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NOTATION LIST 

 

A : Muscle activation is the relationship between muscle force on one side, and on the 

other side: stimulation frequency, rise and fall times (effects of calcium dynamics), 

time delay, yield, sag, and effective length. Muscle activation A  is mainly affected by 

stimulation frequency, A  is unit-less ( 10  A ). Only at certain conditions 1A : 

tetanic stimulation frequency (the frequency that will produce maximum force, and 

prevents yield), isometric conditions (no effective length), enough time has elapsed 

since onset of stimulation (to pass the rise time, effect of sag, and natural time delay). 

iA : Level of activation of the thi  fibre-type, modelled in the same way as muscle 

activation A . 

a , a , 0va , 1va , 2va : Constants. 

b ,  b , 1vb , .. , 8vb  and vb : Constants. 

CE :  The contractile element. CE is a device that represents the “active” properties of 

muscle (F-L and F-V relations). In the inactive state, CE does not hold any force and 

its length can be changed at will. 

1c , 2c , 3c , Sc , Rc , 0vc , 1vc , Wc : Constants. 

fic : Slope of the frequency modulation line during voluntary contraction initiated by the 

CNS (representing the relationship between the natural stimulation input U and 

stimulation frequency of the  thi  fibre-type after recruitment). 

Ric : Hawkins recruitment constants for different fibre-types, determined experimentally. 

1756.11 Rc , 6779.032  RR cc . 

TSc : The transient-state constant for stretch/shortening. 

mF : Total muscle force, including all active and passive forces (forces produced by the 

musculotendon complex). 

)( CElFL : The normalised CE  isometric force as a function of its length (normalised with 

respect to the maximum isometric force), 
max,

)(
)(

iso

CEiso
CE

f

lf
lFL  . 
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iFPCSA : The fractional physiological cross-sectional area of the thi  fibre-type, 

dimensionless (unit-less), ni

PCSA

FPCSA
n

k

k

i ,...,1,
PCSA

PCSA

PCSA

1

ii 




 

)( CEvFV : The normalised CE  force as a function of its velocity (normalised with respect to 

the maximum isometric force). 

df : The steady-state force depression (after the end of the transient state). 

ef : The steady-state force enhancement (after the end of the transient state). 

tf : The passive force of the tendon. 

CEf :  Instantaneous force produced by the contractile element CE (the muscle’s active force 

excluding passive forces). 

iCEf , : Instantaneous “active” force produced by the thi  fibre-type. 

)( CEiso lf : The “active” isometric muscle force as a function of CE length CEl . 

max,isof : Maximum CE  isometric force at the plateau of the force-length relationship, 

)(max, optisoiso lff  . 

iisof max,, : Maximum isometric force for the thi  fibre-type at the plateau of the force-length 

relationship, )(,max,, optiisoiiso lff  . 

PEf : Combined passive forces of 1PEf  and 2PEf , ( 21 PEPEPE fff  ). 

1PEf : Force produced by the parallel elastic element, representing the passive force which 

resists stretch in the muscle belly. 

2PEf : The passive resistance to compression of CE at short lengths of muscle belly. 

SEf : The passive force of the series elastic element (represents the combined tendon and 

aponeurosis). 

VEf : Force produced by the parallel viscosity element, representing, the viscous drag 

“passive” force created by non-recruited fibres resisting muscle movement, during 

both shortening and lengthening. 

freq : FES stimulation frequency. 

5.0freq  : The stimulation frequency required to produce 50% of maximal isometric force 

max,isof  at the optimal muscle length optl , during voluntary contraction initiated by the 

CNS. 
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ifreq : The instantaneous stimulation frequency of the thi  fibre-type. If the stimulation 

frequency was not constant during stimulation (natural or FES); the stimulation 

frequency will be assumed adjustable, but not a real-time variable (i.e. ignoring 

dynamic changes in frequency). 

max

ifreq : The maximum stimulation frequency reached at maximum natural stimulation input 

( 1U ), during voluntary contraction initiated by the CNS. 

min

ifreq : The initial stimulation frequency of the thi  fibre-type (minimum stimulation 

frequency), during voluntary contraction initiated by the CNS. 

i : Fibre-type identifier ( 3,2,1i ), i  can be 1 (single motor-unit models), 2 (slow and 

fast fibre types) or 3 (type-I, IIa, and IIb fibres). 

ID : Index of force depression following shortening of recruited muscle ( 10  R ) as a 

function of time ( t ). 

iID : Index of force depression for the thi  fibre-type following shortening when recruited. 

minID :  The minimum magnitude for the index of depression at the end of shortening. 

minID = (minimum muscle force during shortening) / (isometric force corresponding to 

the instantaneous length at end of shortening). 

SSID : The steady-state force depression index after 4 seconds. 

ID : The plateau level of the index of enhancement, this represents the index of depression 

after very large value of time ( t ). 

IE :  Index of force enhancement following stretch of recruited muscle ( 10  R ) as a 

function of time t . 

iIE : Index of force enhancement for the thi  fibre-type following stretch when recruited. 

SSIE : The steady-state force enhancement index after ( [sec]4t ). 

maxIE :  The maximum magnitude for the index of enhancement at the end of stretch. 

maxIE = (maximum muscle force during stretch) / (isometric force corresponding to the 

instantaneous length at end of stretch). 

IE :  The plateau level of the index of enhancement, this represents the index of 

enhancement after very large value of time ( t ). 

IF : Index of fatigue for the whole muscle. 

iIF : Index of fatigue for the thi  fibre-type (for a given fibre-type). 

jiIF , : Index of fatigue for the 
thj  motor-unit of fibre-type i . 
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minIF : The minimum fitness of the muscle at which fatigue rate = 0 of the fully recruited 

muscle (i.e. the minimum value for the index of fatigue). 

j : Motor-unit identifier, imj ,...,2,1 . 

k :  Hill’s parameter. 

pk :  Stiffness of the linear un-damped purely elastic element in parallel. 

sk :  Stiffness of the linear un-damped purely elastic element in series. 

CEl : Instantaneous length of the contractile element CE. 

CEl : The instantaneous CE length CEl  normalized with respect to the optimal CE length optl

, 
opt

CE
CE

l

l
l  . 

ERl : Instantaneous length of the elastic rack, this is the same as the instantaneous CE  

length ( CEER ll  ). 

fERl , : Final length of the elastic rack at end of stretch/shortening (which is the CE  length at 

end of stretch). 

oERl , : Initial length of the elastic rack just before beginning of stretch/shortening (this equals 

the length of CE  just before beginning of stretch). 

( oERER ll , ): Instantaneous displacement of the elastic rack during stretch/shortening. 

ml : Instantaneous length of the muscle belly (without tendon). 

maxl : The maximal length of the muscle fibres at the maximal anatomical length (maximal 

in situ) of the muscle (i.e. the maximal length that the muscle experience at the 

anatomical limits of motion of the musculoskeletal system). 

optml , : Optimal length of muscle belly, measured with line of action of the tendon. 

mtl : Instantaneous length of the musculotendon complex, this includes the muscle fibres, 

aponeurosis, and tendon. 

0l :  Length of CE at the moment of initial recruitment. 

optl : Optimal length of the contractile element CE  at which the resulted isometric force in 

the force-length relationship is maximal. 

t

optl : Tendon optimal length, measured at the maximum isometric force ( max,isoCE ff  ). 

PEl : Instantaneous length of the parallel elastic element. 
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restl : The resting length of the CE (at the unique resting state), representing the slack length 

of the muscle belly. 

m

Sl : The slack length of the muscle belly (at the unique resting state), the length beyond 

which the muscle belly begins to develop force. 

SEl : Instantaneous length of the series elastic element (represents the tendon). 

mt

Sl : The slack length of the musculotendon complex (at the unique resting state), the 

length beyond which the musculotendon complex begins to develop force. 

t

Sl : Tendon slack length (at the unique resting state), the tendon length beyond which the 

tendon begins to develop force. 

tl :
 

Instantaneous length of the tendon. 

M : Number of recruited motor-units. 

m : Total number of all motor-units in the muscle model. These motor-units are 

hypothetical units (unreal), the value of ( m ) is chosen by the user to give the required 

force resolution and does not correspond to real number of motor-units, ( 1000m ). 

im : Number of motor-units in fibre-type i , 
ii FPCSAmm  . 

n :  Number of fibre-types in the muscle model, the fibre-type can be modelled as single-

type (for a single motor-unit model), two types (slow and fast), or three types (fast-

twitch type is modelled as two different types; type-IIa and type-IIb). 

PA :  Amplitude of the electrical stimulation pulses. 

mPCSA : The physiological cross sectional area of the whole muscle (sum of all fibre-type). 

iPCSA : The physiological cross-sectional area of the thi  fibre-type. 

PE : The passive elastic element in Hill-type models, ( 21 PEPEPE  ). 

1PE : The parallel elastic element-1, representing the passive elastic force of muscle belly 

which resists stretch. 

2PE : The parallel elastic element-2, representing the resistance to compression of the thick 

filaments at short lengths of muscle belly. 

PW :  Width of the electrical stimulation pulses. 

sat

ipw : The saturation pulse width for the 
thi  fibre-type. 

thr

ipw : The threshold pulse width for the 
thi  fibre-type (this can be partial or full depending 

on sub-model used). 

satpw :  The saturation pulse width, at which all motor-units are recruited. 



 

xvi 
 

thrpw :  The threshold pulse width, at which first motor-unit is recruited. 

R : The normalized portion of recruited motor-units (recruitment level). R  has the value 

between 0 (no recruitment) and 1 (all motor-units are recruited), 10  R . R  is used 

with both artificially stimulated muscle contraction using FES and voluntary 

contraction initiated by the CNS (Central Nervous System). 

iR : The normalized recruited proportion of the thi  fibre-type, calculated as the PCSA of 

recruited proportion of the thi  fibre-type divided by the iPCSA  of the same fibre-type, 

10  iR . iR  is the analogue output of the recruitment sub-model.

 jiR , : The binary recruitment of the 
thj   motor-unit of the thi  fibre-type, this can only be 

either 0 or 1 (100% recruited or not recruited at all). 

SE : The series elastic element, representing the tendon. 

endT : Endurance time of the muscle, time from onset of recruitment to the time when fatigue 

starts (when force reduction is detected). 

iendT , : Endurance time of the thi  fibre-type. 

fatT : Time constant for fatigue, it can have largely different values for different muscles and 

different fibre types. 

recT : Time constant for recovery. 

t :  Time. 

fat

endt : Time at which FES stopped (of the same cycle). 

fat

ot : Time at which FES started for any cycle of the intermittent FES. 

rec

endt : Time at which recovery stopped (of the same cycle) and FES started (of the next 

cycle). 

rec

ot : Time at which recovery started (of the same cycle). 

U : The natural stimulation input for a muscle under voluntary contraction initiated by the 

CNS. U  will modulate both the number of recruited motor-units and the stimulation 

frequency (of recruited motor-units). U  is dimensionless, The value of U , at any 

time, is normalised to the maximum natural stimulation input. 0.1U  at MVC 

(maximum voluntary contraction) that will produce maximum force when all motor-

units are recruited at maximum stimulation frequency. 
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effU : An intermediate natural stimulation input that models the rise and fall times (effects of 

calcium dynamics). effU  models the transient-state when there is a change in the input 

activation U , the steady-state of the effective activation effU  will be the new value of 

input activation U . 

sat

iU : The value of U at which the thi  fibre-type becomes fully recruited (all motor-units of 

this fibre-type are recruited), sat

sat

n UU  . 

thr

iU : The threshold level at which the thi  fibre-type becomes recruited, the recruitment can 

be either analogue or binary, depending on the sub-model used. 

satU : The value of U at which all motor-units have been recruited (equivalent to satpw  in 

the case of FES). 

thrU : The threshold level, at which first motor-unit is recruited (equivalent to thrpw  in the 

case of FES). 

VE : The viscous passive element, representing the resistance to muscle contraction in 

either direction (shortening or lengthening). 

CEv : Instantaneous CE  velocity, assumed the same for all motor-units. dtdlv CECE / , 

0CEv  for muscle shortening. 

CEv : Instantaneous CE  velocity normalised with respect to the absolute value of its 

maximum shortening velocity ( max,CEv ), 
max,CE

CE

CE
v

v
v  . 

max,CEv : Maximum shortening velocity of CE, beyond which 0CEf . 

str

CEv max, : Maximum stretch velocity, beyond which CEf  does not increase and stays at its 

maximum. 

mv : Instantaneous velocity of the muscle belly along the same line of action of the tendon, 

assumed the same for all fibre-types in the muscle model,
 

dtdlv mm / . 

mv : Instantaneous velocity of the muscle belly normalised with respect to the absolute 

value of its maximum shortening velocity max,mv , (
max,m

m
m

v

v
v  ). 

max,mv : Maximum shortening velocity of muscle belly, beyond which muscle force = 0. 
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mtv : Instantaneous velocity of the musculotendon complex (including muscle fibres and 

tendon), dtdlv mtmt / . 

 : Pennation angle (angle between the fibre line of action and the tendon line of action). 

)( ,, oERfERER lll  : Total displacement of the elastic rack from the length at initial 

recruitment after end of stretch/shortening. 

mtl : Displacement of the musculotendon complex from the unique resting state. 
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ABBREVIATIONS 

 

 

ADP: Adenosine Diphosphate. 

ATP: Adenosine Triphosphate. 

ATPase: Adenosine Triphosphatase. 

CE: Contractile Element. 

CNS: Central Nervous System. 

CPG: Central Pattern Generator. 

dep.: Depression. 

ES: Electrical Stimulation. 

enh.: Enhancement. 

FES: Functional Electrical Stimulation. 

F-L: Force-Length. 

F-V: Force-Velocity. 

MMU: Multiple Motor-Unit. 

MU: Motor-Unit. 

MVC: Maximum Voluntary Contraction. 

PA: Pulse amplitude (amplitude of the electrical stimulation pulses). 

PE: Parallel Element. 

PE1: The parallel elastic element-1, representing the passive elastic force of muscle belly 

which resists stretch. 

PE2: The parallel elastic element-2, representing the resistance to compression of the thick 

filaments at short lengths of muscle belly. 

PW: Pulse width (width of the electrical stimulation pulses). 

SCI: Spinal Cord Injury. 

SE:  Serial Element. 

SMU: Single Motor-Unit. 

sec: second. 

VE: Viscous Element. 

VM: Virtual Muscle modelling package. 
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ABSTRACT 

 

Many functional electrical stimulation (FES) controllers have been developed using a 

simulation approach, the performance of these controllers depends on the muscle model 

accuracy. Realistic models of neuro-musculoskeletal systems can provide a safe and 

convenient environment for the design and evaluation of FES controllers. A typical FES 

system consists of FES controller, an electrical stimulator, electrodes and sensors. 

 

During FES, the stimulation level can change in a continuous fashion such that different 

motor-units are recruited at different muscle lengths and at different times. Furthermore, it is 

also not accurate to use the instantaneous length as input to the force-length relationship in 

dynamic (non-isometric) situations. Although instantaneous CE length is commonly used in 

FES control studies, empirical data from the literature were reviewed and it was concluded 

that the CE length at initial recruitment ol  is a key parameter influencing total muscle force.  

 

The author presents a new multiple motor-unit Hill-type muscle model that accounts for 

different motor units being recruited at different CE lengths and different times. Hence the 

model can account for a continuously changing recruitment level whilst using the individual 

motor unit lengths at initial recruitment as input to the force-length relationship. Moreover, 

the model is capable of modelling fatigue and force enhancement & depression for the 

individual motor-units (i.e. the recruitment and time history effects). The model can also take 

account of the different force-length and force-velocity relationships for different fibre types 

by modelling these properties for the individual motor-units. 

 

The new multiple motor-unit model is described in detail, implemented and tested in Matlab. 

Open-loop simulation protocols are made on single/multiple motor-unit models using 

different CE lengths for the force-length relationship; on single/multiple motor-unit fatigue 

sub-models; and on single/ multiple motor-unit force enhancement & depression sub-models. 

 

A general model that can be used to represent all relevant models from the literature was 

developed. This model can also be used to build new models at different levels of complexity. 

Such a “General Model” could be used to study the effect of model complexity on FES 

controller design so that appropriate trade-offs between model complexity and accuracy could 

be determined. Results, limitations and possible future work are discussed. 
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Chapter 1: Introduction 

 

1.1.  Background 

Electrical stimulation (ES) is the use of electrical pulses applied to the neuromuscular system 

to generate action potentials in nerves and hence innervated muscles [1, 2, 3]. ES uses short 

duration electrical pulses (typically several hundred microseconds) of low amplitude 

(typically several tens of milliamps) to generate action potentials in intact lower motor 

neurons and thereby cause contraction in associated muscle fibres [1, 3, 4, 5]. Providing that 

the stimulation intensity (proportional to charge, or pulse width/amplitude) is sufficiently high 

(to trigger an action potential) and the rate at which the pulses are delivered is sufficient to 

generate a fused (smooth) contraction, stimulation will result in potentially useful contractions 

in whole muscles [1, 2]. 

 

By controlling the intensity and timing of stimulation, muscle force output and hence resultant 

limb motion can be controlled [1, 6] and this application of ES is termed functional electrical 

stimulation (FES). Specifically, FES is the controlled use of ES to generate movements which 

mimic normal voluntary movements, and thus restore function in people with motor 

impairments following central nervous system injury (e.g. stroke, spinal cord injury) [1, 2, 3, 

4, 5, 7, 8]. 

