
 

   

Cognitive Ant Colony Optimization: 

A New Framework in Swarm 

Intelligence 

 

 

Indra Chandra Joseph Riadi 

 

 

 

Ph.D. Thesis 2014 

  



 

   

Cognitive Ant Colony Optimization: 

A New Framework in Swarm 

Intelligence 

 

 

 

 

Indra Chandra Joseph Riadi 

School of Computing, Science and Engineering 
College of Science and Technology 

University of Salford, Manchester, UK 
 
 
 
 
 
 
 
 
 
 
 
 

Submitted in Partial Fulfilment of the Requirements of the 
Degree of Doctor of Philosophy, January 2014 



 

  i 

Tables of Contents 

Tables of Contents ............................................................................................................. i  

List of Publications ........................................................................................................... v 

List of Figures .................................................................................................................. vi  

List of Tables ................................................................................................................. viii  

Acknowledgements .......................................................................................................... ix  

Declaration ........................................................................................................................ x  

Abstract ............................................................................................................................ xi 

Chapter 1 Introduction ...................................................................................................... 1 

1.1 Overview ............................................................................................................ 1 

1.2 Motivation .......................................................................................................... 2 

1.3 Research Objective ............................................................................................. 6 

1.4 Research Contribution ........................................................................................ 7 

1.5 Organization of the Thesis ................................................................................. 8 

Chapter 2 Survey of Ant Colony Optimization ................................................................ 9 

2.1 Introduction ........................................................................................................ 9 

2.2 Foraging Behaviour of Real Ants .................................................................... 12 

2.3 The Design of Artificial Ants ........................................................................... 14 

2.4 The Ant Colony Optimization Metaheuristic ................................................... 15 

2.5 ACO Problems ................................................................................................. 19 



 

  ii 

2.6 Ant Colony Optimization Algorithms .............................................................. 20 

2.6.1 Ant System ............................................................................................... 22 

2.6.2 Elitist Ant Colony Optimization ............................................................... 26 

2.6.3 Rank-based Ant System ............................................................................ 27 

2.6.4 MAX-MIN Ant System (MMAS) ............................................................ 28 

2.6.5 Ant Colony System (ACS) ....................................................................... 28 

2.6.6 Hyper-Cube Framework (HFC) ................................................................ 30 

2.7 The Travelling Salesman Problem (TSP) ........................................................ 31 

2.8 Ant Colony Optimization Algorithm for Continuous Problems ...................... 33 

2.9 Summary .......................................................................................................... 34 

Chapter 3 Decision-making under Risk .......................................................................... 35 

3.1 Introduction ...................................................................................................... 35 

3.2 Decision Making in ACO ................................................................................. 37 

3.3 Utility Theory ................................................................................................... 40 

3.4 Expected Utility Theory ................................................................................... 42 

3.5 Prospect Theory ............................................................................................... 44 

3.6 Summary .......................................................................................................... 50 

Chapter 4 A New Framework for Ant Colony Optimization for Discrete Optimization 

Problems ......................................................................................................................... 51 

4.1 Introduction ...................................................................................................... 51 

4.2 Formulation of Prospect Theory in TSP (Travelling Salesman Problem) ....... 54 



 

  iii 

4.3 Formulation of Prospect Theory in Water Distribution System (WDS) 

Problems ..................................................................................................................... 56 

4.4 Experimental Results ....................................................................................... 62 

4.4.1 TSP Problems ........................................................................................... 62 

4.4.2 Water Distribution Problems .................................................................... 68 

4.5 Summary .......................................................................................................... 74 

Chapter 5 A New Framework for Ant Colony Optimization for Continuous 

Optimization Problems ................................................................................................... 77 

5.1 Introduction ...................................................................................................... 77 

5.2 ACO for Continuous Domains (ACOR) .......................................................... 78 

5.3 Formulation of Prospect Theory for Continuous Unconstrained Problems ..... 81 

5.4 Experiment Setup ............................................................................................. 84 

5.5 Summary .......................................................................................................... 89 

Chapter 6 Analysis of the New Framework of Ant Colony Optimization Compare to 

Genetic Algorithm and Particles Swarm Optimization .................................................. 91 

6.1 Introduction ...................................................................................................... 91 

6.2 Comparison between ACOAs and Genetic Algorithms (GAs)........................ 92 

6.3 Comparison between ACOAs and Particle Swarm Optimization (PSO) 

Algorithms .................................................................................................................. 97 

6.4 Summary .......................................................................................................... 98 

Chapter 7 Conclusions and Further Research ............................................................... 100 

7.1 Conclusions .................................................................................................... 100 



 

  iv 

7.2 Future Research .............................................................................................. 103 

Appendix A Source code in Matlab for AS-PT ............................................................ 105 

Appendix B Source code in Matlab for AS-PT ............................................................ 106 

Appendix C Source code in Matlab for ACS-PT ......................................................... 112 

Appendix D Source code in Matlab for WDS-PT ........................................................ 119 

Appendix E Sources code in Matlab for ACOR-PT ..................................................... 126 

References ..................................................................................................................... 134 

Bibliography ................................................................................................................. 139 

 



 

  v 

List of Publications 

Riadi, I.C.J & Nefti-Meziani, 2011, Cognitive Ant Colony Optimization: A New 

Framework In Swarm Intelligence, Proceeding of the 2nd Computing, Science 

and Engineering Postgraduate Research Doctoral School Conference, 2011 

Riadi, I.C.J & Nefti-Meziani, Ab Wahab, M.N,  Ant Colony Optimization for Discrete 

Domain by using Prospect Theory, is being prepared to be submitted. 

Riadi, I.C.J & Nefti-Meziani, Ab Wahab, M.N, Ant Colony Optimization for 

Continuous Domain by using Prospect Theory, is being prepared to be 

submitted. 

 

 

 

 

   



 

  vi 

List of Figures 

Figure 2.1 Leafcutter ants (Atta) bringing back cut leaves to the nest ........................... 10 

Figure 2.2 Chains of Oecophylla longinoda ................................................................... 10 

Figure 2.3 Two workers holding a larva in their mouths................................................ 11 

Figure 2.4 Double Bridge Experiments. a) The two paths are equal length. b) The lower 

path is twice as long as the upper path. ........................................................................... 13 

Figure 2.5 Basic principle of AC (Source:  Blum, 2005) ............................................... 17 

Figure 2.6 ACO metaheuristic in a high-level pseudo-code ........................................... 18 

Figure 3.1 Typical utility function .................................................................................. 40 

Figure 3.2 Utility functions based on wealth .................................................................. 43 

Figure 3.3 Value function ............................................................................................... 46 

Figure 3.4 Probability weighting function ...................................................................... 49 

Figure 4.1 The Framework of ACO. On the left is the standard ACO and on the right is 

ACO-PT .......................................................................................................................... 54 

Figure 4.2 Representation of WDS Problem (Source: Maier et al., 2003) ..................... 57 

Figure 4.3 Evolution of best tour length (Oliver30). Typical run (Source: Dorigo et al., 

1996) ............................................................................................................................... 63 

Figure 4.4 Evolution of the standard deviation of the population’s tour lengths 

(Oliver30). Typical run (Source: Dorigo et al., 1996) .................................................... 63 

Figure 4.5 Best Tour Length and its standard deviation for the best result from the 

experiment. ..................................................................................................................... 64 



 

  vii 

Figure 4.6 Typical result for ACS .................................................................................. 67 

Figure 4.7 Typical result for ACS-PT ............................................................................ 67 

Figure 4.8 New York Tunnel Problem (Source: Maier et al., 2003) .............................. 69 

Figure 4.9 Evolving process of objective function using MMAS for NYWTP ............. 70 

Figure 4.10 Evolving process of objective function using MMAS+PT for NYWTP .... 71 

Figure 4.11 Best fitness of each of iterations for MMAS for NYTP .............................. 71 

Figure 4.12 Hanoi Network Problem .............................................................................. 72 

Figure 4.13 Typical result for MMAS for HNP ............................................................. 74 

Figure 4.14 Typical result for MMAS-PT for HNP ....................................................... 74 

Figure 5.1 ACOR Algorithm (Liao, et al., 2011) ........................................................... 81 

Figure 5.2 The Proposed ACOR-PT Algorithm ............................................................. 85 

Figure 5.3 The best result for Sphere Function, number evaluation = 840 .................... 87 

Figure 5.4 The best result for Ellipsoid Function, number evaluation = 300 ................. 87 

Figure 5.5 The best result for Brainin Function, number evaluation = 170 ................... 88 

Figure 5.6 The best result for Goldstein and Price Function, number evaluation = 88 .. 88 

Figure 5.7 The best result for Hartmann3,4 Function, number evaluation = 40 .............. 89 

 

 



 

  viii 

List of Tables 

Table 4-1 The summary of the conversion of general ACO Problem to WDS Problem 

(Source, Zecchin et al., 2005) ......................................................................................... 60 

Table 4-2 Performance of AS and AS-PT on Oliver30 problem .................................... 63 

Table 4-3 Comparison of ACS with ACS-PT on 50=city problems random instances, 

and Oliver30 of TSP ....................................................................................................... 65 

Table 4-4 Comparison of algorithm performance for the New York Tunnels Problem. 

Performance statistic are ordered as follows; minimum, [mean] and {maximum} ....... 69 

Table 4-5 Comparison of algorithm performance for Hanoi Network Problem. 

Performance statistics are ordered as follows; minimum, [mean] and {maximum} ...... 73 

Table 5-1 Summary of the parameters of ACOR (Source: Socha & Dorigo (2008)) .... 85 

Table 5-2 Results obtained by ACOR (Socha & Dorigo, 2008) compared to ACOR-PT

 ........................................................................................................................................ 86 

  



 

  ix 

Acknowledgements 

I would like to thank all those who have assisted me along the long route to completing 

this work. 

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Samia 

Nefti-Meziani for the continuous support of my PhD study and research, from initial 

advice and contacts in the early stages of conceptual inception and through on-going 

advice and encouragement to this day. Her guidance helped me in all the time of 

research and writing of this thesis.  

I thank to all my other colleagues who have worked with me in the various aspects of 

this work; in particular, Ahmed Dulaimy, May Namman Bunny, Bassem Al-Alachkar, 

and Rosidah, to name just a few. 

I would also like to thank my family for the support they provided me through my 

entire life and in particular, I must acknowledge my wife Ririn, and to our children; 

Anggraini and Setiadi for being so patient and understanding. 

In conclusion, I recognize that this research would not have been possible without the 

scholarship of the Directorate General of Higher Education of Republic Indonesia, and 

the granted permission for further study of Politeknik Negeri Bandung. I express my 

gratitude to those agencies.   

  



 

  x 

Declaration 

The work contained within this thesis is my own and has not been done in 

collaboration, except where otherwise stated.  No part of this thesis has been submitted 

to any other university in application for a higher degree. 

  



 

  xi 

Abstract 

Ant Colony Optimization (ACO) algorithms which belong to metaheuristic algorithms 

and swarm intelligence algorithms have been the focus of much attention in the quest to 

solve optimization problems. These algorithms are inspired by colonies of ants foraging 

for food from their nest and have been considered state-of-art methods for solving both 

discrete and continuous optimization problems. One of the most important phases of 

ACO algorithms is the construction phase during which an ant builds a partial solution 

and develops a state transition strategy. There have been a number of studies on the 

state transition strategy. However, most of the research studies look at how to improve 

pheromone updates rather than at how the ant itself makes a decision to move from a 

current position to the next position. 

The aim of this research is to develop a novel state transition strategy for Ant Colony 

Optimization algorithms that can improve the overall performance of the algorithms. 

The research has shown that the state transition strategy in ACO can be improved by 

introducing non-rational decision-making. 

The new proposed algorithm is called Cognitive Ant Colony Optimization and uses a 

new concept of decision-making taken from cognitive behaviour theory. In this 

proposed algorithm, the ACO has been endowed with non-rational behaviour in order to 

improve the overall optimization behaviour of ants during the process. This new 

behaviour will use a non-rational model named prospect theory (Kahneman & Tversky, 

1979) to select the transition movements of the ants in the colony in order to improve 
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the overall search capability and the convergence of the algorithm. The new Cognitive 

Ant Colony Optimization framework has been tested on the Travelling Salesman 

Problem (TSP), Water Distribution System and Continuous optimization problems. The 

results obtained show that our algorithm improved the performance of previous ACO 

techniques considerably. 
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Chapter 1 Introduction 

1.1 Overview 

Ant behaviour fascinates in many ways. How can such a small creature, with the brain 

the size of a pinhead, be intelligent? Human beings learn to navigate in a city by 

exploring new knowledge or exploiting existing knowledge. Ants can also navigate in 

nature to find food and bring it back to their nests. However, ants cannot perform such 

tasks as individuals; they must be part of ant groups. Ants and other animals, such as 

certain birds and fish, navigate in their environment by relying on information provided 

by the others. This collective behaviour leads to what is called “swarm intelligence”, 

which was first introduced in the context of cellular robotic systems by (Beni & Wang, 

1993) 

The behaviour of ants as a collective or a colony inspired Dorigo in 1992 to propose an 

algorithm simulating their behaviour in his PhD thesis. This algorithm is called the ant 

colony optimization algorithm (ACO), and its aim is to find an optimal solution of NP-

hard (non-deterministic polynomial-time hard) problems. ACO algorithms were 

originally proposed for combinatorial or discrete problems; but recently, they have also 

been applied to solve continuous or mixed problems. ACO algorithms were first 

implemented in the travelling salesman problem (TSP) (Dorigo & Gambardella, 1997). 

Now, they have been applied to various problems, such as job assignment problems, 

scheduling problems, graph colouring, maximum clique problems, and vehicle routing 

problems. The latest applications include (for example) cell placement problems in 
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circuit design, communication network design or bio-informatics problems. Some 

researchers have also focused on applying ACO algorithms to multi-objective problems 

and to dynamic or stochastic problems (Blum, 2005).  

ACO algorithms have also been applied to path planning for mobile robots, which is an 

important task in robot navigation (Brand, Masuda, Wehner, & Yu, 2010). They 

enhance robotic navigation systems in both static and dynamic environments. The need 

of autonomous mobile robots that move faster in a dynamic, complex — even unknown 

— environment is of paramount importance in robotics. Without path planning, there 

would be a need for human operators to specify the motion for mobile robots. 

Autonomous path planning is essential to increase the efficiency of robot operation. 

The latest overview of past and on-going research of ACO in various engineering 

applications can be found in Geetha & Srikanth (2012). They presented the 

comprehensive study of the application of ACO in diverse fields such as mobile and 

wireless networks, sensor networks, grid computing, P2P Computing, Pervasive 

computing, Data mining, Software engineering, Database systems, Multicore 

Processing, Artificial intelligence, Image processing, Biomedical application and also 

other domains relevant to Electrical Engineering fields; hence, the use of ACO 

algorithms is one of the most encouraging optimization techniques. 

1.2 Motivation 

Optimization techniques are essential in our daily lives, in engineering and in industry. 

These techniques are applied in almost all fields of applications. We can optimize to 

minimize cost and energy consumption, or to maximize profit, output, performance and 

efficiency. Optimization is imperative in the real world because of limitations in 
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resources, time and money. In reality, optimization problems are more complex; the 

parameters as well as the constraints influence the problems’ characteristics. 

Furthermore, optimal solutions are not always possible. We can only attain suboptimal 

— or even just feasible — solutions that are satisfying, robust and practically 

achievable in a reasonable time scale. 

Uncertainty adds more complexity when searching for optimal solutions; for example, 

if the available materials have a certain degree of inhomogeneity that significantly 

affects the chosen design. Consequently, we seek not only optimal but also robust 

design in engineering and in industry. Moreover, most problems are nonlinear and often 

NP-hard, and need exponential time to find the optimum solution in terms of the 

problem size. The challenge is to find an effective method for search for the optimal 

solution, and this is not always achievable.  

Many attempts have been made to improve the optimization techniques for dealing with 

NP-hard problems over the past few decades of computer science research. We can 

distinguish several high-level approaches, which are either problem-specific or 

metaheuristic. In the first approach, the algorithms are developed based on the 

problem’s characteristics derived from theoretical analysis or engineering. The second 

approach, the algorithms are used to find an answer to a problem when there are few or 

no assumptions; no clue as to what the optimal solution looks like; very little heuristic 

information to be followed; and where brute force search is out of the question because 

the space of the candidate solutions is comparatively large.  

Metaheuristics implement a form of stochastic optimization method, which randomly 

searches for the optimal solution. Such randomness makes the methods less sensitive to 

modelling errors, and may enable the search to escape a local minimum and eventually 
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to approach a global optimum. In fact, this randomization principle is a simple and 

effective way to obtain algorithms with good performance for all sorts of problems. 

Some examples of stochastic optimization are simulated annealing, swarm intelligence 

algorithms and evolutionary algorithms. 

Swarm intelligence algorithms derive from the social behaviour of animals that consist 

of a group of non-intelligent simple agents with no central control structure and no self-

organization to systematise their behaviour (Engelbrecht, 2005). The local interactions 

between the agents and their environment lead to the emergence of global collective 

behaviour that is new to the individual agents. Examples of swarm intelligence 

algorithms are particle swarm optimization (PSO), ant colony optimization (ACO), and 

bee colony algorithms (BCA).  

ACO algorithms are useful in problems that need to find paths to goals. Natural ants lay 

down pheromones directing each other to resources while exploring their environment. 

Artificial ants locate optimal solutions by moving through a searching space 

representing all possible solutions using a state transition strategy. They measure the 

quality of their solutions, so that in later simulation iterations more ants can locate 

better solutions.  

Currently, research about the state transition strategy of ACO algorithms is scarce. 

Deneubourg, Aron, Goss & Pasteels (1990) presented a simple random model to 

describe the dynamic of ants in the double bridge experiment, which was the origin of 

state transition strategy. Dorigo, Maniezzo & Colorni (1996) proposed the first real 

state transition strategy while introducing the ant system (AS) algorithm, which is 

called the random-proportional rule. Subsequently, Dorigo and Gambardella (1997) 

proposed the pseudo-random-proportional rule when they were introducing the ant 
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colony system (ACS) algorithm, which produced better results when compared to the 

AS algorithm. Until now, almost all the advanced ant colony algorithms have used the 

pseudo-random-proportional rule.  

Pseudo-random-proportional transition strategy has two main behaviours: exploitation 

and exploration. Exploitation behaviour is the ability of the algorithm to search through 

the solution space — where good solutions have previously been found — by always 

choosing the candidate with maximum utility. Such behaviour is rational behaviour. 

Exploratory behaviour is the ability of the algorithm to broadly search by randomly 

choosing the candidate’s solution, which is not always that with the maximum utility. 

This kind of behaviour is non-rational behaviour. Higher exploitation is reflected in the 

rapid convergence of the algorithm to a suboptimal solution. Higher exploration results 

in better solutions at a higher computational cost due to the slow convergence of the 

method. In order to have a good result it is important to balance between these two 

behaviours. This is not straightforward; it needs experience and many experiments.  

Experiments in behavioural studies often find the prediction of utility maximization, 

which is adopted by Expected Utility Theory (EUT), to be violated (Camerer, 1989). 

Kahneman & Tversky (1979) showed that changing the ways in which options are 

framed could generate noticeable shifts in preference. Their experiments captured a 

pattern of risk attitudes that differed from utility maximization. The rational assumption 

of EUT has been demonstrated to be wrong by Allais in the Allais paradox (Allais, 

1979). This paradox shows that the rational assumption systematically fails to 

reproduce the human preferences over a simple discrete choice problem. Fortunately, a 

mathematical model has been developed by Kahneman and Tversky (1979) to cope 

with the Allais paradox; it is called the prospect theory (PT). PT is a valid hypothesis 
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for human decision-making behaviour, which can be rational or non-rational depending 

on the way in which the problem is framed.  

The ACO algorithms exhibit rational behaviour during exploitation, and they exhibit 

non-rational behaviour during exploration. The challenge is how to balance these two 

behaviours. In this thesis, we propose PT as a transition strategy in ACO algorithms. By 

using PT, the balance between exploration and exploitation can be adjusted by the PT 

model through changing the framing problem. Moreover, PT can handle the issue of 

how to deal with the uncertainty that has become one of the major issues in ACO 

optimization. By proposing to include PT in the ACO algorithms, elements of human 

behaviour are introduced into ACO algorithms for the first time. 

1.3 Research Objective 

The objective of the research is to develop a novel state transition strategy for the Ant 

Colony Optimization algorithms that can improve the overall performance of the 

algorithms. The state transition strategy in ACO algorithms is a decision-making 

process to select the next position during the solution construction phase, and it is very 

important to determine the overall performance of the algorithms.  

The usage of prospect theory in ACO algorithms as a framework for a state transition 

strategy is investigated for the first time. This new framework will be tested in both 

discrete and continuous problems in order to validate the improvement of the 

performance that has been made. This framework is also tested in some mathematical 

problems and some real problems. 

To achieve these objectives, the following tasks have been carried out: 
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- To verify that the new proposed framework can be applied successfully in Ant 

Colony Optimization based on the prospect theory, which represents human-like 

decision-making under risk for both discrete and continuous optimization 

problems. 

- To test the new framework in the travelling salesman problem (TSP), Water 

Distribution Systems (WDSs) and various continuous problems. 

- To compare the proposed framework with the results reported in literature, 

based on better solutions, lower cost, a reduction in time consumption (in most 

cases).  

 

1.4 Research Contribution 

The research reported in this thesis contributes to the field of Ant Colony Optimization 

by formulating a new state transition strategy using decision-making under risk. The 

proposed framework provides the following unique contributions: 

A novel state transition strategy model for Ant Colony Optimization based on human 

decision behaviour under risk is presented. The proposed model captures common 

human decision-making attitudes towards risk, i.e., risk aversion and risk seeking, 

hence improving the exploration/exploitation of Ant Colony Optimization during the 

iteration process. 

The proposed framework exhibits comparatively: 1) fewer function evaluations than 

other state-of-the-art decision-making models when applied to solve the same problems; 

2) greater flexibility, as it can be used for several different systems, where decision-
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making under risk is paramount. This framework has been tested through 3 different 

systems to: 

• Find appropriate decision variables for several optimization problems among 

preferred operating decision ranges. 

• Find an optimal network design for a water distribution system (WDS). 

1.5 Organization of the Thesis 

The remainder of this thesis is organized as follows:  

Chapter 1 provides an introduction and highlights issues related to the thesis, its 

motivations, aims, objectives, contributions to knowledge, and the thesis structure. 

Chapter 2 presents a review of previous work in ACO. It contains a brief introduction, 

approaches to build ACO algorithms and an overview of different types of ACO 

algorithms. Chapter 3 provides a general overview of decision-making under risk. It 

starts with introducing the general decision making and goes on to examine decision 

making in ACO. This is followed by a review of decision making theory and prospect 

theory, which is a concept that will be used throughout this thesis. Chapter 4 presents 

the implementation of prospect theory in the ACO algorithms as a new framework for 

decision making in ACO. This implementation will be carried out for discrete problems. 

The TSP will be used as a standard problem and a water distribution system will be 

used a discrete problem with constraints. Chapter 5 reviews the concept of ACO for 

solving the continuous optimization problems and presents the implementation of the 

prospect theory in ACO algorithms as a new framework for decision-making. Chapter 6 

presents the analysis of the new methods compare to Genetic Algorithms and Particles 

Swarm Optimization algorithms. Chapter 7 presents conclusions and some suggestions 

for future research. 
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Chapter 2 Survey of Ant Colony 

Optimization 

This chapter presents a review of previous work on ACO. It contains a brief 

introduction, approaches to building ACO algorithms and an overview of different 

types of ACO algorithms.  

2.1 Introduction 

Many researchers have been inspired by the metaphor of the social insect for solving 

problems. This approach shows how from direct or indirect interactions among a group 

of simple insects collective intelligence can emerge that offers a flexible and robust 

solution for relatively complex problems. Insects that live in colonies, such as ants, 

bees, wasps and termites, have fascinated biologists. An insect colony is highly 

organized; nevertheless a single insect seems to have its own plan and does not require 

any supervisor. For example, Leafcutter ants (Atta) cultivate fungi by cutting leaves 

from plants and trees (Figure 2.1). Workers search for leaves hundreds of meters away 

from the nest, truly organizing a freeway to and from their foraging sites (Hölldobler & 

Wilson, 1990). Weaver ant (Oecophylla) workers cross a wide gap by forming chains 

with their own bodies, and work together to carry thick leaf edges to form a nest (Figure 

2.2). An even bigger chain can be formed by joining several chains and workers run 

back and forth using this chain. The chain can also create enough force to pull leaf 

edges together. The ants will glue both edges when the leaves are in place using a 
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continuous thread of silk by squeezing larva (Figure 2.3) (Hölldobler & Wilson, 1990) 

(Camazine, et al., 2003).  

There are many more examples that show the remarkable abilities of social insects. An 

insect is a complex creature that has many sensory inputs, its behaviour is controlled by 

many stimuli, including interactions with nest-mates, and it makes decisions on the 

basis of a large amount of information. Nevertheless, the complexity of an individual 

insect is still not sufficient to explain the complexity of what social insect colonies can 

achieve or how the cooperation between individuals arises. 

 

Figure 2.1 Leafcutter ants (Atta) bringing back cut leaves to the nest 

 

Figure 2.2 Chains of Oecophylla longinoda 
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Figure 2.3 Two workers holding a larva in their mouths 

Heredity determines some of the mechanisms of cooperation, for example, anatomical 

differences between individuals, such as the differences between minors and majors in 

polymorphic species of ants, can organize the division of labour. However, many 

aspects of the collective activities of social insects are self-organized. Theories of self-

organization (SO) in social insects show that complex behaviour may emerge from 

interactions among individuals that exhibit simple behaviour (Camazine, et al., 2003). 

