is 

complicated by the importance of tactics, such as whether to lead or follow other athletes at 

different stages of the race (de Koning et al, 1999). Pacing strategy may be very important for 

professional cycling, with performances for different pacing strategies differing by 1%, which 

is representative of the typical differences between performances for gold silver and bronze 

winning performances in world championship cycling (de Koning et al, 1999). 

 

2.2.2. Pacing strategies 

Studies have investigated the use of an even pacing strategy (varying power output as little as 

possible within a race). Many of these studies have indeed concluded that even pacing may be 

optimal for performance (Chaffin et al, 2008; Foster et al, 1993; Nikolopoulos et al, 2001).  

Foster et al (1993) tested nine subjects using a wind load simulator and attached bicycle, 

with a series of 2km time trials in which pacing strategy varied. Subjects controlled variation 

in power output such that they were able to complete the first kilometre in a time that was 

between 48% to 55% of the overall time for the trial. Foster et al (1993) concluded that their 

data suggest an even pace throughout what they consider middle distance time trials (2 to 4 

km) is the optimal pace, and that deviations from an even pace have a significantly 

detrimental effect on the overall performance.  

Atkinson and Brunskill (2000) suggested that even pacing is optimal, but that pacing 

strategy can be affected by wind conditions. They suggested that, for time trials in which the 

first half of the race is into a headwind and the second half of the races is into a tailwind, even 

pacing is appropriate (although they claim some athletes do not always adopt an even pacing 

strategy in such conditions). Athletes may have to vary the power output at which they ride if 

they encounter varying wind speed and directions, or for varying road gradients (Atkinson 

and Brunskill, 2000). 

For an even pacing strategy, power output necessarily fluctuates only slightly throughout. 

Nevertheless there may be biological reasons for such fluctuations. Ulmer (1996) suggested 

that the slight fluctuations in power output may prevent cellular damage during intense 

exercise, and could also prevent internal organ damage. 

Other studies have demonstrated that an early surge in power output before levelling to a 

steady power output for the rest of the race may form an optimal pacing strategy (Aisbett et 

al, 2009; de Koning et al, 1999; Nikolopoulis et al, 2001; Van Ingen Schenau et al, 1992).  

Aisbett et al (2009) tested twenty-six well-trained male participants using time trials with 

varying starting stretegies. The study comprised six test sessions for each participant, with 

varying formats, and never on consecutive days. For three of the six tests, participants varied 

the start (first quarter of the test) with a fast start, slow start, or even paced race, in a 

randomized order amongst the participants. Participants also rode two 5 minute time trials in 

which they chose their own pace, to set as a benchmark finsihing time for the varying start 

trials. They found that participants starting with a high power output were able to sustain a 
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higher mean power output for the duration of the test than were participants with a slow start 

or even paced start.  

Moreover, Van Ingen Schenau et al (1992) suggested that, not only should athletes adopt 

a pacing strategy in which power output is very high at the beginning of the race, but that 

subsequent power output for the remainder of the race should be even (at least for 4000m 

pursuit races). For shorter races (1000m) they claimed that the high power output at the start 

of the race can be maintained, and there is no need to reduce power output to an even, and 

lowered, level for the remainder of the race. 

De Koning et al (1999) also investigated the pacing strategy of an early surge in power 

output, in time trials of 1000m and 4000m. Whereas Aisbett et al (1999) used participants in 

laboratory experiments, de Koning et al used simulated races, using models to calculate a 

range of key variables, including power output production and rate of change in kinetic 

energy. De Koning et al (1999) considered the rate of change in kinetic energy to be equal to 

the power output production minus the power output dissipation to friction, which is the 

power output needed to overcome the friction encountered. The friction in the de Koning 

study had two components – the friction of the air against the clothes of the athlete, and the 

friction produced from air pressure differences between air in front of and behind the athlete. 

Kinetic energy was considered wasted energy as the athlete cannot use it to improve his or her 

own performance. They found an early surge in power output to be beneficial to performance. 

For the 1000m time trial, for the pacing strategy with the highest power output at the 

beginning, although the amount of energy lost to friction was highest (due to a high mean 

velocity over the race distance), the amount of leftover kinetic energy was lowest, and overall, 

athletes were able to complete the race most quickly. They also explored the benefits of an 

early surge in power output in the 4000m pursuit. They simulated a range of races in which 

the athletes started with a high power output, before reducing power output to a steady level 

for the remainder of the race. In their study the optimal pacing strategy for the 4000m pursuit 

was to begin with a high power output, before reducing power output after 12 seconds. 

Furthermore, they claimed that, not only is a high power output at the beginning of the 4000m 

pursuit race crucial for performance, but precisely how much time has elapsed before the 

athlete reduces to a steady, lower power output is also crucial.  

Along with experimental data (laboratory sessions or simulated races), de Koning et al 

(1999) also observed that an early surge in power output corresponded to an optimal pacing 

strategy in 1998 world track championship cycling, amongst the top 8 riders, also in the 

1000m time trial. There was a strong positive correlation (0.71) between time taken to 

complete the first 250m (the first lap) and overall race finishing time, whereas there was a 

negative correlation (albeit very low, -0.06) between time taken to compelte the last 250m 

(the last lap) and time taken to complete the whole race. They also explored the amount of 

time taken for successful athletes who rode with an early surge in power output to reduce to a 

lower, steady power output. In the 1998 world track championships 4000m pursuit race, 

athletes completed the first half of the race in 50.9% of the total time to complete the whole 

race – indeed this was very similar to the optimal pacing strategy in the simulated 4000m 

pursuit race in the de Koning et al (1999) study (50.7%). 

A range of explanations have been suggested for why a high power output produced at 

the beginning of a race may lead to improved performance. Bishop et al (2002), in a study of 

kayaking, claimed that an early surge in power output leads to higher levels of oxygen 
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consumption at the beginning of the race, and that that may lead to an increase in metabolic 

functioning, allowing for greater performance in the race. Alternatively de Koning et al 

(1999) suggested that the reduction in wasted kinetic energy may be why an early surge in 

power output is beneficial to overall race performance. 

However Aisbett et al (2009) claimed that it is unclear how an early surge in power 

output may improve performance. They suggested the alleged improvement in performance 

associated with a fast start may to some extent be due to the reduction in the amount of time 

the athlete spends accelerating from a standing starting position. Aisbett et al (2009) 

acknowledged though that they were not able to monitor the amount of time spent 

accelerating in their study, and so were unable to test if this was indeed the reason for the 

improved performance associated with a high power output at the start. 

However Wilberg and Pratt (1988) claimed that too high a power output at the beginning 

of a race may hinder performance, as it could increase the chance of fatigue occuring before 

the end of the race. They studied 222 male and female professional cyclists in 1000m time 

trials, finding that participants that adopted the extremely high early surge in power output 

were slower overall than those who did not. Thomson et al, (2003) also demonstrated (albeit 

in swimming not cycling) that fatigue occurs before the end of a race when maximal power 

output is adopted at the beginning of a race. Despite the possible risk of fatigue from a high 

power output fast start, Aisbett et al (2009) claimed that such fatigue is not likely to incur as 

long as the high power output at the beginning is not as high as the maximal power output that 

the athlete can achieve. They claimed that the extent to which athletes should produce an 

early power output surge may depend on aeorbic and anaerobic metabolism. 

Chaffin et al (2008) claimed that existing studies in optimising pace in cycling tend to be 

of short duration (less than 30 minutes), and that there is a shortage of studies investigating 

pacing strategies for longer sessions or competitions. Indeed Aisbett et al (2009) also claimed 

that an optimal pacing strategy is largely dependent on duration of the race. Other authors 

however have considered race durations beyond such as short duration. Chaffin et al (2008) 

investigated optimal pacing strategy for a 30 minute maximal test. In their study they used 

twelve amateur (albeit well-trained) male and female cyclists between 19 and 45 years of age. 

They performed a 30 minute maximal cycling test, choosing their own pace. Power output, 

heart rate and oxygen uptake were recorded, along with the perceived exertion recorded by 

the athletes. The power output changed seldom over the course of the test (variations in power 

output tended to be less than 10W from minute to minute), although there was a great increase 

in power output in the final 30 seconds of the test. 

Contrary to studies investigating performance over 1000m time trials or 4000m pursuits, 

in which participants complete races or tests in much less than 30 minutes, athletes in the 

Chaffin et al (2008) study did not produce an early surge in power output. Given that a very 

high power output at the beginning of a test or race can result in fatigue occurring before the 

end of the race (Aisbett et al, 2009), athletes therefore might not necessarily be able to adopt 

the pacing strategy of an early surge in power output for races of much greater length than the 

4000m pursuit. Chaffin et al (2008) suggested that participants may have intentionally 

selected a slow, steady pace at first because they believed the work load associated with a 

high power output throughout the whole test would be too great. Instead Chaffin et al noted 

that the results of their study suggest a relatively even pacing strategy (albeit with a great 
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surge in power output at the very end of the study) is optimal for long races. However they 

still suggested further work is needed for time trials of even longer duration and distance. 

Indeed Thomas et al (2012) compared even and variable pacing strategies for long time 

trials (of 20km). In their study, ten well trained male cyclists rode three 20km time trials on a 

laboratory cycling ergometer. Subjects completed the time trials more quicly with an even 

pace than a varying pace, whilst even pacing also reduced the perception of effort required. 

Wells et al (2013) have further suggested that, as race distance increases, so too does the 

importance of even pacing. They simulated a series of time trials for a hypothetical rider, for 

distances of 4, 16.1, 20 and 40km, for flat, windless conditions. For each distance, mean 

power output varied between 200 and 600W, with power output changed by between 5 and 

15%. There were also separate trials depending on the frequency at which power output was 

changed within the simulated time trial – these were 2, 4, 8, 16 and 32 times.  For the 4km 

time trial, variation in power output tended helped to improve performance. However for the 

longer time trials, as race distance increased, there were fewer combinations (of variation in 

mean power output and frequency of variation) that yielded improved performance. Wells et 

al (2013) concluded that for long race distances (over 16km), performance is optimised by 

adopting a constant power output and pace. 

Most academic studies into cycling pacing strategy tend to be conducted such that the 

pacing strategies adopted by the participants are selected by the experimenters or academics 

(Nikolopoulis et al, 2001). There are also studies in which participants select their own pacing 

strategy. This enables experimenters to investigate how performance is affected by not only 

the actual distance of the race but also by perceived distance of the race (Nikolopoulis et al, 

2001). Such studies have tended to focus on relatively long race distances (34km or longer) 

compared to other pacing strategy studies, which is understandale as it is implausible that 

athletes would perceive race distances incorrectly for events as short as the 1000m time trial 

or even the 4000m pursuit. 

Palmer et al (1998) tested participants who rode three time trials of different distances 

(34km, 40km and 46km). Participants selected their own pacing strategy. In order to compare 

performance differences for different race distances for which athletes are unaware of 

differences, the experimenters informed participants that all three time trials were of equal 

distance – 40km, the middle distance of the three races. In fact participants performed 

similarly for all three races, as power output did not vary significantly for the three different 

race distances, suggesting that the perceived distance of the race has a significant effect on 

how athletes perform (Palmer et al, 1998). 

Nikolopoulis et al (2001) further investigated the phenomenon of perceived and actual 

race distances. They tested 5 male cyclists, who were trained to a greater extent than were the 

participants in the Palmer et al (1998) study.  They attempted to recreate the findings of 

Palmer et al (1998), subjecting each participant to 34km, 40km and 46km time trials whilst 

informing them that each race is 40km, to examine how participants perform when perceived 

distance does not match the actual distance. In addition to this, Nikolopoulis et al (2001) then 

repeated the shortest and longest time trial (this time informing participants of the race 

distances), in order to compare how participants performed with and without correct 

knowledge of the race distance. Indeed Nikolopoulis et al (2001) found similar results to 

Palmer et al (1998). When informed that all races were 40km, participants did not vary power 

output significantly between trials in which actual distance varied. Participants had access to 
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heart rate measurements (which could act as an indication of intensity of exercise 

(Nikolopoulis et al, 2001)) and hence had an opportunity to change their pace if they so 

wished, but they did not change pace. Power output however changed accordingly for the 

second experiment in which athletes were informed of race distance. Power output changed 

only slightly though, and not statistically significantly, although possibly by enough to make a 

significant contribution to performance differences over the entire race durations 

(Nikolopoulis et al, 2001).       

Nevertheless the less than expected power output differences for the trials in which 

athletes knew the race distance, and that such results were obtained even for well-trained 

athletes (the participants in the Nikolopoulis et al study), emphasises how important perceived 

race distance is for pacing strategy. Nikolopulis et al (2001) claimed that athletes select a 

pacing stretegy based not necessarily on the race distance but on their subjective perception of 

how much effort is required for the race. However they note that only a small sample was 

used, and that larger samples may yield more statistically significant differences between 

performances in different trials. 

Indeed de Koning et al (2011) have suggested that the tendency of athletes to change pace 

in a race is related to their race understanding of race distance, or how much of the race 

remains. They have also argued that perceived exertion influences changes in pace in races. 

Although a range of studies have suggested that different pacing strategies are optimal for 

different circumstances, a study by Aisbett et al (2003) has suggested that different pacing 

strategies do not necessarily have a significant impact on performance. Aisbett et al (2003) 

tested six male participants setting them ergometer cycling tests. Each participant performed 

two practice trials to gain familiarity with the cycling ergometer equipment, before 

performing three six-minute trials, over a period of two weeks. Three different pacing 

strategies were adopted by the participants – fast-start, even pacing and slow-fast. The 

strategies were based on the practice trials. For the fast-start trial, participants were instructed 

to maintain 104% of the mean power output obtained during the fastest practice trial for the 

first 120 seconds of the main trial. For the even pacing strategy they maintained 101% of the 

mean power output for the first 240 seconds, and for the slow-fast pacing strategy 98% for the 

first 240 seconds. Aisbett et al (2003) tested for statistical differences in power output, along 

with other variables related to oxygen consumption (such as peak VO2). Although mean 

power output generated was higher for the fast-start condition compared with the other 

strategies, it was not significantly higher. Also, even pacing snd slow-fast strategies were 

almost identical in terms of mean power output. However as literature has suggested that 

pacing strategy may impact upon performance and power output that can be produced (albiet 

in different ways according to different authors), it may be therefore beneficial for athletes to 

try explore different pacing strategies. Indeed, Aisbett et al (2003) suggested there is limited 

research to suggest that even pacing is an optimum pacing strategy.  

Air resistance can also have an impact on performance for athletes in road cycling in 

terms of pacing strategy; the perception of air resistance could enable athletes to select and 

modify their pacing strategy during a road race (Nikolopoulis et al, 2001). Nikolopoulis et al 

(2001) noted that, in their laboratory study in which athletes selected their own pacing 

strategy for different time trials (which participants perceived to be all the same distance 

though actual distance varied), some physical feedback clues were absent in the laboratory, 
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such as levels of air resistance, or speed at which participants cover the ground (Nikolopoulis 

et al, 2001).  

A number of different authors have found different relationships between pacing strategy 

and performance – this may be due to differences in the types of tests deployed or exercise 

duration (Aisbett et al, 2003; Aisbett et al, 2009; Chaffin et al 2008). Indeed the fast-start 

pacing strategy tends to vary greatly between different studies, in terms of the intensity and 

duration of the fast start (Aisbett et al, 2003). For the Aisbett et al (2003) study, in which no 

significant differences were obtained regarding power output produced from different 

strategies, the intense start was maintained for approximately 2 minutes. However, simulated 

cycling trials of 1000m and 4000m from de Koning et al (1999) and van Ingen Schenau 

(1992) suggest that, for a fast-start pacing strategy, the maximal start should last for a brief 

time, up to 12 seconds. Athletes in our study compete in time trial races of longer duration 

than 4000m. Even pacing strategies tend to be the best pacing strategies for long time trials, 

say 34 km and longer (Chaffin et al, 2008; Palmer et al, 1998; Thomas et al, 2012; Wells et al, 

2013).  

 

2.2.3. Existing mathematical models of performance prediction in cycling  

A range of mathematical models have been used in academic studies of cycling, typically to 

predict pacing strategy (power output) an athlete needs to ride at in given circumstances (Di 

Prampero et al, 1979; Martin et al, 1998; Olds et al, 1995). Models of power output are also 

useful when estimates of power output are required but no direct measure of power output is 

available, and in comparing different cycling performances from the past in which there are 

no available data for power output (Bassett et al, 1999). We explore and summarise different 

models used. To our knowledge, mathematical modelling in cycling has tended not to be used 

for optimising pedalling rate or cadence. When outlining equations used by other authors, we 

use the symbols used by the authors in their articles. 

In our study, we use SRM cranks in the bicycles to measure power output. Indeed SRM 

cranks are considered a valid measurement of power output (Bertucci et al, 2005; Martin et al, 

1998; Paton and Hopkins, 2001). Nevertheless some authors have developed mathematical 

models to predict power output, along with time trial performance. In studies that aim to 

optimise time trial performance, a measure of power output is important (Martin et al 1998). 

Without a measure of power output, Martin et al (1998) claimed it is difficult to validate these 

models.  A range of physical and physiological measures have been included in mathematical 

models of performance in cycling (Martin et al, 1998; Padilla et al, 2000). Martin et al (1998) 

claimed a model of power output can be produced by having a series of parameters to capture 

aerodynamic and physical aspects that affect a cyclist’s movement. Of these, air resistance is 

the variable that is most likely to affect performance, at least for speeds of greater than 

50km/h (Kyle, 1988; Padilla et al, 2000). Indeed air resistance, or drag, is calculated using the 

same equation by Bassett et al (1999), Di Prampero et al (1979) and Martin et al (1998), and a 

very similar equation is calculated by Padilla et al (2000). Using the nomenclature of Di 

Prampero et al, this resistance (D, measured in N) is  
2

D2
1 VACD   

where v is the air velocity (in m/s), ρ is air density (in kg/m
3
), Ap is the area of the frontal 

plane of the bicycle (in m
2
), and CD is the drag coefficient., This equation is also used by 
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Martin et al (1998), albeit with different symbols used to represent the elements of the 

equation, and Bassett et al (1999) use a very similar equation. However authors differ in how 

they develop and modify these air resistance calculations, and in how power output relates to 

other variables in mathematical models. Studies have also tended to include measures of 

friction between wheels, tyres and bearings. We now describe these studies and the 

mathematical models used.   

Di Prampero et al (1979) developed a model of power output based on air temperature, 

barometric pressure, gradient and body size. To calculate mechanical power output, Di 

Prampero et al calculated the air resistance and rolling resistance (a force encountered by 

tyres rolling over the ground). Subjects on bicycles were towed by cars. They measured speed 

(and towing force) at two points 100m apart. The rolling resistance is independent of speed, 

and is proportional to the total mass of bicycle and rider (Di Prampero et al, 1979). As 

mentioned previously in this chapter, to calculate the air resistance (D, in N), Di Prampero 

squared the air velocity (v, in m/s), and multiplied this by air density (ρ, in kg/m
3
), area of the 

frontal plane of the bicycle (Ap, in m
2
), drag coefficient (CD), and by a half. 

In their study, Di Prampero et al (1979) used linear regression based on air velocity (v
2
) 

to obtain the total resistance (RT, the air resistance and rolling resistance combined), resulting 

in the following equation: 
219.02.3 vRT  . 

To calculate mechanical power output, the rolling resistance and the air resistance were 

each multiplied by ground speed (s). The mechanical power output in their study (W, in W or 

watts) was then:
  

svsW 219.02.3   . 

Di Prampero (1979) further developed models of power output based on air temperature, 

barometric pressure, gradient and body size. Di Prampero claimed mechanical power output is 

directly proportional to air density. They took account of air density by measuring barometric 

pressure (PB in Torr) and temperature (T, in K), as they claimed this was enough to analyse the 

effects of air density. Thus they developed a model of power output for different values of 

temperature and air density:  

svTPsW B

2)/(0725.02.3   . 

They further developed their model of power output to account for different body sizes 

and gradient. They simplify the effect of area of the front of the bicycle (Ap), assuming it to be 

proportional to the surface area of the rider’s body (SA, or surface area). This surface area can 

be calculated using height and mass of the rider (Padilla et al, 2000). When cycling uphill, the 

rider must overcome an additional force related to the gradient, whilst equivalently there is 

less force to overcome when cycling downhill (Di Prampero 1979). Assuming the gradient is 

less than 16 degrees, this additional force (associated with gradient) introduced to the 

equation was represented by the total mass of bicycle and rider (P) multiplied by the incline 

or gradient (i) and road speed (s). They calculated mechanical power need for riding uphill 

(W) to be:  

)8.9)/(()105.4( 22 siPsSAvTPPsW B    

Martin et al (1998) also developed a mathematical model to predict power output using 

physical and aerodynamic measures. In their model of power output, they include measures of 

aerodynamic drag, rolling resistance, friction of drive chain and wheel bearings, and rate of 
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change in potential and kinetic energy. Friction lost to wheel bearings, however, is very small 

(Di Prampero et al, 1979; Whitt, 1971). Nevertheless they calculated the power output needed 

to overcome each of these physical components. Firstly, Martin et al calculated the power 

output needed to overcome aerodynamic resistance or drag (FD in N). This was the same as 

the calculation of drag outlined by Di Prampero et al (1979). Martin et al  calculated air 

resistance to be a multiplication of  the coefficient of drag (CD), the area of the front of the 

bicycle (A, in m
2
), air density (ρ, in kg/m

3
), air velocity (Va

2
, in m/s) and by a half, in the 

following equation:
  

2

D2
1

aD VACF  . 

However Martin et al also include a term for the power output needed to overcome the 

aerodynamic effect of rotating the wheels. They multiplied the drag coefficient by area of the 

front of the bicycle, before adding the incremental drag area of the spokes on the wheels (Fw). 

This is then multiplied by air density, air velocity and ground velocity of the bicycle (VG), and 

all divided by 2, in the following equation of total aerodynamic power (PAT, in W): 

Ga VVFACP 2
WD2

1
AT )(   . 

To calculate the power output needed to overcome rolling resistance, Martin et al first 

calculated the cosine of the inverse tangent of road gradient (GR), expressed as 

))(cos(tan 1 RG , and shortened to CRR. They then multiplied this by ground velocity, the 

coefficient of rolling resistance, total mass (mass of bicycle and rider, mT) and acceleration 

due to gravity, g, to obtain the power output needed to overcome rolling resistance (PRR) in 

the following equation:  

gmCVP TRRRR G  . 

The next component measured by Martin et al was friction from bicycle wheel bearings. 

Wheel bearing friction is related to the load and rotational speed of the wheel (Dahn et al 

1991, Martin et al 1998). To calculate power lost due to wheel bearing friction, Martin et al 

multiplied the ground velocity by 8.7, and added 91. They then multiply this by ground 

velocity again and by 10
-3

 to get the power needed to overcome friction in the wheel bearings 

(PWB), in the following equation: 
3

GG 10)7.891(  VVPWB . 

Power is needed to overcome potential energy when a cyclist is riding on a gradient 

(Martin et al, 1998). To calculate the power output needed to overcome the changes in 

potential energy, Martin et al calculated the sine of the inverse tangent of road gradient, 

)((tansin 11
RG . They then multiplied this by ground velocity, total mass of bicycle and 

rider, and acceleration due to gravity, to get power needed to overcome changes in potential 

energy (PPE), in the following equation: ))((tansin 11
G RTPE GgmVP  . 

Finally, Martin et al calculated the power needed to overcome changes in kinetic energy. 

This is the rate of change in kinetic energy of the bicycle and rider (Martin et al, 1998). They 

calculated the moment of inertia of the two wheels (I), along with the radius of the tyre (r). 

They also measured the ground velocity at two time points (ti, first time point, and tl, final 

time point) - they squared the ground velocity at the first time point, and subtracted the square 

of the ground velocity at the second time point (VGl
2
 – VGi

2
). Power needed to overcome 

changes in kinetic energy (PKE) was then the following:  

)/()]())(([ 1

222

2
1 ttVVrImTP lGiGlKE  . 
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Power output in the Martin et al model was then a summation of each of the power 

outputs needed to overcome the five physical components - aerodynamic drag, rolling 

resistance, friction of drive chain and wheel bearings, and rate of change in potential and 

kinetic energy. In the Martin et al study, six experienced male cyclists performed a series of 

road time trials, on a course measuring 471.8m. Martin et al calculated power output using 

their model, and compared this with power output measured by SRM cranks on the bicycles. 

A paired student’s t test indicated no significant differences between calculated power output 

(with a mean of 172.8W) and power output measured using SRM cranks (with a mean of 

172.0W). Also, linear regression indicated a high correlation between both power output 

measurements. Martin et al further claimed that this model can easily be used to predict power 

output in different circumstances (different physical conditions). This is because the effect of 

each physical measure (aerodynamic drag, rolling resistance, friction of drive chain and wheel 

bearings, and rate of change in potential and kinetic energy) on power output is linear or very 

nearly linear.  

Bassett et al (1999) analysed performances of various cyclists that had broken the world 

record for furthest distance covered during 1 hour of unaccompanied track cycling. They 

developed a model of power output to predict power output needed for future world record 

attempts. In modelling power output, they included measures of velocity, altitude, cycling 

equipment, body position and body weight. Bassett et al measured the effect of each variable 

in their model on aerodynamic drag by measuring power output using SRM cranks, and by 

empirically determining the relationship between frontal area of the bicycle and the body 

surface area of the cyclist. Bassett et al were particularly interested in how power output 

varies at different altitudes, and consequently in calculating an ideal altitude for future world 

record attempts.  

The model of power output proposed by Bassett et al included constants such as static 

rolling resistance (the frictional resistance of wheels and tyres) and dynamic rolling resistance 

(friction from rotating wheels and bearings). These were termed A1 and A2 respectively. The 

third constant, A3, was an aerodynamic measure; this was a function of air density, coefficient 

of aerodynamic drag, and frontal area of bicycle and cyclist. The calculation of the 

aerodynamic measure, A3, was the same as that used by D Prampero et al (1979) and Martin 

et al (1998) except it did not include a measure of velocity:  

fD2
1

3 ACA 
 

where ρ is the air density (in kg/m
3
), Cd is the coefficient of drag, and Af is the frontal area of 

the bicycle and cyclist (in m
2
). Power output (P, in Watts) was calculated by Bassett et al to 

be a summation of products of each type of resistance, with velocity, in the following 

equation: 
2

3

2

2t1 VAVAVMAP  , 

where Mt is the total mass of bicycle and cyclist (in kg), and V is velocity (in m/s).  

Bassett et al considered the effect of altitude through changes in air density at different 

altitudes. They modified their model of power output to include factors that take account of 

roughness of track (K) and a correction for aerodynamic effects including altitude (K1). K1 is 

a multiple of the ratio of air density at an elevated height compared to air density at sea level 

(Kd), the effect of position of the body on the bicycle (Kpo), the aerodynamic effects of the 

shape of the helmet (Kh), the aerodynamic effects of the shape of the bicycle (Kb), and the 
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aerodynamic effects of clothing (Kc): K1 = KbKcKdKhKpo. Power output was then calculated to 

be:
  

][ 2

31

2

2t1 VAKVAVMAKP   . 

They calculated the power output requirements of five previous world record rides, and 

compared them to power output measurements collected from the rides through SRM cranks. 

In one ride, the SRM power output was 25% higher than the predicted power output from the 

Bassett et al model – however Bassett claimed this could have been due to the roughness of 

the track on which this ride took place, or the tightness of the turns of the track. Nevertheless 

the model provided reasonable predictions of power output, with an average absolute 

prediction error of 3.9% (Bassett et al, 1999). 

Padilla et al (2000) also sought to break the 1 hour world cycling record by developing a 

mathematical model of power output based on physical measures. Similarly to Di Prampero et 

al (1979) and Martin et al (1998), they included the size of the area of the front of the bicycle, 

air density, coefficient of drag, ground speed, rolling resistance, the total mass of the athlete 

and bicycle, and acceleration due to gravity.  

Padilla et al tested one subject, a 30 year old male cyclist. The subject trained in a 

laboratory on a cycle ergometer, until exhaustion – that is, until he could no longer sustain a 

cadence of 75 rpm. Padilla et al used data from this laboratory session to calculate a maximal 

power output for this subject – this was the highest power output the subject could maintain 

for a period of 4 minutes, with an added 9% to compensate for friction in the cycle ergometer. 

The subject then performed 4 track tests of increasing distance. Padilla et al then set a target 

speed for the rider in the world record attempt - indeed the rider successfully broke the world 

record for the greatest distance covered in 1 hour on a cycling track (53.040km).  

Padilla et al (2000) used the surface area of the rider to estimate the size of the frontal area of 

the bicycle. In their study Padilla et al calculated the frontal area of the bicycle to represent 

18.1% of the surface area of the rider’s body. The estimated frontal area (FA, in m
2
) was used 

to calculate an estimated power output (WT, in W), along with drag coefficient (Cd, in m
2
), air 

density (ρ, in kg/m
3
), speed (V, in m/s), the coefficient of rolling resistance (CR), the mass of 

the bicycle and rider (M, in kg), and acceleration due to gravity (g, 9.81m/s
2
). The following 

equation was yielded:
  

)(])2([ R3D MgVCVCFAWT   . 

Whilst different mathematical models of power output have shared common elements 

(for example in calculating air resistance), there have been disagreements between different 

authors. Authors have differed in the extent to which they consider physical characteristics of 

athletes, such as body size, to affect the power output calculated using mathematical models 

(Padilla et al, 2000). Basset et al (1999) considered the coefficient of drag to be the same 

whatever the body size of an athlete. However, Padilla et al claimed that this is not necessarily 

the case, and that Basset et al consequently underestimated power output in large athletes 

using their models. Indeed Padilla et al and Bassett et al provided similar estimates of power 

output for relatively small cyclists, but for larger cyclists, power output estimates are greater 

using the model outlines by Padilla et al than the model outlines by Bassett et al (Padilla et al, 

2000). 

Also, authors have used the size of the surface area of a rider’s body to estimate the size 

of the frontal are of the bicycle (Di Prampero et al, 1979; Padilla et al, 2000). The size of the 
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surface are of a rider’s body is calculated, and the frontal area is a fraction of this calculation. 

Different authors have agreed calculated different fractions. For example, Padilla et al (2000) 

calculated frontal area to be 18.1% of the surface area of the rider’s body. This is less than 

calculated by other authors, including Capelli et al (1993) who calculated frontal area to be 

20% of the surface area of the rider’s body. However this fraction may depend on the physical 

characteristics of the rider (Padilla et al, 2000) – a similar fraction (17.8%) was calculated by 

Swain et al (1987), who used riders with similar physical characteristics as those in the Padilla 

et al study. 

Atkinson et al (2007) and Swain (1997) used the mathematical models of Martin et al 

(1998) and Di Prampero et al (1979) respectively to predict time savings that can be made by 

varying power output depending on wind conditions and elevations. Whilst both authors 

calculated that varying power output on a race course with varying wind speeds can result in 

time savings compared to an even pacing strategy, they differed in the amount of time that can 

be saved. Atkinson et al (2007) and Swain et al (1997) calculated the time taken for a 

hypothetical cyclist to complete a number of different types of races, for example races with 

varying changes in elevation and wind. They compared the time taken to complete races using 

an even pacing strategy with a pacing strategy in which the cyclist varied power output for 

changes in elevation and wind speeds. Swain (1997) found that, on a flat 40km race course 

with no wind, a cyclist that varied his/her power output by 15% would take 9 seconds longer 

to complete the course than a cyclist who adopted a constant power output. Atkinson et al 

(2007), using the Martin et al model, found this to be a 20 second increase. For a course with 

varying levels of wind and elevation, both authors calculated that varying power output would 

help a cyclist to complete the course more quickly. The results of the Swain (1997) study 

indicated that, for a cyclist with an average power output of 289W, varying this power by 

10% accordingly (depending on wind conditions), would help the cyclist complete a 10km 

course 90 faster and a 40km course 30 seconds faster, compared with a cyclist with a constant 

power output throughout. Atkinson et al (2007) however, found these time savings to be 126 

seconds and 51 seconds respectively. Atkinson et al (2007) suggest two possible reasons for 

the greater time savings of the more recent model of Martin et al (1998) compared to the 

model of Di Prampero et al (1979). Firstly, the more recent model of Martin et al (1998), 

compared to the model of Di Prampero et al (1979) used a more modern, aerodynamically 

efficient bicycle to calculate various terms in their model. Secondly, the models differ in how 

they were validated (Atkinson et al, 2007). The Di Prampero et al (1979) model was validated 

by towing the bicycle and cyclist behind a car, measuring the resultant changes in air 

resistance, whilst the Martin et al (1998) model was validated against SRM cranks measuring 

power output.  

Whilst a number of authors have modelled the impact of physical and aerodynamic 

factors on performance in cycling, Olds et al (1993) also modelled performance in cycling 

based on energy requirements and energy expenditure.  They developed a model to predict 

time taken to complete 4000m time trials.   

During cycling riders have aerobic and anaerobic sources of energy available to them 

(Olds et al, 1993). The amount of anaerobic energy available to the rider is determined by the 

maximal accumulated oxygen deficit, a method developed by Medbo et al (1988). This is the 

accumulated O2 demand minus the accumulated uptake of oxygen by the rider (Medbo et al, 

1988). The amount of aerobic energy available to a rider depends on how far into a period of 
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exercise he or she is; at the beginning of exercise, oxygen consumption (VO2) increases, 

before levelling – when it levels, the rider is said to reach a ‘steady-state’. The rider is then 

consuming oxygen at the highest rate his or her body can produce – VO2max.  

For a race of total duration t minutes, and assuming and athlete rides at VO2max for 

duration f minutes, the aerobic and anaerobic energy available to the rider (Eint, or internal 

energy available, in litres of O2) was calculated by Olds et al to be the following:  

)( 2init2max2max2int VOfVOtfVOdefOE    

where VO2init was the oxygen consumption at the beginning of exercise, and τ was a constant. 

The internal power output of the athlete, or the maximal rate at which this energy can be 

supplied to the rider (Pint), was equal to the internal energy divided by exercise duration t:  

tVOfVOtfVOdefOtEP )]([ 2init2max2max2intint   . 

Olds et al (1993) calculated the time taken for an athlete to complete an event to be:  

ssacc 60)( vddt  , 

where vss was velocity (in m/s) during steady-state exercise (when the rider is consuming 

maximal oxygen (VO2max)), d was the total distance of the event (in metres) and dacc was the 

distance the rider rides before reaching vss (in metres). Therefore Pint was expressed as the 

following: 

)]60)[()]([ 2init2max2max2int ssacc vddVOfVOtfVOdefOP    

However, the external work that must be done by the rider to complete an event is greater 

than the available internal energy, or the sum of the aerobic and anaerobic energy (Olds et al, 

1993). Olds et al (1993) calculated the power output required to ride in an event, based on 

VO2. Subjects completed a series of trials on a cycle ergometer, and Olds et al (1993) plotted 

VO2 (litres/minute) against the power output required to ride an event (WR, in Watts). Power 

output (WR) was then inferred from the plots: WR = (VO2 – intercept)/gradient, where 

gradient was the slope of the plotted VO2/WR regression line, and intercept was where the 

regression line intercepts the y axis. The maximal power output the rider can then produce 

was the following: WR = (Pint – intercept)/gradient, or, with i to represent intercept, 

gradientivddVOfVOtfVOdefOWR ssacc })]60)[()]([{ 2init2max2max2   . 

The energy available to complete this work, in t minutes, was calculated by Olds et al (1993) 

to be the power output (WR) multiplied by (d+dacc)/vss. 

Olds et al (1993) compared predicted time to complete 4000m time trials with actual 

time, for 18 riders. Predicted and actual times were positively correlated (r=0.803), and there 

was a 4.6 seconds mean difference between actual times and predicted times. The errors, 

though small, could be due to fatigue, which Olds et al (1993) claimed is difficult to model.   

A range of mathematical models of mechanical power output have been developed by 

various authors including Bassett et al (1999), Di Prampero et al (1979) and Martin et al 

(1998). Indeed Bassett et al (1999) and Martin et al (1998) have been able to verify their 

models to be reliable when measured against SRM cranks. Authors have indicated how to 

calculate power output for different gradients, sizes and shapes of an athlete’s body, and for 

different levels of air resistance and rolling resistance. Authors of mathematical models of 
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power output have tended to focus on physical relationships of power (to air resistance, for 

example), and to some extent physiological measures such as oxygen consumption.  

However to our knowledge mathematical models of mechanical power output in cycling have 

tended not to feature a direct measure of cadence, though authors have acknowledged the 

influence of cadence on performance. For example, Di Prampero (1979) et al do acknowledge 

the importance of cadence, along with power output, on mechanical efficiency. They then use 

mechanical efficiency to calculate oxygen consumption. In the study by Padilla et al (2000) 

discussed earlier in this section, the subject chose his own preferred cadence. MacIntosh et al 

(2000) do consider the possibility of calculating power output mathematically from cadence – 

they investigated the relationship between cadence and power output, calculating power 

output by using principles of muscle force / velocity relationships, as power output is a 

multiplication of force (resistance in the wheel) and velocity (velocity of the crank, controlled 

by cadence). They considered an optimum cadence to be the cadence that achieves a target 

power output using the least amount of muscle activation (we discuss this paper in more detail 

in a separate section about muscle force / velocity relationships). However in this paper 

subjects ride on a cycle ergometer at only five cadences (50, 60, 80, 100 and 120 rpm). Whilst 

MacIntosh et al (2000) expected that, theoretically, power output is a parabolic function of 

cadence, they inferred the power output cadence relationship from their own data by plotting 

power output against crank velocity (in m/s), converting velocity to cadence (rpm) by 

multiplying by 10. We aim to explore this relationship by developing statistical models of 

power output and cadence, using empirical data from many months of training sessions. We 

will then calculate optimum cadence (that is, the cadence that maximises power output for a 

given heart rate) mathematically using our models. We also aim to include a measure of 

cumulative fatigue (by including training impulses (explained in more detail in 2.15)), and to 

calculate the effect this has on power output and optimum cadence. 

 

2.3. Optimising cadence 

2.3.1. Introduction to optimising cadence  

In addition to determining an optimum pacing strategy, the cyclist may then seek to further 

improve his or her performance by optimising cadence.  Cadence is defined as the number of 

pedal-crank revolutions per minute, and is therefore  proportional to the speed of rotation of 

the feet when pedalling. If cadence is too high, athletes are no longer able to sustain the 

correct technique as extra stabilization of the body is required, and hence this is detrimental to 

performance as athletes may have to reduce their power output. (Hagberg et al, 1981). 

An optimum cadence may only bring a small level of improvement to performance 

compared to an optimum pace, but at a professional level a small margin of improvement may 

be significant (Abiss et al, 2009; Foss and Hallen, 2004). Indeed Coast and Welch (1985) 

claimed that the choice of cadence may be an important determinant of performance for 

cyclists that pedal with a high power output. 

In section 2.3., we explore how optimum cadences are defined and calculated in literature. 

We also describe how we define optimum cadence in our study, and how this relates to 

literature. We then describe the typical methodology used in literature to calculate optimum 
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cadences in laboratory settings and how these conditions compare to actual road cycling. 

Finally we describe the range of optimum cadences typically found in literature. 

 

2.3.2. Optimum cadence and gross efficiency 

Optimum cadence is broadly defined to be the cadence with the highest gross efficiency. 

Gross efficiency is the amount of mechanical work achieved relative to the metabolic energy 

required to do this work (Whipp and Wasserman, 1969) – whilst mechanical work is broadly 

considered to be the distance through which the point of application of the force (of the 

athlete’s muscles) moves (Winter and Fowler, 2009). Gross efficiency decreases when 

cadence is too high, as the level of energy exerted by the athlete increases but the athlete is 

not able to produce higher power outputs. Gross efficiency decreases when cadence is too low 

as a greater energy expenditure is required to recruit the extra muscle fibres needed (Seabury 

et al, 1977).   

However, the literature provides contradictory results regarding this relationship between 

gross efficiency and cadence (Samozino et al., 2006). In the study by Samazino et al (2006), 

gross efficiency was affected by an interaction of both power output and cadence, such that 

the effects of power output on gross efficiency changed with cadence and the effects of 

cadence on gross efficiency changed with power output.  Chavarren and Calbet (1999) and 

Samozino et al (2006) both observed that, when an athlete was not riding at an optimum 

cadence, the decrease in gross efficiency at low power outputs was greater than the decrease 

in gross efficiency at higher power outputs – as power output increases, the influence of 

cadence on gross efficiency decreased linearly.   

 

2.3.3. Optimum cadence based on heart rate 

Principally we aim to calculate a cadence that minimises some measure of rate of energy 

expenditure or effort exerted for a given power output. Only power output, heart rate and 

cadence measurements collected from the field are available to us – heart rate therefore is the 

closest measure we have to a measure of rate of energy expenditure. Nevertheless different 

measures of energy expenditure exist in literature; we now outline what measures are 

typically used and how they relate to heart rate.  

Gross eficiency is commonly used to indicate effort required, but it can be difficult to 

measure gross effficiency (Winter and Fowler, 2009). Typical definitions of gross efficiency 

involve measuring mechanical work done by the athlete, and dividing this by a measure of 

energy input by the athlete (Whipp and Wasserman, 1969; Winter and Fowler, 2009). Winter 

and Fowler (2009) claimed that it is potentially difficult to measure the mechancial work done 

by muscles. Indeed for cycling, Winter and Fowler (2009) argued that academics should 

differentiate between work done to move limbs and work done to move the bicycle itself – 

internal and external work done respectively. External mechancial work done can be 

calculated, but such calculations do not take account of friction (from bearings in the wheel or 

between the chain and sprockets), whilst internal mechancial work done is particulary difficult 

to assess (Winter and Fowler, 2009). Assessment of internal mechancial work done involves 

measuring changes in potential and kinetic energy in the segments of the limbs of the athlete – 

though crucial for measuring the mechancial work done by the athlete, such calculations are 
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not always included in studies (Winter and Fowler, 2009). In order to use gross efficiency, we 

would need to calculate it at regular 5 second intervals, to be consistent with power output and 

cadence data. Wingo et al (2005) claimed that, as heart rate progressively increases over time, 

there is equivalently an increase in relative metabolic intensity, as maximal oxygen uptake 

(V02max) decreases. Since gross efficiency is related to the amount of metabolic energy 

required to do work, heart rate to some extent would therefore appear to correlate with gross 

efficiency. 

Another method commonly used in literature to represent some form of effort exerted is 

rate of perceived exertion (Borreson and Lambert, 2009). This is a subjective rating of the 

difficulty of a session, obtained 30 minutes after the end of the session (Borreson and 

Lambert, Foster et al, 1996). However, rate of perceived exertion is qualitative and relies on 

athletes being accurate in their assessments (Borreson and Lambert, 2009). Little and 

Williams (2007) suggested that rating of perceived exertion does not always correlate well 

with heart rate for short duration, high intensity exercise (albeit in soccer). However Foster et 

al (2001) found positive correlations between variations in rating of perceived exertion and 

variations in time spent in different heart rate zones (which are zones based on what 

percentage heart rate is of maximum heart rate) for cycle ergometry. Foster (1998) found 

correlations of between 0.75 and 0.9 between variation in rating of perceived exertion and 

variation in time spend in heart rate zones. We do not have data avialable regarding rate of 

perceived exertion. It would not be also not possible for athletes to calculate a rate of 

perceived exertion at regular 5 second intervals (to be consistent with power output and 

cadence meaurements). Nevertheless heart rate appears to corerelate to some extent with 

rating of perceived exertion in cycling (Foster et al, 2001). 

The maximum rate of oxygen uptake (V02max, or the maximum amount of oxygen that the 

body can utilise in a period of one minute) can also be used in literature to measure exertion 

(Pichot et al, 2000; Swain and Leutholtz, 1997). However V02max may be limited as a measure 

of rate of energy expenditure, as V02max is similar between elite and well-trained amateur 

athletes, but gross efficiency is typically higher for elite athletes compared to amateurs (Lucia 

et al, 2002). Also, an elite athlete can compensate for having a relatively low V02max by 

having a very high gross efficiency (Lucia et al, 2002). Heart rate may be related to oxygen 

uptake; the percentage of heart rate reserve (the difference between current and resting heart 

rate, divided by the difference between maximum and resting heart rate) is commonly thoguht 

to be linked to V02max (Swain and Leutholtz, 1997). However Swain and Leitholtz (1997) 

suggested that the percentage of heart rate reserve is linked to the percentage of V02 reserve 

(which is the difference between V02max and resting V02, or rate of oxygen consumption at 

rest). In their study, Swain and Leutholtz (1997) measured heart rate an V02 at rest, at 

maximum and at the end of a number of cycle ergometer tests for 63 participants. They found 

that percentage of heart rate reserve was more closely linked to percentage of V02 reserve 

than it was to V02max. Furthermore, as fitness (V02max) increased, so to did the discrepancy 

between percentage of heart rate reserve and V02max (Swain and Leutholtz, 1997). Oxygen 

consumption could be measured in laboratory setting, but it would be very difficult to 

measure rate of oxygen consumption at constant intervals during road cycling, either in 

training or races. 

Since only power output, heart rate and cadence measurements from the field are available 

to us, heart rate is the most appropriate measure avialable to us regarding a measure of effort 
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exerted. In our study we therefore use heart rate as a proxy for gross efficiency, to represent 

some form of effort exerted. Changes in heart rate can reflect changes in relative metabolic 

intensity (Wingo et al, 2005), thus we consider heart rate a reasonable proxy to gross 

efficiency. Heart rate also appears to correlate reasonably with rate of perceived exertion 

(Fost et al, 2001) and it appears to be linked to oxygen consumption, as percentage of heart 

rate reserve is related to percentage of V02 reseve (Swain and Leutholtz, 1997), thus further 

emphasising the importance of minimising heart rate. It is therefore important for cyclists in 

our study to minimise heart rate, in order to conserve energy and maximise the effort they can 

put in at the end of a race or training session. Therefore optimum cadence in our study is 

defined as the cadence that minimises heart rate for a given power output (for a given pace). 

We therefore propose that an individual cyclist should select a gear that allows them to ride at 

their individual optimum cadence, to minimise heart rate for whatever pacing strategy they 

have chosen. 

 

2.3.4. Limitations of the use of heart rate 

During prolonged exercise, there tends to be a gradual increase in heart rate over time, and a 

reduction in stroke volume – this is a phenomenon known as ‘cardiovascular drift’ (Ericson et 

al; Hamilton et al, 1991; Wingo et al, 2005). There is also a reduction in arterial, pulmonary 

arterial and right-ventricular blood pressure (Hamilton et al, 1991; Wingo et al, 2005). 

Cardiovascular drift tends to occur after the first few minutes of exercise at a constant work 

rate; heart rate rises progressively after this early stage of exercise (Hamilton et al, 1991). 

Cardiovascular drift can be caused by dehydration (Wingo et al, 2005). Indeed authors 

have studied the effects of fluid ingestion during intensity of exercise on cardiovascular drift 

(Hamilton et al, 1991; Wingo et al, 2005). 

Wingo et al (2005) explored the effects of fluid ingestion on cardiovascular drift in nine 

male subjects. Subjects rode on indoor cycling ergometers for four separate trials. Subjects 

rode at 60% of their maximal oxygen uptake (V02max, which was determined in a test ride 

before the experimental trials), for 15 or 45 minutes. For two trials (one at 15 minutes and the 

other at 45 minutes), subjects received fluid in the form of tap water, ingested before the trials 

started, and at regular intervals during the trials (after 10 minutes for the 15 minutes trial and 

after 10, 25 and 35 minutes for the 45 minute trial). Equivalently subjects also rode two trials 

(one at 15 minutes and the other at 45 minutes) with no fluid ingestion. To assess the possible 

effects of cardiovascular drift in each 45 minute trial, cardiovascular measurements were 

taken between 8 and 15 minutes and between 38 and 45 minutes. Body mass of each subject 

was also measured before and after each trial, to observe the effects of dehydration (as 

dehydration reduces body mass after exercise; Wingo et al, 2005). For the trials in which fluid 

was not replaced, there was indeed a greater loss in body mass compared to the fluid 

replacement trials – 0.3% for the 15 and 45 minute trials with fluid ingestion, and 1.4% and 

2.5% loss in the no fluid trials of 15 and 45 minutes respectively. However, this fluid 

ingestion did not prevent cardiovascular drift; there was no significant difference between the 

fluid ingestion and no fluid trials in change in heart rate or change in stroke volume (from the 

beginning to end of the 45 minute trials).  