 

A wide range of FES systems exist for individuals with disabilities, including systems for 

hand grasping, drop-foot correction, standing, walking, stationary rowing, and stationary 

cycling [2, 9, 10, 11]. A generic FES system consists of FES controller, an electrical 

stimulator, stimulation electrodes, and different types of sensors [10, 11]. An overview of 

various grasping and walking FES systems can be found in [10]. 

 

For control engineers, the musculoskeletal system of a patient is considered as the plant to be 

controlled. The position, velocity and acceleration of a body segment are the plant states. The 

muscles that power the system are the actuators. The electrical pulses activating the muscles 

are the control signals. The FES controller is the device by which the desired controls are 

generated. The controller modulates the intensity of the stimulus delivered to the muscle by 

either changing the pulse amplitude or the pulse width [1, 3, 4]. Modulation of pulse 

amplitude or pulse width modulates the number of motor-units in the target muscle that are 
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recruited which in turn modulates muscle force. The time history of the plant states in 

response to the control signals is the joint-angle trajectory or torque profile [12]. 

 

Realistic models of neuro-musculoskeletal systems can provide a safe and convenient 

environment for the design and evaluation of controllers for FES prior to clinical trials. 

However, the performance of a controller is highly dependent on the accuracy with which a 

given model represents the response of a muscle (or muscles) to stimulation [13].  

 

 

1.2.  Why further modelling research is needed? 

Most FES systems in use today are open-loop controlled (including finite state control 

approaches). This is surprising, given the complexities of the human musculoskeletal system, 

following neurological injury, and hence the potential advantages of closed-loop control over 

alternative approaches.  Among the difficulties in widespread implementation of closed loop 

FES control approaches are the limitations with current models used to represent muscle 

response to stimulation.  

 

As will be explained in Chapter 2, current models of muscle behaviour do not adequately 

represent the muscle’s response to continuously varying recruitment levels )(tR  and muscle 

length ( CEl ). In closed loop FES control, muscle recruitment levels and muscle length may 

vary continuously, and hence inaccuracies in the way models represent the muscle response to 

such inputs may lead to degraded controller performance. Specifically, in the thesis it is 

shown that current models do not properly represent the effects of the length of the contractile 

element CE at initial recruitment on muscle force response, fatigue and force enhancement & 

depression.  

 

 

1.3.  Objectives 

The main question of this research is: Can multiple motor-unit models properly account for 

continuously varying recruitment levels at different muscle lengths and different times?  

 

The primary goal is to develop a multiple motor-unit model that can account for continuously 

varying recruitment levels at different muscle lengths and different times. In order to achieve 

this, it is also necessary to develop a new comprehensive muscle model (General model) that 
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can be modified to represent all relevant instances from the literature and can be adapted to 

allow for multiple motor-units to be represented. Where suitable sub-models are not available, 

new models are created and tested against published experimental data. 

 

Therefore the detailed aims required to achieve the primary goal are to: 

i. Develop a new multiple motor-unit model using the CE length at initial 

recruitment ( ol ) as the input to the force-length relationship. 

ii. Compare performance of the multiple motor-unit model and the single motor-

unit model using the basic Hill model. Appropriate input protocols are used to 

test the responses of the two models when recruitment level ( R ) and 

instantaneous length of CE ( CEl ) vary with time. 

iii. Analyse the results from previous step to identify which approach can better 

model the effects of length at initial recruitment, fatigue, and force 

enhancement & depression for partially recruited muscles with continuously 

varying stimulation levels at different muscle lengths and at different times. 

 

 

1.4.  Overview of the thesis 

The organisation of the thesis reflects the sequence of steps taken in the development of the 

new multiple motor-unit model and the “General model”. 

 

Chapter 2: This chapter begins with a description of skeletal muscle and its physiological 

recruitment under voluntary contraction, followed by introduction to electrical stimulation and 

how force is produced in electrically stimulated muscles. FES is then introduced, followed by 

discussion on the complexity of FES control challenges using open-loop and closed-loop 

control strategies. Different schools of thought within muscle modelling are then introduced, 

followed by a discussion on how muscle models can assist in the development of FES 

systems. The next section of this chapter is a review of key features of muscle models; a 

summary of the behaviour of the various muscle properties which affect muscle response to 

FES is included. The last section discusses the need for multiple motor-unit models in FES 

application and how the accuracy of a muscle model can be improved using the multiple 

motor-unit modelling approach. 
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Chapter 3: This chapter addresses the problem of muscle modelling for continuously varying 

R  and hence different values of ol  for different motor-units. Open-loop simulation protocols 

are made on the multiple motor-unit model and the single motor-unit model using both the 

instantaneous length and the length at initial recruitment for the force-length relationship, 

results are discussed at the end. 

 

Chapter 4: This chapter addresses the problem of muscle modelling for continuously varying 

R  and hence different time histories of recruitment for different motor-units. Open-loop 

simulation protocols are made on the multiple motor-unit model and the single motor-unit 

model using both the multiple motor-unit fatigue sub-model and single motor-unit fatigue 

sub-model, results are discussed at the end. 

 

Chapter 5: This chapter addresses the same problem as in chapter three but using models of 

force enhancement & depression. Open-loop simulation protocols are made on the multiple 

motor-unit model and the single motor-unit model using both the multiple motor-unit force 

enhancement & depression sub-model and single motor-unit force enhancement & depression 

sub-model, results are discussed at the end. 

 

Chapter 6: In this chapter, a general model that can be used to represent all relevant models 

from the literature is developed. The model, capable of representing the alternative sub-

models (for each muscle property) and the inter-connection of these sub-models (model 

topology), could be used to represent any of the alternative muscle models presented in 

Chapter 2 or to build new models at different levels of complexity. Such a “General Model” 

could be used to study the effect of muscle model complexity on FES controller design. The 

topology of the “General Model” is presented showing the arrangement of sub-models and the 

interlinking model variables, i.e. the inputs and outputs of the various sub-models. The 

arrangement of the passive elements is also presented. Finally, the proposed general forms for 

the sub-models required in muscle modelling for FES controller design are presented. 

 

Chapter 7: In this chapter the conclusions and recommendations for future work are 

presented. 
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Chapter 2: Literature Review 

 

2.1.  Introduction 

This chapter begins with a description of skeletal muscle and its physiological recruitment 

under voluntary contraction, followed by introduction to electrical stimulation (ES) and how 

force is produced in electrically stimulated muscles. Functional electrical stimulation (FES) is 

then introduced, beginning with the applications of FES to control the neuromuscular system 

in people with upper motor neuron lesions, followed by discussion on the complexity and 

challenges of FES in open-loop and closed-loop control. 

 

Different schools of thought within muscle modelling are then introduced, followed by an 

overview of basic Hill-type model that represents muscle as a contractile element, together 

with passive spring(s). The key muscle models used in FES studies are discussed and the 

limitations with these models highlighted. The following section reviews the key features of 

the sub-models used to represent individual aspects of a muscle’s behaviour. The main 

aspects of behaviours modelled are recruitment of motor-units, muscle’s active force-length 

relationship, muscle’s active force-velocity relationship, muscle fatigue, force enhancement 

following active stretch and force depression following active shortening, and finally the 

passive behaviour of the musculotendon complex. A summary is provided of the various 

published models, showing their similarities and differences. Based on this review, the last 

section discusses the need for a new model for FES application, presented in subsequent 

chapters. 

 

 

2.2.  Skeletal muscle and its physiological recruitment 

There are three types of human muscle tissue: skeletal, cardiac and smooth. This study is 

concerned with skeletal muscle only, whose principal functions are to produce movement, 

maintain body position, and generate heat [14].  

 

2.2.1. Muscle fibres and force generation 

Skeletal muscle is made of long cylindrical cells known as muscle fibres. The muscle fibre is 

composed of discrete bundles of myofibrils parallel to each other, see Figure 2.1. The 

repeated unit in the myofibril is called a sarcomere, which forms the basic contractile unit of a 
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skeletal muscle, see Figure 2.2. The sarcomere is composed of long fibrous proteins that slide 

past each other during contraction. The thick filament is called myosin and the thin filament is 

called actin. Adjacent sarcomeres are bordered with Z-lines. 

 

 

 

Figure 2.1: Skeletal muscle fibres. (From [15]). 

 

 

There exist alternative theories of muscle force production; the most cited theory in the 

literature is the cross-bridge theory [16]. It is assumed in the cross-bridge theory that 

contraction occurs through the cross-bridge interaction cycle between the myosin cross-

bridges and the actin filaments (Figure 2.2). During the cross-bridge cycle, the myosin cross-

bridges will combine with specialised sites on the actin, and contraction and hence force 

development occurs through the rotation of the cross-bridge heads by pulling the actin across 

the myosin in the direction of sarcomere centre. The cyclic interaction of myosin cross-

bridges with the actin filaments in the cross-bridge theory are illustrated in Figure 2.3, and 

summarised as follows: (a) Starting from the rest state; the actin is covered by tropomyosin-

troponin complex at the attachment site. (b) Upon activation, calcium concentration increases 

and calcium Ca
2+

 binds to troponin. (c) The myosin cross-bridge combines with the actin. The 

ATP (adenosine triphosphate) splits into ADP (adenosine diphosphate) and Pi (inorganic 

phosphate) and produces the contraction force. (d) The myosin cross-bridge detaches from the 

actin and a new ATP attaches to the myosin cross-bridge making it ready for a new 

interaction with the actin. 
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Figure 2.2: Schematic illustration of the sarcomere in a myofibril. (Adapted from [14]). 

 

 

Although some animal muscles have a uniform appearance, most muscles including human 

muscles, have a mixed composition, where the fibres in the same muscle have different 

contractile properties. These differences are due to the innervation of the fibres and the 

different ways in which they are used [17]. It has been shown that muscle fibres may be 

classified into three main types [15]. 

 

Type-I fibres are characterised by high fatigue resistance because they primarily utilize fatty 

acid oxidation (using oxidative enzymes) and have high levels of mitochondria and 

myoglobin (and hence they are red in colour). The high level of blood flow provides high 

capacity for aerobic (oxidative) metabolism to generate ATP (Adenosine Triphosphate). 

These fibres also show a slow twitch response to a contractile impulse, develop relatively low 

levels of force, and have the slowest maximum velocity of contraction. Type-I fibres are also 

known as tonic, red, slow twitch, S (slow-contracting) and SO (slow-oxidative). 
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Figure 2.3: Schematic illustration of the cyclic interaction of myosin cross-bridges with the 

actin filaments in the cross-bridge theory. (From [18]). 

 

 

Type-IIb fibres produce relatively high force because they primarily utilize glucose oxidation 

to pyruvate for ATP production (anaerobic metabolism), but they fatigue fast due to the high 

activity of ATPase (Adenosine Triphosphatase), the main function of the ATPase enzyme is 

to hydrolyse the ATP which provides energy for attachment to another active site on the actin 

molecule. Type-IIb fibres contain low level of mitochondria and myoglobin (and hence they 

are white in colour). The relatively high force of type-IIb fibres is due to the large anaerobic 

capacity. Type-IIb fibres also show a fast twitch response, and the fastest maximum velocity 

of contraction. These fibres are well equipped for brief intense activity but they are the least 

efficient because they use high amounts of energy. Type-IIb fibres are also known as FF (fast-

contracting, fast-fatigue) or FG (fast-glycolytic). 
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Type-IIa fibres can utilize both anaerobic (as in type-IIb) and aerobic (as in type-I) 

metabolisms for ATP production, and hence they have intermediate properties. The fibres 

show a fast twitch response, develop moderate levels of force, and are fatigue resistant. These 

fibres are well equipped for prolonged activity, but in addition, they have the ability to 

produce high power output. Type-IIa fibres are also known as FR (fast-contracting, fatigue-

resistant) and FOG (fast-oxidative-glycolytic). More details about muscle fibre-type 

classification can be found in [19]. 

 

The ratio between the three main types of muscle fibres in a muscle depends on the function 

of the muscle and this ratio determines the force-velocity relationship of the muscle [20]. As 

an example, the functional tasks in the cat triceps surae group are divided to some extent 

among the muscles. The soleus is mainly made up of type-I fibres [21] making it suitable for 

situation when low force and fatigue resistance are required, while the gastrocnemius consists 

of about 25% type-I fibres and 75% type-II fibres, making it dominant in situations when 

large and sudden  force demands are needed [22, 23]. The composition of a muscle can 

change over time, depending on the type of contractions to which it is subjected [24]. For 

example, sprinters develop a higher proportion of type-II (both types IIa and IIb) fibres in 

their leg muscles than distance runners.  

 

Skeletal muscle fibres are protected by connective tissue coverings. The connective tissues 

also provide pathways for the passage of nerves and blood vessels. As shown in Figure 2.4, 

there are multiple types of connective tissue, surrounding the muscle (fascia and epimysium), 

fascicle (perimysium) and muscle fibre (Endomysium). 

 

A tendon connects muscle to bone and is capable of withstanding tension; the tendon is made 

of tough band of fibrous connective tissue. Bones move because of the combined work of 

tendons and muscles. Aponeuroses are layers of broad flat tendons, the primary function of an 

aponeurosis is to join the muscle with the part of the body the muscle act upon (this can be 

another muscle or bone). 
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Figure 2.4: Structure of skeletal muscle. (From [14]). 

 

 

 

2.2.2. The neuron and the action potential 

The neuron is the core unit of the nervous system. A typical neuron consists of four main 

parts: the body of the cell (often called the soma), dendrites, axon, and synapse (Figure 2.5). 

Dendrites are thin structures and emerge from the soma; their function is to receive the 

command information and conduct them towards the soma. The soma is where the command 

information are integrated and then transferred through the axon. The axon is the only 

extension dedicated to transmitting the information outside the neuron; it travels for a distance 

as far as one metre in humans [25]. The information is conveyed outside the neuron through 

synapses to other neurons, muscle fibres or glands. The motoneurons carry command 

information from the central nervous system (CNS) to muscle fibres [26]. The axons are 

wrapped with myelin (the axon with the myelin wrapping is also called nerve fibre). Bundles 

of between 100 and 2000 nerve fibres form a nerve [25]. 
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Figure 2.5: Schematic representation of the anatomy of a typical neuron. (From [27]). 

 

 

 

The action potential 

Neurons are electrically excitable cells, the concentration of ions in the inside and the outside 

of the cell are different. In the unexcited state (the neuron is not receiving any physiological 

or artificial stimulus), the membrane potential from inside to outside is negative and referred 

to as the “resting membrane potential”. The resting membrane potential is typically in the 

range of (-70 to -90 mV). If the membrane potential changes by a large enough magnitude 

(around -55 mV), an electrochemical pulse called “action potential” is generated (Figure 2.6), 

and this voltage change propagates rapidly as a nerve impulse along the axon for great 

distances without losing its strength [25]. The action potential is an all-or-none signal, lasts 

for several milliseconds, and up to 120 [mV] across the membrane [28]. For a given neuron 

cell, the voltage and duration of an action potential are not affected by the intensity, or origin 

of the stimuli (artificial or natural), and a stimulus just above threshold and much stronger 

stimulus will elicit the same action potential. 

 



12 

 

 

Figure 2.6: Schematic illustration of a single action potential. (From [29]). 

 

 

Action potential generation can be summarised as follows: 

 When an action potential is triggered by a stimulus above its threshold level, the 

voltage-dependent sodium channels are opened, allowing the sodium ions to flow into 

the neuron cell causing the depolarisation of the membrane potential and consequently 

closing the sodium channels. 

 In the next phase the potassium channels open and allow potassium to leave the cell 

causing rapid repolarisation, the repolarisation continuous to a more negative than the 

resting membrane potential. This hyperpolarization prevents another action potential 

until the membrane potential is back to its resting level. 

 The local depolarisation on one point on the axon causes movement of ions between 

neighbouring points and consequently depolarisation of neighbouring areas on the 

membrane leading to action potential propagation along the axon. 

 If the action potential is triggered at one of the ends of an axon, it propagates in one 

direction only, either to muscle fibres or the CNS. If the action potential is initiated at 

another point in between the two ends of an axon (by external source, such as ES), it 

propagates away from that point in both directions (to both muscle fibres and the 

CNS) [28]. 
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2.2.3. The motor-unit 

The basic functional unit of force production is in fact the sarcomere, but usually the basic 

functional unit of movement is considered to be the motor-unit, which consists of a 

motoneuron and the muscle fibres that it innervates [15]. Muscle fibres of a particular motor-

unit are of the same type and have the same metabolic properties so that, when they are 

recruited, they behave in the same manner. Each muscle fibre is innervated by a single axon; 

one motoneuron will supply through its axonal branches many fibres scattered throughout the 

muscle, the innervation is almost entirely random and adjacent muscle fibres are most likely 

to be supplied by branches from different motoneurons [17], see Figure 2.7. 

 

 

 

Figure 2.7: Concept of the motor-unit. A motor-unit consists of the motoneuron and all the 

scattered muscle fibres that it innervates. (From [17]). 

 

 

The number of a skeletal muscle’s motor-units depends on the size and function of the 

muscle, ranging from a few motor-units for small muscles up to several thousand for the 

largest human muscle [30]. Muscles that are involved in gross movements, such as leg 

muscles, have few motor-units (each of which includes a large number of muscle fibres). 