This process is spontaneous; it is not directed or controlled by any individual. The 

resulting organization is wholly decentralized or distributed over all the individuals of 

the colony. Recent research shows that SO is indeed a major component of a wide range 

of collective phenomena in social insects (Serugendo, Gleizes, & Karageorgos, 2011). 

In self-organization, the structures appear at the global level as a result of a set of 

dynamical mechanisms of interactions between its lower-level components. These 

interactions are based only on local information without reference to the global pattern, 

which is an emergent property of the system, or an external ordering influence. For 

example, in the case of foraging in ants, the structures emerge as a result of organizing 

pheromone trails.  
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There are a considerable number of researchers, mainly biologists, who study the 

behaviour of ants in detail. Biologists have shown experimentally that it is possible for 

certain ant species to find the shortest paths in foraging for food from a nest by 

exploiting communication based only on pheromones, an odorous chemical substance 

that ants can deposit and smell. This behavioural pattern has inspired computer 

scientists to develop algorithms for the solution of optimization problems. The first 

attempts in this direction appeared in the early 1990s, indicating the general validity of 

the approach. Ant Colony Optimization (ACO) algorithms are the most successful and 

widely recognized algorithmic techniques based on ant behaviours. These algorithms 

have been applied to numerous problems; moreover, for many problems ACO 

algorithms are among the current high performing algorithms. 

The first ant colony optimization (ACO), called the ant system, was by Marco Dorigo 

and was inspired by studying the behaviour of ants in 1991 (Dorigo & Stützle, 2004). 

An ant colony is highly organized, in which one ant interacts with others through 

pheromones in perfect harmony. Optimization problems can be solved through 

simulating ants’ behaviours. Since the first ant system algorithm was proposed, there 

has been a lot of development in ACO.  Since its invention, ACO has been successfully 

applied to a broad range of NP hard problems such as the travelling salesman problem 

(TSP) or the quadratic assignment problem (QAP), and is increasingly gaining interest 

in solving real life engineering and scientific problems. A modest survey of ACO 

algorithms will be presented in this chapter.  

2.2 Foraging Behaviour of Real Ants 

Although ant species are almost blind, they can still communicate with the environment 

and with each other by means of substances they release. Some ant species in particular, 
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such as Lasius Niger, use a special kind of substance called pheromones to reinforce the 

optimum paths between food sources and their nest. To be more specific, these ants lay 

pheromones on the paths they take and these pheromone trails act as stimuli because the 

ants are attracted to follow the paths that have relatively more pheromones. 

Consequently, an ant that has decided to follow a path due to the pheromone trail on 

that path reinforces it further by laying its own pheromone too. This process can be 

thought of as a self-reinforcement process since the more ants follow a specific path the 

more likely that it becomes the path to be followed by the ants in the colony.  

Deneubourg, et al. (1990) demonstrated the foraging of a colony of ants through the 

double-bridge experiments. In these experiments, the nest and the food sources are 

connected via two different paths and they examine the behaviour by varying the ratio 

between the lengths of the two paths as shown in Figure 2.4 (a) and Figure 2.4 (b). 

 
Figure 2.4 Double Bridge Experiments. a) The two paths are equal length. b) The lower 
path is twice as long as the upper path. 

In the first experiment the two paths were set to be an equal length as can be seen above 

(Deneubourg, et al., 1990). The result showed that initially the ants chose the two paths 

randomly since there was no pheromone on either of the paths yet. After a while, one of 

the two paths was followed by a few more ants due to random fluctuations and as a 
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result more pheromone accumulated on that path. Eventually, the whole colony 

converged to follow that same path. In the second experiment, the length of one path 

was two times as long as the other one. Initially, the ants again choose either of the two 

paths randomly. The ants that have chosen the shortest path arrived at the food source 

faster and began their return to nest earlier. Consequently, pheromone accumulated 

faster on the shortest path, and most of the ants converged to this path. 

Deneubourg, et al. (1990) investigated further to see what would happen if a shorter 

path was added after the ants get convergence to one path. They found that the shorter 

alternative that was offered after convergence was never discovered by the colony. The 

majority of the ants kept following the longer branch reinforcing it more. This 

stagnation is caused by the fact that pheromone does not evaporate, and the real ants 

always follow the suboptimal optimal path even there is a shorter one. This behaviour 

would have to be overcome. 

2.3 The Design of Artificial Ants 

Real ant colonies make probabilistic movement based on the intensity of pheromone to 

find the shortest paths between their nest and the food source. ACO algorithms use 

similar agents called artificial ants. Artificial ants have the properties of the real ants. 

The differing characteristics of the artificial ants from the real ants were explained in 

(Blum, 2005): 

• In foraging for food, the real ants will directly evaluate the intensity of pheromone 

during their way from the nest to the food. While artificial ants will evaluate a 

solution with respect to some quality measure, which is used to determine the 

intensity of pheromone during their return trip to the nest. 
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• The real ants might not take the same path on their way to the food sources and 

return trip to their nest. Meanwhile, each of the artificial ants moves from the nest 

the food sources and follows the same path to return. 

• The real ants lay pheromone whenever they move from and back to the nest. 

However, the artificial ants only deposit artificial pheromone on their way back to 

the nest. 

In order to solve problems in engineering and computer science, which is the intention 

of ACO, some capabilities need to be added to the artificial ants which are not found in 

the real ants (Dorigo, Maniezzo & Colorni, 1996):  

• Memory is used by artificial ants to save the path that they have taken while 

constructing their solutions. The amount of pheromone is determined based on the 

quality of their solution, and they retrace the path in their memory to deposit it. This 

means that the intensity of pheromone depends on the quality of the solutions. The 

better the solutions the more pheromones are received. 

• The transition policy of artificial ants does not only depend on the pheromone trail 

information but also specific heuristic information. Real ants make their movement 

with respect to the pheromone deposits on the environment. 

• Pheromone evaporation is added to encourage exploration in order to prevent the 

colony from trapping in a suboptimal solution whereas in real ant colonies, 

pheromone evaporation is too slow to be a significant part of their search 

mechanism. 

2.4 The Ant Colony Optimization Metaheuristic 

Some of the combinatorial optimization problems are difficult to solve optimally in 

polynomial computational time. Metaheuristic is an alternative to solve this kind of 



Chapter 2 Survey of Ant Colony Optimization 

  16 

problems by using approximate methods that try to improve a candidate solution with 

problem-specific heuristic. Metaheuristics give a reasonably good solution in a short 

time, although they do not guarantee an optimal solution is ever found. Many 

metaheuristic implement some stochastic optimization. For example, greedy heuristic 

can be used to build the solution, which is constructed by taking the best action that 

improves the partial solution under construction. However, these heuristic methods 

produce a very limited variety of solutions, and they can easily get trapped in local 

optima. There are metaheuristic methods proposed to solve these problems; e.g. 

simulate annealing that guides local search heuristic to escape local optima (Dorigo & 

Stützle, 2004). A metaheuristic is a general framework that guides a problem specific 

heuristic. 

In the Ant Colony Optimization, ants use heuristic information, which is available in 

many problems, and pheromone that they deposit along paths which guides them 

towards the most promising solutions. The most important feature of the ACO 

metaheuristic is that the ants search experience can be used by the colony as the 

collective experience in the form of pheromone trails on the paths, and a better solution 

will emerge as a result of cooperation. 

The basic principle of the ACO algorithm is graphically shown in Figure 2.5. The 

principle works as follows: first, a finite set 𝒞 of solution components has to be derived 

to construct solutions to the combinatorial optimization (CO) problem. Secondly, the 

pheromone model, which is a set of pheromone values  𝒯, has to be defined. This set of 

values is used to parameterize the probabilistic model. The pheromone values 𝜏𝑖 ∈  𝒯 

are usually associated with solution components. The ACO approach solves iteratively 

the optimization problems in two steps: 
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• candidate solutions are constructed using probability distribution from a pheromone 

model; 

• the candidate solutions are used to bias the sampling by modifying the pheromone 

value in order to obtain high-quality solutions. 

 

 

Figure 2.5 Basic principle of AC (Source:  Blum, 2005) 

Basically, the ACO metaheuristic is composed of 3 main phases (Dorigo and Stützle, 

2004): Solution Construction Phase, Update Pheromone Phase and Daemon Actions. 

Each phase can be briefly described as follows: 

Solution construction phase implements a stochastic transition policy, which is a 

probabilistic constructive, as a function of the pheromone trail, problem-specific 

heuristic, and the constraints are defined by the problem. This policy controls the 

movement of the ants to one adjacent state allowed in their vicinity. Once the ants have 

completed their solutions, they evaluate the quality of their solution, which will be used 

in the Pheromone Update Phase. 
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Pheromone update phase guides the search to the region that contains high-quality 

solutions. In this phase, the pheromone trails are adjusted based on the latest experience 

of the colony. The update phase consists of decreasing and increasing the pheromone 

intensity on the trails. Decreasing pheromone can be achieved through pheromone 

evaporation. Evaporating pheromone encourages exploration and prevents stagnation. 

Increasing pheromone is implemented by depositing new pheromone trails on the paths 

used in the solutions of the ants in the previous stage. The amount of pheromone that is 

deposited depends on the quality of the particular solutions that each path belongs to. 

The paths that are used in many solutions and/or in better solutions receive more 

pheromone. The intensity of pheromone will be biased towards the best solution found 

so far. Each of ACO variants has a different pheromone update method.  

Daemon actions phase is an optional phase where there is extra enhancement to the 

original solutions or a centralized action is implemented, which cannot be done by a 

single ant. For example, the use of local search methods or to lay extra pheromone to 

the best solution found so far.  

The pseudo code of the ACO algorithm is shown in Figure 2.6. 

 

Figure 2.6 ACO metaheuristic in a high-level pseudo-code 
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2.5 ACO Problems 

ACO algorithms are very good candidates for solving combinatorial problems since the 

artificial ants build the solution constructively by adding one component at a time. The 

ACO is also suitable for the problems where the environment may change dynamically, 

as ACO algorithms can be run continuously and adapted to changes in real time. 

The following are characteristics that should be defined for a problem to be an ACO 

problem as presented in Dorigo and Stützle (2004) and Blum (2005): 

• There exists a finite set of components such that 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛}. 

• There is a set of constraints Ω defined for the problem to be solved. 

• The states of the problem can be described in the form of a finite-length sequence of 

components such that 𝑞 =  〈𝑞𝑖 , 𝑞𝑗 , … , 𝑞𝑢, … 〉. Let 𝑄 denote the set of all sequences 𝑞 

and 𝑄�  denote the set of feasible sequence in 𝑄 satisfying the constraint Ω. 

• There exists a neighbourhood structure defined between the states.  𝑞2 is a 

neighbour of 𝑞1 if 𝑞2 can be reached from 𝑞1 in one valid transition between the last 

component of 𝑞1 and the first of component of 𝑞2 and both 𝑞1 and 𝑞2 belong to 𝑄. 

• There exists a set of candidate solutions 𝑆 such that 𝑆 ⊆ 𝑄 (also 𝑆 ⊆ 𝑄�  if we don’t 

allow the unfeasible solutions to be constructed at all). 

• There is a non-empty set of optimal solutions 𝑆∗ such that 𝑆∗ ⊆ 𝑄�and 𝑆∗ ⊆ 𝑆. 

• There is an objective function 𝑓(𝑠) to evaluate the cost of each solutions in 𝑆. 

• There may also be an objective function associated with states to be able to 

calculate the partial solution under construction. 

Given this representation, an ACO problem can be seen as a graph 𝐺 = (𝐶,𝐸)where 𝐶 

is a set of nodes and 𝐸 is a set of edges connecting these nodes. The paths in 𝐺 
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correspond to the states in 𝑆, a set of candidate solutions. The edges in 𝐸 correspond to 

valid transitions between the states in 𝑆. The transition costs may be associated with the 

edges explicitly. Pheromone trails are associated to either the nodes or the edges, yet the 

latter is more common (García, Triguero, & Stützle, 2002). 

In this graph, each ant in the colony searching the minimum length solution path starts 

from node 𝑐 in 𝐺 and stores it in its memory sequentially. The solution is gradually 

built by making the transition from its current state to one of the states in its 

neighbouring area, according to its stochastic transition policy, which is a function of 

the level of pheromone on the trail, problem-specific heuristic and the number of 

constraints defined by the problem. When the tour is complete, that is, all nodes have 

been visited once, the artificial ant uses its memory to evaluate its solution via the 

objective function and to retrace its nodes solution to create a path and deposit 

pheromone on it. 

2.6 Ant Colony Optimization Algorithms 

Many attempts have been done in order to improve overall performance or on a specific 

problem, as a result several variants of ACO have been developed. Dorigo et al. (1996) 

developed a variant called the elitisit ACO. In this variant  only the best ants from each 

generation are allowed to update the pheromone. The other variant is the rank-based 

ACO (Bullnheimer, Hartl, & Strauß, 1999). This variant is a slight extension of the 

elitist ACO, in which only the best number of ants, 𝑛, deposit pheromone and the 

amount deposited is proportional to their rank. Stützle & Hoos (2000) developed the 

MAX-MIN ACO algorithm in an attempt to more explicitly control pheromone level, in 

which an upper and lower limit are placed on the amount of pheromone permitted on 

any edge.  
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Some more recent ACO adaptation ideas have been proposed as a hybrid version 

combining ACO with other methods. Hybridization is nowadays recognized to be an 

essential aspect of high performing algorithms (Blum, 2005). Hybridization algorithms 

are more exquisite than the original one. In fact, many of the current state-of-art ACO 

algorithms include components and ideas originating from other optimization 

techniques. The earliest type of hybridization was the incorporation of local search 

based methods such as local search, tabu search, or iterated local search, into ACO. 

However, these hybridizations often reach their limits when other large-scale problem 

instances with a huge search space or highly constrained problems for which it is 

difficult to find feasible solutions are concerned. Therefore, some researchers recently 

started investigating the incorporation of more classical Artificial Intelligence and 

Operational Research methods in ACO algorithms.  

The ACO algorithm was originally introduced for combinatorial optimization. 

Recently, ACO algorithms have been developed to solve continuous optimization 

problems. These problems are characterized by the fact that the decisions variables have 

continuous domains, in contrast to the discrete problems. Early applications of ant-

based algorithms for continuous optimization include algorithms such as Continuous 

ACO (CACO) (Bilchev & Parmee, 1995), the API algorithm (Monmarché, Venturini, 

& Slimane, 2000), and the Continuous Interacting Ant Colony (CIAC) (Dréo & Siarry, 

2004). However, all these approaches are conceptually quite different from ACO for 

discrete problems. Socha & Dorigo (2008) proposed a new approach to ACO for 

continous domain. This approach is closest to the spirit of the ACO for discrete 

problems. 
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2.6.1 Ant System 

Construction Phase 

Artificial ants construct solutions from a sequence of solution components taken from a 

finite set of 𝑛 available solution components 𝒞 =  {𝑐1, … , 𝑐𝑛}. A solution construction 

starts with an empty partial solution 𝑆𝑝 =  ∅. Then, at each construction step, the 

current partial solution 𝑆𝑝 is extended by adding a feasible solution component from the 

set 𝒩(𝑆𝑝) ∈  𝒞\𝑆𝑝, which is defined by the solution construction mechanism. The 

process of constructing graph 𝐺𝒞 = (𝑽,𝑬) the set of solution components 𝒞 may be 

associated either with the set 𝑽of vertices of the graph 𝐺𝒞, or with the set 𝑬of its edges. 

The allowed paths 𝐺𝒞 are implicitly defined by a solution construction mechanism that 

defines the set 𝒩(𝑆𝑝) with respect to a partial solution𝑆𝑝. The choice of solution 

component from 𝒩(𝑆𝑝) is done probabilistically at each construction step. The exact 

rules for probabilistic choice of solution components vary across different variants of 

ACO. 

In the example of Ant System (AS) applied to TSP the solution construction mechanism 

restricted the set of traversable edges to the ones that connected the ants’ current node 

to unvisited nodes. The choice of solution component from 𝒩(𝑆𝑝) is at each 

construction step performed probabilistically with respect to the pheromone model. In 

most ACO algorithms the respective probabilities – also called transition probabilities – 

are defined as follows: 

 𝑝(𝑐𝑖|𝑠) =  [𝜏𝑖]𝛼.[𝜂(𝑐𝑖)]𝛽

∑ �𝜏𝑗�
𝛼

.�𝜂(𝑐𝑗)�
𝛽

𝑐𝑗∈𝒩(𝑠)
,∀𝑐𝑖 ∈ 𝒩(𝑆𝑝), 2-1 
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where 𝜂 is an optional weighting function, that is,  sometimes depending on the current 

sequence, assigns at each construction step a heuristic value 𝜂(𝑐𝑗) to each feasible 

solution component 𝑐𝑗 ∈ 𝒩(𝑆𝑝). The values that are given by the weighing function are 

commonly called heuristic information.  𝜏𝑖 is the amount of pheromone. Furthermore, 

the exponents 𝛼 and 𝛽 are positive parameters whose values determine the relation 

between pheromone information and heuristic information. In TSP examples, we chose 

not to use weighting function 𝜂, and we have set 𝛼 to 1. It is interesting to note that by 

maximizing Eq. (2-1) deterministically (i.e. 𝑐 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝜂(𝑐𝑖)|𝑐𝑖 ∈  𝒩(𝑆𝑝)}), we 

obtain a deterministic greedy algorithm. 

Pheromone Update 
 
Different ACO variants mainly differ in the update of the pheromone values they apply. 

In the following, we outline a general pheromone update rule in order to provide the 

basic idea. This rule consists of two parts. First, a pheromone evaporation, which 

uniformly decreases all the pheromone values, is performed. From a practical point of 

view, pheromone evaporation is needed to avoid a too rapid convergence of the 

algorithm towards a sub-optimal region. It implements a useful form of forgetting, 

favouring the exploration of new areas in the search space. Secondly, one or more 

solutions from the current and/or from earlier iterations are used to increase the values 

of pheromone trail parameters on solution components that are part of these solutions: 

 𝜏𝑖 ← (1 − 𝜌). 𝜏𝑖 +  𝜌. � 𝑤𝑠.𝐹(𝑠)
�𝑠∈𝑆𝑢𝑝𝑑|𝑐𝑖∈𝑆�

 2-2 

For 𝑖 = 1, . . .  ,𝑛. Hereby, 𝑆𝑢𝑝𝑑 denotes the set of solutions that are used for update. 

Furthermore, 𝜌 ∈ (0, 1] is a parameter called evaporation rate, 𝐹 ∶ 𝑆 ⟼ℝ+ is a so-
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called quality function such that 𝑓(𝑠) < 𝑓(𝑠′) ⟹ 𝐹(𝑠) ≫ 𝐹(𝑠′),∀𝑠 ≠  𝑠′. In other 

words, if the objective function value of solution s is better than the objective function 

value of a solution 𝑠′, the quality of solution s will be at least as high as the quality of 

solution𝑠′. Eq. (2-2) also allows an additional weighting of the quality function, i.e., 

𝑤𝑠 ∈ ℝ+denotes the weight of a solution 𝑠. 

Instantiations of this update rule are obtained by different specifications of 𝑆𝑢𝑝𝑑 and by 

different weight settings. In many cases, 𝑆𝑢𝑝𝑑 is composed of some of the solutions 

generated in the respective iteration (henceforth, denoted by 𝑆𝑖𝑡𝑒𝑟). Solution 𝑆𝑏𝑠 is often 

called the best-so-far solution. A well-known example is the AS-update rule, that is, the 

update rule of AS. The AS-update rule, which is well-known due to the fact that AS 

was the first ACO algorithm to be proposed in the literature, is obtained from the update 

rule in Eq. 2-2 by setting:  

 𝑆𝑢𝑝𝑑 ←  𝑆𝑖𝑡𝑒𝑟 and 𝑤𝑠 = 1 ∀𝑠 ∈ 𝑆𝑢𝑝𝑑 2-3 

 
All solutions that were generated in the respective iteration are used to update the 

pheromone update and the weight of each of these solutions is set to 1. An example of a 

pheromone update rule that is used more widely in practice is the IB-update rule (where 

IB stands for iteration-best). The IB-update rule is given by: 

 𝑆𝑢𝑝𝑑 ← �𝑠𝑖𝑏 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝐹(𝑠)|𝑠 ∈ 𝑆𝑖𝑡𝑒𝑟}� 𝑤𝑖𝑡ℎ 𝑤𝑖𝑠𝑏 = 1 2-4 

 
Only the best solution generated in the respective iteration is used to update the 

pheromone values to construct the IB-update. This solution, denoted by𝑠𝑖𝑏, is weighted 

by 1. The IB-update rule introduces a much stronger bias towards the good solutions 

found than the AS-update rule. However, this increases the danger of premature 



Chapter 2 Survey of Ant Colony Optimization 

  25 

convergence. An even stronger bias is introduced by the BS-update rule, where BS 

refers to the use of the best-so-far solution 𝑠𝑏𝑠. In this case, 𝑆𝑢𝑝𝑑 is set to {𝑠𝑏𝑠} and 𝑠𝑏𝑠 

is weighted by 1, i.e. 𝑤𝑆𝑏𝑠 = 1. In practice, ACO algorithms that use variations of the 

IB-update or the BS-update rule and that additionally include mechanisms to avoid 

premature convergence achieve better results than algorithms that use the AS-update 

rule.  

Eq. 2-2 shows that the pheromone update in ACO is done in 2 steps. In the first step, all 

pheromone trails are decreased by a constant rate 𝜌, where 0 < 𝜌 ≤ 1, due to 

pheromone evaporation. This evaporation in AS is implemented as Eq. 2-5 below. 

 𝜏𝑖𝑗 ← (1 − 𝜌)𝜏𝑖𝑗       ∀(𝑖, 𝑗) ∈ 𝐸 2-5 

 
In the second step, the pheromone quantities,∆𝜏𝑖𝑗, to be laid on each edge (𝑖, 𝑗) are 

calculated according to Eq. 2-6. In this equation ∆𝜏𝑖𝑗𝑘  corresponds to the quantity of 

pheromone deposited by ant 𝑘 and 𝐿𝑘 stands for the cost of the solution found by ant 𝑘. 

 
∆𝜏𝑖𝑗 =  �∆𝜏𝑖𝑗𝑘

𝑚

𝑘=1

 ,  

𝑤ℎ𝑒𝑟𝑒 ∆𝜏𝑖𝑗𝑘 =  �
1
𝐿𝑘

, 𝑖𝑓 𝑒𝑑𝑔𝑒(𝑖, 𝑗)𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑛𝑡 𝑘

0,                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑡𝑠 

2-6 

 

Eq. 2-6 shows that the edges used in shorter tours and/or used by more ants receive 

more pheromone trails. 
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Daemon Actions 

Daemon actions can be used to implement centralized control which cannot be 

performed by a single ant. Examples are the application of local search methods to the 

constructed solutions, or the collection of global information that can be used to decide 

whether it is useful or not to deposit additional pheromone to bias the search process 

from a non-local perspective. As a practical example, the daemon may decide to deposit 

extra pheromone on the solution components that belong to the best solution found so 

far. 

2.6.2 Elitist Ant Colony Optimization 

 
A first improvement on initial AS, called the elitist strategy for Ant System (EAS), was 

introduced in Dorigo, Maniezzo & Colorni (1996). The idea was to provide strong 

additional reinforcement to the edge belonging to the best tour found since the start of 

the algorithm; this tour is denoted as  𝑇𝑏𝑠 (best-so-far tour) in the following. Note, that 

this additional feedback to the best-so-far tour (which can be viewed as additional 

pheromone deposited by additional ant called best-so-far ant) is another example of a 

daemon action of the ACO metaheuristic. 

Pheromone Update 

The additional reinforcement of tour ∆𝜏𝑏𝑠 is achieved by adding a quantity 𝑒/𝐶𝑏𝑠 to its 

edge, where 𝑒 is a parameter that defines the weight given to the best-so-far tour 𝑇𝑏𝑠, 

and 𝐶𝑏𝑠 is its length. Thus, Eq. 2-2 for the pheromone deposit becomes 
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𝜏𝑖𝑗  ← 𝜏𝑖𝑗 + �∆𝜏𝑖𝑗𝑘

𝑚

𝑘=1

+ 𝑒 ∆𝜏𝑖𝑗𝑏𝑠 2-7 

 

Where ∆𝜏𝑖𝑗𝑘  is defined as follows: 

 
∆𝜏𝑖𝑗𝑘 =  �

𝑄
𝐿𝑘

     𝑖𝑓 𝑗 ∈  𝒩(𝑠)  

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

2-8 

Where 𝐿𝑘 is the length of edge (𝑖, 𝑗), 𝑄 is a constant parameter, and ∆𝜏𝑖𝑗𝑏𝑠 is defined as 
follows: 

 
∆𝜏𝑖𝑗𝑏𝑠 =  �

1
𝐶𝑏𝑠

    𝑖𝑓 𝑗 ∈  𝑇𝑏𝑠

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑇𝑏𝑠 is the best-so-far tour 
2-9 

Note that in EAS, as well as in other algorithms presented, pheromone evaporation is 

implemented as in Ant System. 

2.6.3 Rank-based Ant System 

Bullnheimer, Hartl & Strauß (1999) proposed another improvement of AS called Rank-

based AS (RAS). In RAS, the pheromone update is obtained from the update rule (eq. 