Hamilton et al (1991) however found that some types of fluid replacement can help to 

prevent cardiovascular drift better than others. They studied the effects of fluid replacement 
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on stroke volume and heart rate during prolonged exercise (cycling on a stationary cycling 

ergometer) of 2 hours. Their study was split into two separate parts. In the first experiment, 

ten subjects performed two trials. One trial involved fluid replacement – in which subjects 

drank water at twenty minute intervals during exercise – and in the other trial there was no 

fluid replacement. In a second experiment, eight subjects performed two trials again. This 

time the trials were fluid replacement (the same procedure as in the first experiment) and a 

glucose infusion trial, in which subjects were given a glucose solution intravenously. For the 

first experiment, during the first hour of exercise, there was no significant difference between 

heart rate in the fluid replacement trial and the no fluid trial. However heart rate was 

significantly higher in the second hour of exercise in the no fluid trial compared to the fluid 

replacement trial. Heart rate increased in the no fluid trial by twice the margin it increased by 

in the fluid replacement trial. Nevertheless heart rate still increased over the two hours in the 

fluid replacement trial, from 140 to 145 beats per minute. Stroke volume equivalently was 

significantly lower in the no fluid trial compared to the fluid replacement trial. Indeed fluid 

replacement had a greater impact in reducing the effects of stroke volume reduction than it did 

in reducing the effect of heart rate increase over time. Results were similar in the second 

experiment. Whilst heart rate increased by 5-6% during the trial with water ingestion, heart 

rate increase was significantly less in the glucose infusion trial in comparison. Indeed in the 

glucose infusion trial, after twenty minutes of exercise, heart rate did not increase by more 

than 2 beats per minute (Hamilton et al, 1991).  

The results from the Hamilton et al (1991) study suggested that fluid (water) replacement 

helps to prevent reduction in stroke volume over prolonged exercise, but it is not enough to 

prevent cardiovascular drift (Hamilton et al, 1991). That fluid (water) replacement may help 

to prevent the reduction in stroke volume may be due to body temperature. Hamilton et al 

(1991) suggested that the contribution of fluid replacement to prevention of reduction in 

stroke volume may be because the fluid replacement helps to maintain core and skin 

temperature. Indeed reduction in skin and core body temperature has been found to help 

prevent reduction in stroke volume (Rowell, 1971).  

The magnitude of cardiovascular drift may be affected by ambient temperature (Lafrenz 

et al, 2008). Lafrenz et al (2008) tested ten athletes (comprising cyclists and runners) using 

cycle ergometers, at 22 and 35 degrees Celsius ambient temperature. Heart rate was measured 

after 115 and 45 minutes of continuous moderate intensity exercise. Heart rate increased from 

15 to 45 minutes by approximately 10 beats per minute in the hot conditions and 3 beats per 

minute in the cool conditions. We do not consider the effect of temperature in our study, as no 

such data are available to us. However, since our data comprise training sessions for road 

races in Britain, including winter months, temperatures are unlikely to be as high as those in 

the Lafrenz et al (2008) study. Cardiovascular drift for our athletes may therefore not be as 

great as in the Lafrenz et al (2008) study. 

We do not consider whether an athlete is standing or sitting, or the angle at which they 

sit, as no such information is available. Indeed seat position may influence heart rate (Price 

and Donne, 1997). In a cycle ergometer experiment, Price and Donne (1997) measured the 

impact of three different seat tube angles (68, 74 and 80) at three different seat heights (96%, 

100% and 104% trochanteric height) on a number of factors, including heart rate. Heart rate 

tended to be significantly lower for lower seat angles compared to higher seat angles, for the 

same power output and cadence. A limitation of our study is therefore that we cannot detect 
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any influence of sitting position or seat height on heart rate. We also have limited information 

in athletes’ training schedules regarding whether a data are from a race or training session, or 

types of races undertaken. We would expect heart rate to be higher in races compared to, say, 

low intensity training sessions (though heart rate would still be high in a high intensity 

training session). However we take account of this by comparing models fitted to all data 

available (albeit sampled at regular intervals), with the same models fitted only to a subset of 

data where heart rate is particularly high. We describe this in more detail in chapter 4. 

In this study, we use empirical data from training sessions, in which many sessions are 

over 1 hour in duration. It is therefore conceivable that cardiovascular drift may occur in the 

athletes in our data. Sessions vary in intensity, hence in less intense sessions cardiovascular 

drift is less likely to occur, since research suggests cardiovascular drift occurs in exercise that 

is not only prolonged but also moderate to high in intensity (Wingo et al, 2005). Nevertheless 

heart rate is the most appropriate measure of rate of energy expenditure available to us, and 

we consider it a reasonable proxy for gross efficiency. 

 

2.3.5. Optimum cadences from ergometer studies 

Existing research into optimum cadence tends to involve the use of cycle ergometers in 

laboratory based experiments, in which lower limb muscles are worked in a simulation of a 

bicycle, whilst upper body movements are restricted. In fact cycle ergometers are commonly 

used in general investigations into sports science, as cyclists tend to sustain injuries less 

frequently than do runners (Atkinson et al, 2003). The accuracy of the ergometer in its 

simulation of a bicycle is ensured by being adjustable to match the athlete’s own bicycle, 

along with the inclusion of pedals and handle bars similar to that found in a real bicycle (Cost 

and welch, 1985). The amount of mechanical work achieved and the metabolic energy that 

has been used to achieve this are both required to calculate gross efficiency.  The mechanical 

work achieved through lower limb muscles is calculated through linear displacement of the 

flywheel on the ergocycle, whereas the energy expenditure is based on the measurement of 

oxygen uptake (Samozino et al, 2006).   

Participants are tested either to exhaustion, with a specific definition of exhaustion in each 

study, or for a fixed time period.  Foss and Hallen (2004), for example, defined exhaustion to 

be when an athlete rode for 10 seconds consecutively at a cadence that was more than 3 rpm 

below the predetermined cadence.  If tested to exhaustion (known as a maximal test), 

performance measures tend to include time taken to reach exhaustion, the power output or 

heart rate at the time of exhaustion and the oxygen uptake at the time of exhaustion. These 

maximal tests are often given at progressively increasing power outputs for a given cadence, 

therefore giving researchers a range of power outputs and cadences that can be used to 

explore the power output / cadence relationship.  If tested for a fixed time period, performance 

measures include mechanical energy achieved, energy expenditure and gross efficiency.  The 

performance measure is plotted for different cadences, and the optimum cadence is inferred 

from the fitted curve.  Participants are tested at a range of cadence intervals and power 

outputs.  For example, Samazino et al (2006) tested athletes at cadances of 40, 60, 80 and 100, 

and Foss and Hallen (2004) tested athletes at a similar though slightly higher range of 

cadences – 60, 80, 100 and 120.  Coast and Welch (1985) tested a slightly wider range of 
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cadences (40, 60, 80, 100 and 120), at power outputs of 100W, 150W, 200W, 250W and 

300W.   

 

2.3.6. Relationship between laboratory settings and road cycling 

Some authors have reported differences in performance between road cycling and laboratory 

cycling exercises (Jobson et al, 2007). Participants may not necessarily ride at the same 

speeds in road cycling and ergometer cycling for the same power output achieved (Jobson et 

al, 2007; Smith et al, 2001). Smith et al (2001) compared performances of athletes in 40km 

time trials on a cycle ergometer and on the road. They tested eight trained cyclists, setting 

them three laboratory time trials and three time trials on a road course. Although there were 

no significant differences in mean power output between the road and laboratory conditions 

(mean power output was 312W on the road and 303W in the laboratory), athletes were 

2.4km/h slower on the road compared to the laboratory. Although Smith et al (2001) claimed 

that their study suggests that power output measurements are reproducable for both laboratory 

and road conditions, Jobson et al (2007) claimed the results of the Smith et al study suggest 

that performance in road cycling is not necessarily replicated accurately in laboratory 

conditions. 

Jobson et al (2007) investigated differences between performance in laboratory and road 

cycling and how any such differences may be affected by body mass of the participants, 

claiming that body mass is known to affect performance in road cycling. They recruited 

twenty three male trained cyclists, setting them 25 mile time trials in a laboratory and on a 

road course. They also tested participants to exhaustion on a cycle ergometer, as part of a 

measurement of the physical characteristics of participants. Similarly to Smith et al (2001), 

Jobson et al (2007) found that participants were slower on the road time trial than in the 

laboratory, although in their study by a smaller margin, of 1.7km/h. Furthermore Jobson et al 

(2007) developed a regression equation to represent the difference between road and 

laboratory speeds – they found road speed to be equal to 10.1 + (0.708*laboratory speed). 

Although greater body mass of the participants significantly reduced speed in the road time 

trial, it had no effect on speed in the laboratory time trial. Jobson et al (2007) were also able to 

develop a regression equation to predict road cycling speed (km/h) from laboratory cycling 

speed and body mass (kg) – road speed was equal to 13.8 + (0.821*laboratory speed) – 

(0.106*body mass). Indeed the inclusion of body mass as a variable increased explanatory 

power of their regression analysis from 69.3% to 78.3%. 

Laboratory based ergometer studies tend to control gradient and air resistance to be 

constant, whereas they are likely to vary in race conditions (Atkinson et al, 2003; Hickey at al, 

1992). Air resistance may have a significant impact on performance in actual race conditions, 

as 90% of total power output produced by the athlete is used to overcome the air resistiance 

(Grazzi et al, 1999; Olds et al, 1993). Air resistance can also have an impact on performance 

for athletes in road cycling in terms of pacing strategy – we have described this in more detail 

in the pacing strategy section earlier in the chapter.  

In ergometer studies, the range of cadences tested is often decided by an academic rather 

than a training coach, and for the convenience of that academic (Coast and Welch 1985) – 

unless the test is carefully scheduled within an athlete’s training schedule, researchers must 

assume that the athlete is not withholding effort or insufficiently motivated for a test that, 
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unlike a real training session, is not necessarily devised for his or her benefit. Although 

optimum cadence could plausibly be within the ranges often tested, the athletes are tested at 

far fewer different cadences that they would use in a series of actual training sessions.  In a 

study by Samazino et al (2006), athletes were tested for periods of 15 minutes with rests 

between sessions.  The duration of such tests are far less than those found in the training 

schedules of the athletes in this research, perhaps limiting the scope for ergometer studies to 

test an athlete’s maximum capabilities in race conditions. Indeed Lepers et al (2001) claimed 

that the effect of exercise duration on cadence has not been studied to much extent. 

Differences in performance between road cycling and laboratory cycling are not fully 

understood (Jobson et al, 2007). For cycle ergometer studies, further research may be needed 

to investigate the relationship between performance in road races and results obtained from 

cycling ergometer laboratory experiments (Faria et al, 2005; Jobson et al, 2007). For our 

studies, the use of empirical training data eliminates any issues related to laboratory cycling 

and the possibility of performance in such studies not being representative of actual 

performances in road cycling. 

 

2.3.7. Optimum cadence from field data 

Only a small range of cadences are used (typically 4 or 5 different cadences at intervals of 20 

rpm) in ergometer studies, compared to the number of different cadences at which athletes in 

our data have ridden. The inferred optimum cadence may occur somewhere between two 

tested cadences, at a cadence at which the athlete has not actually ridden in the study. In our 

study, the use of field data from training sessions provides us with a great range of cadences, 

potentially allowing us to be more precise in calculating an optimum cadence, as it is less 

likely that a theoretical optimum cadence is a long way above or below a cadence at which a 

participating athlete has ridden.  

To our knowledge, there are very few studies investigating an optimum cadence using 

field data from training sessions. The only research we know of to use data from real cycling 

training sessions is a study by Sassi et al (2009). In this research Sassi et al investigated the 

relationship between freely chosen cadence and the gradient of the road, using data collected 

from training sessions of 10 athletes. However Sassi et al did not calculate a cadence that is 

optimal for a given set of circumstances, rather they analysed how the cadence chosen by 

athletes varies by gradient. The cadences chosen by the athletes may or may not have been the 

respective cadences that maximised their performances. We seek to develop a statistical 

model of power output, heart rate and cadence, which gives us a mathematically optimum 

cadence. To our knowledge no studies have attempted to calculate a mathematically optimum 

cadence in this way using field data. 

 

2.3.8. Optimum cadences in literature 

A wide range of optimum cadences have been reported throughout the literature (Coast and 

Welch, 1985), ranging from 30–60 rpm (Eckermann and Millahn, 1967) up to 80–90 

(Hagberg et al, 1981), with other studies finding optimum cadence between these ranges, such 

as Michielli and Stricevic (1977), who found an optimum cadence range of between 50 and 
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60. Abbiss et al (2009) suggested that an optimum cadence for sprint cycling is 100-120 rpm, 

but an optimum cadence for long time trials (over 40km) is 90-100 rpm.  

 

2.4. Relationships between power output, heart rate, cadence, speed and 

velocity 

2.4.1. Introduction 

Since we do not have speed or velocity data available, we consider how closely power output 

is related to speed. Nevertheless it is very important to be able to ride at a high power output 

in road cycling (de Koning et al, 1999). We also review literature that investigates 

realtionships between variables such as power output, heart rate and cadence.  

 

2.4.2. Relationship between power output and speed/velocity 

Increasing power output tends to increase the velocity at which the athlete rides (de Koning et 

al, 1999). However  a number of factors can potentially affect the relationship between power 

output and velocity (Atkinson et al, 2003; Jeukendrupp and van Diemen, 1998). 

Environmental conditions, such as the angle of gradient or strength of winds, influence the 

relationship between power output produced and the overall velocity of a race (Atkinson et al, 

2003, Jeukendrupp and van Diemen, 1998). The extent to which winds affect the power 

output velocity relationship are affected by the position of the rider and the pacing strategy 

adopted (Atkinson et al, 2003). 

If a cyclist is riding at a high power output and begins to ride uphill, power output (and 

also heart rate) remain high, but velocity decreases, whereas for a downhill gradient, power 

output decreases but the athlete is able to maintain a high velocity (Jeukendrupp and van 

Diemenm 1998). Air resistance and drag also affect the power output velocity relationship 

(Atkinson et al, 2003; Bassett et al, 1999). Atkinson et al (2003) claimed that power output is 

typically a cubic function of speed. However, this may be influenced by air resistance  

(Atkinson et al, 2003; Basset et al, 1999). In an indoor cycling experiement (in which there 

was no air resistance), Basset et al (1999) found the exponent of power output and speed to be 

2.6.  

Similarly the amount of air drag also affects the power output velocity relationship if one 

cyclist rides directly behind another - known as slipstreaming (Atkinson et al, 2003; Broker et 

al, 1999; Jeukendrupp and van Diemen, 1998; McCole et al, 1990). Even it the two athletes 

ride at the same velocity, the following cyclist will not have to produce as high a power 

output as the leading cyclist, due to drag. The decrease in power output for the following 

cyclist may be as high as 30% (Atkinson et al, 2003; Broker et al, 1999). In a study by Broker 

et al (1999), seven male U.SA. national team members were recruited and split into two 

pursuit teams, for 2000m pursuit tests. Participants tended to benefit from slipstreaming, and 

indeed Broker et al (1999) also found that a third athlete, following the second, may also 

benefit from the slipstreaming with a 6% decrease in power output compared to the second 

athlete. The exact reduction in power output however depended on individual athletes and 

circumstances. Broker et al (1999) suggested that a shorter rider following a taller rider may 

experience greater benefit than the reverse circumstances.  
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Nevertheless in this study we seek to optimise power output in our models of power 

output, heart rate and cadence, by finding the cadence that optimises power output for a given 

heart rate. We do not have speed or velocity measurements – however, Jeukendrupp and van 

Diemen (1998) claim speed to be a poor indicator of exercise intensity. However by selecting 

a cadence that maximises power output, athletes can ride more quickly (de Koning et al, 

1999). 

 

2.4.3. Relationship between power output and heart rate 

Conconi et al (1982) investigated the relationship between speed and heart rate in running, 

finding that the speed / heart rate relationship is linear at low speeds and curvilinear at higher 

speeds.  This relationship has been replicated in a number of equivalent studies in cycling, in 

which the power output / heart rate relationship has been investigated. At low intensity 

exercise, the power output / heart rate relationship is said to be linear as increases in heart rate 

are proportional to increases in power output. As intensity of exercise increases, eventually 

increases in heart rate are not proportional to increases in power output – hence the curvilinear 

power output heart rate relationship (Grazzi et al 1999). The heart rate at which this 

relationship ceases to be linear and becomes curvilinear is known as the deflection point.   

Researchers have investigated the existence of the deflection point in cyclists and 

whether or not it could be determined mathematically. Athletes ride at a range of different 

power outputs, with the heart rate recorded.  The heart rate power output relationship is 

plotted from data collected.   

Jeukendrupp and van Diemen (1998) claimed the heart rate deflection point may be an 

artefact of academic studies, and that the power output / heart rate relationship may therefore 

be linear. They argued that, for short durations of exercise (less than 1 minute), heart rate lags 

behind as the cirulatory system is unable to adjust or adapt to that intensity of exercise quickly 

enough, and that a deflection point is always found in such circumstances. When exercise 

comprises periods of intensity that last for longer durations, however, Jeukendrupp and van 

Diemen (1998) claimed that it is much more difficult and potentially not even possible to 

detect a deflection point, as the circulatory system in the body is able to adapt somewhat to 

changes in exercise intensity. Coast and Welch (1985) also found heart rate to increase with 

power output linearly. 

However Grazzi et al (1999) were able to detect the deflection point. They tested 15 

athletes at incremental cadences using a wind-load simulator. Initially cadence was increased 

every 30s (beginning at 60 rpm and increasing by 1 rpm each time), before being increased at 

shorter time intervals when the athlete appeared to be exhibiting signs of fatigue.  After heart 

rate and power output data were plotted, a linear relationship was inferred from data for which 

the line of best fit had a correlation coefficient of 0.98 or greater, whilst a cuvilinear 

relationship was inferred otherwise.  In 484 of 500 tests analysed, deflection point occurred; 

the deflection point was inferred to exist if the point at which the power output heart rate 

relationship became curvilinear occurred before the point in the test when time intervals 

between increases in cadence increased. If the deflection point had occurred after the point at 

which time intervals between increases in cadence increased, it could have been claimed that 

the deflection point only existed as a result of, or was caused by, the shorter time intervals 
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between cadence increases (and the consequent increases in effort the athlete would have 

exerted). 

Studies in which cadence is kept constant have not always detected a deflection point in 

the power output heart rate relationship, whilst the deflection point is detected much more 

easily in studies with increasing cadences (Grazzi et al, 1999).  In studies in which cadence is 

increased progressively, Grazzi et al (1999) claimed the activation of anaerobic lactacid 

mechanisms to be the physiological cause of the deflection. Grazzi et al (1999) also claimed 

that the muscular power output required to cycle at maximal effort is twice as high in studies 

with a fixed cadence compared to those with increasing cadence, and that this could be why 

deflection point is not always detected in such studies.  This increased muscular power 

required for fixed cadence tests could in turn lead to an earlier activation of anaerobic lactacid 

mechanisms (Grazzi et al, 1999), hence the accumulation of blood lactate enables the athlete 

to continue to increase his heart rate in line with his power output porportionally in these 

fixed cadence tests.  

The Grazzi et al (1999) study involved subjects riding a stationary ergometer indoors. 

Outside of the laboratory, athletes encounter changing wind conditions and biomechancial 

resistance; we may expect such elements to affect the power output / heart rate relationship. In 

our study we include measurements of power output, heart rate and cadence from numerous 

training sessions - we analyse (amongst other things) the relationship between power output 

and heart rate empirically using this data. In fitting a regression model of power against heart 

rate and cadence, we observe the value of the coefficient of heart rate to explore the power 

output / heart rate relationship in training sessions outside laboratory conditions.  

 

2.4.4. Heart Rate lag 

Heart rate acts as a response to power output; when an athlete increases the power output at 

which he/she rides, his/her heart rate must subsequently increase in order to support and 

sustain that power output (Churchill et al, 2009; Grazzi et al, 1999). There is a time lag 

between the change in power output and the heart rate response, although it is not clear from 

existing literature precisely how long this heart rate lag is (Churchill et al, 2009). Moreover 

Jeukendrup and van Diemen (1998) claimed that there is a heart rate lag in response to 

increased intensity of exercise for periods of exercise of short duration, as the circulatory 

system is not able to fully adapt to change in exercise intensity, although they do not indicate 

how much of a time lag there is. However, studies by Stirling et al (2008) and Cheng et al 

(2007) appear useful in understanding the lag between power output and heart rate response. 

They studied the time taken for heart rate to change in response to beginning exercise (albeit 

running and fast walking, rather than the mechanical power output of bicycles in cycling).  

In the study conducted by Stirling et al (2008), a 33 year old male subject ran a number of 

laps around around a track running circuit, 400m in length. His exercise consisted of five 

sessions (each session comprising four laps around the track), with 10 minute rest periods 

between the sessions. A Polar S810i heart rate monitor was used to record heart rate 

measurements (Stirling et al, 2008). Stirling et al plotted a series of graphs of heart rate 

against time. The maximum heart rate was approximately 160 for a typical session. The 

athlete’s heart rate increased from 80 to 160 in approximately 60 seconds, and after the 

session finished, the heart rate took around 60 seconds again to decrease to 80. The change in 
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heart rate was consistently around 60 seconds for each exercise session – there was therefore 

no longer term effect of fatigue on the size of the heart rate lag (the length of time taken for 

heart rate to respond to power).  Both the increase and decrease in heart rate were almost 

linear, albeit the change in heart rate became slightly curvilinear at the end of the increase or 

decrease. Nevertheless for small heart rate changes, say anything less than 60 beats per 

minute, the change in heart rate appears linear.  

Cheng et al (2007) investigated the physiological heart rate respopnse to exercise by 

setting 5 healthy male subjects a series of treadmill exercises, which involved walking at 

speeds of 5km/h, 6km/h and 7km/h. Each session lasted 15 minutes, with 20 minute rest 

periods between sessions. Heart rate during three minutes of inactivity before each session, 

along with heart rate measurements during exercise sessions and the recovery periods after the 

sessions, were plotted against time. In fact smoothed heart rate measurements were used for 

the plots, using a moving average over a 5 second window. Initially heart rate increases from 

resting heart rate, and levels off after approximately 60 seconds. Similarly after an exercise 

session has finished, heart rate decreases to just above the resting heart rate, and takes 

approximately 60 seconds to level off. Inevitably there are slightly different plots for each 

athlete, but for four of the five athletes there appears to be a very clear, sudden increase or 

decrease in heart rate (that appears to be approximately linear) over 60 seconds at the 

beginning and end of each exercise session.  

Although the exercise sessions in the Cheng et al study involved fast walking rather than 

more intense running, patterns in heart rate time plots were arguably similar to those found in 

the Stirling et al study. Changes in heart rate (of, say, 80bpm) in the Stirling et al study 

occurred over 60 seconds. In the Cheng et al study, changes in heart rate of less, around 40-50 

beats per minute, occurred over the same period, but this is for much less intense exercise. 

Therefore we may expect that, if athletes in the Cheng study were to exercise at a higher 

intensity, their heart rate may indeed be able to increase by more than 40-50 bpm over a 60 

second period. 

For the data recorded from the athletes in our research, heart rate tends to change quite 

gradually. Heart rate tends not to increase by the amount seen in the Stirling et al study. This 

is not surprising as the exercise periods in the Stirling et al  and Cheng et al studies are short 

in duration, just 1600m of running and 15 minutes of brisk walking respectively in each 

session, whereas training sessions from the athletes in our research tend to be quite long, each 

lasting between approximately 1 hour and 5 hours. Therefore an athlete in our study is more 

likely to pace himelf accordingly, with some periods of high intensity and other peiods of 

lower intensity. Also, since the athletes in our study cycle over mixed terrain outdoors, they 

are likely to encounter numerous changes of conditions and intensity, causing heart rate to 

increase or decrease a little even during periods of relatively consistent amounts of physical 

exertion. We therefore investigate the length of time lag between changes in power output and 

heart rate response.  

 

2.4.5. Relationship between cadence and heart rate 

Although some researchers have investigated the impact of power output and cadence on 

gross efficiency (through submaximal tests), some have also investigated the impact of power 

output and cadence on heart rate (through both maximal and submaximal tests), and in doing 
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so explored the relatipnship between cadence and heart rate. Indeed Churchill et al (2009) and 

Grazzi et al (1999) suggested that heart rate can be considered a response to power output.  

Coast and Welch (1985) tested a group of five male athletes to exhaustion at a range of 

five different cadences (40, 60, 80, 100 and 120), at power outputs of 100W to 300W in 

intervals of 50W.  They inferred a pedalling rate to be optimal if it minimised heart rate, for a 

given power output, which is equivalent to our definition of an optimum cadence.  Heart rate 

increased with power output (which is expected as an athlete must work harder if he/she 

increases his/her power output).  The heart rate increased linearly with power output, from 

approximately 105 beats per minute up to aproximately 175, in intervals of approximately 20 

beats per minute between each power output increase of 50W.  Heart rate also varied as a 

function of cadence for a given power output – the minimum heart rate (and therefore the 

optimum cadence) occurred at increasing power outputs as cadence increased, with optimum 

cadences ranging from approximately 57 to approximately 67.   

However Lepers et al (2001) suggested that heart rate is not significantly affected by 

cadence.  They tested eight tri-athletes using submaximal tests, with each test 30 minutes in 

duration, recording heart rate continuously.   Although performance measures (including heart 

rate) indicated a drop in performance towards the end of a test, there was no evidence of any 

impact of different cadences on heart rate; performance levels dropped equally for each 

cadence. They suggested that tri-athletes can use the selection of gear ratios to adapt to 

changes in cadences. However they used a smaller range of cadences compared to some other 

studies already outlined, as they only tested the athletes at a cadence chosen by the athlete, the 

cadence 20% lower than this and the cadence 20% higher.  Also, athletes were tested at 80% 

of their inferred maximum power output (the maximum being calculated as the highest power 

output sustained for a period of 2 minutes in a 30 minute submaximal test), whereas Coast 

and Welch (1985), who tested athletes to exhaustion, did find a significant effect of cadence 

on heart rate – therefore it could be that cadence only influences heart rate at very high power 

outputs. Indeed Lepers et al (2001) used tri-athletes as participants rather than professional 

cyclists – the presumably slightly inferior cycling skills of tri-athletes (as opposed to athletes 

whose sole specialty is cycling) may have further reduced the power outputs being reached 

compared to the Coast and Welch study.  

The relationship between cadence and heart rate is not necessarily clear from literature. 

We seek to explore this relationship in our study, specifically whether or not there exists a 

range of optimum cadences depending on the heart rate of the athlete. 

 

2.5. Additional factors that could influence cadence 

2.5.1. Muscle force / velocity relationships 

Broadly, the greater the force needed to overcome, the slower the shortening of the muscle 

(Hill, 1922; Wilkie, 1950). This is known as the muscle force velocity relationship (Hill, 

1922, Wilkie, 1950). In cycling, the muscle force / velocity relationship is equivalent to the 

relationship between the force needed to overcome the resistance of the flywheel, and the 

cadence (MacIntosh et al, 2000). Wilkie (1950) calculated the velocity of shortening of elbow 

flexors, for a range of different afterloads. McCartney et al (1983) however argue that, in 

cycling, as large muscle groups with multiple joints are involved in the exercise, such 
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experiments cannot be conducted. They instead argued it is better to study the force-velocity 

relationships involved in cycling by controlling the velocity of movement of the crank and 

measuring the external force generated (the power output generated by the athlete). As such, 

authors have investigated the possibility of an optimum cadence based on studying muscle 

force velocity relationships (MacIntosh et al, 2000, McCartney et al, 1983). Indeed Sargeant 

(1994) argued that a specific optimum cadence is likely to exist for individual athletes.  

Whilst we define optimum cadence to be the cadence that maximises power output for a 

given heart rate, MacIntosh et al (2000), through studying force velocity relationships of 

muscles involved in cycling ergometry, defined an optimum cadence to be the cadence that 

requires the least muscle activation to generate a target power output. Given that an optimum 

cadence in our study could also be expressed as the cadence that minimises heart rate for a 

given power output, this appears somewhat similar to the optimum cadence defined by 

MacIntosh et al (2000), with heart rate or level of muscle activation representing some 

measure of physical exertion in each case. As power is a multiplication of force by velocity, 

in cycling this means power output is the multiplication of resistance and cadence – this is 

force multiplied by velocity of the crank (MacIntosh et al, 2000). For a given power output 

therefore, as resistance increases, cadence must decrease. MacIntosh et al (2000) argued that a 

given power output can be achieved at various combinations of cadence and resistance, but 

that one combination of cadence and resistance will likely require less muscle activation than 

the others - therefore for various levels of muscle activation, there will be a cadence that 

maximises power output in each case. MacIntosh et al (2000) recruited 8 male subjects to 

investigate this power output cadence relationship. They rode a cycle ergometer at cadences at 

50, 60, 80, 100 and 120 rpm, each at a range of power outputs (100, 200, 300 and 400W), for 

short trials of not more than 30 seconds in duration (excluding time taken to warm up). 

MacIntosh et al (2000) inferred the power output cadence relationship by plotting peak power 

output against crank velocity (in m/s), multiplying crank velocity by 10 to get cadence (in 

rpm), rather than differentiating an equation of power output and cadence and equating to zero 

to gain a mathematical optimum cadence (as we aim to do in our study). Nevertheless for each 

targeted power output, power output was a parabolic function of cadence – similarly in our 

study we expect that, as cadence increases, power output will increase to a maximum before 

decreasing. 

A study by McCartney et al (1983) however has suggested that the cadence that produces 

the highest power peak power output in brief maximal effort trials may not necessarily be the 

same as the cadence that produces the highest power output over longer periods of exercise. 

In the McCartney study, rather than measuring cadence of the athlete, crank speed was 

controlled by a motor in the bicycle, with athletes exerting as much force as they could on the 

moving pedals (such that no matter how much effort is exerted, pedalling rate or cadence 

could not exceed the pre-set crank speed on the bicycle). McCartney et al (1983) investigated 

torque-velocity relationships in cycling, exploring the effects of crank speed on power output. 

In the study 13 male subjects rode on a cycle ergometer at a range of crank speeds, for 

approximately two minutes at each crank speed. Crank speeds ranged from 60 rpm to 160 

rpm, in intervals of 20 rpm. Subjects also rode in separate trials for 30 seconds at maximal 

effort at crank speeds of 60, 100 and 140 rpm, in which the experimenters studied how 

quickly power output declines after maximal effort at those crank speeds. Peak torque 

produced decreased linearly with increasing crank speed, though from plotting the 
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relationship between peak torque and crank speed, the angle of the slope differed between 

subjects. Meanwhile the peak power output (the highest power output recorded in each trial 

for a given crank speed) produced by all but one of the subjects was a parabolic function of 

crank speed. However for one subject, peak power output increased with crank speed such 

that the highest peak power output occurred at the highest crank speed of 160 rpm; for this 

athlete, peak power output was hypothesised to occur at approximately 170 rpm, although this 

is higher than crank speeds typically chosen by athletes (Foss and Hallen, 2004). By plotting 

peak power output against crank speed, peak power output produced was typically greatest for 

crank speeds of approximately 120 rpm. Also in the second set of  trials in which athletes rode 

at maximal effort for 30 seconds at 60, 100 and 140 rpm, peak power output occurred at the 

highest crank speed of 140 rpm (1050W at 140 rpm, compared to 457W and 964W at 60 and 

100 rpm respectively). In addition to crank speed, as volume of thigh muscle increased, so too 

did peak power output produced. However, as crank speed increased, power output declined 

more quickly – rate of decline in power output was 32.4W/s at 140 rpm, compared to 11.6W/s 

at 60 rpm and 24.5W/s at 100 rpm respectively. After 17 seconds, power output was greater 

for a crank speed of 60 rpm than for 100 rpm or 140 rpm. McCartney et al argue this greater 

decline in power output at high crank speeds is due to decreased muscular efficiency at higher 

crank speeds. 

Studies investigating muscle force velocity relationships have supported the notion of a 

specific optimum cadence for an individual athlete (MacIntosh et al, 2000; Sargeant, 1994). In 

our study we define an optimum cadence to be the cadence that maximises the power output 

for a given heart rate. MacIntosh et al (2000) found that power output was a parabolic 

function of cadence. McCartney et al (1983), who plotted power output against automated 

crank speed, also found that, as crank speed increases, power output reaches a maximum, 

before decreasing again. However in both studies this was mostly for exercise of very short 

duration. For exercise of longer duration, some authors argue that cyclists prefer to adopt a 

cadence of 90 – 105 rpm (Foss and Hallen, 2004), whilst others argue that a lower optimum 

cadence (around 60 rpm) is most efficient for exercise of long duration (Jordan, 1979). 

We aim to calculate an optimum cadence for individual athletes in our study using field 

data from training session. We have more data available than in the McCartney et al study – 

hence we aim to investigate an optimum cadence for exercise of longer duration than in the 

McCartney et al study; an optimum cadence that an athlete can adopt in training and in races. 

By using SRM crank measurements we have power output measurements already available in 

our data. Hence we require only power output, heart rate and cadence measurements to 

calculate a mathematical optimum cadence for athletes in our study. 

 

2.5.2. Muscle fibre type 

Muscle fibres used during physical activity can be broadly classified into two types – type I 

and type II (Brooke and Kaiser, 1970; Coyle et al, 1992). Type I fibres are known as slow 

twitch, and type II are known as fast twitch – this refers to the speed of contraction of the 

muscles. Type II muscle fibres contract faster than type I (Crow and Kushmerik, 1982; Ingjer, 

1978). Furthermore Type II can be split into type IIA, type IIB and type IIC, with increasing 

speeds of twitching or contraction from A to C – however they are broadly similar to each 
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other; the greatest difference in characteristics occurs between type 1 fibres and type II fibres 

(Ingjer, 1978). 

Different muscle fibres types are used depending on rate of oxygen consumption 

(Barstow et al, 1996; Poole et al, 1994). During heavy exercise oxygen uptake tends to 

continually increase until it reaches a maximum – before this maximum is reached, this is 

known as the ‘VO2 slow component’, whilst exercise after this maximum has been reached is 

known as the ‘VO2 fast component’ (Billat et al, 1998; Poole et al, 1994). Typically, during 

the VO2 slow component, athletes tend to use a higher proportion of type II muscle fibres 

(relative to type I) than during the VO2 fast component (Barstow et al, 1996; Poole et al 

1994).  

Whilst type II muscle fibres contract faster than type I muscle fibres, they are also less 

efficient than type I fibres (Coyle et al, 1992; Crow and Kushmerik, 1982; Inger, 1978). 

Indeed muscular efficiency may be related to the proportion of type I muscle fibres an athlete 

has (Coyle et al, 1991; Coyle et al, 1992).  This was investigated by Coyle et al (1992), who 

studied 19 experienced cyclists with similar levels of maximum oxygen consumption 

(VO2max). In order to determine what proportion of muscle fibres were type I in each athlete, 

experimenters obtained biopsies of samples of thigh muscles from both legs of each athlete 

(Coyle et al, 1992). The proportion of type I muscle fibres was then the number of type I 

muscle fibres found divided by the total number of muscle fibres found. Subjects varied in the 

proportion of their muscle fibres that were type I - between 32% and 76%. Experimenters 

measured maximum oxygen consumption (VO2max) of subjects during exercise on a cycle 

ergometer. They also measured lactate threshold. They measured blood lactate concentration 

at exercise where oxygen consumption was between 50% and 60% of VO2max – this is known 

as baseline blood lactate concentration. The lactate threshold is then the intensity of exercise 

that leads to an increase in blood lactate concentration of 1mM above the baseline blood 

lactate concentration (Coyle et al, 1992). Cycling efficiency was then calculated for exercise 

below the blood lactate threshold. Subjects exercised on a cycle ergometer at varying work 

rates below blood lactate threshold. Coyle et al (1992) determined cycling efficiency from 

gross efficiency and delta efficiency. Gross efficiency was defined in this study as the ratio of 

work completed to the rate of energy expenditure (in kcal/minute), and was averaged over the 

different work rates. Delta efficiency is the ratio of the change in rate of work completed and 

the change in rate of energy expenditure, over the different work rates (Coyle et al, 1992). 

Gross efficiency and delta efficiency both increased with proportion of muscle fibres that 

were type I. Gross efficiency was correlated with proportion of type I muscle fibres (r=0.75). 

An even higher correlation (r=0.85) was found between delta efficiency and proportion of 

type I muscle fibres. Indeed delta efficiency is a reliable measurement of cycling efficiency as 

it involves an accurate measurement of work completed; this accuracy means the calculation 

is not skewed by influence of metabolic processes (Coyle et al, 1992; Gasser and Brooks, 

1975). Although there is a high correlation between efficiency and type I muscle fibres, this 

may not necessarily be a direct influence of type I muscle fibres on efficiency. In the Coyle et 

al (1992) study, the number of years of experience in endurance cycling an athlete has was 

positively correlated with proportion of type I muscle fibres. Coyle et al (1992) therefore 

acknowledged that the increased muscular efficiency of athletes with a high proportion of 

type I muscle fibres may be to some extent an ability developed over time by the athletes. 

However, whilst the proportion of type I muscle fibres are significantly positively correlated 
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with the number of years of endurance cycling experience, they are not significantly 

correlated with total number of years of cycling experience. Coyle et al (1992) therefore 

claimed it is likely that the type I muscle fibres do contribute to muscular efficiency in 

cycling. 

Whilst Coyle et al (1992) found a positive correlation between the proportion of type I 

muscle fibres and muscular efficiency, a study by Hansen et al (2002) suggests this 

relationship may depend on pedalling rate or cadence. Subjects in the Coyle et al (1992) study 

pedalled at a cadence of 80 rpm, whilst in the Hansen et al (2002) study, subjects (20 male 

semi-elite cyclists) exercised in a number of sessions with at a range of cadences – some 

preset and some sessions at freely chosen cadence. Subjects had between 21% and 97% type I 

muscle fibres. Exercise sessions were performed on a bicycle mounted on a treadmill. Before 

completing the treadmill cycling sessions, subjects exercised on a cycling ergometer in order 

for the experimenters to determine VO2max of the subjects (to determine at what power output 

VO2max occurs for each athlete). The treadmill cycling comprised 10 sessions for each athlete 

(5 minutes exercise followed by 5 minutes rest between sessions). In the first two sessions 

subjects chose their own cadences and rode at 90% and 70% of the power output at which 

VO2max occurs. In the remaining 8 sessions, subjects rode at 61 rpm, 88 rpm, 115 rpm and 

freely chosen cadence, at 40% and 70% of the power output at which VO2max occurs (Hansen 

et al, 2002). Subjects chose cadences between 56 rpm and 88 rpm at 40% of power output at 

which VO2max occurs, and between 61 rpm and 102 rpm at 70%. Gross efficiency was 

calculated by dividing power output by rate of energy expenditure (Hansen et al, 2002). 

Hansen et al (2002) found a significant positive correlation between gross efficiency and 

proportion of type I muscle fibres for all preset cadences. However, when subjects chose their 

own cadence, there was no such correlation. There were also differences in the relationship 

between peak crank power (highest power output achieved by the subjects) and cadence 

depending on whether subjects pedalled at preset cadences or freely chosen cadences. At 

preset cadences, there was a significant negative correlation between proportion of type I 

muscle fibres and the peak crank power (r=-0.47), and also a significant negative correlation 

between the proportion of type I muscle fibres and the cadence at which peak crank power 

occurred (r=-0.81). However there were no such correlations when subjects pedalled at their 

own freely chosen cadence. When cycling at freely chosen cadence, subjects with a higher 

proportion of type I muscle fibres tended to choose a higher cadence (Hansen et al, 2002).  

In estimating the proportion of muscle fibres that are type I or type II, experimenters tend 

to take a biopsy of small samples of muscle tissue, typically from vastus lateralis muscles in 

the thigh (Elder et al, 1982; Coyle et al, 1992). By taking samples from this muscle group, 

this provides an estimate of the muscle fibre distribution of the whole body (Coyle et al, 

1992). Whilst there is little variation in muscle fibre distribution within different regions of 

the same sample of muscle tissue (Elder et al, 1982), in a study by Elder et al (1982), 

experimenters attempted to estimate proportion of type I and type II muscle fibres by 

sampling muscle tissue more extensively than in previous studies, including muscle tissue 

from biceps and triceps muscles. In this study, samples of muscle tissue were taken at autopsy 

from males who had died between 20 and 27 years of age. Autopsies were performed between 

5 and 22 hours after death – in taking muscle samples in such short time after death, it is still 

possible to distinguish between type I and type II muscle fibres (Elder et al, 1982). Also, in 

taking autopsies rather than biopsies, this reduces the possibility of neuromuscular disease 
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being present in the muscle tissue samples (Polgar et al, 1973). The study confirmed that, 

within the vastus lateralis in the thigh, there is little variation in distribution of muscle fibre 

type. However, within other muscles, there is more variation in distribution of muscle fibres 

(Elder et al, 1982). Nevertheless, this indicates that, in taking samples of muscle tissue for 

determining distribution of muscle fibre type, fewer samples are needed if tissue is taken from 

the vastus lateralis muscle than with other muscles (Elder et al, 1982). Indeed, in the Elder et 

al (1982) study, in order to take muscle tissue samples where muscle fibre distribution varied 

with a 5% standard deviation, 4 samples were required for tricep muscles, 5 for bicep 

muscles, but only 3 samples were needed if taking tissue samples from the vastus lateralis 

muscle. The findings from Elder et al (1982) therefore suggested that the methodology 

typically used in muscle fibre studies – i.e. taking samples from the vastus lateralis muscle – 

is not unreasonable. 

In our study, we seek to find an optimum cadence – the cadence that maximises power 

output for a given heart rate – using statistical models of power output, heart rate and cadence. 

The relationship between power output and cadence could be influenced by muscle fibre type 

(McCartney et al, 1983). McCartney et al studied the effect of different crank speeds on 

power output (such that the pedals moved automatically at a certain rate, with the athletes 

exerting as much force on the pedals – pedals could not be moved at a faster rate than the 

speed to which the crank is set). Athletes with a higher concentration of type II muscle fibres 

(which contract more quickly) generated their highest power output at a higher crank speed 

than athletes with a lower concentration of type II muscle fibres (McCartney et al, 1983). For 

example, in the McCartney et al study, one subject with 72% type II fibres generated his 

highest power output at a crank velocity of 162 rpm, whilst another subject with 53% type II 

fibres generated his highest power output at 119 rpm. This suggests an individual athlete’s 

optimum cadence could therefore be influenced by the prevalence of type II muscle fibres in 

that individual athlete. However, we aim to calculate an optimum cadence for athletes in our 

study empirically by using data from training sessions, such that we do not require knowledge 

of the composition of the athletes’ muscle fibre types. Nevertheless, future research into 

optimising cadence using our methodology, combined with an analysis of the composition of 

different muscle fibre types of the athletes involved, could be useful in understanding the 

relationship between composition of muscle fibre type and cadence. 

 

2.5.3. Optimum cadence and athletic skill 

Athletes are unlikely to choose to ride at very low cadences, such as 50 (Lepers et al, 2001), 

despite this cadence being optimal in some ergometer studies (Foss and Hallen, 2004).  Elite 

professional cyclists tend to prefer higher cadences, around 90-105 (Foss and Hallen, 2004). 

Foss and Hallen (2004) claimed that these higher cadences are due to athletes not being 

sufficiently trained in such ergometer studies. Indeed Coast and Welch (1985) demonstrated 

that optimum cadence increases with power output; the insufficiently trained athletes would 

not be able to produce high enough power outputs for optimum cadence to increase to the 

level favoured subjectively by the athletes. Belli and Hintzy (2001) also suggested 

professional cyclists choose to ride at higher cadences (around 90 – 110), although they 

claimed this is equally true for most professional athletes regardless of the level of training 

they have received. 
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Experimentation has also tended to include participants with varying levels of skill (Coast 

and Welch, 1985). Indeed Coast and Welch (1985) suggested that the reason why results from 

their study differed from results by Hagberg et al (1981) was due to the higher level of skill 

amongst the athletes in the study by Hagberg et al (optimum cadence from the Hagberg et al 

study was 91 rpm, compared to 83 in the Coast and Welch study). Athletes may in fact have 

their own individual optimum cadences, depending on the level of skill of the athlete; the 

greater the level of skill, the higher the cadence that can be maintained by the athlete (Coast 

and Welch, 1985).   

 

2.5.4. Training impulses (TRIMPs) 

Quantification of training stimuli in aerobic sports is typically done using training impulses, 

known as TRIMPs (Jobson et al, 2009; Morton et al, 1990; Borreson and Lambert, 2009). 

They are a multiplication of external training load by training intensity (Jobson et al, 2009). 

Put simply, to calculate TRIMP, the average heart rate for a session is multiplied by the 

duration of a session, and then by a weighting factor, to give a greater weight to sessions 

where heart rate is particularly high (Jobson et al, 2009; Morton et al, 1990).  

TRIMPs were first proposed by Banister et al (1975), to represent a measure of physical 

effort, providing one measurement for a training session. Calculation of the TRIMP outlined 

by Banister et al requires measures of training duration, average heart rate during a session, 

resting heart rate and maximal heart rate, which form the following equation, and a weighting 

factor to give greater weight to periods of exercise of high intensity. Without such a 

correction, the equation had a bias towards extremely long training sessions where heart rate 

was relatively low (Borreson and Lambert, 2009). The TRIMP equation was:  

dfYTRIMP   

where d is duration of a session (in minutes), f is fraction of heart rate reserve ((Hav – Hrest) / 

(Hmax – Hrest)) in which Hav is the average heart rate for that training session, Hmax is maximal 

heart rate and Hrest is resting heart rate, and Y is the weighting factor, which is 0.64e
1.92f

 for 

males and 0.86e
1.67f

 for females. The weighting factor was based on different responses 

amongst men and women to changes in blood lactate concentration (in mM) in response to 

increasing heart rate (Borreson and Lambert, 2009). Morton et al (1990) then modified this 

TRIMP equation to  

fbdfeTRIMP   

where b is 1.92 for males and 1.67 for females.  

TRIMP calculations have been adapted by Edwards (1993) to account for interval 

training. Edwards (1993) split data into five zones for heart rate, based on percentage of 

maximal heart rate (50-60%, 60-70%, 70-80%, 80-90% and 90-100% of maximal heart rate 

form the 5 zones respectively). Duration of exercise in each zone was multiplied by the zone 

number (from 1 to 5), and then summated. 

This has been further modified by Lucia (1999) such that heart rate zones were based on 

exercise above and below aerobic and anaerobic thresholds. The three zones were below 

aerobic threshold, between thresholds, and above anaerobic threshold (zones 1, 2 and 3 

respectively). Duration spent in each zones was multiplied by the number of that zones (1, 2 

or 3), and then summated. For example, 60 minutes in the zone below aerobic threshold (zone 
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1) was equivalent to 30 minutes at the zone between thresholds (zone 2) or 20 minutes above 

anaerobic threshold (zone 3). This method is known as ‘Lucia’s TRIMP’ (Impellizzeri et al, 

2004). 

Increases in weighting from one heart rate zone to another are linear, in both the 

summated heart rate zone method and in Lucia’s TRIMP (Borreson and Lambert, 2009). For 

exercise above the anaerobic threshold, this linear increase does not reflect physiological 

responses to exercise (Borreson and Lambert, 2009). Both of these methods also do not 

account for differences in duration of pauses in exercise after periods of exercise of different 

intensity; they do not weight these pause times (Cejeuela-Anta and Esteve-Lanao, 2011). 