Muscles that are involved in fine movements (e.g. facial muscles) have many motor-units 
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(each of which includes a small number of muscle fibres), see Figure 2.8. Type-IIb have large 

axons that innervate many large fibres, they generate large forces but fatigue rapidly. Type-IIa 

have moderately sized axons that innervate many fibres, they generate moderate forces and do 

not fatigue a great deal. Type-I are composed of small axons that innervate a few small fibres, 

they generate low forces but maintain force for a long time. 

 

Force generation in muscles is modulated by the central nervous system. After an action 

potential is triggered in a motor-unit; all the muscle fibres of this motor-unit will contract 

“synchronously”, this motor-unit then is considered to be recruited. Muscle force modulation 

is achieved by recruiting varying numbers of motor-units [1]. 

 

 

 

Figure 2.8: Schematic representation of the anatomic, physiologic, and histochemical 

properties of the three fibre types and how they are connected in motor-units. Type-IIb (top), 

type-IIa (middle), and type-I (bottom). (From [15]). 
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2.2.4. Natural recruitment of motor-units 

A fast, transient contraction of a single motor-unit will result from a single impulse in a 

motoneuron. Therefore, a train of impulses has to be delivered by the motoneuron to its 

associated muscle fibres to maintain a smooth constant contraction (natural stimulation 

frequency depends on fibre-type and recruitment level of the whole muscle). The intensity of 

the resulting muscle force is determined by frequency of the impulses. During voluntary 

muscle contraction, the body achieves smooth contraction by using "asynchronous" 

recruitment of motor-units. Adjacent motor-units are activated at low frequency (of about 6-8 

Hz) in a sequential manner, coordinated by the CNS [31], see Figure 2.9. The stimulation is 

timed by the intact CNS so that each motor-unit contracts before the previously stimulated 

motor-unit relaxes completely. The force of the whole muscle is the sum of the forces of the 

individual motor-units. This recruitment pattern of motor-units resists fatigue by allowing the 

various motor-units to share the task of maintaining smooth contraction. 

 

 

 

Figure 2.9: Summation of force in motor-units. Force production in skeletal muscle is 

accomplished by sequentially stimulating adjacent motor-units. (Adapted from [3]). 
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“Asynchronous" recruitment of motor-units happens only during sub-maximal contractions, 

where only some of the motor-units maintain the required force. During maximal contraction, 

when all motor-units of the muscle are recruited, asynchronous recruitment is impossible and 

hence fatigue cannot be prevented [32]. 

 

McPhedran et al [33] made a detailed study of motor-units in cat soleus muscle and Wuerker 

et al [34] made a similar study in cat medial gastrocnemius muscle. From these two studies; it 

was found that within the same muscle and also from one muscle to another, there are large 

differences in motor-units’ size. Small motor-units are usually made up of type-I fibres and 

large motor-units of type-II fibres (type-IIa and type-IIb) [35]. Motoneurons with thin axons 

belong to small motor-units (typically of type-I fibres) and are excited first (during voluntary 

contraction), motoneurons with thick axons belong to large motor-units (typically of type-II 

fibres) and are the least excitable (during voluntary contraction) [35]. Motor-units are 

therefore recruited according to the “size principle” where the smallest motor-units are 

recruited first and then progressively larger motor-units (as long as more force is required) 

until MVC is achieved [36]. 

 

For voluntary contracted muscles, fibres tend to be recruited at an initial frequency (firing 

rate) regardless of intensity of muscle contraction [37, 38, 39]. Once recruited, the frequency 

of recruited motor-units will be modulated approximately linearly with changes in the EMG 

signal. Gross EMG activity is representative of the natural stimulation input of a uni-

functional muscle [40], so either the EMG signal or the CNS descending commands can be 

considered as reflecting the input to the muscle [41]. Changes in the natural stimulation input 

will simultaneously modulate both the number of recruited fibres and also the stimulation 

frequency [37, 39, 40, 42, 43, 44]. 

 

 

2.2.5. Summary 

The biophysical mechanisms of skeletal muscle during voluntary contraction can be 

summarised as follows: 

 The basic functional unit of movement is considered to be the motor-unit which 

consists of a motoneuron and the muscle fibres that it innervates [15]. Muscle fibres of 

a particular motor-unit are of the same type and have the same metabolic properties so 

that, when they are recruited, they behave in the same manner [15, 17, 30, 45]. 
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 During voluntary “sub-maximal” contraction, the body achieves smooth contraction 

by using "asynchronous" recruitment of motor-units at low frequency (low firing rate) 

[1]. This recruitment pattern of motor-units resists fatigue by allowing the various 

motor-units to share the task of maintaining smooth contraction [1, 46]. 

 During voluntary maximal contraction, when all motor-units of the muscle are 

recruited, asynchronous recruitment at low frequency is impossible and the firing rate 

(natural stimulation frequency) will be high, and hence fatigue cannot be prevented 

[32]. 

 Motor-units were most easily classified into three main types: The first is type-I which 

contains few fatigue resistant (Type-I muscle) fibres and hence develops relatively 

small force. The second is type-IIb which contains relatively more Type-IIb muscle 

fibres and develops high force but also fatigue quickly. The third is type-IIa which has 

intermediate properties; it has a fast twitch, develops moderate force, and is fatigue 

resistant [15, 17, 45]. 

 

 

2.3.  Electrical stimulation and challenges of functional electrical stimulation 

Electrical stimulation (ES) involves artificially inducing a current to excitable tissue to induce 

a physiological response. In therapeutic applications, ES may enhance tissue health or 

voluntary function, but it is not used to provide the function directly. In functional 

applications, ES is applied to paralyzed muscles in precise sequence and magnitude to directly 

achieve functional tasks [2]. 

 

 

2.3.1. Electrical stimulation 

ES pulses applied to an excitable motoneuron can elicit action potentials. The motoneuron 

receives ES pulses that are delivered using electrodes, these electrodes can be placed on the 

skin surface (transcutaneous electrodes), placed within a muscle (percutaneous electrodes), 

placed on the surface of the muscle (epimysial electrodes), or wrapped around the nerve that 

innervates a specific muscle (cuff electrodes) [4].The negative electrode (cathode) creates a 

localized electric field that depolarizes the cell membranes of nearby motoneurons. If the 

depolarization exceeded the threshold level, an action potential propagates along the axon in 

both directions away from the site of stimulation [3, 47]. The threshold charge required to 

elicit action potential in muscle fibres is much greater than the threshold charge required to 
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elicit action potentials in neurons [24]. Therefore, a fundamental principle is assumed that ES 

generally activates nerve rather than muscle fibres. 

 

 

2.3.1.1. Recruitment order of electrically stimulated muscle 

Unlike the “asynchronous” recruitment of motor-units that happens in the intact CNS, FES 

recruits motor-units in a “synchronous” manner. For this reason, a higher stimulation 

frequency (usually in the range of 20–40 Hz) is required to achieve smooth contractions when 

using FES [1]. The high frequency used in FES is the main cause of the increased rate of 

fatigue associated with FES as compared to voluntary contractions initiated by the CNS [24]. 

 

Furthermore, it is generally accepted that FES tends to recruit muscle motor-units in a “non-

physiological” order [1, 46, 48]. The difference in recruitment order is believed to be due to 

the size of axons of the different motor units (and hence associated muscle fibre types). Type-

IIb fibres are innervated by axons with the largest diameter, type-IIa fibres are innervated by 

axons with the second largest diameter, and type-I fibres are innervated by axons with the 

smallest diameter. The large diameter axons couple more of the electric field than the small 

diameter axons, so type-IIb fibres respond to FES at lower stimulation levels than type-IIa 

fibres which respond at lower stimulation levels than type-I [1, 3]. Since type-IIb fibres 

fatigue more quickly than other fibre types, the non-physiological order of motor-units’ 

recruitment contributes to the increased rate of fatigue that occurs with FES, as compared to 

voluntary contractions initiated by the CNS. 

 

Although the concept of non-physiological recruitment order of electrically stimulated muscle 

is generally accepted in the FES community, a debate exists with respect to the exact order of 

recruitment when surface electrodes are used: 

 As reported in [3, 46, 48] recruitment order depends on two factors; the distance from 

the surface electrodes and the inverse-size order. 

 Gregory and Bickel [49] and Singh et al [50] however suggested that motor-units 

recruitment order tends to be random and fibre-type has little effect, because threshold 

depends mostly on distance of the motor axon from the surface electrode (i.e. the axon 

size has little effect compared with the effect of the distance from the surface 

electrodes). 
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To achieve the physiological recruitment order in a heterogeneous muscle (consisting of 

different fibre types), several selective nerve-blocking techniques were developed [51, 52, 

53]. Stimulation waveforms of special shape and nerve cuff electrodes are used in these 

techniques. The disadvantage of these techniques is that they require nerve cuff electrodes 

which must be surgically implanted. 

 

2.3.1.2. Force production in electrically stimulated muscle 

The proportion of motor-units recruited depends on stimulation intensity (pulse width PW and 

pulse amplitude PA). An increase in either pulse width or pulse amplitude generates a larger 

electric field of a sufficient value to initiate an action potential, and hence recruitment of more 

motor-units [54].  Pulse amplitude and pulse width both have an equivalent effect [3, 55], an 

increase in either (or both) will lead to an increase in the number of recruited motor-units and 

hence force, until all motor-units are recruited, see Figure 2.10. In this particular case (shown 

in this figure), at a pulse width of 200 [ ], muscle force can be adjusted from threshold to 

near maximal by changing the pulse amplitude (which will change the current intensity) from 

18 to 40 [mA]. In contrast, at current amplitude of 40 [mA], muscle force can be controlled by 

changing the pulse width from 40 to 200 [ ] (frequency is fixed at 35 [Hz]). 

 

 

 

Figure 2.10: Variation of pulse amplitude and pulse width. (From [3]). 

 

sec

sec
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The force produced by ES can also be controlled by pulse repetition rate, or frequency. Low 

stimulation frequency causes the muscle to respond with a series of twitches. Therefore, the 

stimulation frequency has to be high enough to achieve smooth contractions. Higher 

stimulation frequencies will increase muscle force up to a maximum, but also increase the rate 

of muscle fatigue. Thus, a trade-off between produced muscle force and minimum rate of 

muscle fatigue is required (stimulation frequency is typically in the range of 20–40 Hz) [1]. 

 

Due to the problems of fatigue at the high end and non-tetanic contractions at the low end 

(frequency is not sufficiently high to produce smooth contraction), frequency is not suitable to 

modulate force. Therefore, ES systems usually use pulse amplitude or pulse width to 

modulate force. The stimulation frequency is set constant and as low as possible, while 

achieving a tetanic contraction, to reduce muscle fatigue [47]. A typical stimulation waveform 

used for transcutaneous (surface) FES is a biphasic square-wave pulse train with amplitude of 

(0–120) [mA], pulse width of (0–300) [µsec], and stimulation frequency in the range of 20–40 

Hz [1]. 

 

2.3.2. Functional electrical stimulation 

When electrically stimulated skeletal muscle contractions are coordinated in a way that 

provides function, this technique is referred to as functional electrical stimulation (FES). The 

purpose of FES intervention is to enable function by substituting or supporting the voluntary 

physical ability of a patient. The clinical application of FES is currently restricted to 

neurological disorders involving upper motor neuron lesion such as SCI, stroke, brain 

injuries, multiple sclerosis, and cerebral palsy [2]. 

 

FES application areas: 

 Upper-Limb Applications: FES systems can assist the reach, grasp and release 

function for subjects with impaired upper limb function. The control signal for grasp is 

typically driven by the patient from preserved voluntary function (open-loop control). 

Examples of hand grasp FES systems are provided in [56, 57]. 

 Lower-Limb Applications: The initial application of FES in stroke patients focused 

on the stimulation of the peroneal nerve for foot drop correction. The development of 

lower-limb FES systems is much more advanced than upper-limb FES systems, but 

there are still several problems that restrict their clinical implementation [2]. The 

relatively simple multichannel FES systems, with 2-6 channels, are successful in 
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producing stepping and standing for patients with complete SCI [58]. However, 

walking with present lower-limb FES systems can only be used for short distances, 

and cannot be used as practical alternative to a wheelchair [2] because of the high 

metabolic energy required. A varied choice of lower-limb FES systems is available for 

patients of SCI, including standing [59, 60], stationary rowing [61], cycling [62, 63] 

and systems for supporting gait patterns during walking [64, 65, 66]. 

 Other applications: Other FES applications include bladder and respiratory FES 

systems. 

 

 

2.3.3. State of the art and challenges 

Controlling joint angles or torques by FES presents several significant control challenges. 

These challenges can be summarised in the following points: 

1. Stimulated muscle force characteristics are nonlinear, dependent on muscle length and 

velocity (which vary with joint angle and angular velocity), and time-varying because 

of fatigue and changes in muscle composition over time due to regular use of FES. 

2. The presence of spasticity and other hyperactive or inappropriate spinal reflexes in 

neurological patients add another layer of complexity to the response of electrically 

stimulated muscles. Spasticity and spinal reflexes are often unpredictable. 

3. The neuromuscular system is highly coupled; each joint is actuated by at least two 

muscle groups (flexor and extensor muscles). Moreover, some muscles are biarticular 

(span two joints). 

4. There is a significant time delay between stimulation and the onset of muscle 

contraction, this delay is about (10–50ms) depending on the muscle being stimulated, 

stimulation parameters and hardware [36]. 

5. There are also some technical difficulties involved with the improvement of the 

existing FES systems. Efforts to improve a simple existing FES system by adding 

more stimulation channels, multiple sensors, multiple electrodes, and other interfacing 

parts have resulted in more difficulties in handling and testing, in addition to the 

higher failure rate of such a complex FES system [67]. 

 

Open-loop and finite-state control systems are used in most FES systems available outside of 

research laboratories. Examples of commercially available open-loop controlled FES systems 

include: 
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 The H200 (BIONESS, Inc.) and the Free Hand system (Neurocontrol Corporation) 

where both can be used for the restoration of hand function. 

 The Compex Motion stimulator (Compex SA) which can be used for a wide range of 

transcutaneous FES applications. 

 The ParaStep system (Sigmedics, Inc.) which can be used in standing and ambulation 

for short distances. 

 

Finite-state FES systems perform a predetermined stimulation sequence in an open-loop 

manner. Examples of commercially available finite-state controlled FES systems used to 

correct foot drop include: 

 The WalkAide foot drop stimulator (NeuroMotion, Inc.). 

 The Odstock dropped foot stimulator (Salisbury FES). 

 The L300 (BIONESS, Inc.). 

Finite-state control systems do not correct for model errors or disturbance and therefore they 

cannot be considered as closed-loop systems, even if they have feedback to monitor the 

condition of interest and hence the need for closed-loop control. 

 

Closed-loop control systems 

A few closed-loop FES cycling systems are commercially available, including the RT300 

(Restorative Therapies, Inc.) and the Ergys2 (Therapeutic Alliances, Inc.). These devices use 

closed-loop control to keep the cycling cadence constant, as the muscle begins to fatigue, by 

increasing the stimulation intensity. However, the control challenges presented by other, more 

complex FES applications require more sophisticated real-time control of stimulation 

intensity (pulse width/amplitude) in addition to closed-loop compensation for external and 

internal disturbances. 

 

 

2.3.4. Summary 

The response of electrically stimulated muscle is nonlinear, time varying, coupled, and often 

accompanied by unpredictable disturbances. Only relatively, few patients have been assisted 

with FES products despite the fact that FES has been in existence for five decades [68]. This 

is due in part to many FES control challenges including the non-linear response of the 

paralysed muscle, muscle fatigue, muscle spasticity, spinal reflexes, muscle wasting, and FES 

system time delays. 
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2.4.  Muscle models 

In this section, different schools of thought within muscle modelling are introduced, followed 

by an overview of basic Hill-type model. An overview of key models used in FES is included, 

and the limitations with these models are highlighted. A discussion on how muscle models 

can assist in the development of FES systems is provided at the end. 

 

 

2.4.1. Introduction to muscle modelling 

Realistic models of neuro-musculoskeletal systems can provide a safe and convenient 

environment for the design and evaluation of controllers for FES prior to clinical trials. 

Accurate models would significantly enhance and accelerate the design and evaluation of 

closed-loop FES controllers [1, 67, 69, 70, 71]. The performance of an FES controller should 

also improve with improvements to muscle model accuracy [3, 6, 72, 73, 74, 75, 76, 77, 78, 

79, 80]. 

 

Many models have been proposed in the literature to predict muscle force, these models vary 

in complexity level, ranging from simple models (e.g. the model proposed by Herzog [18]) to 

complex models which incorporate the effects of additional biophysical and mechanical 

variables (e.g. the complex set of models proposed by Brown [81, 82, 83, 84]). 

 

Skeletal muscles are made up of two basic elements; electrically excitable contractile muscle 

fibres (active element), and passive connective tissue and tendon (passive viscoelastic 

element). The tendon attaches the muscle across joints, while the connective tissue coverings 

protect muscle fibres and also provide pathways for the passage of nerves and blood vessels. 

Force production of skeletal muscles is a result both of the active contraction of the muscle 

fibres and forces resulting from the velocity and length of the (passive) connective tissue and 

tendon, often modelled as spring/damper systems. 