2-3) by filling 𝑆𝑢𝑝𝑑 with 𝑚− 1 (where 𝑚 − 1 ≤ 𝑛𝑎 , number of artificial) solutions 

from 𝑆𝑖𝑡𝑒𝑟, and by additionally adding the best-so-far solutions 𝑠𝑏𝑠 to 𝑆𝑢𝑝𝑑. The weights 

of the solutions are set to 𝑤𝑠 = 𝑚 −  𝑟𝑠 ∀𝑠 ∈  𝑆𝑢𝑝𝑑\{𝑠𝑏𝑠}, where 𝑟𝑠  is the rank of 

solution s. Finally, the weight 𝑤𝑆𝑏𝑠of solution 𝑆𝑏𝑠 is set to 𝑚. This means that at each of 

the iterations the best-so-far solution has the highest influence on the pheromone 

update, while a selection of the best solutions constructed at the current iteration 

influences the update depending on their rank.  
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2.6.4 MAX-MIN Ant System (MMAS) 

One of the most successful ACO variants today is the MAX-MIN Ant System (MMAS) 

(Stützle & Hoos, 2000), which is characterized as follows. It prevents the search from 

becoming stagnated by imposing the quantity of pheromone trails on each edge to be in 

the range [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥].  Depending on some convergence measure, for each of the 

iterations either the IB-update or BS-update rule is used for updating the pheromone 

values. At the start of the algorithm the IB-update rule is used more often, while during 

the run of the algorithm the frequency with which the BS-update rule is used is 

increased. MMAS algorithms use an explicit lower bound 𝜏𝑚𝑖𝑛 > 0 for the pheromone 

values. In addition to this lower bound, MMAS algorithms used 𝐹(𝑆𝑏𝑠)/𝜌 as an upper 

bound to pheromone values. The value of this bound is updated each time a new best-

so-far is found by the algorithm. The best value for 𝜏𝑚𝑎𝑥 is agreed to be 1/𝜌𝐿𝑏𝑠 , where 

𝐹(𝑆𝑏𝑠) = 1/𝐿𝑏𝑠, as explained in Stützle & Hoos (2000) so 𝜏𝑚𝑎𝑥 increases as shorter 

paths are found by the colony. And 𝜏𝑚𝑖𝑛 is set to 𝜏𝑚𝑎𝑥/𝑎 where 𝑎 is a parameter. 

Initially, pheromone trails are set to 𝜏𝑚𝑎𝑥 on all edges; therefore ants behave in a more 

explorative way in the beginning. After a while, the search becomes biased towards the 

shortest tours found so far; however, if the colony cannot find any improved solution in 

a predetermined number of iterations, the pheromone trails are reinitialized. 

2.6.5 Ant Colony System (ACS) 

Dorigo, et al. (1996) introduced ACS, which differs from the original AS algorithm in 

more aspects than just in the pheromone update. First, instead of choosing at each step 

during a solution construction the next solution to Eq. 2-1, an artificial ant chooses, 

with probability 𝑞0, the solution component that maximizes [𝜏𝑖]𝛼. [𝜂(𝑐𝑖)]𝛽, or it 

performs, with probability 1 −  𝑞0, a proportional construction step according to eq. 
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2-1. This type of solution construction is called pseudo-random proportional. So, the 

transition rule will be 

 
𝑠 =  �arg𝑚𝑎𝑥𝑗∈𝑁𝑖𝑘 {�𝜏𝑖𝑗�

𝛼
. �𝜂𝑖𝑗)�

𝛽
 𝑖𝑓 𝑞 ≤  𝑞0 (𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

𝑆,                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛)
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According to this transition rule, ant 𝑘 at node 𝑖 chooses to move to node 𝑗 using the 

best edge in terms of the pheromone trail and heuristic value with 𝑞0 probability, 

therefore exploit the current knowledge of the colony. Otherwise, it selects a random 

node in its neighbourhood; therefore, it explores a new solution. 

Second, ACS uses the BS-update rule with the additional particularity that the 

pheromone evaporation is only applied to values of pheromone trail parameters that 

belong to solution components that are in 𝑆𝑏𝑠. Third, after each solution construction 

step, the following additional pheromone update is applied to the pheromone value 𝜏𝑖 

whose corresponding solution component 𝑐𝑖 was added to the solution under 

construction: 

 𝜏𝑖 ← (1 −  𝜌). 𝜏𝑖 +  𝜌. 𝜏0 2-11 

 

Where 𝜏0 is a small positive constant such that 𝐹𝑚𝑖𝑛 ≥  𝜏0 ≥ 𝑐,𝐹𝑚𝑖𝑛 ← 𝑚𝑖𝑛{𝐹(𝑠)| 𝑠 ∈

𝑆}, and 𝑐 is the initial value of the pheromone value. In practice, the effect of this local 

pheromone update is to decrease the pheromone values on the visited solution 

components, making in this way these components less desirable for the following ants. 

This mechanism increases the exploration of the search space within each of iterations. 
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After all the ants in the colony construct their solution, only the tour corresponding to 

the best solution so far receives a pheromone update. As a result, the search is biased 

towards the vicinity of the best solutions so far. The equation 2-12 implements the 

global pheromone update is: 

 𝜏𝑖𝑗 ← (1 − 𝜌)𝜏𝑖𝑗 +  𝜌∆𝜏𝑖𝑗,   ∀(𝑖, 𝑗) ∈ 𝑇𝑏𝑠,  

where ∆𝜏𝑖𝑗 = 1/𝐿𝑏𝑠 

2-12 

 

In the equation 2-12, 𝑇𝑏𝑠 stands for the best solution so far and 𝐿𝑏𝑠stands for the cost of 

that solution. The parameter 𝜌 again can be thought of as the pheromone evaporation 

rate as in AS, but it also weighs the pheromone to be deposited in ACS. In other words, 

the new pheromone trails become a weighted average of the existing pheromone on the 

trails and the pheromone that is to be deposited (Dorigo & Stützle, 2004). 

2.6.6 Hyper-Cube Framework (HFC) 

One of the most recent developments is the Hyper-Cube Framework for ACO (Blum & 

Dorigo, 2004). Rather than being an ACO variant, the HFC is a framework for 

implementing ACO algorithms which are characterized by a pheromone update that is 

obtained from update rule by defining the weight of each solution in 𝑆𝑢𝑝𝑑 to 

be (∑ 𝐹(𝑠))�𝑠∈𝑆𝑢𝑝𝑑�
−1. Remember that in Eq. 2-3 solutions are weighted. The set 𝑆𝑢𝑝𝑑 

can be composed in any possible way. This means that ACO variants such as AS, ACS, 

or MMAS can be implemented in HCF. The HCF comes with several benefits. On the 

practical side, the new framework automatically handles the scaling of the objective 

function values and limits the pheromone value within the interval [0, 1]. On the 

theoretical side, the new framework makes it possible to prove that in the case of AS 
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algorithm applied to unconstrained problems, the average quality of the solutions 

produced continuously increases in asymptotically (Blum & Dorigo, 2004). The name 

Hyper-Cube Framework stems from the fact that with the weight setting as outlined 

above, the pheromone update can be interpreted as a shift in a hyper cube. 

2.7 The Travelling Salesman Problem (TSP) 

The TSP is considered a standard test-bed for evaluation of new algorithmic ideas for 

discrete optimization; indeed, good performance for TSP is considered reasonable proof 

of an algorithm’s usefulness. The TSP is the problem of a salesman who wants to find 

the shortest possible trip through a set of cities on his tour of duty, visiting each and 

every city exactly once. 

The problem space can, essentially, be viewed as a weighted graph containing a set of 

nodes (cities). The objective is to find the minimal-length of a loop of the graph. To 

solve this problem using ACO algorithms, initially, each ant is put on a randomly 

chosen city. The ant has a memory which stores the partial solution that it has 

constructed so far (initially the memory contains only the start city). Starting from its 

start city, an ant iteratively moves from a city to city. When being in a city 𝑖, an ant  𝑘  

chooses to go to a still unvisited city 𝑗 with a probability given by 

 
𝑝𝑖𝑗𝑘 (𝑡) = �

�𝜏𝑖𝑗(𝑡)�
𝛼
�𝜂𝑖𝑗�

𝛽

∑ [𝜏𝑖𝑙(𝑡)]𝛼[𝜂𝑖𝑙]𝛽𝑙∈ℵ𝑖
𝑘

    𝑖𝑓 𝑗 ∈  ℵ𝑖𝑘

0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Where 𝜂𝑖𝑗 = 1/𝑑𝑖𝑗,  𝑑𝑖𝑗 is the distance between  𝑖  and 𝑗 , a priori available heuristic 

information, 𝛼 and 𝛽 are two parameters which determine the relative influence of the 

pheromone trail and heuristic information, and ℵ𝑖𝑘 is the feasible neighbourhood of 
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ant 𝑘, i.e. the set of cities which ant 𝑘 has not yet visited. Parameters 𝛼 and 𝛽 influence 

the algorithm behaviour. If 𝛼 =  0, the selection probabilities are proportional to 

heuristic information and the closest cities will be more likely to be selected. In this 

case, AS corresponds to a classical stochastic greedy algorithm (with multiple starting 

points since ants are initially randomly distributed on the cities). If 𝛽 = 0 , only 

pheromone amplification is at work. This will lead to the rapid emergence of a stagnant 

situation with the corresponding generation of the tours which, in general, are strongly 

suboptimal. 

In each step of the algorithm, each ant chooses the next city based on pheromone 

intensity and distance which indicates a greedy approach. After completing their tours 

at a step t, pheromone contributions for each ant 𝑘 and edge (𝑖, 𝑗) between city 𝑖 and 𝑗 

are computed using 

 
∆𝜏𝑖𝑗𝑘 (𝑡) =  �

𝑄
𝐿𝑘(𝑡)

  𝑖𝑓 𝑗 ∈  ℵ𝑖𝑘

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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where 𝑄 is a constant and 𝐿𝑘(𝑡) is the tour length of the 𝑘-th ant. The pheromone trail is 

now updated using formula 

 𝜏𝑖𝑗(𝑡 + 1) =  𝜌𝜏𝑖𝑗(𝑡) +  ∆𝜏𝑖𝑗(𝑡) 
2-15 

Where ∆𝜏𝑖𝑗(𝑡) is computed across all m ants 

 ∆𝜏𝑖𝑗(𝑡) =  �∆𝜏𝑖𝑗𝑘 (𝑡)
𝑚

𝑘=1

 2-16 
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2.8 Ant Colony Optimization Algorithm for Continuous Problems 

The class of optimization problems are not only discrete but there are a class of 

problems that require choosing values for continuous variables. These problems can be 

tackled by using ant algorithms for continuous function optimization with several 

possibilities. To apply the original ACO to continuous domain was not straightforward. 

One possible method is to use simplified direct simulation of the real ants’ behaviour or 

other method is to extend ACO metaheuristic to explore continuous spaces. This 

extension can be done by the suitable discretization of a search space or by probabilistic 

sampling. 

The use of the ACO metaheuristic to solve continuous optimization problems has been 

reported by Liao, et al., (2011). Bilchev and Parmee (1995) proposed Continuous ACO 

(CACO), Monmarché, et al., (2000) suggested the API algorithm,  Dréo and Siarry 

(2004) offered the Continuous Interacting Ant Colony (CIAC), and Socha and Dorigo 

(2008) recommended the extended ACO application (ACOR). The main differences of 

the various versions of ACO are the pheromone laying methods, the way of handling 

the solution construction, pheromone update and optional daemon action, and how to 

schedule and synchronize these components according to the characteristics of the 

problem being considered.  

ACOR is one of the most popular ACO-based algorithms for continuous domain. 

Recently, Leguizamón & Coello (2010) proposed a variant of ACOR on six benchmark 

functions. However, the results obtained are far from competitive with the results 

obtained by the state-of-the-art continuous optimization algorithms that have recently 

featured in a special issue of the Soft Computing journal, SOCO (Herrera, Lozano, & 

Molina, 2010), (Lozano, Herrera, & Molina, 2011). Further improvements to ACOR 
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have been carried out, for example, Liao, et al. (2011) proposed Incremental Ant 

Colony Optimization (IACO). More detail on ACOR will be presented in Chapter 5. 

2.9 Summary 

This chapter has reviewed the metaphor of the ant colony to solve optimization 

problems and the approaches adopted to build ACO algorithms. These approaches 

include the solution construction phase, the update pheromone phase and the daemon 

actions. ACO algorithms are different to one another in the way these phases are 

adapted. The solution construction phase comprises a decision-making process to 

construct the solutions based on the certain utility. In the next chapter, the decision-

making process will be discussed in more detail. This decision-making process is an 

essential concept that will be used to build the cognitive framework of the ACO. 
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Chapter 3 Decision-making under Risk 

This chapter provides a general overview of decision-making under risk. We start by 

introducing general decision making and go on to examine decision making in ACO. 

This is followed by a review of decision making theory and prospect theory, which is a 

concept that will be used throughout this thesis. 

3.1 Introduction 

Decision making is an important skill for business and life. Decision making theory 

looks at how decisions are made and how a decision maker chooses from a set of 

alternatives (options) that may lead to an optimal decision. There are two goals of 

decision making theory: firstly, to prescribe how decisions should be made; and 

secondly, to describe how decisions are actually made. The first goal refers to 

normative decision making theory, which considers how decisions should be made in 

order to be rational. The second goal aims to find tools and methodologies to help 

people make the best decision, and relates to people’s beliefs and preferences as they 

are, not as they should be.  

There are several different conditions under which decisions are made: certainty, risk, 

uncertainty, and ignorance. Decisions are made under certainty when the decision-

maker knows what the outcome will be for each alternative, while decision making 

under risk occurs when each decision leads to a set of possible outcomes, and the 

probability of each outcome is known. If the decision maker has only partial 
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information about the probabilities of different outcomes then the decision is made 

under uncertainty; while if no prior knowledge is used about the probabilities the 

decision is made under ignorance. 

Until the end of the 1970s, the best approximation to describe the decision-maker’s 

behaviour was the Expected Utility Theory (EUT) (Wakker, 2010). EUT has been 

adopted as the standard decision-making methodology used under risk conditions, but it 

is incapable of fully capturing actual human decision-making behaviours under 

uncertainty. Kahneman and Tversky (1979) proposed the prospect theory (PT) as a 

major breakthrough to capture this behaviour, and it was the first descriptive decision 

making theory that explicitly incorporated non-rational behaviour in an empirically 

realistic way. Later, in 1992, they introduced an improved version of PT called 

Cumulative Prospect Theory (CPT) (Tversky & Kahneman, 1992). 

In the decision-making process, people make decisions in risky and riskless situations.  

The example of decision making under risk is the acceptability of a gamble that yields 

monetary outcomes with specific probabilities. A typical riskless decision concerns the 

acceptability of a transaction in which an item or a service is exchanged for money or 

labour, for example, to buy something. A classic decision making model under risk is a 

rational model which does not treat gains and losses separately, but there is much 

evidence that people respond differently to gains and losses.  

The first psychophysical approach to decision making was by Daniel Bernoulli in an 

essay published in 1738 (Kahneman & Tversky, 2000). In this essay, Bernoulli 

explained why people are generally unfavourable to risk and why risk aversion 

decreases with increasing wealth. He suggested that people evaluate prospects by the 
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expectation of the subjective value of monetary outcomes and not by the expectation of 

the objective value of these outcomes. 

Kahneman, Slovic & Tversky (1982) suggest that most judgements and choices are 

made intuitively and the rules that direct intuition are similar to the rules of perception 

(visual). Intuitive judgements or choices are spontaneous, without a conscious search or 

computation, and without effort; however, some monitoring of the quality of mental 

operations and behaviour still takes place. Intuitive thinking can also be powerful and 

accurate. Both perception and intuitive evaluations of outcomes are reference-

dependent. In standard economic analyses the utility of decision making outcomes is 

assumed to be determined entirely by their final stakes, and is, therefore, reference-

independent (Kahneman, 2003). Preference appears to be determined by attitudes to 

gains and losses, defined relative to a reference point. This will cause the framing of a 

prospect to change the choice that the individual decision-maker makes. 

This thesis proposes a novel approach for modelling human decision-makers and non-

rational behaviour in ACO. This non-rational behaviour is based on PT (Kahneman & 

Tversky, 1979). This model was used to design a state transition strategy algorithm in 

ACO. Therefore, instead of fine-tuning the existing model the use of PT is proposed 

and evaluated.  

3.2 Decision Making in ACO 

As mentioned in the previous chapter, an ant builds a solution to a problem under 

consideration in an incremental way with an empty initial solution and iteratively 

adding aptly defined solution components without backtracking until a complete 

solution is obtained.  
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Random-proportional rule (see Eq. 2.1) was the first idea of decision-making applied in 

AS. Each ant starts from a random node and makes a discrete choice to move the next 

edge from node 𝑖 to another node 𝑗 of a partial solution. At each step, ant 𝑘 computes a 

set of feasible expansions, according to a probability distribution. The probability 

distribution is derived from a utility. This utility is computed from the pheromone 

intensity and the attractiveness of the edge. This pheromone can be considered as the 

global information and the attractiveness of the edge which is obtained from some 

heuristic information represents the local information. Thus, the higher the intensity of 

the pheromone and the value of the heuristic information are, the higher the utility is, 

the more profitable it is to include node 𝑗 in the partial solution. This process is usually 

accomplished through the use of scaling factors in the form of powers or constants 

boosting or shrinking an individual utility. The combination of the utility is the 

cornerstone to the success or failure of this technique and the combined utilities must 

provide an accurate deflection of the perceived strengths or weaknesses of an edge. 

The above decision making may obtain the solution faster, achieving a reasonable 

quality decision; however, the solution may be far from the optimum and generate only 

a limited number of different solutions. AS gives a very poor solution quality compared 

to state-of-the-art algorithms for TSP. To improve the random-proportional rule in AS, 

Dorigo and Gambardella (1997) introduced the pseudo-random proportional policy. 

Using this policy, an action that gives maximum reward in the given node is selected 

with 𝜀 probability and the random action selection is chosen with probability 1 – 𝜀 (see 

Eq.2-10). For example, if an experiment is about to run 10 times and the value of 𝜀, is 

0.8 , this policy selects the action that gives maximum reward on eight occasions and 

random actions twice. This policy is called 𝜀-greedy construction.  
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In an uncertain environment, the ant’s probabilistic choices during the construction of 

the partial solution might lead to an error and create a risk because its choices might be 

influenced by the ant’s attitude to that uncertainty. The common ant-selection models 

are based on the assumption that the ants are rational, homogenous, and have perfect 

knowledge. Based on these assumptions, most of the existing state-selection models use 

utility theory, which is based on the utility maximization assumption. However, these 

models do not give good results; a bias is needed to allow the ants to choose randomly 

using a probability distribution.  

Reasons to add random choices are to make artificial ants heterogeneous in preferences, 

calculation errors, unobserved attributes, and insensitivity to small differences. The 

random component may also reflect the variations in artificial ants’ perception of the 

options. Utility models do not offer much insight into the way in which the ants 

estimate the choices. Moreover, the uncertainty presented in these models is from the 

view of the modeller; it provides no hypothesis as to how the ants might themselves 

consider uncertainty. 

Efforts to improve the state transition of the ants have been made by some researchers, 

such as Zheng, et al., 2010 who proposed a new transition probability for ACO, called 

Global Random-proportional Rule; Liu, Dai & Tao (2011)  argued that their state 

transition strategy has improved the ACO performance by changing the probability 

selection function. All these attempts only focus on the modification of the ACO’s 

utility, and never try to shift to paradigm on how an ant like human makes a decision as 

a human being does. 
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3.3 Utility Theory 

One of the first theories of decision making under risk was based on the expected value. 

The expected value of an outcome is equal to its payoff times its probability. This 

model failed to predict the outcomes in many situations because it was apparent that the 

value was not always directly related to its precise monetary worth. 

Daniel Bernoulli was the first to see this flaw and propose a modification to the 

expected value notion in 1738 in a paper entitled “Exposition of a New Theory on the 

Measurement of Risk (as cited in (Hansson, 1994)).  In fact, Bernoulli was the first to 

introduce the concept of systematic bias in decision making based on a 

"psychophysical" mode (McDermott, 2001). By this concept, people do not always 

make decisions based on the expected value of the outcomes but can be influenced by 

such factors as the probability of the outcomes and cognitive bias. Bernoulli proposed a 

utility function to explain people’s behaviour in making choices. The utility function 

did not use a linear function of wealth, but rather a subjective one, and is concave as 

shown in Figure 3.1. Bernoulli assumed that people tried to maximize their utility rather 

than their expected value and that people are typically risk averse.  

 
Figure 3.1 Typical utility function 
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Utility Theory (UT) is an attempt to model human choice (Fishburn, 1970). The 

modeller knows the preferences of the decision-makers regarding the choice set, i.e. by 

ranking the options. The modeller must create a utility function that assigns a numerical 

value to each option to reflect the ranking established by decision-makers for the given 

choice set. 

When adopting a utility function to represent the decision making process, the decisions 

are always deterministic, i.e. the option with the highest utility is the option chosen. 

According to the UT, if the utility function is correctly selected it expresses a sharp 

logic: “the winner takes all”. 

The utility function is personal, i.e. each person has their own evaluation process – for 

this reason, it is called Subjective Utility Theory (SUT). Moreover, according to the UT 

if the attributes are kept constant, the decision does not change. The only possibility for 

change is if the attributes or parameters of the utility function change, but the function 

itself is fixed and constant. Nevertheless, the changes occur exclusively in the 

parameters and never in the function. Some aspects of the decision making process may 

remain non-captured by the model and for them a stochastic behaviour is assumed. 

The basic concept behind rationality is utility maximization. According to rational 

behaviour and utilitarianism, when confronted with a decision making problem, human 

beings evaluate the utility of each option and choose the one with the highest utility. 

This decision is always deterministic and as long as the environment does not change 

(the attributes remain the same) the choice is then the same. 
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3.4 Expected Utility Theory 

In 1944, John von Neumann and Oscar Morgenstern reinterpreted Bernoulli’s expected 

utility theory by proposing a formal model called expected utility theory (EUT). EUT 

used preferences to derive utility, in contrast to Bernoulli’s model; utility was used to 

define a preference, because the highest utility is more preferable. Von Neumann and 

Morgenstern’s axioms do not only rank the utility by an individual’s preference but also 

take into account the possible relationships between the individual’s preferences. As 

long as the relationship between an individual’s preference satisfies certain axioms such 

as consistency and coherence, it became possible to construct an individual utility 

function for that person; then the decision can be made to maximize the subjective 

utility. 

This subjective expected utility model made no clear distinction between normative and 

descriptive aspects. This model assumed not only the way the decision should be made 

but also how people make decisions.  

People seek to maximize their subjective expected utility; one person may not share the 

same utility curve as another, but each follows the same normative axioms in striving 

toward their individually defined maximum subjective expected utility. 

The expected utility theory (EUT) deals with the analysis of choices among risky or 

uncertain alternatives by comparing their expected utility, i.e., the weighted sums 

computed by adding the utility values of outcomes multiplied by their respective 

probabilities. Indeed, EUT could, more precisely, be called “probability-weighted 

utility theory”. It suggests that choices are coherently and consistently made through 

weighing outcomes by their probabilities. The alternative which has the maximum 

expected utility is selected and the one which provides less utility is discarded. In 
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addition, EUT predicts that the choice is invariant, that is, the way the alternatives are 

presented should not influence the decision makers to choose the alternatives.  

The expected utility (EU) is defined as follows: 

 
𝐸𝑈 =  �𝑢(𝑥𝑖)𝑝𝑖

𝑛

𝑖=1

 3-1 

where 𝑢(𝑥𝑖) and 𝑝𝑖 represent the utility function of the outcome 𝑥𝑖 and probability of 

that outcome, respectively. The decision makers then choose the option with the highest 

expected utility (EU). 

In EUT, the utility is often assumed to be a function of final states or wealth. The utility 

function can be a concave, convex, or linear function. The concave function shows that 

a person is risk averse, meaning that he/she prefers the certain prospect (x) to any risky 

(uncertain) prospect with expected value. Thus, the preference of £50 for sure over a 50 

– 50 chance of receiving £100 or nothing is an expression of risk aversion. Whereas a 

risk seeking person has a convex utility function meaning that he/she prefers a chance 

prospect over a sure outcome of greater expected utility. The one who is risk neutral has 

a linear utility function; he/she has no preference to the options. These behaviours are 

shown in Figure 3.2. 

 
Figure 3.2 Utility functions based on wealth 
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3.5 Prospect Theory 

Expected utility theory has been confronted with several critiques. Some were 

suggestions that its underlying assumptions were unreasonable, some felt its predictions 

did not conform to the experimental or empirical evidence, and some of them combined 

the two lines of criticism. For examples, the Ellsberg paradox and the Allais paradox 

pointed out the deficiencies of classical expected utility theory. Numerous alternative 

theories have been offered, one of which is Prospect theory. Prospect theory was 

formulated first by Kahneman and Tversky (1979) as an alternative method of 

explaining choices made by individuals under conditions of risk. 