In our study we also attempt to modify the TRIMP equation outlined by Morton et al 

(1990) to place further weight on periods of exercise of high intensity (where heart rate is 

higher). We do this by calculating a TRIMP value for each measurement point – each time 

power output, heart rate and cadence are recorded in the data. We multiply the heart rate at 

that measurement point by duration that has elapsed at that point, fraction of heart rate reserve 

and by the weighting factor e
fb

. Therefore the weighting factor e
fb

 is included for each 

intermediate TRIMP measurement within a session. Rather than splitting exercise into a small 

number of different zones for heart rate, and use a weighting factor giving only as many 

options as there are zones, we use a weighting that is based on the exact heart rate 

measurement.  

By calculating an intermediate TRIMP for any recorded measurement point within a 

training session, we can also include the intermediate TRIMP measurement as a variable 

itself. This allows us to explore how training load varies within a session (whereas in current 

literature training load tends to represent a single value to summarise one session (Jobson et 

al, 2009)).  

We investigate the impact of the classic Morton et al (1990) TRIMP for each session, our 

modified version of TRIMP with a greater weight on periods of exercise of high intensity for 

each session (based on each data measurement), and the intermediate TRIMP for 

measurement points within sessions, on the power output / cadence relationship. We 

investigate how these TRIMP measures affect the optimum cadence – the cadence that 

maximises power output for a given heart rate - in our statistical models of power output, 

heart rate and cadence. We include models with TRIMP measurements in chapter 5. 

Equations used in calculating TRIMP are outlined again in the methodology of chapter 5. 

 

2.5.5. Riding mode and race conditions 

During cycling athletes may spend some of the time sitting in the saddle, and some time 

standing out of the saddle – we term this riding mode (whether they are sitting or standing). 

We do not have such information available, so we cannot consider whether optimum cadence 

varies with riding mode. In this study we also do not consider how cadence could vary with 

body orientation (the angle the athlete is sitting in the seat). In races athletes tend to tilt 

forwards slightly although athletes may be able to produce a higher power output when sitting 

upright (Welbergen and Clijsen, 1990). Leirdal and Ettema (2011) investigated the cadence-

gross efficiency relationship for different body orientations. Athletes rode until exhaustion at 

different positions, sitting at a naturally chosen position, tilting further forward than the 

chosen position, and sitting with the seat adjusted such that the seat is slightly further back, 
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thus increasing the distance between the seat and the pedals. However no significant 

differences in the cadence-gross efficiency relationship were found between different body 

orientations.  

During road races and time trials athletes are likely to spend some time not pedalling, 

such as when going downhill, or when approaching tight corners. When the athlete starts 

pedalling again, he/she accelerates back up to a chosen cadence. As power output, heart rate 

and cadence data are collected on the bicycle at regular 5 second intervals, our field data 

includes time spent accelerating (from a low cadence back up to the athlete’s chosen 

cadence). By defining optimum cadence as the cadence that maximises power output for a 

given heart rate for such field data, the optimum cadence in our study takes account of time 

spent accelerating. Note we do not include time spent not pedalling in our analysis. We do not 

consider whether an optimum cadence is affected by what proportion of time is spent 

pedalling vs not pedalling. 

Cadence could potentially be affected by the type of race undertaken. During time trials, 

an athlete can choose a pacing strategy for the duration of the event without being on the track 

at the same time as other athletes.  However for road races, more tactics are involved as 

athletes attempt drafting (riding behind another athlete), as the reduced air resistance means 

the athlete can ride at a lower power output but retain the same speed (de Koning et al, 1999). 

In this study we do not consider whether an optimum cadence could be affected by drafting. 

 

2.6. Summary of literature reviewed 

In this chapter we have reviewed literature not only about optimum cadence but also about 

general performance in road cycling. Different authors have claimed different pacing 

strategies to be optimal, including a fast start (de Koning et al, 1999) and even pacing 

throughout (Chaffin et al, 2008; Wells et al, 2013). For athletes in our study, who compete in 

long time trials (of 34km or over), literature suggests an even pacing strategy is optimal 

(Chaffin et al, 2008; Palmer et al, 1998; Wells et al, 2013), although Chaffin et al (2008) have 

argued that more studies should be condicted regarding pacing strategy in long distance time 

trials. 

Studies in optimum cadence have tended to focus on the cadence that maximises gross 

efficiency, which is the amount of work completed relative the amount of metabolic energy 

required to do that work (Winter and Fowler, 2009; Whipp and Wasserman, 1969). However, 

gross efficiency is difficult to calculate (Winter and Fowler, 2009). For our study we consider 

a cadence to be optimal if it maximises power output for a given heart rate. Professional 

cyclists tend to adopt cadences of 90-105 (Foss and Hallen, 2004), although lower cadences 

are typically found to be optimal in laboratory experiments (Samazino et al, 2006; Coast and 

Welch, 1985). Such laboratory experiments however do not necessarily reflect the 

environment of outdoor road cycling (Jobson et al, 2007). The relationship between power 

output and speed differs between laboratory conditions and road cycling (Jobson et al, 2007) 

although, broadly, as speed increases, so too does power output (de Koning et al, 1999). 

Power output and heart rate tend to be linearly related for low power outputs, but 

curvilinear for high power outputs (Grazzi et al, 2009). Heart rate is lagged behind changes in 
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power output (Churchill et al, 2009). A study by Stirling et al (2008) suggests that for athletes 

in our study, the length of this lag in heart rate is likely to be 30 seconds or less.  

Existing statistical models in cycling performance have tended to focus on aerodynamic 

features of performance, such as the power output needed to overcome air resistance (Di 

Prampero et al, 1979; Martin et al, 1998). However we fit regression models of power output, 

heart rate and cadence (detailed in chapter 4), in which heart rate lags behind power output – 

we experiment with different heart rate lags in chapter 5. 

Muscle fibre type can also affect cycling performance (Coyle et al, 1992; Hansen et al, 

2002). Muscle fibres are broadly classified as type I, which are slow to contract but efficient, 

and type II, which contract quickly but are less efficient than type I (Coyle et al, 1992). The 

more type I muscle fibres and athlete has, the higher the cadence he or she can adopt (Hansen 

et al, 2002).  

We quantify accumulation of fatigue by calculating training impulses or TRIMPs. 

TRIMPs are the multiplication of the average heart rate for a session and the duration of a 

session, further multiplied by a weighting factor to give greater weight to sessions where heart 

rate is particularly high (Morton et al, 1990). TRIMPs have been commonly used for 

quantifying training load or fatigue (Borreson and Lambert, 2009). Morton et al (1990) have 

claimed that ideally TRIMPs should place an even greater emphasis on sessions where heart 

rate is particularly high –  we therefore modify TRIMP calculations accordingly. We include 

TRIMPs as a variable in our regression equations – hence we observe how optimum cadence 

varies by fatigue. 

 

2.7. Variables required to calculate optimum cadence in this study 

We only consider variables that can be calculated from the power output, heart-rate, and 

cadence measurements —no other information was available to us at the time of the study. 

Nonetheless these raw data measurements of power output, heart rate and cadence are 

sufficient for the analysis. The speed at which an athlete travels is to some extent represented 

by the power output, as increasing power output tends to increases speed (de Koning et al, 

1999). Nevertheless power output is an important measure of performance, as sustaining high 

power outputs is crucial for performance in both road and track cycling (Winter and Fowler, 

2009). The gear in which an athlete is riding is not needed, as this is controlled by cadence. 

Changing gear automatically enables the rider to change cadence accordingly – if the rider 

rides up a hill for example, he or she can select a lower gear and decrease resistance, 

maintaining the same cadence at no extra effort. We do not study the physical power 

generated by the athlete (the rate at which external mechancial work of the body is performed 

(Winter and Fowler, 2009)), rather we include measurements of power output collected from 

SRM cranks on the bicycle. We seek to calculate the cadence that maximises power output for 

a given heart rate, for each athlete in our analysis.  

Other variables can be calculated form the raw power output, heart rate and cadence 

mesaurements, and those that might influence the heart rate response are also included in our 

regression modelling approach. We take account of training load by calculating the training 

impulse within a session up to a particular time point. 
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Chapter 3: Description of the data 

3.1. Introduction 

In this chapter we describe the research we intend to undertake, the data available to us and 

how we intend to utilise the data. Firstly we describe the participants who took part in this 

study, and their characteristics. We then outline the research design and length of the study 

period. Next we describe how data were collected and how the data became available to us. 

We then summarise the data presented to us and which athletes we choose to use in this 

analysis. Finally we describe how we process the data in order to fit mathematical models to 

the data. 

 

3.2. Participants and data structure 

Ten competitive male athletes, along with their coaches, gave written, informed consent to 

participate in our study, providing us with data (power output, heart rate and cadence 

measurements) from their training. They are typically category II and III cyclists competing at 

county championship level. They compete in road races and time trials, but mainly in road 

races. They therefore train for long periods, with sessions ranging between 1 and 6 hours. 

These athletes tend to train on their own or in small groups of two or three. Athletes’ age, 

height and weight are presented below in table 1. The ten athletes have mean (plus standard 

deviation in parentheses) age of 36 (9) years, height of 1.79 (0.46) metres, and weight of 74.3 

(6.8) kg. Athletes are numbered for confidentiality reasons. 

 
Table 1: Age, height and weight of the ten athletes. 

 

Athlete Age (years) Height (m) Weight (kg) 

1 21 171.4 60.9 

2 40 177.5 75.5 

3 52 175 74.5 

4 45 183 74.3 

5 34 182 77 

6 42 178.5 78.2 

7 27 183.7 71.8 

8 35 181 71 

9 34 185.5 88.2 

10 29 174.5 71.5 

 

3.3. Research Design 

This study took place over a period of five years, from October 2008 to September 2013. We 

used data comprising power output, heart rate and cadence measurements from field data 

(training sessions and races) for ten cyclists, riding between October 2006 and January 2008. 
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These are measurements taken using hardware fitted to the bicycle. We attempt to fit 

mathematical models of power output, heart rate and cadence that yield optimum cadences – 

this is a cadence that maximises power output for a given heart rate – for individual athletes 

using data provided. This is done using SPSS and R statistical packages. Our aim is to 

determine whether such models can be fitted using field data in this way.  

We assess and compare different mathematical models through the apparent validity of 

the optimum cadences (how plausible they are) and by model fit criteria – explanatory power, 

Akaike information criteria and standard errors of coefficients (explained in more detail in 

section 4.1.10). If plausible optimum cadences are yielded, we compare these optimum 

cadences yielded from the models with cadences typically preferred by the athletes in our 

analysis, and with optimum cadences found in literature.  

 

3.4. Measurement methods 

The athletes rode with an SRM power meter which calculates power output and cadence 

every half second (SRM, 2012). (SRM is a power meter developed by the engineering 

company Schoberer Rad Messtehnik.) The SRM calculates power output through a strain 

gauge, measuring the amount of twisting or torsion, sending this information to a 

microprocessor, where it is converted to wattage (SRM, 2012). It has been verified in 

literature to be very reliable (Martin et al, 1998). On the online SRM shop SRM power meters 

are priced between €1892 and €3808. Heart-rate data were measured using a heart-rate 

monitor. 

An example of an SRM power meter crank is illustrated in figure 1 below. 

 

 
 

Figure 1: An example SRM power meter crank. This is the SRM Canondale MTB 2x10 model, which 

weighs 521g and costs €1892 (SRM, 2012). 

 

SRM also provides a monitor on the handlebars of the bicycle. Monitors typically display 

power output (Watts), heart rate (beats per minute, providing the heart rate monitor used is 

compatible with SRM software), cadence (revolutions per minute), speed (miles per hour or 

kilometres per hour), temperature (Fahrenheit or Celsius) and altitude (metres) at the current 
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time. Athletes can therefore check they are riding at a desired power output and cadence 

whilst riding. The monitor also displays rolling average power output up to the current time 

point (this is the mean power output for the session up to that point, excluding any time where 

power output was zero, when the athlete was not pedalling). 

An example of an SRM monitor is illustrated below in figure 2. 

 

 
Figure 2: An example SRM monitor. This is the Power Control 7 model, with a battery life of 120 

hours (SRM, 2012). 

SRM calculates power output and cadence once every half second, and the heart rate 

monitor calculates heart rate every second. However due to limited storage capacity, athletes 

typically collect data at wider intervals than half a second. For each variable (power output 

and cadence, along with heart rate measured from the heart rate monitor), the calculations are 

averaged to yield one value at regular intervals, typically 5 seconds. The calculations are 

averaged to yield one measurement every 5 seconds for the four athletes we chose, whilst for 

other athletes, this measurement interval varies between 5 and 15 seconds. Hence the data 

available to us are these averaged calculations at regular intervals, which we term 

‘measurements’. Later in chapters 4, 5, 6 and 7 in this thesis whenever we use the terms 

‘measurements’ or ‘raw data’, we are indeed referring to the data originally presented to us 

(the calculations that are averaged at regular intervals to produce 1 measurement at each 

interval).  

After a training session or race, athletes use software provided with SRM to upload power 

output, heart rate and cadence data on to a spread sheet, along with the data of the session. 

This results in a spread sheet of power output and cadence measurements where each column 

represents the session undertaken for that day. 

For each athlete, training schedules contain all training and competitions over a period of 

approximately 12 months. The study we carry out in this thesis determines optimum cadence 

using the within session measurements.  

 



Description of the data 

43 

3.5. Description of training undertaken 

Training schedules range from 5 to 13 months, from October 2006 to January 2008, with 

mean power output for a session typically between 120W and 250W. The length of the study 

period - that is, the length of the data collection period - varied across athletes – as shown in 

table 2 (month, year – month, year).  

 
Table 2: Start date, end date and duration of training schedules for each of the 10 athletes. 

Athlete Start End Duration (months) Duration (days) 

1 01/11/2006 30/09/2007 11 333 

2 24/10/2006 07/10/2007 11 348 

3 04/03/2007 11/08/2007 5 160 

4 28/10/2006 12/12/2007 13 410 

5 06/12/2006 04/09/2007 9 272 

6 19/04/2007 31/01/2008 9 287 

7 02/11/2006 02/08/2007 9 273 

8 27/10/2006 30/09/2007 11 338 

9 21/11/2006 28/07/2007 8 249 

10 10/11/2006 23/09/2007 10 317 

 

There was also variation in the completeness of the data record among the 10 athletes. 

Figure 3 shows the number of days in the study period and the number of days on which 

training data were collected for each athlete in the sample. Across athletes, training data were 

available on approximately half of the number of days in the study period. Absence of data on 

a particular day might be due to either a lack of recording or if there was no ride that day. For 

athlete 4, for example, there were 24 days in which heart rate was recorded, but not power 

output and cadence - such days were not included in our analysis and were treated as no 

activity. However, even if full data had been provided and these 24 days were treated as 

sessions, athlete 4 would appear to have trained on only 274 days of the 480 within the study 

period. Clearly an athlete cannot train every day for such a sustained period of time, but there 

were long periods of successive days in which no activity took place. For example, the first 

athlete included in the analysis did not record any training for a period of 52 days (between 

day 219 and 271). This lack of activity might be due to injury, illness, or equipment failure.  
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Figure 3: The number of days and sessions (with complete data for power output, heart rate and 

cadence) in each athlete’s training schedule. 



Description of the data 

44 

 

A further complication was that the sampling interval varied for some athletes - for 

athletes 5, 8 and 9, power output, heart rate and cadence were recorded at 7- or 15-second 

intervals for some sessions. Although we used within session measurements, it was still 

thought best to concentrate our analysis on those athletes with the most complete records. We 

chose four athletes for our analysis, who were labelled 1 to 4. In figure 4 we present examples 

of power output, heart rate cadence measurements yielded at 5 second intervals for athletes 1 

and 3 from two training sessions. Their mean heart rate, power output, and cadence in each 

recorded session over the study period are shown in figures 5-7.  
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Figure 4: An example of power output (watts), heart rate (beats per minute) and cadence (revolutions 

per minute) traces from one session for athletes 1 (left) and 3 (right). 
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Figure 5: Mean output (watts) for each training session for athletes 1-4 (read lexicographically). Power 

output measurements (taken every 5 seconds) are averaged to form the ‘mean output’ for that session. 

 

70

90

110

130

150

170

0 50 100 150 200 250 300 350 400 450 500

day

h
e

a
rt

 r
a

te

70

90

110

130

150

170

0 50 100 150 200 250 300 350 400 450 500

day

h
e

a
rt

 r
a

te

70

90

110

130

150

170

0 50 100 150 200 250 300 350 400 450 500

day

h
e

a
rt

 r
a

te

70

90

110

130

150

170

0 50 100 150 200 250 300 350 400 450 500

day

h
e

a
rt

 r
a

te

 

Figure 6: Mean heart rate for each training session for athletes 1-4. 
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Figure 7: Mean cadence for each training session for athletes 1-4. 

 

The data include training sessions and some races. Some athletes provide brief 

descriptions of races undertaken in the training diaries. Without such descriptions, we do not 

know if data come from a race or from training sessions. However there are likely to be many 

more training sessions than races. During winter months, athletes are likely to train for 

endurance, building up fitness slowly. After winter, there is an increase in sessions in which 

they work on speed skills (ability to ride at a high cadence), and force skills (ability to ride at 

a high gear). In spring and summer athletes take part in selected races. After races, athletes 

rest before building up training again. At the onset of the following winter, this cycle of 

training and races begins again. However descriptions of types of training session undertaken 

are not provided in the data. 

 

3.6. Participants chosen for analysis 

We selected the four athletes that appeared to have the most complete and consistent training 

diaries. Of the four athletes we chose, three had the longest schedules – these were athletes 1, 

2 and 4, whose schedules were 333, 348 and 410 days respectively. The four athletes also had 

sessions on between 50% and 75% of the days of their schedules, which was slightly higher 

than the remaining 6 (athlete 3 had sessions on 75% of days, the highest of any athlete). For 

the six athletes not chosen, on some days one of power output, heart rate and cadence was 

missing for the entire day – such missing data rarely occurred for our four chosen athletes. 

Recording intervals for data were 5 seconds for athletes 1 to 4, but for some sessions for the 

other athletes, the recording interval changed to 7 or 15 seconds, which would complicate the 

process of sampling data to use. Athletes chosen had some description of races undertaken – 
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distance and position at the end of the race, and sometimes the type of race undertaken 

(although there was little description about the types of training session undertaken for all ten 

athletes). 

We do not believe that the four athletes chosen are a biased sample of the ten available. 

Mean age, height and weight of the four chosen (33 years, 1.78m and 73.9kg) is similar to the 

mean age, height and weight of the six athletes not chosen (38 years, 1.79m and 74.6kg). 

Nevertheless, since our aim is to develop a methodology for calculating individual optimum 

cadences, we do not extrapolate optimum cadences found to apply to a more general 

population of cyclists, nor even for the group of ten cyclists whose data are given to us. 

Amongst the four athletes with the most complete training diaries, we predict that it may 

be easier to calculate an optimum cadence for athletes 1 and 2 than for athletes 3 and 4. This 

is because the data suggest that athletes 1 and 2 ride at a variety of low, medium and high 

cadences within their training, whereas athletes 3 and 4 appear to seldom ride at high 

cadences. 

 

3.7. Summary of data provided 

We are presented with power output, heart rate and cadence measurements collected from 

training sessions and races for ten cyclists, over a period of approximately 12 months. The 

measurements are typically collected at 5 seconds intervals from SRM power metres fitted to 

the bicycles. For some athletes however data are collected at 7 or 15 second intervals for some 

sessions. There is limited information available regarding types of training session 

undertaken, or reasons for long periods where no training took place. 

We select a sample of four of these ten athletes; we chose the four athletes with the most 

consistent training diaries (with the least amount of missing data and where data are recorded 

at regular 5 second intervals). 

 

3.8. Processing the raw power output, heart rate and cadence 

measurements 

We develop a range of regression models of power output, heart rate and cadence. Before the 

parameters in the regression models are estimated, we consider processing the raw 

measurements of power output, heart rate and cadence. By raw, we mean the data that were 

given to us at 5 second intervals. This processing addresses three issues: (i) smoothing the raw 

data; (ii) sampling the smoothed data in order to reduce serial dependence; (iii) determination 

of the most appropriate time-lag between power output and the heart-rate response.  

We consider smoothing the data because there are sometimes extreme changes in power 

output (and to a lesser extent cadence and heart rate). Indeed Jeukendrupp and van Diemen 

(1998) suggest it is quite common for power output to vary more than heart rate. For heart 

rate, changes tend to be quite gradual, but there are still occasional moments in recording 

where there is a sudden increase or decrease in heart rate. For our power output, heart rate and 

cadence measurements, we use a moving average over k measurements (this is a window 

width of k time units ). This results in less extreme changes in the variable from one 
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measurement to the next. Denoting the raw measurements by ,..., 21 YY , the smoothed 

measurements are given by ,..., 21 YY  where, at time t, 

kYYYY ktkttt /)...( 1  , )( ki  . 

Since the data available to use are power output, heart rate and cadence measurements at 

regular 5 second intervals, 5 seconds is the unit of time. Smoothing will produce power 

output, cadence and heart rate measurements again every 5 seconds, albeit smoothed 

measurements.  

Next we seek to reduce the serial dependence in each series by sampling every mth 

smoothed measurement. The choice of m is more arbitrary, although serial dependence in the 

smoothed series can be investigated and we should confine ourselves to km  . The resulting 

processed measurements are then ,...,, 2mlmll YYY  Finally, it is necessary to specify the time-

lag between the power output and the heart rate response, which we denote by l. Thus for a 

given k we regard the processed heart rate measurement ltmkH  as a response the processed 

power output and cadence measurements tmkP   and tmkC  , l  time units earlier (for all t). For 

example, taking  k=12, m=12 and l=6, implies that raw data would be smoothed using a 

moving average with a window of 12 time units (60 seconds); the resulting series would then 

be sampled once every 12 time units (60 seconds), but with heart rate sampling out of phase 

with the power output and cadence sampling so that the time-lag between heart rate response 

and power output would be 6 time units (30 seconds). Thus the smoothed heart rate at time 1 

minute 30 seconds is assumed to be a response to the smoothed heart rate at 1 minute, the 

smoothed heart rate at time 2 minutes 30 seconds is assumed to be a response to the smoothed 

heart rate at 2 minutes, etc.  

We present the models fitted, and optimum cadences yielded, in chapters 4, 5 and 6. 

When fitting a range of models we first focus on the success of the model in representing 

the true relationships between heart rate, power output and cadence, and seek to find a range 

of optimum cadences from the models. We initially consider smoothing data with a window 

width of 12 time units (a period of 60 seconds), as we consider this to be a reasonable amount 

of time to enable extreme changes in power output, cadence and heart rate to be reduced 

somewhat. We choose a heart rate lag of 1 time unit (5 seconds, as this seems appropriate 

from literature), and sample once every 24 time units (120 seconds). Later, after fitting a 

range of models with some success, we will consider the impact of different data processing 

constants (k and l) on the models – in other words, the sensitivity of the models to the data 

processing constants.  

Sessions are combined to provide one large stream of data for an individual athlete. 

Alternatively, the session effect might be modelled as a random effect in a mixed model, but 

we do not pursue this further here. We instead use other within and between session 

explanatory variables to represent this effect. This makes the analysis somewhat simpler and 

easier to interpret. The important thing to note is that our analysis can only consider variation 

in the optimum cadence of an athlete between sessions through the variables relating to the 

sessions that we measure. A description of such variables follows in chapters 4, 5 and 6; 

broadly, in chapter 4 we explore different models of power output, heart rate and cadence, 

whilst in chapters 5 and 6 we expand and modify the models. 
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Chapter 4: Exploration of linear and non-linear model fitting 

4.1. Methodology 

4.1.1. Introduction to methodology  

In this chapter we explore a range of models of power output, heart rate and cadence data. We 

firstly present the methodology for fitting different models, along with the calculations needed 

to calculate optimum cadence from these models. We also describe statistical measures used 

to assess such models. 

We suppose that heart rate principally acts as a response to power output, but also in 

response to cadence, and other training related variables. We further assume that the heart rate 

response occurs after some delay. The length of this delay is not necessarily clear from 

literature (Churchill et al., 2009). However, as described in the sports science background 

chapter, a low heart rate lag (below 30 seconds (Stirling et al, 2008)) appears most 

appropriate.  

We fit a range of linear and non-linear models. In this chapter we include methodology, 

results and discussion for linear and non-linear models fitted (including models with extra 

covariates other than power output, cadence and heart rate).  

 

4.1.2. Methodology for linear models of power output, heart rate and cadence 

Whilst modelling heart rate as a response to power output and cadence, we also explore the 

relationship between power output and cadence.  Initially we consider a linear relationship 

between power output and cadence within a regression model featuring heart rate as a 

response. In this first regression model the power output developed, P, the cadence, C, and 

other training related variables, summarised through the (possibly vector valued) explanatory 

variable X, are related to the expected heart rate at some time-lag, E(H), through the equation 

XCCPhHE   2

0)( .                                              (1) 

Here h0 is the baseline heart rate.  

To determine the optimum cadence from this model, consider the question: for a given 

expected heart rate response, what value of cadence maximises the power output? To answer 

this question we regard P and C in equation (1) as variables, other quantities as fixed, and 

then express the power output P in terms of the cadence thus:  

 /})({ 2

0 CCXhHEP                                             (2) 

We define the optimum cadence to be the cadence that maximises power output for a given 

heart rate, and therefore we imply that a cyclist will seek to ride in a manner that maximises 

power output for a given heart rate. Differentiating equation (2) with respect to C we get 

)2(
1

d

d
C

C

P



 .            

Setting this to zero and solving for C gives 

 2/C .                                                            (3) 
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This value of C maximises P if  

0/2
d

d
2

2

 
C

P
.                                                                    (4) 

The coefficients could be positive or negative in each case, but an optimum cadence from the 

regression model would only be found if a number of conditions regarding polarity of these 

coefficients are satisfied. Assuming that 0  (which is this case if the heart rate increases as 

power output increases), condition (4) requires that γ>0. This is most simply explained by 

noting that, in equation (2), power output is a quadratic function of cadence C. Thus, there 

will exist a maximum power output only if the coefficient of 2C
 
is negative. Furthermore, for 

the cadence at which the power output is maximised to be positive, the model requires β<0. 

These conditions will need to be satisfied when statistically estimating the parameters in 

equation (2). 

Alternatively, for a given power output we can seek that cadence that minimises the 

expected heart rate. Now assuming P in equation (1) is fixed, and that E(H) is a function of C, 

differentiating with respect to C we get CCH  2d/d  . Equating this to zero and 

rearranging gives  2/C  which is the same as (3). This value of C minimises H if 

02d/d 22  CH . This requires that γ>0, and further that β<0 for C
*
>0 as before.  

So, the cadence that maximises power output for a given heart rate and the cadence that 

minimises heart rate for a given power output are equivalent. Thus we suppose that a rider can 

control cadence in order to either (i) vary heart rate while keeping power output fixed; or (ii) 

vary power output while keeping heart rate fixed. While (ii) may be a more plausible control 

mechanism, the implication for optimum cadence is the same in both cases. 

We may instead posit a cubic model for the power output / cadence relationship in place 

of the quadratic model in equation (1): 

XCCCPhHE   32
0)(

                                        
 

so that 

 /})({ 32
0 CCCXhHEP    

Then 

)32(
1

d

d 2CC
C

P



 . 

 

So setting this derivative to zero and solving for C gives 










































 3

3

1

3

3
22

C .    

Conditions for the existence of an optimum, positive cadence in this cubic case then follows 

from an analysis of the second derivative similar to in the quadratic case.  

We also consider other explanatory variables or covariates that are themselves determined 

from the raw measurements. Note, no data other than the power output, heart rate and cadence 

measurements, the date of the session, and the athlete were available. Additional covariates 
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are designed to measure medium and long term fatigue. Initially for the linear models we 

consider the following additional variables, for each athlete: 

X1t = the normalized power output developed in the current session (up to the current 

sampling point, t).   

X2t = the proportion of time that has elapsed in the current session, (up to the current 

sampling point, t).  

X3 = the mean overall power output of a session for sessions within the previous seven 

days. 

X4 = the mean duration of all sessions within the previous seven days. 

X5 = whether or not there was a session on the previous day (1 if there was a session, 0 

otherwise). 

 

These covariates aim to capture the possible effect of previous sessions on the current heart 

rate response and also the effect of the cumulative load of the current session. Normalized 

power output is calculated as Jobson et al. (2009). Individual power output measurements are 

raised to the fourth power, the mean calculated (up to the current sampling point, t), and then 

the fourth root of this mean is the normalized power output up to the current sampling point, 

X1t. It is a measure of the cumulative training load in the session so far. 

 

4.1.3. Initial non-linear models of power output and cadence 

Alternatively if the linear power output cadence relationships do not reflect the true power 

output cadence relationship, or do not provde a close enough fit between power output and 

cadence to enough of an extent that would allow us to accept any resulting optimum cadences 

to be valid, a more sophisticated model could be required.  A model that provides a non-linear 

relationship between  power output and cadence could provide a more valid power output 

cadence relationship.   

There are a number of characteristics of the relationship between power output and 

cadence that a more complex model should include.  Firstly, when power output is equal to 

zero, cadence should also equal zero as the athlete is not riding at this point.  For a given heart 

rate the power output-cadence curve should then increase, possibly at a linear rate - Grazzi et 

al, (1999) suggest it is initially a linear rate of increase before levelling to a maximum (which 

indicates that the athlete is riding at a cadence that maximises power output for his given heart 

rate - the optimum cadence).  After the maximum, power output decreases, as at this point the 

athlete is riding at too great a cadence, at the detriment to his technique and ability to control 

the bicycle.  We would expect the power output to decrease at a gradient less steep than the 

initial increase in the curve.  The steeper the gradient of the decline in power output, the 

more sensitive the power output that the athlete can produce is to the cadence at which he 

rides.  If the decline in power output after the maximum is not very steep, this implies that the 

power output changes relatively little with a change in cadence. This may in turn suggest 

there is a range of cadences over which power output is maximised rather than one specific 

cadence, or alternatively it could merely emphasise the level of precision involved in such a 

professional level of sport; a change in cadence may only effect a small change in power 

output of a few watts, but a difference of only a few watts may still have a significant impact 

on performance.  A relatively flat curve may occur if the athlete does not vary his cadence 
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much during riding, as a lack of variation in cadences would therefore mean there would be 

little scope for any model to detect an effect of cadence on power output.  

If in the model the power output does not decrease at the highest cadences (in other 

words the maximum is not reached), it is possible the athlete has not reached the highest 

theoretical cadence he can sustain within that session for the given set of conditions.   

The shape of the curve in a gamma distribution would satisfy the aforementioned 

conditions of the power output-cadence relationship.  This can be achieved by setting power 

output to equal cadence in the following equation for each athlete: 

tC

t eCP
 


                                                    

 (5) 

at sampling point t, where α and β are two constants.   

The first constant, α, refers to the shape of the curve, whereas the second constant, β, 

refers to the scale of the curve.  This means that changes to alpha fundamentally change the 

relationship between power output and cadence (the shape of the power output/cadence curve 

produced), whereas changes in β do not change the shape of the curve but may stretch the 

curve (such that overall power output output and the cadence at which power output is 

maximised can change).  If the shape constant α is greater than 1, the curve increases at an 

increasing rate continuously.  If α is less than 1, the curve initially increases at a constantly 

decreasing rate. 

The power output an athlete can produce, the cadence at which he rides, and the 

relationship between the two may vary with heart rate.  Therefore heart rate must also be 

included in the analysis. Initially for the non-linear models we smooth power output, heart 

rate and cadence using a moving average over 60 seconds, sampled every 120 seconds, with 

heart rate lagged at 5 seconds behind power output and cadence.  The data are separated into 

different subsets depending on heart rate, at intervals of every 10 beats per minute.  For 

example, data in which heart rate is between 120 and 130 are treated as one data subset.  The 

gamma curve is fitted for each data subset for each athlete, thus allowing for the exploration 

of the relationship between power output and cadence at different heart rates or different 

levels of sustained effort.  Therefore the model will identify an optimum cadence for each 

heart rate group for each athlete. 

Clearly there exist more data for some heart rate data subsets than others.  The athlete 

will seldom ride with an extremely low or high heart rate, as the low heart rate may imply 

minimal effort is being exerted, and an extremely high heart rate will be very difficult to 

sustain.  Indeed there are markedly more data in heart rate subsets between 70 and 170 than 

there are for heart rate data subsets above or below these figures for all athletes. Data in which 

heart rate is below 40 are not included as this is conceivably below the athlete’s baseline heart 

rate (resting pulse), but there are only negligible amounts of data for such a low heart rate so 

very little is omitted.  Equally the negligible amount of data in which heart rate is above 200 

is also omitted.   

Table 3 indicates the size of each data set for each athlete.  

There is also some variation in data set size between athletes. The heart rate subset with 

the most data is 140 – 150 for athlete 1, 110 - 120 for athlete 2, 140 - 150 for athlete 3, and 

130 - 140 for athlete 4. For athletes 1, 2 and 4, the size of the data subsets tends to increase up 

to the maximum heart rate before decreasing again, but the data subset sizes are more 

sporadic for athlete 3. 
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Table 3: Data are split into groups based on the range of recorded heart rates (each group contains a 

range of 10 beats per minute), for each athlete separately and also for all four athletes together – 

sample sizes (n) are displayed for each data set. 

  

  Athletes  Athlete Athlete Athlete Athlete 

HR range   1 to 4 1 2 3 4 

40 - 50 136 224 20 27 65 

50 - 60 192 43 27 35 82 

60 - 70 340 45 81 46 168 

70 - 80 915 64 364 110 377 

80 - 90 2006 104 803 35 754 

90 - 100 3330 119 1335 696 1180 

100 - 110 5071 532 1844 1007 1688 

110 - 120 6094 1272 1986 773 2063 

120 - 130 7171 2056 1876 802 2437 

130 - 140 8663 3229 1539 1095 2800 

140 - 150 9151 4594 1049 1463 2045 

150 - 160 5065 2734 823 674 834 

160 - 170 2992 908 300 303 1481 

170 - 180 587 476 43 21 47 

180 - 190 184 150 16 3 15 

190 - 200 28 14 5 2 7 

  

ALL 51787 16570 12194 7569 15453 

 

4.1.4. Methodology for non-linear models of power output, heart rate and cadence 

Next we develop non-linear models of power and cadence to include heart rate, rather than 

splitting the data into subsets based on heart rate. Note we continue to sample data once every 

24 time units. We seek to include heart rate at some lag in the model (such that if an athlete 

increases his power output, his heart rate must increase in order to meet the demands of the 

increased power output), along with a coefficient (γ) to model this effect of heart rate on 

power output. Heart rate is multiplied by the cadence effect, and it is raised to a power of γ. 

Since heart rate is raised to the power of γ, this implies that if an athlete increases his power 

output, this would require a polynomial increase in heart rate (assuming γ is positive).  For 

example, if γ is two, it implies that an increase in power output would require heart rate to 

increase by a factor of only a fourth (two squared) of that increase in power output.  However 

we expect γ to be close to 1. A separate coefficient to model athlete effect is also included (µ). 

Power output can be modelled against athlete effect multiplied by cadence effect multiplied 

by heart rate effect, in the following equation: 

tlt

C

tt eHeCP t        

                                       (6) 

at sampling point t, where α, β, γ and µ are constants, and heart rate is lagged at time l.   

For the model (equation 6), α, which determines the shape of the power output-cadence 

curve, must be positive, so that initial increases in cadence produce increases in power output.  

We would also expect β to be positive.  Since an increase in power output should require an 

increase in heart rate, we would expect γ to be positive.   
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When fitting linear models we initially settle for a smoothing window of 60 seconds 

(k=12), and a heart rate lag of 5 seconds (l=1). We continue with these data processing 

constants (as we will explore the effect of different data processing constants later in section 

4.6). 

When fitting the non-linear model of power output, heart rate and cadence (equation 6) 

we transform the model by taking the natural log of each element of the model. This makes 

the model easier to fit in statistical packages. We transform the model in the following steps: 

tlt

C

tt eHeCP t loglog)log(loglog  

                                   

The cadence term is then broken down to become: 

tlt

C

tt eHeCP t loglogloglogloglog  

    

which then becomes: 

tltttt eHCCP logloglogloglog    

with ),0(~log 2 Ne tt   (independent), at sampling point t, with heart rate lagged at l time 

measurements. 

Now, the coefficient of logCt is α, the coefficient of C is –β (hence the negative of the 

coefficient of C gives β), the coefficient of logHt+l gives γ, and the exponential of logμi gives 

μ. 

Later we add other training related variables. Summarised through the explanatory 

variable X, the model is given by the equation 

tltttt eXHCCP loglogloglogloglog     

with ),0(~log 2 Ne tt   (independent). This equation implies that the expected value of 

power output is related to the other variables by the following equation: 

)2/exp(][)( 2   



lt

C

ttt HeCPEP t . 

Note that additional covariates for the non-linear models are considered in section 4.1.6. 

 

4.1.5. Methodology for calculating optimum cadence in non-linear models of power 

output, heart rate and cadence 

For a specific athlete, the non-linear model of power output, heart rate and cadence is given 

by 
 lt

C

tt HeCP t




  

which is log-transformed to become  

ltttt HCCP  loglogloglog 
                                   

 (7) 

We define the optimum cadence to be the cadence that maximises the power output for a 

given heart rate and therefore we imply that a cyclist will seek to ride in a manner that 

maximises power output for a given heart rate. We can calculate an optimum cadence 

statistically by differentiating equation (7) with respect to cadence, and equating the result to 

zero. 

Firstly we differentiate equation (7) with respect to cadence to obtain: 





CC

P

d

logd
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Setting this to zero and solving for C gives an optimum cadence (C*) of: 

 /* C  

The optimum cadence C* is a maximum provided the second derivative is negative: 

0/
d

logd 2*

2

2

 C
C

P
                                                 (8) 

For the second derivative in equation 8 to be negative, we require α>0. Since,  /C  we 

also therefore require β>0. Note that, in the context of equation (7), this in fact means a 

negative cadence term. 

We also expect γ (the coefficient relating to heart rate) to be positive. This indicates that, 

as the athlete increases his power output, his heart rate also increases. Note the γ is 

exponential – for example, if γ is 2, this means that, as the athlete increases his power output, 

he only has to increase his heart rate by the square root of the margin of increase in power 

output. However we expect γ to be approximately 1 (Grazzi et al, 1999). 

We also seek confidence intervals for any optimum cadences found. Since C* is a 

function of two parameters (equation 3), we require the delta method to calculate the variance 

of C*. The variance of C* is as follows: 

)),cov(var(
2

var
3




C  

We then calculate 95% confidence intervals for optimum cadence, in the following way: 

  CC var96.1  

We can now calculate a theoretical optimum cadence along with 95% confidence intervals for 

a range of data processing constants (window widths, k, and heart rate lags, l).  

The confidence intervals allow us to ascertain by how much an athlete can deviate from 

optimum cadence without detriment to performance. The greater the variance of the optimum 

cadence, the greater the confidence intervals, and therefore the wider the range of cadences 

are at which the athlete can ride optimally. We will compare optimum cadences along with 

95% confidence intervals for a range of models featuring different covariates, and different 

data processing constants. In other words we will explore the sensitivity of the models to the 

different variables and data processing constants.    

 

4.1.6. Exploring the effect of heart rate on optimum cadence in non-linear models 

The initial non-linear model of power output and cadence yields a range of different optimum 

cadences for sixteen different subsets of data.  These subsets of data are based on heart rate 

(for example, one group contains data in which heart rate is between 110 and 120 beats per 

minute). Although there is likely to be some degree of variation in optimum cadence with 

heart rate, such trends may vary by athlete. It is also not clear from literature what effect heart 

rate has on optimum cadence. Therefore we investigate further the possible effect of the heart 

rate on optimum cadence. 

We then split the sampled data into two subsets based on heart rate. For each athlete 

separately, we calculate the mean of all sampled heart rate measurements – we call this the 

overall mean heart rate for each athlete. These subsets of data are then: data containing heart 
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rate measurements below the overall mean heart rate for each athlete (termed the low heart 

rate data subset) and above the overall mean heart rate for each athlete (termed the high heart 

rate data subset). Though heart rate is not a direct measure of effort, if heart rate is particularly 

high, the athlete is likely to be exerting more effort than if heart rate is particularly low. 

Furthermore, since an athlete seeks to optimise his own power output in competitions in order 

to minimise the time taken to complete a race, we may argue that it is more important to find 

a valid model to fit the high heart rate data subset than for the low heart rate data subset or 

indeed for models fitted to all sampled data. We believe data in the high heart rate data subset 

are likely to be more representative of race conditions.  The low heart rate data subset may in 

turn contain data from long low-intensity training sessions in which the athlete is not 

focussing on maximising the power output he can sustain for a given period of time, or 

training sessions in which the athlete is conserving some energy for later sessions or for 

competitions. It also allows us to monitor the explanatory power of the models for low and 

high heart rate, to see how they compare to each other and to models in which all data are 

included. Note that these subsets of data are not the same as for the initial non-linear model of 

just power output and cadence (equation 5 in section 4.1.2.); we now simply have low and 

high heart rate data subsets, rather than having sixteen subsets. 

If there are significantly different results in terms of optimum cadence or shape of the 

fitted power output cadence curves we may conclude that heart rate has a significant impact 

on optimum cadence. We may therefore consider an interaction between heart rate and 

cadence in the model. This involves replacing the cadence term in the model with a cadence – 

heart rate interaction. Thus for an individual athlete the non-linear model becomes the 

following (equation 9): 

ltlttlttt HHCHCP   log)()log(loglog 
                         

 (9) 

In order to calculate optimum cadence for this model (equation 9), we require plots of power 

output against cadence. Such plots allow us to explore the power output cadence relationship 

yielded by the model. By setting heart rate to the mean heart rate found in the data for each 

athlete, we plot the fitted power output from the model we are fitting. The highest point on 

this power output cadence curve corresponds to the cadence that produces the highest power 

output for a given heart rate – therefore the optimum cadence. We also plot power output 

measurements for comparison; if the fitted power output cadence curve passes through the 

power output measurements accurately, we can be confident that the model has been fitted 

correctly and confident about the validity of the optimum cadence yielded. 

 

4.1.7. Additional variables in non-linear models 

For non-linear models of power output, heart rate and cadence, we also consider additional 

variables, to measure further medium and long term aspects of an athlete’s riding. In chapter 4 

we consider the following additional variables for the non-linear models: 

 

X1t = the normalized power output developed in the current session (up to the current 

sampling point, t).   

X2t = the proportion of time that has elapsed in the current session, (up to the current 

sampling point, t).  
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X3 = the mean overall power output of a session for sessions within the previous seven 

days. 

X4 = the mean duration of all sessions within the previous seven days. 

 

We also investigate interactions between covariates, such as a cadence and normalized 

power output interaction. We then seek various optimum cadences for different amounts of 

normalized power output. (Later, in chapter 5, we present models in which we consider more 

variables that represent an accumulation of fatigue.) 

For the linear models (equation 1), we add extra covariates to the model in various 

combinations. The addition of extra covariates is more complex for the non-linear models 

though. The initial non-linear models are simply an exploration into the possible modelling of 

a non-linear relationship between power output and cadence, and thus only include power 

output and cadence as covariates. We expande these models to include heart rate and athlete 

effects. We now add X1t, X2t, X3 and X4 but we do not include X5 - this covariate denotes 

whether or not there was a session the previous day, and therefore is binary, with a value of 

either 0 or 1. Since the non-linear models are log-transformed so they are more easily fitted 

(the natural log of each element is taken), X5 cannot be included since the log of 0 returns an 

error. Nevertheless we include all other extra covariates. We take the natural log of each extra 

covariate, so the covariate is then multiplied by the coefficient and added to the non-linear 

model (equation 7). We add each of the additional covariates X1t, X2t, X3 and X4 in various 

combinations, observing the explanatory power and Akaike Information Criterion (AIC) at 

each stage. Adding all of the additional covariates to the non-linear model produces the 

following model (equation 10): 

4321 loglogloglogloglogloglog XXXXHCCP ttltttt      (10) 

For this model optimum cadence is calculated statistically, in the same way we calculated 

mathematical optimum cadence for previous non-linear models of power output, heart rate 

and cadence.  

We also consider a cadence / heart rate interaction, with the same additional covariates. 

Hence such a model is the following (equation 11):  
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We also consider interacting some other covariates with cadence, to explore the precise 

effect of these variables on optimum cadence. We considered interacting cadence with heart 

rate, normalized power output (X1t) and the proportion of the session that has elapsed up to the 

current sampling point (X2t). We then seek a range of optimum cadences for different 

normalized power outputs and different proportions of the session that have elapsed up to the 

current sampling point. These interactions (C*X1t and C*X2t) are added to the models thusly 

(represented by paramter ι) in equations 12 an 13, whilst retaining the cadence effect (C) as 

we do not expect cadence to fundamentally depend on X1t or X2t as much as it would be 

affected by heart rate:  
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Initially we fit these more complex models featuring extra covariates and interactions to all 

sampled data.  However for the simple grand non-linear model with no additional covariates 

(equation 7) we also performed separate analyses of the model for low heart rate data (data in 

which heart rate was lower than the mean of all recorded heart rate data for an individual 

athlete) and high heart rate data (data in which heart rate was higher than the mean of all 

recorded heart rate data for an individual athlete). 

We consider the high heart rate data to be a closer representation of real competitions, as 

the low heart rate data in some training sessions may indicate the athlete is deliberately 

withholding some physical effort. Indeed for high heart rate data, optimum cadences were 

yielded for more athletes, and the models for high heart rate data appeared to better capture 

the real power output cadence relationship than did the models for all sampled data. Therefore 

we also fit non-linear models with additional covariates (models in equations 10, 11, 12 and 

13) for high heart rate data. This allows us to explore how other covariates, such as training 

load, specifically affect athlete performance (the power output the athlete produces) during 

very high levels of physical exertion. 

For models in which cadence is interacted with heart rate, training load or proportion of 

the session that has elapsed up to the current sampling point, we plot power output against 

cadence to find the optimum cadence. The plotted optimum cadence would then vary with 

different values of heart rate, normalized power output or proportion of session that has 

elapsed up to the current sampling point. We started to explore fitting non-linear models with 

extra covariates before we conducted the sensitivity analysis. When we started exploring non-

linear models with extra covariates we settled on a set of data processing constants for fitting 

these models. This is the same as the non-linear models (without additional covariates) that 

we fitted before the sensitivity analysis, that is a smoothing window of width twelve 

measurements (k=12), a heart rate lag of 5 seconds or 1 measurement  (l=1), and a sampling 

of one measurement every 120 seconds or 24 measurements (m=24). 

 

4.1.8. Specific athlete effects 

The effect of an athlete can be handled in a number of ways. Given the small number of 

athletes in the study, it is sensible to consider athlete effects as fixed. A study with a larger 

number of athletes might investigate a random effects model (McCulloch and Searle, 2001), 

with athlete effects then arising from a probability distribution. For the fixed effects model, 

the full model would consider all covariates effects and the baseline heart rate as athlete 

specific - that is, a set of coefficients in the models that are unique to each athlete.  

 

4.1.9. Importance of optimum cadence 

For each optimum cadence we find in the models tested, we can explore what happens when 

the athlete does not ride at the optimum cadence. Fitted power output will decrease as the 

athlete rides at cadences above and below the optimum cadence. The further the cadence is 

from the optimum, the lower the fitted power output will be. We would expect an optimum 
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cadence to be towards the end of the range of cadences at which each athlete has ridden, as we 

are using highly skilled athletes that, according to literature, should be able to maintain 

relatively high cadences compared to less professional and less skilled athletes.  For statistical 

optium cadences, we also calculate 95% confidence intervals. Also, by examining by how 

much the fittted power output decreases for sub-optimal cadences for a range of athletes and 

models, we can further explore how important an optimum cadence is to athlete performance. 