 

There are three schools of thought within muscle modelling. As described in the previous 

section, the first school directly model the biophysical and biochemical processes of cross 

bridge activity in muscle contraction. The origin of these models is usually referred to A. F. 

Huxley [16]. The processes within a single muscle fibre are modelled with the aim to describe 

muscle characteristics at a microscopic level. This requires identification of parameters at the 

level of muscle fibres, which are difficult to estimate, and their use in simulation would 
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involve solving a large number of partial differential equations. Partial differential equations 

are considerably more computationally intensive to solve than ordinary differential equations 

and hence are not well suited for use in FES feedback control systems. 

 

The second school uses models from systems theory (black-box models) where force is 

related to stimulation pattern by a purely empirically-derived mathematical function. In such 

an approach, an appropriate mathematical function that best describes the relationship 

between measured input-output data is determined [78, 85, 86, 87, 88]. Other approaches in 

this school include the use of fuzzy models [89, 90, 91, 92, 93], and Adaptive Neuro-Fuzzy 

Inference System (ANFIS) models [94, 95, 96] to represent the passive and active muscle 

properties. This school of modelling makes no contribution to the understanding of the 

modelled system. 

 

The third school follows phenomenological models first suggested by A. V. Hill [97]. The 

original so-called Hill model proposed that skeletal muscle can be represented as a “two-

component system, consisting of an un-damped, purely elastic element in series with a 

contractile element” [97]. Whilst the microscopic mechanisms of muscle contraction are not 

modelled, these macroscopic models are able to represent many of the observed properties of 

muscle behaviour to a reasonable degree [98]. Further, the mechanical input-output behaviour 

of the model can be described using a small number of parameters in simple algebraic and 

ordinary differential equations. This makes the model computationally efficient in comparison 

with microscopic models and hence potentially suitable for FES control applications. As 

discussed below, there are several versions of Hill-type model in the literature. All assume 

that during the inactive state, the contractile element CE cannot sustain any force, and its 

length can be adjusted at will. 

 

2.4.2. Alternative Hill-type models 

Different structures of Hill model are reported in the literature. For example, the original Hill 

model consists of a CE in series with an SE.  An extensive review of various modelling 

approaches can be found in [75, 99]. 

 

The most common form of the Hill model is the three-element model with parallel elements 

connected in parallel either with CE only [100, 101] or with CE and SE [18, 98, 102], shown 

in Figure 2.11. These two forms have been examined by many researchers [103, 104, 105, 
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106], and most of them (all except [104]) concluded that both forms are simplified 

representations of the complex biological muscle structure, but that form (a) was more 

accurate since PE represents the passive force of the muscle belly only (not the whole 

musculotendon complex) and hence should be parallel on CE only. The other study [104] 

concluded that both forms are similar. 

 

 

Figure 2.11: The two most common forms of Hill-type models used in the literature. The 

parallel element PE  can be parallel on CE  only or both CE and the series element SE . 

 

 

However, the topology of form (b) is easier for parameter identification and more preferable 

for the following reasons: 

 In the shortening range, if the muscle is recruited at the unique resting state (inactive, 

force-free), mF  is initially zero and thus the value of PE can be directly obtained for 

both forms. To obtain the value of PE in the other case when the muscle is not 

recruited ( 0mF ), if the muscle is stretched to a given displacement mtl , mF  will 

be the same for both forms. But for form (a) SE and PE are in series, therefore as the 

muscle is stretched both SE and PE will be stretched, PE extension equals CEl  rather 

than mtl  and the measured force due to passive stretch results from extension of both 

spring elements. In form (b), CE and PE are in series and the force across SE is also 

zero, thus as the muscle is stretched, the measured force is only that due to PE. 
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 The parallel element PE in form (b) gives a good representation of the passive force of 

the musculotendon complex which results from connective tissue infrastructure 

including the musculotendon sheath, the muscle fibre membranes, and the overall 

fluid environment within which muscle tissue lives. There are also other passive 

elements that cross joints in parallel to the muscle; these passive elements can be 

lumped together mathematically. The experimental data that is available for the human 

system is usually for lumped passive joint properties, which makes form (b) more 

preferable. 

 

For linear passive elements, the two forms (a) and (b) behave in a similar way and can replace 

each other using simple mathematical equation developed and proved by Fung [107]. For 

non-linear passive elements form (a) is more accurate as discussed earlier.  For the reasons 

described above, the form (b) was chosen for the rest of thesis. 

 

 

2.4.3. Overview of key models used in FES control 

Various mathematical muscle models have been developed for FES control studies. These 

models vary in complexity and accuracy. Models of electrically stimulated muscles have been 

developed based on black-box approach [86, 108], Hill model [109, 110, 111, 112], Hill-

based physiological model (Hill model combined with physiological processes underlying 

excitation and activation of human muscles) [72, 73, 74, 113], Huxley model [114, 115], or a 

combination of Hill-type and Huxley-type models [116, 117, 118]. 

 

Hill-based physiological models can be described as Hill-type models modified by 

incorporating some of the muscle’s physiological properties into the basic Hill model, and 

thus improving the model behaviour, while preserving its simple structure. This type of model 

calculates the active muscle force as the product of three independent experimentally 

measured relationships, namely the force-length relationship, the force-velocity relationship 

and the recruitment (and/or activation) dynamics. These models assume that the muscle 

recruitment (and/or activation) and muscle contraction dynamics are uncoupled, see Figure 

2.12 (b). 

 

To the author’s knowledge, the model by Riener (referred to from this point forward as the 

Riener-1 model) is the most complex of this type of models that have been used in FES 
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control studies. Other similar models [74, 113] are less complex and hence they account for 

fewer muscle properties. An overview of Riener-1 model is presented below. 

 

 

Figure 2.12: Riener-1 model: (a) activation dynamics, (b) contraction dynamics, and (c) body-

segmental dynamics. (From [72]). 

 

 

The Riener-1 model [72] describes the dynamics of the joint in response to electrically 

stimulated muscle contractions. As shown in Figure 2.12, the model comprises three parts; 

activation dynamics, contraction dynamics and body segmental dynamics. Activation 

dynamics are modelled as function of stimulation pulse width and frequency. Active muscle 

force is computed as the product of force- length relationship, force-velocity relationship and 

muscle activation (Hill-based). Passive muscle properties (viscous and elastic) are separated 
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from all muscles which span the joint and assigned to the joint (the tendon is assumed rigid, 

i.e. not modelled). Riener-1 model is based on experimentally obtained data which makes the 

identification process required to tune the model for a particular subject time consuming. 

 

The Riener-1 model has been used by many researchers to develop control strategies for 

different FES systems [55, 72, 119, 120, 121, 122, 123, 124, 125, 126]. The main practical 

limitation of this model is the time-consuming identification process required to tune the 

model parameters for each particular subject. 

 

 

Limitations with the Riener-1 and other models used in FES control 

As will be explained in further detail in subsequent chapters, the Riener-1 model, in common 

with almost all other muscle models used in FES control, has two major limitations. 

 

In closed loop FES control applications the number of activated motor-units in a given muscle 

will usually vary with time, as stimulation intensity increases, or decreases. As discussed in 

subsequent sections, the length of the CE associated with a given motor unit when initially 

recruited is believed to influence the total muscle force via the muscle’s F-L relationship.  As 

recruitment and muscle length may both vary continuously, the length of different CE’s at 

recruitment, will also vary. The Riener-1 model, in common with most previous work [1, 72, 

74, 109, 113], represents the entire muscle’s CE length as a single (instantaneous) CE length 

and hence a single length. Further, as discussed above, muscles contain different types of 

motor-units, which vary in their properties. This  suggests that every single motor-unit should 

be modelled separately for the purposes of calculating the effect of the length at initial 

recruitment, fatigue, and other physiological properties specific to each fibre-type (i.e. 

recruitment order, F-L relationship, F-V relationship and fatigue). This argument is further 

developed at the end of this chapter. 

 

Another physiological model was developed by Riener [73] (Riener-2 model) using the 

multiple motor-unit modelling approach. However, in this model the muscle length is 

assumed constant and the model can only be used under isometric conditions (not for dynamic 

conditions), which limits its use to FES isometric contractions only. 
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2.5.  Review of key features of muscle models 

Skeletal muscles have various complex properties; these properties are modelled separately in 

the literature with different modelling approaches and at different levels of complexity. This 

section reviews the models of the various muscle properties which affect muscle response to 

FES. These properties are: recruitment of motor-units, muscle’s active force-length 

relationship, muscle’s active force-velocity relationship, muscle fatigue, force enhancement 

following active stretch and force depression following active shortening, and finally the 

passive behaviour of the musculotendon complex. 

 

Alternative sub-models were collected from muscle models available in the literature for 

electrically stimulated as well as naturally contracted muscles. When using models of natural 

voluntary contraction for FES control, two important points have been considered. Firstly, 

stimulation frequency is assumed constant during FES, and secondly, the non-physiological 

recruitment order during FES. Models of voluntary contracted muscles have to be modified 

accordingly before using them in FES control. 

 

The muscle models produced by Brown and colleagues [41, 82, 84, 127, 128] were developed 

for naturally recruited muscles, and despite the high level of complexity some important 

properties are not included in the models (e.g. fatigue and force enhancement & depression). 

In the following section, the activation sub-model developed by Brown has been greatly 

simplified by assuming constant frequency and hence reducing a lot of un-necessary 

complexity in muscle models for FES control (for further detail, see Chapter 6). 

 

2.5.1. Recruitment sub-models 

The two terms, muscle activation and muscle recruitment are often poorly defined, or 

inaccurately used, in the literature, e.g. as in [18, 41, 82, 129, 130]. Sometimes both terms are 

used to describe the same characteristic, e.g. [18, 73], and sometimes they are different, e.g. 

[72, 81, 82, 83, 84, 113]. Sometimes a paper or a book refers to activation, when the term 

recruitment should be used (and vice versa). 

 

In this study, the recruitment level R  is defined as the normalized portion of recruited motor-

units. R  is the analogue recruitment of the muscle as a whole, R  has the value between 0 

(no recruitment) and 1 (all motor-units are recruited), 10  R . The binary recruitment 
jR  

represents the recruitment level of the motor-unit (of index j ), which can only be either 0 or 1 
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(100% recruited or not recruited at all). Muscle activation A  (also unit-less, 10  A ) is 

defined as the relationship between muscle force on one side, and on the other side: 

stimulation frequency, rise and fall times (effects of calcium dynamics), time delay, yield, 

sag, and effective length. Muscle activation will only be maximum ( 1A ) in certain 

conditions, specifically stimulation at tetanic frequency (the frequency at which muscle force 

is maximum, and prevents yield), isometric conditions and when sufficient time has elapsed 

since onset of stimulation (to pass the rise time, effect of sag, and natural time delay). Effects 

of muscle activation on muscle force are discussed in Appendix 1. 

 

The real mechanism of motor-units recruitment is complex and difficult to measure. 

Modelling approaches of this muscle property vary in complexity; hence different alternative 

sub-models are reported in the literature. However, most of them use piecewise linear 

function, the number of fibre types varies from one to three, and the number of motor-units 

varies from one to a thousand. 

 

2.5.1.1. Summary of empirical data for recruitment behaviour 

Comprehensive and accurate experimental data on recruitment are not available. For example, 

accurate values for muscle parameters such as the force produced by cross-sectional area of 

each fibre-type, size of each fibre-type, and number of fibres attached to each motor-units, 

etc., are not available in the literature. Accurate values for such parameters are required to get 

an accurate recruitment sub-model (i.e. the relationship between PW  and recruitment of 

motor-units). Rather, experimental methods used to estimate the recruitment curve measure 

the relationship between PW   and whole muscle isometric force. The isometric muscle force 

is used as indication of the normalised portion (or level) of recruited motor-units. Taking into 

account the large number of motor-units in a muscle, especially large muscles, this 

approximation is expected to have little effect on the accuracy of the recruitment sub-model.  

 

Pulse amplitude and pulse width have an equivalent effect [3, 55], an increase in either (or 

both) will lead to an increase in the number of recruited motor-units and hence force, until all 

motor-units are recruited ( 1R ). The general shape of the recruitment curve observed 

experimentally is similar to the curve shown in Figure 2.13. No response is observed ( 0R ) 

until the threshold level is reached (about 15 [ sec. ]). On the other end of the curve, 

increasing PW beyond saturation level does not increase the force response ( 1R ), maximum 
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force was obtained at about PW = 100 [ sec. ]. Muscle force can be adjusted from threshold 

to maximal ( 1R ) by changing the pulse amplitude from 15 to 100 [ sec. ]. 

 

 

Figure 2.13: Effect of pulse width PW on recruitment of muscle fibres. The recruitment curve 

resulted by PW  range of ( sec.1000  ) at constant pulse amplitude ( mAPA 7.2 ) and 

constant stimulation frequency. (Adapted from [54]. 

 

 

Durfee et al [131] experimentally tested three different methods for estimating isometric 

recruitment curves of electrically stimulated muscles. The results of this study was that 

estimation of recruitment curves depends on the method used, and also that all tested methods 

are sensitive to short-term and long-term variations in muscle properties (e.g. recruitment 

history and fatigue). 

 

Crago et al [54] reported the recruitment curves to be dependent on muscle length, but Levy et 

al [48] suggested the recruitment curve is independent of muscle length. 

 

The recruitment curves for individual fibre types during FES are believed to be similar to the 

curves shown in Figure 2.14, assuming that motor axon adjacent to the surface electrodes are 

recruited first, and also that largest diameter and most fatigable motoneurons (type-IIb) are 

recruited first. This recruitment order was reported in [1, 46, 48, 72, 73] when using surface 

electrodes, i.e. type-IIb first, then type-IIa, and type-I last. Recruitment sequence is different 

with nerve-implanted electrodes. 
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The input to the recruitment sub-model is the artificial electrical stimulation level ( PAPW / ), 

and the output is the recruitment level R . Adjusting PW will change the number of recruited 

motor-units. 

 

 

Figure 2.14: Typical non-linear and overlapping recruitment curves of different fibre types 

during FES. (Adapted from [119]). 

 

 

2.5.1.2. Summary of key recruitment sub-models 

Recruitment modelling approaches available in the literature can be classified into two main 

types; analogue recruitment (can be linear or non-linear), and analogue recruitment with 
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binary extension. Using this classification; different alternative recruitment sub-models are 

summarised below. 

 

2.5.1.2.1. Analogue recruitment 

Analogue recruitment can be linear or non-linear and with single or multi fibre-type. 

 

i) Schauer  recruitment sub-model 

The recruitment curve of Schauer recruitment sub-model [113] is described by a piecewise 

linear function as follows: 
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Figure 2.15: Linear recruitment curve. A piecewise linear function describes the recruitment 

curve of Schauer sub-model. (From [113]). 

 

 

ii) Riener-1 recruitment sub-model 

In Riener-1 recruitment sub-model [72], the muscle is treated as single motor-unit, and single 

fibre-type is assumed. The recruitment curve is similar to that shown earlier in Figure 2.14. 
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The normalized portion of recruited motor-units R , ( 10  R ) is calculated as a function of 

pulse width PW. 

     21 )(arctan)()(arctan)( cpwpwcpwpwpwpwcpwpwcR satsatsatthrthrthr 
 

1c , 
2c , 

thrc , 
satc : are constants.

                (2.2) 

 

iii) Brown recruitment sub-model 

This recruitment sub-model was proposed by Brown in his PhD thesis [41]. The muscle is 

divided into a number of slow-twitch and fast-twitch units; all units have the same PCSA. 

Total number of units is specified by the user (more units will increase model accuracy). 

Recruitment of motor-units is illustrated in Figure 2.16. Recruitment iR  and stimulation 

frequency 
ifreq  are modelled as functions of the natural stimulation input U . This sub-

model follows the physiological recruitment order (slow units first). 

 

 

 

Figure 2.16: Brown recruitment sub-model. (Adapted from [41]) 

 

 

iv) The “natural continuous” recruitment sub-model of (VM 4.0) 

This recruitment sub-model is used in the third alternative muscle model of (VM 4.0) [128], 

and was called “natural continuous” in [128]. This sub-model is similar to the original Brown 
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recruitment sub-model, but with single unit for each fibre-type (i.e. simplified version of 

Brown recruitment sub-model). Recruitment 
iR  and stimulation frequency 

ifreq  are 

modelled as functions of the natural stimulation input U . This sub-model follows the 

physiological recruitment order (slow units first). 

 

v) The “intramuscular FES” recruitment sub-model of (VM 4.0) 

This recruitment sub-model is used in the fourth alternative muscle model of (VM 4.0) [128]. 

This sub-model is similar to the “natural continuous” sub-model (in VM 4.0) with two 

differences; stimulation frequency is constant (because of its application to FES) and all 

motor-units have the same threshold and saturation levels. This model includes two types of 

motor-units (fast and slow response), both of which are recruited in a random sequence, based 

on the experimental results obtained by Singh et al [50]. 

 

vi) Hawkins recruitment sub-model 

Hawkins model [101, 129, 130] was developed for voluntary contraction initiated by the 

CNS, the input is the natural stimulation input U . Hawkins assumed constant stimulation 

frequency (near to natural maximum frequency) for all model units and for any input. Three 

units are used, one unit for each fibre-type. The threshold level th

iU  and the normalized 

recruited proportion )10(  iR  of the thi  unit are illustrated in Figure 2.17 using an example 

of possible relationship between recruitment R  and natural stimulation input U  in a 

heterogeneous muscle. 