Prospect theory is the most accepted description of subjected expected value decision-

making by human beings. It describes the subjective human decision making process, 

specifically in the subjective assessment of probabilities and utilities of the outcomes, 

and their combination in gambles (lotteries). Prospect theory suggests a nonlinear 

transformation of the probability scale (Kahneman & Tversky, 1979) (Tversky & 

Kahneman, 1992). According to the prospect theory, the value 𝑉 of a simple prospect 

that pays £𝑥 with probability, p and pays nothing with probability (1 – p) is given by: 

 𝑉(𝑥, 𝑝) = 𝑣(𝑥)𝑤(𝑝) 3-2 

where 𝑣 measures the subjective value of the consequence 𝑥, and 𝑤 measures the 

impact of the probability 𝑝 on the attractiveness of the prospect. The value function,𝑣, 

is a function of gains and losses relative to some reference point (usually the status 

quo), with 𝑣(0) = 0. The value of 𝑤 is called decision weights; they are normalised so 

that 𝑤(0) = 0 and 𝑤(1) = 1.  
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Prospect Theory divides the decision making process into two stages. The first stage is 

the ‘screening’ or editing stage, where probabilities and utilities are subjectively 

assessed, and the second stage is the ‘evaluation’ stage, where the subjective 

probabilities and utilities are combined. This two-staged process has three 

consequences. First, gains and losses are evaluated to a reference point, often assumed 

to be equivalent to the status quo. People are risk averse in the domain of gains and risk 

seeking in losses. Secondly, people tend to overweigh small probability events while 

underweighing medium and high probability events. Moreover, people overweigh 

certainty, so that they tend to treat highly probable events as certain and highly 

improbable events as if they were impossible. Finally, the choice of alternatives is 

influenced by the way the alternatives are presented (Kahneman & Tversky, 1979). 

The editing stage comprises four major sequential operations, namely coding, 

combination, segregation, and cancelation. Coding involves the setting of a reference 

point by the decision-maker by which all gains and/or losses are measured. 

Combination consists of the aggregation of probabilities associated with identical 

outcomes. Segregation involves separating the risky components of the prospect from 

the riskless components of the prospects. Cancellation is where components shared by 

all prospects are discarded. Simplification is where probabilities and outcomes are 

simplified, such as rounding. Elimination by domination is where dominated prospect 

alternatives are eliminated (Kahneman & Tversky, 1979). 

The function of the editing phase is to organize and reformulate the options so as to 

simplify subsequence evaluation and choice. Editing consists of the application of 

several operations that transform the outcomes and the probabilities associated with the 

offered prospects. The probabilities are transformed non-linearly, where small 
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probabilities are overestimated and large probabilities are underestimated. 

Overestimated small probabilities generate optimism (high decision weight for less 

favourable outcomes), while underestimating large probabilities generates pessimism 

(low decision weight for favourable outcomes, and shows a risk averse attitude).  

In the evaluation phase, the decision-maker evaluates the prospects that are attainable to 

him or her after the conclusion of the editing phase. The decision-maker then chooses 

the prospect with the highest value. 

The Value Function 

In PT, the notion of “utility” is replaced by “value”. People rate value functions to gains 

and losses differently. Tversky & Kahneman (1979) found that people value a certain 

gain more than a probable gain with equal or greater expected value. Gains and losses 

are valued from a subjective reference point. It can be inferred from their research that 

the displeasure associated with losses is greater than the pleasure associated with the 

same amount of gains. It can be further inferred that people respond differently, 

depending on whether the choice is framed in terms of gains or in terms of losses. 

Figure 3.3 shows a graph of the value function. 

 

Figure 3.3 Value function 
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There are three main characteristics of the value function in prospect theory, which are 

as follows: 

1. It is a function of gains or losses. The reference point is used to define the gains and 

losses. It is a gain if an outcome is greater than the reference point and a loss if the 

outcome is less than the reference point.  

2. It is, generally, concave for gains favouring risk aversion, and, commonly, convex 

for losses favouring risk seeking. 

3. The function is sharply curled at the reference point, steeper for losses than for 

gains, that is, losses loom larger than gains and people have a tendency towards loss 

aversion. 

One of the essential features of PT is that the overall value of a prospect is based on 

changes in a decision-maker’s wealth to a reference point rather than on final wealth. 

The new component of the PT is reference dependence. People’s value judgements are 

highly dependent on the reference point, that is, people are more focused on changes in 

their value (utility) states than the states themselves. The reference point depends on the 

aspect of framing. This is a bigger deviation from utility and probability weighting. 

This deviation is of major empirical importance. More than half of risk aversion 

observed has nothing to do with utility curvature or with probability weighting Instead, 

it is generated by loss aversion, the main empirical phenomenon regarding reference 

dependence (Wakker, 2010).The essence of reference dependence is not that outcomes 

are modelled as changes with respect some reference point (initial wealth). The 

reference point can change during the analysis. Deviations from a variable reference 

point are a major breakaway from final-wealth models.  

The value function in the prospect theory has the power function form 
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𝑣(𝑥) =  𝑥𝛼 ,                                                                        𝑓𝑜𝑟 𝑥 ≥ 0,  

𝑣(𝑥) = −𝜆(−𝑥)𝛽, 𝑓𝑜𝑟 𝑥 < 0,𝑤ℎ𝑒𝑟𝑒 𝛼 > 0,𝛽 > 0, 𝜆 > 0  

3-3 

3-4 

With loss aversion =  𝜆 > 1 𝑎𝑛𝑑 𝛼 =  𝛽 (Al-Nowaihi, Bradley & Dhami, 2008), so that 

losses are over weighted relative to gains. The opposite, 𝜆 < 1 seeking for gains with 

little attention for losses. 𝜆 = 2 is interpreted as decision weight, losses are taken twice 

as important for decisions as gains. Overweighting can be deliberate if a decision maker 

thinks that more attention should be paid to losses than gains, or perceptual, with losses 

simply drawing more attention. The parameters of the value function, as based on the 

empirical study Kahnemann & Tversky (1992), were: 𝛼 = 𝛽 = 0.88, and 𝜆 = 2.25. 

Probability Weighting Function 

People might be using weighting schemes to evaluate probability of the outcomes.  People 

have tendency to over weighing very low probability events and under weighing very high 

probability events and this depends on how the problem is presented or framed. Also, they 

put a decision weight based on the probability of that outcome. This distortion of 

probability is captured by PT’s probability weighting function. Figure 3.4 shows the 

probability weighting function. 

The weighting function: 

 π(𝑝) =  𝑝𝛾

(𝑝𝛾+(1−𝑝)𝛾)
1 𝛾�

 3-5 

The probability weighting function has a psychological interpretation. People are less 

sensitive to the changes of probability as they move away from “certainly will not 

happen” or “certainly will happen”. This notion is called diminishing sensitivity 
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(Tversky & Kahneman, 1992). Under this principle, the changes of probability near the 

endpoint are larger than in the middle of the scale. This means that people are risk-

seeking for low probability gains and risk averse for low probability losses. In contrast, 

in the medium to high probabilities are given less weight than they would receive using 

EUT. Such underweighing makes decision maker be risk averse for medium to high 

probabilities gains, and risk seeking for medium to high probabilities losses. 

 
Figure 3.4 Probability weighting function 

Evaluation of the prospect 

𝑉 is defined in two scales 𝜋 and 𝑣. Accordingly, the first scale, 𝜋, associates with each 

probability 𝑝 a decision weight 𝜋(𝑝), which reflects the impact of 𝑝 on the overall 

value of the prospect. The second scale, 𝑣, assigns to each outcome 𝑥 a number 𝑣(𝑥), 

which reflects the subjective value of the outcome. These scales are combined to form 

the basic equation of the theory which determines the overall value of regular prospect. 

The total prospect is 

 𝑉(𝑥) = �𝑣(𝑥𝑖)𝜋(𝑝𝑖)
𝑖∈𝑋

 3-6 
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3.6 Summary 

Decision-making can be studied from two different theoretical approaches. Normative 

decision making theory focuses on how decisions should be made in order to be 

rational, while descriptive decision-making theory aims to find tools and methodologies 

to help people to make the best decision, and relates to people’s beliefs and preferences 

as they are, not as they should be.    

Utility Theory (UT) combines a mixture of descriptive and normative elements as an 

attempt to model human choice under risk. Expected Utility Theory (EUT) states that 

the decision maker (DM) chooses between risky or uncertain prospects by comparing 

their expected utility values, i.e., the weighted sums obtained by adding the utility 

values of outcomes multiplied by their respective probabilities. Subjective Expected 

Utility Theory (SEUT) is a method in decision making theory in the presence of 

uncertainty, and Von Neumann-Morgenstern Theory (VNMT) is a method in the 

presence of risk. Von Neumann and Morgenstern provided an axiomatic system: a set 

of conditions that were necessary and sufficient for expected utility. Axioms have a 

descriptive as well as a normative benefit. However, its predictions did not conform to 

the experimental or empirical evidence. Prospect theory is the most accepted alternative 

method of explaining choices made by individuals under conditions of risk.  

In ACO, an ant makes a decision to move from the current state to the next one using a 

random proportional rule or pseudo-random rule strategies. These strategies might 

influence the performance of the ACO algorithms.  

In this thesis, PT as a descriptive theory of decision making under risk will be applied 

in the state transition strategy in ACO algorithms. These algorithms will be explained in 

Chapter Four and Chapter Five. 
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Chapter 4 A New Framework for Ant 

Colony Optimization for Discrete 

Optimization Problems 

In this chapter, prospect theory will be implemented in ACO algorithms as a new 

framework for decision making in ACO to select the candidate solution during the 

construction phase. This implementation will be carried out for discrete problems. The 

TSP will be used as a standard problem and a water distribution system will be used as 

a discrete problem with constraints. The experimental setup and the result are presented 

in the chapter. 

4.1 Introduction 

As mentioned in Chapter 2, there are three phases to ACO algorithms, namely the 

construction phase, the pheromone update phase, and the optional daemon phase. In the 

construction phase, the ants iteratively construct candidate solutions on which they may 

deposit pheromones. An ant constructs a candidate solution starting with an empty 

solution and iteratively adds the solution component until the complete candidate 

solution is generated. Each point at which an ant has to decide which solution 

component to add to its current partial solution is called as a decision point. After the 

solution construction is completed then the ant will enter the pheromone update phase. 

In this phase, the ant gives feedback on the solution that has been constructed by 
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depositing pheromone on that solution component. Normally, solution components 

which are part of better solutions or are used by many ants will receive a higher amount 

of pheromone and, hence, will more likely be used by the ants in the future iteration of 

the algorithm. To avoid the search getting stuck, typically before the pheromone trails 

to get to reinforce, all pheromone trails are decreased by a factor 𝜌, which is called as 

the evaporation factor (Stützle & Dorigo, 1999). 

The ants’ solutions are not guaranteed to be optimal with respect to local changes and, 

hence, more explorations are needed to search in global changes. However, the balance 

between exploration and exploitation has to be considered carefully. Excessive 

exploitation will reduce the diversity of the solution by focusing only in the 

neighbourhood and lead the search to local optima quickly. At the same time, extreme 

exploration will increase the diversity of solutions but slow down the search’s speed. 

So, the improper balance will lead to ineffective algorithms. To set the balance between 

the exploitation and exploration the simple ε-greedy approach is used. One problem 

with this approach is how to decide the optimal ε. By setting ε fixed the ants will not 

learn from their experience; the designer has to decide how many ants do the 

exploitation and to do the exploration.  

Several attempts have been made to improve the ε-greedy approach. Guo, Liu & Malec 

(2004) proposed ε as a function of the number of ants having passed the edge 𝑖𝑗 during 

the latest iteration, the number of artificial ants, and the number of the cities. 

Consequently, the more iterations their algorithm runs, the closer ε is to one, and the 

more quickly the algorithm will converge. In other words, their algorithm encourages 

the ants to explore at the beginning of the iterations and to exploit at the end of the 

iterations. Guo et al. (2004) adapted ε using a new Q-learning algorithm, where ε is 
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reduced during the learning process. They argued that their algorithm will not only 

improve the ability of the ants to attain the new knowledge, but will also allow the 

algorithm to avoid a performance decrease due to the constant value of ε (and, thus, 

constant probability of exploration).  

In this thesis, prospect theory was introduced in order to improve the exploitation-

exploration capability of the ants. In prospect theory, highly probable outcomes are 

under-weighted. This action creates risk seeking behaviour. The low probable outcomes 

are over-weighted, and this results in risk aversion behaviour. These behaviours cannot 

be achieved with linear probability as happens in the normal ACO.  

In this new framework, the way of calculating of the probability of choice in the 

construction phase is different to the normal ACO. However, the rest of the phases is 

not changed, so this framework can be easily adapted to any variant of ACO because 

almost all the variants of ACO have the same formula for calculating their probability 

of choice.  

By introducing prospect theory, the exploration and exploitation are inherited in the 

decision process. Highly probable outcomes that lead to stagnation are under weighed, 

and very low probability outcomes are not neglected so the exploration is being 

encouraged. 

The standard and proposed framework for ACO are presented in Figure 4.1. 
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4.2 Formulation of Prospect Theory in TSP (Travelling Salesman 

Problem) 

In TSP, as mentioned in Chapter 2, at the decision point the ant will choose the next 

location using the equation below: 

  𝑃𝑖𝑗𝑘 =  
�𝜏𝑖𝑗�

𝛼
.�𝜂𝑖𝑗�

𝛽

∑ �𝜏𝑖𝑗�
𝛼

.�𝜂𝑖𝑗�
𝛽

𝑗∈𝒩𝑘(𝑠)
,∀𝑗 ∈ 𝒩𝑘(𝑆) 

4-1 

where 𝜏𝑖𝑗 is the amount of pheromone trail on the edge(𝑖, 𝑗); 𝜂𝑖𝑗 is the a priori available 

information, and 𝒩𝑘(𝑆) is the set of feasible features that have not been visited by 

ant 𝑘. The amount of pheromones (𝜏) is related to the quality of the solutions, so, the 

better the solution, in this case the shorter the tour length, the higher the value of 𝜏. The 

heuristic information (𝜂) is related to the distance between neighbouring cities; the 

closer the distance the higher  𝜂. 

 

Figure 4.1 The Framework of ACO. On the left is the standard ACO and on the right is 
ACO-PT 
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As introduced in Chapter 3, prospect theory has two phases which are the editing phase 

and the evaluating phase. Below, we will introduce these phases of ACO algorithms. 

Editing Phase 

The heuristic information (𝜂𝑖𝑗) was considered as an outcome and the amount of 

pheromone of the edge (𝜏𝑖𝑗) as the probability of the outcome. So, if a city is closer to 

its neighbour then it has a higher outcome, and if a level of pheromone on the edge is 

high then the probability that the ant will choose that edge is high.  

The pheromone is always in the gain region, so the reference point is zero. With this 

frame setting, the ants are always in the gains domain and the behaviour towards the 

risks is only influenced by the probability weighting. For very low probabilities the ant 

is risk averse; however, for higher probabilities the ant is risk seeking. By doing this, 

the exploration of the ants is increased and the local optima can be avoided. In the 

normal ACO the pheromone importance parameter 𝛼 is greater than zero and its value 

has to be defined usually by trial and error, and it may be influenced by the problems 

that have studied.  The parameter  𝛼 in the prospect theory is found by empirical study, 

typically equal to approximately 0.88 and always less than 1.00. When the exponent 

𝛼 < 1.00, the curve will accelerate negatively (if 𝛼 = 1.00, the function would be 

linear; and if 𝛼 > 1.00, it would accelerate positively). This means the effect of higher 

intensity pheromones is reduced, which will increase the exploration by the ants. 

Evaluation Phase 

The outcome 𝜏𝑖𝑗 is the amount of the pheromones in the edge(𝑖, 𝑗), the reference point 

is zero, so the outcome is always in the gains region, and the value function is 
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𝑣�𝜏𝑖𝑗� =  𝜏𝑖𝑗𝛼,𝑤ℎ𝑒𝑟𝑒 𝛼 = 0.88 4-2 

The probability is derived from the heuristic information, 𝜂𝑖𝑗,  

 𝑃𝜂𝑖𝑗 =  
𝜂𝑖𝑗

∑ 𝜂𝑖𝑙𝑙∈𝒩(𝑠)
 ,𝑤ℎ𝑒𝑟𝑒 𝒩(𝑠)𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 4-3 

The weighting function is  

 𝜋�𝑃𝜂𝑖𝑗� =  
𝑃𝜂𝑖𝑗𝛾

(𝑃𝜂𝑖𝑗𝛾 + �1 − 𝑃𝜂𝑖𝑗�
𝛾

)1 𝛾�  ,
 ,𝑤ℎ𝑒𝑟𝑒 𝛾 = 0.68 

4-4 

and the prospect is 

 𝑉𝑖𝑗𝑘 =  𝑣�𝜏𝑖𝑗�𝜋�𝑃𝜂𝑖𝑗� 
4-5 

This prospect will be used as a basis for choosing the next movement. The way we 

make a selection remains the same. 

4.3 Formulation of Prospect Theory in Water Distribution System 

(WDS) Problems 

In many areas that are undergoing rapid urbanization, methods for the evaluation of a 

nation’s water distribution system (WDS) need to consider not only the rehabilitation of 

existing one but also its future development to serve expanding population centres. 

Both the adaptation of existing technologies and the development of new technologies will be 

required to improve the efficiency and cost-effectiveness of future and existing WDSs 

and to anticipate the industrial growth. 

The optimization of WDSs is loosely defined as the selection of the lowest cost 

combination of appropriate component sizes and component settings such that the 
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criteria of demands and other design constraints are satisfied. (Maier, et al., 2003) 

These constraints are often considered as a pre-specified range defined by maximum 

and minimum velocity in the pipe and the nodal pressure. Here, each pipe is a decision 

point at which the diameter of the pipe is to be determined. The components of the 

decisions set, 𝐷 = {𝑑1,𝑑2, …𝑑𝑖. . ,𝑑𝑛} are therefore, the existing pipes of the network, 

where 𝑑𝑖 represents the 𝑖-th pipe of the network. The pipe diameters are usually 

selected from a set of commercially available diameters, 𝜑 = �𝜑𝑖𝑗�, which may or may 

not be the same for all the pipes, then 𝜑 = �𝜑1,𝜑2, … 𝜑𝐽� would present the list of 

available options at each and every decision point of the problem. If 𝐶 is defined as the 

unit length cost of the pipe with diameter 𝜑𝑗, cost 𝑐𝑖𝑗 associated with option 𝜑𝑗 at 

decision point 𝑑𝑖 can now be calculated as the product of per unit cost 𝑢𝑐𝑗 and the 

length 𝑙𝑒𝑖 of the link under consideration. The cost of a trial solution, 𝑓(𝜑), may be 

low, however, the solution may or may not be feasible.  

 

Figure 4.2 Representation of WDS Problem (Source: Maier et al., 2003) 
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ACO has been used to solve water distribution system optimization problems and has 

been shown to be extremely competitive. ACO was applied initially for WDS 

management by Maier et al. (2003). Zecchin et al. (2007) studied the parameterization 

of ACO for WDS and suggested guidelines for selecting the parameters of ACO. 

López-Ibáñez, Prasad & Paechter (2008) used ACO for optimizing the operation of 

pumping in WDS. Christodoulou & Ellinas (2010) proposed an ACO algorithm for 

efficient routing of piping networks for improving efficiency and robustness.  

The way to formulate WDS problems is different from other combinatorial 

optimization, such as the travelling salesman problem, due to the nature of the 

constraints. In the travelling salesman problem, the only constraints are that each city 

must be visited once only and that the finishing point must be the same as the starting 

point. To solve this situation, tabu lists can be used to store only feasible solutions. 

However, the constraints that need to be satisfied in the optimal design of WDS are of a 

different nature. The feasibility of a particular trial solution (e.g., whether minimum 

pressure constraints have been satisfied) can only be assessed after it has been 

constructed in its entirety, and consequently, the constraints cannot be taken into 

account explicitly during the construction of trial solutions (Maier, et al., 2003). 

The optimization of WDSs can be formulated as a constrained minimization problem. 

Essentially, WDS optimization involves the selection of the lowest cost set of diameters 

of pipes within the network such that the design pressure constraints are not violated. 

ACO, as for all evolutionary algorithms (EAs), is unable to deal directly with 

constrained optimization problems as it cannot follow constraints that separate feasible 

regions of the search space from infeasible regions. The standard technique of EA to 
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handle these problems is to convert constrained problems to unconstrained problems 

using penalty functions. 

The only immediate way to do this is either to impose a “death penalty” (infeasible 

solutions are never rewarded) or relax the constraints by introducing soft penalties. 

(Runarsson & Yao, 2000). The problem now becomes how to set the penalty so that the 

optimal balance in the search between focussing on feasibility and emphasizing 

optimality is achieved. Many different schemes for static, dynamic, and adaptive 

penalties have been explored in the context of EA (Coello Coello, 2002), but, 

unsurprisingly no single technique stands out that is best independently of the problem. 

What makes matters more difficult is that the relaxation method can, in principle, not 

guarantee that solutions are truly feasible (as opposed to having only a minimal amount 

of constraint violation). Unfortunately, in practice, constraints are often hard constrains 

and must be satisfied exactly. 

An alternative to these widely-used ways of handling constraints in constructive meta-

heuristics is to incorporate some look-ahead algorithm into the construction phase so 

that only feasible solutions are generated. A survey carried out by Dorigo & Stützle 

(2003) notes that as yet only a very simple look-ahead procedure had been investigated 

with ACO. Construction methods using look-ahead tables, of course, need to be specific 

to the problem constraints. A generalized construction method based on a declarative 

mathematical model of the problem would be desirable. The hybridization of ACO with 

Constraint Programming (CP) achieves this goal (Khichane, Albert, & Solnon, 2008). 

In WDS optimization problems the solutions were assessed as being infeasible by 

EPANET which was the benchmark hydraulic analysis tool for this work.  EPANET is 

public domain software that may be freely copied and distributed.  
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As in the TSP, we only focus on how to formulate prospect theory in the decision 

making process during the construction phase. We do not pay attention to how to 

update the pheromone or how to control the pheromone. The pheromone update and the 

way the pheromones are controlled depend on the variant of the ACO that has been 

used. 

In the WDS the probabilistic choice of the ants for all variants is done by: 

 𝑃𝑖𝑗𝑘 =  
[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑙]𝛼[𝜂𝑖𝑙]𝛽𝑙∈𝑁
 4-6 

In WDS, the amount of pheromones, 𝜏, depends on the cost of the solutions (network 

cost), 𝑁𝐶(𝜑), and heuristic information, 𝜂, reflects the cost of choosing the pipe in one 

section.  The summary of ACO to be applied to the WDS problem is presented in Table 

4-1.  

Table 4-1 The summary of the conversion of general ACO Problem to WDS Problem 
(Source, Zecchin et al., 2005) 
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As in the TSP, the role of prospect theory in WDS is to improve the decision making 

process during the selection of a candidate solution by each ant. The processes are the 

same, that is the editing and the evaluation phase. 

Editing Phase 

The outcome is derived from the cost functions and the probability of the outcomes is 

obtained from their violation. If the violation is high then the probability of the outcome 

is low. The reference point is set to be the average of the cost function of trial solutions. 

So, if the solution cost of a particular ant is lower than the reference point then the ant 

considers this situation as a loss, and if the solution cost of a particular ant is higher 

than the reference point, the ant accepts this situation as a gain. 

Evaluation Phase 

The value function is: 

 𝑣(𝑥) =  �
𝑥𝛼 , 𝑓𝑜𝑟 𝑥 ≥ 0
−𝜆(−𝑥)𝛽 ,𝑓𝑜𝑟 𝑥 < 0

    𝑤ℎ𝑒𝑟𝑒 𝛼 > 0,𝛽 > 0, 𝜆 > 0 4-7 

where 𝑥 = 𝑁𝐶(𝜑) −  𝑁𝐶(𝜑)���������,  𝛼 =  𝛽 = 0.88 𝑎𝑛𝑑 𝜆 = 2.27; 𝑁𝐶(𝜑)��������� is the average of 

all cost functions. 

The probability function: 

 𝑝𝑖 =  
𝜙𝑖

∑ 𝜙𝑙𝑙∈𝑆
 4-8 

where 𝜙𝑖 = 1/𝑔𝑖 and  𝑔(𝑥) is the constraint function. 

The weighting probability function is  
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 𝜋(𝑝𝑖) =  
𝑝𝑖𝛾

(𝑝𝑖𝛾 + (1 − 𝑝𝑖)𝛾)1 𝛾�  ,
 ,𝑤ℎ𝑒𝑟𝑒 𝛾 = 0.68 4-9 

So, the prospect for each choice is       

 𝑉𝑖𝑗𝑘 =  𝑣�𝜏𝑖𝑗�𝜋�𝑃𝜂𝑖𝑗� 4-10 

The best solution is the candidate solution with largest prospect. This best solution will 

be used to calculate the amount of pheromone. 

4.4 Experimental Results 

4.4.1 TSP Problems 

Comparisons were made between ACO and ACO-PT. We have compared the same 

variant of ACO algorithms, in order to evaluate the influence of PT alone on the ACO, 

especially on the state transition. We have not compared ACO-PT to the other type of 

algorithms because we only want to examine the effects of PT on the algorithm as a 

result of changing its decision-making method and not because of other modifications 

such as a daemon or local search. We tested the AS, ACS and MMAS algorithms with 

PT in TSP problems. 