 

4.1.10. Model selection 

Models that contravene coefficient polarity expectations cannot be considered valid models, 

as a plausible power output cadence relationship will not follow from the model.  In the linear 

models, in order for an optimum cadence to exist, the coefficient for cadence (β) must be 

negative and the coefficient for the square of cadence (γ) must be positive. Also, the optimum 

cadence ought to take a sensible value. For non-linear models, coefficients relating to cadence 

(both  α and β) must be positive.  When non-linear models are developed further, the 

coefficient relating to lagged heart rate (γ) should be positve so that increasing power output 

requires an increase in heart rate, whilst the coefficient relating to athlete effect (µ) should be 

negative in the additive model and positive in the multiplicative model.  

Furthermore, the fitted models can be compared statistically. A standard criterion for 

model choice is the Akaike Information Criterion (AIC), which is defined in the following 

way: pLAIC 2)ln(2  , where L is the log-likelihood value for the model and p is the 

number of parameters in the model (Stuart et al., 1999, p.748). The minimum AIC model is 

then sought. Comparisons of AIC between different linear models can be made as each model 

uses the same data and therefore all linear models have the same sample size. An alternative is 

the Bayesian Information Criterion (BIC), )log()ln(2 npLBIC  , which places a higher 

penalty on the number of parameters in the model, and leads to more parsimonious models.  

As the AIC and BIC are largely affected by sample size, when developing the initial non-

linear models it is difficult to compare different models as each data set (each heart rate subset 

for each athlete) has a different sample size.  If the non-linear gamma models produce a lower 

AIC compared to the linear models, we can conclude that the non-linear models are a better fit 

of the data than the linear models. We would expect such a finding, but it is difficult to predict 

how great the difference will be.   

We also calulate explanatory power R
2
 – this ostensibly represents the amount of variation 

in the response variable that is explained by the predictor variable. For the linear models this 

means the amount of variation in heart rate that is explained by power output. For the grand 

non-linear models, the explanatory power refers to the amount of variation in power output 

that is accounted for by variation in cadence and heart rate. The larger the R
2
, the more 

variation is explained, and we may consider a larger R
2
 therefore to indicate better the model. 

We would expect the explanatory power to increase with the addition of each additional 

covariate. However, if some covariates offer only negligible increase in explanatory power, 

we may consider using a more parsimonious model that does not necessarily include all 

covariates.  

As R
2
 is not affected by sample size, comparisons can be made more easily between 

different linear and non-linear models in terms of R
2
 rather than AIC.  We fit models in 

statistical packages SPSS and R. For models fitted in SPSS the R
2
 is given in the output – 
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linear models are fitted in SPSS so R
2
 is imediately displayed for these models. We fit non-

linear models of power output and cadence in R. In R, for non-linear models, R
2
 is not given, 

as it is not a very reliable indicator of model fit for non-linear models. This is because, in non-

linear models, the total sum of squares is not equal to the regression sum of squares plus the 

residual sum of squares. However  it can be calculated nonetheless.  The residual standard 

error is provided from the output in R for each model (each heart rate group and each athlete).  

In order to calculate the explanatory power (R
2
) of the model the residual error from a null 

model is also required – the null model is simply a model with just one parameter applied to 

the same data set: P  for each athlete. The explanatory power (R
2
) is then calculated in 

the following way:  

error) standard talerror / to standard residual(12 R ,  

where total standard error is the addition of the residual standard error of the non-linear model 

and that of the equivalent null model. 

We can then check that R
2
 (along with coefficient estimates and standard errors) 

calculated from the R program is the same as that found from the same model fitted in SPSS.   

For non-linear models (where we take natural logs of each element of the model to 

transform it), we can fit models in both R and SPSS, hence R
2
 is provided in SPSS output. 

Although R
2
 indicates the amount of variation in the response variable that is accounted 

for by variation in the predictor variables, we cannot solely use it (or indeed other statistical 

measures AIC and BIC) to determine whether or not we are satisfied with a given model. R
2
 

indicates how closely a fitted curve from a model fits the real data, or how small are the 

differences between points on the fitted curve and the real data points. For a regression model 

to provide an accurate, reliable indication of optimum cadence, the fitted curve from the 

regression model must accurately reflect the true relationship between the variables involved 

– for this the coefficient estimates must have certain polarities (as discussed at the beginning 

of this section 4.1.9.). Nonethless we can use statistical indicators such as R
2
 to compare 

similar models (with similarly shaped fitted curves), for example in exploring the extent to 

which additional variables are worth including in regression models. Therefore overall we use 

a combination of statistical measures (R
2
, AIC and BIC, and coefficient estimates) and check 

that fitted curves from regression models are a realistic shape when assessing different 

models. 

The power output cadence relationship of a model can be assessed through plotting the 

power output calculated from a regression model, along with the power output measurements 

in our sampled data, against cadence.  We observe the extent to which the fitted power output 

from the model overlaps with power output measurements in our sampled data, and the plot 

provdes a guide as to whether the model is a valid fit of the data.  Should the estimates of the 

coefficients be of the expected polarity the fitted power output cadence curve should be a 

valid shape, but the plot allows us to observe the fit in more detail, and provides a visual 

demonstration as to the power output candence relationship that the model produces.  For 

fitted power output / cadence curves for non-linear models of power output, heart rate and 

cadence, heart rate must be fixed to an appropriate value for the curve to be fitted (illustrating 

the cadence that maximises power output for a given heart rate).  In some more complex non-

linear models (such as those featuring an interaction between cadence and additional 
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variables) it may not be immediately obvious from observing coefficient polairities whether 

the model represents the true relationship between power output and cadence. In such cases 

however the extent to which the model represents the true power output / cadence relationship 

found in the data becomes clear when the fitted curve has been plotted.  

 

4.2. Results of linear and initial non-linear models 

4.2.1. Linear models results 

We first fit linear models of power, heart rate and cadence. These are models in which power 

output is related to cadence by a quadratic or cubic function. However such models do not 

yield reliable optimum cadences. We therefore do not include results of linear models in this 

report. 

 

4.2.2. Results of initial non-linear models of power output and cadence 

The power output cadence relationship appears too complex for linear models. We now fit a 

model with the non-linear power output-cadence relationship in equation 5 (page 45). Initially 

we omit heart rate from the model as we are exploring the power output cadence relationship 

of a model. We split data into different groups based on heart rates. We then fit the non-linear 

model for each data set (each heart rate range for each athlete).  

As with the linear models, we sample data once every 120 seconds (m=24), and smooth 

data over a 60 second moving average window (k=12), for a 5 second heart rate lag (l=1). 

We present the values for coefficients α and β (from equation 5), along with their 

standard errors, in tables 4, 5, 6, 7 and 8 – these are firstly for all four athletes together in the 

same regression analysis (table 4), and then for each athlete separately (tables 5 to 8). 

An α of between 1 and 2 and a very small β suggest that, were power output plotted 

against cadence, power output would increase to a maximum before decreasing at a lesser rate 

than the earlier increase. The data sets featuring all sampled data have the lowest standard 

errors. For data sets grouped by heart rate range the α and β values with the lowest standard 

errors do not necessarily correspond to the largest sample size, but in general standard errors 

for α and β tend to decrease as sample size increases.  There do not appear to be many 

detectable patterns in the variation of α and β, except for a slight increase in α for data sets 

including a heart rate of 150-160 or 160-170. 

Mathematical optimum cadences are yielded for all athletes in most heart rate subsets. 

We present these in section 4.6.1. (Section 4.6. is where we summarise mathematical 

optimum cadences yielded for all models fitted). The residual standard error is obtained from 

output in R.  This is used to calculate the AIC and, along with the residual standard error of 

the one parameter null model, the explanatory power R
2
. We present the residual standard 

errors of the non-linear models of power output and cadence, along with the equivalent one 

parameter null models, in the appendix. AIC and BIC increase with sample size, with BIC 

slightly higher than AIC except for very small sample sizes.  When all four athletes and all 

sampled data are included, AIC = 232067.  This is considerably lower than the quadratic and 

cubic models (featuring the same data processing constants k=12, l=1, m=24), where AIC was 

approximately 850000 depending on how many covariates were included, suggesting that the 
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non-linear models generally capture the relationship between power output and cadence much 

better than the quadratic and cubic models. 

 

Table 4: Estimates for α and β and their standard errors obtained from fitting a non-linear model of 

power output and cadence (equation 5) in R, along with sample size of each data set (n), for all four 

athletes. 

HR 

range     α s.e. Β s.e. n 

40 - 50 1.36 0.078 0.019 0.0050 136 

50 - 60 1.28 0.065 0.011 0.0042 187 

60 - 70 1.44 0.039 0.029 0.0030 340 

70 - 80 1.28 0.023 0.016 0.0014 915 

80 - 90 1.27 0.015 0.013 0.0009 2006 

90 - 100 1.33 0.012 0.013 0.0007 3330 

100 - 110 1.45 0.010 0.018 0.0006 5071 

110 - 120 1.55 0.010 0.022 0.0006 6094 

120 - 130 1.59 0.009 0.022 0.0005 7171 

130 - 140 1.62 0.008 0.022 0.0005 8663 

140 - 150 1.66 0.008 0.023 0.0004 9151 

150 - 160 1.76 0.010 0.027 0.0005 5065 

160 - 170 1.62 0.017 0.018 0.0009 2992 

170 - 180 1.49 0.032 0.012 0.0016 587 

180 - 190 1.40 0.052 0.008 0.0026 184 

190 - 200 1.28 0.210 0.002 0.0108 28 

  

ALL 1.45 0.004 0.013 0.0002 51787 

 

Table 5: Estimates for α and β and their standard errors obtained from fitting a non-linear model of 

power output and cadence (equation 5) in R, along with sample size of each data set (n), for athlete 1. 

HR 

range     α s.e. β s.e. n 

40 - 50 1.22 0.169 0.007 0.0236 24 

50 - 60 1.27 0.130 0.006 0.0138 43 

60 - 70 1.53 0.086 0.031 0.0082 45 

70 - 80 1.33 0.054 0.015 0.0043 64 

80 - 90 1.47 0.056 0.030 0.0048 104 

90 - 100 1.36 0.038 0.021 0.0026 119 

100 - 110 1.34 0.019 0.016 0.0011 532 

110 - 120 1.33 0.012 0.013 0.0007 1272 

120 - 130 1.36 0.010 0.013 0.0005 2056 

130 - 140 1.41 0.008 0.013 0.0004 3229 

140 - 150 1.53 0.006 0.018 0.0003 4594 

150 - 160 1.60 0.008 0.021 0.0004 2734 

160 - 170 1.52 0.017 0.016 0.0009 908 

170 - 180 1.57 0.025 0.017 0.0012 476 

180 - 190 1.59 0.043 0.017 0.0022 150 

190 - 200 1.20 0.380 0.002 0.0191 14 

  

ALL 1.38 0.005 0.011 0.0003 16570 
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Table 6: Estimates for α and β and their standard errors obtained from fitting a non-linear model of 

power output and cadence (equation 5) in R, along with sample size of each data set (n), for athlete 2. 

HR 

range     α s.e. β s.e. n 

40 - 50 1.36 0.181 0.009 0.0108 20 

50 - 60 1.39 0.106 0.013 0.0084 27 

60 - 70 1.15 0.069 0.001 0.0052 81 

70 - 80 1.05 0.043 0.006 0.0035 364 

80 - 90 1.27 0.024 0.017 0.0018 803 

90 - 100 1.39 0.014 0.019 0.0009 1335 

100 - 110 1.51 0.011 0.022 0.0007 1844 

110 - 120 1.61 0.010 0.025 0.0006 1986 

120 - 130 1.66 0.010 0.025 0.0006 1876 

130 - 140 1.72 0.010 0.026 0.0007 1539 

140 - 150 1.76 0.011 0.027 0.0007 1049 

150 - 160 1.84 0.013 0.030 0.0008 823 

160 - 170 1.73 0.025 0.022 0.0015 300 

170 - 180 1.52 0.167 0.016 0.0093 43 

180 - 190 1.19 0.255 0.005 0.0141 16 

190 - 200 1.99 0.887 0.044 0.0500 5 

  

ALL 1.57 0.006 0.020 0.0004 12194 

 

Table 7: Estimates for α and β and their standard errors obtained from fitting a non-linear model of 

power output and cadence (equation 5) in R, along with sample size of each data set (n), for athlete 3. 

HR 

range     α s.e. β s.e. n 

40 - 50 1.27 0.108 0.013 0.0087 27 

50 - 60 1.23 0.229 0.009 0.0169 35 

60 - 70 1.34 0.147 0.018 0.0114 46 

70 - 80 1.36 0.085 0.019 0.0055 110 

80 - 90 1.29 0.040 0.013 0.0023 345 

90 - 100 1.34 0.027 0.013 0.0014 696 

100 - 110 1.44 0.020 0.016 0.0010 1007 

110 - 120 1.50 0.024 0.017 0.0013 773 

120 - 130 1.55 0.021 0.017 0.0011 802 

130 - 140 1.49 0.019 0.013 0.0010 1095 

140 - 150 1.51 0.015 0.013 0.0008 1463 

150 - 160 1.64 0.021 0.019 0.0010 674 

160 - 170 1.60 0.027 0.015 0.0014 303 

170 - 180 1.07 0.127 0.011 0.0061 21 

180 - 190 1.51 0.784 0.015 0.0404 3 

190 - 200 1.51 0.784 0.015 0.0404 2 

  

ALL 1.33 0.010 0.006 0.0005 7570 
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Table 8: Estimates for α and β and their standard errors obtained from fitting a non-linear model of 

power output and cadence (equation 5) in R, along with sample size of each data set (n), for athlete 4. 

HR 

range     α s.e. β s.e. n 

40 - 50 1.39 0.154 0.026 0.010 65 

50 - 60 1.17 0.122 0.005 0.007 82 

60 - 70 1.42 0.059 0.029 0.004 168 

70 - 80 1.35 0.033 0.021 0.002 377 

80 - 90 1.41 0.025 0.020 0.002 754 

90 - 100 1.41 0.025 0.017 0.002 1180 

100 - 110 1.50 0.025 0.020 0.002 1688 

110 - 120 1.53 0.027 0.020 0.002 2063 

120 - 130 1.57 0.028 0.020 0.002 2437 

130 - 140 1.61 0.028 0.020 0.002 2800 

140 - 150 1.63 0.034 0.020 0.019 2045 

150 - 160 1.57 0.053 0.016 0.003 834 

160 - 170 1.68 0.045 0.020 0.002 1481 

170 - 180 1.44 0.174 0.007 0.009 47 

180 - 190 0.56 0.246 0.036 0.012 15 

190 - 200 1.25 0.291 0.003 0.015 7 

  

ALL 1.33 0.010 0.006 0.001 15453 

 

Having obtained optimal values of α and β from R, we further explore the power output / 

cadence relationship produced from a plot of power output against cadence.  We use the non-

linear model (equation 5) to obtain a fitted power output for each cadence value in a given 

data set (for a given athlete and a given heart rate range). We present such plots, with both the 

original power output values and the fitted power output against cadence, in the appendix. We 

include plots for each heart rate group, for each athlete.  

For data sets with extremely low or high heart rates there is little scope for a model to 

provide a clear power output/cadence relationship. However for the majority of data sets 

(where heart rate is in the range of 60-70 up to 160-170) the gamma model provides a power 

output cadence relationship that appears realistic.  Initially there is a sharp increase in power 

output with cadence.  This rate of increase decreases and in most data sets a maximum power 

output is reached, after which power output decreases much more slowly than it initially 

increased. 

The non-linear curves clearly tend to capture the true power output cadence relationship 

better than the equivalent linear quadratic and cubic curves. For athlete 1, the quadratic curves 

captured the slight decrease in power output when cadence increases from 60 to 80, but not 

the power output cadence relationship at lower or higher cadences than this.  After splitting 

data into different data subsets based on heart rate, this decrease in power output at cadences 

from 60 to 80 occurs when heart rate is equal to 140-150 and 150-160.  In these data subsets 

the gamma curves not only capture this but also provide plausible power output cadence 

relationships for all ranges of heart rate. 
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4.3. Preliminary results of non-linear models of power output, heart rate 

and cadence 

In section 4.4.1, we present preliminary results of non-linear models of power output, heart 

rate and cadence. (Later, in section 4.4, and chapters 5 and 6, we present results of more 

sophisticated non-linear models in which we find an optimum cadence more successfully.) In 

chapter 6, this includes models which also contain measures of fatigue. In section 4.4.1 we 

present results of non-linear models with varying amounts of success in yielding optimum 

cadences. 

  

4.3.1. Initial exploration of non-linear models of power output, heart rate and cadence 

Previously, in chapter 4.3, we illustrated results of non-linear models of power output and 

cadence. For these models, we split data into multiple subsets based on heart rate. For that 

model (equation 5), we split sampled data into multiple subsets (sixteen in total), each 

containing sampled data in which heart rate varied by 10 beats per minute (for example, 

sampled data in which heart rate is between 110 and 120 beats per minute formed one subset). 

Hence, we plotted fitted power output
 
against cadence for various heart rates (as heart rate 

was not included as a variable in the model in equation 5). The gamma curve produced from 

the non-linear model of power output and cadence (equation 5) provided a reasonable 

representation of the power output / cadence relationship in our data. We therefore build upon 

this model (equation 5) by adding heart rate as a variable, to form the model in equation 7 (see 

section 4.1.4. for equation 7). By including heart rate as a variable, we have a neater model; 

we no longer have to consider the somewhat laborious process of fitting the same model to 

sixteen different subsets of data. 

Initially we choose a fixed set of data processing constants, as we are firstly concerned 

with ensuring a valid
 
non-linear model of power output, cadence and heart rate can be fitted.  

We investigate different data
 

processing constants at a later stage (chapter 4.5), though 

literature suggests a low heart rate lag is most
 
appropriate for our data.  We first chose a set of 

data processing constants (k=12, l=1 and m=24) – a smoothing window of 12 time units (60 

seconds), a heart rate lag of 1 time unit (5 seconds), and sampling data once every 24 time 

units (120 seconds). We fit models for each athlete
 
separately. In this sub-chapter (4.4.1.) we 

present results of non-linear models of power output, cadence and
 
heart rate (model in 

equation 7), for the fixed set of data processing constants (l=1, k=12).  

Results from the initial non-linear model of power output and cadence (equation 5), in 

which we split data into multiple subsets based on heart rate, suggested there may be a 

different optimum cadence at different heart rates. It may be that the different coefficient 

estimates for each subset of data resulted in a slightly different curve shape each time and 

therefore a different curve peak each time.   

We therefore explore the effect of heart rate here on optimum cadence in the non-linear 

model of power output, heart rate and cadence (equation 7). We fit this model (equation 7) in 

three ways. We sample all raw data (power output, heart rate and cadence measurements 

given to us at 5 second intervals) once every 24 time units. Firstly we fit this model (equation 

7) for all of these sampled data. We then split the sampled data into two subsets based on 

heart rate. For each athlete separately, we calculate the mean of all sampled heart rate 
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measurements – we call this the overall mean heart rate for each athlete. These subsets of data 

are then: data containing heart rate measurements below the overall mean heart rate for each 

athlete (termed the low heart rate data subset) and above the overall mean heart rate for each 

athlete (termed the high heart rate data subset). Note that these subsets of data are not the 

same as for the initial non-linear model of just power output and cadence (equation 5); we 

now simply have low and high heart rate data subsets, rather than having sixteen subsets. 

Though heart rate is not a direct measure of effort, the high heart rate data subset may 

represent actual race conditions more closely than do sampled data from all training sessions, 

as the training schedules include some long, low-intensity rides. 

We present coefficient estimates for the non-linear model of power output, heart rate and 

cadence for all sampled data, low heart rate data subset and high heart rate data subset in table 

9. For all athletes an increase in power output requires slightly less than the equivalent 

increase in heart rate, as γ is greater than 1.  Athlete 2 requires the least heart rate increase 

(compared to other athletes) for a given increase in power output, as he has the highest γ.  In 

fact an increase in power output for athlete 2 only requires a heart rate increase of a 

magnitude that is the square root of the power output increase (as γ is almost 2).   

 
Table 9: Estimates for coefficients α, β, γ and µ, from the simple non-linear model (equation 7) for 

each athlete, with heart rate lagged at 1 (5 seconds), for all sampled data, the low heart rate data subset 

and the high heart rate data subset.
 

  α β γ μ log μ 

All sampled data 

A1 0.94 (0.02) -0.005 (0.0004) 1.21 (0.02) 0.0102 -4.59 (0.08) 

A2 1.41 (0.03) 0.016 (0.0007) 1.98 (0.03) 0.0001 -9.22 (0.14) 

A3 0.65 (0.04) -0.001 (0.0008) 1.34 (0.03) 0.0156 -4.16 (0.15) 

A4 0.21 (0.02) -0.006 (0.0005) 1.41 (0.02) 0.0093 -4.68 (0.10) 

Low heart rate data subset 

A1 1.00 (0.03) -0.004 (0.001) 0.52 (0.03) 0.187 -1.68 (0.15) 

A2 1.19 (0.04) -0.010 (0.001) 1.47 (0.07) 0.002 -6.43 (0.30) 

A3 0.62 (0.06) -0.003 (0.001) 0.63 (0.06) 0.162 -1.82 (0.24) 

A4 0.16 (0.04) -0.009 (0.001) 1.08 (0.03) 0.028 -3.58 (0.16) 

High heart rate data subset 

A1 1.77 (0.04) 0.020 (0.001) 1.56 (0.03) 0.0002 -8.78 (0.27) 

A2 1.84 (0.03) 0.024 (0.001) 1.57 (0.06) 0.001 -7.35 (0.31) 

A3 0.68 (0.24) -0.0007 (0.003) 1.66 (0.11) 0.005 -5.80 (0.96) 

A4 0.14 (0.01) -0.008 (0.001) 1.51 (0.05) 0.13 -2.07 (0.24) 

 
Different coefficient estimates are produced when data are split into low and high heart 

rates. For athletes 1 and 2 α is much higher for high heart rates, whilst for all athletes γ is 

higher for the high heart rate data subset – the higher γ suggests that when the athlete is likely 

to be exerting more effort (heart rate is higher), an increase in power output requires relatively 

less of an increase in heart rate than it would if the athlete were exerting less effort. It may be 

that there is less scope for heart rate increase at high heart rate as heart rate is closer to the 

maximum an athlete can attain. The explanatory power varies amongst the models, as shown 

in tables 32 and 33. We present the explanatory power, AIC and BIC in table 10. 
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Explanatory power is higher for each athlete for the non-linear model of power output, 

heart rate and cadence (equation 7) than it is for the non-linear models of power output and 

cadence (equation 5). However AIC is also higher. For athletes 1, 2 and 3 explanatory power 

has reduced for both low and high heart rate data subsets compared to the same models fitted 

for all sampled data. For athlete 1 the explanatory power for low heart rate data is only 

marginally less than for the model including all sampled data (41.2 compared to 43.8), but 

there is a greater decrease in explanatory power for the other athletes. There is greater 

explanatory power for models fitted to the low heart rate data subset compared to the high 

heart rate data subset for all athletes.  

When we fit the model (in equation 7) to all sampled data, a mathematical optimum 

cadence is yielded for athlete 2. When we split the data into low and high heart rate data 

subsets, mathematical optimum cadences are yielded for athletes 1 and 2 for the high heart 

rate data subset but not for the low heart rate data subset. We present these mathematical 

optimum cadences in table 11. 

 

Table 10: AIC and explanatory power for the non-linear model (equation 7) fitted for each athlete 

separately, with a heart rate lag (l) of 1 (5 seconds), for all sampled data, the low heart rate data subset 

and the high heart rate data subset.
 

  n AIC BIC R
2
 

All sampled data 

A1 16570 122335 122374 43.8 

A2 12194 99804 99841 51.6 

A3 7570 55515 55549 14.9 

A4 15453 114790 114829 20.7 

Low heart rate data subset 

A1 6752 47153 47187 41.2 

A2 5330 41299 41332 43.6 

A3 3204 22365 22395 12.2 

A4 5269 37121 37154 20.9 

High heart rate data subset 

A1 9641 58178 58214 37.2 

A2 6181 45672 45705 46.5 

A3 4164 29760 29791 10.9 

A4 6504 61043 61079 16.7 

 

Table 11: Optimum cadence for the simple non-linear model (equation 7), in which heart rate is lagged 

at 5 seconds (l=1). 

Athlete 1 Athlete 2 Athlete 3 Athlete 4 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

All sampled data 

* 88.28 (87.46, 89.09) * * 

Low heart rate data subset – no optimum cadences 

High heart rate data subset 

90.48 (90.06, 90.90) 75.85 (75.33, 75.36) * * 
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We fit plots of power output against cadence for the non-linear model (equation 7), for all 

sampled data, the low heart rate data subset and the high heart rate data subset. Black dots are 

the sampled data, and the red lines are the fitted power output based on the model (equation 

7). For the plot for the model (equation 7) fitted for all sampled data, we set heart rate to the 

mean of all sampled heart rate measurements – the overall mean heart rate for each athlete. 

Additionally for the plot for all sampled data, we illustrate fitted power output (from the 

model) for heart rate measurements 40 beats per minute below and above the overall mean 

heart rate for each athlete. 

For the low heart rate data subset, we have only included data in which heart rate is less 

than this overall mean heart rate for each athlete. For fitted power output cadence plots for the 

low heart rate data subset, we set heart rate to the mean heart rate measurement contained 

within the low heart rate data subset. Equivalently for the high heart rate data subset, we have 

only included data in which heart rate is greater than the overall mean heart rate for each 

athlete. For fitted power cadence plots for the high heart rate data subset, we set heart rate to 

the mean heart rate measurement contained within the high heart rate data subset. The mean 

heart rates for the low and high heart rate data subsets, along with the overall mean heart rate 

for each athlete are presented in table 12. 
 

Overall mean heart rate is slightly closer to the high average, and the margin of difference 

is similar for each athlete. For each subset (low and high heart rate data subset) the mean heart 

rate of that subset is similar for athletes 2, 3 and 4 but higher for athlete 1. 

Fitted plots for the model (equation 7) are presented for all sampled data, and low heart 

rate data and high heart rate data subsets, in figures 8, 9 and 10 respectively, following table 

12. 

The curves pass through the power output measurements, with a reasonable curve shape 

for athletes 1, 2 and 4.  For the plot for all sampled data, an optimum cadence is yielded for 

athlete 2 (88.3 rpm).  The gradient of the curve either side of the maximum (for athlete 2) is 

not particularly steep, which may suggest that that athlete can ride at a range of cadences 

either side of the statistically optimum cadence without much detriment to performance. 

However 95% confidence intervals for the optimum cadence are very narrow (from 87.46 to 

89.09 for athlete 2 for all sampled data), suggesting this is not the case, emphasising the 

importance of riding at an optimum cadence. The relatively flat curve is misleading; although 

changes in power output are minimal when the athlete deviates from optimum cadence, over 

the course of an entire race or session the changes in power output accumulate and could have 

a more significant impact on performance than the curves suggest.   

For the plot for all sampled data, with increasing heart rate of 40 bpm each time, there is 

a steady increase in fitted power output of approximately the same magnitude for athletes 1, 3 

and 4. For athlete 2 though the magnitude of increase in power output for each increase in 

heart rate is slightly higher. This is likely to be due to the higher estimate for γ for athlete 2 

compared to the other athletes; athlete 2 does not have to increase heart rate by as much as the 

other athletes for the same power output increase – therefore when equivalent heart rate 

intervals are plotted for each athlete, athlete 2 appears to produce a higher power output for 

each heart rate increase compared to the other athletes.   
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Table 12: Mean heart rate measurements from all sampled data, and from low and high heart rate data 

subsets. 

  Heart rate averages (mean)   

  

Low heart rate 

data subset 

All sampled data (overall 

mean for each athlete) 

High heart rate 

data subset 

A1 121 138 151 

A2 97 117 136 

A3 97 122 142 

A4 98 121 139 

 

 
Figure 8: Fitted power output (red lines) from the simple non-linear model (equation 7) and power 

output measurements (black dots) against cadence, for athletes 1 to 4 (read lexicographically).  Heart 

rate is lagged at 5 seconds, and the red fitted curves represent (bottom to top) heart rate 40bpm below 

mean, the mean, and 40 above mean.  

 

For athlete 2 (the only athlete to have an optimum cadence when all sampled data are 

included in the regression model) cadence changes when data are split into the two heart rate 

subsets. For the non-linear model (equation 7), optimum cadence for all sampled data is 88.3, 

but it is 75.9 for the high heart rate data subset (there is no optimum cadence yielded for the 

low heart rate data subset for this athlete or indeed any athlete). As the higher heart rate may 

to some extent represent greater effort or intensity of training, the lower optimum cadence for 

the high heart rate data subset may suggest that the athlete cannot sustain such a high cadence 

when exerting great physical effort.  
 



Exploration of linear and non-linear model fitting 

70 

 

Figure 9: Fitted power output (red lines) from the non-linear model (equation 7) and power output 

measurements (black dots) against cadence, with heart rate lagged at 5 seconds, for athletes 1 to 4 

(read lexicographically) – for the low heart rate data subset. 

Confidence intervals for this model (equation 7) are also lower for the high heart rate data 

subset; for all sampled data confidence intervals are from 87.5 to 89.1, but for the high heart 

rate data subset this is lower, from 75.3 to 75.4. This suggests that the calculation of an 

optimum cadence may also be particularly important when the athlete is exerting great effort 

(which the high heart rate may represent).  Precise calculation of optimum cadences could 

therefore be particularly important for intense training sessions, along with races and 

competitions, where the athlete is exerting more effort than in a less intense training session – 

in other words, for the most important competitions, cadence could therefore have a 

significant impact on performance, perhaps even more so than in training sessions.  

Athlete 1 has an optimum cadence for the high heart rate data subset– a cadence of 90.5, 

with slightly wider confidence intervals than athlete 2 (from 90.1 to 90.9).  
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Figure 10: Fitted power output (red lines) from the non-linear model (equation 7) and power output 

measurements (black dots) against cadence, with heart rate lagged at 5 seconds, for athletes 1 to 4 

(read lexicographically) – for the high heart rate data subset. 

 

4.3.2. Nonlinear models of power output, heart rate and cadence with cadence / heart 

rate interaction 

In chapter 4.4.1 we presented results of the non-linear model of power output, heart rate and 

cadence, fitted for data sampled once every 24 time units (m=24). We fitted this model for all 

sampled data, and also for two separate subsets of data base on heart rate. We calculated the 

mean of all sampled heart rate measurements, which we termed the overall mean heart rate for 

each athlete. The subsets of data are then: data in which heart rate is less than the overall 

mean heart rate for each athlete, and data in which heart rate is greater than the overall mean 

heart rate for each athlete (low and high heart rate data subsets respectively). Optimum 

cadence appears to be sensitive to heart rate to some extent; when we fitted the non-linear 

model (equation 7) to all sampled data an optimum cadence was yielded only for athlete 2, but 

for the high heart rate data subsets, optimum cadences were yielded for athletes 1 and 2.  Next 

we consider interacting cadence with heart rate in the non-linear model of power output, heart 

rate and cadence (equation 9). 
 

We fit this model with cadence / heart rate interaction (equation 9) using all sampled 

data, and also for low heart rate data and high heart rate data subsets separately. We present 

estimates for this model (equation 9) in table 13. 

For model 24 fitted to all sampled data, for all athletes α has reduced compared to the 

simple non-linear model (equation 7). When we include all sampled data or only low heart 

rate data, athlete 2 has the greatest value for γ, meaning that when he increases his power 
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output he does not have to increase his heart rate by as much of a margin as do the other 

athletes.  Compared to the simple non-linear model (equation 7), γ is lower for all athletes. 

When we include all sampled data or only low heart rate data it is less than 1 for athletes 1, 3 

and 4, meaning that when those athletes increase power output, this requires a 

disproportionately high increase in heart rate. In other words an increase in power output 

actually requires an increase in heart rate of a greater magnitude than the increase in power 

output. However this is possibly because, according to the model, heart rate has already 

increased when the athlete increases his cadence, since in this model (equation 9) cadence is 

interacted with heart rate. 

Different coefficient estimates are yielded when data are split into low and high heart rate 

subsets.  For athletes 1 and 2 α is much higher for high heart rate data subset, whilst for all 

athletes γ is higher when the model (equation 9) is fitted to the high heart rate data subset. The 

higher γ for the high heart rate data subset may suggest that when the athlete is exerting more 

effort or training intensity is greater, an increase in power output requires relatively less of an 

increase in heart rate than it would if the athlete were exerting less effort (as the higher heart 

rates may to some extent represent a greater effort or intensity of training than when low heart 

is particularly low). It may be that there is less scope for heart rate increase at high heart rate 

as heart rate is closer to the maximum an athlete can attain. 

 

Table 13: Estimates for coefficients α, β, γ and µ, from the non-linear model with cadence / heart rate 

interaction (equation 9) fitted for each athlete separately, with heart rate lagged at 1 (5 seconds), for all 

sampled data, and low and high heart rate data subsets.
 

  α β γ μ log μ 

All sampled data 

A1 0.62 (0.01) -0.00002 (0.000002) 0.48 (0.02) 0.039 -3.23 (0.11) 

A2 1.04 (0.02) 0.00006 (0.000004) 1.30 (0.04) 0.00004 -10.13 (0.20) 

A3 0.47 (0.02) -0.00005 (0.000004) 0.44 (0.04) 0.173 -1.76 (0.20) 

A4 0.13 (0.02) -0.00001 (0.000003) 0.78 (0.03) 0.031 -3.48 (0.14) 

Low heart rate data subset 

A1 0.92 (0.03) -0.004 (0.001) 0.40 (0.03) 0.295 -1.22 (0.17) 

A2 1.09 (0.04) -0.010 (0.001) 1.22 (0.07) 0.0009 -6.98 (0.33) 

A3 0.52 (0.06) -0.003 (0.001) 0.56 (0.06) 0.244 -1.41 (0.26) 

A4 0.06 (0.04) -0.009 (0.001) 0.89 (0.03) 0.103 -2.27 (0.19) 

High heart rate data subset 

A1 1.77 (0.04) 0.020 (0.001) 1.26 (0.03) 0.0014 -6.56 (0.21) 

A2 1.84 (0.03) 0.024 (0.001) 1.17 (0.06) 0.0005 -7.61 (0.34) 

A3 0.58 (0.13) -0.003 (0.002) 1.51 (0.06) 0.005 -5.28 (0.53) 

A4 0.12 (0.05) -0.005 (0.001) 1.45 (0.04) 0.011 -4.50 (0.29) 

 

We present explanatory power, AIC and BIC for model 24 in table 14. 

Explanatory power is lower than in the simple non-linear model not featuring the heart 

rate cadence interaction (equation 7).  The explanatory power is lower for both low and high 

heart rate data subsets compared to models fitted to all sampled data, but to a much greater 

extent for the high heart rate data subset than for the low heart rate data subset.   
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We calculate optimum cadences for the model with cadence / heart rate interaction 

(equation 9) by plotting power output against cadence and finding the cadence that maximises 

power output.  The inclusion of the cadence / heart rate interaction implies there should now 

be a different optimum cadence depending on what value heart rate is fixed to in the curve 

fitting.  Therefore heart rate is set to a range of values in the plots. For the plot for all sampled 

data, we set heart rate to the overall mean heart rate for each athlete (the mean of all heart rate 

measurements in the sampled data for each athlete, and 40 beats per minute below and above 

this overall mean heart rate. The low heart rate data subset contains sampled data in which 

heart rate is less than the overall mean heart rate for each athlete. For plots for the low heart 

rate data subset we then set heart rate to the mean heart rate in this low heart rate data subset, 

and 20 and 40 beats per minute lower than the mean of this subset. The high heart rate data 

subset contains sampled data in which heart rate is greater than the overall mean heart rate for 

each athlete. For plots for the high heart rate data subset we then set heart rate to the mean 

heart rate in this high heart rate data subset, and 20 and 40 beats per minute greater than the 

mean of this subset. To summarise, the mean heart rates for each subset for each athlete are as 

follows, in table 15. 

 

Table 14: AIC, BIC and explanatory power for the non-linear model (equation 9) fitted for each 

athlete separately, with a heart rate lag (l) of 1 (5 seconds).
 

  n AIC BIC R
2
 

All sampled data 

A1 16570 122243 122275 41.4 

A2 12194 99418 99452 48.7 

A3 7570 55392 55436 13.5 

A4 15453 113875 114920 20.4 

Low heart rate data subset 

A1 6752 47150 47184 41.1 

A2 5330 41372 41404 42.7 

A3 3204 22336 22366 11.7 

A4 5269 37202 37235 17.1 

High heart rate data subset 

A1 9641 57638 57674 37.8 

A2 6181 43489 43523 46.8 

A3 4164 28564 28595 10.3 

A4 6504 60382 60416 15.5 

 

Table 15: Mean heart rate measurements from all sampled data, and from low and high heart rate data 

subsets. 

  Heart rate averages (mean)   

  

Low heart rate data 

subset 

All sampled data (overall 

mean for each athlete) 

High heart rate data 

subset 

A1 121 138 151 

A2 97 117 136 

A3 97 122 142 

A4 98 121 139 
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We now present the power output cadence plots for the model with cadence / heart rate 

interaction model (equation 9) in figures 11, 12 and 13. 

When we fit model 24 to all sampled data, an optimum cadence is only yielded for athlete 

2. For model 24, this is not a statistically calculated optimum cadence; rather it is inferred 

from plotting power output against cadence and finding the cadence that maximises power 

output. The optimum cadences for increasing heart rates (from 40 beats per minute below 

mean heart rate up to 40 above mean) are 226 rpm, 149, and 111 respectively. Clearly these 

cadences are unrealistic; only at extremely high heart rates (40 beats per minute above mean, 

or 191 beats per minute) is an optimum cadence yielded that is plausible (111 rpm). The 

model appears a poor fit for athlete 1 and 4 and particularly athlete 3, as the rate of increase in 

power output appears to accelerate markedly for all cadences. 

Optimum cadences differ for different heart rate values in the cadence heart rate 

interaction model (equation 9). Optimum cadence is also lower for the simple non-linear 

model (equation 7) when this model is fitted to the high heart rate data subset (70.5 compared 

to 88.3 when all sampled data are included). This appears to suggest that increased heart rate 

significantly decreases the optimum cadence.  

Similarly to the simple non-linear model (equation 7), optimum cadences are yielded for 

athletes 1 and 2 for the high heart rate data subset for the model with cadence / heart rate 

interaction (equation 9). These optimum cadences decrease with increasing heart rate.  The 

margin of each decrease in optimum cadence decreases with heart rate – as heart rate 

increases, the optimum pedalling rate decreases, but by a lesser magnitude at each increase.  

Optimum cadences are lower than those found for all sampled data, again suggesting that 

optimum cadence decreases with increasing heart rate. 

As expected, if the athlete is riding at a very high cadence, his power output reduces as he 

is unable to sustain such a high power output.  However, at very high cadences, the fitted 

power output for the highest heart rate begins to decrease to a value less than that of fitted 

power outputs for lower heart rates. This is not plausible as the decreased heart rate for an 

increased power output implies here that the increased power output requires less physical 

exertion.  However at such a high heart rate (40 beats per minute above the mean of 151 for 

athlete 1 is a very high 191 beats per minute), the athlete would be unlikely to ride at such a 

high cadence, and therefore the model need not be considered for such a high cadence when 

heart rate is very high. The model provides a reasonable fit of the data for most 

circumstances, and it indicates a clear decrease in optimum cadence as heart rate increases. 

(In section 4.4 and chapter 6, we include additional covariates to capture the effects of the 

accumulation of fatigue, and calculate how optimum cadence varies with respect to these 

additional variables.)   

 



Exploration of linear and non-linear model fitting 

75 

 

Figure 11: Fitted power output (red lines) from the non-linear model with cadence / heart rate 

interaction (equation 9) and power output measurements (black dots) against cadence, for athletes 1 to 

4 (read lexicographically).  Heart rate is lagged at 5 seconds, and the red fitted curves represent 

(bottom to top) heart rate 40bpm below mean, the mean, and 40bpm above mean. 

 

Figure 12: Fitted power output (red lines – from top to bottom, for mean heart rate, 20, then 40bpm 

below mean) from the non-linear model with cadence / heart rate interaction (equation 9) and power 

output measurements (black dots) against cadence, for athletes 1 to 4 (read lexicographically), for the 

low heart rate data subset. Heart rate is lagged at 5 seconds. 
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Figure 13: Fitted power output (red lines – from bottom to top, mean heart rate, 20, then 40bpm above 

mean)) from the non-linear model with cadence / heart rate interaction (equation 9) and power output 

measurements (black dots) against cadence, for athletes 1 to 4 (read lexicographically), for the high 

heart rate data subset. Heart rate is lagged at 5 seconds. 

4.4. Results of non-linear models of power output, heart rate and cadence 

with additional covariates 

4.4.1. Results of non-linear models with additional covariates but no interactions 

between variables 

Initially when exploring non-linear models we include all sampled data (power output, heart 

rate and cadence measurements yielded at 5 second intervals which we sampled once every 

24 time units). In this section we present such results first. Later we trim the data to focus on 

conditions in training sessions that may be more representative of race conditions. For each 

athlete we calculate the mean of all sampled heart rate measurements, which we term the 

overall mean heart rate for each athlete. Then we fit the same models but only including data 

in which the heart rate is higher than the overall mean heart rate for each athlete (which we 

term the high heart rate data subset) Though heart rate is not a direct measure of effort, we 

consider the high heart rate data subset to resemble race conditions more closely than do 

sampled data from all training sessions (as the training schedules include some very long low-

intensity sessions). 

We further develop the simple non-linear model of power output, heart rate and cadence. 

We add additional covariates that capture further aspects of an athlete’s riding – X1t (the 

normalized power output developed in the current session up to the current sampling point), 

X2t (the proportion of time that has elapsed in the current session up to the current sampling 
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point), X3 (the mean of the normalized power outputs for all sessions in the previous seven 

days) and X4 (the mean duration of all sessions in the previous seven days).  

We add a range of combinations of the extra covariates to the non-linear model of power 

output, heart rate and cadence, producing the model in equation 10 when all extra covariates 

are included. In section 4.4. we present results of models in equations 10, 11, 12 and 13 - see 

section 4.1.7. for these equations.   

We consider a heart rate lag of 1 time unit (5 seconds). Literature suggests a low heart 

rate lag is most appropriate for our data. Although it does not specifically suggest a 5 second 

lag, we settle for a lag of 5 seconds. Heart rate appears to change much more gradually in our 

data than in that of Stirling et al (2008), the study that implies a 60 second time lag for 

changes from resting heart rate to maximum heart rate in very brief exercise sessions. We 

settle on smoothing data using amoving average window of 12 time units (60 seconds). We 

continue to sample data one measurement every 24 time units (120 seconds). Hence models 

fitted in chapter 4.5 are fitted with data processing constants k=12, l=1 and m=24. We present 

the AIC and explanatory power of models with various combinations of extra covariates, in 

tables 16 to 19 for each athlete separately. 

The normalized power output (X1t) and the proportion of the session that has elapsed to 

the current sampling point (X2t) broadly provide more explanatory power than do the 

remaining additional covariates.  The proportion of the session that has elapsed up to the 

current sampling point (X2t) increases the explanatory power the most, even more than the 

normalized power output (X1t). Since X1t and X2t relate to the current session whilst X3 and X4 

relate to previous sessions, it appears therefore that the power output the athlete can produce 

at the current sampling point is affected more by his riding in the session thus far than by his 

riding in previous sessions. 

Adding the longer term covariates in addition to X1t and X2t further increases explanatory 

power a little. 

Whether each covariate increases or decreases the power output the athlete can achieve, 

and the extent of this increase or decrease, are apparent from the coefficient estimates. We 

present coefficient estimates for each athlete in table 20. 

 

Table 16: AIC, BIC and explanatory power for a range of models featuring additional covariates, fitted 

for athlete 1 (the sample size, n, is 16387). 

Model AIC BIC R2 

logPt = logµt + αlogCt – βCt + γlogHl+1 + δlogX1t 120971 121035 44.1 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX2t 120940 120982 44.1 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX3 120951 120993 43.9 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX4 120981 120036 43.9 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t 120908 120947 44.0 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3 120876 120914 44.0 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX4 120907 120907 44.0 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3+ ηlogX4 120878 120919 44.0 
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Table 17: AIC, BIC and explanatory power for a range of models featuring additional covariates, fitted 

for athlete 2 (the sample size, n, is 11480). 

Model AIC BIC R2 

logPt = logµt + αlogCt – βCt + γlogHl+1 + δlogX1t 93956 93994 52.0 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX2t 93865 93903 52.2 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX3 93955 93993 51.8 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX4 93959 93997 51.8 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t 93865 93902 52.1 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3 93863 93901 52.1 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX4 93865 93902 52.1 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3+ ηlogX4 93864 93904 52.1 

 

Table 18: AIC, BIC and explanatory power for a range of models featuring additional covariates, fitted 

for athlete 3 (the sample size, n, is 7362). 

Model AIC BIC R2 

logPt = logµt + αlogCt – βCt + γlogHl+1 + δlogX1t 53866 53904 15.3 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX2t 53868 53905 15.3 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX3 53989 54027 15.0 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX4 53990 54028 15.0 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t 53662 53697 16.8 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3 53663 53696 16.8 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX4 53663 53694 16.8 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3+ ηlogX4 53664 53695 16.8 

 

Table 19: AIC, BIC and explanatory power for a range of models featuring additional covariates, fitted 

for athlete 4 (the sample size, n, is 11770). 

Model AIC BIC R2 

logPt = logµt + αlogCt – βCt + γlogHl+1 + δlogX1t 112453 112492 21.2 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX2t 112116 112155 21.4 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX3 112427 112465 20.9 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX4 112385 112424 21.1 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t 111671 111710 22.6 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3 111668 111708 22.6 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX4 111630 111671 22.8 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3+ ηlogX4 111626 111666 22.8 

 

Athletes 1, 3 and 4 yield an α value of less than 1, whereas for athlete 2 as the α value is 

greater than 1 (1.42) meaning the power output increases with cadence at an increasing rate 

initially before steadying.  All additional covariates have only a small impact on fitted power 

output (since estimates are very small for these additional covariates) but nevertheless there 

are differences between athletes in how the additional covariates affect power output. The 

coefficient for normalized power output (X1t, the normalized power output developed to data) 

is positive for all athletes.  Hence as normalized power output increases, rather than tiring, the 

athlete is able to increase his power output, possibly because the athlete is deliberately not 

exerting maximum effort for training sessions.   
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Table 20: Coefficient estimates for the non-linear model with extra covariates (equation 10), for 

athletes 1 to 4. 

  Athlete 1 Athlete 2 Athlete 3 Athlete 4 

  Estimate Estimate Estimate Estimate 

α 0.945 (0.019) 1.425 (0.027) 0.641 (0.040) 0.285 (0.024) 

β -0.005 (0.0004) 0.016 (0.001) -0.001 (0.001) -0.005 (0.001) 

γ 1.197 (0.020) 1.980 (0.030) 1.265 (0.032) 1.402 (0.019) 

μ 0.01 0.00 0.01 0.01 

log (μ) -4.974 (0.091) -9.613 (0.206) -5.364 (0.164) -4.683 (0.101) 

δ 0.049 (0.009) 0.032 (0.026) 0.254 (0.018) 0.00008 (0.00001) 

ε -0.021 (0.003) -0.056 (0.006) -0.083 (0.006) -0.156 (0.009) 

η 0.014 (0.003) 0.009 (0.005) 0.004 (0.005) 0.007 (0.003) 

θ -0.005 (0.007) 0.007 (0.010) 0.005 (0.009) -0.062 (0.007) 

 

Estimates are negative for all athletes for the proportion of the session that has elapsed up 

to the current sampling point X2t) – power output reduces as the athlete progresses towards the 

end of the session.  Therefore the athletes may tire towards the end of the session; the further 

into the session the athlete is, the lower the power output that he can achieve.  For athlete 4 

this effect of proportion of time into the session is actually much greater than the normalized 

power output, as the estimate (along with standard error) is much higher (albeit negative) than 

that for normalized power output. The power output this athlete can achieve therefore is 

affected more by the session duration and how far into the session he is than by the calculated 

normalized power output.  The power output and session duration averaged over the previous 

seven days do not present a particularly marked effect across athletes. For all athletes the 

power output he is able to produce increases with the mean output over the previous seven 

days.  This again suggests the athletes are withholding some effort in some sessions, as the 

increased power output in previous days increases the power output he can achieve in the 

current session rather than inducing fatigue.  For athletes 1 and 4 they have opposite polarity 

to each other.  