 

2.5.1.2.2. Analogue recruitment with binary extension 

In this approach of modelling, recruitment of motor-units is incorporated as a binary 

extension to the analogue recruitment. 

  

i) Riener-2 recruitment sub-model 

In Riener-2 recruitment sub-model [73], the muscle is divided into 100 motor-units of slow-

twitch (type-I) and fast-twitch (Types IIb and IIa). The inverse size-order recruitment with 

overlap is used in this model, as shown in Figure 2.14. The analogue recruitment sub-model 

(used to calculate the number of recruited motor-units of each type) is the same as that of 

Riener-1 model (equation 2.2) with different threshold and saturation levels for different fibre 

types ( 2,1i ). Each motor-unit (of the one hundred) is either recruited or not (either 0 or 1). 
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As soon as 
iR  (of fibre type- i ) exceeds the threshold value related to the motor-unit j , this 

motor-unit is recruited. 

 

 

Figure 2.17: Hawkins recruitment sub-model. 
Ri

ithr

i

thr

i
c

FPCSA
UU  )( 1

, Ric : Hawkins 

recruitment constant for different fibre types is determined empirically. (Adapted from [101]). 
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For fast motor-units: 

     222221 )(arctan)()(arctan)( cpwpwcpwpwpwpwcpwpwcR sat

sat

satthr

thr

thr

fast 
 

222 FPCSA100FPCSA  mm , 1000 2  m .             (2.4)
 

Number of recruited fast motor-units = 
22 mR   

For slow motor-units: 

     211111 )(arctan)()(arctan)( cpwpwcpwpwpwpwcpwpwcR sat

sat

satthr

thr

thr

slow 
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111 FPCSA100FPCSA  mm , 1000 1  m .             (2.5)
 

Number of recruited slow motor-units = 
11 mR   

 

 

ii) The “natural discrete recruitment algorithm” recruitment sub-model 

This recruitment sub-model is used in (VM 3.0) [127] and also in the first and second 

alternative muscle models of (VM 4.0) [128]. It was called “natural discrete recruitment 

algorithm” in [128]. This sub-model is a modified version of the Brown recruitment sub-

model with the addition of binary recruitment of motor-units (0 or 1), see Figure 2.18.The 

number of recruited units depends on the value of the natural stimulation input U ; all units 

will be recruited when natural stimulation input reaches 
satU  (value of 

satU  can be specified 

by the user). The user is allowed to modify the complexity of this sub-model including fibre 

types, and number of units. Although the addition of more units will increase model accuracy 

it will increase also the computational time [127]. Recruitment 
iR  and stimulation frequency 

ifreq  are modelled as functions of the natural stimulation input U . This sub-model follows 

the physiological recruitment order (slow units first). 

 

 

 

Figure 2.18: The recruitment sub-model used in the first version of Virtual Muscle (VM 3.*), 

also in the first and second alternative muscle models of (VM 4.0). (Adapted from [127, 128]) 



38 

 

2.5.1.3. Implications of the application of recruitment sub-models on the single 

motor-unit model 

A muscle consists of large number of motor-units and different fibre types which have 

different contractile properties. If a single motor-unit model is used, different contractile 

properties of the different fibre types cannot be incorporated into the muscle model. 

Moreover, in a realistic scenario R  and CEl  are changing continuously during FES, the single 

motor-unit model cannot account for the effect of continuously varying R  (i.e. length history-

dependence and fatigue history-dependence of different motor-units). As described elsewhere 

in the thesis, a new comprehensive multiple motor-unit model has been developed to address 

these limitations. The multiple motor-unit model properly accounts for this realistic scenario 

and different contractile properties of the different fibre types since each motor-unit is 

modelled separately. As part of this research work, a new recruitment sub-model was 

developed during this research. This sub-model has one thousand motor-units and three 

different fibre types. Details are provided in Chapter 6. 

 

 

2.5.2. F-L sub-models 

The F-L relationship is estimated experimentally by using either separate fibres/motor-units or 

entire muscles. It is generally accepted that the active F-L curve of a single fibre consists of a 

steep ascending limb followed by a plateau and then a less steep descending limb [132]. 

 

2.5.2.1. Summary of empirical data for F-L relationship 

Muscle models available in the literature, usually incorporate one generic curve of the force-

length relationship for any muscle, fibre or motor-unit. However, the transformation of fibre 

F-L relationship to muscle F-L relationship is determined by muscle geometry [133]. Muscle 

architecture and fibre orientations can vary widely in different muscles. Muscle architecture 

has large effect on the shape of the F-L curve; Figure 2.19 shows the experimental F-L curves 

for nine different muscles of different architecture. These data were collected from nine 

different skeletal muscles, the muscles are: Tibialis Anterior (TA), Peroneus Brevis (PB), 

Peroneus Longus (PL), Extensor Digitorum Longus (EDL), Soleus (SOL), Tibialis Posterior 

(TP), Medial Gastrocnemius (MG), Lateral Gastrocnemius (LG) and Flexor Digitorum 

Longus (FDL). 
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Both the muscle force and optimal length are dependent on stimulation frequency freq , 

recruitment level R , and fibre-type. The force-length relationship is usually estimated 

experimentally at constant stimulation frequency and fully recruited muscles ( 1R ), and then 

the empirical data is used to develop a simplified F-L sub-model. F-L relationships at 

different stimulation frequencies are shown in Figure 2.20. Force traces are shown to illustrate 

the effect of stimulation frequency on isometric force at different lengths (of muscle belly). 

 

 

 

Figure 2.19: The F-L relationships for different skeletal muscles (in the hind-limb of the cat). 

(Adapted from [132]). 
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Constant stimulation frequency is assumed during FES. Therefore, the input to the force-

length relationship ( FL ) is the length of either muscle fibres/motor-units or muscle belly 

(depending on the sub-model used), and the output is the normalised force of either the 

fibres/motor-units or the whole muscle. 

 

Most models in the literature use the instantaneous CE length CEl  as input to the force-length 

relationship. However, this does not reflect the way in which the F-L relationship of a muscle 

(or muscle fibre) is believed to act as the input should be length at initial recruitment, not 

instantaneous length. Using the instantaneous length CEl   for dynamic contraction results in 

instability on the descending limb of the force-length relationship (see Appendix 2). 

Experimental data and comparison between the isometric forces corresponding to ol  and CEl   

after protocols of stretch/shortening are presented in Appendix 2. 

 

 

 

Figure 2.20: F-L relationships at different stimulation frequencies. The F-L curves measured 

at different stimulation frequencies are not congruent. (From [82]) 

 

 

2.5.2.2. Summary of key F-L sub-models 

Summary of key F-L sub-models reported in the literature is provided in this section. 

Alternative mathematical equations are used in different muscle models to mathematically 

represent the empirical data of the force-length relationship at different complexity levels. 
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i) Otten F-L sub-model 

Otten F-L sub-model [134] was incorporated into many muscle models reported in the 

literature, either modified, or as it is. Otten [134] suggested that the force-length relationship 

could be modelled by the following equation: 
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Constants: Sc , 
Rc , and Wc  are used as curve shaping parameters; Sc  controls curve 

skewness, 
Rc  controls curve roundness, and Wc  controls curve width. 

 

Figures 2.21, 2.22 and 2.23 show the effect of Sc , 
Rc , and Wc  (respectively) on the curve of 

Otten F-L sub-model. In each figure, one parameter varies and other parameters are kept 

constant at appropriate values in order to show clearly the effect of the varied parameter. 

 

ii) Riener-1 F-L sub-model 

 In Riener-1 F-L sub-model [72], a simplified form of Otten F-L sub-model is used with 

( 1Sc ) and ( 2Rc ), the value of Wc  depends on the stimulated muscle (different muscles 

have different values). 
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Figure 2.21: Effect of skewness parameter Sc  on the curve of Otten F-L sub-model. Sc  = (1, -

1, 2, -2, 0.5, and -0.5), 2Rc , 5.0Wc . The curve is symmetrical only at: 1Sc . 

 

Figure 2.22: Effect of roundness parameter 
Rc  on the curve of Otten F-L sub-model. 

Rc  = (1, 

1.5, 2, 3, 4, and 5), 1Sc , 5.0Wc . 
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Figure 2.23: Effect of width parameter Wc  on the curve of Otten F-L sub-model. 

Wc  = (0.1, 0.2, 0.4, 0.5, 0.75, and 1), 1Sc , 2Rc . 

 

iii) Brown F-L sub-model 

In Brown F-L sub-model [41, 82, 84, 127, 128], the same form as that of Otten F-L sub-model 

is used. However, if 
Rc  was not selected as an integer, then the output of Otten equation 

might be a complex number with imaginary part. Therefore, Brown used the following 

equation: 
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Slow-twitch and fast-twitch fibres have different force-length relationships, hence different 

values for equation parameters are used to model each fibre-type (
optl  is the same for both). 

 

Note that, Brown F-L sub-model is for the active isometric force only, i.e. excluding 
2PEf  

which resists muscle fibres compression at short CE lengths (less than 0.7
optl ), 

2PEf  is 
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modelled separately in Brown muscle model, Brown 
2PEf  sub-model is summarised in 

section 2.5.6.2. 

 

 

iv) Hawkins F-L sub-model 

In Hawkins F-L sub-model [101, 129, 130], the length of fibres is used as the input to the F-L 

sub-model ( cos fm ll ). The normalised F-L relationship is given by: 
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Fibres of different types have the same F-L relationship, all fibre in the muscle assumed to 

have the same length. 

 

 

v) Herzog F-L sub-model 

In Herzog F-L sub-model [18], the normalised isometric muscle force is approximated by the 

positive values of a parabola; this is given in the following equation: 
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(
mCE ll  ), 

1c : constant. 

 

 

vi) Garies et al F-L sub-model 

Garies et al F-L sub-model [132] is an improved version of the original Otten F-L sub-model 

[134]. This sub-model was developed to model the complex F-L curves of some muscles 

which have complex architecture, for example when the F-L curve has more than one optimal 

length (e.g. the F-L curve of T.A.) or when the F-L sub-model cannot predict forces at 

extremes of length (F-L curve of MG), see Figure 2.19 shown earlier in this section.  

 

Garies F-L sub-model is a “multi compartment” sub-model. The muscle is assumed to have 

more than one compartment and then each compartment is modelled separately. Each 

compartment has its own optimal length and scaled to its influence on the overall model. This 

sub-model is given by: 
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N : Number of compartments in the F-L sub-model. 

ic : Scaling factor representing the effective influence of the thi  compartment on the 

overall model. 

iml , : Instantaneous length of the thi  compartment normalised with respect to its own 

optimal length. 

 

 

2.5.2.3. Implications of the application of F-L sub-models on the single motor-unit 

model 

Different fibre types have different F-L relationships. If a single motor-unit model is used, 

only one F-L sub-model can be used. The multiple motor-unit model described in subsequent 

chapters is able to properly account for more than one F-L sub-model for different fibre types. 

 

 

2.5.3. F-V sub-models 

Hill-type muscle models use F-V sub-model similar to the original Hill equation given in 

[97], where muscle force decreases with increasing shortening velocity and increases with 

increasing stretch velocity. Hill [97] proposed a force velocity relationship for shortening 

muscle at optimal length using a part of rectangular hyperbola. A typical F-V curve of skeletal 

muscle is shown in Figure 2.24. The original Hill’s force-velocity equation is given by: 

 

bafbvaf isoCECE  )()()( max,
             (2.11) 

 

a  and b  are constants with units of force and velocity respectively. 
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Figure 2.24: Relationship between muscle force and shortening velocity. Muscle force 

decreases as muscle shortening velocity increases. 

 

 

2.5.3.1. Summary of empirical data for F-V relationship 

The force-velocity relationship is mainly affected by velocity of muscle fibres, but it is also 

affected by fibre-type, muscle architecture (optimal length and pennation angle), recruitment 

level, recruitment order (physiological or non-physiological), “instantaneous” fibre length and 

stimulation frequency. 

 

Recruitment order and recruitment level affect the F-V relationship in muscles composed of 

different fibre types (heterogeneous muscles). During non-physiological sequence, slow 

motor-units will be recruited first and hence at partial recruitment all or part of recruited 

motor-units is of the slow-type which have a lower maximum shortening velocity. During 

non-physiological sequence, fast motor-units will be recruited first and hence at partial 

recruitment all or part of recruited motor-units is of the fast-type which have larger maximum 

shortening velocity. 

 

Figure 2.25 shows the force-velocity relationship for the medial gastrocnemius (MG) muscle 

of the cat at four different recruitment levels and two different recruitment sequences; 

physiological sequence (motor-units are recruited from slow to fast) and non-physiological 

sequence (motor-units are recruited from fast to slow). The MG muscle is composed of 25% 

slow-twitch fibres and 75% fast-twitch fibres [135]. 
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Figure 2.25: Force-velocity relationship for medial gastrocnemius (MG) at four levels of 

recruitment: (A) Physiological sequence (R = 1.0, 0.72, 0.54, 0.36). (B) Non-physiological 

sequence (R = 1.0, 0.72, 0.41, 0.22). (From [135]). 

 

 

2.5.3.2. Summary of key F-V sub-models 

Different “simplified” mathematical equations are used to represent the force-velocity 

relationship. These equations are of different complexity, but in all of them, muscle force 

decreases during shortening and increases during stretch. 

 

i) Riener-1 F-V sub-model 

In Riener-1 F-V sub-model [72], the F-V relationship is represented as a function of the 

velocity of the muscle belly ( mv ): 

745.0)51.069.5arctan(54.0)(  mm vvFV              (2.12) 

 

 

ii) Brown F-V sub-model 

In Brown model [41, 82, 84, 127, 128], the force-velocity relationship is a function of mv  and 

ml , and is  modelled by the following equation: 
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0vc , 1vc , 0va , 1va , 2va , and 4vb  are constants estimated from experimental data. 

Different constants are used for different fibre types, including 
max,mv . 

 

 

iii) Hawkins F-V sub-model 

The original Hawkins muscle model [101, 129, 130] was re-formulated in order to be in the 

general form typically used by most Hill-type muscle models and also used in the standard 

topology (the third formula was formulated). The normalised force-velocity relationship is 

given by: 
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Different constants are used for different fibre types, including 
max,fv  and 

str

fv max, . 

 

 

iv) AnyBody F-V sub-model 

The second alternative in AnyBody Software [136] is a simple linear F-V relationship: 

 mm vvFV  1)(                  (2.15) 

 

 

v) LifeMOD F-V sub-model 

In the muscle model used in LifeMOD [137, 138], the normalised force-velocity relation is 

modelled by: 
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Constants: 40 vc , 20 va , 5.16 vb . 
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vi) Herzog F-V sub-model 

The original Herzog muscle model [18] was re-formulated in order to be in the general form 

typically used by most Hill-type muscle models and also used in the standard topology. The 

new form of Herzog F-V sub-model is represented by the following formulas: 
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baba ,,, : Constants, their values depend on the individual muscle. These constants need to 

be adjusted for the stimulated muscle to fit its experimental data. 

In Herzog F-V sub-model, the maximum shortening and stretch velocities depend on )( 0lfiso . 
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2.5.3.3. Implications of the application of F-V sub-models on the single motor-unit 

model 

Different fibre types have different F-V relationships. 
CEv , 

CEl , and R  are continuously 

changing during FES. Hence, high accuracy muscle model should consider these variables as 
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inputs to the F-V sub-model. If a single motor-unit model is used, only one F-V sub-model 

can be used. The multiple motor-unit model properly accounts for more than one F-V sub-

model for different fibre types and can also account for the recruitment order of different fibre 

types. 

 

 

2.5.4. Fatigue sub-models 

Muscle fatigue is defined as the “the failure to maintain the required or expected force”. The 

fatigue rate depends on the muscle employed, the intensity of the activity, and whether the 

contractions are continuous or intermittent [45]. Muscle fatigue is also affected by other 

factors such as: age, gender, fitness, etc. 

 

 

2.5.4.1. Summary of empirical data for muscle fatigue 

In healthy subjects and for tasks and activities requiring low force, fatigue will not be 

accumulated, and the muscle is able to perform the task without fatigue [30]. When a force is 

generated and maintained, motor-units in the involved muscle are recruited gradually. Some 

motor units are recruited first. Later on, when they become fatigued, they are de-recruited and 

other motor units will be recruited to compensate for the force loss due to fatigue, and 

meanwhile, the fatigued units start to recover [30]. Based on this scenario, the motor units of 

the muscle involved in a task can be divided into three groups: those which are currently 

recruited, those already fatigued and are making recovery, and those in the rest state and have 

not been recruited yet. For tasks requiring large force (in healthy subjects), such as 

performing a sustained maximal voluntary contraction (MVC), the recovery mechanism 

cannot compensate for the force loss (due to fatigue) quickly enough. Therefore, after some 

time, all motor units in the muscle will eventually become completely fatigued and can no 

longer be recruited [139, 140, 141]. As discussed earlier, different fibre types have different 

fatigue resistance, depending on the fibre type composition.  

 

Stimulation frequency has a great effect on muscle fatigue, higher frequency will produce 

higher force but also results in a faster fatigue rate, and vice versa. Fibre-type also has a great 

effect on fatigue. This is a fixed property of muscle fibres and will be considered as a constant 

(although as explained below fibre-type composition within muscles can be changed by 

regular exercise or paralysis). 