Comparison of AS algorithm and the AS-PT algorithm 

In this experiment the test problem presented in Dorigo, Maniezzo & Colorni (1996) 

was used to compare the performance of AS and AS-PT. Dorigo et al. (1996) showed 

that AS ant cycle was the best AS algorithm variant. This variant was used to compare 

with the proposed AS-PT. The experiment was run for 10 times, the same as in the 

experimental setup in Dorigo et al. (1996). The results were presented in Table 4-2. 
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Table 4-2 Performance of AS and AS-PT on Oliver30 problem 

Problem name 
AS Algorithms 

(Ant Cycle) 
AS-PT Algorithms 

 

Oliver30 
(30-city 
problem) 

Average 
results 

Best 
result 

Average 
results 

Best result 

 
 

424.250 

 
 

423.741 
 
 
 

 
 

423.965 
 
 
 

 
 

423.741 
 
 
 

 
Figure 4.3 Evolution of best tour length (Oliver30). Typical run (Source: Dorigo et al., 
1996)  

 
Figure 4.4 Evolution of the standard deviation of the population’s tour lengths 
(Oliver30). Typical run (Source: Dorigo et al., 1996) 
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Table 4-2 shows the results of AS and AS-PT for Oliver30 test problem. The average 

and the best results were compared. Figure 4.5 shows that the iterative time of AS-PT 

algorithm was shorter than the cycle times of AS algorithm as shown in Figure 4.4. 

Also, the standard deviation of AS-PT algorithm was larger than AS algorithm as 

shown in Figure 4.5. It can be concluded that the search exploration of AS-PT 

algorithm is wider than the search exploration of AS Algorithm. Obviously, prospect 

theory improves AS performance for Oliver30 problem both in finding the best 

solutions and the length of time for finding them.  

 

Figure 4.5 Best Tour Length and its standard deviation for the best result from the 
experiment. 
 
The source code for Ant System in Matlab can be found in Appendix A and this can be 

downloaded from http://www.sourcecodedownloads.com/1077518/. We modified the 

selection strategy using PT.  

http://www.sourcecodedownloads.com/1077518/
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Comparison of ACS algorithm and ACS-PT algorithm 

In all experiments of the following sections the numeric parameters are set to the 

following values: 𝛽 = 2, 𝑞0 = 0.9,𝛼 = 𝜌 = 0.1, 𝜏0 = (𝑛 · 𝐿𝑛𝑛) − 1, where 𝐿𝑛𝑛 is the 

tour length produced by the nearest neighbour heuristic and 𝑛 is the number of cities. 

These values were obtained by a preliminary optimization phase, in which we found 

that the experimental optimal values of the parameters were largely independent of the 

problem, except for 𝜏0 for which, as we said, 𝜏0  = (𝑛 · 𝐿𝑛𝑛) − 1. The number of ants 

used is 𝑚 = 10. Regarding their initial position, ants are placed randomly, with at most 

one ant in each city. 

It is important to test ACS on both random and geometric instances of the TSP because 

these two classes of problems have structural differences that can make them difficult 

for a particular algorithm and at the same time easy for another one. 

Table 4-3 reports the results on the random and geometric instances. The number of 

runs was 2,500 iterations using 10 ants. ACS-PT almost always offers the best 

performance. 

 

Table 4-3 Comparison of ACS with ACS-PT on 50=city problems random instances, 
and Oliver30 of TSP 

Problem Name ACS ACS-PT 
average std dev best average std dev best 

City Set 1 
City Set 2 
City Set 3 
City Set 4 
City Set 5 
Oliver30 

61.38 
61.04 
60.03 
65.14 
58.82 
424.74 

0.03 
0.02 
0.03 
0.04 
0.02 
2.83 

61.34 
61.01 
59.97 
65.05 
58.64 
423.74 

61.33 
60.03 
57.81 
63.35 
58.38 
424.65 

0.05 
0.07 
0.03 
0.02 
0.03 
1.65 

61.16 
59.61 
57.23 
63.05 
58.23 
423.74 
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Discussion 

We believed that, in order to escape from local minima, and to increase the speed of the 

search, one possible extension of ACS is the introduction of PT to the state selection 

during the solution construction. The behaviour of PT is to overweigh the lower 

probability; consequently the low level of pheromone but better objective function will 

get more attention. On the hand, PT is to underweigh the higher probability, so the high 

level of pheromone but worse objective function will be discouraged to be chosen. With 

this setting, the ants will try to improve the exploration to find the new solution. As a 

consequence, ants never converge to a common path. This fact, which was observed 

experimentally, is a desirable property given that if ants explore different paths then 

there is a higher probability that one of them will find an improving solution than there 

is in the case that they all converge to the same tour (Deneubourg, et al, 1990). 

This evidence can be seeing in Figure 4.6 and Figure 4.7, at the beginning of the 

iteration process the length of the global solution of ACS-PT (Figure 4.7) is higher than 

the length of ACS. As a result, the ants take risks to explore more solutions in the 

beginning of the iteration process. ACS-PT also presents faster convergence when 

compared to the ACS alone.  

We can conclude that PT greatly influences the selection function in state transition 

strategy and affects the performance of an ant colony algorithm greatly.  
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Figure 4.6 Typical result for ACS 

 

Figure 4.7 Typical result for ACS-PT 
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4.4.2 Water Distribution Problems 

New York Water Tunnel Problem (NYWTP) 

The New York Tunnel consists of 20 nodes connected via 21 tunnels. The system is 

formed into two primary tunnels, City Tunnel No. 1 and City Tunnel No 2. In order to 

meet the minimum allowable total head requirements, the network is to be modified 

using duplicate tunnels in parallel with the existing tunnels. The objective of the 

optimization is to decide which of the 21 tunnels need to be duplicated, and if so, what 

the diameter of tunnel should be constructed. For each duplicate tunnel there are 16 

allowable options; 15 different diameter sizes and the option of no tunnel. More details 

about NYTP and the duplicate tunnel options are given in Maier, et al. (2003). The 

NYTP configuration is presented in Figure 4.8. 

For these experiments, the MMAS variant of ACO is used with parameters as follows: 

the number of ants, 𝑚 = 84, 𝑝𝑏𝑒𝑠𝑡 = 0.01, the importance of pheromone parameter 

𝛼 = 1.0, the importance of heuristic information parameter 𝛽 = 0.5, and the 

evaporation factor 𝜌 = 0.98. (Zecchin A. C., et al., 2003). For MMAS-PT, the 

parameters  𝛼 = 𝛽 = 0.88 and 𝜆 = 2.27. The results are based on 20 test runs. 

The known-optimum solution is $38.64 million found first by ACOA (a version of 

ACO with a scheme to MMAS in Maier, et al. (2003)). 
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Table 4-4 Comparison of algorithm performance for the New York Tunnels Problem. 
Performance statistic are ordered as follows; minimum, [mean] and {maximum} 

Algorithm Best-cost ($M), 
(%deviation from  
known optimum 

Evaluations number 

MMASa 38.64, (0.0) 

[38.7, (0.2)] 

{38.95,(0.8)} 

23,542 

[24,978] 

{27,285} 

MMAS-PT 38.64 (0.0)  

[38.75, (0.28)] 

{38.88, (0.66) 

16.044 

[20.645] 

{24.964} 

a. (Zecchin A. C., et al., 2003) 

 

Figure 4.8 New York Tunnel Problem (Source: Maier et al., 2003) 
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As can be seen in Table 4-4 the least costly feasible solution for MMAS and MMAS-

PT was $38.64 million, but the evaluations number for MMAS-PT is better than 

MMAS. The typical results for MMAS and the proposed MMAS-PT for NYWTP are 

shown in Figure 4.9 Evolving process of objective function using MMAS for NYWTP 

and Figure 4.10, respectively. The best fitness for each of iterations of MMAS-PT for 

NYWTP is shown in Figure 4.11. 

MMAS-PT performed better than MMAS for this case study. It can be deduced that the 

PT encourages exploration and yields an improved performance MMAS-PT algorithm. 

MMAS-PT put greater emphasis on exploration in the risk solution and high objective 

function lead to better solutions.  

 

 

Figure 4.9 Evolving process of objective function using MMAS for NYWTP 
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Figure 4.10 Evolving process of objective function using MMAS+PT for NYWTP 

 

Figure 4.11 Best fitness of each of iterations for MMAS for NYTP 
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Hanoi Network Problem (HNP) 

The water distribution system in Hanoi (Vietnam) comprises 34 pipes, 32 nodes 

organized in three loops. This network was originally investigated by Fujiwara & 

Khang (1990), and was later used by several authors (Cunha & Sousa, 1999; Eusuff & 

Lansey, 2003; Liong & Atiquzzaman, 2004; Zecchin, Maier, Simpson, Leonard & 

Nixon, 2007). The system is gravity fed by a single reservoir and has only a single 

demand case (see Wu et al. (2001) for network details). For each link there are six 

different new pipe options where a minimum diameter constraint is enforced. The 

Hanoi Network is presented in Figure 4.12. 

By using only the diameters originally used by Fujiwara & Khang (1990) the solution 

presented by Cunha & Sousa (1999) achieved the lowest cost of $6.06 m.  However, 

pressures originated from these references were lower than 30 m in some network 

nodes, for α equal to 10.67 (default value according to EPANET2). The dimensioning 

solution by Lenhsnet model provided an optimal system cost of $6.42 m. (Gomes, 

Bezerra, De Carvalho, & Salvino, 2009) 

 
Figure 4.12 Hanoi Network Problem 
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This case study has a problem size of approximately 2.87 x 1026 possible designs. For 

MMAS, m = 83 and pbest = 0.9. Q was set to 1.1 x 107. 

Table 4-5 Comparison of algorithm performance for Hanoi Network Problem. 
Performance statistics are ordered as follows; minimum, [mean] and {maximum} 

Algorithm Best-cost ($M), (% 
deviation from known 
optimum) 

Search time 

(evaluation number) 

MMASa 6.412,(3.7)  

[6.685, (8.1)]  

{6.905, (11.7)} 

25,092  

[31,595]  

{38,693} 

MMAS-PT 6.201, (2.5) 

[6.434, (7.2)] 

{6.432, (3.7)} 

24,034 

[28,667] 

{30,213} 

   a. (Zecchin A. C., et al., 2003) 

For the HNP, MMAS-PT was unable to find known-optimum in the literature, however, 

its performance is better than MMAS. The reason for this is that MMAS-PT algorithm 

takes a risk to search the infeasible region to lead the search to the feasible region. The 

typical results of MMAS and MMAS-PT are shown in Figure 4.13 and Figure 4.14 

respectively. 
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.  

Figure 4.13 Typical result for MMAS for HNP 

 

Figure 4.14 Typical result for MMAS-PT for HNP 

4.5 Summary 

Prospect theory has been implemented in the ant colony optimization algorithms. The 

results obtained in the experiment show that the performance of the ACO has been 

improved. Tests were carried out on the travelling salesman problem, water distribution 

system for combinatorial optimization problems. AS, and MMAS were used. 
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The results obtained for the travelling salesman problem and water distribution problem 

outperform the original ACO. The implementation of prospect theory in ACO can be 

done in two ways. Firstly, it can be used by inserting it during the construction phase to 

decide where to move next. Secondly, we use prospect theory in the update pheromone 

phase, when we want to choose which suitable solution is to be used to update the 

pheromone; in this case, the best solution so far is not always chosen as a candidate to 

update the pheromone. 

In TSP, prospect theory is used in making a decision about which city will be visited 

next during the construction phase. The probability is derived from the heuristic 

information of the problem; while the outcome is obtained from the amount of 

pheromones that have been deposited in each edge. The prospect of each decision point 

is calculated by multiplying the value function and weighting probability. The outcomes 

are framed in the gain region, so the reference point is zero. In this scheme, the 

weighting probability takes on the main role for determining the behaviour of decision 

making.  

In the water distribution system problem, the New York Water Supply Tunnel Problem 

and Hanoi Network Problem were used as study cases. The implementation of prospect 

theory in WDS is in the update pheromone phase to choose which candidate solutions 

to update the pheromone. This scheme eliminates the use of the penalty function. The 

solution is selected through its prospects which depend on its objective functions and 

the violation of the constraints. This approach avoids the problem of using the penalty 

function, which can over-penalize or under-penalize.  The constraint violation is used to 

obtain the probability; a solution with more violations will have smaller probability to 
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be chosen. The value function is derived from the objective function. The reference 

point is calculated by averaging the objective costs of all solutions obtained.  

In choosing the candidate solution for WDS, if all solutions are unfeasible or feasible 

then a solution is chosen probabilistically based on their prospect. However, if one of 

the solutions is feasible the solution candidate has to be chosen from the feasible one 

even if the prospect of the unfeasible solution is better. This approach is to ensure the 

final solution is always feasible if there is one. 
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Chapter 5 A New Framework for Ant 

Colony Optimization for Continuous 

Optimization Problems 

In this chapter, the concept of ACO for solving continuous optimization problems will 

be reviewed and how to implement prospect theory ACO algorithms as a new 

framework for decision-making will be explained. Tests and evaluation of the proposed 

framework will be performed using mathematical benchmark functions.  

5.1 Introduction 

Initially, ACO algorithms were intended to solve combinatorial optimization problems 

with decision variables in discrete domains. Since, for optimization problems in the real 

world the decision variables can be in discrete or continuous domains, attempts to 

extend ACO algorithms as a general optimization tool for tackling discrete and 

continuous optimization problems have been considered (Blum, 2005). 

There has been relatively little research into ant colony algorithms as applied to 

continuous space optimization problems. This is due to the fact that the course of the 

ant colony algorithms is usually applied to discrete object problems. In order to enable 

ant colony algorithms to be applied to continuous space optimization problems, ant 

colony algorithms with discrete space must be improved. 
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There are two possibilities for extending ant algorithms for continuous optimization 

problems. The first method uses simplified direct simulation of real ant behaviour, and 

the second method is to extend the ACO metaheuristic to explore continuous spaces. 

This extension can be done by a suitable discretization or by probabilistic sampling of a 

search space.   

In this thesis, prospect theory has been used as a new framework for decision making in 

the ACO metaheuristic with probabilistic sampling in continuous optimization 

problems for the first time.  

5.2 ACO for Continuous Domains (ACOR) 

We have mentioned ACO for continuous optimization problems in Chapter 2. In this 

section, we will explain ACOR (Socha & Dorigo, 2008) in detail as a basis algorithm to 

be improved by adding PT in its decision making rule during the solution construction 

phase.  

Socha & Dorigo (2008) proposed to use the Probability Density Function (PDF) instead 

of the discrete probability function in the decision making process in their algorithm for 

solving continuous optimization problems. This PDF is obtained from sampling a set of 

solutions called a solution archive. In the first iteration this solution archive is filled 

with 𝑘 randomly generated solutions. In the next iteration, 𝑚 new solutions are 

generated to add to the previously found 𝑘 solutions so that the number of solutions 

found are 𝑘 + 𝑚 . These solutions are then sorted according to their quality, from the 

best first to worst. After that, the best 𝑘 solutions are stored in the archive. The solution 

archive is shown in equation 5-1. 
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𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑟𝑐ℎ𝑖𝑣𝑒,𝑇 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑠1

1    𝑠12 …  𝑠1𝑖 …  𝑠1𝑛

𝑠21    𝑠22 …   𝑠2𝑖 …  𝑠2𝑛
.

𝑠𝑗1    𝑠𝑗2 …  𝑠𝑗𝑖 …   𝑠𝑗𝑛
.
.

𝑠𝑘1    𝑠𝑘2 … 𝑠𝑘 
𝑖 …  𝑠𝑘𝑛 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑘×𝑛

 

 

5-1 

 

where 𝑛 is the number of variables or solution components, 𝑘 is the number of solutions 

that are stored in the archive and 𝑠𝑗𝑖 is the 𝑖-th solution component of 𝑗-th solution. Each 

row in the solution archive corresponds to a found solution, and by calculation of the 

objective function, the quality of each solution is measured. 

Socha & Dorigo (2008) used a multimodal one-dimensional probability density 

function based on a Gaussian kernel which comprises of a weighted sum of several 

Gaussian functions 𝑔𝑗𝑖 , where 𝑗 is a solution index and 𝑖 is a coordinate index. The 

Gaussian kernel for coordinate 𝑖 is: 

 
𝐺𝑖(𝑥) =  �𝑤𝑗𝑔𝑗𝑖(𝑥) = �𝑤𝑗

1
𝜎𝑗𝑖√2𝜋

𝑒
−

(𝑥−𝜇𝑗
𝑖)2

2𝜎𝑗
𝑖2

𝑘

𝑗=1

𝑘

𝑗=1

 5.2 

where 𝑗 ∈ {1, … ,𝑘}, 𝑖 ∈ {1, … ,𝐷} with 𝐷 being the problem dimensionality, and 𝑤𝑗is a 

weight with the ranking of solution 𝑗 in the archive, 𝑟𝑎𝑛𝑘(𝑗). The weight is calculated 

using a Gaussian function: 

 𝑤𝑗 =
1

𝑞𝑘√2𝜋
𝑒
−(𝑟𝑎𝑛𝑘(𝑗)−1)2

2𝑞2𝑘2  5.3 

where 𝑞 is a parameter of the algorithm. When 𝑞 is small, the best rank solutions are 

strongly preferred, when it is large, the probability becomes more uniform. 
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In the solution construction process, each coordinate is treated independently. Each ant 

chooses probabilistically one of the solutions in the archive according to its 

corresponding weight. 

 𝑝𝑗 =
𝑤𝑗

∑ 𝑤𝑖
𝑘
𝑖=1

 5.4 

Then, the algorithm samples around the selected solution component 𝑠𝑗𝑖 using a 

Gaussian PDF with 𝜇𝑗𝑖 = 𝑠𝑗𝑖, and 𝜎𝑗𝑖 equal to 

 
𝜎𝑗𝑖 = 𝜉�

�𝑠𝑟𝑖 − 𝑠𝑗𝑖�
𝑘 − 1

𝑘

𝑟=1

 
5.5 

which is the average distance between the 𝑖-th variable of the solution 𝑠𝑗 and the 𝑖-th 

variable of the other solutions in the archive, multiplied by a parameter 𝜉. This 

parameter has an effect similar to that of the pheromone evaporation rate in ACO. The 

higher the value of 𝜉, the lower the convergence speed of the algorithm. 

The solution construction process is repeated 𝑚 times for each dimension 𝑖 = 1, … , 𝑛. 

After each solution construction, the pheromone update is performed by adding 𝑚 

newly generated solutions to the solution archive 𝑇 and then discarding the same 

number of worst solutions, so that the total number of solutions in the archive remains 𝑘 

solutions. This process keeps the number of the better solutions the same in the archive, 

but better quality, so that the ants will be guided effectively in the search process. An 

outline of ACOR is given in Algorithm 1. 
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Figure 5.1 ACOR Algorithm (Liao, et al., 2011) 

5.3 Formulation of Prospect Theory for Continuous Unconstrained 

Problems  

In ACO, ants choose their paths by both exploitation of the accumulated knowledge 

about the problem and exploration of new edges. In ACOR, pheromone intensity is 

modelled using a Gaussian PDF, the mean is the last best global solution and its 

variance depends on the aggregation of the promising areas around the best one. So it 

contains exploitation behaviour. On the other hand, a Gaussian PDF permits all points 

of the search space to be chosen, either close to or far from the current solution. So, it 

also contains exploration behaviour. It means that ants can use a random generator with 

a Gaussian PDF as the state transition rule to choose the next point to move to 

(Nobahari & Pourtakdoust, 2005). 
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The new proposed framework of ACOR based on PT modifies the state transition 

during the construction phase. So, instead of directly using a random generator it is 

using PT to choose the next point. PT looks at two parts of this state transition: the 

editing, or framing phase, and the evaluation phase. In the editing phase, wealth, which 

is this case the objective function, is framed to losses or gains to the reference point, 

while in the evaluation phase the decision maker will choose options which are 

influenced by subjected value and perceptual likelihood (McDermott, 2001, p. 20).  

The procedure to build the proposed ACOR-PT algorithm is described in the algorithm 

2, while a more detailed explanation is presented below: 

Calculate the reference point 

During the solution construction process, a solution is constructed by searching its 

variables one by one until all variables are found. To do this, first, a solution is chosen 

with a probability to its weight. Then, the algorithm samples around the selected 

solution using a Gaussian PDF. In our new framework, the selected solution is not 

chosen from the probability of its weight alone but also from its objective function. The 

reference point is the average of the value of the objective function of all solutions in 

the solution archive: 

 
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑝𝑜𝑖𝑛𝑡 =  𝑚𝑒𝑎𝑛(𝑓(𝑆1 … 𝑆𝑘) 

 
5.6 

Calculate the value function 

The value function is derived from the objective function, 𝑓(𝑆1 … 𝑆𝑛). If the objective 

function of a particular solution is less than the reference point then it is in the loss 
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region, conversely, if it is larger than the reference point then the solution is in the gain 

region. 

The value function is formulated as:  

 𝑣(𝑥𝑙) =  �
𝑥𝑙𝛼 , 𝑓𝑜𝑟 𝑥𝑙 ≥ 0

−𝜆(−𝑥𝑙)𝛽 ,𝑓𝑜𝑟 𝑥𝑙 < 0
    𝑤ℎ𝑒𝑟𝑒 𝛼 > 0,𝛽 > 0, 𝜆 > 0 5.7 

where 𝑥𝑙 = 𝑓(𝑆𝑙) − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑝𝑜𝑖𝑛𝑡  , 𝛼 =  𝛽 = 0.88 𝑎𝑛𝑑 𝜆 = 2.27; 𝑙 = 1, … 𝑘  

Calculate the probability weighting function 

Prospect theory is used to choose the best solution. In the normal ACO the solution is 

chosen based on the probability function: 

 𝑝𝑙 =  
𝜔𝑙

∑ 𝜔𝑟𝑘
𝑟=1

 5.8 

 
𝜔𝑙 =

1
𝑞𝑘√2𝜋

𝑒
−(𝑙−1)2
2𝑞2𝑘2  5.9 

Which, essentially, defines the weight to be a value of Gaussian function with argument 

𝑙, mean 1.0, and standard deviation 𝑞𝑘, where 𝑞 is a parameter of the algorithm. When 

𝑞 is small, the best-rank solutions are strongly preferred, and when it is large, the 

probability becomes more uniform. 

The weight of the ranking of the solution archive in the new framework is changed to 

the weighting probability function as follows: 

 𝜋(𝑝𝑙) =  
𝑝𝑙𝛾

(𝑝𝑙𝛾 + (1 − 𝑝𝑙)𝛾)1 𝛾�  ,
 ,𝑤ℎ𝑒𝑟𝑒 𝛾 = 0.68 5.10 
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Calculating the prospect 

The prospect for each choice is       

 𝑉𝑙 =  𝑣(𝑥)𝜋(𝑝𝑙) 5.11 

The best solution is the candidate solution with largest prospect. This best solution will 

be used to calculate the amount of pheromone. 

5.4 Experiment Setup 

In this experiment, the comparison is not based on CPU time but on the number of 

function evaluations needed to achieve a certain solution as a criterion of comparison. 

Socha & Dorigo (2008) argue that this approach gives several advantages: it solves the 

problem of algorithms being implemented using different programming languages; it is 

insensitive to the code-optimization skills of the programmer (or to the compiler used); 

and it allows the results obtained on different machines to be compared easily.  The 

drawback of this approach is that it does not take into consideration the time-

complexity of the algorithms compared. However, in view of the other numerous 

disadvantages over of using CPU time as a criterion, this approach is an acceptable 

methodology. 

The use of the number of function evaluations as a criterion allows us to run the 

experiments only with modified ACO-PT and compare the results to those found in the 

literature and to ensure a fair comparison; we replicate the experimental setup used by 

ACOR algorithm. 
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Figure 5.2 The Proposed ACOR-PT Algorithm 

Table 5-1 Summary of the parameters of ACOR (Source: Socha & Dorigo (2008)) 

 

To compare ACOR and ACOR-PT, we have run this algorithm on a number of test 

functions. The summary of the parameters of ACOR is presented in Table 5-1. The list 

of tests along with the number of dimensions used and the initialization interval are 
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presented in Appendix A. The numbers of runs to perform this test were 20 and the 

stopping criteria were the number of iterations or the following function: 

 |𝑓 −  𝑓∗| <  𝜖1𝑓 +  𝜖2 5.11 

where 𝑓 is the value of the best solution found by the algorithm, 𝑓∗ is the (known a 

priori) optimal value of the given problem, and 𝜖1and 𝜖2 are the relative absolute error 

respectively, we used 𝜖1 = 𝜖2 = 10−4.  

Table 5-2 shows the results obtained using prospect theory in ACOR. Obviously, for 

some results ACOR-PT outperforms ACOR but in others this is not the case, such as for 

Diagonal Plane, Rosenbrock (R2 and R5), Hartmann (H6,4) and Griewangk (Gr10). 

The best result for Sphere, Ellipsoid, Brainin, Goldstein and Price, Hartman (H3,4) and 

Shekel are presented in Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6, and Figure 5.7, 

respectively.   

Table 5-2 Results obtained by ACOR (Socha & Dorigo, 2008) compared to ACOR-PT 

Test function ACOR 
(median 

number of  
function 

evaluation) 

ACOR-PT 
(median 

number of  
function 

evaluation) 
Diagonal Plane 
Sphere 
Ellipsoid 
Brainin RCOS 
Goldstein and Price 
Rosenbrock (R2) 
Rosenbrock (R5) 
Hartmann (H3,4) 
Hartmann (H6,4) 
Shekel (S4,5) 
Shekel (S4,7) 
Shekel (S4,10) 
Zakharov (Z2) 
Griewangk (Gr10) 

170 
1507 
11570 
857 
393 
816 
2570 (97%) 
342 
722 
793 (57%) 
748 (70%) 
715 (81%) 
293 
1390 (61%) 

520 
890 
673 
210 
102 
2319 
- 
55 
1032 
437 
173 
172 
12 
- 
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Figure 5.3 The best result for Sphere Function, number evaluation = 840 

 

Figure 5.4 The best result for Ellipsoid Function, number evaluation = 300 
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Figure 5.5 The best result for Brainin Function, number evaluation = 170 

 
Figure 5.6 The best result for Goldstein and Price Function, number evaluation = 88 
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Figure 5.7 The best result for Hartmann3,4 Function, number evaluation = 40 

The performance of the proposed algorithm has been compared with ACO. The results 

indicate that the state transition strategy of the proposed algorithm has greatly improved 

the performance of the algorithms. Indicia the 

Conclusions are drawn as follows: 

1. State transition strategy for the ACO algorithm not only used random-proportional 

rule and pseudo-random proportional rule, but, moreover, different state transition 

strategies can be obtained by using prospect theory (PT). 