The data appear to suggest that athletes fatigue towards the end of a given session (as 

estimates for X2t are negative). However athletes are able to produce a higher power output 

when riding at a higher power output over the previous seven days. This could suggest the 

athletes are able to recover well after a tiring session. 

Broadly the additional covariates yield similar estimates to the equivalent linear models 

of power output, heart rate and cadence (with the same set of additional covariates, also for a 

heart rate lag of 5 seconds).  However it is difficult to compare the estimates in this respect as 

the linear models were based on heart rate (although both models regarding heart rate as a 

response to power output as both models consider heart rate lagged at some time after power 

output).  This broad similarity suggests that the additional covariates affect the athlete’s heart 

rate in a similar way to how they affect the power output he can currently achieve. 

A mathematical optimum cadence is yielded for athlete 2, which we present in table 21. 

We present fitted plots of power output against cadence for the non-linear model with 

extra covariates (equation 10) in the appendix, as the figures appear very similar to non-linear 

models of power output, heart rate, cadence and no additional covariates (equation 7). 
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Table 21: Optimum cadences for the non-linear model with additional covariates (equation 10), with 

heart rate lagged at 5 seconds (l=1). 

Athlete 1 Athlete 2 Athlete 3 Athlete 4 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

* 87.70 (86.90, 88.49) * * 

 

An optimum cadence is again yielded only for athlete 2. With extra covariates included 

(equation 10) optimum cadence for athlete 2 is 87.7, slightly less than it was for the non-linear 

model with no extra covariates (equation 7, with an optimum cadence of 88.3).  Confidence 

intervals are still narrow (86.9 to 88.5), similar to the equivalent model without extra 

covariates (equation 7, for which confidence intervals were from 87.5 to 89.1). In other 

words, including other aspects of the riding, such as how far into a given session the athlete is, 

into the model, has had little impact on the optimum pedalling rate that the model yields. 

After fitting non-linear models with and without the additional covariates, we decided to 

discard data which we believed to be unrepresentative of race conditions. We considered data 

in which recorded heart rate was quite low to be typical of training sessions in which the 

athlete is conserving energy, (something less likely to occur in actual races or competitions), 

or to represent long, low-intensity sessions, also not typical of race conditions. For each 

athlete we calculate the mean heart rate from the sampled heart rate measurements, which we 

term the overall mean heart rate for each athlete. We then discarded data in which recorded 

heart rate is lower than the overall mean heart rate for each individual athlete. The remaining 

data is then termed the high heart rate data subset. We therefore believe optimum cadences 

yielded from models featuring only high heart rate data may be more representative of the 

optimum pedalling rate an athlete may seek to ride at in actual race conditions. After splitting 

data into low and high heart rate data subsets, we found more plausible fitted power output 

cadence curves, and indeed optimum cadences for more athletes, for models fitted to the high 

heart rate data subset, compared to the low heart rate data subset or all sampled data. We  

consider low heart rate data is not significant in the investigation into the calculation of 

optimum cadence from field data, and focus instead on the high heart rate data subset. 

We present results from the non-linear models fitted this time for the high heart rate data 

subset. These extra covariates are the following: X1t (the normalized power output developed 

in the current session, up to the current sampling point, t),  X2t (the proportion of time that has 

elapsed in the current session, up to the current sampling point, t), X3 (the mean of the 

normalized power outputs for all session in the previous seven days) and X4 (the mean 

duration of all sessions in the previous seven days (hours)). We add extra covariates in 

various combinations to the simple non-linear model; adding all extra covariates to this model 

produces the model in equation 10.  

We also fit models with cadence interaction terms. We consider interacting heart rate 

with cadence. Thus with all additional covariates included, producing the model in equation 

11. We compare model fit of models in equations 10 and 11, in terms of AIC, explanatory 

power, covariate estimates and power output cadence plots.  

We also explore the interaction of cadence with X1t, the normalized power output 

developed in the current session, and X2t, the proportion of time that has elapsed in the current 
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session, up to the current sampling point, t. We consider such variables to have less of an 

impact on performance and indeed on optimum cadence than does heart rate, so we added the 

cadence interactions for these additional variables whilst retaining the solitary cadence effect 

in the model. Hence this produces the models in equations 12 and 13.  

Explanatory power tends to increase with the addition of each explanatory variable. If the 

addition of a number of extra variables offers no improvement in model fit (through 

explanatory power or AIC) the principle of parsimony may be adopted. This would mean we 

choose not to include the extra covariates as we would choose to fit the smaller of two models 

with identical model fit.  However it is unlikely that we will adopt the principle of parsimony 

as such as each covariate reduces AIC even if it does not increase explanatory power, and we 

still do not have a great number of extra variables in the models. Nevertheless we also present 

the explanatory power and AIC for several stages of adding covariates, to observe the extent 

to which each covariate improves model fit. We can compare the effects of extra covariates 

on model fit and athlete performance at high heart rate (when athletes are likely exerting great 

physical effort) and for all sampled data. We present the explanatory power and AIC for the 

addition of each extra covariates (added to the model in equation 7) in tables 22 to 25 for each 

athlete separately, for the high heart rate data subset.  

 

Table 22: AIC, BIC and explanatory power for a range of models featuring additional covariates, fitted 

for athlete 1, for the high heart rate data subset. The sample size, n, is 9641. 

Model AIC BIC R2 

logPt = logµt + αlogCt – βCt + γlogHl+1 + δlogX1t 57445 57484 37.4 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX2t 57549 57588 37.3 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX3 57448 57487 37.4 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX4 57418 57456 37.6 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t 57444 57483 37.7 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3 57356 57394 37.7 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX4 57334 57373 38.0 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3+ ηlogX4 57308 57347 38.0 

 

Table 23: Table 26: AIC, BIC and explanatory power for a range of models featuring additional 

covariates, fitted for athlete 2, for the high heart rate data subset. The sample size, n, is 6181. 

Model AIC BIC R2 

logPt = logµt + αlogCt – βCt + γlogHl+1 + δlogX1t 43340 43377 47.1 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX2t 43340 43377 46.7 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX3 43334 43371 46.6 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX4 43330 43368 46.6 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t 43341 43376 47.2 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3 43337 43374 47.2 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX4 43333 43371 47.3 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3+ ηlogX4 43333 43371 47.3 

 

Next we present the explanatory power output and AIC for the model with cadence / 

heart rate interaction, with additional covariates added (in tables 26 to 29) for each athlete 

separately. When all extra covariates are added, this produces the model in equation 11. 
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Table 24: AIC, BIC and explanatory power for a range of models featuring additional covariates, fitted 

for athlete 3, for the high heart rate data subset. The sample size, n, is 4161. 

Model AIC BIC R2 

logPt = logµt + αlogCt – βCt + γlogHl+1 + δlogX1t 24461 24492 11.3 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX2t 24557 24588 11.3 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX3 24562 24594 11.1 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX4 24564 24595 11.2 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t 24437 24469 11.9 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3 24434 24465 12.0 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX4 24427 24459 12.0 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3+ ηlogX4 24427 24459 12.0 

 

Table 25: AIC, BIC and explanatory power for a range of models featuring additional covariates, fitted 

for athlete 4, for the high heart rate data subset. The sample size, n, is 6504. 

Model AIC BIC R2 

logPt = logµt + αlogCt – βCt + γlogHl+1 + δlogX1t 55517 55553 17.1 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX2t 55489 55524 17.5 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX3 55562 55595 16.9 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX4 55570 55604 17.0 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t 55210 55244 17.6 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3 55206 55242 17.6 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX4 55211 55245 17.6 

logPt = logµt + αlogCt – βCt + γlogHt+1 + δlogX1t+ εlogX2t+ ζlogX3+ ηlogX4 55198 55234 17.7 

 

With the exception of athlete 2, short term covariates (X1t and X2t) increase explanatory 

power more so than longer term covariates (X3, X4). For athlete 2 there is little difference in 

explanatory power between different extra covariates.  Compared to the inclusion of all 

sampled data, when the models are fitted using only high heart rate data the explanatory 

power has reduced. However the explanatory power has increased with the addition of extra 

covariates compared to the models in equations 7 and 9, which were also fitted using only 

high heart rate data but did not include additional covariates. 

 

Table 26: AIC, BIC and explanatory power for a range of models featuring additional covariates, fitted 

for athlete 1, for the high heart rate data subset.  The sample size, n, is 9641. 

Model AIC BIC R2 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+l + δlogX1t 57520 57556 37.9 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX2t 57638 57674 38.0 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX3 57539 57576 37.9 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX4 57509 57545 38.0 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX1t +εlogX2t 57520 57556 38.1 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX1t + εlogX2t + ζlogX3 57434 57470 38.1 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX1t + εlogX2t+ ζlogX4 57413 57449 38.2 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 +δlogX1t εlogX2t +ζlogX3+ 

ηlogX4 57387 57423 38.2 
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Table 27: Table 26: AIC, BIC and explanatory power for a range of models featuring additional 

covariates, fitted for athlete 2, for the high heart rate data subset. The sample size, n, is 6181. 

Model AIC BIC R2 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+l + δlogX1t 43488 43522 47.0 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX2t 43487 43521 47.0 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX3 43482 43517 47.0 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX4 43476 43513 47.1 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX1t +εlogX2t 43489 43522 47.1 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX1t + εlogX2t + ζlogX3 43484 43518 47.1 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX1t + εlogX2t+ ζlogX4 43478 43515 47.2 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 +δlogX1t εlogX2t +ζlogX3+ 

ηlogX4 43478 43515 47.2 

 

Table 28: AIC, BIC and explanatory power for a range of models featuring additional covariates, fitted 

for athlete 3, for the high heart rate data subset.  The sample size, n, is 4164. 

Model AIC BIC R2 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+l + δlogX1t 24461 24492 11.1 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX2t 24557 24588 11.1 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX3 24562 24593 10.9 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX4 24564 24595 10.9 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX1t +εlogX2t 24437 24468 11.2 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX1t + εlogX2t + ζlogX3 24434 24465 11.2 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX1t + εlogX2t+ ζlogX4 24426 24457 11.2 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 +δlogX1t εlogX2t +ζlogX3+ 

ηlogX4 24427 24458 11.2 

 

Table 29: AIC, BIC and explanatory power for a range of models featuring additional covariates, fitted 

for athlete 4, for the high heart rate data subset. The sample size, n, is 6504. 

Model AIC BIC R2 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+l + δlogX1t 55504 55538 16.7 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX2t 55468 55502 17.0 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX3 55547 55581 15.6 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX4 55541 55573 15.8 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX1t +εlogX2t 55288 55322 17.1 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX1t + εlogX2t + ζlogX3 55284 55318 17.1 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 + δlogX1t + εlogX2t+ ζlogX4 55277 55311 17.1 

logPt = logµt + αlog(Ct *Ht+l)– β(Ct *Ht+l)+ γlogHt+1 +δlogX1t εlogX2t +ζlogX3+ 

ηlogX4 55258 55292 17.2 

 

The extra covariates have a similar effect on explanatory power for high heart rate data as 

they did for all sampled data. However the mean session duration over the previous seven 

days (X4) appears to yield a greater increase in explanatory power for high heart rate data than 

it did for all sampled data. For example, in the non-linear model with additional covariates 

(equation 10) for athlete 1, when all sampled data were included the covariates that yielded 

the highest explanatory power were jointly X2t and X3, whereas it is X4 for the same model 
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fitted using only high heart rate data. Therefore when heart rate is high and athletes are likely 

to be exerting great physical effort, the amount of time they have spent training in the last 

seven days has a relatively large effect on the power output he can achieve.  This could 

represent a greater build up of fatigue at high heart rates, which is plausible. Despite the 

relatively high increase in explanatory power yielded from X4, the proportion of the session 

that has elapsed up to the current sampling point (X2t) does not yield such a high increase in 

explanatory power. For example, when the model with extra covariates (equation 10) is fitted 

using all sampled data to athlete 1, X2t yields a similar explanatory power to the other extra 

covariates.  However, when models in equations 10 and 11 are fitted using only high heart 

rate data, for athlete 1, X2t yields the smallest increase in explanatory power of all the extra 

covariates. 

There appears to be a long term effect of fatigue at high heart rates (resulting in the 

relatively high explanatory power of models that include X4). However there does not appear 

to be a particularly great accumulation of fatigue within a given session (due to the relatively 

small increases in explanatory power when X2t is added to the models). 

We present the coefficient estimates for non-linear models with extra covariates 

(equations 10 and 11) for all athletes in tables 30 and 31. 

Broadly for the model with additional covariates (equation 10) estimates for α, β, γ and µ 

are similar to the equivalent models not featuring extra covariates (that is, compared to the 

models in equations 7 and 9) that were also fitted for the high heart rate data subset. For 

athletes 1 and 2 α is greater than 1, implying an increase cadence (with power output) initially 

at an increasing rate. Thus far when α has been greater than 1, the power output cadence curve 

tends to reach a maximum (therefore producing an optimum cadence), but the curve has not 

reached a maximum when α has been less than 1.  Therefore we expect there to be optimum 

cadences for athletes 1 and 2 again, and not for athletes 3 and 4. For athletes 1, 3 and 4 γ (the 

coefficient relating to heart rate) is lower when extra covariates are added. When extra 

covariates are included, the model (equation 10) suggests that when athletes ride at a higher 

power output, they now have to increase their heart rates by a greater amount compared to the 

model with no extra covariates. Athlete 2 however exhibits very similar estimates for α, β, γ 

and µ for models with or without extra covariates.  

 

Table 30: Coefficient estimates for the non-linear model with extra covariates (equation 10), fitted for 

athletes 1 to 4 separately, for the high heart rate data subset, with a heart rate lag of 5 seconds.   

  Athlete 1 Athlete 2 Athlete 3 Athlete 4 

  Estimate Estimate Estimate Estimate 

α 2.044 (0.067) 2.517 (0.053) 0.728 (0.130) 0.305 (0.049) 

β 0.024 (0.001) 0.036 (0.001) -0.001 (0.002) -0.004 (0.001) 

γ 1.417 (0.036) 1.672 (0.574) 1.184 (0.066) 1.310 (0.047) 

μ 0.00005 0.00002 0.002 0.003 

log (μ) -9.891 (0.272) -10.98 (0.385) -6.416 (0.537) -5.807 (0.295) 

δ 0.125 (0.013) -0.005 (0.038) 0.360 (0.031) 0.248 (0.021) 

ε -0.004 (0.003) 0.004 (0.006) -0.038 (0.007) -0.069 (0.005) 

η 0.012 (0.002) 0.007 (0.005) 0.005 (0.004) 0.008 (0.002) 

θ 0.040 (0.006) 0.027 (0.010) 0.022 (0.008) -0.019 (0.006) 
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Table 31: Coefficient estimates for the non-linear cadence heart rate interaction model with extra 

covariates (equation 11), fitted for athletes 1 to 4 separately, for the high heart rate data subset, with a 

heart rate lag of 5 seconds.   

  Athlete 1 Athlete 2 Athlete 3 Athlete 4 

  Estimate Estimate Estimate Estimate 

α 1.777 (0.061) 2.267 (0.049) 0.793 (0.119) 0.336 (0.045) 

β 0.0001 (0.00001) 0.0002 (0.00001) -0.00001 (0.00001) -0.00002 (0.00001) 

γ 1.364 (0.042) 1.492 (0.062) 0.602 (0.084) 0.896 (0.059) 

μ 0.00000002 0.000000001 0.001 0.001 

log (μ) -17.72 (0.595) -20.71 (0.560) -7.477 (1.146) -6.716 (0.516) 

δ 0.134 (0.014) 0.023 (0.038) 0.360 (0.031) 0.252 (0.021) 

ε -0.004 (0.003) 0.007 (0.006) -0.038 (0.007) -0.069 (0.005) 

η 0.012 (0.002) 0.008 (0.005) 0.004 (0.004) 0.008 (0.002) 

θ 0.040 (0.006) 0.030 (0.041) 0.023 (0.008) -0.018 (0.006) 

 

Estimates for γ are lower for the cadence heart rate interaction model (equation 11) 

compared to the model with extra covariates but no interactions (equation 10), and is 

particularly marked for athletes 3 and 4. For the cadence heart rate interaction model therefore 

an increase in power output requires less of an increase in heart rate. This also occurred when 

extra covariates were not included in the models.  This is possibly because in the cadence 

heart rate interaction model heart rate is assumed to increase when cadence increases, and 

therefore increases in cadence account for some of the increase in heart rate already. That this 

effect occurs for all four athletes further suggests that the interaction between cadence and 

heart rate would continue to yield lower estimates for γ for a range of different estimate 

combinations of coefficients. 

Estimates for normalized power output (X1t) and proportion of time that has elapsed in the 

current session up to the current sampling point (X2t) vary between athletes, but again have 

opposite polarity to each other. For athletes 1, 3 and 4, the estimates for X1t are positive and 

X2t are negative.  Therefore the power output the athletes can achieve increases with 

normalized power output and decreases towards the end of a session. This could indicate that 

the athletes are deliberately withholding some effort at first, and presumably tiring towards 

the end of the session. 

However in the cadence heart rate interaction model (equation 11),  the estimates for 

normalized power output (X1t) are in fact positive for all athletes, whilst estimates for the 

proportion of the session that has elapsed up to the current sampling point (X2t) remain 

negative for athletes 1, 3 and 4 and positive for athlete 2.  Therefore for athlete 2 the power 

output he can achieve increases with both X1t and X2t. He does not appear to tire towards the 

end of a given session, and he may also be withholding effort for low normalized power 

outputs.  

The interaction of cadence with heart rate, and indeed the absence of a measure of pure 

cadence, has changed the effect of normalized power output on fitted power output. Therefore 

there may be an effect of cadence on the power output produced at different normalized 

power outputs that is masked by the cadence heart rate interaction model (equation 11). 

For the model with extra covariates but no interactions (equation 10), optimum cadences 

are yielded statistically for athletes 1 and 2, which we present in table 32.  
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Table 32: Optimum cadences for the non-linear model (equation 10), fitted for the high heart rate data 

subset. Heart rate is lagged at 5 seconds (l=1). 

Athlete 1 Athlete 2 Athlete 3 Athlete 4 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

86.75 (86.29, 87.20) 70.60 (70.27, 70.94) * * 

 

We present fitted power output cadence plots for non-linear models with extra covariates  

(equations 10 and 11) in the appendix, as these plots appear very similar to the equivalent 

plots for the non-linear model of power output, heart rate and cadence that does not include 

additional covariates (equation 7). 
 

For all athletes, fitted power output overlaps well with the power output measurements. 

Optimum cadences are yielded for athletes 1 (86.8) and  2 (70.6). Confidence intervals for 

athlete 1 are from 86.3 to 87.2, and for athlete 2 they are from 70.3 to 70.9. Athlete 2 has a 

narrower range of cadences at which he can ride optimally compared to athlete 1. Riding at an 

optimal cadence appears slightly more crucial to performance for athlete 2 than for athlete 1, 

but confidence intervals are quite anrrow for both athletes, emphasising the importance of 

optimum cadence.  

For athlete 2 however power output is very similar for both conditions (ie.when X1t and 

X2t are set ot zero or when they are set to mean values).  It appears therefore that, when 

athletes are likely to be exerting a great amount of effort (that is, only high heart rate data are 

included), the extra covariates are less influential on performance for athlete 2 compared to 

the other athletes. There may be further evidence for this from the coefficient estimates and 

explanatory power.  Indeed coefficient estimates are extremely similar for athlete 2 in 

particular between high heart rate models with or without extra covariates (i.e. between 

models in equations 7 and 10). Also, the relatively small increase in explanatory power for 

athlete 2 when extra covariates are added to the models further suggests that the power output 

athlete 2 can achieve is not greatly affected by normalized power output, proportion of time 

that has elapsed in the current session or covariates relating to performance over the previous 

seven days (mean output and session duration over the previous seven days). If athlete 2 

therefore is able to produce similar power outputs for sessions of different durations, this may 

indicate he is withholding more effort in training sessions compared to other athletes. 

We fit plots of power output against cadence for the cadence heart rate interaction model 

with extra covariates (equation 11), for the high heart rate data subset (data in which heart rate 

is greater than the mean heart rate for each athlete). We set heart rate to typical values for 

each athlete, based on the mean of the heart rate measurements included in the high heart rate 

data subset. We present these heart rates in table 33.  

For the model with cadence heart rate interaction and extra covariates (equation 11) 

optimum cadences are calculated from the power output cadence plots (figure 14). Optimum 

cadence is the cadence that maximises power output – we present these optimum cadences in 

table 34. 
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Table 33: Range of heart rates considered for fitting power output cadence plots for the cadence / heart 

rate interaction model with extra covariate (equation 11), for the high heart rate data subset. The mean 

heart rate is the mean of all heart rate measurements included in the high heart rate data subset. 

 

  Mean heart rate Mean heart rate plus 20 Mean heart rate plus 40 

A1 151 171 191 

A2 136 156 177 

A3 142 162 182 

A4 139 159 179 

 

Table 34: Optimum cadences for the non-linear cadence / heart rate interaction model (equation 11), 

for the high heart rate data subset. 

 Athlete 1 Athlete 2 Athlete 3 Athlete 4 

 Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

H = mean 90.17 73.58 * * 

H = mean + 20 79.67 64.17 * * 

H = mean + 40 71.33 56.92 * * 

 

 

Figure 14: Fitted power output (red line) from the model with cadence / heart rate interaction and extra 

covariates (equation 11) and power output measurements (black dots) against cadence, for athletes 1 to 

4 (read lexicographically), for the high heart rate data subset.  Heart rate is lagged at 5 seconds. Heart 

rate and other covariates are set to the mean values found in the data for each.
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4.4.2. Results of non-linear models with additional variables and interactions between 

variables 

Next we further investigate the effects of normalized power output and proportion of the 

session that has elapsed up to the current sampling point (X1t and X2t respectively) by 

interacting them with cadence (models in equations 12 and 13).  

We add the (Ct*X1t) and (Ct*X2t) interactions at the end of the model, to maintain an 

effect of cadence within the model.  We fit these models (equations 12 and 13) for the high 

heart rate data subset only.  

For the cadence heart rate interaction models, a plausible power output cadence 

relationship is yielded, though for cadences above 110, power output actually decreases as 

heart rate increases. Nevertheless even if this is not realistic, the model provides a realistic 

power output cadence relationship for most cadences; athletes seldom ride at over 110 rpm in 

the study.  

We present the coefficient estimates for models in equations 12 and 13 in table 35. 

There are some unexpected estimates in some circumstances. For example, α is not 

always positive.  A positive α indicates that fitted power output (fitted against cadence) begins 

at zero and then increases, eventually at a decelerating rate. When α is negative, fitted power 

output is not zero at zero cadence – instead theoretically an infinity is produced.  This is 

because the cadence of zero is raised to a negative number, hence α is divided by zero. 

Therefore the negative α does not provide as a good a fit of the data as does the positive α. In 

fact the same effect ocurs for a negative ι (the coefficient relating to (Ct*X1t) or (Ct*X2t)). 

When ι is negative, and cadence or X1t or X2t are zero, they are divided by zero hence an 

infinity is produced. The negative α is yielded from the model in equation 12 for athlete 4 and 

the model in equation 13 for athlete 1.  

A negative α implies a gamma curve that asymptotically approaches infinity as cadence 

reduces towards zero, with a theoretical value of infinity for zero cadence. However, 

whenever α is negative, ι is positive. Therefore when there is a negative effect of cadence on 

fitted power output, there is actually a positive effect for the cadence / normalized power 

interaction or cadence / proportion of the session that has elapsed up to the current sampling 

point interaction on power output. Therefore, whilst there is still a theoretical power output of 

infinity produced for a zero cadence, there is effectively both a positve and negative effect of 

cadence on fitted power output. The negative effect of one of the cadence variables is 

effectively cancelled out or nullified by the positive effect of the other cadence variable.  

Indeed for the model with cadence / normalized power output interaction (equation 12), 

the coefficients for X1t and (Ct*X1t) tend to have opposite polarity to each other. The power 

output the athlete can produce is affected in different ways by the normalized power output 

and by the (Ct*X1t) interaction – as they increase, one increases the power output he can 

produce whilst the other decreases the power output he can produce. Therefore normalized 

power output appears to have an effect on the power output the athlete can achieve that is 

independent of cadence. For the model with cadence interacted with proportion of the session 

that has elapsed up to the current sampling point (equation 13), there is also such opposite 

polarity (between estimates for X2t and (Ct*X2t)). Estimates tend to be negative for X2t and 

positive for (Ct*X2t). As proportion of the session that has elapsed up to the current sampling 

point increases – that is, the further into the session an athlete is – the lower the power output 
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he can achieve, possibly due to fatigue. However as cadence and proportion of the session that 

has elapsed up to the current sampling point both increase, the power output an athlete can 

achieve also increases. There appears therefore to be an effect of cadence that increases power 

output to such an extent that it negates the loss in power output that naturally occurs as the 

athlete progresses in the session. 

 

Table 35: Coefficient estimates for the non-linear models with a cadence / normalized power output 

interaction (equation 12) and a cadence / proportion of the current session that has elapsed up to the 

current sampling point (equation 13), for the high heart rate data subset, with a heart rate lag of 5 

seconds.   

  Athlete 1 Athlete 2 Athlete 3 Athlete 4 

  estimate Estimate Estimate Estimate 

Cadence / normalized power output interaction (model in equation 12) 

α 2.492 (0.084) 0.349 (1.871) 1.266 (01.570) -2.267 (1.157) 

β 0.024 (0.001) 0.036 (0.001) -0.0009 (0.002) -0.004 (0.001) 

γ 1.336 (0.037) 1.671 (0.056) 1.242 (0.065) 1.339 (0.046) 

μ 0.0001 0.00002 0.002 0.003 

log (μ) -9.984 (0.271) -10.99 (0.385) -6.402 (0.539) -5.847 (0.295) 

δ 0.608 (0.057) -2.172 (1.870) 0.902 (1.575) -2.725 (1.159) 

ε -0.004 (0.003) 0.004 (0.006) -0.038 (0.007) -0.069 (0.005) 

η 0.011 (0.002) 0.007 (0.005) 0.005 (0.004)  0.008 (0.002) 

θ 0.038 (0.006) 0.027 (0.010) 0.022 (0.008) -0.019 (0.006) 

ι -0.423 (0.048) 2.169 (1.871) -0.542 (1.575) 2.973 (1.159) 

Cadence / proportion of the current session that has elapsed up to the current time 

point interaction (model in equation 13) 

α -0.911 (0.699) 0.349 (1.871) 1.266 (1.570) 0.689 (0.053) 

β 0.024 (0.001) 0.036 (0.001) -0.0009 (0.002) -0.004 (0.001) 

γ 1.416 (0.036) 1.671 (0.056) 1.230 (0.066) 1.345 (0.048) 

μ 0.0001 0.00002 0.002 0.003 

log (μ) -9.983 (0.273) -10.99 (0.385) -6.402 (0.539) -5.798 (0.295) 

δ 0.125 (0.013) -0.003 (0.038) 0.360 (0.031) 0.248 (0.021) 

ε -2.988 (0.702) -2.165 (1.871) 0.504 (1.575) -0.078 (0.013) 

η 0.012 (0.002) 0.007 (0.005) 0.005 (0.004) 0.008 (0.002) 

θ 0.040 (0.006) 0.027 (0.010) 0.022 (0.008) -0.018 (0.006) 

ι 2.984 (0.702) 2.169 (1.871) -0.542 (1.575) 0.009 (0.013) 

 

Athlete 2 exhibits very little difference in coefficient estimates between the two different 

interactions ((Ct*X1t) and (Ct*X2t), in models in equations 12 and 13 respectively).  This 

appears to be further evidence that the power output this athlete is able to produce is only 

marginally affected by other covariates relating to his performance, compared to other athletes 

who are affected to a greater extent. 

The coefficient estimates for the models including (Ct*X1t) and (Ct*X2t) interactions 

(equations 12 and 13 respectively) vary in the appparent validity of the model fit. We now 

present the explanatory power and AIC of these models in table 36. For those models with 

positive α (which is required for valid fit of the power output cadence relationship), we can 

observe trends in explanatory power. For athletes for whom α is negative (and therefore the 
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model does not provide a valid representation of the power output cadence relationship), the 

results are italicised and asterisks added. 

There is minimal difference between the two models (equations 12 and 13). There is also 

only a marginal increase in explanatory power for models 12 and 13 compared to the other 

non-linear models with extra covariates (equations 10 and 11). 

When α is negative (italicised rows in tables 36) the fitted power output cadence 

relationship does not necessarily provide a valid representation of the true power output 

cadence relationship. For athlete 1, α is positive for the model with cadence interacted with 

normalized power output (equation 12) but negative for the model with cadence interacted 

with proportion of the session that has elapsed up to the current sampling point (equation 13). 

Given that these models (equations 12 and 13) yield approximately the same explanatory 

power, we might expect a lower explanatory power for the model in equation 13 with the 

negative coefficient estimate for α, but in fact AIC is slightly higher for the model in equation 

13 than for the model in equation 12. This may mean that model fit is equally poor for both of 

these models, or that there is an extreme amount of noise in the data.  Athlete 2 is not affected 

much by extra covariates. The explanatory power and even the AIC and BIC are very similar 

for both models (in equations 12 and 13). 

 

Table 36: Explanatory power (R
2
), AIC and BIC for the non-linear model with cadence / normalized 

power output interaction (equation 12) and cadence / proportion of the current session that has elapsed 

up to the current sampling point  (equation 13) for the high heart rate data subset, with heart rate 

lagged at 5 seconds.   

  N AIC BIC R2 

Cadence / normalized power output interaction (model in equation 12) 

A1 9641 57225 57261 38.3 

A2 6181 43326 43359 47.4 

A3 4164 24421 24453 11.3 

*A4 *6504 *55587 *55621 *17.2 

Cadence / proportion of the current session that has elapsed up to the current time 

point interaction (model in equation 13) 

*A1 *9641 *57284 *57319 *38.2 

A2 6181 43326 43359 47.4 

A3 4164 24421 24453 11.4 

A4 6504 55596 55630 17.2 

 

When cadence is interacted with normalized power output (X1t) or porportion of the 

session that has elapsed up to the current sampling point (X2t), the optimum cadence depends 

on the values of X1t  and X2t. For these models (in equations 12 and 13), we calculate optimum 

cadence by plotting fitted power output against cadence for a range of cadences that the 

athletes have ridden at in their training sessions. The range of values found in the data for 

normalized power output varies by athlete. The mean values for normalized power output are 

1113, 1370, 1568 and 1293 for athletes 1, 2, 3 and 4 respectively. We include only high heart 

rate data as we seek to find an optimum cadence for conditions that are reasonably close to 

actual competitions or races. Similarly when we consider normalized power output, we seek 

an optimum cadence for training conditions that are a reasonably close match to the 

normalized power output from a competition. Therefore we do not consider finding an 
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optimum cadence for particularly low normalized power outputs. Instead, we consider a range 

of normalized power outputs that begin slightly below mean, in intervals up to the maximum 

recorded normalized power output for each athlete. We consider the following ranges of 

normalized power output, in table 37. 

 

Table 37: Range of values normalized power output (X1t, normalized power output up to the current 

sampling point) is set to for yielding optimum cadence in the model in equation 12, for each athlete. 

Athlete Mean Maximum Range       

1 1113 2041 1000 1300 1700 2000 

2 1370 2218 1200 1500 1800 2100 

3 1568 2646 1500 1850 2200 2550 

4 1293 2814 1200 1700 2200 2700 

 

The proportion of the session that has elapsed up to the current sampling point is simply a 

proportion ranging from 0 to 1. We set this to intervals of 0.3 – that is 0.1, 0.4, 0.7 and 1, to 

give a broad spread of different times or sections of a session.  

We present optimum cadences in tables 38 and 39. Optimum cadences for models in 

equations 12 and 13 are not affected by the interactions – they are the same for each level of 

normalized power output (X1t) or proportion of the session that has elapsed up to the current 

sampling point (X2t). 

 

Table 38: Optimum cadences for the non-linear model (equation 12), for the high heart rate data 

subset. 

 Athlete 1  Athlete 2 

Normalized  

Power output (X1t) for 

Athlete 1 

Optimum        

Cadence 

Normalized  

Power output (X1t) for 

Athlete 2 

Optimum        

Cadence 

1000 86.58 1200 70.58 

1300 86.58 1500 70.58 

1700 86.58 1800 70.58 

2000 86.58 2100 70.58 

 

Table 39: Optimum cadences for the non-linear model (equation 13), for the high heart rate data 

subset. 

 Athlete 1  Athlete 2 

Proportion of session 

that has elapsed (X2t) 

for Athlete 1 

Optimum        

Cadence 

Proportion of session 

that has elapsed (X2t) 

for Athlete 2 

Optimum        

Cadence 

0.1 86.50 0.1 70.58 

0.4 86.50 0.4 70.58 

0.7 86.50 0.7 70.58 

0.9 86.50 0.9 70.58 
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We present plots of expected power output against cadence for models in equations 12 

and 13 (in figures 15 and 16 respectively). Whenever there is a negative value for ι (the 

coefficient for the (Ct*X1t) or (Ct*X2t) interaction in models in equations 12 and 13 

respectively), the fitted power output cannot be calculated for zero normalized power output 

or when no time has elapsed in the session, as we would have to raise zero to a negative 

power output. Therefore we begin the range of values for X1t and X2t for the curve fitting 

above zero. For athlete 2, fitted power output varies very little with either covariate 

interaction (models in equations 12 and 13). For athlete 2 fitted power output decreases with 

normalized power output but increases with the proportion of the session that has elapsed up 

to the current sampling point, whereas the opposite occurs for the remaining athletes. For 

athlete 2 therefore it appears that he does not fatigue within a typical session. We do not know 

how normalized power outputs are distributed within a session; high normalized power 

outputs could tend to be concentrated at the end of a session, with the athlete building up to an 

intense finish to the session – hence an effect of X2t could potentially also represent an effect 

of normalized power output (X1t). For the remaining athletes (1, 3 and 4) fitted power output 

appears to vary more with proportion of the session that has elapsed up to the current 

sampling point (X2t) than it does with normalized power output (X1t). This indicates that how 

far into a session the athlete is could be more important than is normalized power output.  

 

 

Figure 15: Fitted power output (red curves) from the non-linear model with cadence/normalized power 

output interaction (equation 12), and power output measurements (black dots) against cadence, for 

athletes 1 to 4 (read lexicographically), for the high heart rate data sub subset.  The different red 

curves
 
represent different values for normalized power output (X1t). For athletes 1, 3 and 4, X1t 

increases from the bottom red curve to the top (i.e. power output increases with X1t), but for athlete 2 

X1t increases from top red curve to bottom. Heart rate is lagged at 5 seconds. Heart rate and other 

variables are set to typical values.
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Figure 16: Fitted power output (red curve) from the non-linear model with cadence interacted with 

proportion of the session that has elapsed up to the current sampling point (equation 13), and power 

output measurements (black dots) against cadence, for athletes 1 to 4 (read lexicographically), for the 

high heart rate data subset.  The different red curves represent values for the proportion of time that 

has elapsed in the current session up to the current sampling point (X2t – 0.1, 0.4, 0.7 and 1). For 

athletes 1, 3 and 4, X2t increases from the top red curve to the bottom (i.e. power output decreases as 

X2t increases), but for athlete 2 X2t increases from bottom red curve to top. Heart rate is
 
lagged at 5 

seconds. Heart rate and other variables are set to typical values. 

 

4.5. Deviation from optimum cadence 

The non-linear model of power output, heart rate and cadence (equation 7) yields an optimum 

cadence for athlete 2 when we include all sampled data. When we fit the same model using 

only high heart rate data (sampled data in which heart rate measurements are greater than the 

mean heart rate for each athlete) optimum cadences are yielded for athletes 1 and 2. Having 

found an optimum cadence (that cadence that maximises power output for a given heart rate), 

we may further investigate the importance of an optimum cadence.   

The measure of importance of the optimum cadence may be represented by the change in 

performance that is affected by deviations from optimum cadence (that is, the level of 

decrease in power output that occurs when the athlete is no longer pedalling at the optimum 

pedalling rate). We can investigate this by comparing power output in the fitted power output 

cadence curve for various cadences above and below the optimum cadence for that particular 

athlete and that particular model. Cadences that are 5, 10 and 20 rpm below and above the 

optimum cadence are investigated. This is done for all models that yield an optimum cadence, 



Exploration of linear and non-linear model fitting 

94 

which includes models fitted for all sampled data and also models fitted for just high heart 

rate data (where we only include data in which recorded heart rate is higher than the overall 

mean heart rate for each athlete). This also includes models in our sensitivity analysis, in 

which we considered a rage of data processing constants – window widths (k, or the size of 

the moving average smoother) and heart rate lag, l. 

We present results for deviation from optimum cadence, starting with the simple non-

linear model in equation 7. We present expected power output for a range of sub-optimal 

cadences for this model (equation 7) in table 40.  

 

Table 40: Differences in fitted power output for athlete 2 using the simple non-linear model (equation 

7) with a heart rate lags of 5 seconds, for various cadences above and below the optimum cadence. 

 
change in   Expected  

change 

in % change 

 

C from C* Cadence 

power 

output 

Power 

output 

in power 

output 

 
l = 1 

 

-20 71.3 197.7 -8.3 -4.0 

 

-10 81.3 204.0 -1.9 -0.9 

 -5 86.3 205.5 -0.5 -0.2 

 91.3 206.0     

 5 96.3 205.5 -0.4 -0.2 

 

10 101.3 204.3 -1.7 -0.8 

 

20 111.3 199.8 -6.2 -3.0 

  

There is a greater reduction in power output for cadences below the optimum compared 

to cadences above the optimum. The higher the power output, the greater the reduction in 

power output for sub-optimal cadences, suggesting that it is more important for the athlete to 

select his cadence carefully if he is able to produce a high power output.   

Next we fit the same model (equation 7) for conditions likely to represent race conditions. 

We calculate the mean of all sampled heart rate measurements (which we term the overall 

mean heart rate for each athlete). We retain data in which heart rate is greater than the overall 

mean heart rate for each athlete. We term this the high heart rate data subset. We present 

expected power output for sub-optimal cadences for this model (equation 7, using only high 

heart rate data) in table 41. 

When we fit the model in equation 7 for the high heart rate data subset, peak fitted power 

output increases to 226.6, compared to 205 when all sampled data are included for this model. 

We would expect such an increase as power output tends to increase with increasing heart 

rate. Training schedules include some very long low-intensity rides, in which heart rate is 

likely to be lower than in a more intense training session or in a race. For the high heart rate 

data subset, in which fitted power output (from the model in equation 7) is higher, reduction 

in power output for sub-optimal cadences is greater. This emphasises the importance of 

optimal cadence selection in race conditions. 
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Table 41: Differences in fitted power output for athlete 1 (left) and athlete 2 (right) using the simple 

non-linear model (equation 7) for the high heart rate data subset,  with a heart rate lag of 5 seconds, for 

various cadences above and below the optimum cadence. 

change 

in   Expected  

change 

in 

% 

change 

 

change 

in   Expected  

change 

in 

% 

change 

C 

from 

C* cadence 

power 

output 

power 

output 

in 

power 

output 

 

C 

from 

C* cadence 

power 

output 

power 

output 

in 

power 

output 

-20 67.1 185.0 -12.1 -6.1 

 

-20 50.5 203.8 -27.2 -11.8 

-10 77.1 194.3 -2.8 -1.4 

 

-10 60.5 224.6 -6.3 -2.7 

-5 82.1 196.4 -0.7 -0.3 

 

-5 65.5 229.5 -1.5 -0.7 

  87.1 197.1      70.5 231.0     

5 92.1 196.5 -0.6 -0.3 

 

5 75.5 229.5 -1.4 -0.6 

10 97.1 194.7 -2.4 -1.2 

 

10 80.5 225.6 -5.3 -2.3 

20 107.1 188.2 -8.9 -4.5 

 

20 90.5 212.0 -19.0 -8.2 

 

For the high heart rate data subset we are also able to compare results for different 

athletes. Reduction in power output for sub-optimal cadences is greater for athlete 1 compared 

to athlete 2. In fact for 20 rpm below optimal cadence, the reduction in power output is 

approximately 50% greater for athlete 2 compared to athlete 1 (11.8% less compared to 6.1% 

less). This may be due to the higher overall fitted power output for athlete 2 compared to 

athlete 1 (at least for high heart rate data). Alternatively there may be some physiological 

differences between athletes that affects the respective ability of each athlete to produce 

power outputs at different cadences, or strategic differences in riding styles, which may not be 

captured by these statistical models. Such differences may affect an athlete’s performance for 

different cadences. Conceivably the higher power output for athlete 2 and some other 

physiological differences may both combine to affect the penalty for deviation from optimum 

cadence differently for different athletes. 

Next we interact cadence with heart rate in the model in equation 9. We present expected 

power outputs for a range of sub-optimal cadences for this model (equation 9) in table 42. 

The greater the heart rate, the greater the reduction in power output for sub-optimal 

cadences. The greater heart rate could to some extent represent a greater effort or intensity; 

therefore this may emphasise the importance for optimal cadence selection in races. Athletes 

may vary in their knowledge of impact of cadence on performance, so it is conceivable for an 

athlete to ride 10 to 15 rpm below or above their individual mathematical optimum cadence 

and therefore fail to produce the maximum power output for the conditions. 

For each heart rate, deviating from optimum cadence reduces power output more for 

athlete 2 than it does for athlete 1. There is a marked trend for more reduced power output in 

sub-optimal cadences for athlete 2 than for athlete 1. The fitted power output is consistently 

higher for athlete 2 than it is for athlete 1, for the high heart rate data subset. 
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Table 42: Differences in fitted power output for athlete 1 (left) and athlete 2 (right) using the non-

linear model cadence heart rate interaction model (equation 9) for the high heart rate data subset, with 

a heart rate lag of 5 seconds, for various cadences above and below the optimum cadence, for  a range 

of heart rates. 

 

change 

in   Expected  

change 

in 

% 

change 

 

change 

in   Expected  

change 

in 

% 

change 

 

C 

from 

C* cadence 

power 

output 

power 

output 

in 

power 

output 

 

C 

from 

C* cadence 

power 

output 

power 

output 

in 

power 

output 

 

H = mean 

 

H = mean 

 

-20 70.9 187.7 -9.4 -4.8 

 

-20 53.4 212.3 -23.1 -9.8 

 

-10 80.9 194.9 -2.2 -1.1 

 

-10 63.4 230.0 -5.4 -2.3 

 -5 85.9 196.6 -0.5 -0.3  -5 68.4 234.1 -1.3 -0.5 

 90.9 197.1      73.4 235.4     

 5 95.9 196.6 -0.5 -0.3  5 78.4 234.2 -1.2 -0.5 

 10 100.9 195.2 -1.9 -1.0  10 83.4 230.9 -4.5 -1.9 

 20 110.9 190.0 -7.1 -3.6  20 93.4 219.2 -16.2 -6.9 

 H = mean + 20  H = mean + 20 

 -20 60.3 222.9 -14.9 -6.3  -20 44.0 251.0 -38.0 -13.2 

 -10 70.3 234.4 -3.5 -1.5  -10 54.0 280.2 -8.8 -3.1 

 -5 75.3 237.0 -0.8 -0.3  -5 59.0 286.9 -2.1 -0.7 

 80.3 237.8      64.0 289.0     

 5 85.3 237.1 -0.8 -0.3  5 69.0 287.2 -1.9 -0.6 

 10 90.3 234.9 -2.9 -1.2  10 74.0 281.9 -7.1 -2.5 

 20 100.3 227.1 -10.7 -4.5  20 84.0 263.8 -25.3 -8.7 

 H = mean + 40  H = mean + 40 

 -20 51.8 258.7 -22.4 -8.0  -20 36.8 287.5 -58.8 -17.0 

 -10 61.8 275.9 -5.2 -1.8  -10 46.8 332.7 -13.6 -3.9 

 -5 66.8 279.8 -1.2 -0.4  -5 51.8 343.0 -3.2 -0.9 

 71.8 281.0      56.8 346.3     

 5 76.8 279.9 -1.1 -0.4  5 61.8 343.4 -2.8 -0.8 

 
10 81.8 276.8 -4.3 -1.5 

 

10 66.8 335.6 -10.7 -3.1 

 
20 91.8 265.6 -15.5 -5.5 

 

20 76.8 308.9 -37.3 -10.8 

 

We also consider a range of additional covariates to capture further aspects of an athlete’s 

riding. These are normalized power output in the current session up to the current sampling 

point, (X1t), proportion of time that has elapsed in the currrent session up to the current 

sampling point (X2t), mean of the normalized power outputs over the previous seven days (X3) 

and mean session duration of the previous seven days (X4). This produces the model in 

equation 10. We smooth data over a moving average of width 60 seconds (k=12), and settle 

for a heart rate lag of 5 seconds (l=1). First we tested this model for including all sampled 

data.We then split the data based on heart rate, into low or high heart rate categories. Low 

heart rate data refers to data in which heart rate was less than the mean of all recorded heart 

rate measurements for each athlete, whereas high heart rate data refers to data in which heart 

rate was higher than the mean of all recorded heart rate measurements. Optimum cadences are 

yielded for athletes 1 and 2 for high heart rate data, but no optimum cadences are yielded for 

low heart rate data. The following expected power outputs are yielded for the model with 

additional covariates (in equation 10) for all sampled data (which we present in table 43), then 

for high heart rate data (in table 44), for a range of sub-optimal cadences. 
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Compared to the simple non-linear model without extra covariates (equation 7), for the 

equivalent heart rate lag of 5 seconds, reduction in power output for sub-optimal cadences is 

slightly less with the inclusion of the extra covariates. The expected power output is lower 

compared to the model in equation 7, further suggesting that the importance of cadence 

selection increases with power output. 

 

Table 43: Differences in fitted power output for athlete 2 using the non-linear model with extra 

covariates  (equation 10), for all sampled data, with a heart rate lag of 5 seconds, for various cadences 

above and below the optimum cadence. 

 

change in   Expected  

change 

in % change 

 

C from C* cadence 

power 

output 

Power 

output 

in power 

output 

 

-20 67.67 156.4 -7.0 -4.3 

 

-10 77.67 161.8 -1.6 -1.0 

 -5 82.67 163.0 -0.4 -0.2 

 87.67 163.4     

 5 92.67 163.1 -0.4 -0.2 

 

10 97.67 162.0 -1.4 -0.9 

 

20 107.67 158.3 -5.2 -3.2 

 

Table 44: Differences in fitted power output for athlete 1 (left) and athlete 2 (right) using the non-

linear model with extra covariates (equation 10) , for the high heart rate data subset, with a heart rate 

lag of 5 seconds, for various cadences above and below the optimum cadence. 

 

change 

in   Expected  

change 

in 

% 

change 

 

change 

in   Expected  

change 

in 

% 

change 

 

C 

from 

C* Cadence 

Power 

output 

power 

output 

in 

power 

output 

 

C 

from 

C* Cadence 

Power 

output 

power 

output 

in 

power 

output 

 

-20 67.1 185.0 -12.1 -6.1 

 

-20 50.5 203.8 -27.2 -11.8 

 

-10 77.1 194.3 -2.8 -1.4 

 

-10 60.5 224.6 -6.3 -2.7 

 -5 82.1 196.4 -0.7 -0.3  -5 65.5 229.5 -1.5 -0.7 

 87.1 197.1      70.5 231.0     

 5 92.1 196.5 -0.6 -0.3  5 75.5 229.5 -1.4 -0.6 

 

10 97.1 194.7 -2.4 -1.2 

 

10 80.5 225.6 -5.3 -2.3 

 

20 107.1 188.2 -8.9 -4.5 

 

20 90.5 212.0 -19.0 -8.2 

 

We expand the model with cadence / heart rate interaction to include extra covariates, 

producing the  model in equation 11. We present expected power output for a range of sub-

optimal cadences for the model in equation 11 in table 45.  