51 

 

Muscles that do not receive regular exercise undergo disuse atrophy and convert to a higher 

proportion of type-II fibres than regularly active muscles [24]. Many disabled people have 

extensive disuse atrophy in their paralysed muscles depending on how long the muscles have 

been paralysed [4]. Consequently, when applying FES, the affected muscles can fatigue 

quickly where they have become mostly type-II fibres. The force response of electrically 

stimulated muscle decays nonlinearly as the muscle begins to fatigue [3]. Eventually, the 

muscle is not able to produce any force. Figure 2.26 shows four possible fatigue patterns that 

are typically seen in SCI disabled subjects during FES sessions. These plots show the force 

exerted by the quadriceps muscle group versus time when subjected to FES. These empirical 

data were collected from a patient (all data collected from the same patient) who had SCI 

resulting in paraplegia [142]. 

 

 

 

Figure 2.26: Four different force decay profiles representing some of the wide range of force 

profiles that can be seen as the muscle fatigues during FES. (From [1]). 
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2.5.4.2. Summary of key fatigue sub-models 

Different mathematical equations have been reported in the literature at different complexity 

levels to represent the fatigue effect on muscle force. In all of them, muscle force decreases 

when FES is on. When FES is off, some of them have considered recovery and some have 

not. The fatigue sub-models considered in this chapter are only those which use “black-box” 

modelling approach to model fatigue, modelling of physiological details is not covered here. 

 

Muscle fatigue can be measured and modelled as index of fatigue IF  which is defined as 

“force of the fatigued muscle normalised to force of the same un-fatigued muscle under same 

conditions”, IF  is an instantaneous quantity that varies with time. Inputs to the fatigue sub-

model are stimulation frequency freq  and recruitment level (when recruited fatigue occurs, 

when not recruited recovery occurs), the output of fatigue sub-model is IF . 

 

Depending on the fatigue sub-model; IF  can be the same or different for different fibre types 

(if a single motor-unit model is used, then there is only one IF . If multi fibre-type model is 

used then there can be separate iIF  for each fibre-type). 

 

i) Giat fatigue sub-model 

It is assumed in Giat fatigue sub-model [143, 144, 145, 146] that the fatigue related metabolic 

parameter pH reflects the force production capability of a muscle. The index of fatigue is 

calculated in two steps; pH level is calculated first then the index of fatigue IF  is calculated. 

One curve for pH decay with respect to time during FES (Figure 2.27) and another curve for 

pH recovery with respect to time (Figure 2.28) are obtained empirically for the muscle of 

interest ( 1R  during FES, and 0R  during recovery), these two curves are then used to 

calculate fatigue and recovery of muscle force for continuous or intermittent FES. 

 

The decay of pH with respect to time during FES is presented mathematically as: 

 

               (2.18) 

 

The increase of pH with respect to time during recovery is represented mathematically as: 

 

               (2.19) 

)](tanh[)( 4321 ctccctpH fat 

)](tanh[)( 4321 dtdddtpH rec 
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Constants values ( , , , , , , , ) are determined experimentally for each 

muscle, and different muscles in the same subject can produce different fatigue and recovery 

curves, depending on fibre-type [143, 144].  

 

Muscle force (of fatigued muscle) normalised to maximum isometric force (of un-fatigued 

muscle) is calculated by the following equation: 

 

)]))((exp[1()( 765 dtpHddpHIF               (2.20) 

 

This equation is used for both cases, during FES and during recovery. 

 

 

 

Figure 2.27: Giat Fatigue Sub-Model. Left: Decay curve of the normalised pH level with 

respect to time. This curve represents equation (2.18) with ( , , , 

). Right: Muscle force decay sub-model using the pH curve (left). This curve 

represents equation (2.20) with: ( , , ). 

 

 

1c 2c 3c
4c 1d 2d 3d 4d

0.85271 c 0.752 c 0.13 c

24 c

6.1135 d 0097.06 d 0.08857 d
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Figure 2.28: Giat Fatigue Sub-Model. Left: Recovery curve of the normalised pH level with 

respect to time. This curve represents equation (2.19) with ( , ,

, ). Right: Muscle force recovery sub-model using the pH recovery curve 

(left). This curve represents equation (2.20) with: ( , , ). 

 

Modelling intermittent FES: 

The time  at which the recovery starts (of any cycle) is calculated by reversing equation 

(2.19): 

                (2.21) 

 

: Time at which FES stopped (of the same cycle). 

The time  at which FES starts again is calculated by reversing equations (2.18): 
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: Time at which last recovery stopped and FES started. 
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ii) Riener-1 fatigue sub-model 

Riener-1 fatigue sub-model [72] is a simplified version of Giat model, where the index of 

fatigue is calculated only in one equation. This model was developed first in [55] as a general 

simple model, then effect of recruitment and frequency was added in [72]. Fatigue and 

recovery rates at any time are given by the following first-order equation: 

 

 
   

rec
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fat
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ARtIF
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d ])[1()(1][)(min  



        (2.23) 

Hzfreqfor
freq

freq
freqA freq 100:

)(100

)(
)(

2

2











  

Hzfreqfor
freq

freq 100:
100

6.04.0)(

2





















  

 

R : Recruitment of the whole muscle. 

freqA : Muscle activation due to stimulation frequency only without the effect of other 

parameters which affect activation (i.e. without yield, sag, effective length and 

effective frequency). 

 : This term is used to model the effect of stimulation frequency on fatigue rate. 

minIF : The minimum fitness of the muscle at which fatigue rate = 0 of the fully recruited 

muscle (i.e. the minimum value for the index of fatigue). 

For all muscles: [sec]30recT . 

(
minIF , 

fatT ) are estimated experimentally, they can have largely different values for different 

muscles. 

 

Riener-1 fatigue sub-model can be used for the whole muscle, for the fibre-type, or for a 

single motor-unit (assuming 1, jiR  when recruited and 0, jiR  when not recruited) 

providing that appropriate values for model parameters are used. 

 

 

iii) Hawkins fatigue sub-model 

In Hawkins fatigue sub-model [101, 129, 130], stimulation frequency is assumed constant 

(near to maximum natural frequency). Recovery is not modelled; which means that index of 



56 

 

fatigue IF  will stay the same during the recovery period of intermittent FES (i.e. when FES is 

switched off until next cycle of FES), endurance time and fatigue rate for different fibre types 

are shown in Figure 2.29. 

 

For times longer than , the rate of fatigue for the three fibre types is assumed linear. 

    (2.24) 

 

For type-I and type-IIa fibres under continuous FES (assumed near maximum natural 

stimulation frequency): ,   

For type-IIb fibres under continuous FES (assumed near maximum natural stimulation 

frequency): ,   

 

 

 

Figure 2.29: Endurance time and fatigue rate for different fibre types in Hawkins model. 
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iv) Freund and Takala fatigue sub-model 

Freund and Takala fatigue sub-model [147] is a relatively simple fatigue sub-model which 

was developed for natural voluntary contraction assuming that recruitment  will increase 

during contraction (by the CNS) to compensate for the effect of fatigue on those recruited 

motor-units. However this can be used for FES with individual motor-units assuming 

( 1, jiR ) for recruited motor-units and ( 0, jiR ) for non-recruited motor-units. 

 

Fatigue rate is modelled as: 

      (2.25) 

 

The first term represents fatigue, and the second term represents recovery. Constants need to 

be estimated from experimental data, they are provided in [147] as: , 

. However, these values resulted in very fast fatigue; hence both were 

divided by 10 to get realistic curves. Figure 2.30 shows fatigue and recovery curves for fully 

recruited muscle (or single recruited motor-unit). 

 

 

Figure 2.30: IF curve of Freund and Takala Fatigue Sub-model ( , ).. 
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v) Ma fatigue sub-model 

Model assumptions are similar to Freund and Takala fatigue sub-model. The fatigue part was 

developed first in [148], then the recovery part was incorporated into the model in [149]. 

During recruitment of the muscle, the fatigue rate is given by: 

     (2.26) 

 

The first term represents fatigue, and the second term represents recovery, see Figure (2.31).  

4.2r ,  is determined experimentally (not provided in related references [148, 149]). 

 

During recovery ( ), the recovery curve is given by: 

      (2.26A) 

: is the index of fatigue at the time when fatigue stopped and recovery started. At 

beginning of recovery: ( ). 

 

 

Figure 2.31: IF curve of Ma Fatigue Sub-model with ( , ). The red curve 

represents fatigue during full recruitment ( ), the blue curve represents recovery for non-

recruited muscle ( ). 
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2.5.4.3. Implications of the application of fatigue sub-models on the single motor-

unit model 

The real muscle consists of large number of motor-units and different fibre types which have 

different rates of fatigue. If a single motor-unit model is used, the different fatigue sub-models 

of different fibre types cannot be incorporated into the model. Moreover, in a realistic 

scenario R  is changing continuously during FES. The single motor-unit model cannot 

account for the effect of continuously varying R  (i.e. fatigue of different motor-units) since 

each motor-unit fatigues and recovers, independent of other motor-units. The multiple motor-

unit model properly accounts for more than one fatigue sub-model for different fibre types 

and also models each motor-unit separately. 

 

 

2.5.5. Force enhancement & depression sub-models 

The force enhancement & depression ( de ff & ) is mainly affected by magnitude of stretch 

and shortening. It is also affected by velocity, recruitment level, and stimulation frequency 

during stretch/shortening [13]. The increase or decrease of muscle force ( de forf ) is 

determined relative to the purely isometric reference force corresponding to the CE length at 

the end of stretch or shortening (Figure 2.32). 

 

 

Figure 2.32: Force enhancement ef  following stretch, and force depression df  following 

shortening of a recruited muscle. (From [13]). 
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2.5.5.1. Summary of empirical data for force enhancement & depression 

Force enhancement and depression experimental data available in the literature show some 

complexity and some uncertainty. An example of empirical data is shown in Figure 2.33, 

which show the effect of stretch/shortening velocity 
CEv  and initial length 

ol  on force 

enhancement ef  following stretch and force depression df  following shortening at different 

initial lengths 
ol . The force enhancements and force depressions were less at shorter muscle 

lengths and higher speeds. 

 

Force enhancement ef  is increased with increasing magnitudes of stretch, see left graph of 

Figure 2.34. The velocity of stretch was reported by some scientists to have no effect on force 

enhancement [150, 151] and to have a small effect on force enhancement by other scientists 

[152, 153]. The experimental data shown in Figure 2.33 show that the velocity of stretch has a 

small effect on force enhancement; this effect is greater at shorter lengths. 

 

Force enhancement following stretch has been associated with the descending limb of the 

force–length relationship exclusively. However, there has been some controversy as to 

whether force enhancement could be obtained on the ascending limb of the force–length 

relationship. Some researchers’ experimental results support the assumption that force 

enhancement also occurs on the ascending limb of the force–length relationship [13], but less 

than that on the descending limb; experimental data shown in Figure 2.33 support this 

assumption. 

 

Force depression increases with increased magnitudes of shortening (Figure 2.34), for 

increased forces during shortening (when the minimum magnitude of force during shortening 

is higher, then force depression is higher), and for decreased speeds of shortening. These 

properties are well accepted although there remains slight controversy over the effects of 

speed of shortening on force depression [13, 152]. It has not been easy to identify whether 

force depression is independently related to the speed of shortening, or if the speed of 

shortening is indirectly associated with the magnitude of force during shortening (because 

during shortening the force magnitude decreases with increasing speed of shortening).  For 

simplicity, the second option will be assumed; another reason is because the difference 

between the two assumptions seems to be small. Hence, only the first and the second 

properties will be considered (i.e. force depression is increased only for increased magnitudes 

of shortening and for increased forces during shortening). 
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Figure 2.33: Three shortening and three stretch contractions, at speeds ranging from 2.5 to 30 

[mm/s]. The steady-state isometric force of the muscle at the final length is indicated by 

horizontal line. The final length was 0, - 4, and - 8 mm in (a), (b), and (c) respectively. Length 

represents displacement from optimal length (        ). (From [152]). 

 



62 

 

 

Figure 2.34: Effect of magnitude of stretch on force enhancement (left) and shortening on 

force depression (right). (Left graphs from [154], right graphs from [155]). 

 

 

2.5.5.2. Summary of key force enhancement & depression sub-models 

The CE length at initial recruitment ol  is thought to be a key parameter influencing total 

muscle force mF . More details and comparison between CE instantaneous length CEl  and CE 

length at initial recruitment ol  are provided in Appendix 2. 

 

Indices of enhancement & depression (IE & ID) are used to model the transient-state and the 

steady-state of the force enhancement/depression following stretch/shortening. IE is 

calculated as the instantaneous active muscle force after end of stretch divided by the 

isometric CE force corresponding to the length at end of stretch.  ID is calculated as the 

instantaneous active muscle force after end of shortening divided by the isometric CE force 

corresponding to the length at end of shortening. (IE & ID) represent the new isometric CE 

force after end of stretch/shortening (
CEf  corresponding to the length at end of 

stretch/shortening + transient-state and steady-state effects of stretch/shortening on recruited 

muscle force) normalised to the isometric CE force 
CEf  corresponding to the length at end of 

stretch/shortening.  IE & ID is assumed the same for all fibre types in all sub-models. Only 

few force enhancement & depression sub-models are available in the literature. 
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i) Hawkins force enhancement sub-model 

Force enhancement following stretch is modelled by the index of enhancement IE . Force 

depression following shortening is not modelled in Hawkins muscle model [101]. The index 

of enhancement iIE  (for fibre type-i) is the same for all fibre types. The index of 

enhancement is given by: 

 

 
















4

4)exp()(
)(

max

tforIE

tfortcIEIEIE
tIE

SS

TS

 

           (2.27)

    
 

 )4exp()()4( max   TSSS cIEIEIEtIEIE             (2.27A)

    

 














2.1:0.1

2.1:403.0)(505.0

max

maxmax

IEfor

IEforIE
IE              (2.27B)

    

 

)/(301.0 max  IEIEcTS                 (2.27C) 

 

Two examples are illustrated in Figure (2.35), both stretches were initiated on the descending 

limb of F-L curve, the lower curve corresponds to low stretch velocity, maximum eccentric 

force was not achieved the higher curve corresponds to higher stretch velocity where 

maximum eccentric force was achieved and hence the force enhancement is larger (Hawkins 

assumes that IE and eccentric force increase with increasing stretch velocity). 

    

 

 

Figure 2.35: Two examples of Hawkins force enhancement sub-model for two muscles at 

MVC ( 1R ) after cessation of stretch as function of time. (From [101]). 
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ii)  Forcinito force enhancement & depression sub-model 

In Forcinito model [156, 157], the initial length is used to calculate the isometric force 

[ )( oisoCE lff  ], where in the majority of Hill-type models the instantaneous length is used 

[ )( CEisoCE lff  ]. For fully recruited muscle ( 1R ), the steady-state force enhancement & 

depression is modelled by an extra parallel elastic rack (parallel to CE ), where a relay will 

engage the elastic rack at the moment when the muscle is initially recruited. This relay will 

continue to be active as long as the muscle is still recruited ( 0R ). The stiffness of the rack 

is given by: )/.( 0,ERlAE , where A  is the cross-sectional area of the elastic rack, and E  is the 

modulus of elasticity. The stiffness of the rack decreases linearly with increasing initial length 

0,ERl . The instantaneous active muscle force mf  including force enhancement & depression is 

given by: 
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2.5.5.3. Implications of the application of IE & ID sub-models on the single motor-

unit model 

The real muscle consists of large number of motor-units. In a realistic scenario; R  and CEl  

are changing continuously during FES. The single motor-unit model cannot account for the 

effect of continuously varying R  at different CE lengths (i.e. length history-dependence). The 

multiple motor-unit model properly accounts for this realistic scenario since each motor-unit 

is modelled separately, with its own initial length. 

 

 

2.5.6. Passive elements sub-models 

Skeletal muscles have complex passive viscoelastic structure; they are made of soft tissues 

with different material properties. A skeletal muscle consists of tendon, aponeurosis, 

connective tissues, and muscle fibres; each part of them has viscoelastic passive forces. The 

length and velocity of the whole muscle will affect the length and velocity of all muscle parts. 
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2.5.6.1. Summary of empirical data for passive behaviour 

Passive elastic force of the whole muscle is a function of the length of the musculotendon 

complex mtl . Passive elastic force of muscle belly resists stretch beyond its slack length; it 

also resists the compression of CE  at short lengths. Passive elastic force of the tendon resists 

stretch beyond its slack length (the aponeurosis has similar properties to tendon). Passive 

elastic force can increase total muscle force when stretched beyond its slack length, and can 

decrease total muscle force when contracted to very short lengths. Passive viscous force is a 

function of the velocity of the musculotendon complex mtv . The passive viscous force (of all 

muscle parts) resists movement during both shortening and lengthening. 