2. A selection function in the state transition strategy affects the performance of an ant 

colony algorithm greatly. Prospect theory can be used as a new framework as a 

selection function. 

5.5 Summary 

Ant Colony Optimization algorithms were initially developed to solve combinatorial 

optimization problems and due to the principle and the structure of the algorithms, it 
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was difficult to apply them directly to continuous optimization problems. Some 

methods have been developed to apply ACO to continuous optimization problems but 

some basic concepts of ACO have been altered in these methods. There are two types of 

ant-based algorithms for solving continuous optimization problems. The first type 

directly simulates the behaviour of the ants which are continuous in the real world. This 

type of algorithm changes the basic method of ACO algorithms which constructs the 

solutions step by step. The second type is to discretize the variable solutions and use 

probabilistic sampling. In this type, the accuracy is poor, while the probabilistic 

sampling still follows the basic principles of the ACO. 

Prospect theory has been used to improve decision making in ACOR and has shown the 

improvement of the previous ACOR in some test functions.   
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Chapter 6  An Analysis of the New 

Framework of Ant Colony Optimization 

Compare to Genetic Algorithm and 

Particles Swarm Optimization   

This chapter provides a comparison between the new framework of ACO and Genetic 

Algorithms and Particles Swarm Optimization. 

 

6.1 Introduction 

The new proposed framework is primarily to improve the state transition strategy of 

ACO during the solutions construction phase. This improvement is done by introducing 

the prospect theory into the decision-making process of selection of a new solution. By 

inserting this prospect theory into the construction phase, the solutions with low 

probability will get more weight and the ones with the high probability will get less 

weight compare to the ones with moderate probability. By doing so, the exploration of 

new solutions will be encouraged. 

The exploration of the new solutions is an important characteristic in evolutionary 

algorithms such as genetic algorithm and swarm intelligence algorithms such as 

particles swarm optimization to improve its searching capabilities and to avoid to be 
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trapped in the local optima. However, we should have internal mechanism to avoid the 

algorithms explore too far; they need to balance between their exploration and 

exploitation. In this chapter, we will compare the exploration and the exploitation 

characteristics of genetic algorithm and particles swarm optimization algorithm with ant 

colony optimization algorithm. 

6.2 Comparison between ACOAs and Genetic Algorithms (GAs) 

An Evolutionary Algorithm (EA) is a population-based optimization approach inspired 

by a natural evolution, which consists of reproduction, mutation, recombination and 

selection of population candidate solutions, and through the evolution, a better solution 

to a problem to be found. GAs and ACOAs generate population-based candidate 

solutions to find an optimal solution.  The number of trial (candidate) solutions in GAs 

depends on the size of population, while in ACOAs it depends on the number of ants. 

Consequently, the population size in GAs is analogous to the number of ants in 

ACOAs, and, whereas, the number of generations in GAs is analogous to the number of 

iteration in ACOAs.  Also, one cycle in ACOAs is equivalent to the evaluation of an 

individual member of a population in GAs. 

 
In both GAs and ACOAs, trial solutions are generated using biological evolutionary 

inspired methods. Genetic algorithms adopt the principle of survival of the fittest, while 

ACOAs are based on the foraging behaviour of ant colonies. Both algorithms construct 

trial solutions based on a probabilistic approach. In GAs, this process is controlled by 

the probabilities of crossover and mutation, and in ACOAs, by pheromone intensities 

and local heuristic information. 
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In order to encourage wider exploration, GAs applied mutation or crossover operators, 

while ACOAs utilized pheromone evaporation mechanism. However, it should be noted 

that pheromone evaporation in ACOAs is deterministic, whereas mutation in GAs is 

stochastic. The new proposed framework uses the prospect theory to improve the 

exploration. GA will update all chromosomes by their fitness at each generation 

(iteration). In other words, if a particular chromosome has better fitness (shorter path 

distance) than other chromosomes, then that particular chromosome is more likely to 

win the competition and clone itself. Thus, a chromosome with good fitness has a much 

higher probability than other inferior chromosomes to appear in the next generation. 

GAs and ACOAs are difference in terms of the way the trial solutions are generated. In 

GAs, a trial solution is represented by encoded, as a bit string, of each problem 

parameters. The new solutions are obtained by modifying previous solutions. 

Consequently, the memory of the system is embedded in the actual trial solutions. In 

ACOAs, system memory is contained in the environment, rather than the trial solutions. 

As ants step through this environment, trial solutions are constructed incrementally 

based on the information contained in the environment.  

Improved trial solutions are obtained by modifying the environment via a form of 

indirect communication called stigmergy (Dorigo et al. 2000). Consequently, ACOAs 

may have advantages over GAs in certain types of applications. For example, ACOAs 

may be more useful in an operational setting, where the system is dynamically 

changing. By maintaining pheromone trails and continuously exploring different 

options, ants have backup plans and are therefore prepared to respond to changes in 

their environment.  



Chapter 6 Analysis of the New Framework of Ant Colony Optimization Compare to 
Genetic Algorithm and Particles Swarm Optimization   

  94 

ACOAs may also have an advantage in situations where sequential decisions have to be 

made in order to construct a trial solution, and the selection of some component 

solutions restricts subsequent choices. When the environment is dynamically changed, 

the fitness function is difficult to be properly defined, and GA may converge towards 

local optima. Operation on dynamic sets is difficult for GA, so it is not appropriate 

choice for constraint based optimization problem. 

ACO algorithm has an advantage over the Genetic algorithm in terms of the algorithm 

execution time. No matter how many obstacles are present, this algorithm does not 

devote an in ordinate amount of time in iteration process. GA Strengths, convergence 

by survival of the fittest, well described, widely used, mutation and recombination, 

binary operators allow for fast operations. GA Weaknesses, discretization of the 

solutions, integer approach to optimization of continuous functions, no improvement of 

individual, - does not find local minimum. 

One of the main reasons for ACO’s good performance is due to the behaviour of the 

algorithm i.e. how it works to initialize the population. The way GA initialize the 

population is based on random approaches where the next node to be visited will 

determine easily by choosing any of random adjacent feasible node. With this random 

process, the algorithm needs to go through the process of selection and some other 

process to choose the optimal node which will contribute to increment of time and 

iteration especially when the number of nodes is increasing. It was different with ACO 

where it has an efficient state transition rules which is efficient and can skip to the 

process of finding optimal path. With this efficient initialization approach, it will 

simultaneously help ACO to reduce the time and iteration while finding optimal path 

either in a simple environment or complex environment.  
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In addition, the quality of population in each generation will also influence algorithm 

performances. In ACO, the global and local updating approaches is efficient because it 

will improve the number of optimal path in each generation, this will make the solution 

faster with fewer number of iteration. However, this differs with GA where GA will 

carry the good population to produce the next child in the next generation however 

there is no guarantee to improve the solution rapidly as the child is produced in random 

approach. Thus the child may come from good categories or worst categories which 

will then influence the population of the next generation. Hence, this will affect the time 

and number of iterations that GA takes to find the solution will be greater than ACO’s. 

Furthermore, when the number of nodes increases, the size of chromosomes length also 

need to be adjusted based on the requirement in each case. Small number of nodes only 

needs a small number of lengths to allocate the paths within the chromosomes while the 

complex numbers of nodes will need a complex number of chromosomes. The 

increment of length will affect the whole process of GA to find optimal path because 

the population of the next child in each generation will be produced based on the cross 

over and mutation process. During this process, the point to be cross and mutate will be 

determined randomly based on the length of the chromosomes. The more the length, the 

more possibility of GA to have a variety of population which will cause the process of 

finding optimal path more challenging and simultaneously will contribute to the 

increment of time and iteration. It is different with ACO where the length of 

chromosomes size will not influence the next ant’s population as it is based on heuristic 

and pheromone value carried by the previous ants. Therefore, length will increase the 

time ants need to traverse from one node to another nodes and not influences the next 

node to be traversed by the ants.  
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With the increment of length usually GA also need to increase the population in order 

to get the optimal path. This will cause the process of GA to find path to become 

slower. In contrast with GA, for ACO, it is not necessary to increase the population 

because it will not affect the process. Thus this helps ACO to minimize the time and 

number of iterations. Based on the reason and the results obtained above, ACO is 

practical to be use either in small or complex number of nodes compared to GA. This is 

because it can optimize the path in an efficient way compared to GA in ever different 

complexity of environment. ACOA can find the optimal path and satisfy the 

optimization criteria at a faster rate than GA.  

In addition, the settings for ACOA are compared to GA. In ACOA, only the length 

needs to be changed in each cases, however for GA, when settings are changed, there is 

a need to ensure the balancing of the value of population, length and convergence 

criteria. ACOA can also be used to optimize not only global paths but also local paths. 

GA and ACOA were performed successfully in dynamic environments to find a path 

that has optimization criteria. The performance of both algorithms has been studied 

globally when they were applied for routing in various dynamic environments. The 

results showed that ACOA in comparison with the genetic algorithm, in a lesser time or 

more quickly, has a lower number of iterations in each dynamic complex environment. 

(reference). Moreover, the adaptability of the ant algorithm parameters in the complex, 

dynamic environment is easier than genetic algorithm. Advantages and limitations of 

both algorithms can spread and combine a variety of applications in planning the robot's 

path in future. 
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6.3 Comparison between ACOAs and Particle Swarm Optimization 

(PSO) Algorithms  

The ACO is inspired by the foraging behaviours of ant colonies. At the core of this 

behaviour the indirect communication between the ants enables them to find short paths 

between their nest and food sources. This characteristic of real ant colonies is exploited 

in ACO algorithm to solve, discrete optimization problems. The PSO technique 

modelled on the social behaviours observed in animals, such as bird flocking and fish 

schooling. It has gained increasing popularity among researches and practitioners as a 

robust and efficient technique for solving difficult robust and population-based 

stochastic optimization problems (Deb & Padhye, 2010). So, Both ACOA and PSO 

algorithms are the optimization algorithms by implementing swarm behaviour.  

In terms of applications, ACOA is more applicable for problems where source and 

destination are predefined and specific. At the same time PSO is an optimization 

algorithm in the areas of mutliobjective, dynamic optimization and constraint handling. 

ACOA is more applicable for problems that require crisps results and PSO is applicable 

for problems that are fuzzy in nature. 

The main concept of PSO resembles the way birds travel to find sources of foods, 

which all birds in a flock are influenced by each other. At the beginning of the 

optimization process, all particles are initially randomised in the search space of the 

problem. The positions of the particles inside the swarm (or population) are treated as 

different solution to a given problem. These particles then move, or travel through the 

search space looking for new and/or better solutions to the problem. During the 

development of several movements, only the most promising particle can share 
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information onto the other particles to accomplish the optimum solution to the problem 

(Rini & Shamsuddin, 2011).  

The communication mechanism among particles in PSO is rather direct without altering 

the environment, while, in ACO adopted an indirect communication mechanism among 

ants, called stigmergy, which means interaction through the environment. So, ACO is 

more suitable than PSO for the applications where the environment is dynamic. 

ACO was originally used to solve combinatorial (discrete) optimization problems, but it 

was later modified to adapt continuous problems. PSO was originally used to solve 

continuous problems, but it was later modified to adapt binary/discrete optimization 

problems. In ACO, a solution space is typically represented as a weighted graph, called 

construction graph. In PSO, a solution space is typically represented as a set of n-

dimensional points. ACO is commonly more applicable to problems where source and 

destination are predefined and specific, while PSO is commonly more applicable to 

problems where previous and next particle positions at each point are clear and 

uniquely defined. In ACO, the objective is generally searching for an optimal path in 

the construction graph while, in PSO, is generally finding the location of an optimal 

point in a Cartesian coordinate system.  

6.4 Summary 

ACOA always gives solution and solution gets better with time. It is more useful and 

efficient when search space is large, complex and poorly known or no mathematical 

analysis is available. The GA is well suited to and has been extensively applied to solve 

complex design optimization problems because it can handle both discrete and 
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continuous variables, and nonlinear objective functions without requiring gradient 

information. 

Though ant colony algorithms can solve some optimization problems successfully, we 

cannot prove its convergence. It is prone to falling in the local optimal solution because 

the ACO updates the pheromone according to the current best path GA memory less, 

ACO memory intensive.  

The ACO is inferior to GA method in the sense that this method approach takes some 

unnecessary steps, so that the algorithm does not return the best solution. Furthermore, 

a global attraction term had to be added to lead ant to reach the goal point. Eliminating 

this term may cause not only the ant wander around in the map, but also the ant may 

become stuck at a point. 

ACO is commonly more applicable to problems where source and destination are 

predefined and specific, while PSO is commonly more applicable to problems where 

previous and next particle positions at each point are clear and uniquely defined. In 

ACO, the objective is generally searching for an optimal path in the construction graph 

while, in PSO, is generally finding the location of an optimal point in a Cartesian 

coordinate system.  
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Chapter 7 Conclusions and Further 

Research 

This chapter provides a final conclusion to the thesis and identifies some areas for 

further research. 

7.1 Conclusions  

The metaphor of the foraging behaviour of real ants in a colony has been adopted to 

build the ACO algorithms and these approaches have been accepted as a generic 

framework for solving both discrete and continuous optimization problems in real 

applications. The algorithms have three basic phases: a construction phase, an update 

pheromone phase and Daemon Actions. ACO algorithms are different to one another in 

the way of the adapting these phases. This thesis has focused on the solution 

construction phase, in which a decision making process takes place to construct the 

solutions based on a certain utility.  

We have implemented prospect theory into different variants of ACO algorithms. The 

tests were carried out on the travelling salesman problem and the water distribution 

system for discrete optimization problems; while mathematical unconstrained 

benchmark problems were used to test the continuous problems.  

We have tested the proposed algorithm against AS and ACS algorithms for solving the 

TSP and the proposed algorithm was tested against the MMAS algorithm for solving 
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the water distribution system. For solving the continuous optimization problems, the 

proposed algorithm was tested against the ACOR algorithm. According to the 

comparison shown in Chapter 4 and Chapter 5, we can conclude that the proposed 

algorithm is highly competitive when compared with current standard ACO.  

The implementation of PT in ACO was carried out by inserting it into the ACO 

algorithms in order to make a decision about where to move during the construction 

solution phase. In TSP, prospect theory was used to decide which city would be visited 

next during the construction solution phase. The probabilities were derived from the 

amount of pheromones of the edges; while the outcomes were obtained from the 

heuristic information. As a result, the closer the ants are in their vicinity the higher the 

outcome would be, and the more pheromones on the edge the higher the probability that 

the ant would choose that edge. The prospect of each decision point was calculated by 

multiplying the value function and weighting probability of this point. The outcomes 

were framed in the gain region, so that the reference point is always zero. In this 

scheme, the weighting probability function was taking the main role for determining the 

behaviour of ants. This means that ants were risk-seeking for a low probability of 

pheromone and risk averse for a high probability of pheromone when the next city was 

close to the current city. These behaviours forced ants to explore at the beginning of the 

iteration where the level of pheromones was low and decreased the exploration when 

the pheromones were high during the end of iteration. 

In the water distribution system, the New York Water Supply Tunnel Problem and 

Hanoi Network Problem were used as study cases. The implementation of prospect 

theory in WDS was in the construction phase to choose which candidate solutions to 

update the pheromone. The solution was selected through its prospects which depend 
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on its objective functions and the violation of the constraints. This approach avoided the 

problem of using the penalty function which can over-penalize or under-penalize.  The 

constraint violations were used to obtain the probabilities; the more violations, the 

lower the probability that outcomes would be used as a solution. The value function 

was derived from the objective function. The reference point was calculated by 

averaging the objective costs of all solutions obtained. 

In choosing the candidate solution for WDS, if all solutions were unfeasible or feasible, 

then a solution was chosen probabilistically based on their prospect. However, if one or 

more solutions were feasible, the solution candidate had to be chosen from the feasible 

ones even the prospect of the unfeasible solution was better. This approach was to 

ensure that the final solution is always feasible if there is one. 

In continuous unconstrained problems, probability was derived from ranking the 

solutions. The rank was arranged from best to worst and weight was given to this rank. 

This rank was used to construct the probability. The value function was derived from 

the objective function. The reference point was calculated from the average of the 

objective costs of the solutions. The prospect of each outcome would be used as a base 

for selection. 

The novelty of the proposed algorithms is that for the first time human-like behaviour 

has been incorporated into the state transition strategy of ACO. This behaviour was 

formalized by Kahneman & Tversky (1979) into mathematical equations represented by 

PT. PT was used in the proposed algorithms to guide the ants to make decisions. The 

proposed algorithms tended to improve the search ability and, consequently, improved 

the convergence to the optimal solution. To investigate the proposed algorithms, the 

following analyses were undertaken: 
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The proposed framework used prospect theory (PT), which is a leading behavioural 

model of decision-making processes under conditions of risk, and has been used 

successfully in economics and management (Trepel, Fox, & Poldrack, 2005). In the ant 

colony system, for the first time, the present updated mechanism for this system 

inspired by the behaviour of PT has been used to improve the exploration of the region 

in order to prevent the algorithm from being trapped in a local minimum by taking the 

risk to explore the lower probability of pheromones. 

A novel framework for the ant colony algorithms based on actual human-like decision-

making behaviour under risk has been presented, which obtains better convergence 

efficiency than state-of-the-art algorithms when applied to solve different problems.  

The proposed framework is flexible and it is believed it can be applied efficiently to 

different variants of ACO without major changes where decision-making under risk is 

dominant. 

Through several different experiments, the proposed method has demonstrated high 

performance in situations of decision making under risk. The observed results of this 

work have shown that the proposed framework can find its major application in discrete 

and continuous optimization problems. 

7.2 Future Research 

While the ACO-PT algorithms perform well, there are still possibilities for 

improvement. In this research the parameters of prospect theory were kept constant. 

The parameters were obtained from the empirical study of PT (Kahneman & Tversky, 

1979). These parameters should be investigated further, as to whether they can give the 
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best performance for a certain problem, so the parameters can be changed depending on 

the characteristics of the problem.  

The weighting probability function was the most influential on the resulting behaviour, 

so the shape of this function should be investigated further to find the most appropriate 

one for a specific problem. 

Implementing prospect theory in the ACO for tackling continuous constrained problems 

can be a challenge. Also, the use of prospect theory could be investigated in the real 

time application of ACO in the mobile robot path planning where the robot interacts 

with the environment. 

When algorithms inspired by the behaviour of ants to solve the optimization problems 

were first introduced in the early 90s it seemed questionable. Since many results from 

ACO research have shown successful applications the perspective has changed and now 

they are considered one of the most promising approaches (Dorigo, Birattari & Stützle, 

2006). The use of human behaviour in ACO was also questionable, so a better 

understanding of the theoretical properties is certainly another research direction that 

will be pursued in the future in order to obtain more fundamental properties of ACO-PT 

algorithms. 
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Appendices A 

First part of the test function for comparing ACOR (Socha & Dorigo, 2008) and 
ACOR-PT 
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Second part of the test function for comparing ACOR (Socha & Dorigo, 2008) and 
ACOR-PT 

Function Formula 
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Appendices B Source Code for AS and AS-PT 

 
function ACO(inputfile) 
%% Example: ACO('oliver30.tsp') 
disp('AS is reading input nodes file...'); 
[Dimension,NodeCoord,NodeWeight,Name]=FileInput(inputfile); 
disp([num2str(Dimension),' nodes in',Name,' has been read in']); 
disp(['AS start at ',datestr(now)]); 
%%%%%%%%%%%%% the key parameters of Ant System %%%%%%%%% 
MaxITime=500; 
AntNum=Dimension; 
alpha=1; 
beta=5; 
rho=0.5; 
%%%%%%%%%%%%% the key parameters of Ant System %%%%%%%%% 
fprintf('Showing Iterative Best Solution:\n'); 
[GBTour,GBLength,Option,IBRecord] = ... 
AS(NodeCoord,NodeWeight,AntNum,MaxITime,alpha,beta,rho);     
disp(['AS stop at ',datestr(now)]); 
disp('Drawing the iterative course''s curve'); 
figure(1); 
subplot(2,1,1) 
plot(1:length(IBRecord(1,:)),IBRecord(1,:)); 
xlabel('Iterative Time'); 
ylabel('Iterative Best Cost'); 
title(['Iterative Course: ','GMinL=',num2str(GBLength),', 
FRIT=',num2str(Option.OptITime)]); 
subplot(2,1,2) 
plot(1:length(IBRecord(2,:)),IBRecord(2,:)); 
xlabel('Iterative Time'); 
ylabel('Average Node Branching'); 
figure(2); 
DrawCity(NodeCoord,GBTour); 
title([num2str(Dimension),' Nodes Tour Path of ',Name]); 
figure(3); 
subplot(2,1,1) 
plot(1:length(IBRecord(end,:)),IBRecord(end-1,:)); 
xlabel('Iterative Time'); 
ylabel('Best Tour Length'); 
subplot(2,1,2) 
plot(1:length(IBRecord(2,:)),IBRecord(end,:)); 
xlabel('Iterative Time'); 
ylabel('Tour Length Std'); 
%--------------------------------------------------------------- 
 
function [Dimension,NodeCoord,NodeWeight,Name]=FileInput(infile) 
if ischar(infile) 
    fid=fopen(infile,'r'); 
else 
    disp('input file no exist'); 
    return; 
end 
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if fid<0 
    disp('error while open file'); 
    return; 
end 
NodeWeight = []; 
while feof(fid)==0 
    temps=fgetl(fid); 
    if strcmp(temps,'') 
        continue; 
    elseif strncmpi('NAME',temps,4) 
        k=findstr(temps,':'); 
        Name=temps(k+1:length(temps)); 
    elseif strncmpi('DIMENSION',temps,9) 
        k=findstr(temps,':'); 
        d=temps(k+1:length(temps)); 
        Dimension=str2double(d); %str2num 
    elseif strncmpi('EDGE_WEIGHT_SECTION',temps,19) 
        formatstr = []; 
        for i=1:Dimension 
            formatstr = [formatstr,'%g ']; 
        end 
        NodeWeight=fscanf(fid,formatstr,[Dimension,Dimension]); 
        NodeWeight=NodeWeight'; 
    elseif strncmpi('NODE_COORD_SECTION',temps,18) || ... 
        strncmpi('DISPLAY_DATA_SECTION',temps,20) 
        NodeCoord=fscanf(fid,'%g %g %g',[3 Dimension]); 
        NodeCoord=NodeCoord'; 
    end 
end 
fclose(fid); 
%--------------------------------------------------------------- 
  
function plothandle=DrawCity(CityList,Tours) 
xd=[];yd=[]; 
nc=length(Tours); 
plothandle=plot(CityList(:,2:3),'.'); 
set(plothandle,'MarkerSize',16); 
for i=1:nc 
    xd(i)=CityList(Tours(i),2); 
    yd(i)=CityList(Tours(i),3); 
end 
set(plothandle,'XData',xd,'YData',yd); 
line(xd,yd); 
%--------------------------------------------------------------- 
  
function [GBTour,GBLength,Option,IBRecord]=AS(CityMatrix,... 
WeightMatrix,AntNum,MaxITime,alpha,beta,rho) 
%% (Ant System) date:070427  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Reference 
% Dorigo M, Maniezzo Vittorio, Colorni Alberto.  
% The Ant System: Optimization by a colony of cooperating agents [J].  
% IEEE Transactions on Systems, Man, and Cybernetics Part B,1996,26(1) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global ASOption Problem AntSystem 
ASOption = InitParameter(CityMatrix,AntNum,alpha,beta,rho,MaxITime); 
Problem = InitProblem(CityMatrix,WeightMatrix); 
AntSystem = InitAntSystem(); 
ITime = 0; 
IBRecord = []; 
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if ASOption.DispInterval ~= 0 
    close all 
    set(gcf,'Doublebuffer','on'); 
    hline=plot(1,1,'-o'); 
end 
while 1 
    InitStartPoint(); 
    for step = 2:ASOption.n 
        for ant = 1:ASOption.m    
           %P = CaculateShiftProb(step,ant);     %AS alone   
            P = CaculateShiftProspect(step,ant); %PT is used     
            nextnode = Roulette(P,1); 
            RefreshTabu(step,ant,nextnode);      
        end 
    end 
    CloseTours(); 
    ITime = ITime + 1; 
    CaculateToursLength(); 
    GlobleRefreshPheromone(); 
    ANB = CaculateANB(); 
    [GBTour,GBLength,IBRecord(:,ITime)] = GetResults(ITime,ANB); 
    ShowIterativeCourse(GBTour,ITime,hline); 
    if Terminate(ITime,ANB) 
        break; 
    end 
end 
Option = ASOption; 
%% ----------------------------------------------------------------- 
 
function ASOption = InitParameter(Nodes,AntNum, ... 
alpha,beta,rho,MaxITime) 
ASOption.n = length(Nodes(:,1)); 
ASOption.m = AntNum; 
ASOption.alpha = alpha; 
ASOption.beta = beta; 
ASOption.rho = rho; 
ASOption.MaxITime = MaxITime; 
ASOption.OptITime = 1; 
ASOption.Q = 100; 
ASOption.C = 1; 
ASOption.lambda = 0.15; 
ASOption.ANBmin = 2;  
ASOption.GBLength = inf; 
ASOption.GBTour = zeros(length(Nodes(:,1))+1,1); 
ASOption.DispInterval = 10; 
rand('state',sum(100*clock)); 
%% ----------------------------------------------------------------- 
 
function Problem = InitProblem(Nodes,WeightMatrix) 
global ASOption 
n = length(Nodes(:,1)); 
MatrixTau = (ones(n,n)-eye(n,n))* ASOption.C; 
Distances = WeightMatrix; 
SymmetryFlag = false; 
if isempty(WeightMatrix) 
    Distances = CalculateDistance(Nodes); 
    SymmetryFlag = true; 
end 
Problem = struct('nodes',Nodes,'dis',Distances,'tau',MatrixTau, ... 
'symmetry',SymmetryFlag); 
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%% -------------------------------------------------------------- 
 
function AntSystem = InitAntSystem() 
global ASOption 
AntTours = zeros(ASOption.m,ASOption.n+1);  
ToursLength = zeros(ASOption.m,1); 
AntSystem = struct('tours',AntTours,'lengths',ToursLength); 
%% -------------------------------------------------------------- 
 
function InitStartPoint() 
global AntSystem ASOption 
AntSystem.tours = zeros(ASOption.m,ASOption.n+1);  
rand('state',sum(100*clock)); 
AntSystem.tours(:,1) = randint(ASOption.m,1,[1,ASOption.n]); 
AntSystem.lengths = zeros(ASOption.m,1); 
%% -------------------------------------------------------------- 
 
function Probs = CaculateShiftProb(step_i, ant_k) 
global AntSystem ASOption Problem 
CurrentNode = AntSystem.tours(ant_k, step_i-1); 
VisitedNodes = AntSystem.tours(ant_k, 1:step_i-1); 
tau_i = Problem.tau(CurrentNode,:); 
tau_i(1,VisitedNodes) = 0; 
dis_i = Problem.dis(CurrentNode,:); 
dis_i(1,CurrentNode) = 1; 
Probs = (tau_i.^ASOption.alpha).*((1./dis_i).^ASOption.beta); 
if sum(Probs) ~= 0 
    Probs = Probs/sum(Probs); 
else  
    NoVisitedNodes = setdiff(1:ASOption.n,VisitedNodes); 
    Probs(1,NoVisitedNodes) = 1/length(NoVisitedNodes); 
end 
%% -------------------------------------------------------------- 
 