We also interact cadence with normalized power output and the proportion of the session 

that has elapsed up to the current sampling point, producing the models in equations 12 and 

13. However cadence is not affected by either additional variable, so we do not present tables 

of power output at sub-optimal cadences for these models (in equations 12 and 13) 

Including extra covariates increases the explanatory power of the models but has little 

impact on optimum cadence. There is also little difference in the patterns of deviation from 

optimum cadence.  The reduction in power output for sub-optimal cadences again increases 
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with heart rate.  It also appears to vary by athlete (reduction in power output is greater for 

athlete 2 than for athlete 1).   

The greater reduction in power output for sub-optimal cadence for athlete 2 compared to 

athlete 1 may be partly due to the generally higher power output for athlete 2 compared to 

athlete 1. Nevertheless we would not expect all athletes to produce the same power output 

when riding. Therefore we may still conclude that the importance of an optimum cadence, 

(i.e. the amount by which power output reduces for sub-optimal cadences) may vary by 

athlete.  

 

Table 45: Differences in fitted power output for athlete 1 (left) and athlete 2 (right) using the non-

linear cadence heart rate interaction model  (equation 11), for the high heart rate data subset, with a 

heart rate lag of 5 seconds, for various cadences above above and below the optimum cadence, for  a 

range of heart rates. 

 

change 

in   Expected  

change 

in 

% 

change 

 

change 

in   Expected  

change 

in 

% 

change 

 

C 

from 

C* cadence 

power 

output 

power 

output 

in 

power 

output 

 

C 

from 

C* cadence 

power 

output 

power 

output 

in 

power 

output 

 

H = mean 

 

H = mean 

 

-20 70.9 187.7 -9.4 -4.8 

 

-20 53.4 212.3 -23.1 -9.8 

 

-10 80.9 194.9 -2.2 -1.1 

 

-10 63.4 230.0 -5.4 -2.3 

 -5 85.9 196.6 -0.5 -0.3  -5 68.4 234.1 -1.3 -0.5 

 90.9 197.1      73.4 235.4     

 5 95.9 196.6 -0.5 -0.3  5 78.4 234.2 -1.2 -0.5 

 10 100.9 195.2 -1.9 -1.0  10 83.4 230.9 -4.5 -1.9 

 20 110.9 190.0 -7.1 -3.6  20 93.4 219.2 -16.2 -6.9 

 H = mean + 20  H = mean + 20 

 -20 60.3 222.9 -14.9 -6.3  -20 44.0 251.0 -38.0 -13.2 

 -10 70.3 234.4 -3.5 -1.5  -10 54.0 280.2 -8.8 -3.1 

 -5 75.3 237.0 -0.8 -0.3  -5 59.0 286.9 -2.1 -0.7 

 80.3 237.8      64.0 289.0     

 5 85.3 237.1 -0.8 -0.3  5 69.0 287.2 -1.9 -0.6 

 10 90.3 234.9 -2.9 -1.2  10 74.0 281.9 -7.1 -2.5 

 20 100.3 227.1 -10.7 -4.5  20 84.0 263.8 -25.3 -8.7 

 H = mean + 40  H = mean + 40 

 -20 51.8 258.7 -22.4 -8.0  -20 36.8 287.5 -58.8 -17.0 

 -10 61.8 275.9 -5.2 -1.8  -10 46.8 332.7 -13.6 -3.9 

 -5 66.8 279.8 -1.2 -0.4  -5 51.8 343.0 -3.2 -0.9 

 71.8 281.0      56.8 346.3     

 5 76.8 279.9 -1.1 -0.4  5 61.8 343.4 -2.8 -0.8 

 

10 81.8 276.8 -4.3 -1.5 

 

10 66.8 335.6 -10.7 -3.1 

 

20 91.8 265.6 -15.5 -5.5 

 

20 76.8 308.9 -37.3 -10.8 
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4.6. Summary of optimum cadences found 

We present a summary of optimum cadences for regression models explored in chapter 4. We 

begin with linear models (models in which the implied power output cadence relationship is 

linear), then present optimum cadences for non-linear models (models in which the implied 

power output cadence relationship is non-linear). The first non-linear models featured only 

power output and cadence in the regression equation. We then include heart rate, building 

non-linear models of power output, heart rate and cadence. 

 

4.6.1. Optimum cadences from initial non-linear models of power output and cadence 

Initially when exploring models of power output and cadence that yield a non-linear power 

output cadence relationship, we do not include heart rate in the model. Instead we focus on 

the power output cadence relationship and split the data into subsets of groups based on heart 

rate. We present the optimum cadence (the cadence that maximises fitted power output) for 

each data subset in tables 46 to 50, for all four athletes together in the same regression 

analysis and then each athlete (1 to 4) separately.  In the tables C* refers to the optimum 

cadence, and P* refers to the corresponding power output obtained at that cadence.  

 

Table 46: Optimum cadence (C*) for various data sets (different ranges of recorded heart rates) and 

the corresponding power output (P*) from the non-linear model of power output and cadence, for all 

four athletes. 

HR range   C* P* 

40 - 50 69.92 83.62 

50 - 60 * 116.10 

60 - 70 50.42 67.54 

70 - 80 81.00 76.49 

80 - 90 99.58 97.01 

90 - 100 100.08 122.37 

100 - 110 80.75 139.03 

110 - 120 72.17 161.18 

120 - 130 72.83 185.50 

130 - 140 73.42 209.75 

140 - 150 71.17 229.24 

150 - 160 64.67 260.69 

160 - 170 90.75 290.03 

170 - 180 * 287.37 

180 - 190 * 296.35 

190 - 200 * 290.73 

  

ALL 109.75 211.02 
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Table 47: Optimum cadence (C*) for various data sets (different ranges of recorded heart rates) and 

the corresponding power output (P*) from the non-linear model of power output and cadence, for 

athlete 1. 

HR range   C* P* 

40 - 50 * 47.47 

50 - 60 * 91.36 

60 - 70 50.17 85.48 

70 - 80 * 101.71 

80 - 90 49.92 70.94 

90 - 100 65.17 74.76 

100 - 110 82.42 95.84 

110 - 120 101.33 121.24 

120 - 130 106.08 147.62 

130 - 140 105.33 173.99 

140 - 150 83.58 187.34 

150 - 160 76.50 206.10 

160 - 170 97.83 234.97 

170 - 180 95.08 265.89 

180 - 190 95.75 282.57 

190 - 200 * 214.67 

  

ALL * 197.89 

 

Table 48: Optimum cadence (C*) for various data sets (different ranges of recorded heart rates) and 

the corresponding power output (P*) from the non-linear model of power output and cadence, for 

athlete 2. 

HR range   C* P* 

40 - 50 * 194.87 

50 - 60 * 143.21 

60 - 70 * 113.21 

70 - 80 * 66.63 

80 - 90 73.75 66.50 

90 - 100 72.67 96.05 

100 - 110 67.58 129.99 

110 - 120 65.25 168.51 

120 - 130 66.50 202.46 

130 - 140 65.92 238.84 

140 - 150 66.08 274.46 

150 - 160 62.08 317.26 

160 - 170 77.83 337.19 

170 - 180 96.42 228.00 

180 - 190 * 135.20 

190 - 200 71.83 203.80 

  

ALL 78.50 199.40 
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Table 49: Optimum cadence (C*) for various data sets (different ranges of recorded heart rates) and 

the corresponding power output (P*) from the non-linear model of power output and cadence, for 

athlete 3. 

HR range   C* P* 

40 - 50 * 92.98 

50 - 60 * 111.12 

60 - 70 * 81.07 

70 - 80 73.92 88.74 

80 - 90 100.83 106.20 

90 - 100 102.92 131.96 

100 - 110 90.75 155.25 

110 - 120 88.83 188.34 

120 - 130 89.33 223.63 

130 - 140 * 264.58 

140 - 150 * 288.81 

150 - 160 88.33 304.31 

160 - 170 * 372.46 

170 - 180 97.75 47.15 

180 - 190 * 241.05 

190 - 200 * 238.61 

  

ALL * 277.94 

 

Table 50: Optimum cadence (C*) for various data sets (different ranges of recorded heart rates) and 

the corresponding power output (P*) from the non-linear model of power output and cadence, for 

athlete 4. 

HR range   C* P* 

40 - 50 52.42 63.38 

50 - 60 96.33 126.85 

60 - 70 50.33 61.18 

70 - 80 66.25 75.10 

80 - 90 71.00 98.30 

90 - 100 84.92 126.82 

100 - 110 76.25 147.09 

110 - 120 78.42 173.238 

120 - 130 78.75 199.53 

130 - 140 78.92 224.39 

140 - 150 80.25 249.34 

150 - 160 101.00 293.46 

160 - 170 85.75 324.68 

170 - 180 * 391.36 

180 - 190 20.58 2.55 

190 - 200 * 217.99 

  

ALL * 263.69 
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4.6.2. Optimum cadences from non-linear models of power output, heart rate and 

cadence. 

Having found a range of plausible optimum cadences for non-linear models of just power 

output and cadence, we now seek to develop a non-linear model that also incorporates heart 

rate.  Similarly to the linear models, we can calculate an optimum cadence mathematically (as 

outlined in the methodology section). We also present 95% confidence intervals for each 

mathematically calculated optimum cadence (the intervals are presented in parenthesis after 

the optimum cadences). 

We fit the following non-linear model of power output, heart rate and cadence (equation 

7). We initially smooth data using a moving average window of 60 seconds (k=12), and a 

heart rate lag of 5 seconds (l=1). We present optimum cadences in table 51 for this non-linear 

model (equation 7). 

 

Table 51: Optimum cadences for the simple non-linear model (equation 7), in which heart rate is 

lagged at 5 seconds (l=1). 

Athlete 1 Athlete 2 Athlete 3 Athlete 4 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

* 88.28 (87.46, 89.09) * * 

 

We also explore the effects of heart rate on optimum cadence. When fitting power output 

cadence curves for the simple non-linear model (equation 7) heart rate is fixed to a range of 

values (40 bpm below mean, the mean itself, and 40 above mean).  Mean indicates the mean 

heart rate from all recorded heart rate measurements, calculated for each athlete. Optimum 

cadence does not change with heart rate. However we also interact cadence with heart rate 

(equation 9). Optimum cadences are yielded for athlete 2 (displayed in table 52), but these are 

unrealistic. Only at very high heart rates (190 beats per minute – that is, mean heart rate plus 

40 beats per minute) is a realistic optimum cadence produced. 

 

Table 52: Optimum cadences for the cadence heart rate interaction non-linear model (equation 9), in 

which heart rate is lagged at 5 seconds (l=1). 

 Athlete 1 Athlete 2 Athlete 3 Athlete 4 

 Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

cadence 

H = mean * 226 * * 

H = mean + 20 * 149 * * 

H = mean + 40 * 111 * * 

 

Next we split data into to two groups based on heart rate. We calculate the mean of all 

sampled heart rate measurements (the overall mean heart rate for each athlete). One group 

contains only data in which heart rate is less than the overall mean heart rate for each athlete 

(the low heart rate data subset), and the other group contains only data in which heart rate is 

greater than the overall mean heart rate for each athlete (the high heart rate data subset). We 

fit models in equations 7 and 9. For the model in equation 7, optimum cadence is the same 
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whatever value to which heart rate is fixed when plotting power output cadence curves. We 

present these optimum cadences (for low and high heart rate data separately) in table 53. 

Heart rate remains lagged at five seconds (l=1).  For the model in equation 9, optimum 

cadence depends on heart rate – we therefore we consider a range of values for testing the 

sensitivity of optimum cadence to heart rate. Optimum cadences are found for athletes 1 and 2 

for the high heart rate data subset, as presented in table 54.  

 

Table 53: Optimum cadences for the simple non-linear model (equation 7), fitted separately for low 

and high heart rate data subsets. 

Athlete 1 Athlete 2 Athlete 3 Athlete 4 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Low heart rate data – no optimum cadences 

High heart rate data 

90.48 (90.06, 90.90) 75.85 (75.33, 75.36) * * 

 

Table 54: Optimum cadences for the cadence heart rate interaction non-linear model (equation 9), for 

low and high heart rate data subsets. 

 Athlete 1 Athlete 2 Athlete 3 Athlete 4 

 Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Low heart rate data – no optimum cadences 

High heart rate data 

H = mean 90.92 73.42 * * 

H = mean + 20 80.25 64.00 * * 

H = mean + 40 71.83 56.75 * * 

 

The models yield a range of optimum cadences for two athletes when fitted to the high 

heart rate data subset, but do not yield any optimum cadences when fitted to the low heart rate 

data subset.  We believe this is because high heart rate data is more representative of 

competitions and races, as the athlete is trying to maximise his power output in a race and this 

requires great physical exertion, which a high heart rate to some extent is likely to represent. 

We also consider a range of additional covariates to capture further aspects of an athlete’s 

riding. These are normalized power output in the current session up to the current sampling 

point, (X1t), proportion of time that has elapsed in the current session up to the current 

sampling point (X2t), Mean of the normalized power outputs over the previous seven days (X3) 

and mean session duration of the previous seven days (X4). This produces the model in 

equation (10). We smooth data over a moving average of width 60 seconds (k=12), and settle 

for a heart rate lag of 5 seconds (l=1). We present optimum cadences yielded from the model 

(in equation 10) in table 55, fitted for all sampled data.  

Next we focus on data in which heart rate is greater than the overall mean heart rate for 

each athlete (high heart rate data) for the model with extra covariates (equation 10). We 
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present optimum cadences yielded from the model in equation 10, in which only high heart 

rate data are retained, in table 56. 

 

Table 55: Optimum cadences for the non-linear model with extra covariates (equation 10), with heart 

rate lagged at 5 seconds (l=1). 

Athlete 1 Athlete 2 Athlete 3 Athlete 4 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

* 87.70 (86.90, 88.49) * * 

 

Table 56: Optimum cadences for the non-linear model with extra covariates (equation 10), for the high 

heart rate data subset. Heart rate is lagged at 5 seconds (l=1). 

Athlete 1 Athlete 2 Athlete 3 Athlete 4 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

86.75 (86.29, 87.20) 70.60 (70.27, 70.94) * * 

 

We also interact cadence with heart rate, including a range of additional covariates, fitting 

this model (equation 11) to the high heart rate data subset. For this cadence heart rate 

interaction model (equation 11), we plot optimum cadence with heart rate set to a number of 

different values based on what is found in the data for each athlete. The optimum cadences for 

this model (equation 11) come from plotting fitted power output against cadence for a range 

of cadences the athlete has ridden at in his training sessions. We present optimum cadences 

yielded from this model (equation 11) in table 57. 

Next we present the range of optimum cadences yielded from the models with cadence 

interacted with normalized power output (X1t) and proportion of the current session that has 

elapsed up to the current sampling point (X2t), equations (12) and (13) respectively. We fitted 

such models to the high heart rate data subset. The optimum cadences for models in equations 

12 and 13 come from plotting fitted power output against cadence for a range of cadences the 

athlete has ridden at in his training sessions. We present optimum cadences yielded from 

models in equations 12 and 13 respectively in tables 58 and 59. 

 

Table 57: Optimum cadences for the non-linear cadence heart rate interaction model (equation 11), for 

the high heart rate data subset. 

 Athlete 1 Athlete 2 Athlete 3 Athlete 4 

 Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

cadence 

Optimum        

Cadence 

H = mean 90.17 73.58 * * 

H = mean + 20 79.67 64.17 * * 

H = mean + 40 71.33 56.92 * * 
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Table 58: Optimum cadences for the non-linear model (equation 12), for the high heart rate data 

subset. 

 Athlete 1  Athlete 2 

Normalized  

Power output (X1t) for 

Athlete 1 

Optimum        

Cadence 

Normalized  

Power output (X1t) for 

Athlete 2 

Optimum        

Cadence 

1000 86.58 1200 70.58 

1300 86.50 1500 70.58 

1700 86.58 1800 70.58 

2000 86.58 2100 70.58 

 

Table 59:  Optimum cadences for the non-linear model (equation 13), for the high heart rate data 

subset. 

 Athlete 1  Athlete 2 

Proportion of session 

that has elapsed (X2t) for 

Athlete 1 

Optimum        

Cadence 

Proportion of session 

that has elapsed (X2t) for 

Athlete 2 

Optimum        

Cadence 

0.1 86.50 0.1 70.58 

0.4 86.50 0.4 70.58 

0.7 86.50 0.7 70.58 

0.9 86.50 0.9 70.58 

 

4.7. Discussion of results 

We discuss results of linear and non-linear models of power output, heart rate and cadence. 

We compare optimum cadences with literature, and finally summarise our findings, stating 

our preferred model from chapter 4. 

 

4.7.1. Discussion of linear model results 

For the linear models, the inclusion of the cubic term produces a slight increase in optimum 

cadence. Although optimum cadences are yielded for athlete 4, they are not plausible; they are 

much lower than we would expect (16 for the quadratic model and 32 for the cubic model).  

We may therefore conclude that these optimum cadences cannot be considered valid, and that 

they are producing a theoretical optimum cadence by chance. Optimum cadences have not 

been yielded at all for athletes 1, 2 and 3.   

The lack of plausible optium cadences suggest that the quadratic and cubic models may 

not be valid methods for capturing the relationship between power output and cadence in the 

determinations of optimum cadence. The quadratic and cubic models provide a reasonable 

line of best fit through some of the more concentrated data points in scatterplots of power 

output measurements against real cadence values, but there are limitations to quadratic and 

cubic models.  When power output is zero, cadence should also be zero, as the athlete is not 

riding at that point.  This is not guaranteed from a quadratic or cubic model, and indeed this 
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does not occur in the models in this analysis. A more sophisticated model may be required, 

that encompasses the intercept of zero (power output equals zero when cadence equals zero), 

and also provides a decreasing power output for very high cadences.  

 

4.7.2. Discussion of initial non-linear models of power output and cadence 

We sought a model of power output and cadence with a non-linear relationship. We fitted a 

gamma curve to represent the power output cadence relationship. So that we could focus on 

the power output cadence relationship of the model, we only model power output and 

cadence, and do not include heart rate in the model. We split the data into subsets based on 

different heart rates. A plausible optimum cadence is yielded for many heart rate subsets. 

However there tends not to be an optimum cadence at particularly low or high heart rates. At 

particularly low heart rates, though, the athlete may not necessarily be exerting much effort 

and therefore is not seeking to maximise power output when riding at such a low heart rate.  

For athletes 1, 3 and 4 there is no optimum cadence when we include all sampled (rather than 

splitting sampled data into subsets).   

For athlete 1, optimum cadences are highest for heart rate data between 110 and 140, 

where they are over 100. For athlete 2, optimum cadences tend to be between 60 and 80 but 

increase to over 90 at high heart rates. Optimum cadences are slightly higher for athlete 3 

compared to the others, as they are consistently over 88 and are over 100 for five of the heart 

rate data subsets.  For athlete 4 the highest optimum cadences (101 and 109) occur at 

relatively high heart rates (150-160 and 170-180 respectively). For athletes 1, 3 and 4 the 

optimum cadence is higher when all sampled data are included than for any individual data 

subset. 

In these gamma curves there is a general trend for optimum cadences to increase with 

heart rate (albeit more so for athletes 1, 2 and 4 than for athlete 3), possibly suggesting that 

when athletes exert more effort they are able to sustain higher cadences.  This may explain 

why professional cyclists choose higher cadences in race conditions than those found to be 

optimal from ergometer studies – athletes may not necessarily be exerting as much effort in 

ergometer studies compared to races. 

The corresponding fitted power output (produced from the model at the optimum cadence 

for the gamma curve) generally increases with heart rate (except for extremely high heart 

rates) for each athlete. This is expected as the athlete is likely to be exerting more effort when 

heart rates are higher. The highest corresponding power output is over 300 for athletes 2, 3 

and 4 but less for athlete 1 (whose fitted power output is 283). For athlete 4, the highest 

optimum cadence for all data subsets (108, when heart rates are between 170 and 180) also 

corresponds to the highest power output (391). The gamma curves consistently produce 

plausible optimum cadences, much more so than the quadratic and cubic models. 

The non-linear gamma curves clearly reflect the relationship between power output and 

cadence better than the quadratic and cubic models, yielding plausible optimum cadences, and 

producing power output in a realistic range for the given athlete. Quadratic and cubic models 

often failed to produce realistic power outputs and only produced optimum cadences by 

chance due to the shape of the curve.
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4.7.3. Discussion of non-linear models of power output, heart rate and cadence 

We incorporate heart rate into a non-linear model (equation 7). This model appears to provide 

a good representation of the power output cadence relationship, and provides the useful 

property that when power output is zero cadence is also zero. An optimum cadence is yielded 

only for athlete 2.  

We split the data into low heart rate and high heart rate subsets (lower than or higher than 

the mean heart rate in the sampled data for each athlete). This has a marked impact on 

optimum cadence. Optimum cadence for all sampled data for the non-linear model (equation 

7) is 88.3, but it is 75.6 for the high heart rate data subset (there is no optimum cadence 

yielded for the low heart rate data subset for any of the athletes in our study). Athlete 1 has an 

optimum cadence for the high heart rate data subset– a cadence of 90.5. The differences in 

optimum cadence between athletes 1 and 2 provide further evidence of the importance of 

having separate athlete coefficients and thus individual mathematical optimum cadences.  

In our analysis we defined the high heart rate data subset to be simply data in which  

heart rate is higher than the overall mean heart rate for an individual athlete, effectively 

splitting data into two halves (a low half and a high half). This appears a reasonable method 

for splitting data as it allows for direct comparison between high and low heart rate data 

subsets, and still maintains a vast amount of data for the high heart rate subset. We could 

alternatively have sought an even more precise replication of race conditions by taking, say, 

the top 20% or 30% of sampled data (that is the sampled data that contain the highest 20% or 

30% of heart rate measurements for each athlete). However during a race athletes pace 

themselves accordingly so, particularly for races with varying wind and terrain, and 

depending on strategy (whether an athlete is a team leader or whether they are effectively 

trying to disrupt the strategy of a rival team), and athlete’s heart rate may vary within a race. 

We could split heart rate data into a number of groups, say into five 20% groups (for example, 

the highest heart rate group would be data that contain the highest 20% of recorded heart rate 

measurements for each athlete).  However this would presumably achieve a similar effect to 

interacting heart rate with cadence in the model; effectively each method yields models that 

produce a range of optimum cadences depending on the heart rate. For the cadence heart rate 

interaction models we sought optimum cadences for three different heart rates (the mean, 20 

and 40 bpm above the mean heart rate for each athlete).  

We also fitted the model with cadence / heart rate interaction (equation 9) to the high 

heart rate data subset. For this model optimum cadence depends on heart rate, and indeed 

decreases with heart rate. Also the margin of decrease in optimum cadence decreases with 

each increase in heart rate. As heart rate increases, this may to some extent represent an 

increase in effort; he is unable to sustain such a high cadence at great effort, so the highest 

cadence he can sustain without hinderence to his riding technique reduces. In chapter 5 we 

include measures of training impulses, which are a calculation of accumulation of fatigue. The 

impact of a measurement of fatigue (using training impulses) may be much more easy to 

interpret than the impact of heart rate on optimum cadence. The reduced optimum cadence for 

models fitted to the high heart rate data subset (compared to the same models fitted to all 

sampled data) could suggest that optimum cadence decreases as the athlete exerts more effort. 

Heart rate is not a direct measure of effort or training intensity; it can be influenced by other 

elements such as fitness. Nevertheless training schedules include some very long low-
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intensity sessions; heart rate is likely to be lower for such sessions compared to more intense 

sessions or races. Broadly, as heart racte increases, so too does power output. We believe the 

high heart rate data subset is likely to more closely represent race conditions than does the use 

of all sampled data.  

We therefore consider it more important to find an optimum cadence for models fitted to 

the high heart rate data subset than for models fitted to all sampled data or for the low heart 

rate data subset. In fact for the high heart rate data subset optimum cadences are yielded for 

athletes 1 and 2, as opposed to only athlete 2 for all sampled data and none for the low heart 

rate data subset. That the presence of an optimum cadence is found more often for high heart 

rate data may suggests cadence selection in general is likely to be important in race 

conditions.  Data within the low heart rate subset may represent long low-intensity training 

sessions. During such sessions, athletes are likely to be building fitness (rather than skill for 

maximising the power output they can achieve), or it may these sessions take place during 

cold winter months. That there are no optimum cadences yielded for the low heart rate data 

subset suggets that we may indeed have successfully excluded long low-intensity sessions 

when discarding data in the low heart rate subset.  

Furthermore, in the exploration into deviation from optimum cadence, we noted that, 

broadly, as fitted power output increases, the reduction in power output for sub-optimal 

cadences increases. This suggests that increased power output also increases the importance 

of optimum cadence. 

By calculating 95% confidence intervals for the mathematical optimum cadences, we can 

explore the importance of riding at optimum cadence. We do this for all models which do not 

feature an interaction between cadence and another variable.  

When fitting models to the high heart rate data subset, confidence intervals become 

narrower, often twice as narrow (compared to the same models fitted using all sampled data). 

The precentage reduction in power output for sub-optimal cadences is also higher for models 

fitted to the high heart rate data subset than for models fitted for all sampled data. Also when 

interacting cadence with heart rate, whereby a range of different optimum cadences are 

yielded for different heart rates, precentage reduction in power output for sub-optimal 

cadences increases as heart rate increases. This may suggest that riding at a sub-optimal 

cadence has a greater effect on loss of performance (power output) when the athlete is 

exerting great physical effort than when he is exerting slightly less physical effort (assuming 

that an athlete is likely to be asserting greater effort if heart rate increases significantly). The 

importance of optimum cadence selection when heart rate is high may emphasise the   

importance of riding at an optimal cadence in race conditions (although heart rate is not a 

direct measure of effort, it is likely that heart rate is higher in a race than in long, low-

intensity training sessions). Power output tends to reduce by approximately 2% for cadences 

10 rpm above and below optimum. Even if power output reduces slightly, this could have a 

significant impact on performance obver a race distance.  

Confidence intervals are consistently narrower for athlete 2 than for athlete 1. We do not 

expect that optimum cadences are necessarly the same for different athletes, due to the nature 

of the athletes (physiological and muscular differences). By the same principle the relative 

importance of optimum cadence (i.e. how precise the choice of optimum cadence needs to be) 

may not necessarily be the same. The narrower confidence intervals appear to suggest that 

choice of optimum cadence is slightly more important for athlete 2 than for athlete 1; in other 
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words, athlete 1 is more likely to be able to sustain a high power output when deviating 

slightly from optimum cadence.  

Variance for the mathematical optimum cadence tends to be quite low for all models. 

This in turn indicates narrow confidence intervals for the mathematical optimum cadence, 

meaning there is quite a narrow range of cadences at which the athlete can ride optimally. The 

athlete only needs to deviate slightly from an optimal cadence before he is not maximising the 

power output for the given heart rate. It may be the case that, due to the great amount of data 

for each athlete, even small deviations in optimum cadence are statistically significant. 

However, as this study is based on competitive professional athletes, very small changes in 

activity (in this case the cadence at which they ride) may have a great impact on performance 

level. The confidence intervals demonstrate the importance of riding at an optimum cadence. 

We also added the following extra covariates to the simple non-linear model: X1t (the 

normalized power output developed in the current session, up to the current sampling point, 

t), X2t (the proportion of time that has elapsed in the current session, up to the current 

sampling point, t), X3 (the mean of the normalized power outputs for all session in the 

previous seven days) and X4 (the mean duration of all sessions in the previous seven days 

(hours)). We fitted the models in equations (10-13) – see section 4.1.6. for these equations in 

full. The impact of additional covariates on fitted power output depends on the athlete. For 

athletes 1, 3 and 4, power output increases with normalized power output (X1t) and decreases 

the further into the session the athlete is (X2t – the proportion of the session that has elapsed 

up to the current sampling point). However the opposite is true for athlete 2. Athlete 2 does 

appear to fatigue with the accummulation of normalized power output (as expected power 

output decreases as X1t increases).  He does not appear to fatigue as he approaches the end of 

a session (as expected power output increases as X2t increases).  

Normalized power output therefore does not necessarily appear to represent the 

accumulation of fatigue. We may have to include a measure of heart rate when quantifying 

training load in order to represent the accummulation of fatigue. Indeed we do this when 

fitting training impulse calculations to the model, which is explored in chapter 5.  

We also fitted non-linear models with additional covariates for the high heart rate data 

subset. For the high heart rate data subset, the non-linear models with additional covariates 

yield optimum cadences for athlete 1 and 2 – this is the same set of athletes for whom 

optimum cadences are yielded in the simple non-linear model with no additional covariates 

(equation 7). For models in equations 12 and 13, the margin of decrease in power output for-

sub optimal cadences is greater for athlete 2 than for athlete 1. This was also true for the same 

models not featuring the additional covariates. Such margins are only negligibly affected by 

the level of normalized power output or how far into the current session the athlete is.  

The additional covariates do have a much greater effect on the power output an athlete 

can achieve. Optimum cadence appears to vary more with heart rate than it does with other 

additional covariates. The reduced optimum cadence at high heart rate may suggest that 

optimum cadence decreases as the athlete exerts more effort.  Indeed when cadence is 

interacted with heart rate in the model in equation 11, for the high heart rate data subset, and 

heart rate is fixed to a range of different possible values for both athletes 1 and 2, optimum 

cadence decreases with heart rate. Also the margin of decrease in optimum cadence decreases 

with each increase in heart rate. As heart rate increases, he is unable to sustain such a high 
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cadence, so the highest cadence he can sustain without hinderence to his riding technique 

reduces.  

For athletes 3 and 4 in our analysis, no optimum cadences are yielded from non-linear 

models, even for the high heart rate data subset. We believe this is because athletes 3 and 4 

may not have ridden at a wide enough range of cadences for a mathematical model to yield a 

cadence that optimises power output.  

 

4.7.4. Discussion of optimum cadences in relation to literature, preferred cadence and 

riding mode. 

The optimum cadences from most ergometer studies tend to be up to 90 rpm (Coast and 

Welch, 1985), though higher optimum cadences can be expected when using field data (Foss 

and Hallen, 2004), or when testing elite athletes  The optimum cadences yielded from this 

study range from 68 to 120, although these are dependent on data processing constants. Foss 

and Hallen (2004) claim that cadences adopted by elite athletes are higher than those typically 

found in ergometer studies, around 90-105. Ergometer studies often include cyclists that are 

not necessarily elite athletes, or who may be triathletes (and therefore not necessarily as 

highly trained in cycling as are the athletes whose sole professional sport in cycling). In our 

study using field data we use competitive but not elite athletes – indeed optimum cadences for 

a non-linear model with sensible choice of data processing constants yields optimum cadences 

that are greater than some ergometer studies but less than those claimed by Foss and Hallen 

(2004), at around 83 and 70 rpm for athletes 1 and 2 respectively. 

We also find some differences between optimum cadences for each athlete, supporting 

suggestions made by Coast and Welch (1985) that athletes may have their own individual 

optimum cadences. They claimed that this may be due to different individual skill levels. 

Coast and Welch (1985) suggested that increased athlete skill enabled athletes in their study 

to sustain higher cadences, of 91 rpm, than athletes in a study by Hagberg (1981), who 

achieved 83 rpm. Assuming no smoothing of raw power output, heart rate and cadence 

measurements (i.e. when k=1 in our study), cadences from our study are not as high as the 91 

rpm found in the Coast and Welch study. Given the competitive but not elite levels of skill of 

the athletes involved in our study, it may be that the athletes in our study are not skilled 

enough to sustain higher cadences.  

Differences between optimum cadences found in ergometer studies and those found in 

field data may be due to who devises the test or schedule. In ergometer studies the cadences at 

which athletes are tested tend to be chosen by academics (Coast and Welch, 1985). In the 

field data in our study, the training schedule is likely to be devised by coaches and tailored to 

the individual athlete, as the coaches are likely to have significant knowledge and 

understanding of the athlete’s skill and objectives, and it is the athlete’s success that forms the 

basis of the schedule, not necessarily knowledge that an academic can obtain. The high 

optimum cadences in our study compared to some ergometer studies may therefore suggest 

that field data may be useful in calculating an individual optimum cadence for competitive 

cyclists. The environmental differences between road cycling and ergometer tests (Jobson et 

al, 2007) may have been a factor in optimum cadences from this study being higher than those 

found in some ergometer studies. 
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Alternatively differences in optimum cadences may also represent higher levels of 

fitness; if an athlete’s optimum cadence is higher than another athlete, the athlete with the 

higher fitness is able to maintain a higher cadence without tiring or his technique deteriorating 

– indeed each athlete trains according to his own individual training schedule, with each 

training schedule featuring different frequencies and durations of sessions. Athletes may be 

exerting great physical effort in training, but may not have developed a high enough level of 

fitness to sustain very high cadences; by the time they enter a major competition after the 

training schedule, their fitness may have improved to a high enough level to sustain such high 

cadences. However whether skill or fitness is the reason, they effectively have the same effect 

on cadence as they both appear to increase the cadence at which an athlete can ride. 

Whilst optimum cadence does not vary with power output or heart rate in our study, 

athletes’ typically preferred cadences do to some extent. We calculated the range, mean and 

mode cadence for athletes 1 and 2 for periods where power output was between 100 and 

149W, 150 – 299W and so on, with the final group up to above 500W. We present these 

preferred cdences in table 60. Broadly, from 200W up to above 500W, as power output 

increases, preferred cadence (mean and mode) increase a little. Athletes therefore appear to 

favour slightly higher cadences at higher power output. Also, at the power output 

corresponding to the optimum cadence in the model (188W for athlete 1 and 190W for athlete 

2), preferred cadences are similar for both athletes. Indeed for particlularly low power output 

(under 100-149W), preferred cadences are slightly higher than for power outputs of 200-

250W. For athlete 2, mean chosen cadence at 100-149W is higher than mean cadence for any 

other range of power outputs. 

Athlete 1 tends to ride just above his optimum cadence, with mean cadences for different 

ranges of power output between 82 and 92. Athlete 2 tends to ride slightly closer to his 

optimum cadence, with mean preferred cadences within 5 revolutions per minute either side 

of his optimum cadence of 70. 

Nevertheless the margin of difference between optimum cadence and between preferred 

cadence are similar between athletes. Optimum cadence is higher for athlete 1 than for athlete 

2 in our analysis (83 rpm comprared to 70 rpm), whilst athlete 1 also typically chooses to ride 

at a higher cadence (approximately 82-92 rpm) than does athlete 2 (approximately 65-75 

rpm). (The ranges of 82-92 and 65-70 come from the mean chosen cadence calculated at 

different power outputs, between 150-199W, and 200-249W and so on). There may be 

physiological differences that result in different optimum cadences between athletes, such as 

muscle fibre type. Such physiological mechansisms may also result in different choices of 

optimum cadence. 

We do not consider in this study whether athletes are standing or sitting on the seat 

(which we term riding mode), as no such information is available. An optimum cadence may 

vary depending on whether an athlete is standing or sitting, as different muscle groups may be 

being used for standing and sitting. For such information to be available in training sessions at 

5 second intervals (to be consistent with power output, heart rate and cadence measurements), 

a pressure pad monitor would need to be developed for the saddle. 
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Table 60: Preferred cadences of athletes 1 and 2, for different power outputs 

  

Athlete 1 

   

Athlete 2 

   

 

  

    

  

   Power Cadence 

   

Cadence 

   

  

Range  

   

Range  

       (Lowest to highest) Mean Mode (Lowest to highest) Mean Mode 

100- 149 43 120 91 91 30 129 75 87 

150- 199 30 127 88 92 29 125 73 75 

200- 249 34 117 84 90 29 122 69 70 

250- 299 42 178 82 96 29 118 65 56 

300- 349 49 115 87 96 35 121 66 55 

350- 399 50 124 88 96 39 124 68 57 

400- 449 53 139 91 94 37 101 66 59 

450- 499 65 128 92 86 43 92 66 58 

500 + 69 134 89 94 54 139 73 57 

 

4.7.5. Summary of discussion chapter 

We have fitted a range of linear and non-linear models of power output, heart rate and 

cadence. Linear models do not appear useful in yielding a mathematical optimum cadence. 

However non-linear models do yield mathematical optimum cadences for two of the four 

athletes in our study, providing we retain only sampled data in which heart rate is higher than 

the mean overall heart rate for each athlete in our study. However additional variables (such 

as normalized power output) appear to have little impact on optimum cadence. As such our 

preferred model from chapter 4 is the simple non-linear model of power output, heart rate and 

cadence (equation 7). In chapter 5 we further develop this model (equation 7) by including 

training impulses, to represent the accumulation of fatigue. 
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Chapter 5: Sensitivity to data processing constants 

5.1. Introduction to sensitivity analysis  

We now consider what combination of data processing constants should be used for the data 

presented to us (the power output, heart rate and cadence measurements yielded at 5 second 

intervals). These are the width of a moving average smoothing window (k) and the time lag 

between power output and heart rate response (l). We have thus far used a moving average 

with window width 12 time units (60 seconds) to calculate smoothed power output, cadence 

and heart rate values, lagged heart rate at 1 time unit (5 seconds) behind power output and 

cadence, and then sampled the smoothed data every 24 time units (120 seconds). This 

processing is denoted by k=12, l=1 and m=24 respectively. We chose data processing 

constants that seemed plausible to us based on our knowledge and understanding of sports 

science literature at that time. We then also decided to use only data which we felt closely 

represented race conditions. We calculated the mean of all sampled heart rate measurements 

(which we term the overall mean heart rate for each athlete). We retained data in which heart 

rate is greater than the overall mean heart rate (which we termed the high heart rate data 

subset), to exclude data from very long, low-intensity training sessions. We now consider 

analysing the effects of different data processing constants in the simple non-linear model 

(equation 7). 

We explore the sensitivity of the simple non-linear model (equation 7) to different data 

processing constants, for the high heart rate data subset. 

We present results of coefficient estimate, AIC and R
2
 for different smoothing window 

widths and heart rate lags, along with optimum cadences. We present power / cadence plots 

for selected data processing constants. We finally discuss the results, evaluating which set of 

data processing constants are most appropriate for our data. 

  

5.2. Methodology for sensitivity analysis 

We continue to sample measurements once every 24 time units – once every 5 seconds 

(denoted as m=24). (We consider smoothing data using a moving average with window 

widths of various time units; the window width is denoted by k -  we consider k = 3, 6, and 12. 

We  also considere the effects of not smoothing the data – this is represented by k=1 (in this 

case, we simply sample the power output, heart rate and cadence measurements once every 24 

time units). We also consider different heart rate lags. Since literature suggests that heart rate 

responds to changes in power output, we lag heart rate at some time after power output. 

Stirling et al (2008) suggested that for large changes in power output, heart rate takes 60 

seconds to respond. For our data changes in power output are much more gradual, so we 

chose a heart rate lag of 5 seconds. The heart rate lag, l, represents by how many time units 

heart rate lags behind power output. For this sensitivity analysis we initially considered l = 1, 

2 and 3, but since explanatory power appears to increase with heart rate lag we also consider 

longer lags, 4, 6 and 12 (for window widths of 1 and 3 time units). We observe the effects of 

different data processing constants on explanatory power, optimum cadence, power output at 
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optimum cadence, coefficient estimates and standard errors of the coefficient estimates. Note 

that explanatory power indicates the amount of variation in changes in power output that can 

be explained by variation in changes in heart rate and cadence. The usefulness of the fitted 

curve in predicting or providing an optimum cadence may not therefore necessarily coincide 

with high explanatory power. 

 

5.3. Results of sensitivity analysis 

5.3.1. Coefficient estimates and model fit 

We present tables of coefficient estimates and their standard errors, in tables 61 to 64 (one 

table for each athlete). As k increases (that is the number of measurements included in a 

moving average increases), we expect covariates to fit less well. However with a greater 

window width there is less noise within the data, which could increase explanatory power. 

For all combinations of data processing constants (window width k, and heart rate lag l), 

the model (equation 7) fits better for athletes 1 and 2 than for athletes 3 and 4. That is, the 

coefficient estimates for α and β are always positive for athletes 1 and 2, which means a 

mathematical optimum cadence is always yielded for these athletes. (Note this is for high 

heart rate data.) For athletes 3 and 4 however, the polarity of α and β are such that no 

statistical optimum cadences are yielded for these athletes for any combination of data 

processing constants.  

For athletes 3 and 4, explanatory power is extremely low for all data processing 

constants. This could be because β is always negative, whilst for athlete 4 (for whom 

explanatory power is even lower than it is for athlete 3) α is often very low. The negative 

coefficients for β indicate a poor power output cadence fit for these athletes, hence only a 

small amount of the variation in fitted power output can be accounted for by variation in 

cadence or heart rate. 

For a given window width (k), explanatory power tends to increase with heart rate lag (l). 

This suggests there is a better fit of covariates for higher heart rate lags. However we also 

observe that standard errors tend to increase with l for all covariates α, β, γ and µ, implying a 

greater fit of covariates for low heart rate lags. This may suggest a better model fit for lower 

heart rate lags. The increase in explanatory power with increasing heart rate lag could be an 

artefact of the model fitting, with possibly less noise for higher heart rate lags. The 

explanatory power and standard errors do not suggest there is one heart rate lag that yields the 

best fit of the covariates. 

We expect there to be less noise in the data when smoothing power output, cadence and 

heart rate (when k = 3, 6 and 12). As k increases however, explanatory power decreases 

markedly. As k increases standard errors increase for α and β – the coefficients do not fit well 

for high window widths. Therefore the low explanatory power for high window widths could 

be due to a very poor fit of data at high window widths. However standard errors decrease 

with k for γ and logµ. Since explanatory power decreases as k increases, it therefore appears 

that standard errors for α and β have a stronger influence on the explanatory power of the 

model than do standard errors for γ and logµ.  
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For low window widths (k=1 or 3), the covariance beween α and β increases with heart 

rate lag (l). For the longest window width (k=12), it is less clear as covariance increases with l 

for athlete 4 but decreases with l for athletes 2 and 3. 