 

The passive F-L curves determined experimentally for muscle belly can have different shapes 

for different muscles and can start at different lengths relative to the optimal length. Different 

muscles have different passive forces because of the effects of cross sectional area, length and 

muscle structure. However, the difference in the passive F-L relationship can be greatly 

reduced when normalised.  In some cases, passive F-L curves for different specimens of the 

same muscle (from different animals) can vary a lot and do not tend to normalize well with 

respect to each other [158], an example is shown in Figure 2.36. Strap-like muscles are 

parallel-fibered muscles (i.e. pennation angle = 0) which have minimal aponeurosis (muscles 

used are five strap-like muscles of the cat hind limb: caudofemoralis, semitendinosus, 

sartorius anterior, tenuissimus, and biceps femoris anterior). The experimental data in this 

figure were collected using this type of muscles because the muscle belly length of this type 

of muscles provides an accurate indication of the active CE length [158] used in the model. 

 

Different types of fibres were reported in the literature to have similar passive forces per unit 

area. Tendons of different muscles were also reported to have similar passive forces per unit 

area. Experimental passive elastic F-L curve of tendon is similar to that of muscle belly but 

with higher resisting force, see Figure 2.37. 

 

Figure 2.38 shows the effect of the viscous drag “passive” force created by non-recruited 

fibres in the whole muscle. The soleus muscle is composed of 100% slow-twitch fibres, hence 

max,mv  is less at lower recruitment levels because of the viscous drag “passive” force. The 

viscous passive force created by non-recruited fibres (in a partially recruited muscle) reduces 

muscle force during shortening and stretch. It also reduces the maximum shortening velocity 

max,mv  during shortening. Recruited fibres also have viscous passive force, but it is already 
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included in the F-V relationship (as a hidden parameter). A viscous element is added in some 

muscle models for stability purposes during simulation (e.g. Brown muscle model). 

 

 

 Figure 2.36: Passive elastic F-L curves for 43 muscles taken from different animals. Forces 

are normalized to PCSA and fascicle lengths to 
optl  of muscle fibres. (From [158]). 

 

Figure 2.37: Typical tendon passive elastic F-L curve. Tendon strain=










 
t

opt

t

St

l

ll
, unit-less. 

(Adapted from [159]). 



67 

 

 

Figure 2.38: Force-velocity relationship for the soleus (SOL) at four levels of recruitment: (A) 

Physiological sequence, (B) Non-physiological sequence. (From [135]). 

 

 

2.5.6.2. Summary of key passive elements sub-models 

Alternative mathematical equations are used in different muscle models to mathematically 

represent the empirical data of the passive F-L and F-V relationships. 

 

i) Herzog sub-model for muscle passive elements 

The passive elastic forces of muscle belly 
1PEf  and tendon SEf  are modelled as linear 

functions (of linear springs) in Herzog model [18], the passive elements are arranged as in 

form (b) of Figure 2.11 in section 2.4.1. 

 













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SSE

SE

SSE

SE

SSEs

SESE
llfor

llforllk
lf

:00.0

:)(
)( , t

S

SE

S ll     (2.29) 

)()( 1

111

PE

SPEpPEPE llklf  , mt

S

PE

S ll 1      (2.30) 

 

Note that ( 01 PEf ) for ( 1

1

PE

SPE ll  ) and ( 01 PEf ) for ( 1

1

PE

SPE ll  ). Since 1PE and SE  of 

Herzog model are linear, the arrangement of passive elements can be changed to form (a) of 

Figure 2.11 using Fung equations given in [107] as follows: 



68 

 

( 221 PSS kkk  ) and (
11

11

2

PS

PS
P

kk

kk
k




 ). 

1Sk  and 
1Pk  are the series and parallel elements of form (a), 2Sk  and 

2Pk  are the series and 

parallel elements of form (b). Form (a) will be used as the standard form because of the 

following: it is more common in the literature, it was suggested by many researchers to be 

more accurate [103, 105, 106] and also this makes all models represented in this chapter to 

have the same arrangement of model elements. 

 

ii) Brown sub-model for muscle passive elements 

Brown muscle model is presented in different references [41, 82, 84, 100, 127]. All sub-

models and constants’ values were taken from the last update of Brown model given in [100]. 

Passive elements of Brown model are illustrated in Figure (2.39). The linear parallel viscous 

element VE was added in [127] for stability purposes during simulation.  

 

 

Figure 2.39: A) Representation of Brown muscle model using rheological elements structure. 

B) The two parts of the passive elastic element PE. C) The passive F-L curves of PE1 and 

PE2. (Adapted from [82, 160]). 

 

 

Series element passive F-L sub-model ( SEf ): 

The passive force of the series elastic element (represents the combined tendon and 

aponeurosis) is given as a non-linear function of its length SEl : 
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Sl
t

optl . 

 

Parallel element passive F-L sub-model (
1PEf ): 

The passive elastic force 
1PEf  as a function of 

CEl : 




















 
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046.0

17.1)/(
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1

ll
lf CE

CEPE     (2.32) 

maxl  was used in the “Virtual Muscle” because 1PE  scales more appropriately with maxl  

[127]. 

 

Passive PE2 F-L sub-model (
2PEf ): 

The passive elastic resistance to compression at short CE lengths ( optCE ll  7.0 ) is modelled 

by a non-linear function: 

0,}1)]7.0(21{exp[02.0)( 22  PECECEPE fllf    (2.33) 

 

Passive VE F-V sub-model ( VEf ): 

A small viscosity was added for stability purposes during simulation: 
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For slow-twitch fibres (type-I): 
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For fast-twitch fibres (types IIa and IIb): 
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iii) Hawkins sub-model for muscle passive elements 

Hawkins muscle model is presented in different references [101, 129, 130]. Passive elements 

of Hawkins model are illustrated in Figure (2.40). 
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Figure 2.40: Representation of Hawkins muscle model [101, 129, 130] using rheological 

elements structure. 

 

Series element passive F-L sub-model ( SEf ): 

The aponeurosis is assumed as a rigid structure, the tendon passive force is modelled as: 

 )(147exp00504.0)( t

SSESESE lllf      (2.35) 

Tendon length is normalised to the tendon optimal length t

optl . 

 

Note that the curve of Hawkins SE sub-model is very similar to that of Hatze SE sub-model 

[161]:  1)(exp)( 21  t

SttSE llcclf . The curve of Hatze SE sub-model is almost exactly 

the same when using the following constants: ( 314.01 c , 602 c ) when simulated in 

Matlab.

  

Parallel element passive F-L sub-model (
1PEf ): 

 )6.1(3.10exp)( 11  CECEPE lclf         (2.36) 

The rest length was assumed to be: ( 6.1restl ) 

78.342571 c  

 

Passive VE F-V sub-model ( VEf ): 

For the i
th

 fibre-type: )1(, iCEiiVE Rvcf      (2.37) 

i : Fibre-type identifier; (1) for type-I, (2) for type-IIa, and (3) for type-IIb. 
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1c , 
2c , 3c : are constants. 51585.01 c , 44195.032  cc . 

 

The viscous drag “passive” force created by all non-recruited fibres in the whole muscle: 

3,2,1,

1

, VEVEVE

n

i

iVEVE fffff 
  

Units used for CE velocity: 









sec

m
vCE

, VEf  is normalised with respect to 
max,isof . 

 

 

iv) LifeMOD sub-model for muscle passive elements 

In the muscle model used in LifeMOD [137, 138], a two-element Hill-type model ( CE  and 

1PE ) is used, see Figure (2.41). 

 

 

 

Figure 2.41: Representation of LifeMOD muscle model using rheological elements structure, 

SE  is assumed rigid in LifeMOD muscle model [137, 138]. 

 

 

Parallel element passive F-L sub-model (
1PEf ): 

For lengths beyond ( 75.0restl ),
1PEf  normalised with respect to maxf  is given by: 
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2.5.6.3. Implications of the application of passive elements sub-models on the 

single motor-unit model 

The passive elements of PE1, PE2, and SE are not affected by level of recruitment R . The 

viscous drag “passive” force created by non-recruited motor-units can be properly 

incorporated into the multiple motor-unit model. However, experimental data available in the 

literature does not show any difference between different fibre types in the viscous drag 

“passive” force created by non-recruited motor-units. Until detailed experimental data for 

different fibre types becomes available, both of the single motor-unit model and the multiple 

motor-unit model are equal regarding modelling passive elements. 

 

 

2.5.7. Standard sub-models of the “General Model” 

A standard form representing all alternative sub-models of any muscle property is possible. 

These standard forms can be used to represent any of the simplified alternative sub-models 

presented in this section or to build a new alternative sub-model at the required level of 

complexity for any muscle property. 

 

The standard forms were developed in this study to represent each muscle property; 

description and details are provided in Chapter 6. A “General Model” that can be used to 

represent all relevant instances from the literature was developed; the topology of the standard 

forms of the general muscle model and how different sub-models are connected in the 

“General Model” are described in Chapter 6. 

 

 

2.6.  The need for a multiple motor-unit model for FES applications 

As discussed in section 2.4.3, improvements to muscle model accuracy can help improve the 

performance of FES controllers. Because of the different characteristics of different types of 

motor-units; recruitment order will affect the calculated muscle force. Also, the properties of 

different fibre types cannot be incorporated into a single motor-unit model. FES simulations 

are usually based on single motor-unit models which cannot account for continuously varying 

recruitment as would usually be seen in closed loop FES control. Such simulations would 

result in an over- or under-estimation of muscle force and hence inaccurate assessment of the 

FES system’s performance in the real world. 
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The multiple motor-unit modelling approach may improve model accuracy; since it properly 

accounts for the physiological properties specific to each fibre-type (i.e. recruitment order, F-

L relationship, F-V relationship, and fatigue), and also can account for the continuously 

varying recruitment levels by modelling each motor-unit separately regarding its length at 

initial recruitment and time history of recruitment. 

 

2.6.1. How can the multiple motor-unit modelling approach improve model 

accuracy? 

Using this approach of modelling will make the muscle model more complex and will require 

more parameters to be estimated experimentally, but will increase model accuracy. During 

FES, the recruitment level can change in a continuous fashion such that different motor-units 

are recruited at different muscle lengths and at different times. Some muscle properties are 

highly affected by these changes such as fatigue and force enhancement & depression. 

Fatigue is highly affected by fibre-type and time history of recruitment, force 

enhancement/depression is highly affected by the change in CE length (displacement) during 

stretch/shortening, and isometric force is highly affected by the length at initial recruitment. 

Such properties should be modelled for each motor-unit separately, which can only be 

achieved by modelling at the motor-unit level. 

 

Specifically, the multiple motor-unit modelling approach is able to properly account for the 

following properties: 

i. Motor-units in the muscle model are of different fibre types that have different 

contractile properties. 

ii. Appropriate non-physiological recruitment order depending on electrodes used. 

iii. Different F-L sub-models used with motor-units of different fibre-type. 

iv. Different F-V sub-models used with motor-units of different fibre-type. 

v. The length at which each motor-unit is initially recruited. 

vi. Time history of recruitment for each motor-unit. 

 

These properties cannot be modelled nor be incorporated into a single motor-unit model. The 

multiple motor-unit model has many advantages over the single CE  modelling approach. 

These advantages can be summarised as follows: 

1. During FES, stimulation levels could be rapidly and continuously varying which 

results in different motor-units being recruited and de-recruited at different lengths and 
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different times. Obviously, this can only be modelled with multiple motor-units 

modelling approach. 

2. During FES, non-physiological recruitment order happens when (the commonly used) 

surface electrodes are used, and this is the primary cause of fatigue when using FES. 

For electrically stimulated muscle, physiological recruitment order can only be 

achieved using special electrodes and special strategies. This case can only be 

modelled with the multiple motor-unit modelling approach. 

3. The F-L relationship of different fibre types is different. Single motor-unit model 

cannot use more than one F-L relationship, but the multiple motor-unit model can use 

separate F-L sub-model for each individual motor-unit. 

4. The F-V relationship of different fibre types has different curves, including different 

maximum shortening velocities. Single motor-unit model cannot use more than one 

relationship, but the multiple motor-unit model can use different F-V sub-model for 

each motor-unit. 

5. Muscle fatigue depends on fibre-type and duration of activity (time history). When 

different motor-units are recruited and de-recruited at different times the single motor-

unit model cannot account for these changes accurately. Only the multiple motor-units 

model can model each motor-unit separately and take into account the fatigue and 

recovery cycle for each motor-unit individually. 

6. Force enhancement ef  and force depression df  are length history-dependent. When 

different motor-units are recruited at different lengths, the only way to accurately 

model this situation is by the multiple motor-unit modelling approach. In the single 

CE  model it is not possible to accurately model this situation. 

7. Muscles of complex structure can be modelled with higher accuracy where different 

motor-units, even from the same type, can have different lengths and different 

pennation angles which change in different values during isometric and dynamic 

situations. 

 

 

2.6.2. Multiple motor-unit models in the literature (by different authors) 

Most muscle models in the literature use single motor-unit modelling approach where the CE 

is modelled as a single unit. Only a few multiple motor-unit models have been reported in the 

literature [30, 73, 101, 127, 162, 165] (different authors use different names, for example: 

multi motor-unit model, multi-fibre model, cellular-based model, etc.), none of these have 
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used initial length in the F-L relationship. Number of motor-units in the multiple motor-unit 

model does not correspond to real motor-units; it represents the force resolution, more motor-

units will increase force resolution and vice versa. Muscle models found in the literature 

which use this approach include the following: 

1. Brown model [81, 82, 83, 84] is a complex multiple motor-unit model. Despite its 

complex sub-models, some important properties like fatigue, and force enhancement 

& depression are not included. This model is used in the “Virtual Muscle” software 

package [127, 128]. Different sub-models of Brown model are summarised in section 

2.5.1. 

2. Hawkins model [101, 129, 130] is claimed to be a multiple fibre model. However, 

fibres are modelled in a superficial way, where the portion of each fibre-type is 

modelled separately not the fibre. The model is divided into three units only, one unit 

for each fibre-type and linear analogue recruitment is applied on each unit. Different 

sub-models of Hawkins model are summarised in section 2.5.1. 

3. Riener-2 model [73] is a physiologically based model; the multiple motor-unit 

modelling approach was used to model the recruitment and activation under isometric 

conditions, two inputs stimulation intensity and stimulation frequency are allowed to 

vary in this model (frequency not constant). CE length is constant and hence this 

model is not for dynamic conditions. It can be used for FES control under isometric 

conditions but not dynamic protocols. 

4. Liu et al [30] used multiple motor-unit approach only for the purpose of estimating 

fatigue under isometric conditions and MVC. Unrealistic motor-units are used in this 

model, where they are considered either fully recruited (100% recruitment), at rest 

state waiting to be recruited, or fully fatigued. Physiologically this is not true, where 

motor-units will fatigue and recover gradually as discussed earlier in section 2.5.4. 

Essential muscle properties (e.g. F-L and F-V relationships) are not considered in this 

model. 

5. Xia and Frey Law [162] model is an improved version of Liu model, where the 

original Liu model was modified to include submaximal voluntary contraction and 

dynamic (non-isometric) conditions, but still uses the same principle of unrealistic 

motor-units. 

6. Stojanovic et al. [163, 164, 165] model is a “multi units” model based on Hill’s three-

element model, the model includes different properties of different fibre types. The CE 

is divided into multi units; each of these units is modelled using finite element 
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method. However, this model is not considered since it was developed using finite 

element method which is beyond the scope of this study. 

 

The only model that can be considered here as a good multiple motor-unit model is Brown 

model [81, 82, 83, 84] where this model was developed using large collection of experimental 

data for physiological properties of different fibre types. This model is used in the “Virtual 

Muscle” software package [127, 128]. Brown model was developed for voluntary contraction 

(not FES). The recent version of Virtual Muscle, VM4.0 [128], has one option for FES in 

which the stimulation frequency is kept constant and non-physiological recruitment order is 

applied where recruitment is weighted equally among all fibre types, the recruitment sub-

model is summarised in section 2.5.1.2.1. 

 

Brown model uses multiple motor-units approach with complex sub-models for recruitment, 

activation, F-L and F-V. Yet, important properties such as fatigue and force enhancement & 

depression are not included in the model. The complex activation sub-model is not needed in 

the case of FES since frequency is typically constant during FES and the effect of the 

activation sub-model in this case is negligible. Two fibre types (not three) are modelled. 

 

Riener-2 model [73] accounts for different motor-units being recruited at different times for 

the fatigue sub-model; it can be used for FES control under isometric conditions only, but not 

dynamic protocols. 

 

The author proposes a generic complex multiple motor-unit model that has 1000 motor-units 

and three fibre types, the physiological properties specific to each fibre-type can be modelled 

separately, the length at initial recruitment ol  and time of recruitment can also be included 

with each motor-unit to further increase the model accuracy. The modelling of ol  and time of 

recruitment/non-recruitment with each motor-unit separately has not been used in the 

literature. Development and details of the “General Model” are provided in Chapter 6. 

 

2.7.  Conclusions and overview of rest of the thesis 

Skeletal muscle is a highly complex and nonlinear system. The response of electrically 

stimulated muscle is nonlinear, time varying, coupled, and often accompanied by 

unpredictable disturbance in SCI subjects. Computer simulations based on accurate 

mathematical models of the musculoskeletal system would help in the design and evaluation 
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of FES controllers. The multiple motor-unit modelling approach can improve the model 

accuracy; since it properly accounts for the physiological properties specific to each fibre-type 

(i.e. recruitment order, F-L relationship, F-V relationship, and fatigue), and can also account 

for the continuously varying recruitment levels by modelling each motor-unit separately 

regarding its length at initial recruitment and time history of recruitment. 