%% Function for calculating prospect – using PT 
function Probs = CaculateShiftProspect(step_i, ant_k) 
global AntSystem ASOption Problem 
CurrentNode = AntSystem.tours(ant_k, step_i-1); 
VisitedNodes = AntSystem.tours(ant_k, 1:step_i-1); 
tau_i = Problem.tau(CurrentNode,:); 
tau_i(1,VisitedNodes) = 0; 
dis_i = Problem.dis(CurrentNode,:); 
dis_i(1,CurrentNode) = 1; 
Outcomes = tau_i.^ASOption.alpha; 
probs = (1./dis_i).^ASOption.betha; 
if sum(probs) ~= 0 
    probs = probs/sum(probs); 
else  
    NoVisitedNodes = setdiff(1:ASOption.n,VisitedNodes); 
    probs(1,NoVisitedNodes) = 1/length(NoVisitedNodes); 
end 
gamma = 0.68; 
den= probs.^gamma + (1 - probs).^gamma; 
W_probs = (probs.^gamma)./(den.^(1/gamma)); 
Probs = Outcomes.*W_probs; 
Probs = Probs /sum(Probs ); 
%------------------------------------------------------------- 
 
function Select = Roulette(P,num) 
m = length(P); 
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flag = (1-sum(P)<=1e-5); 
Select = zeros(1,num); 
rand('state',sum(100*clock)); 
r = rand(1,num); 
for i=1:num 
    sumP = 0; 
    j = ceil(m*rand);  
    while (sumP<r(i)) && flag 
        sumP = sumP + P(mod(j-1,m)+1); 
        j = j+1; 
    end 
    Select(i) = mod(j-2,m)+1; 
end 
%% -------------------------------------------------------------- 
 
function RefreshTabu(step_i,ant_k,nextnode) 
global AntSystem 
AntSystem.tours(ant_k,step_i) = nextnode; 
%% -------------------------------------------------------------- 
 
function CloseTours() 
global AntSystem ASOption 
AntSystem.tours(:,ASOption.n+1) = AntSystem.tours(:,1); 
%% -------------------------------------------------------------- 
 
function CaculateToursLength() 
global AntSystem ASOption Problem 
Lengths = zeros(ASOption.m,1); 
for k=1:ASOption.m 
    for i=1:ASOption.n 
        Lengths(k)=Lengths(k)+... 
        Problem.dis(AntSystem.tours(k,i),AntSystem.tours(k,i+1)); 
    end 
end 
AntSystem.lengths = Lengths; 
%% -------------------------------------------------------------- 
 
function [GBTour,GBLength,Record] = GetResults(ITime,ANB) 
global AntSystem ASOption 
[IBLength,AntIndex] = min(AntSystem.lengths); 
IBTour = AntSystem.tours(AntIndex,:); 
if IBLength<=ASOption.GBLength  
    ASOption.GBLength = IBLength; 
    ASOption.GBTour = IBTour; 
    ASOption.OptITime = ITime; 
end 
StdTour = std(AntSystem.lengths); 
GBTour = ASOption.GBTour'; 
GBLength = ASOption.GBLength; 
Record = [IBLength,ANB,IBTour,GBLength,StdTour]'; %%%%%  
%% -------------------------------------------------------------- 
 
function GlobleRefreshPheromone() 
global AntSystem ASOption Problem 
AT = AntSystem.tours; 
TL = AntSystem.lengths; 
sumdtau=zeros(ASOption.n,ASOption.n);    
for k=1:ASOption.m 
    for i=1:ASOption.n  
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sumdtau(AT(k,i),AT(k,i+1))=sumdtau(AT(k,i),AT(k,i+1))+ASOption.Q/TL(k); 
    if Problem.symmetry 
       sumdtau(AT(k,i+1),AT(k,i))=sumdtau(AT(k,i),AT(k,i+1));  
    end 
    end 
end 
Problem.tau=Problem.tau*(1-ASOption.rho)+sumdtau; 
%% -------------------------------------------------------------- 
 
function flag = Terminate(ITime,ANB) 
global ASOption 
flag = false; 
if  ITime>=ASOption.MaxITime || ANB<=ASOption.ANBmin  
    flag = true; 
end 
%% -------------------------------------------------------------- 
 
function ANB = CaculateANB() 
global ASOption Problem 
mintau = min(Problem.tau+ASOption.C*eye(ASOption.n,ASOption.n)); 
sigma = max(Problem.tau) - mintau; 
dis = Problem.tau - repmat(sigma*ASOption.lambda+mintau,ASOption.n,1); 
NB = sum(dis>=0,1); 
ANB = sum(NB)/ASOption.n; 
%% -------------------------------------------------------------- 
 
function Distances = CalculateDistance(Nodes) 
global ASOption  
Nodes(:,1)=[];  
Distances=zeros(ASOption.n,ASOption.n); 
for i=2:ASOption.n 
    for j=1:i 
        if(i==j)     
            continue; 
        else 
            dij=Nodes(i,:)-Nodes(j,:); 
            Distances(i,j)=sqrt(dij(1)^2+dij(2)^2); 
            Distances(j,i)=Distances(i,j);   
        end 
    end 
end 
%% -------------------------------------------------------------- 
 
function ShowIterativeCourse(IBTour,ITime,hmovie) 
global Problem ASOption 
num = length(IBTour); 
if mod(ITime,ASOption.DispInterval)==0 
    title(get(hmovie,'Parent'),['ITime = ',num2str(ITime)]); 
    NodeCoord = Problem.nodes; 
    xd=[];yd=[]; 
    for i=1:num 
        xd(i)=NodeCoord(IBTour(i),2); 
        yd(i)=NodeCoord(IBTour(i),3); 
    end 
    set(hmovie,'XData',xd,'YData',yd); 
    pause(0.01); 
end 
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Appendices C Source Code for ACS and ACS-PT 

 
function ACO(inputfile) 
%% Example: ACO('oliver30.tsp') 
disp('ACS is reading input nodes file...'); 
[Dimension,NodeCoord,NodeWeight,Name]=FileInput(inputfile); 
disp([num2str(Dimension),' nodes in',Name,' has been read in']); 
disp(['ACS start at ',datestr(now)]); 
%%%%%%%%%%%%% the key parameters of Ant Colony System %%%%%%%%% 
MaxITime=1000; 
AntNum= Dimension; 
% The key parameter of ACS - Other parameters in InitParameter.m 
alpha=1; 
beta=5; 
rho=0.5; 
%%%%%%%%%%%%% ---------------------------------------------------  
fprintf('Showing Iterative Best Solution:\n'); 
[GBTour,GBLength,Option,IBRecord] = ACS(NodeCoord,NodeWeight, … 
AntNum,MaxITime,beta,rho);     
disp(['ACS stop at ',datestr(now)]); 
disp('Drawing the iterative course''s curve'); 
figure(1);  
subplot(2,1,1) 
plot(1:length(IBRecord(1,:)),IBRecord(1,:)); 
xlabel('Iterative Time'); 
ylabel('Iterative Global Best'); 
title(['Iterative Course: ','GMinL=',num2str(GBLength),', 
FRIT=',num2str(Option.OptITime)]); 
subplot(2,1,2) 
plot(1:length(IBRecord(2,:)),IBRecord(2,:)); 
xlabel('Iterative Time'); 
ylabel('Average Node Branching'); 
%%%%%% -----------------------------------------------------------  
figure(2); 
if isempty(NodeCoord) 
else 
DrawCity(NodeCoord,GBTour); 
title([num2str(Dimension),' Nodes Tour Path of ',Name]); 
end 
%%%%%% -----------------------------------------------------------  
figure(3) 
subplot(2,1,1) 
plot(1:length(IBRecord(end-1,:)),IBRecord(end-1,:)); 
xlabel('Iterative Time'); 
ylabel('Iterative Best Cost'); 
subplot(2,1,2) 
plot(1:length(IBRecord(end,:)),IBRecord(end,:)); 
xlabel('Iterative Time'); 
ylabel('Standard deviation'); 
%%%%%% -----------------------------------------------------------   
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function [GBTour,GBLength,Option,IBRecord]= ACS(CityMatrix,...  
    WeightMatrix, AntNum,MaxITime,beta,rho) 
%% (Ant Colony System) date:140092012  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Reference 
% Dorigo M, Gambardella L.M. 
% Ant colonies for the traveling salesman problem 
% BioSystems, Vol. 43, No.2, 1997,73-81 
global ACSOption Problem ACS 
ASOption = InitParameter(CityMatrix, ... 
  WeightMatrix,AntNum,beta,rho,MaxITime); 
Problem = InitProblem(CityMatrix,WeightMatrix); 
ACS = InitACS(); 
ITime = 0; 
IBRecord = []; 
if ASOption.DispInterval ~= 0 
    close all 
    set(gcf,'Doublebuffer','on'); 
    hline=plot(1,1,'-o'); 
end 
while 1 
    InitStartPoint();                  
    for step = 2:ACSOption.n            
      for ant = 1:ACSOption.m     
        P = CaculateShiftProb(step,ant); %a state transition rule  
      % P = CaculateShiftProspect(step,ant);%Using PT 
        if rand <= ACSOption.q0         % ACS state transition rules 
           [maxP nextnode] = max(P); 
         else 
           nextnode = Roulette(P,1); 
         end 
         LocalUpdatePheromone(step, ant, nextnode); %local updating  
         RefreshTabu(step,ant,nextnode); 
       end 
    end   %End of step                                 
    CloseTours(); 
    CaculateToursLength(); 
    ANB = CaculateANB(); 
    ITime = ITime + 1; 
    [GBTour,GBLength,IBRecord(:,ITime)] = GetResults(ITime,ANB); 
    GlobleRefreshPheromone();   
    ShowIterativeCourse(GBTour,ITime,hline); 
    if Terminate(ITime,ANB 
      break; 
    end 
end 
Option = ASOption; 
%% -------------------------------------------------------------- 
 
function Probs = CaculateShiftProb(step_i, ant_k) 
global ACS ACSOption Problem 
CurrentNode = ACS.tours(ant_k, step_i-1); 
VisitedNodes = ACS.tours(ant_k, 1:step_i-1); 
tau_i = Problem.tau(CurrentNode,:); 
tau_i(1,VisitedNodes) = 0; 
dis_i = Problem.dis(CurrentNode,:); 
dis_i(1,CurrentNode) = 1; 
Probs = tau_i.*((1./dis_i).^ASOption.beta); 
if sum(Probs) ~= 0 
    Probs = Probs/sum(Probs); 
else  
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    NoVisitedNodes = setdiff(1:ASOption.n,VisitedNodes); 
    Probs(1,NoVisitedNodes) = 1/length(NoVisitedNodes); 
End 
%% -------------------------------------------------------------- 
 
%% function for calculating prospects 
function Probs = CaculateShiftProspect(step_i, ant_k) 
global ACS ACSOption Problem 
CurrentNode = ACS.tours(ant_k, step_i-1); 
VisitedNodes = ACS.tours(ant_k, 1:step_i-1); 
tau_i = Problem.tau(CurrentNode,:); 
tau_i(1,VisitedNodes) = 0; 
dis_i = Problem.dis(CurrentNode,:); 
dis_i(1,CurrentNode) = 1; 
Outcomes = tau_i.^ACSOption.alpha; 
probs = (1./dis_i).^ACSOption.beta; 
if sum(probs) ~= 0 
    probs = probs/sum(probs); 
else  
    NoVisitedNodes = setdiff(1:ACSOption.n,VisitedNodes); 
    probs(1,NoVisitedNodes) = 1/length(NoVisitedNodes); 
end 
gamma = 0.68; 
den= probs.^gamma + (1 - probs).^gamma; 
W_probs = (probs.^gamma)./(den.^(1/gamma)); 
Probs = (Outcomes.^0.88).*W_probs; 
Probs = Probs /sum(Probs ); 
%% -------------------------------------------------------------- 
 
function ANB = CaculateANB() 
global ACSOption Problem 
mintau = min(Problem.tau+ACSOption.C*eye(ACSOption.n,ACSOption.n)); 
sigma = max(Problem.tau) - mintau; 
dis = Problem.tau - repmat(sigma*ACSOption.lambda ...  
        +mintau,ACSOption.n,1); 
NB = sum(dis>=0,1); 
ANB = sum(NB)/ASOption.n; 
%% -------------------------------------------------------------- 
 
function CaculateToursLength() 
global ACS ACSOption Problem 
Lengths = zeros(ACSOption.m,1); 
for k=1:ACSOption.m 
    for i=1:ACSOption.n  
     Lengths(k)=Lengths(k)+Problem.dis(ACS.tours(k,i) ... 
     ,ACS.tours(k,i+1)); 
    end 
end 
ACS.lengths = Lengths; 
%% -------------------------------------------------------------- 
 
function Distances = CalculateDistance(Nodes) 
global ACSOption  
Nodes(:,1)=[];  
Distances=zeros(ACSOption.n,ACSOption.n); 
for i=2:ACSOption.n 
    for j=1:i 
        if(i==j)     
            continue; 
        else 
            dij=Nodes(i,:)-Nodes(j,:); 
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            Distances(i,j)= sqrt(dij(1)^2+dij(2)^2); 
            Distances(j,i)=Distances(i,j);   
        end 
    end 
end 
%% -------------------------------------------------------------- 
 
 
function CloseTours() 
global ACS ACSOption 
ACS.tours(:,ACSOption.n+1) = ACS.tours(:,1); 
%% -------------------------------------------------------------- 
 
function plothandle=DrawCity(CityList,Tours) 
xd=[];yd=[]; 
nc=length(Tours); 
plothandle=plot(CityList(:,2:3),'.'); 
set(plothandle,'MarkerSize',16); 
for i=1:nc 
    xd(i)=CityList(Tours(i),2); 
    yd(i)=CityList(Tours(i),3); 
end 
set(plothandle,'XData',xd,'YData',yd); 
line(xd,yd); 
%% -------------------------------------------------------------- 
 
function [Dimension,NodeCoord,NodeWeight,Name]=FileInput(infile) 
if ischar(infile) 
    fid=fopen(infile,'r'); 
else 
    disp('input file no exist'); 
    return; 
end 
if fid<0 
    disp('error while open file'); 
    return; 
end 
NodeCoord =[]; 
NodeWeight = []; 
while feof(fid)==0 
    temps=fgetl(fid); 
    if strcmp(temps,'') 
        continue; 
    elseif strncmpi('NAME',temps,4) 
        k=findstr(temps,':'); 
        Name=temps(k+1:length(temps)); 
    elseif strncmpi('DIMENSION',temps,9) 
        k=findstr(temps,':'); 
        d=temps(k+1:length(temps)); 
        Dimension=str2double(d); %str2num 
    elseif strncmpi('EDGE_WEIGHT_SECTION',temps,19) 
        formatstr = []; 
        for i=1:Dimension 
            formatstr = [formatstr,'%g ']; 
        end 
        NodeWeight=fscanf(fid,formatstr,[Dimension,Dimension]); 
        NodeWeight=NodeWeight'; 
    elseif strncmpi('NODE_COORD_SECTION',temps,18) || 
strncmpi('DISPLAY_DATA_SECTION',temps,20) 
        NodeCoord=fscanf(fid,'%g %g %g',[3 Dimension]); 
        NodeCoord=NodeCoord'; 
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    end 
end 
fclose(fid); 
%% -------------------------------------------------------------- 
 
function [GBTour,GBLength,Record] = GetResults(ITime,ANB) 
global ACS ACSOption  
[IBLength,AntIndex] = min(ACS.lengths); 
IBTour = ACS.tours(AntIndex,:); 
StdTour = std(ACS.lengths); 
if IBLength<=ASOption.GBLength  
    ACSOption.GBLength = IBLength; 
    ACSOption.GBTour = IBTour; 
    ACSOption.OptITime = ITime; 
end 
GBTour = ACSOption.GBTour'; 
GBLength = ACSOption.GBLength; 
Record = [GBLength,ANB,IBTour,IBLength,StdTour]'; 
%% -------------------------------------------------------------- 
 
function GlobleRefreshPheromone() 
global ACSOption Problem 
for i=1:ACSOption.n  
       Problem.tau(ACSOption.GBTour(i),ACSOption.GBTour(i+1))= ...  
       (1-ACSOption.alpha) *Problem.tau(ACSOption.GBTour(i), ... 
       ACSOption.GBTour(i+1))+ ACSOption.alpha/ACSOption.GBLength;      
if Problem.symmetry 
  Problem.tau(ACSOption.GBTour(i+1),ACSOption.GBTour(i))= ... 
  Problem.tau(ACSOption.GBTour(i),ACSOption.GBTour(i+1));  
end      
end 
%% -------------------------------------------------------------- 
 
function ACS = InitACS() 
global ACSOption 
AntTours = zeros(ACSOption.m,ACSOption.n+1);  
ToursLength = zeros(ACSOption.m,1); 
ACS = struct('tours',AntTours,'lengths',ToursLength); 
%% -------------------------------------------------------------- 
 
function ACSOption = InitParameter(CityMatrix, 
WeightMatrix,AntNum,beta,rho,MaxITime) 
if isempty(CityMatrix) 
    Nodes = WeightMatrix; 
else 
    Nodes = CityMatrix; 
end 
ACSOption.n = length(Nodes(:,1)); 
ACSOption.m = AntNum; 
ACSOption.alpha = alpha;  
ACSOption.beta = beta; 
ACSOption.rho = rho;      
ACSOption.q0 = 0.9;      
ACSOption.tau0 = 7e-005;  
ACSOption.C = ASOption.tau0 ; 
ACSOption.MaxITime = MaxITime; 
ACSOption.OptITime = 1; 
ACSOption.Lbs = Inf; 
ACSOption.lambda = 0.15; 
ACSOption.ANBmin = 2;  
ACSOption.GBLength = inf; 
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ACSOption.GBTour = zeros(length(Nodes(:,1))+1,1); 
ACSOption.DispInterval = 10; 
rand('state',sum(100*clock)); 
%% -------------------------------------------------------------- 
 
function Problem = InitProblem(CityMatrix,WeightMatrix) 
global ACSOption 
if isempty(CityMatrix) 
    Nodes = WeightMatrix; 
    n = length(Nodes(:,1)); 
    Distances = WeightMatrix; 
    SymmetryFlag = false; 
else 
   Nodes =  CityMatrix;    
   n = length(Nodes(:,1)); 
   Distances = CalculateDistance(Nodes); 
   SymmetryFlag = true; 
end 
MatrixTau = (ones(n,n)-eye(n,n))*ACSOption.C; 
Problem = struct('nodes',Nodes,'dis',Distances, ... 
        'tau',MatrixTau,'symmetry',SymmetryFlag); 
%% -------------------------------------------------------------- 
 
function InitStartPoint() 
global ACS ACSOption 
ACS.tours = zeros(ACSOption.m,ACSOption.n+1);  
rand('state',sum(100*clock)); 
ACS.tours(:,1) = randint(ACSOption.m,1,[1,ACSOption.n]); 
ACS.lengths = zeros(ACSOption.m,1); 
%% -------------------------------------------------------------- 
 
function LocalUpdatePheromone(step_i, ant_k, nextnode) 
global ACS ACSOption Problem 
CurrentNode = ACS.tours(ant_k, step_i-1); 
Problem.tau(CurrentNode,nextnode) = (1-ACSOption.rho) ... 
   *Problem.tau(CurrentNode,nextnode)+ ACSOption.rho ... 
   * ACSOption.tau0; 
if Problem.symmetry 
            
Problem.tau(nextnode,CurrentNode)=Problem.tau(CurrentNode,nextnode);  
end 
%% -------------------------------------------------------------- 
 
function RefreshTabu(step_i,ant_k,nextnode) 
global ACS 
ACS.tours(ant_k,step_i) = nextnode; 
%% -------------------------------------------------------------- 
 
function Select = Roulette(P,num) 
m = length(P); 
flag = (1-sum(P)<=1e-5); 
Select = zeros(1,num); 
rand('state',sum(100*clock)); 
r = rand(1,num); 
for i=1:num 
    sumP = 0; 
    j = ceil(m*rand);  
    while (sumP<r(i)) && flag 
        sumP = sumP + P(mod(j-1,m)+1); 
        j = j+1; 
    end 
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    Select(i) = mod(j-2,m)+1; 
end 
%% -------------------------------------------------------------- 
 
function ShowIterativeCourse(IBTour,ITime,hmovie) 
global Problem ASOption 
num = length(IBTour); 
if mod(ITime,ASOption.DispInterval)==0 
    title(get(hmovie,'Parent'),['ITime = ',num2str(ITime)]); 
    NodeCoord = Problem.nodes; 
    xd=[];yd=[]; 
    for i=1:num 
        xd(i)=NodeCoord(IBTour(i),2); 
        yd(i)=NodeCoord(IBTour(i),3); 
    end 
    set(hmovie,'XData',xd,'YData',yd); 
    pause(0.01); 
end 
%% -------------------------------------------------------------- 
 
function flag = Terminate(ITime,ANB) 
global ACSOption 
flag = false; 
if ITime>=ACSOption.MaxITime || ANB<=ASOption.ANBmin  
    flag = true; 
end 
%% -------------------------------------------------------------- 
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Appendices D Source Code for WDS-PT 

%New York Water Tunnel Problem 
function [best_iter fo_best Solution]=wds_aco_nytp() 
clc  
clear all  
close all  
  
loadlibrary('PTD', 'PTD2_2.h'); 
%Dummy variables 
Msg = '123'; dia = 0.0; rough = 0.0; 
%Open PTD toolkit 
  
Err = calllib('PTD', 'PTopenD', 'NewYork.inp', 'NewYork.dat'); 
if(Err < 0) 
    disp('unable to Open PTD toolkit'); 
    [Err, Msg] = calllib('PTD', 'PTgeterrmessage', Msg, 80); 
    disp(Msg); 
    return; 
end 
  
%Load data 
NetworkData(); 
load('VariableBounds.mat'); 
%define number of variables 
NNP = length(LBnewPipes);          %Number of new pipes 
NOP = length(LBoldPipes);          %Number of old pipes 
  
%define anonymous objective function and number of variables 
objfun = @(x)Simulator(x, NNP, NOP); 
  
pipe_length = [11600 19800 7300 8300 8600 19100 9600 12500 9600 11200 
14500 12200 24100 21100 15500 26400 31200 24000 14400 38400 26400]; 
pipe_cost = [21.0 93.5 134.0 176.0 221.0 267.0 316.0 365.0 417.0 469.0 
522.0 577.0 632.0 689.0 746.0 804.0]; 
  
node_size = length(pipe_length); 
pipe_type = length(pipe_cost); 
  
fglobal = 1e8; % 
global_solution = 16*ones(1,21);  
  
% Ant Colony Optimization 
% Initialize parameter 
nAnts =84; 
alpha = 1; 
beta = 0.45; 
rho = 0.98; 
Q =2.9e8; 
  
eta=[]; %heuristic information 
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for i=1:node_size 
    for j=1:pipe_type 
      eta(j,i) = 1/(pipe_length(i)*pipe_cost(j)); 
    end 
end 
  
% MMAS intialization 
pbest = 0.05; 
NOavg = pipe_type; 
n = node_size; %the number of the right decision 
  