 

Table 61: Coefficient estimates and standard errors for the non-linear model (equation 7) fitted for 

athlete 1, using a range of data processing constants k (moving average window width) and l (heart 

rate lag). 

k l α β γ μ log μ cov(α,β) R
2
 AIC 

1 1 1.58 (0.01) 0.020 (0.0005) 0.91 (0.06) 0.01 -4.59 (0.29) 0.000005 84.0 69664 

1 2 1.56 (0.01) 0.020 (0.0005) 0.90 (0.06) 0.01 -4.51 (0.31) 0.000006 84.2 70919 

1 3 1.56 (0.01) 0.020 (0.0005) 0.90 (0.06) 0.01 -4.53 (0.33) 0.000006 84.7 71547 

1 4 1.55 (0.01) 0.020 (0.0005) 0.78 (0.06) 0.02 -3.91 (0.33) 0.000006 85.1 71846 

1 6 1.53 (0.01) 0.018 (0.0006) 0.77 (0.07) 0.02 -3.88 (0.33) 0.000006 85.9 72600 

1 12 1.51 (0.01) 0.017 (0.0006) 0.71 (0.07) 0.03 -3.55 (0.35) 0.000007 85.8 72727 

3 1 1.49 (0.02) 0.014 (0.0004) 1.25 (0.05) 0.00 -6.44 (0.27) 0.000005 63.7 68233 

3 2 1.47 (0.01) 0.013 (0.0004) 1.08 (0.06) 0.00 -5.60 (0.28) 0.000005 66.6 69354 

3 3 1.45 (0.01) 0.012 (0.0004) 1.00 (0.06) 0.01 -5.23 (0.29) 0.000005 66.9 70194 

3 4 1.42 (0.01) 0.011 (0.0004) 1.00 (0.06) 0.01 -5.13 (0.30) 0.000005 69.3 70846 

3 6 1.39 (0.01) 0.010 (0.0004) 0.92 (0.06) 0.01 -4.74 (0.31) 0.000005 71.0 71436 

3 12 1.36 (0.01) 0.009 (0.0004) 0.78 (0.06) 0.02 -4.01 (0.33) 0.000005 73.4 71169 

6 1 1.68 (0.03) 0.018 (0.0005) 1.41 (0.04) 0.00 -7.69 (0.22) 0.000010 43.9 63180 

6 2 1.69 (0.02) 0.018 (0.0005) 1.10 (0.04) 0.00 -6.19 (0.23) 0.000011 43.7 64333 

6 3 1.58 (0.02) 0.015 (0.0004) 1.23 (0.05) 0.00 -6.62 (0.24) 0.000009 48.6 65045 

12 1 1.77 (0.04) 0.020 (0.0006) 1.56 (0.03) 0.00 -8.78 (0.20) 0.000020 37.2 58178 

12 2 1.78 (0.04) 0.020 (0.0006) 1.39 (0.03) 0.00 -7.95 (0.21) 0.000020 35.9 58641 

12 3 1.79 (0.04) 0.019 (0.0006) 1.44 (0.04) 0.00 -8.30 (0.21) 0.000020 36.9 59179 

 

Table 62: Coefficient estimates and standard errors for the non-linear model (equation 7) fitted for 

athlete 2, using a range of data processing constants k (moving average window width) and l (heart 

rate lag). 

k l α β γ μ log μ cov(α,β) R
2
 AIC 

1 1 1.66 (0.02) 0.024 (0.001) 0.75 (0.08) 0.024 -3.71 (0.42) 0.00001 74.7 50095.2 

1 2 1.65 (0.02) 0.024 (0.001) 0.84 (0.09) 0.016 -4.15 (0.44) 0.00001 75.9 50659.5 

1 3 1.64 (0.02) 0.024 (0.001) 0.83 (0.09) 0.017 -4.07 (0.45) 0.00001 75.9 50428 

1 4 1.63 (0.02) 0.024 (0.001) 0.78 (0.10) 0.022 -3.83 (0.48) 0.00002 75.8 51223.9 

1 6 1.61 (0.02) 0.023 (0.001) 0.61 (0.10) 0.050 -3.00 (0.49) 0.00002 76.5 51361.6 

1 12 1.55 (0.02) 0.020 (0.001) 0.28 (0.11) 0.257 -1.36 (0.52) 0.00002 75.7 52217.6 

3 1 1.57 (0.02) 0.016 (0.001) 1.30 (0.09) 0.001 -6.60 (0.44) 0.00001 59.0 50461.6 

3 2 1.55 (0.02) 0.015 (0.001) 1.14 (0.09) 0.003 -5.80 (0.46) 0.00001 59.8 50841.5 

3 3 1.50 (0.02) 0.014 (0.001) 1.09 (0.10) 0.004 -5.50 (0.48) 0.00001 62.8 51249.4 

3 4 1.48 (0.02) 0.013 (0.001) 1.09 (0.10) 0.004 -5.48 (0.49) 0.00001 64.5 51755.9 

3 6 1.45 (0.02) 0.011 (0.001) 0.80 (0.10) 0.018 -4.04 (0.51) 0.00001 65.9 51986.9 

3 12 1.36 (0.02) 0.007 (0.001) 0.33 (0.11) 0.173 -1.76 (0.55) 0.00002 64.4 52796.8 

6 1 1.67 (0.03) 0.019 (0.001) 1.42 (0.08) 0.001 -7.35 (0.39) 0.00002 49.9 48534.3 

6 2 1.62 (0.03) 0.017 (0.001) 1.38 (0.08) 0.001 -7.13 (0.41) 0.00002 52.1 49073.2 

6 3 1.59 (0.03) 0.016 (0.001) 1.27 (0.09) 0.001 -6.58 (0.43) 0.00002 53.6 49547.5 

12 1 1.84 (0.03) 0.024 (0.001) 1.57 (0.06) 0.000 -8.42 (0.33) 0.00002 46.5 45672.3 

12 2 1.79 (0.03) 0.023 (0.001) 1.46 (0.07) 0.000 -7.76 (0.34) 0.00002 46.2 46136.6 

12 3 1.75 (0.03) 0.022 (0.001) 1.37 (0.07) 0.001 -7.25 (0.35) 0.00002 47.4 46684.8 
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Table 63: Coefficient estimates and standard errors for the non-linear model (equation 7) fitted for 

athlete 3, using a range of data processing constants k (moving average window width) and l (heart 

rate lag). 

k l α β γ μ log μ cov(α,β) R
2
 AIC 

1 1 1.17 (0.03) -0.001 (0.001) 1.06 (0.14) 0.01 -5.19 (0.68) 0.00004 58.9 32595.4 

1 2 1.13 (0.03) -0.003 (0.001) 1.05 (0.14) 0.01 -5.14 (0.70) 0.00004 61.2 33023.7 

1 3 1.10 (0.03) -0.004 (0.001) 1.11 (0.14) 0.00 -5.38 (0.71) 0.00004 61.5 33175.1 

1 4 1.05 (0.03) -0.007 (0.001) 1.13 (0.15) 0.00 -5.48 (0.72) 0.00004 62.4 33366.4 

1 6 0.99 (0.03) -0.010 (0.001) 1.23 (0.15) 0.00 -5.95 (0.75) 0.00005 63.5 33228.3 

1 12 0.95 (0.04) -0.011 (0.002) 0.92 (0.15) 0.01 -4.45 (0.75) 0.00005 63.6 33155.5 

3 1 0.87 (0.06) -0.006 (0.001) 1.43 (0.14) 0.00 -6.08 (0.69) 0.00006 27.0 32504.3 

3 2 0.90 (0.05) -0.008 (0.001) 1.47 (0.14)  0.00 -6.54 (0.69) 0.00005 32.1 32661.9 

3 3 0.84 (0.05) -0.010 (0.001) 1.58 (0.14) 0.00 -7.05 (0.71) 0.00005 33.9 33017.2 

3 4 0.86 (0.05) -0.011 (0.001) 1.52 (0.14) 0.00 -6.88 (0.72) 0.00005 37.2 32845.4 

3 6 0.88 (0.05) -0.012 (0.001) 1.50 (0.14) 0.00 -7.04 (0.73) 0.00005 39.9 32992.8 

3 12 0.82 (0.04) -0.014 (0.001) 1.41 (0.15) 0.00 -6.48 (0.76) 0.00004 44.0 33248.3 

6 1 0.14 (0.08) -0.013 (0.001) 1.50 (0.12) 0.01 -4.40 (0.65) 0.00010 15.0 31382.2 

6 2 0.21 (0.08) -0.013 (0.001) 1.64 (0.12) 0.01 -4.77 (0.66) 0.00010 17.4 31554.2 

6 3 0.19 (0.08) -0.015 (0.001) 1.57 (0.13) 0.01 -4.44 (0.67) 0.00010 18.2 31437.8 

12 1 0.68 (0.24) -0.0007 (0.003) 1.66 (0.11) 0.00 -5.80 (0.96) 0.00077 10.9 29759.6 

12 2 0.67 (0.24) -0.002 (0.003) 1.62 (0.11) 0.00 -5.66 (0.95) 0.00075 11.6 29748.7 

12 3 0.16 (0.24) -0.010 (0.002) 1.58 (0.11) 0.02 -3.91 (0.68) 0.00025 12.9 30002.4 

 

Table 64: Coefficient estimates and standard errors for the non-linear model (equation 7) fitted for 

athlete 4, using a range of data processing constants k (moving average window width) and l (heart 

rate lag). 

k l α β γ μ log μ cov(α,β) R
2
 AIC 

1 1 0.15 (0.03) -0.0007 (0.002) 1.47 (0.14) 0.07 -2.59 (0.69) 0.000050 8.7 82794.1 

1 2 0.09 (0.03) -0.006 (0.002) 0.09 (0.16) 0.02 -4.08 (0.77) 0.000005 9.2 83475.8 

1 3 0.17 (0.03) -0.001 (0.002) 1.37 (0.15) 0.10 -2.26 (0.75) 0.000058 10.1 83641 

1 4 0.16 (0.03) -0.002 (0.002) 1.28 (0.15) 0.16 -1.83 (0.76) 0.000061 10.3 84039.3 

1 6 0.18 (0.04) -0.002 (0.002) 1.47 (0.16) 0.06 -2.84 (0.79) 0.000064 11.1 84747 

1 12 0.20 (0.04) -0.002 (0.002) 1.72 (0.17) 0.01 -4.25 (0.82) 0.000075 12.6 85994 

3 1 0.20 (0.02) -0.013 (0.001) 1.23 (0.08) 0.41 -0.88 (0.42) 0.000012 8.2 72127 

3 2 0.21 (0.02) -0.014 (0.001) 1.25 (0.09) 0.37 -1.00 (0.45) 0.000013 8.5 73441.3 

3 3 0.21 (0.02) -0.015 (0.001) 1.25 (0.10) 0.35 -1.05 (0.48) 0.000015 8.7 74486.2 

3 4 0.22 (0.02) -0.016 (0.001) 1.21 (0.10) 0.41 -0.90 (0.50) 0.000016 8.7 75677.9 

3 6 0.21 (0.02) -0.016 (0.001) 1.31 (0.11) 0.22 -1.50 (0.54) 0.000018 9.2 76486.9 

3 12 0.24 (0.02) -0.019 (0.001) 1.33 (0.12) 0.18 -1.72 (0.60) 0.000022 9.7 79057.6 

6 1 0.21 (0.01) -0.012 (0.001) 1.32 (0.06) 0.32 -1.14 (0.30) 0.000006 13.0 65271.8 

6 2 0.22 (0.01) -0.013 (0.001) 1.31 (0.06) 0.32 -1.14 (0.32) 0.000007 12.6 66640 

6 3 0.25 (0.01) -0.014 (0.001) 1.20 (0.07) 0.53 -0.64 (0.03) 0.000007 12.3 21766.1 

12 1 0.14 (0.01) -0.008 (0.001) 1.51 (0.05) 0.13 -2.07 (0.24) 0.000004 16.7 61043.4 

12 2 0.16 (0.01) -0.009 (0.001) 1.48 (0.05) 0.15 -1.91 (0.24) 0.000005 17.0 61189.3 

12 3 0.18 (0.01) -0.010 (0.001) 1.42 (0.05) 0.20 -1.61 (0.25) 0.000005 17.2 61573.7 

 

Although literature suggests a low heart rate lag is appropriate, it is not necessarily clear 

exactly what the lag should be from literature. Also, model performance parameters 

(explanatory power and standard errors of coefficients) do not suggest that there is one heart 

rate lag that necessarily yields the best fit of covariates. Therefore we present optimum 

cadences for the model (equation 7) for all window width and heart rate lag combinations.  
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5.3.2. Optimum cadences  

Tables 65 and 66 contain the optimum cadence (C*), 95% confidence intervals and 

corresponding power output for the optimum cadence, for various smoothing window widths 

(k) and various heart rate lags (l).  

When we do not smooth data (k=1), plausible optimum cadences are yielded for all heart 

rate lags tested. For athletes 1 and 2, optimum cadence increases with increasing heart rate 

lag. That is, the longer the time lag between changing power output and heart rate response, 

the greater the pedalling rate an athlete can theoretically sustain, according to our model. For 

smoothed data (k=3, 6 and 12) however, optimum cadences are much higher. The optimum 

cadences become unrealistically high for very high heart rate lags. 

Indeed for athletes 1 and 2 variance in optimum cadence increases with heart rate lag for 

all window widths. The increase in variance with each heart rate lag is quite low (around 0.01 

to 0.05); there is nevertheless a clear trend for increasing variance of optimum cadence with 

increasing heart rate lag for athletes 1 and 2. The increase in variance of optimum cadence 

indicates wider confidence intervals; therefore confidence intervals for the mathematical 

optimum cadence increase with increasing heart rate lag. Wider confidence intervals suggest 

the athletes can ride at a wider range of cadences without detriment to performance. 

Nevertheless 95% confidence intervals are quite narrow for all combinations of data 

processing contants in the models. This suggests that the choice of cadence is very important 

for maximising power output (for a given heart rate). 

 

Table 65: Explanatory power output (R
2
), optimum cadence (C*) and corresponding power output at 

optimum cadence (P*) for the non-linear model (equation 7) fitted for athlete 1, using a range of data 

processing constants k (moving average window width) and l (heart rate lag). 

k L C* 

C* 

standard C* Confidence Interval P* 

      Deviation variance From: To:   

1 1 75.97 0.24 0.06 75.50 76.44 196.8 

1 2 79.56 0.28 0.08 79.01 80.11 192.4 

1 3 79.36 0.29 0.09 78.78 79.93 190.7 

1 4 79.43 0.30 0.09 78.84 80.01 190.0 

1 6 83.42 0.34 0.12 82.75 84.08 187.8 

1 12 86.85 0.39 0.15 86.08 87.62 186.1 

3 1 106.45 0.35 0.12 105.76 107.14 199.7 

3 2 113.81 0.41 0.17 113.00 114.61 199.6 

3 3 120.18 0.47 0.22 119.27 121.10 204.4 

3 4 127.38 0.53 0.28 126.34 128.43 209.7 

3 6 140.38 0.64 0.41 139.12 141.65 213.0 

3 12 155.57 0.79 0.63 154.01 157.12 218.1 

6 1 91.68 0.23 0.05 91.23 92.14 202.8 

6 2 92.19 0.24 0.06 91.73 92.65 197.2 

6 3 103.84 0.32 0.10 103.22 104.47 202.2 

12 1 90.48 0.22 0.05 90.06 90.90 189.6 

12 2 90.83 0.23 0.05 90.37 91.28 190.7 

12 3 95.11 0.25 0.06 94.61 95.60 193.9 
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Table 66: Explanatory power output (R
2
), optimum cadence (C*) and corresponding power output at 

optimum cadence (P*) for the non-linear model (equation 7) fitted for athlete 2, using a range of data 

processing constants k (moving average window width) and l (heart rate lag). 

k L C* 

C* 

standard C* Confidence Interval P* 

      Deviation variance From: To:   

1 1 68.35 0.35 0.12 67.67 69.02 214.0 

1 2 68.10 0.36 0.13 67.39 68.81 205.3 

1 3 68.29 0.37 0.14 67.55 69.02 200.8 

1 4 68.57 0.39 0.15 67.81 69.34 195.8 

1 6 70.41 0.44 0.19 69.55 71.26 189.6 

1 12 76.09 0.55 0.30 75.01 77.16 179.2 

3 1 96.67 0.58 0.34 95.53 97.80 237.3 

3 2 100.98 0.65 0.43 99.70 102.26 237.1 

3 3 109.67 0.80 0.64 108.10 111.23 222.0 

3 4 116.83 0.91 0.84 115.04 118.62 222.1 

3 6 130.11 1.14 1.29 127.88 132.34 243.1 

3 12 190.35 2.35 5.54 185.73 194.96 299.5 

6 1 89.12 0.44 0.19 88.26 89.97 226.8 

6 2 96.04 0.53 0.28 95.01 97.08 228.5 

6 3 102.15 0.62 0.38 100.94 103.36 221.8 

12 1 75.85 0.26 0.07 75.33 76.36 231.8 

12 2 77.95 0.29 0.09 77.37 78.52 222.1 

12 3 81.21 0.33 0.11 80.56 81.85 214.6 

 

We next present fitted power / cadence plots to provide a graphical demonstration of the 

power output cadence relationship implied by the model. We present power output cadence 

plots for k=1 (that is, power output, heart rate and cadence data are not smoothed), for a 

selection of heart rate lags (l=1, 2 and 6, or 5, 10 and 30 seconds respectively) in figure 17. 

For each figure, we present plots for athlete 1 on the left and athlete 2 on the right hand side. 

The first row is for the model (equation 7) fitted with a heart rate lag of 5 seconds (l=1), with 

increasing heart rate lag for each subsequent row in the figure (lags of 10 and 30 seconds).  

Fitted power output cadence plots suggest a power output cadence relationship that 

provides a good representation of the true power output cadence relationship. As heart rate lag 

increases, so too does optimum cadence. For very long heart rate lags (l=12), optimum 

cadences are not plausible – that is, a mathematical optimum cadence yielded from the model 

(equation 7) is greater than any cadence at which the athlete has actually ridden during his 

training sessions. 
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Figure 17: Plots of power output measurements (black dots) and fitted power output (red line) from the 

non-linear model (equation 7) fitted for athletes 1 (left) and 2 (right). Data are not smoothed (k=1). 

Heart rate (l) is lagged, from top to bottom, at 1, 2, and 6 time units (5, 10, then 30 seconds 

respectively). 

 

5.3.3. Deviation from optimum cadence 

We present a table for reduction in power output for sub-optimal cadences when data are not 

smoothed (k=1), for a selection of heart rate lags (l=1, 2, and 6), as low heart rate lags (l=6 or 

below) are most appropriate for our data. We fit the model (equation 7) for different data 

processing constants for the high heart rate data subset. We present expected power output for 

a range of sub-optimal cadences in table 67.  

For all values of k (the size of the window width or moving average smoothing interval), 

the reduction in power output for sub-optimal cadences is greater for lower heart rate lags (l). 

When there is no smoothing (k=1), the margin of the reduction in power output for sub-
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optimal cadences is not particularly sensitive to heart rate lag, but nonetheless it decreases as l 

increases.  

 

Table 67: Differences in fitted power output for athlete 1 (left) and athlete 2 (right) using the simple 

non-linear model  (equation 7) for unsmoothed data (k=1) and various heart rate lags (l), for various 

cadences above and below the optimum cadence. 
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l=1         

 

l=1         

 

-20 56.0 184.0 -12.7 -6.5 

 

-20 48.4 195.8 -18.2 -8.5 

 

-10 66.0 193.8 -2.9 -1.5 

 

-10 58.4 209.9 -4.2 -2.0 

 -5 71.0 196.1 -0.7 -0.4  -5 63.4 213.0 -1.0 -0.5 

 76.0 196.8      68.4 214.0     

 5 81.0 196.1 -0.6 -0.3  5 73.4 213.1 -0.9 -0.4 

 10 86.0 194.3 -2.5 -1.3  10 78.4 210.6 -3.4 -1.6 

 20 96.0 187.8 -9.0 -4.6  20 88.4 201.6 -12.4 -5.8 

 l=2          l=2         

 -20 59.6 181.3 -11.1 -5.8  -20 48.1 187.8 -17.5 -8.5 

 -10 69.6 189.8 -2.6 -1.3  -10 58.1 201.2 -4.0 -2.0 

 -5 74.6 191.8 -0.6 -0.3  -5 63.1 204.3 -1.0 -0.5 

 79.6 192.4      68.1 205.2     

 5 84.6 191.8 -0.6 -0.3  5 73.1 204.4 -0.9 -0.4 

 10 89.6 190.2 -2.2 -1.1  10 78.1 201.9 -3.3 -1.6 

 20 99.6 184.5 -8.0 -4.1  20 88.1 193.4 -11.9 -5.8 

 l=6          l=6         

 -20 63.4 178.2 -9.6 -5.1  -20 50.4 174.9 -14.7 -7.7 

 -10 73.4 185.5 -2.2 -1.2  -10 60.4 186.2 -3.4 -1.8 

 -5 78.4 187.2 -0.5 -0.3  -5 65.4 188.8 -0.8 -0.4 

 83.4 187.8      70.4 189.6     

 5 88.4 187.3 -0.5 -0.3  5 75.4 188.8 -0.7 -0.4 

 10 93.4 185.9 -1.9 -1.0  10 80.4 186.8 -2.8 -1.5 

 20 103.4 180.8 -7.0 -3.7  20 90.4 179.5 -10.1 -5.3 

 

5.4. Discussion of sensitivity analysis 

Having found a plausible range of optimum cadences for various non-linear models of power 

output and cadence, we re-visited the issue of data processing. We considered a range of 

window widths (the length of the moving average smoother for power output, cadence and 

heart rate; k) and heart rate lags (l) for processing the power output, heart rate and cadence 

measurements given to us.  

Literature suggests that a low heart rate lag (only a brief delay between changes in power 

output and the heart rate response of the athlete) is appropriate for the data in our study 

(Stirling et al, 2008), say less than 30 seconds (l=6 or less). This means that, for small 

changes in power output, heart rate must increase accordingly very soon afterwards. 

Nevertheless we explored models with different heart rate lags. Model performance criteria 

(such as explanatory power and standard erors of coefficients) do not necessarily suggest 

there is one heart rate lag that necessarily yields the best fit of covairates. Whilst explanatory 

power tends to increase with l, implying a better fit for higher heart rate lags, standard errors 

for coefficients also increase with l, implying a better fit for lower heart rate lags. The 
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increase in explanatory power with increasing heart rate lag could be an artefact of the model 

fitting, with possibly less noise for higher heart rate lags.  

When we do not smooth data (denoted by k=1), optimum cadences range between 68 to 

83, which is simlar to those found in literature (Foss and Hallen, 2004). However when k is 

greater than 1 (that is, when data are smoothed using a moving average), plausible 

mathematical optimum cadences are not always yielded. The mathematical optimum cadence 

decreases as k increases – the greater the window width, the lower the optimum cadence. The 

mathematical optimum cadence yielded by the model also increases with heart rate lag. 

Consequently mathematical optimum cadences for smoothed data (k = 3, 6 or 12) are 

sometimes unrealistically high for all but the lowest heart rate lags. In such circumstances the 

theoretical optimum cadence produced is extremely high (higher than any cadence at which 

the athlete has ridden in his training), and almost certainly greater than any athlete would be 

able to sustain. It may therefore be inappropriate to smooth the data in our study.  

When we do not smooth data, any low heart rate lag (say less than 30 seconds, or l=6 or 

less) appears appropriate for our data – it supports literature that suggest a low heart rate lag, 

and yields plausible optimum cadences. For smoothed data, a heart rate lag of 5 seconds 

appears a reasonable choice - when heart rate lag is equal to 5 seconds (l=1), plausible 

optimum cadences are yielded whatever the smoothing window width (k), though are highly 

sensitive to smoothing window width. These optimum cadences for l=1 range from 68 to 110.  

We considered smoothing data to reduce sudden changes and fluctuations in power 

output, heart rate and cadence. However sudden changes in heart rate do not occur to the same 

extent as they do in power output and cadence data. Explanatory power increases markedly as 

k decreases (as the smoothing window width decrease), and is highest when we do not 

smooth. For example, for a heart rate lag of 5 seconds (l=1), explanatory power for athlete 1 is 

84, whilst it is only 63.7 for a window width of 15 seconds (k=3), 43.9 for k=6 and 37.2 for 

k=12. Plausible optimum cadences are yielded for a range of heart rate lags when we do not 

smooth data. Smoothing data may therefore not be necessary. 

Patterns in optimum cadence variance are similar to patterns in optimum cadence. For 

both athletes 1 and 2 variance of optimum cadence increases with heart rate lag l. For k = 1, 

there is only marginal increase in optimum cadence variance with l. However, as k increases 

(i.e. when we smooth data using the moving average), optimum cadence variance increases by 

a much greater margin with increases in l (similarly to optimum cadence itself). Also, 

optimum cadence variance decreases with k (not including k=1). Confidence intervals for 

optimum cadence are therefore wider when we consider a longer time lag between changes in 

power output and heart rate response. Nonetheless all confidence intervals appear quite 

narrow, implying there is quite a narrow range of cadences at which the athlete can ride 

optimally. 

We also calculated the percentage reduction in power output for statistically sub-optimal 

cadences. Reduction in fitted power output tends to coincide with confidence intervals; as one 

increase, so does the other. For each heart rate lag, fitted power output is lower for a given 

intervals below statistically optimum cadence than for intervals above statistically optimum 

cadence. This is not surprising, as the fitted power output cadence plots show a curve that 

increases, reaches a peak, and then reduces steadily.  

Reduction in power output for sub-optimal cadences tends to be greater for athlete 2 than 

for athlete 1, typically by a margin of 30 – 50% (for example, for k=1, l=1, and a cadence 20 
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rpm below optimum, percentage reduction in power output is 6.5% for athlete 1 but 8.5% for 

athlete 2). The only exception to the athlete effect is for a moving average smoothing window 

of 30 seconds or 6 measurements (k=6), where reduction in power output tends to be of a 

similar magnitude for both athletes. However for this window width, unlike for other window 

widths, optimum cadences are very similar for both athletes. Indeed there is a clear trend for 

each athlete that as fitted power output and optimum cadence increase, the relative reduction 

in power output decreases.  It is difficult to infer from this whether the fitted power output or 

the optimum cadence has the greatest impact on the margin of reduction in power output for 

sub-optimal cadences. 

However, as heart rate lag (l) increases, relative reduction in power output for sub 

optimal cadences increases, along with a decrease in mathematical optimum cadence, but 

fitted power output does not always change. Across all combinations of data processing 

constants, for both athletes, the margin of the relative reduction in power output for sub-

optimal cadences always reduces as the mathematical optimum cadence increases. However 

the margin of decrese in power output (for sub-optimal cadences) does not always reduce 

when fitted power output increases. We could infer that the margin of reduction in power 

output for sub-optimal cadences is merely a function of how high the optimum cadence is and 

not a function of the magnitude of the fitted power output. However, the trend for reduction in 

power output for sub-optimal cadences to not necessarily coincide with the magnitude of the 

fittted power output only occurs when we explore different heart rate lags beyond the 5 

second lag we consider most appropriate from literature. We may alternatively infer therefore 

that this trend is merely an effect of the heart rate lag.  

Nevertheless reduction in power output for sub-optimal cadences differs between the 

athletes. However this difference between the athletes tends to coincide with the nature of the 

differences between the athletes in terms of their optimum cadences and magnitude of fitted 

power output. Optimum cadence therefore appears to be important for each athlete according 

to our results. The results suggest that the margin of decrease in power output for sub-optimal 

cadences appears to depend on the optimum cadence and the magnitude of the power output, 

though to some extent such differences may be due to the physiological nature of the athletes. 

A limitation of our study is that  optimum cadence depends on heart rate lag. We consider 

a lag of 30 seconds or less to be appropriate for our data based on our reading of the literature. 
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Chapter 6: Including training impulse calculations in non-linear 

models 

6.1. Introduction to training impulses (TRIMPs) 

At this point in our analysis our favoured model is the non-linear model of power output, 

heart rate and cadence. We now consider adding a training impulse calculation, known as 

TRIMP, to measure training load and therefore fatigue. In this chapter we present the 

methodology for adding training impulse calculations to the model (section 6.2.). We then 

present model results in section 6.3., we assess the practical effects of optimum cadence with 

respect to training load (calculating power output for cadences below and above optimum 

cadence) and we then summarise optimum cadences yielded (for models with TRIMP 

calculations) in section 6.4. Finally in section 6.5. we discuss the extent to which cadence is 

affected by training load, and whether or not training impulses should be included in the 

model. 

 

6.2. Methodology for including training impulse calculations (TRIMPs) in 

the non-linear model of power output, heart rate and cadence 

TRIMP measures training load over a session, taking account of the intensity and duration of 

the session (Jobson et al, 2009; Morton et al, 1990). TRIMP is considered to be a standard 

measure of training load througout literature, although the exact calculation differs between 

authors (Jobson et al, 2009). 

The calculation that is typically used for TRIMP, for a session of dT, where T is the 

number of sample points and d is the sampling interval (e.g. a session sampled every 5 

seconds on 720 occasions would be of length 1 hour), is the following (Morton et al, 1990), in 

equation 14: 

fbefdTTRIMP  .                                            (14) 

where 

)/()( max restingrestingav HHHHf  . 

is the fractional average heart-rate reserve for a given session (Hav is the average (mean) heart 

rate for the given session), and b is a suitable constant, chosen by Morton et al to be 1.92. 

TRIMP is dimensionless, but the time units used in the calculation of d and f  should be 

consistent. In this study we measure heart rates in beats per minute, so the classic TRIMP 

measure (heart rate * duration) is the number of heart beats in a session. 

Morton et al (1990) suggest that, ideally, in the TRIMP calculation, more weight should 

be given to sessions where heart rate is high. Given that heart rate varies within a session it 

would appear to make sense to put more weight on periods of higher heart rate within a 

session. Therefore we propose to modify the classic TRIMP above as follows, in equation 15: 

tfbT

t t efdPTRIM  


1
.                                               (15) 
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where t indexes the sample points and, in equation 16,  

)/()( max restingrestingtt HHHHf  .                                  (16) 

is the heart rate fraction reserve at sample point t within the session, and tH  is the heart rate 

at sample point t.  

For the athletes in our study, there are long training schedules, up to twelve months. Due 

to the length of the training schedules, we seek to quantify the effect of training loads of 

previous sessions on the current session. Hence, we calculate a cumulative TRIMP, taking 

into account TRIMPs from previous sessions, to quantify a long term effect of fatigue. In our 

cumulative TRIMP calculation we include an exponential decay of all previous session 

TRIMPs. Firstly we calculate a TRIMP value for a whole session using either the Morton et al 

model (equation 14) or our modified model (equation 15). The cumulative TRIMP is then a 

weighted sum of previous session TRIMPs such that more or less weight is given to more 

recent TRIMPs – a decay constant ϕ determines how much weight is given to the most recent 

sessions. The lower the ϕ value, the more emphasis is placed on the most recent session. Let 

Xi  be the overall session TRIMP for session i (i=1,…,N) calculated using either our modified 

TRIMP (equation 15) or the classic TRIMP (equation 14). Then, the cumulative TRIMP at 

session i is  

ki
jji

ki XZ ki




 
1

1
. 

where ji is the day number of session i (taking the first day of the training schedule as day 1). 

Thus the TRIMP of a training session x days in the past is weighted by an amount ϕ
x
. The 

models become the following, with cumulative TRIMP added in two ways, producing models 

in equations 17 and 18: 

ZHCCP ltttt logloglogloglog    .                                (17) 

ZCHCCP tltttt loglogloglogloglog    .                     (18) 

Cadence is interacting with cumulative TRIMP in the model in equation 18, but not in the 

model in equation 17. For the interaction (the model in equation 18), the mathematical 

optimum cadence is calculated in the following way: 

 /)log(* ZC  . 

We choose the decay constant for each athlete based on which yields the lowest standard 

errors for the cumulative TRIMP coefficient estimate (Z). 

Thus far TRIMP calculations have been for whole sessions; one TRIMP value is 

calculated to represent the training load for a given session. In addition to this, we calculate 

TRIMPs at intermediate points within sessions - thus we calculate a TRIMP for each 5 second 

measurement of time. Using our modified TRIMP (calculated using equation 15), as an 

alternative to calculating a TRIMP for all sampling points in a session (t to T), we do so for 

some of the session, say an intermediate point within a session, τ. The TRIMP at an 

intermediate point τ within a session is: 

tfb

t t efdTRIMP  



 1

.     

Where ft is the heart rate fraction reserve at sampling point t within a session (as in equation 

16 presented earlier in section 5.1.), b is a constant equal to 1.92, and d is the sampling 

interval. Thus this within session TRIMP allows us to quantify training load at any sampling 
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point within a session. We let Xτ be the TRIMP at intermediate point τ within a session. We 

add the within session TRIMP (Xτ) to the power output/heart rate model in two ways, 

producing models in equations 19 and 20: 

 XHCCP ltttt logloglogloglog   .                          (19) 

 XCHCCP tltttt loglogloglogloglog   .                (20) 

In the second model (equation 20), cadence is interacted with within session TRIMP, such 

that the mathematically optimum cadence depends on the TRIMP at any sampling point t. 

Thus the mathematically optimum cadence for this model (in equation 20) becomes:  

  /)log(* XC  . 

The mathematically optimum cadence therefore is dependent not only on α and β but also 

δlogXτ. We can therefore explore how optimum cadence varies with respect to different 

TRIMP values, or different training loads. The time unit of the sampling interval (d) does not 

need to be defined. When selecting a range of values for Xτ (to explore the effect of Xτ on 

optimum cadence), we can select a range of values based on what is typical for a given 

athlete.   

Before fitting regression models, we process the data available to us (the power output, 

heart rate and cadence measurements yielded at 5 second intervals). Literature suggests that 

heart rate lags behind changes in power output, and that a low heart rate lag is appropriate for 

our data (Stirling et al, 2008). We observe from fitting the non-linear model (equation 7) with 

different heart rate lags that any low heart rate lag (of 6 time units or less) yields a good fit of 

covariates. For all models with TRIMP calculations we settle for a heart rate lag of 1 time unit 

(5 seconds, denoted by l=1). We have previously considered smoothing the data available to 

us to reduce extreme fluctuations in the data (by taking a moving average of window width k 

time units). However we do not smooth data (denoted as k=1). Data are sampled once every 

24 time units (once every 120 seconds, denoted as m=24).   

We fit models with TRIMP (equations 17, 18, 19 and 20) to data we believe to closely 

resemble race conditions. We calculate the mean of all sampled heart rates, which we term the 

overall mean heart rate, for each athlete. We retain sampled data in which heart rate is greater 

than the overall mean heart rate for each athlete (which we term the high heart rate data 

subset). We believe the relatively high heart rate in the high heart rate data subset help to 

eliminate data from very long low-intensity training sessions. We fit models with TRIMP 

(equations 17, 18, 19 and 20) to the high heart rate data subset. 

 

6.3. Results of non-linear models of power output, heart rate and cadence 

with training impulse calculations (TRIMPs) 

We include training impulses, or TRIMPs, to our non-linear models. TRIMPs are a 

calculation to represent training load (Jobson et al, 2009; Morton et al, 1990). We fit models 

with TRIMP to the high heart rate data subset – that is, sampled data in which heart rate is 

greater than the mean heart rate for each athlete.  
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6.3.1. Models with cumulative TRIMP 

We consider a cumulative TRIMP from session to session. By incorporating previous session 

TRIMPs into a cumulative TRIMP measure for the current session, we intend to capture a 

long term accumulation of fatigue over a training schedule.  

We calculate a cumulative TRIMP for session i using our modified version of the Morton 

model (equation 15), which we denote as ZXi, and also using the Morton model (equation 14), 

which we denote ZTi.  

Subsequently adding cumulative TRIMP to the non-linear model produces the models in 

equations 17 and 18 – see section 6.2. for these equations in full. We fitted models in 

equations 17 and 18, for a heart rate lag of 5 seconds (l=1), using both our modified TRIMP 

(calculated using equation 15) and the classic TRIMP (calculated using equation 14). The 

cumulative TRIMP contains a decay constant, φ. This determines how much weight is placed 

on the most recent session. The lower the constant, the more weight is placed on the most 

recent session. We consider the optimum φ value for each athlete; that is the φ value for each 

athlete that yields the lowest standard errors for the coefficient estimate Z. The optimum φ is 

0.5 for athletes 1, 3 and 4, and 0.9 for athlete 2. This means that for athletes 1, 3 and 4, the 

optimum φ has a greater emphasis on the most recent session than it does for athlete 2. This 

means cumulative TRIMPs are typically greater for athlete 2 than for athletes 1, 3 and 4. 

The following estimates, along coefficient standard errors, explanatory power and AIC, 

are yielded, in table 68. In this table, we use different model numbers to denote which type of 

TRIMP is used (our modified TRIMP or the classic TRIMP). The models featuring 

cumulative TRIMP (models in equations 17 and 18) yield optimum cadences for athletes 1 

and 2 (since for these athletes both α and β are positive). Estimates and standard errors are 

broadly similar to the non-linear model with no additional covariates (equation 7). For 

athletes 1 and 2, δ is negative. This means that, as the cumulative TRIMP increases, expected 

power output decreases – this is what we expect, since the cumulative TRIMP should indicate 

a level of fatigue. However for athletes 3 and 4, δ is positive. For these athletes, as cumulative 

TRIMP increases, expected power output also increases. Nevertheless, since it is athletes 1 

and 2 for whom mathematical optimum cadences are yielded, we are most concerned with 

results for athletes 1 and 2. 

When calculating the optimum cadence in the model with cadence / cumulative TRIMP 

interaction (equation 18), we first choose a range of different values to use for the cumulative 

TRIMP. We base this range on values that are typically found in the data (the power output, 

heart rate and cadence measurements yielded at 5 second intervals). The following range of 

cumulative TRIMP values are calculated in the data, and we present these in table 69. 
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Table 68: Coefficient estimates (standard errors in parenthesis) and explanatory power for the 

cumulative TRIMP models, (equations 17 and 18 for modified and classic TRIMPs), for each athlete 

for a heart-rate lag of 5 seconds. 

 

Model α β γ δ log μ R2 AIC A
th

lete 1
 

1 1.59 (0.01) 0.021 (0.0005) 0.87 (0.06) -0.05 (0.01) -4.06 (0.31) 84.0 69635 

2 1.67 (0.02) 0.021 (0.0005) 0.86 (0.06) -0.014 (0.03) -4.32 (0.29) 84.0 69629 

3 1.59 (0.01) 0.021 (0.0005) 0.87 (0.06) -0.05 (0.01) -4.05 (0.31) 84.0 69634 

4 1.67 (0.02) 0.021 (0.0005) 0.86 (0.06) -0.014 (0.03) -4.31 (0.29) 84.0 69627 A
th

lete 2
 

1 1.66 (0.02) 0.025 (0.0008) 0.75 (0.08) -0.12 (0.03) -2.79 (0.46) 74.8 50063 

2 1.88 (0.05) 0.025 (0.0008) 0.75 (0.08) -0.029 (0.01) -3.69 (0.42) 74.8 50063 

3 1.66 (0.02) 0.025 (0.0008) 0.75 (0.08) -0.12 (0.03) -2.83 (0.46) 74.8 50065 

4 1.87 (0.05) 0.025 (0.0008) 0.75 (0.08) -0.029 (0.01) -3.69 (0.42) 74.8 50064 A
th

lete 3
 

1 1.18 (0.03) -0.0008 (0.001) 1.10 (0.14) 0.05 (0.02) -5.64 (0.70) 59.0 32582 

2 1.13 (0.04) -0.0008 (0.001) 1.10 (0.14) 0.011 (0.004) -5.39 (0.68) 59.0 32581 

3 1.18 (0.03) -0.0007 (0.001) 1.11 (0.14) 0.05 (0.02) -5.868(0.70) 59.0 32581 

4 1.13 (0.05) -0.0007 (0.001) 1.11 (0.14) 0.012 (0.004) -5.42 (0.68) 59.0 32580 A
th

lete 4
 

1 0.14 (0.03) -0.001 (0.002) 1.51 (0.14) 0.15 (0.03) -3.54 (0.71) 9.1 82754 

2 0.12 (0.05) -0.0008 (0.002) 1.48 (0.15) 0.005 (0.01) -2.61 (0.69) 8.7 82784 

3 0.15 (0.03) -0.001 (0.002) 1.50 (0.14) 0.17 (0.03) -3.60 (0.71) 9.2 82744 

4 0.14 (0.05) -0.0007 (0.002) 1.47 (0.14) 0.001 (0.01) -2.59 (0.69) 8.7 82785 

Model 1:  ZHCCP ltttt logloglogloglog      using our modified TRIMP 

Model 2:  CZHCCP tltttt loglogloglogloglog  
  

using our modified 

TRIMP 

Model 3:  ZHCCP ltttt logloglogloglog      
using the classic TRIMP 

Model 4:  CZHCCP tltttt loglogloglogloglog  
   

using the classic 

TRIMP 

 

Table 69: Minimum, maximum and mean cumulative TRIMP calculations (for both our modified 

TRIMP and the classic TRIMP) for each athlete. 

Athlete Minimum Maximum  Mean 

Z (our modified TRIMP) 

1 111 568 281 

2 114 1921 1448 

3 57 781 170 

4 47 362 145 

Z (the classic TRIMP) 

1 105 557 270 

2 105 1665 1303 

3 55 769 162 

4 38 303 134 

 

Optimum cadences are yielded for athletes 1 and 2 from models in equations 17 and 18. 

Therefore for these athletes we choose a suitable range of cumulative TRIMP values for 

testing the sensitivity of optimum cadences to cumulative TRIMP in equation 18. We 

consider the cumulative TRIMP for hypothetically easy, moderate and hard months. We 

consider hypothetical cumulative TRIMPs for easy, moderate and hard months as follows:  
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 easy month—10 2 hour sessions with fraction of heart-rate reserve at 0.6;  

 moderate month—as above plus 10 3 hour sessions with a fraction of heart-rate reserve of 

0.7; 

 hard month—as above plus 10 3 hour sessions with a fraction of heart-rate reserve at 0.8.  

We present the range of cumulative TRIMPs, along with optimum cadences and expected 

power output, in tables 70 and 71, for the models in equations 17 and 18. For reference, a 

session TRIMP of 250 typically relates to a three hour session, whilst a cumulative TRIMP 

varies between athletes. For athlete 1, cumulative TRIMPs for easy, moderate and hard 

months, using our modified TRIMP calculation, are 223, 383 and 517 respectively. For 

athlete 2, these are 783, 1217 and 1733 respectively. 

There is little difference in optimum cadences between the two TRIMP calculation 

methods (our modified TRIMP and the classic TRIMP), with marginally higher optimum 

cadences for the latter. 

 

Table 70: Optimum cadences (C*), along with 95% confidence intervals, yielded for athletes 1 and 2 

for models with cumulative TRIMP covariate (equation 17, using both our modified TRIMP and the 

classic TRIMP), with expected power output at optimum cadence (P*). 

 

Model C* C* standard C* Confidence Interval P* 

 

    Deviation Variance From: To:   

Athlete 1 1 75.45 0.24 0.06 74.99 75.92 192.42 

 

3 75.50 0.24 0.06 75.04 75.96 196.29 

Athlete 2 1 67.71 0.34 0.11 67.04 68.37 212.32 

 

3 67.77 0.34 0.12 67.11 68.44 212.45 

Model 1:  ZHCCP ltttt logloglogloglog    using our modified TRIMP 

Model 3:  ZHCCP ltttt logloglogloglog    using the classic TRIMP 

 

Table 71: Optimum cadences (C*), along with 95% confidence intervals, yielded for athletes 1 and 2 

for models with cadence/cumulative TRIMP interaction (equation 18, using both our modified TRIMP 

and the classic TRIMP), with expected power output at optimum cadence (P*). 

 

Model Difficulty TRIMP C* P* 

 

        

Athlete 1 2 Easy 223 75.44 198.46 

  Moderate 383 75.12 192.72 

  Hard 517 74.93 189.34 

 

4 Easy 233 75.47 197.99 

  Moderate 367 75.18 192.70 

  Hard 500 74.97 189.15 

Athlete 2 2 Easy 783 68.39 229.13 

  Moderate 1217 67.86 216.92 

  Hard 1733 67.44 207.59 

 4 Easy 767 68.34 226.55 

  Moderate 1167 67.85 215.28 

  Hard 1633 67.45 206.66 

Model 2: CZHCCP tltttt loglogloglogloglog  
 using our modified 

TRIMP 

Model 4: CZHCCP tltttt loglogloglogloglog  
  

using the classic TRIMP 
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We present power output cadence plots, for athletes 1 and 2, for the models in equations 

17 and 18 (in figures 18 to 21), for typically easy, moderate and hard months. When plotting 

the power output cadence graphs, we set heart rate to a constant (the mean heart rate of all 

heart rate measurements in the sampled data for each athlete). For the model with cadence / 

cumulative TRIMP interaction (equation 18), different TRIMPs also have an effect on the 

mathematical optimum cadences yielded.  
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Figure 18: Fitted power output (red curve) from the non-linear model with cumulative TRIMP 

(equation 17, using our modified TRIMP) against power output measurements (black dots) for 

athletes1 (a) and 2 (b). The red lines represent cumulative TRIMPs from easy, moderate and hard 

months. 
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Figure 19: Fitted power output (red curve) from the non-linear model with cumulative TRIMP 

(equation 17, using the classic TRIMP) against power output measurements (black dots) for athletes1 

(a) and 2 (b). The red lines represent cumulative TRIMPs from easy, moderate and hard months. 
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Figure 20: Fitted power output (red curve) from the non-linear model with cadence cumulative TRIMP 

interaction (equation 18, using our modified TRIMP) against power output measurements (black dots) 

for athletes1 (a) and 2 (b). The red lines represent cumulative TRIMPs from easy, moderate and hard 

months. 
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Figure 21:  Fitted power output (red curve) from the non-linear model with cadence cumulative 

TRIMP interaction (equation 18, using the classic TRIMP) against power output measurements (black 

dots) for athletes1 (a) and 2 (b). The red lines represent cumulative TRIMPs from easy, moderate and 

hard months. 

 

6.3.2. Models with within-session TRIMPs 

We modify the TRIMP outlined in Morton et al (1990) so that it can be calculated for 

intermediate points within a session, in fact for each sampling point where power output, 
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cadence and heart rate data have been collected. We also add greater emphasis to sampling 

points where heart rate is high. We fit models with intermediate TRIMP calculations (Xτ), 

producing models in equations 19 and 20 – see section 6.2. for these equations in full.  

For the model with cadence / within-session TRIMP interaction (equation 20), optimum 

cadence depends on the level of the TRIMP Xτ, along with its coefficient δ. We settle for a 

heart rate lag of 5 seconds (l=1), as literature suggests a low heart rate lag is realistic for our 

data, and we do not smooth the data (k=1). We fit models with TRIMP to the high heart rate 

data subset, as we are concerned with optimising cadence for sessions which are likely to 

resemble race conditions 

We present the coefficient estimates (with standard errors in parentheses), along with 

explanatory power and AIC, for models in equations 19 and 20 respectively, in table 72. 

 

Table 72: Coefficient estimates (with standard errors in parentheses), R
2
 and AIC for non-linear 

models with within-session TRIMP (equations 19 and 20), fitted for athletes 1 to 4 separately, with a 

heart rate lag of 5 seconds. 

 

Model α Β γ δ log μ R
2
 AIC A

th
lete 1

 

1 1.58 (0.01) 0.021 (0.0004) 0.90 (0.06) 0.008 (0.004) -4.57 (0.29) 84.0 69654 

2 1.58 (0.02) 0.021 (0.0005) 0.90 (0.06) 0.002 (0.001) -4.53 (0.29) 84.0 69653 A
th

lete 2
 

1 1.66 (0.02) 0.025 (0.0008) 0.76 (0.08) -0.03 (0.009) -3.62 (0.42) 74.7 50085 

2 1.70 (0.02) 0.025 (0.0008) 0.77 (0.08) -0.008 (0.002) -3.77 (0.42) 74.7 50074 A
th

lete 3
 

1 1.17 (0.03) -0.001 (0.001) 1.06 (0.14) 0.003 (0.01) -5.19 (0.68) 58.9 32588 

2 1.17 (0.04) -0.001 (0.001) 1.06 (0.14) 0.0006 (0.003) -5.18 (0.68) 58.9 32588 A
th

lete 4
 

1 0.13 (0.03) -0.001 (0.002) 1.60 (0.15) -0.04 (0.01) -3.03 (0.71) 8.8 82774 

2 0.18 (0.03) -0.001 (0.002) 1.60 (0.15) -0.04 (0.01) -3.09 (0.73) 8.8 82776 

Model 1:  XHCCP ltttt logloglogloglog    

Model 2:  XCHCCP tltttt loglogloglogloglog    

 

The coefficient of the TRIMP (δ), along with the polarity of the coefficient, differs 

depending on the athlete. The effect of within session TRIMPs on expected power output may 

vary depending on other aspects, such as how far into a session the athlete is. In addition to 

different polarities, the size of the effect of the within session TRIMP varies by athlete – for 

example, it tends to be 4 times greater for athlete 2 than for athlete 1. Estimates are similar for 

the two models – interacting cadence with the within session has had little effect on estimates. 

However the size of δ is greater when it is not interacted with cadence (and correspondingly 

the standard errors for δ are lower when it is not interacted with cadence). The within session 

TRIMP appears therefore to have a greater impact on expected power output when not 

interacted with cadence. 
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Although the polarity of δ varies by athlete, whether it is positive or negative may depend 

on typical session length. Sessions for athletes for whom δ is positive (athletes 1 and 3) are 

typically 25% longer than for those athletes (athletes 2 and 4) for whom δ is negative. Indeed 

these longer sessions may mean there is a longer warm up period, thus the effect of TRIMP 

on expected power output is harder to capture for athletes 1 and 3. 

AIC and explanatory power (R
2
), and standard errors for α and β are very similar to the 

non-linear model with no additional covariates (equation 7), with marginal reduction in AIC 

now that the within session TRIMP is added (for example, AIC has reduced from 69700 to 

69654 for athlete 1 with the addition of Xτ to the model).  

We calculate mathematical optimum cadences for models with within-session TRIMP 

calculations (models in equations 19 and 20. We assume typical values of all other variables, 

including heart rate and in this case also the within session TRIMP Xτ – we use mean values 

for each. However for the cadence within-session TRIMP interaction model (equation 20), 

optimum cadence depends on the value of the TRIMP and the coefficient of the TRIMP. We 

therefore present a range of optimum cadences for different levels of the within session 

TRIMP. We choose a range for each athlete based on what is typically found in the data.  

The following range of within session TRIMP values are calculated in the data. We 

present this range in table 73. 

 

Table 73: Minimum, maximum and mean within session TRIMP calculations (Xτ) for each athlete. 

Athlete Minimum Maximum  Mean 

1 0.0109 691 179 

2 0.0041 399 101 

3 0.0040 1090 141 

4 0.0020 574 101 

 

The mean Xτ tends to be much closer to the minimum value found than to the maximum 

value found. This is presumably because sessions vary in length, so in relatively short 

sessions, the TRIMP does not have enough time to accumulate to reach a very high value.  

Athletes 2 and 4 have similar typical values of Xτ but they are higher for athletes 1 and 3. We 

use a range of Xτ values to test the sensitivity of optimum cadence (to the within session 

TRIMP, Xτ) in the model with cadence / within session TRIMP interaction (equation 20). We 

also plot expected power output against cadence to demonstrate the shape of the curve. In 

model 40 this curve also depends on the range of values for Xτ, The range of values we 

consider for calculating an optimum cadence is based approximately on the table (table 73) - 

we present this range in table 74. 

 

Table 74: Range of values the within session TRIMP calculations (Xτ) are set to, for testing sensitivity 

of optimum cadence to Xτ. 

Athlete Range of Xτ values 

1 83 167 250 333 500 667 

2 50 100 150 200 267 333 
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We present optimum cadences yielded from models in equations 19 and 20 respectively, 

in tables 75 and 76.  

 

Table 75: Optimum cadences yielded from the non-linear model with within-session TRIMP (equation 

19) for athletes 1 and 2. 

Athlete  C* C* standard C* Confidence Interval P* 

    Deviation Variance From: To:   

1 75.99 0.24 0.06 75.53 76.46 196.88 

2 67.55 0.34 0.12 66.89 68.22 211.33 

 

Table 76: Optimum cadences yielded from the non-linear model with cadence / with-session TRIMP 

interaction (equation 20) for athletes 1 and 2, with expected power output at optimum cadence (P*). 

 

Xt C* P* 

Athlete 1 83 75.95 195.72 

 

167 76.01 196.78 

 

250 76.04 197.40 

 

333 76.07 197.84 

 

500 76.10 198.46 

  667 76.13 198.91 

Athlete 2 50 67.55 291.88 

 

100 67.32 285.01 

 

150 67.19 281.07 

 

200 67.09 278.31 

  267 67.00 275.58 

  333 66.92 273.48 

 

Optimum cadences are very similar to (though marginally higher than) those yielded 

from the cumulative TRIMP models (equations 17 and 18). For example, optimum cadence 

for athlete 1 is 76 in the within session TRIMP model (equation 19), but is 75.5 in the 

cumulative TRIMP models (equations 17 and 18).  

We present the following power output cadence plots, in figures 23 and 24, for the 

models featuring within-session TRIMP. Optimum cadences have consistently been yielded 

for athletes 1 and 2 but not 3 and 4. We therefore decide to concentrate on power output 

cadence plots for athletes 1 and 2 only. We set TRIMP and heart rate to typical values. The 

range of values for within session TRIMPs for these plots is presented in table 76. In the 

model with cadence / within-session TRIMP interaction (equation 20), we observe the change 

in optimum cadence with changing Xτ. The fitted plots (figures 22 and 23) follow table 77. 