%algorithm parameter 
max_iter = 1000; 
  
%Initialize pheromone 
t0 = 140; 
tmax = t0; 
tmin = 0; 
ph_l=t0*ones(pipe_type, node_size); 
stag  = 0;  
global_best = []; 
  
for iter=1:max_iter 
x = []; y = []; P = []; fcost = []; 
% construction phase 
  
for k=1:nAnts 
  for i= 1:node_size  %calculate probability for each of node 
     prob =[]; 
     for j=1:pipe_type 
        prob(j) = ph_l(j,i)^alpha * eta(j,i)^beta ; %calculate the 
probabiliy       
     end 
     P(:,i) = prob/sum(prob); %normalised probability               
      if rand > 0.9 %eplison  
         [maxP indP] = max(P(:,i)); 
         np_ind(k,i) = indP-1; 
     else 
         np_ind(k,i)= Roulette(P(:,i),1)-1 
     end        
  end 
  
%evaluate the objective function      
  [x(k), y(k)] = objfun(np_ind(k,:)); 
  z(k,:) = [k x(k) y(k)]; 
   
end               
  
w=eval_rank(z(:,1)',z(:,2)',z(:,3)'); 
  
fbest(iter) = w(1,2); 
elite_ind(iter) = w(1,1);   
best_solution(iter,:) = np_ind(elite_ind(iter),:); 
  
if w(1,3) == 0 
    if fglobal > w(1,2); 
       fglobal = w(1,2); 
       global_solution = np_ind(elite_ind(iter),:);            
    end  
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else 
end 
  
rank = z(2:end,:); 
fcost = 1./rank(:,2); 
cost_reference = mean(fcost); 
cost_frame = fcost - cost_reference; 
valuecost = valuefunction(0.8, 0.8, 2.7, cost_frame'); 
prob = 1 - rank(:,3)/max(rank(:,3)); 
probweight = weight_prob(prob',0.6); 
prospect = valuecost' .* probweight'; 
  
rank_prospect = [rank prospect]; 
rank_prospect = flipud(sortrows(rank_prospect,4)); 
  
%trial pheromone update phase       
ph_l = ph_l * rho; %evaporate all pheromone for all nodes after all 
ants completed the tour 
  
dtaubest = Q/fbest(iter); 
dtauglobal = Q/fglobal; 
  
mdata = 3; 
  
for m=1:mdata 
 for i=1:node_size 
   ph_l(np_ind(w(m,1),i)+1,i)= ph_l(np_ind(w(m,1),i)+1,i)+ (3 - 
m)*Q/(2*w(m,2)); 
 end 
end 
  
ph_l(find(ph_l > tmax)) = tmax; 
ph_l(find(ph_l < tmin)) = tmin; 
if not(isempty(find(ph_l == Inf))) 
    xxx = 1; 
end 
  
tmax = (1/(1-rho))*Q/fglobal; 
tmin = tmax*(1 - pbest^(1/n))/((NOavg - 1) * pbest ^ (1/n)); 
if tmin > tmax 
   tmin = tmax; 
end 
  
global_best(iter) = fglobal; 
iter 
%stopping criteria 
if iter > 1 
  dis = fbest(iter-1) - fbest(iter); 
  if dis <=1e03 
    stag = stag + 1; 
  else 
    stag = 0; 
  end 
  if stag > 50 
   break 
  end 
end 
   
end %end of iteration 
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[fbest_global best_iter] = min(fbest) 
solution = best_solution(best_iter,:) 
[a, b] = objfun(solution) 
corverge_solution = best_solution( length(fbest),:) 
figure(1) 
plot(1:iter, fbest, 1:iter, fglobal); 
  
title('Best fitness at the each iteration'); 
ylabel('fitness'); 
xlabel('iteration');  
  
figure(2) 
plot(1:iter, global_best); 
text(iter/2,fglobal + 3e7, ['global best w/o PT =', 
num2str(fglobal)]); 
ylabel('fitness'); 
xlabel('iteration');  
  
%Close EPANET toolkit 
calllib('PTD', 'PTcloseD'); 
  
%Unload EPANET DLL. 
%unloadlibrary('PTD'); 
  
%Hanoi Network Problem 
function [best_iter fo_best Solution]=wds_aco_hnp() 
clear all  
close all  
  
loadlibrary('PTD', 'PTD2_2.h'); 
  
%Dummy variables 
Msg = '123'; dia = 0.0; rough = 0.0; 
  
%Open PTD toolkit 
Err = calllib('PTD', 'PTopenD', 'Hanoi.inp', 'Hanoi.dat'); 
if(Err < 0) 
    disp('unable to Open PTD toolkit'); 
    [Err, Msg] = calllib('PTD', 'PTgeterrmessage', Msg, 80); 
    disp(Msg); 
    return; 
end 
  
%Load data 
NetworkData(); 
load('VariableBounds.mat'); 
  
%define number of variables 
NNP = length(LBnewPipes);          %Number of new pipes 
NOP = length(LBoldPipes);          %Number of old pipes 
  
LB = [LBnewPipes, LBoldPipes]; 
UB = [UBnewPipes, UBoldPipes]; 
  
%define anonymous objective function and number of variables 
objfun = @(x)Simulator(x, NNP, NOP); 
Nvars = NNP+NOP; 
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pipe_length = [100 1350 900 1150 1450 450 850 850 800 950 1200 350 800 
500 550 2730 ... 
               1750 800 400 2200 1500 500 2650 1230 1300 850 300 750 
1500 2000 1600 150 860 950]; 
pipe_cost = [45.73 70.40 98.39 129.33 180.75 278.28]; 
  
  
node_size = 34; 
pipe_type = 6; 
  
fglobal = 10969798; %10.969.798 
global_solution = 6*ones(1,34); 
  
nAnts =83;  
alpha = 1; 
beta = 0.25; 
rho = 0.98; 
Q =1.1e07;  
penalty = 1e7; 
  
  
eta=[]; %heuristic information 
for i=1:node_size 
    for j=1:pipe_type 
      eta(j,i) = 1/(pipe_length(i)*pipe_cost(j)); 
    end 
end 
  
% MMAS intialization 
pbest = 0.9; 
NOavg = pipe_type; 
n = node_size; %the number of the right decision 
  
%algorithm parameter 
max_iter = 700; 
  
%Initialize pheromone 
t0 = 26; 
tmax = t0; 
tmin = 0; 
ph_l=t0*ones(pipe_type, node_size); 
stag  = 0;  
global_best = []; 
  
for iter=1:max_iter 
% construction phase 
obj = []; y = []; P = []; fcost = []; 
np_ind=zeros(nAnts,node_size); 
ant_fitness = zeros(nAnts,3); 
for k=1:nAnts     
   for i= 1:node_size  %calculate probability for each of node 
     if rand > 0.9  %epsilon      
      [maxP indP] = max(P(:,i)); 
      np_ind(k,i) = indP; 
     else 
      np_ind(k,i)= Roulette(P(:,i),1); 
     end 
   end 
%evaluate the objective function    
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[obj(k) viol(k)] = objfun(np_ind(k,:)); 
ant_fitness(k,:) = [k obj(k) viol(k)];   
end 
 
%stochastic ranking 
sr = ant_fitness; 
for j=1:nAnts 
for i=1:nAnts-1 
    u = rand;  
    if or(sr(i,3) == sr(i+1,3), u < 0.05) 
        if sr(i,2) > sr(i+1,2) 
            temp(1,:)=sr(i,:); 
            sr(i,:)=sr(i+1,:); 
            sr(i+1,:)=temp(1,:);  
        end 
    else 
        if sr(i,3) > sr(i+1,3) 
            temp(1,:)=sr(i,:); 
            sr(i,:)=sr(i+1,:); 
            sr(i+1,:)=temp(1,:); 
        end 
    end 
end 
end 
  
w=sr(1,1); 
 
elite_ind = ant_fitness(w,1); 
fbest(iter)= ant_fitness(w,2); 
w_viol = ant_fitness(w,3);   
  
if  fbest(iter)< fglobal & w_viol == 0 
     fglobal = fbest(iter) 
     global_solution = np_ind(elite_ind,:); 
end 
%--------------------------------------------  
%trial pheromone update phase       
ph_l = ph_l * rho; %evaporate all pheromone for all nodes after all 
ants completed the tour 
  
dtauglobal = Q/fglobal; 
        
for i=1:node_size 
    ph_l(np_ind(elite_ind,i),i)= ph_l(np_ind(elite_ind,i),i)+ 
dtauglobal; 
end   
   
%Max-Min Update 
ph_l(find(ph_l > tmax)) = tmax; 
ph_l(find(ph_l < tmin)) = tmin; 
  
tmax = (1/(1-rho))*dtauglobal; 
tmin = tmax*(1 - pbest^(1/n))/((NOavg - 1) * pbest ^ (1/n)); 
if tmin > tmax 
   tmin = tmax; 
end 
  
global_best(iter) = fglobal; 
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%stopping criteria 
 if iter > 1 
   dis = abs(fbest(iter-1) - fbest(iter)); 
   if dis <=1e05 
     stag = stag + 1; 
   else 
     stag = 0; 
   end 
   if stag > 50 
    break 
   end 
end 
  
end %end of iteration 
  
[a, b] = objfun(global_solution) 
figure(1) 
plot(1:iter, fbest, 1:iter, fglobal); 
  
title('Best fitness at the each iteration'); 
ylabel('fitness'); 
xlabel('iteration');  
  
figure(2) 
plot(1:iter, global_best); 
text(iter/2,fglobal + 3e7, ['global best without PT =', 
num2str(fglobal)]); 
ylabel('fitness'); 
xlabel('iteration');  
  
%Close EPANET toolkit 
calllib('PTD', 'PTcloseD'); 
  
Unload EPANET DLL. 
unloadlibrary('PTD'); 
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Appendices E Source Code for ACOR and ACOR-PT 

function  result = acorPTcg(); 
%Archive table is initialized by uniform random 
% 
clear all 
nVar = 10; 
nSize = 50; %size 
nAnts = 2; 
fopt = 0; %Apriori optimal 
q=0.1; 
  
qk=q*nSize; 
xi = 0.85; 
  
maxiter = 25000; 
errormin = 1e-04; %Stopping criteria  
%Paramaeter range 
Up = 0.5*ones(1,nVar); %range for dp function 
Lo = 1.5*ones(1,nVar); 
  
%Initialize archive table with uniform random and sort the result from  
%the lowest objective function to largest one.  
S = zeros(nSize,nVar+1,1); 
  
Solution = zeros(nSize,nVar+2,1); 
  
for k=1:nSize 
    Srand = zeros(nVar); 
    for j = 1:nAnts 
      for i=1:nVar 
        Srand(j,i) = (Up(i) - Lo(i))* rand(1) + Lo(i); %uniform 
distribution 
      end 
    ffbest(j)=dp(Srand(j,:));  %dp test function 
    end                         
    [fbest kbest] = min(ffbest); 
    S(k,:)=[Srand(kbest,:) fbest]; 
end 
  
 
%Rank the archive table from the best (the lowest)  
S = sortrows(S,nVar+1); 
%Select the best one as the best 
%Calculate the weight,w  
%the parameter q determine which solution will be chosen as a guide to 
%the next solution, if q is small, we prefer the higher rank 
%qk is the standard deviation 
% mean = 1, the best on 
w = zeros(1,nSize); 
  
for i=1:nSize 



 

  127 

    w(i) = pdf('Normal',i,1.0,qk); 
end 
  
Solution=S; 
%end of archive table initialization 
stag = 0; 
% Iterative process  
for iteration = 1: maxiter   
%phase one is to choose the candidate base one probability 
%the higher the weight the larger probable to be chosen 
%value of function of each pheromone 
  
p=w/sum(w); 
  
ref_point = mean(Solution(:,nVar+1)); 
for i=1:nSize 
 pw(i) = weight_prob(p(i),0.6); 
 objv(i)= valuefunction(0.8,0.8, 2.25, ref_point-Solution(i, nVar+1));  
 prospect(i) = pw(i)*objv(i); 
end     
[max_prospect ix_prospect]=max(prospect); 
  
selection = ix_prospect; 
  
%phase two, calculate Gi 
%first calculate standard deviation 
delta_sum =zeros(1,nVar); 
for i=1:nVar 
 for j=1:nSize 
  delta_sum(i) = delta_sum(i) + abs(Solution(j,i)- ...  
                 Solution(selection,i)); %selection 
 end 
  delta(i)=xi /(nSize - 1) * delta_sum(i); 
 end 
% xi has the same as pheromone evaporation rate. Higher xi, the lower 
% convergence speed of algorithm 
% do sampling from PDF continuous with mean chosen from phase one and 
% standard deviation calculated above 
% standard devation * randn(1,) + mean , randn = random normal 
generator 
Stemp = zeros(nAnts,nVar); 
  
for k=1:nAnts 
    for i=1:nVar 
       Stemp(k,i) =  delta(i) * randn(1) + Solution(selection,i); 
%selection 
       if Stemp(k,i)> Up(i) 
           Stemp(k,i) = Up(i); 
       elseif Stemp(k,i) < Lo(i); 
           Stemp(k,i) = Lo(i); 
       end 
    end 
    ffeval(k)  =dp(Stemp(k,:));  %dp test function 
end                           
  
Ssample = [Stemp ffeval']; %put weight zero 
  
%insert this solution to archive, all solution from ants 
Solution_temp = [Solution; Ssample]; 
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%sort the solution 
Solution_temp = sortrows(Solution_temp,nVar+1); 
%remove the worst 
Solution_temp(nSize+1:nSize+nAnts,:)=[]; 
Solution = Solution_temp; 
best_par(iteration,:) = Solution(1,1:nVar); 
best_obj(iteration) = Solution(1,nVar+1); 
%check stopping criteria  
  
if iteration > 1 
dis = best_obj(iteration-1) - best_obj(iteration); 
if dis <=1e-04 
    stag = stag + 1; 
else 
    stag = 0; 
end  
end 
  
ftest = Solution(1,nVar+1); 
if abs(ftest - fopt) < errormin || stag >=5000    
    break 
end 
end 
plot(1:iteration,best_obj); 
clc 
title (['ACOR6   ','best obj = ', num2str(best_obj(iteration))]); 
disp('number of function eveluation') 
result = nAnts*iteration; 
 
%%-------------------------------------------------------------  
 
function value = valuefunction(alpha, beta, lambda, xinput) 
value =[]; 
n = length(xinput); 
for i=1:n 
    if xinput(1,i) >= 0 
        value(1,i) = xinput(1,i) ^ alpha; 
    else 
        value(1,i) = -lambda * (-xinput(1,i))^ beta; 
    end 
end 
  
function prob = weight_prob(x, gamma) 
% weighted the probability 
% gamma is weighted parameter 
prob=[]; 
for i=1:length(x) 
  if x(i) < 1 
   prob(i) = (x(i)^(gamma))/((x(i)^(gamma) + (1- 
x(i))^(gamma))^(1/gamma));  
   %prob(i) = (x(i)^(1/gamma))/((x(i)^(1/gamma) + (1- 
x(i))^(1/gamma))^(1/gamma));  
  else 
   prob(i) = 1.0;  
  end 
end 
 
%%---------------------------------------------------------------- 
%List of funtions  
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function y = dp(x) 
% Diagonal plane 
% n is the number of parameter 
n = length(x); 
s = 0; 
for j = 1: n 
    s = s + x(j); 
end 
y = 1/n * s; 
%%---------------------------------------------------------------- 
 
function y = branin(x) 
% Branin function  
% Matlab Code by A. Hedar (Sep. 29, 2005). 
% The number of variables n = 2. 
%  
y = (x(2)-(5.1/(4*pi^2))*x(1)^2+5*x(1)/pi-6)^2+10*(1-
1/(8*pi))*cos(x(1))+10; 
%%---------------------------------------------------------------- 
 
function y = shekel45(x) 
%  
% Shekel function 
% Matlab Code by A. Hedar (Nov. 23, 2005). 
% The number of variables n = 4 
% The parameter m should be adjusted m = 5,7,10. 
% The default value of m = 10. 
%  
m = 5; 
a = ones(10,4); 
a(1,:) = 4.0*a(1,:); 
a(2,:) = 1.0*a(2,:); 
a(3,:) = 8.0*a(3,:); 
a(4,:) = 6.0*a(4,:); 
for j = 1:2; 
   a(5,2*j-1) = 3.0; a(5,2*j) = 7.0;  
   a(6,2*j-1) = 2.0; a(6,2*j) = 9.0;  
   a(7,j)     = 5.0; a(7,j+2) = 3.0; 
   a(8,2*j-1) = 8.0; a(8,2*j) = 1.0; 
   a(9,2*j-1) = 6.0; a(9,2*j) = 2.0; 
   a(10,2*j-1)= 7.0; a(10,2*j)= 3.6; 
end 
c(1) = 0.1; c(2) = 0.2; c(3) = 0.2; c(4) = 0.4; c(5) = 0.4; 
c(6) = 0.6; c(7) = 0.3; c(8) = 0.7; c(9) = 0.5; c(10)= 0.5; 
s = 0; 
for j = 1:m; 
   p = 0; 
   for i = 1:4 
      p = p+(x(i)-a(j,i))^2; 
   end 
   s = s+1/(p+c(j)); 
end 
y = -s; 
%%---------------------------------------------------------------- 
 
function y = shekel47(x) 
%  
% Shekel function 
% Matlab Code by A. Hedar (Nov. 23, 2005). 
% The number of variables n = 4 
% The parameter m should be adjusted m = 5,7,10. 
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% The default value of m = 10. 
%  
m = 7; 
a = ones(10,4); 
a(1,:) = 4.0*a(1,:); 
a(2,:) = 1.0*a(2,:); 
a(3,:) = 8.0*a(3,:); 
a(4,:) = 6.0*a(4,:); 
for j = 1:2; 
   a(5,2*j-1) = 3.0; a(5,2*j) = 7.0;  
   a(6,2*j-1) = 2.0; a(6,2*j) = 9.0;  
   a(7,j)     = 5.0; a(7,j+2) = 3.0; 
   a(8,2*j-1) = 8.0; a(8,2*j) = 1.0; 
   a(9,2*j-1) = 6.0; a(9,2*j) = 2.0; 
   a(10,2*j-1)= 7.0; a(10,2*j)= 3.6; 
end 
c(1) = 0.1; c(2) = 0.2; c(3) = 0.2; c(4) = 0.4; c(5) = 0.4; 
c(6) = 0.6; c(7) = 0.3; c(8) = 0.7; c(9) = 0.5; c(10)= 0.5; 
s = 0; 
for j = 1:m; 
   p = 0; 
   for i = 1:4 
      p = p+(x(i)-a(j,i))^2; 
   end 
   s = s+1/(p+c(j)); 
end 
y = -s; 
%%---------------------------------------------------------------- 
 
function y = shekel410(x) 
%  
% Shekel function 
% Matlab Code by A. Hedar (Nov. 23, 2005). 
% The number of variables n = 4 
% The parameter m should be adjusted m = 5,7,10. 
% The default value of m = 10. 
%  
m = 10; 
a = ones(10,4); 
a(1,:) = 4.0*a(1,:); 
a(2,:) = 1.0*a(2,:); 
a(3,:) = 8.0*a(3,:); 
a(4,:) = 6.0*a(4,:); 
for j = 1:2; 
   a(5,2*j-1) = 3.0; a(5,2*j) = 7.0;  
   a(6,2*j-1) = 2.0; a(6,2*j) = 9.0;  
   a(7,j)     = 5.0; a(7,j+2) = 3.0; 
   a(8,2*j-1) = 8.0; a(8,2*j) = 1.0; 
   a(9,2*j-1) = 6.0; a(9,2*j) = 2.0; 
   a(10,2*j-1)= 7.0; a(10,2*j)= 3.6; 
end 
c(1) = 0.1; c(2) = 0.2; c(3) = 0.2; c(4) = 0.4; c(5) = 0.4; 
c(6) = 0.6; c(7) = 0.3; c(8) = 0.7; c(9) = 0.5; c(10)= 0.5; 
s = 0; 
for j = 1:m; 
   p = 0; 
   for i = 1:4 
      p = p+(x(i)-a(j,i))^2; 
   end 
   s = s+1/(p+c(j)); 
end 
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y = -s; 
%%---------------------------------------------------------------- 
 
function y = sphere(x) 
%  
% Sphere function  
% Matlab Code by A. Hedar (Nov. 23, 2005). 
% The number of variables n should be adjusted below. 
% The default value of n = 30. 
%  
%n = 30; 
n = length(x); 
s = 0; 
for j = 1:n 
    s = s+x(j)^2;  
end 
y = s; 
%%---------------------------------------------------------------- 
 
function y = hart3(x) 
%  
% Hartmann function  
% Matlab Code by A. Hedar (Sep. 29, 2005). 
% The number of variables n = 3. 
%  
a(:,2)=10.0*ones(4,1); 
for j=1:2; 
   a(2*j-1,1)=3.0; a(2*j,1)=0.1;  
   a(2*j-1,3)=30.0; a(2*j,3)=35.0;  
end 
c(1)=1.0;c(2)=1.2;c(3)=3.0;c(4)=3.2; 
p(1,1)=0.36890;p(1,2)=0.11700;p(1,3)=0.26730; 
p(2,1)=0.46990;p(2,2)=0.43870;p(2,3)=0.74700; 
p(3,1)=0.10910;p(3,2)=0.87320;p(3,3)=0.55470; 
p(4,1)=0.03815;p(4,2)=0.57430;p(4,3)=0.88280; 
s = 0; 
for i=1:4; 
   sm=0; 
   for j=1:3; 
      sm=sm+a(i,j)*(x(j)-p(i,j))^2; 
   end 
   s=s+c(i)*exp(-sm); 
end 
y = -s; 
%%---------------------------------------------------------------- 
 
function y = hart6(x) 
%  
% Hartmann function  
% Matlab Code by A. Hedar (Sep. 29, 2005). 
% The number of variables n = 6. 
%  
  
a(1,1)=10.0;    a(1,2)=3.0;     a(1,3)=17.0;    a(1,4)=3.5;     
a(1,5)=1.7;     a(1,6)=8.0; 
a(2,1)=0.05;    a(2,2)=10.0;    a(2,3)=17.0;    a(2,4)=0.1;     
a(2,5)=8.0;     a(2,6)=14.0; 
a(3,1)=3.0;     a(3,2)=3.5;     a(3,3)=1.7;     a(3,4)=10.0;    
a(3,5)=17.0;    a(3,6)=8.0; 
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a(4,1)=17.0;    a(4,2)=8.0;     a(4,3)=0.05;    a(4,4)=10.0;    
a(4,5)=0.1;     a(4,6)=14.0; 
c(1)=1.0;c(2)=1.2;c(3)=3.0;c(4)=3.2; 
p(1,1)=0.1312;  p(1,2)=0.1696;  p(1,3)=0.5569;  p(1,4)=0.0124;  
p(1,5)=0.8283;  p(1,6)=0.5886; 
p(2,1)=0.2329;  p(2,2)=0.4135;  p(2,3)=0.8307;  p(2,4)=0.3736;  
p(2,5)=0.1004;  p(2,6)=0.9991; 
p(3,1)=0.2348;  p(3,2)=0.1451;  p(3,3)=0.3522;  p(3,4)=0.2883;  
p(3,5)=0.3047;  p(3,6)=0.6650; 
p(4,1)=0.4047;  p(4,2)=0.8828;  p(4,3)=0.8732;  p(4,4)=0.5743;  
p(4,5)=0.1091;  p(4,6)=0.0381; 
s = 0; 
for i=1:4; 
   sm=0; 
   for j=1:6; 
      sm=sm+a(i,j)*(x(j)-p(i,j))^2; 
   end 
   s=s+c(i)*exp(-sm); 
end 
y = -s; 
%%---------------------------------------------------------------- 
 
function y = gold(x) 
%   
% Goldstein and Price function  
% Matlab Code by A. Hedar (Sep. 29, 2005). 
% The number of variables n = 2. 
%  
a = 1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*x(1)^2-
14*x(2)+6*x(1)*x(2)+3*x(2)^2); 
b = 30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*x(1)^2+48*x(2)-
36*x(1)*x(2)+27*x(2)^2); 
y = a*b; 
%%---------------------------------------------------------------- 
 
function y = rosen(x) 
%  
% Rosenbrock function 
% Matlab Code by A. Hedar (Nov. 23, 2005). 
% The number of variables n should be adjusted below. 
% The default value of n = 2. 
%  
n=length(x); 
sum = 0; 
for j = 1:n-1; 
    sum = sum+100*(x(j)^2 - x(j+1))^2+(x(j)-1)^2; 
end 
y = sum; 
%%---------------------------------------------------------------- 
 
function y = zakh(x) 
%  
% Zakharov function  
% Matlab Code by A. Hedar (Nov. 23, 2005). 
% The number of variables n should be adjusted below. 
% The default value of n = 2. 
%  
n = 2; 
s1 = 0; 
s2 = 0; 
for j = 1:n; 
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    s1 = s1+x(j)^2; 
    s2 = s2+0.5*j*x(j); 
end 
y = s1+s2^2+s2^4; 
%%---------------------------------------------------------------- 
 
 
function y = griewank(x) 
%  
% Griewank function 
% Matlab Code by A. Hedar (Sep. 29, 2005). 
% The number of variables n should be adjusted below. 
% The default value of n =2. 
%  
n = length(x); 
fr = 4000; 
s = 0; 
p = 1; 
for j = 1:n; s = s+x(j)^2; end 
for j = 1:n; p = p*cos(x(j)/sqrt(j)); end 
y = s/fr-p+1; 
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