The plots illustrate that optimum cadence varies little with the within session TRIMP Xτ, 

although it does vary with Xτ more for athlete 2 than for athlete 1. 

 

Table 77: Range of values of within-session TRIMPs (Xτ) considered for fitting power output cadence 

plots for the models with within-session TRIMP. 

Athlete Range of Xτ values 

1 17 200 667 

2 17 200 400 
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Figure 22: Fitted power output (red curve) from the non-linear model with cadence / within-session 

TRIMP (equation 19) against power output measurements (black dots) for athletes1 (a) and 2 (b). The 

red lines vary depending on the value of Xτ. For athlete 1, Xτ increases as power output increases, 

whilst the opposite occurs for athlete 2. 
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Figure 23: Fitted power output (red curve) from the non-linear model with cadence / within-session 

TRIMP interaction (equation 20) against power output measurements (black dots) for athletes1 (a) and 

2 (b). The red lines vary depending on the value of Xτ. For athlete 1, Xτ increases as power output 

increases, whilst the opposite occurs for athlete 2. 
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6.3.3. Deviation from optimum cadence for models with TRIMP 

For all models with TRIMP, we settle for a heart rate lag of 5 seconds (l=1), and we do not 

smooth data. We fit models with TRIMP to the high heart rate data subset. We fit models with 

training load impulse calculations (TRIMPs) to measure training load. TRIMPs are typically 

used in academic studies to quantify training load (Morton et al, 1990). We fit models with a 

cumulative TRIMP measure that takes into account previous session TRIMPs. This appears to 

represent some accumulated fatigue over time. We use two methods for calculating session 

TRIMPs – the classic TRIMP outlined by Morton (1990), and our modified TRIMP that gives 

greater weight to periods where heart rate is high. TRIMP is added to the non-linear model of 

power output, heart rate and cadence as in the models in equations 17 and 18 – see section 

6.2. for these equations in full. 

We present expected power outputs for a range of sub-optimal cadences for the model in 

equations 17 (using our modified TRIMP) in tables 78 and 79, as there are only marginal 

differences in expected power output between models with the modified and classic TRIMPs. 

As level of fatigue (cumulative TRIMP) increases, the margin of decrease in expected 

power output for sub-optimal cadences increases slightly. Deviation from optimum cadence 

continues to result in a greater reduction in expected power output for athlete 2 than for 

athlete 1. However the margin of difference between the athletes is not as great as it is for the 

simple non-linear model with no additional covariates (equation 7). 

  

Table 78: Differences in fitted power output for athlete 1 (left) and athlete 2 (right) using the 

cumulative TRIMP model (equation 17 using our modified TRIMP) with a heart rate lag of 5 seconds, 

for various cadences above and below the optimum cadence.
 

change 

in   Expected  

change 

in 

% 

change 

 

change 

in   Expected  

change 

in 

% 

change 

C from 

C* cadence 

power 

output 

power 

output 

in 

power 

output 

 

C from 

C* Cadence 

power 

output 

power 

output 

in 

power 

output 

-20 55.5 180.0 -12.4 -6.5 

 

-20 47.7 193.8 -18.5 -8.7 

-10 65.5 189.6 -2.8 -1.5 

 

-10 57.7 208.1 -4.2 -2.0 

-5 70.5 191.8 -0.6 -0.3 

 

-5 62.7 211.3 -1.0 -0.5 

  75.5 192.4     

 

  67.7 212.3     

5 80.5 191.7 -0.7 -0.4 

 

5 72.7 211.4 -0.9 -0.4 

10 85.5 189.9 -2.6 -1.3 

 

10 77.7 208.8 -3.5 -1.6 

20 95.5 183.3 -9.1 -4.8 

 

20 87.7 199.8 -12.5 -5.9 
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Table 79: Differences in fitted power output for athlete 1 (left) and athlete 2 (right) using the model 

with cadence / cumulative TRIMP interaction (equation 18, modified TRIMP) with a heart rate lag of 

5 seconds, for cadences above and below the optimum cadence, for various cumulative TRIMPs (Z). 

change 

in   Expected  

change 

in 

% 

change 

 

change 

in   Expected  

change 

in 

% 

change 

C from 

C* cadence 

power 

output 

power 

output 

in 

power 

output 

 

C from 

C* Cadence 

power 

output 

power 

output 

in 

power 

output 

Z = 223 

 

Z = 783 

-20 55.4 185.4 -13.1 -6.6 

 

-20 48.4 209.4 -19.7 -8.6 

-10 65.4 195.4 -3.0 -1.5 

 

-10 58.4 224.6 -4.5 -2.0 

-5 70.4 197.7 -0.7 -0.4 

 

-5 63.4 228.1 -1.1 -0.5 

  75.4 198.5     

 

  68.4 229.1     

5 80.4 197.8 -0.7 -0.3 

 

5 73.4 228.2 -1.0 -0.4 

10 85.4 195.9 -2.5 -1.3 

 

10 78.4 225.4 -3.7 -1.6 

20 95.4 189.2 -9.2 -4.7   20 88.4 215.7 -13.4 -5.9 

Z = 383 

 

Z = 1217 

-20 55.1 179.9 -12.8 -6.6 

 

-20 47.9 198.1 -18.8 -8.7 

-10 65.1 189.8 -2.9 -1.5 

 

-10 57.9 212.6 -4.3 -2.0 

-5 70.1 192.0 -0.7 -0.4 

 

-5 62.9 215.9 -1.0 -0.5 

  75.1 192.7     

 

  67.9 216.9     

5 80.1 192.1 -0.6 -0.3 

 

5 72.9 216.0 -0.9 -0.4 

10 85.1 190.2 -2.5 -1.3 

 

10 77.9 213.4 -3.6 -1.6 

20 95.1 183.7 -9.0 -4.7   20 87.9 204.1 -12.8 -5.9 

Z = 517 

 

Z= 1733 

-20 54.9 176.7 -12.6 -6.7 

 

-20 47.4 189.4 -18.2 -8.7 

-10 64.9 186.4 -2.9 -1.5 

 

-10 57.4 203.4 -4.2 -2.0 

-5 69.9 188.6 -0.7 -0.4 

 

-5 62.4 206.6 -1.0 -0.5 

  74.9 189.3     

 

  67.4 207.6     

5 79.9 188.7 -0.6 -0.3 

 

5 72.4 206.7 -0.9 -0.4 

10 84.9 186.9 -2.4 -1.3 

 

10 77.4 204.2 -3.4 -1.6 

20 94.9 180.5 -8.9 -4.7   20 87.4 195.3 -12.3 -5.9 

 

We also fit models with a within session TRIMP caclulation (Xτ), as in models in equation 19 

and 20. The effect of within session TRIMP on fitted power output is not as expected. We 

therefore believe the models with within session TRIMP (in equations 19 and 20) tells us little 

about the actual effect of training load on power output within a session. We do not present 

power output for sub-optimal cadences for these models.   

 

6.4. Summary of optimum cadences yielded in non-linear models of power 

output, heart rate and cadence with TRIMPs 

Firstly we add a cumulative TRIMP which quantifies the accumulation of fatigue (by using 

session TRIMPs from previous sessions). We use two methods for calculating session 

TRIMPs – the classic TRIMP outlined by Morton (1990), and our modified TRIMP that gives 

greater weight to period where heart rate is high. TRIMP is added to the non-linear model of 

power output, heart rate and cadence, producing models in equations 17 and 18. 

We present optimum cadences for these models (equations 17 and 18 respectively) in 

tables 80 and 81. For the model with cadence / cumulative TRIMP interaction (equation 18), 

we consider hypothetical TRIMPs for easy, moderate and difficult months.  
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We also include a within session TRIMP calculation, Xτ, which is added to the non-linear 

model of power output, heart rate and cadence, producing models in equation 19 and 20. We 

present optimum cadences for these models (equations 19 and 20 respectively) in tables 82 

and 83. 

 

Table 80: Optimum cadences (and confidence intervals in parentheses) for the cumulative TRIMP 

model (equation 17, using firstly our modified TRIMP and then the classic TRIMP), for a heart rate 

lag of 5 seconds (l=1). 

Athlete 1 Athlete 2 Athlete 3 Athlete 4 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Modfied TRIMP: 

75.45 (74.99, 75.92) 67.71 (67.04, 68.37) * * 

Classic TRIMP: 

75.50 (75.04, 75.96) 67.77 (67.11, 68.44) * * 

 

Table 81: Optimum cadences for the model with cadence / cumulative TRIMP interaction (equation 

18, using firstly our modified TRIMP and then the classic TRIMP), for a heart rate lag of 5 seconds. 

Athlete 1 Athlete 2 

 

Modified TRIMP: 

 

Modified TRIMP: 

Difficulty Cumulative 

TRIMP  (Z) 

Optimum        

Cadence 

Difficulty Cumulative 

TRIMP  (Z) 

Optimum        

Cadence 

Easy 223 75.44 Easy 783 68.39 

Moderate 383 75.12 Moderate 1217 67.86 

Hard 517 74.93 Hard 1733 67.44 

 

Classic TRIMP: 

 

Classic TRIMP: 

Difficulty Cumulative 

TRIMP  (Z) 

Optimum        

Cadence 

Difficulty Cumulative 

TRIMP  (Z) 

Optimum        

Cadence 

Easy 233 75.47 Easy 767 68.34 

Moderate 367 75.18 Moderate 1167 67.85 

Hard 500 74.97 Hard 1633 67.45 

  

 

Table 82: Optimum cadences (and confidence intervals in parentheses) for the within-session TRIMP 

model (equation 19), for a heart rate lag of 5 seconds (l=1). 

Athlete 1 Athlete 2 Athlete 3 Athlete 4 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

Optimum        

Cadence 

75.99 (75.53, 76.46) 67.55 (66.89, 68.22) * * 
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Table 83: Optimum cadences for the model with cadence / within-session TRIMP interaction 

(equation 20), for a heart rate lag of 5 seconds (l=1). 

 Athlete 1  Athlete 2 

Within session TRIMP 

calculation (Xτ) 

Optimum        

Cadence 

Within session TRIMP 

calculation (Xτ) 

Optimum        

Cadence 

5000 75.95 3000 67.55 

10000 76.01 6000 67.32 

15000 76.04 9000 67.19 

20000 76.07 12000 67.09 

30000 76.10 16000 67.00 

40000 76.13 20000 66.92 

 

6.5. Discussion of non-linear models of power output, heart rate and 

cadence with TRIMPs 

TRIMPs are considered in literature to be a standard measure of quantifying training load, 

although the exact calculation varies by author (Jobson et al, 2009; Morton et al, 1990). We fit 

models with TRIMPs (models in equations 17, 18, 19 and 20), only to the  high heart rate data 

subset (sampled data in which  heart rate is higher than the mean heart rate for each athlete). 

We consider a cumulative TRIMP, taking into account session TRIMP values of all previous 

sessions. This is to capture possible longer term accumulation of fatigue (longer than the build 

up of fatigue in one session). We calculate a cumulative TRIMP using an exponential decay 

of previous session TRIMPs, so that data from the whole of an athlete’s training schedule are 

included in the cumulative TRIMP calculation.  

For athletes 1 and 2 (whose results we are most concerned with since the models yield 

statstical optimum cadences for them), increasing the cumulative TRIMP decreases expected 

power output. For these athletes therefore, the cumulative TRIMP appears to capture an effect 

of fatigue; when the cumulative TRIMP is high, meaning they have a high level of fatigue, the 

athletes (1 and 2) are not able to produce as high a power output. With such a large number of 

data, inevitably there is some noise along with signal for any measure or variable. 

Nevertheless it appears to provide a measure of accumulated fatigue for athletes 1 and 2 in 

our analysis. However, it appears difficult to pick up much signal for athletes 3 and 4, whether 

for calculating an optimum cadence or for any other indicator of performance such as fatigue.  

For the cumulative TRIMP, we calculated individual session TRIMPs (which are 

included within the cumulative TRIMP caclulation) using two methods. We used the method 

outlined in Morton et al (1990) in equation 14, and also a modified version that placed a 

greater emphasis on high heart rates. For the cumulative TRIMP, estimates and standard 

errors are very similar for both methods. Over a long training schedule, the two methods for 

calculating an individual session TRIMP show little difference. Any such effect may have 

become negligible over the schedule, with the cumulative TRIMP possibly affected more by 

other measures such as the day of the most recent session or the value of the decay constant. 

Optimum cadences are approximately the same whether the classic TRIMP or modified 
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TRIMP are used – the margin of difference, less than 0.1 revolution per minute, is not 

practically significant as an athlete would not be able to modify cadence by such small 

margins. Optimum cadences differ by approximately 1 or 2 rpm between easy and hard 

months. Such a small change in cadence (1 or 2 rpm) is not of practical significance. 

Changing cadence requires an equivalent change in gear to keep a constant power output, but 

there would be no gear change small enough that would allow an athlete to change cadence by 

such a small margin and maintain the same power output. 

We also fitted models with a within session TRIMP calculation, in order  to quantify 

training load at each sampling point within a session. The effect of the TRIMP on the 

expected power output is not necessarily clear – the polarity of the coefficient for within 

session TRIMP (δ) varies by athlete. The coefficient for the TRIMP (δ) is negative for 

athletes 2 and 4. This means that for these athletes the expected power output for an athlete 

decreases as the TRIMP increases. For athletes 1 and 3, the expected power output actually 

increases with the TRIMP. The relationship between expected power output and within 

session TRIMP appears to depend on the athlete. Moreover, it appears quite a complex 

relationship. The specific time point within a session could affect the relationship. The 

intensity of a particular session may further exagerate this effect. Given that we are fitting 

models to real empirical training data, there may be a wide range of sessions with varying 

intensities. The range of intensity of sessions may vary by athlete. Some sessions may be of 

low intensity and have a fairly low training load.  

Session length may complicate the effect of a within sesion TRIMP on expected power 

output. For example, at the beginning of a session, an athlete may be warming up, and may be 

producing a low power output – at this point the power output TRIMP relationship would be 

positive. However, later in a session, the athlete may have accumulated fatigue, and the 

TRIMP may decrease the expected power output. Sessions are typically longer for athletes 1 

and 3 than for athletes 2 and 4. It is indeed for athletes 1 and 3 that increasing within session 

TRIMP inreases expected power output. This may suggest that the expected power output 

generally decreases as the within session TRIMP increases, but that it is complicated by the 

beginning of a session when power output is low. For athletes for which δ is positive, they 

may therefore possibly spend more time warming up in a session, before reaching a high 

power output. The longer sessions may suggest the athletes have more time to accumulate a 

higher range of TRIMP values. We would expect the presence of extremely high TRIMP 

values to yield a model where the TRIMP generally decreases expected power output, due to 

fatigue accumulated. However this is not the case for athletes with very long sessions. 

Possible longer warm up times for long sessions may explain this. Nonetheless the within 

session TRIMP calculation relationship with expected power output may depend on other 

factors. 

When examining the range of within session TRIMP values calculated for each athlete, 

we observe that the mean Xτ is closer to the minimum Xτ than it is to the maximum Xτ. We 

would expect this to some extent as sessions vary in length so there is not always time for the 

TRIMP to reach a high value. The within session TRIMP is typically higher for athletes 1 and 

3 than it is for athletes 2 and 4. This is most likely because sessions are typically longer for 

athletes 1 and 3 than for athletes 2 and 4, so they have time for a within session TRIMP 

calculation to accumulate. However the TRIMP is slightly higher for athlete 1 than for any 

other athlete, so typical session length is possibly not the only explanation for the range of 



Including training impulse calculations in non-linear models  

143 

TRIMP caclulations yielded. Our results suggest that it is difficult to investigate the effect of 

within session TRIMP calculations alone on expected power output for competitive cyclists. 

Nevertheless the results appear to suggest that, broadly, after the athlete has completed a 

warm up period in a session, expected power output decreases a little as within session 

TRIMP increases. 

Compared to the simple non-linear model with no additional covariates (equation 7), 

optimum cadences for the cumulative TRIMP models (equations 17 and  18) are slighlty 

lower. For example, in the model in equation 7 optimum cadences are 76 for athlete 1 and 

68.4 for athlete 2, and in equation 35, optimum cadences are 75.5 for athlete 1 and 66.7 for 

athlete 2. Optimum cadences are higher for athlete 1 than for athlete 2. We interact cadence 

with cumulative TRIMP in the model in equation 18. For a given change in cumulative 

TRIMP, optimum cadence changes by a greater margin for athlete 2 than for athlete 1. The 

optimum cadence for athlete 2 therefore appears more sensitive to fatigue than does the 

optimum cadence for athlete 1. Over the same interval expected power output also changes by 

a greater margin for athlete 2. Optimum cadence decreases by increasing magnitude as the 

TRIMP increases. For example, for athlete 1 in the model with cumulative TRIMP using our 

modified TRIMP method (equation 18), we consider a range of TRIMPs at approximately 

level intervals, for easy, moderate and hard months. The optimum cadence decreases by 0.3 as 

TRIMP increases from 223 to 383 (easy to moderate), then by 0.2 as TRIMP increases from 

383 to 517 (moderate to hard). For athlete 2, the same trend occurs; the optimum cadence 

decreases by 0.5 as TRIMP increases from 783 to 1217, then by 0.4 as TRIMP increases from 

1217 to 1733.  Optimum cadence is typically 1 revolution per minute lower for a session after 

a hard month compared to an easy month. Considering different sessions over the previous 

two or three month period (rather than the last month) may yield a greater difference in 

optimum cadences between sessions following easy or hard periods. 

For the within session TRIMP models, optimum cadences are slightly higher than in the 

cumulative TRIMP models. When interacting cadence with Xτ, optimum cadences vary 

between different TRIMP calculations for athlete 2 more than for athlete 1. Athlete 2’s 

optimum cadence appears more sensitive therefore to the within session TRIMP. However 

this may be due to the typical size of the TRIMP Xτ. It is typically approximately twice as 

large for athlete 1 than for athlete 2. Indeed the coefficient estimate of Xτ (and hence the 

margin of change in optimum cadence) is approximately twice as high for athlete 2 than for 

athlete 1.  

The optimum cadences yielded by the models with and without TRIMP calculations are 

typically greater for athlete 1 than for athlete 2 by approximately 8 rpm. This margin cannot 

be explained purely by the typical values of additional variables. For example 8 rpm is a much 

greater margin of difference than the difference between an optimum cadence for a low 

TRIMP and an optimum cadence for a high TRIMP for a partiular athlete. Although the effect 

of TRIMPs on expected power output can be difficult to model, a margin of approximately 8 

rpm occurs whether we include a cumulative TRIMP or a within session TRIMP. This may 

emphasise the importance of individual optimum cadences. Moreover, the results may 

emphasise that an optimum cadence is most sensitive to an individual’s characteristics 

(physical and physiological) than to levels of fatigue or duration of exercise. 

We did not consider a range of heart rate lags when including the training impulse 

measures to the model, and we did not smooth the data. The sensitivity analysis conducted 
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previously however, along with the literature, suggest that a low heart rate lag is most 

appropriate for our data. The optimum cadences yielded in the sensitivity analysis are quite 

sensitive to the moving average window width, but by not smoothing we are able to compare 

our optimum cadences with literature. 

Our study has demonstrated that a mathematical optimum cadence can be calculated for 

an individual athlete empirically using data from training sessions, providing he/she has 

ridden at a great enough range of cadences and power outputs. By including cumulative 

TRIMP in the regression models, we have observed how optimum cadence varies with fatigue 

(although there is little impact in our study). We conclude that training impulses do not need 

to be included in models for calculating optimum cadence. A greater impact of fatigue on 

optimum cadence may potentially be found with more data collected over a longer period.  
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Chapter 7: Non-linear models of power output, heart rate excess 

and cadence 

7.1. Introduction to models with heart rate excess 

Thus far we have fitted non-linear models of measurements of power output, heart rate and 

cadence, sampled such that we take one measurement for every 2 minutes. We lag heart rate 

at some time after power output and cadence. Whilst this has successfully yielded 

mathematical optimum cadences for two of our athletes, we now consider an alternative 

model in which power output is related to excess heart rate )( 0hH lt  , where h0 is the resting 

heart rate.  

 

7.2. Method 

Resting heart rates are provided in the data for athletes 1, 2 and 4. We assume the same 

resting heart rate for athlete 3 as is found for athletes 2 and 4. The resting heart rates are 

presented in the results section in 6.2. The model with excess heart rate becomes the 

following (equation 21):  

tltttt hHCCP    )log(logloglog 0                         
 (21) 

This model contains the property that, when the athlete is not riding, the power output in the 

model is zero, i.e. when 0hH lt  , 0tP . Data provided to us are power output, heart rate 

and cadence measurements yielded at 5 second intervals. We consider heart rate to be a 

response to changes in power output, at some delay, or lag. We fit this model for different 

heart rate lags, comparing covariate estimates and optimum cadences with the equivalent non-

linear model that includes Ht+l rather than excess heart rate. We consider heart rate lags of 5, 

10, 15, 20, 30 and 60 seconds (l= 1, 2, 3, 4 6 and 12 respectively). We previously considered 

smoothing data using a moving average of window width k time units. We do not smooth the 

data (denoted by k=1), and we continue to sample data once every 24 time units (120 seconds, 

denoted by m=24). 

We fit the model (equation 21) to the high heart rate data subset (data in which heart rate 

is greater than the mean heart rate for each athlete individually). 

 

7.3. Results  

We present coefficient estimate along with explanatory power and AIC for the model in 

equation 21 in table 84. Whilst explanatory power increases with increasing heart rate lag, so 

too do standard errors. It is therefore difficult to ascertain an optimum heart rate lag for 

models with excess heart rate. AIC is marginally lower for models with heart rate excess 

(equation 21) compared to equivalent models featuring lagged heart rate (equation 7). 

We briefly explore the sensitivity of coefficient estimates to the resting heart rate. We 

take an example – athlete 2 at heart rate lag of 30 seconds – and consider alternative 

hypothetical resting heart rates. We present coefficient estimates in table 85. Estimates for α 
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and β for athlete 2 are not affected by choice of resting heart rate, although γ increases as 

resting heart rate increases. 

Optimum cadences are yielded for athletes 1 and 2, presented in table 86. Optimum 

cadences are broadly the same as those yielded in the non-linear model of power output, heart 

rate and cadence (equation 7) that did not include heart rate excess. 

Plots of power against cadence for models with heart rate excess appear identical to those 

for non-linear models of power output, heart rate and cadence, presented earlier in section 4.6. 

We therefore do not include power cadence plots for models with heart rate excess. 

 

Table 84: Optimum cadences (C*), along with 95% confidence intervals, yielded for athletes 1 and 2 

from the non-linear model of power output, heart rate excess and cadence (equation 21), for various 

heart rate lags (l). 

 

l Α β γ μ log μ R
2
 AIC 

Athlete 1 1 1.58 (0.01) 0.021 (0.0005) 0.62 (0.04) 0.057 -2.86 (0.18) 84.0 69654 

H0 = 53,  2 1.56 (0.01) 0.020 (0.0005) 0.61 (0.04) 0.062 -2.78 (0.19) 84.2 70914 

51, 56 * 3 1.56 (0.01) 0.020 (0.0005) 0.61 (0.04) 0.061 -2.79 (0.20) 84.7 71542 

 

4 1.55 (0.01) 0.020 (0.0005) 0.53 (0.04) 0.089 -2.42 (0.20) 85.1 71841 

 

6 1.53 (0.01) 0.018 (0.0006) 0.52 (0.04) 0.092 -2.39 (0.20) 85.9 72597 

  12 1.51 (0.01) 0.017 (0.0006) 0.48 (0.05) 0.111 -2.20 (0.22) 85.8 72724 

Athlete 2 1 1.66 (0.02) 0.024 (0.0008) 0.57 (0.06) 0.076 -2.58 (0.28) 74.7 50085 

H0 = 42 2 1.65 (0.02) 0.024 (0.0009) 0.62 (0.06) 0.060 -2.82 (0.29) 75.9 50653 

 

3 1.64 (0.02) 0.024 (0.0009) 0.61 (0.07) 0.063 -2.76 (0.30) 75.9 50423 

 

4 1.63 (0.02) 0.024 (0.0009) 0.57 (0.07) 0.076 -2.58 (0.31) 75.8 51220 

 

6 1.61 (0.02) 0.023 (0.0010) 0.45 (0.07) 0.131 -2.04 (0.32) 76.5 51359 

  12 1.56 (0.02) 0.020 (0.0010) 0.21 (0.07) 0.388 -0.95 (0.34) 75.7 52217 

Athlete 3 1 1.17 (0.03) -0.001 (0.001) 0.77 (0.10) 0.031 -3.48 (0.45) 58.9 32593 

H0 = 42 2 1.13 (0.03) -0.003 (0.001) 0.77 (0.10) 0.032 -3.45 (0.47) 61.2 33021 

 

3 1.10 (0.03) -0.004 (0.001) 0.80 (0.10) 0.028 -3.57 (0.48) 61.5 33173 

 

4 1.05 (0.03) -0.007 (0.001) 0.81 (0.10) 0.026 -3.63 (0.72) 62.4 33365 

 

6 0.99 (0.03) -0.010 (0.001) 0.88 (0.11) 0.020 -3.92 (0.50) 63.5 33227 

  12 0.95 (0.04) -0.011 (0.002) 0.67 (0.11) 0.052 -2.95 (0.50) 63.6 33155 

Athlete 4 1 0.15 (0.03) -0.0007 (0.002) 1.05 (0.10) 0.872 -0.14 (0.45) 8.7 82791 

H0 = 42 2 0.15 (0.03) -0.001 (0.002) 0.98 (0.10) 1.164 0.15 (0.47) 9.2 83474 

 

3 0.17 (0.03) -0.001 (0.002) 0.98 (0.11) 0.945 -0.06 (0.49) 10.1 83639 

 

4 0.16 (0.03) -0.002 (0.002) 0.91 (0.11) 1.348 0.30 (0.50) 10.3 84037 

 

6 0.18 (0.04) -0.002 (0.002) 1.04 (0.11) 0.689 -0.37 (0.51) 11.1 84745 

  12 0.20 (0.04) -0.0012 (0.002) 1.23 (0.12) 0.257 -1.36 (0.53) 12.6 85992 

* for athlete 1, resting heart rates is given as 53 for most of the schedule, but later changes to 51, then to 56.  

 

Table 85: Coefficient estimates (standard errors in parenthesis) and explanatory power for the non-

linear model of power output, heart rate excess and cadence (equation 21), for athlete 2 at l=6 (heart 

rate lag of 30 seconds), for different resting hear rates (H0). The italicised row represents the resting 

heart rate provided in the data for athlete 2. 

H0 α β γ μ log μ σ R2 AIC 

38 1.61 (0.02) 0.023 (0.0010) 0.46 (0.07) 0.119 -2.13 (0.34) 0.867 76.5 51359 

42 1.61 (0.02) 0.023 (0.0010) 0.45 (0.07) 0.131 -2.04 (0.32) 0.867 76.5 51359 

46 1.61 (0.02) 0.023 (0.0010) 0.43 (0.07) 0.143 -1.94 (0.31) 0.867 76.5 51359 

50 1.61 (0.02) 0.023 (0.0010) 0.42 (0.06) 0.157 -1.85 (0.29) 0.867 76.5 51358 
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Table 86: Optimum cadences (C*), along with 95% confidence intervals, yielded for athletes 1 and 2 

from the non-linear model of power output, heart rate excess and cadence (equation 21), for various 

heart rate lags (l). 

 

L C* C* standard C* Confidence Interval P* 

 

    deviation variance From: To:   

Athlete 1 1 75.99 0.24 0.06 75.50 76.44 196.81 

 

2 79.58 0.28 0.08 79.01 80.11 192.91 

 

3 79.37 0.29 0.09 78.78 79.93 191.41 

 

4 79.43 0.30 0.09 78.84 80.01 190.47 

 

6 83.41 0.34 0.12 82.75 84.08 187.95 

  12 86.82 0.39 0.15 86.08 87.62 186.31 

Athlete 2 1 68.42 0.35 0.12 67.67 69.02 214.24 

 

2 68.18 0.36 0.13 67.39 68.81 206.14 

 

3 68.35 0.37 0.14 67.55 69.02 201.24 

 

4 68.57 0.39 0.15 67.81 69.34 196.18 

 

6 70.41 0.44 0.19 69.55 71.26 189.90 

  12 76.09 0.55 0.30 75.01 77.16 179.34 

 

We explore how power output in the model (equation 21) changes for sub-optimal 

cadences. We consider cadences 5, 10 and 20 revolutions per minute above and below the 

mathematically optimum cadence for each athlete, in table 87, for a selection of heart rate 

lags. 

Although fitted power output is slightly higher for the model with heart rate excess, 

riding at a sub-optimal cadence reduces power output by the same margin whether heart rate 

or heart rate excess is included in the model (equations 7 and 20 respectively). For example, 

for athlete 1 at a lag of 30 seconds (l=6), fitted power output is 187.8 at the optimum cadence 

for model 18, but it is 188.0 in the model with heart rate excess (equation 21) – however 

riding at a cadence 20 revolutions per minute below optimum results in a 5.1% reduction in 

power output in both models. 

 

7.4. Discussion 

By relating power output to heart rate excess, this ensures that, when heart rate is equal to an 

athlete’s resting heart rate, power output is zero. However, including heart rate excess in the 

non-linear model of power output, heart rate and cadence has made little difference to 

coefficient estimates and optimum cadences. Explanatory power is the same whether heart 

rate or heart rate excess is used in the non-linear model, with AIC marginally lower for the 

model with heart rate excess. Coefficient estimates for α and β are also broadly the same 

whether heart rate or heart rate excess is used in the model – hence so too are statistical 

optimum cadences, which are yielded for athlete 1 and 2 in our study. 

However, the greatest difference between non-linear models with heart rate or heart rate 

excess is that γ, the coefficient relating to heart rate or heart rate excess, is much lower in the 

latter. Also µ is much greater when we add heart rate excess to the model compared to when 

we use heart rate. The reduced γ indicates that, as the athlete increases his power output, heart 

rate excess does not have to increase by the same amount as would heart rate – this is because 

heart rate excess is necessarily greater than heart rate (for heart rates above resting heart rate).  
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For athlete 1 in our analysis, the resting heart rate provided in the data changes twice. The 

resting heart rate may therefore have been recorded at different stages within his training 

schedule. For other athletes (athletes 2 and 4 in our analysis), the resting heart rate does not 

change. We do not know if the resting heart rate was recorded at different stages and it 

happened not to change, or if resting heart rate was only recorded at the beginning of the 

training schedule. 

Given the similarity in results between non-linear models of power output, heart rate and 

cadence whether heart rate or heart rate excess is included in the model (equations 7 and 20 

respectively), in terms of optimum cadences, fitted power output of the models and AIC, we 

do not consider it necessary to expand equation 21 to include further covariates. Some 

coefficient estimates (though not those related to the calculation of optimum cadence) appear 

sensitive to the choice of resting heart rate. Nevertheless in future research into optimising 

cadence, either heart rate or heart rate excess could be included in non-linear models of power 

output, heart rate and cadence. 

 

Table 87: Differences in fitted power output for athlete 1 (left) and athlete 2 (right) using the non-

linear model of power output, heart rate excess and cadence (equation 21) for unsmoothed data (k=1) 

and various heart rate lags (l), for various cadences above and below the optimum cadence. 

change 

in   Expected  

change 

in 

% 

change 

 

change 

in   Expected  

change 

in 

% 

change 

C from 

C* Cadence power power 

in 

power 

 

C from 

C* Cadence power power 

in 

power 

l=1         

 

l=1         

-20 56.0 184.1 -12.7 -6.5 

 

-20 48.4 196.1 -18.2 -8.5 

-10 66.0 193.9 -2.9 -1.5 

 

-10 58.4 210.1 -4.2 -1.9 

-5 71.0 196.1 -0.7 -0.4 

 

-5 63.4 213.3 -1.0 -0.5 

 

76.0 196.8     

 

  68.4 214.3     

5 81.0 196.2 -0.6 -0.3 

 

5 73.4 213.3 -0.9 -0.4 

10 86.0 194.3 -2.5 -1.3 

 

10 78.4 210.8 -3.4 -1.6 

20 96.0 187.8 -9.0 -4.6 

 

20 88.4 201.9 -12.4 -5.8 

l=2         

 

l=2         

-20 59.6 181.8 -11.1 -5.8 

 

-20 48.2 188.6 -17.5 -8.5 

-10 69.6 190.3 -2.6 -1.3 

 

-10 58.2 202.1 -4.0 -1.9 

-5 74.6 192.3 -0.6 -0.3 

 

-5 63.2 205.2 -1.0 -0.5 

  79.6 192.9     

 

  68.2 206.1     

5 84.6 192.3 -0.6 -0.3 

 

5 73.2 205.3 -0.9 -0.4 

10 89.6 190.7 -2.2 -1.1 

 

10 78.2 202.8 -3.3 -1.6 

20 99.6 184.9 -8.0 -4.1 

 

20 88.2 194.2 -11.9 -5.8 

l=6         

 

l=6         

-20 63.4 178.3 -9.6 -5.1 

 

-20 50.5 175.2 -14.7 -7.7 

-10 73.4 185.7 -2.2 -1.2 

 

-10 60.5 186.5 -3.4 -1.8 

-5 78.4 187.4 -0.5 -0.3 

 

-5 65.5 189.1 -0.8 -0.4 

 

83.4 188.0     

 

  70.5 189.9     

5 88.4 187.5 -0.5 -0.3 

 

5 75.5 189.2 -0.7 -0.4 

10 93.4 186.1 -1.9 -1.0 

 

10 80.5 187.1 -2.8 -1.5 

20 103.4 181.0 -7.0 -3.7 

 

20 90.5 179.8 -10.1 -5.3 
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Chapter 8: Summary of research undertaken 

In this study we have developed a methodology for calculating a mathematical optimum 

cadence. This is the cadence that maximises power output for a given heart rate. By riding at 

an optimal cadence, an athlete can make small but significant gains in performance (Abbiss et 

al, 2009; Coast and Welch, 1985; Foss and Hallen, 2004). 

We have developed a range of mathematical models of power output, heart rate and 

cadence to yield an optimum cadence for four competitive cyclists. These are typically 

category II and III cyclists competing at county championship level. Linear, quadratic and 

cubic models did not yield a mathematical optimum cadence. However non-linear models 

yielded optimum cadences for two of the four athletes. The optimum cadences yielded for the 

athletes in our study were approximately 83 and 70 revolutions per minute for the two athletes 

respectively. These optimum cadences are similar to preferred cadences, although athlete 1 

tends to ride just above his optimum cadence (typically riding at 82-92 rpm) and athlete 2 

tends to ride just above and below his optimum cadence (65-70 rpm).  

Our analysis does not indicate that optimum cadence varies by power output. We fitted a 

model in which cadence interacted with heart rate, yielding different optimum cadences for 

different power outputs or different heart rates, but statistical meaures did not indicate that 

this model was superior to a model without such an interation. 

Power output reduces by ~2% for cadences 10 revolutions per minute below or above 

optimum. These are in accordance with some literature from laboratory based ergometer 

studies, but less than the typical cadences chosen by elite athletes in competition (Foss and 

Hallen, 2004). The athletes in our data are below elite level, so it is possible that higher 

cadences would be yielded for elite athletes. Expected power outputs for our athletes are also 

lower than they would be for category I athletes; fitted power output is typically 

approximately 200W for the athletes in our analysis. However given the subjective nature of 

cadence selection amongst cyclists, it is not certain that cyclists always choose the most 

appropriate cadence. For the  two athletes in our analysis for whom optimum cadences were 

not yielded, it is most likely that they did not ride a wide enough range of cadences for a 

model to pick up a peak cadence, above which power output decreases. 

For non-linear models of power output, heart rate and cadence, we retain sampled data in 

which the heart rate is greater than the mean heart rate for each athlete. We believe this is 

reasonable as it is likely to more closely represent conditions in races, as it excludes data from 

long, low intensity training sessions in which athletes are not exerting a particularly great 

amount of effort, and athletes are likely to be exerting great effort in races. Though heart rate 

is not a direct measure of effort, we would expect heart rate to be higher in races than in low 

intensity training sessions. Optimum cadences yielded are indeed lower when we retain only 

high heart rate data, and they are yielded for two athletes for high heart rate data but for only 

one athlete when we include all sampled data.     

There are two main limitations of our study. Firstly,  optimum cadence depends on heart 

rate lag. A study by Stirling et al (2008) has suggested that heart rate lags behind changes in 

power output by approximately 30 seconds or less. We considered a range of heart rate lags, 

with explanatory power typically highest for a lag of 30 seconds (although standard errors 

were lowest for a lag of 5 seconds). In accordance with literature and patterns in explanatory 
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power, we suggest 30 seconds is an appropriate time lag between changes in power output 

and heart rate response for training sessions in competitive cycling. Secondly, optimum 

cadence may depend on riding mode, which means whether an athlete is standing or sitting on 

the bicycle. There may even be two optimum cadences: one for when the athlete is standing 

and one for when the athlete is sitting. However no such information regarding riding model 

was available to us, and it is unlikely that such information could be collected and available at 

5 second intervals without the introduction of new monitoring technology. 

A further limitation of our study is that we do not measure or model gradient in this 

study. As such we do not measure any effect of gradient on optimum cadence. Future research 

could be conducted to relate gradient to optimum cadence. 

We considered the effect of fatigue on optimum cadence by calculating training impulses 

(TRIMPs), which are a standard way of measuring training load. For the athletes for whom an 

optimum cadence is yielded in our study, fatigue reduces the optimum cadence, although only 

by a small margin; typically optimum cadence following an easy month of training is 1 rpm 

higher than optimum cadence following a hard month of training. It is possible that a bigger 

effect of TRIMP could be found if more data were used, over a longer period. The differences 

between the optimum cadences of the two athletes is typically 8 rpm, which is much greater 

than the influence of fatigue on optimum cadence in our study. Individual difference between 

the athletes, such as muscle fibre type composition, may therefore have a fundamental affect 

on optimum cadence, more than fatigue. We also considered the effect of TRIMP variation 

within a session, but some long, low intensity sessions made this effect difficult to pick up. 

The athletes in our study are typically category II and III cyclists competing at County 

Championship level. Nevertheless this methodology, to calculate optimum cadence, can be 

adopted by athletes with a wide range of experience and skill. Athletes must ride with a power 

meter to collect power output, heart rate and cadence measurements from each training 

session undertaken, and upload such data after each session to a spreadsheet. Ideally this 

should be for a number of months to collect enough data, and they should ride a wide range of 

cadences within their training sessions. Hence any athlete who can commit to regular, long 

training sessions, who works with a professional coach and who can purchase a power meter 

can adopt this methodology, ranging from regional and national championship athletes, to 

Olympic and World Championship athletes.  
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Chapter 9: Conclusions and future work 

We believe optimum cadences can indeed be calculated statistically using field data for 

individual athletes, provided athletes ride at a range of cadences either side of their preferred 

cadence, or either side of the cadence that they believe to be optimal. The optimum cadences 

yielded from our study were approximately 83 and 70 revolutions per minute for two athletes 

respectively, which is similar to literature (Abbiss et al, 2009; Coast and Welch, 1985). 

Higher cadences may have been found for elite, category I athletes (Foss and Hallen, 2004). 

Our analysis suggests that optimum cadence does not vary with power output or heart rate (or 

how hard the session is). Optimum cadences are close to the athletes’ preferred cadences. 

Optimum cadence is higher for athlete 1 in our analysis than for athlete 2 (83 rpm compared 

to 70 rpm), whilst athlete 1 typically chooses to ride at a higher cadence (82-92 rpm) than 

does athlete 2 (65-75 rpm). This may suggest that physiological differences between athletes 

that underpin choice of cadence may also be the same physiological differences that lead to 

different optimum cadences between the athletes (such as muscle fibre type). Our analysis 

also suggests that optimum cadence does not vary with fatigue.  

Our research has some limitations. Optimum cadence depends on the length of time delay 

between changes in power output and heart rate response, although we believe 30 seconds is 

an appropriate time lag. We also do not consider whether the athletes in our analysis are 

standing or sitting on the saddle. 

In order to implement the methodology, athletes can give their collected data to their 

coach. The coach can then work with a performance analyst, to use statistical software to 

obtain the parameters that yield the value of the optimum cadence (parameters α and β in our 

non-linear models of power output, heart rate and cadence). Within a race, athletes can 

monitor their cadence on screen (on the bicycle), to ensure they are riding at their indiviaul 

optimum cadence. After calculating an optimum cadence, athletes can continue to collect 

power output, heart rate and cadence data from training sessions, and update their optimum 

cadence after, say, another six months, and so on. Although we do not model fitness in the 

statistical models used, if fitness changes, any influence of fitness on optimum cadence would 

yield itself as a change in the optimum cadence. Indeed a fitter athlete may be able to sustain a 

higher cadence than a less fit athlete. 

Future work could be conducted to include a model with changes in fitness. An extra 

variable, readiness to perform, could be calculated. This would be an accumulation of fitness 

minus fatigue (Banister and Calvert, 1975). Currently we do not know what appropriate 

values should be used for the parameters in such a variable. If more research is conducted to 

find reliable estimates for these parameters, models could be fitted in which optimum cadence 

is dependent on readiness to perform. Future work could also fit our models to a larger group 

of athletes, with athlete effects considered random, rather than fixed. 

Selection of cadence tends to be quite subjective, with athletes choosing what is 

comfortable, with some input from coaches and fellow athletes. This methodology allows for 

a more precise calculation of optimum cadence, and through repeated implementation, 

varying with changes in fitness. It is also calculated using data which can easily be gathered 

(from training sessions), without need for separate laboratory experiments. 
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Appendix 

We present tables of estimates for non-linear models of power output and cadence, in table 

87. We calculate and present R
2
, AIC and BIC to assess the model fit, presented in table 88. In 

the appendix we also present fitted power cadence plots for a selection of the non-linear 

models of power output and cadence. For each heart rate range chosen here, we plot power 

output from the non-linear model of power output and heart rate (equation 10) along with 

power output measurements in the data, against cadence. We plot for each athlete separately 

(figures 24 to 28). 

We next present example code for the non-linear model of power output, heart rate and 

cadence (in equation 7) fitted in R. 

We include plots of power output against cadence from non-linear models of power 

output, heart rate, cadence and additional covariates. We present fitted plots for the non-linear 

model with extra covariates and no interactions (equation 10) in figures 29 and 30. We set 

heart rate, normalized power output  X1t, proportion of the session that has elapsed up to the 

current sampling point X2t, mean power output over the previous seven days X3, and mean 

session duration over the previous seven days (hours) X4 to the mean values found in the data 

for each athlete. For the first plot, all sampled data are included, whilst for the second plot, 

only data in which heart rate is greater than the overall mean heart rate for each athlete are 

retained. 

 

Table 88: residual standard errors of the non-linear model of power output and cadence (equation 5) 

and corresponding one parameter null models for different heart rate subsets, fitted in R for athletes 1 

to 4. 

     

null model equivalent 

 

  

  

 

Res 

  

Res 

HR range n s.e. µ s.e. s.e 

40 - 50 136 12.10 36.072 4.214 49.150 

50 - 60 187 24.08 44.378 3.995 55.350 

60 - 70 340 22.71 39.942 2.062 38.030 

70 - 80 915 23.28 42.876 1.383 41.830 

80 - 90 2006 27.32 64.775 1.044 46.760 

90 - 100 3330 30.24 95.707 0.872 50.300 

100 - 110 5071 28.71 125.718 0.734 52.230 

110 - 120 6094 28.38 151.552 0.730 57.010 

120 - 130 7171 32.82 177.858 0.715 60.580 

130 - 140 8663 33.11 203.741 0.635 59.090 

140 - 150 9151 29.68 221.550 0.617 59.050 

150 - 160 5065 33.98 243.288 0.973 69.270 

160 - 170 2992 48.04 284.318 1.671 77.640 

170 - 180 587 52.21 264.557 3.086 74.780 

180 - 190 184 58.38 253.632 6.372 86.430 

190 - 200 28 107.70 232.520 20.050 106.100 

  

ALL 51787 48.22 178.941 0.367 83.520 
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Table 89: AIC, BIC and explanatory power for the non-linear model of power output and cadence 

(equation 5), for athletes 1 to 4, with data split into sub-groups depending on heart rate. 

HR range     n AIC BIC R
2
 

40 - 50 136 532.5 555.8 80.2 

50 - 60 187 749.9 775.8 69.7 

60 - 70 340 1207.1 1237.7 62.6 

70 - 80 915 3222.2 3260.8 64.2 

80 - 90 2006 7388.1 7432.9 63.1 

90 - 100 3330 12962.8 13011.7 62.5 

100 - 110 5071 20617.0 20669.2 64.5 

110 - 120 6094 25876.7 25930.4 66.8 

120 - 130 7171 31569.2 31624.2 64.9 

130 - 140 8663 38571.7 38628.3 64.1 

140 - 150 9151 40318.4 40375.4 66.6 

150 - 160 5065 22913.9 22966.1 67.1 

160 - 170 2992 14246.5 14294.5 61.8 

170 - 180 587 2599.2 2634.2 58.9 

180 - 190 184 802.3 828.0 59.7 

190 - 200 28 145.1 155.7 49.6 

  

ALL 51787 232036.6 232107.5 63.4 

 

 

Figure 24: Power output measurements (black dots) and fitted Power output (red lines) against 

cadence for athletes 1 to 4 (read lexicographically), for the model in equation 5. This is for data in 

which smoothed heart rate is recorded to be between 70 and 80 beats per minute. 
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Figure 25: Power output measurements (black dots) and fitted Power output (red lines) against 

cadence for athletes 1 to 4 (read lexicographically), for the model in equation 5. This is for data in 

which smoothed heart rate is recorded to be between 100 and 110 beats per minute. 

 

Figure 26: Power output measurements (black dots) and fitted Power output (red lines) against 

cadence for athletes 1 to 4 (read lexicographically), for the model in equation 5. This is for data in 

which smoothed heart rate is recorded to be between 130 and 140 beats per minute. 
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Figure 27: Power output measurements (black dots) and fitted Power output (red lines) against 

cadence for athletes 1 to 4 (read lexicographically), for the model in equation 5. This is for data in 

which smoothed heart rate is recorded to be between 160 and 170 beats per minute. 

 

Figure 28: Power output measurements (black dots) and fitted Power output (red lines) against 

cadence for athletes 1 to 4 (read lexicographically), for the model in equation 5. This is for data in 

which all smoothed heart rate recordings are included. 
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Example R code for the simple non-linear model of power output, heart rate and cadence 

(equation 7) is given below, for athlete 1. The code “$A==’1’”indicates this is for athlete 1 in 

our analysis; subsequently this number is changed accordingly when we fit this code for 

athlete 2, 3 and 4. 

 
mydata <- read.table(file.choose(), header=TRUE, sep=",") 

attach(mydata) 

newdata <- mydata[ which(mydata$A=='1'), ] 

attach(newdata) 

gammatestnew <- nls(log_P~I(logmu+(a*log_C)-(b*C)+(d*log_H_lag6)), data=newdata, 

start=list(a=1, b=0.01, d=1, logmu=-5)) 

summary(gammatestnew) 

vcov(gammatestnew) 

 

Next we present power / cadence plots for the non-linear model with extra covariates 

(equation 10). 

 

 

Figure 29: Fitted power output (red lines) from the non-linear model with extra covariates (equation 

10) and power output measurements (black dots) against cadence, for athletes 1 to 4 (read 

lexicographically), for the high heart rate data subset.  Heart rate is lagged at 5 seconds.
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Figure 30: Fitted power output (red line) from the non-linear model with extra covariates (equation 10) 

and power output measurements (black dots) against cadence, for athletes 1 to 4 (read 

lexicographically), for the high heart rate data subset.  Heart rate is lagged at 5 seconds. 