 

In the rest of the thesis, the multiple motor-unit model is compared to the single motor-unit 

model for the realistic scenario when recruitment levels are rapidly and continuously varying 

which results in different motor-units being recruited and de-recruited at different lengths and 

different times. 

 

Chapter 3 addresses the problem of muscle modelling for continuously varying R  and hence 

different values of ol  for different motor-units. Open-loop simulation protocols are used with 

the multiple motor-unit model and the single motor-unit model using both the CE 

instantaneous length and the CE length at initial recruitment for the F-L relationship. Results 

are discussed at the end. 

 

Chapter 4 addresses the problem of muscle modelling for muscle fatigue with continuously 

varying R  at different times and hence different fatigue and recovery cycles for different 

motor-units. Open-loop simulation protocols are used with the multiple motor-unit model and 

the single motor-unit model using both the multiple motor-unit fatigue sub-model and single 

motor-unit fatigue sub-model. Results are discussed at the end. 

 

Chapter 5 addresses the problem of muscle modelling for force enhancement/depression 

following active stretch/shortening with continuously varying R . Open-loop simulation 

protocols are used with the multiple motor-unit model and the single motor-unit model using 

both the multiple motor-unit force enhancement & depression sub-model and single motor-

unit force enhancement & depression sub-model. Results are discussed at the end. 

 

Chapter 6 addresses the development of a new “General model” using standard forms for 

different sub-models representing all muscle properties and the inter-connection of these sub-

models (model topology). The “General Model” is capable of representing the alternative sub-

models (for each muscle property), and hence all relevant models from the literature. Such a 

“General Model” could be used to study the effect of muscle model complexity on FES 

controller design. 
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Chapter 3: The Multiple Motor-Unit Muscle Model 

 

3.1.  Introduction 

In normal human movement, it is reasonable to assume that the recruitment level R  changes 

continuously. Similarly, in closed loop FES control applications R  will usually vary with 

time. As discussed in sections 2.5.2 and 2.5.5 and Appendix 2, because the length of the 

contractile element CE at initial recruitment ( ol ) is thought to be a key parameter influencing 

total muscle force mF , via the muscle’s F-L relationship, the use of a single value for ol  in a 

realistic scenario where R  and CEl  are changing continuously would result in an over- or 

under-estimation of mF . However, as almost all muscle models used in FES control studies 

treat the muscle as a single contractile element (i.e. one large motor-unit), there can only be 

one value for ol  despite the fact that in reality different motor-units are recruited at different 

lengths. In most previous work on FES control [1, 72, 74, 109, 113], a compromise is adopted 

whereby the instantaneous CE length is used rather than the initial length. However, this does 

not reflect the way in which the F-L relationship of a muscle (or muscle fibre) is believed to 

act as the input should be length at initial recruitment, not instantaneous length. 

 

Therefore, this chapter addresses the problem of muscle modelling for continuously varying 

R  and hence different values of ol  for different motor-units. A new multiple motor-unit 

model is developed which considers the muscle to comprise a large number (1000) of 

individual Hill-type virtual motor-units. These virtual motor-units are connected in parallel 

and can be either on or off, mimicking the structure and behaviour of physiological motor 

units. Details on the structure of skeletal muscles, together with the recruitment process are 

provided in section 2.2. 

 

The Herzog model, a relatively simple Hill-type model, was chosen for its simplicity and also 

because it uses the CE length at initial recruitment ( ol ). An overview of Hill-type models is 

provided in section 2.4.2 and the Herzog model is summarised in Appendix 3. 

 

As the recruitment level )(tR  may vary during stimulation, these virtual motor-units are 

recruited at different times and each with its own initial length ( ,o jl  for j=1 to 1000); thus 
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overcoming the problem described above. It should be noted that the virtual motor-units in the 

model do not correspond to real motor-units. Rather, the number of virtual motor-units used 

in the model is chosen to give the required force resolution. For example, if a resolution of 1% 

is required, then a model based on 100 motor-units would be used (this is calculated by 

dividing one by the required resolution, i.e. 100
100/1

1

%1

1
 ). 

 

The multiple motor-unit model has been implemented in two ways. Firstly, by only using the 

1000 virtual motor-units to model recruitment and calculate the isometric force (i.e. to apply 

the F-L relationship) and then treating the muscle as a single motor-unit (single CE) when 

applying the F-V relationship using one single value for the isometric force )( oiso lf . 

Secondly, by also applying the F-V relationship separately for each virtual motor-unit 

individually (different motor-units can have different values for )( oiso lf ). The relative merits 

of these two approaches are discussed at the end of the chapter. 

 

 

3.2.  Effective isometric force model 

In the original Herzog model, which incorporated a single CE, it was assumed that the muscle 

remembers the CE length 0l  at which it was initially recruited for as long as the recruitment 

remains (i.e. 0R ). This is acceptable if the recruitment remains constant, but it is not 

accurate if R  changes during stimulation, as different motor-units are recruited or de-

recruited at different lengths each time there is a change in R . To take account of the 

recruitment of motor-units at different lengths, the isometric force )( oiso lf  (using one initial 

length) was replaced by an effective isometric force ( isofEff . ). The effective isometric force 

model is presented in Figure 3.1 and Figure 3.2 and is a “novel contribution” to the field. It is 

based on the multiple motor-unit principle, where every motor-unit (of index j) remembers the 

length ( ,o jl ) at which it was initially recruited. 

 

As discussed in section 2.5.1, the instantaneous value of the analogue recruitment )(tR , 

shown in Figure 3.1, is used as a representation of the proportion of recruited motor-units. 

)(tR  has a value between 0 (no recruitment) and 1 (all motor-units are recruited), 

1)(0  tR . An extension to the work presented here, to include modelling of recruitment of 

three different fibre-types is introduced in Chapter 6. 
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Figure 3.1: Effective isometric force model. 

 

 

 

The binary recruitment sub-model calculates the number of recruited motor-units. The input 

to the binary recruitment sub-model is )(tR , where )(tR  is the output of the analogue 

recruitment sub-model (see section 2.5.1).  In this example, the total number of virtual motor-

units ( m ) is 1000m , number of recruited motor-units ( M ) is )(1000)( tRtRmM  . 

Every recruited motor-unit is treated as a separate fully recruited CE for the purposes of 

calculating the isometric force. 
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Figure 3.2: Isometric force of a single motor-unit. 

 

 

In Figure 3.2, every recruited motor-unit remembers the length at which it was initially 

recruited. The isometric force of the whole muscle )( , joiso lf  is divided by the number of 

virtual motor-units used in the multiple motor-unit model (1000). 

 

Input to the analogue recruitment sub-model is typically the pulse width (i.e. R=PW/PWmax, 

where PWmax is the pulse width that corresponds to maximum recruitment). Total “isometric” 

muscle force is controlled by the number of recruited motor-units M  and the force produced 

by each recruited motor-unit. m  is the total number of all motor-units in the model. The total 

number of motor-units in the model,  m , is chosen by the user to give the required force 

resolution and does not correspond to the real number of motor-units. 

 

In order to get a high resolution, the number of virtual motor-units m  was chosen to be 1000, 

so the number of recruited motor-units is: )(1000 tRM  , where )(tR  varies between 0 and 

1 ( 10000  M ). The value of M  will be rounded to the nearest integer and, hence, the 

smallest detectable change in R  is 0.001 ( 1M ). A positive change in )(tR  means more 

motor-units are recruited and a negative change in )(tR  means some, or even all, motor-units 

will be de-recruited. If )(tR  is decreased (i.e. 0)(  tR  ) then a new M  value will be 

calculated and the motor-units that were recruited last will be de-recruited first. This means 

that all motor-units of index ( j ) higher than the new M  will be fully de-recruited. 
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Referring to Figure 3.2, every recruited motor-unit remembers the length at which it was 

initially recruited for as long as it is still recruited. Once the motor-unit is de-recruited that 

length will be erased from memory. The inputs to each motor-unit model are the binary 

recruitment 
jR  of the 

thj  motor-unit and the instantaneous CE  length CEl , where 
jR  can only 

be 0 or 1 (either 0% or 100% recruitment). Each motor-unit model only re-calculates its 

associated isometric force 
jisof ,
 when 

jR  changes from 0 to 1 and from 1 to 0. When 
jR  

changes from 0 to 1, the 
thj  motor-unit is recruited, a new value of 

jisof ,
 is calculated from 

the F-L relationship for the CE  length at that particular time, and this is stored in the 
thj  

motor-unit’s memory. When 
jR  changes from 1 to 0, the 

thj  motor-unit is de-recruited and its 

memory erased ( 0, jisof ). Finally, the effective isometric force of the whole muscle is the 

sum of the individual forces 
,iso jf  produced by all recruited motor-units. 

 

In Herzog’s single motor-unit muscle model [18], the normalised isometric muscle force is 

approximated by the positive values of a parabola as follows: 

 

]777.1)/(554.5)/(777.2[
)(

)( 2

max,

 optoopto

iso

oiso
o llll

f

lf
lFL    (3.1) 

 

This parabola has positive values for “normalised” CE length values of: 0.4<
CEl <1.6. 

 

Where )( oiso lf  is the isometric muscle force in Newton [N] as a function of CE  length ( ol ) 

at the moment of initial recruitment. CEl  is the instantaneous CE length normalized with 

respect to the optimal CE length, 
opt

CE
CE

l

l
l  . 

 

Herzog’s F-L sub-model [18] is relatively simple and, for this reason, it has been used in this 

first implementation of the multiple motor-unit model. With the muscle now represented by 

1000 virtual motor-units, the force produced by a single motor-unit 
jisof ,
 will be one 

thousandth of the corresponding whole muscle isometric force if it was fully recruited at the 

same length as follows: 
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Where 
jol ,
 is the CE  length at the time of initial recruitment for the 

thj  motor-unit. )( , joiso lf  

is the isometric force of the whole muscle at the length when the 
thj  motor-unit was initially 

recruited. 

 

In equation 3.2, )( , joiso lf  is divided by (1000) because the multiple motor-unit model uses 

1000 virtual motor-units. If a different number of virtual motor-units m is used then that 

number should be used in the equation. The effective isometric muscle force is the summation 

of the forces produced by all motor-units. Given that only the recruited motor-units produce 

force, it is also equal to the summation of the forces produced by just the recruited motor-

units as follows: 

 





M

j

jiso

j

jjisoisoisoisoiso fRfRfRfRffEff
1

,

1000

1

,10001000,22,11, .......     (3.3) 

 

The remainder of the original Herzog model (F-V relationship and passive elements) is not 

dependent on the CE length at initial recruitment. For this reason, this was implemented for 

the muscle as a whole rather than for the individual motor-units. Hence, this part of the model 

implementation is similar to that of Herzog [18] but with the isometric force )( oiso lf  of 

Herzog’s single motor-unit model replaced by the effective isometric force isofEff . , the 

calculation of which has been explained above. 

 

As explained in Appendix 3, the author adapted Herzog’s single motor-unit model to simplify 

its use in simulation. Replacing  )( oiso lfR  by isofEff .  in the derivation described below. 

 

 

3.2.1. Derivation of 
mF  for Herzog’s single motor-unit model 

Using equations A3.3, A3.6 and A3.8 (see Appendix 3) and by substitution for CEv  in the 

formulas (of equation A3.3) and their conditions: 

 



84 

 

i) First Equation: 
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ii) Second Equation: 
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iii) Third Equation: 
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iv) Fourth Equation: 
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The replacement of  )( oiso lfR  by isofEff .  leads to equation 3.5 below for the rate of change 

of total force 
mF  produced by the musculotendon complex. 
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Then total musculotendon force is obtained by integration of 
mF  with respect to time. 

 

dtFF mm
                   (3.6) 

 

In summary, Herzog’s F-L sub-model has been replaced by the effective isometric force 

isofEff . . Because the calculation of isofEff .  is based on the length of each motor-unit when 

that motor-unit was recruited (
jol ,
), the multiple motor-unit model properly accounts for 

continuously varying recruitment )(tR  as would usually be seen in closed loop FES control. 

Conversely, Herzog’s single motor-unit model does not take into account the time history of 

muscle recruitment )(tR  because the isometric force )( oiso lf  is calculated using the length ol  

at the moment of initial recruitment for the whole muscle (regardless of the dynamic 

variations in recruitment during simulation). 

 

 

 

3.3.  Effective CE force model 

In the effective CE force ( CEfEff . ) model, each one of the muscle’s 1000 motor-units is 

modelled using a separate Herzog single motor-unit model, including both the F-L and F-V 

sub-models. This served two purposes, firstly it allowed the incorporation of additional 

features that are best modelled using a multiple motor-unit approach (see chapters 4, 5 and 6) 

and, secondly, it served to validate the isofEff .  model. 

 

The effective CE force model is presented in Figure 3.3; the binary recruitment sub-model is 

the same as that of the effective isometric force model. The isometric force 
jisof ,
 of each 

recruited motor-unit is calculated separately using equation 3.2 in the same way as the 

effective isometric force model and as shown in Figure 3.2. Herzog’s F-V sub-model is then 

used for each motor-unit separately, Herzog’s muscle model is summarised in Appendix 3. 

The force of a single motor-unit is calculated as follows: 
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Figure 3.3: Effective CE force model. Every recruited motor-unit is treated as a separate fully recruited CE for the purposes of calculating the 

isometric and non-isometric forces for each motor-unit separately. 
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The total CE force is the sum of all forces (
jCEf ,
) produced by all recruited motor-units: 

 


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,,2,1, .......      (3.8) 

 

 

Non-recruited motor-units (of index higher than M) do not produce force. The simulation 

protocols used in this Chapter and in the subsequent chapters include cycles of 

stretch/shortening for the musculotendon complex. The equation for 
mF  (equation 3.5) cannot 

be used with the CEfEff .  model because in this equation the passive elements are assumed to 

apply to the muscle as a whole and cannot be split into multiple units, whereas the F-V sub-

model need to be applied separately for each motor-unit in the CEfEff .  model using the same 

passive elements as in the single motor-unit model. In order to determine the present CE 

length, CE velocity, and CE force at any instant during the simulation, an iterative approach is 

used, this approach is summarised below. 

 

Starting at ( ott  ), the algorithm steps through the inputs )(tlmt  and )(tR .  At any given 

time, t  as the instantaneous forces of CE and SE ( CEf  and SEf ) have to be equal (see 

Appendix 3), an iterative approach can be utilized to solve for the instantaneous lengths and 

velocities of both CE and SE. This approach can be used to approximate the lengths of CE 

and SE when simulating the responses to simulation protocols of a muscle model. When the 

muscle becomes recruited, previous CE length information (of previous time-increment 

( ht  ), where h  is a small time-increment) can be used in an iterative approach to determine 
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the present CE length, CE velocity, and CE force at that instant. At each iteration CE force is 

compared to the corresponding SE force for the CE and SE lengths specified. If the CE and SE 

forces are not equal, then a new CE length is assigned and the iterative process is repeated. 

These steps will be repeated until CE force and SE force are equal (within a small pre-

specified tolerance band). At this point, the next time step in the simulation is initiated by 

reading in new values for mtl  and R . 

 

The iterative approach is illustrated in the flow-chart shown in Figure 3.4, this flow-chart 

represents the algorithm implemented in the CEfEff .  Matlab code. A detailed description of 

the iterative approach for a recruited muscle with a single motor-unit (single CE) model is as 

follows: 

i) At time ( ott  ), first guess ( 1i ) for CE length: Assume: )()(, htltl CEiCE  . 

ii) Calculate the first guess for SE length using CE length of previous step: 

)()( ,1, tltll iCEmtSE  . 

iii) Calculate ),( CECECECE lvff   of Herzog F-V sub-model (equation A3.3 in 

Appendix 3), using )(, tl iCE
 of previous step and: 

h

htltl
tv

CEiCE

iCE

)()(
)(

,

,


 .  

iv) Since CE and SE are connected in series, then: SECE ff  , solve for the second 

guess for SE length 
2,SEl : )( 2,

t

SSESSESSECE llklkff  , t

Sl : tendon slack 

length. The second guess for SE length is: t

S

S

SE
SE l

k

f
l 2, . 

v) Compare 
1,SEl  and 

2,SEl , are they equal within pre-specified tolerance band 

(
2,1, SESE ll  ) ? 

vi) If step (v) is not satisfied then repeat steps (ii) (iii) (iv) and (v) using the following 

equation as the next guess for CE length: 






 


2
)()(

2,1,

,

SESE

mtiCE

ll
tltl . 

vii)  If step (v) is satisfied then use the last guess of CE length and CE velocity to 

calculate CE force: ),( CECECECE lvff  , and then total muscle force: 

CEmtpm flkF  )( . 

viii) Go to step (i) and do the first guess of CE length for next time increment. The 

algorithm will stop at ( Tt  ). 
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Figure 3.4: Flow-chart of the iterative approach for a recruited muscle with single motor-unit 

(single CE) model. 
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Finally, the effective CE force ( CEfEff . ) of all recruited motor-units is used to calculate the 

total muscle force mF  in a similar way as in the single motor-unit model (equation A3.8 in 

Appendix 3). 

 

CEmtp

M

j

jCEmtpm fEfflkflkF .)()(
1

,  


      (3.9) 

 

In summary, this is another version of the multiple motor-unit model and has been called the 

effective CE force model ( CEfEff . ). It is similar to the isofEff .  model; the main difference is 

that the F-V sub-model is applied on each recruited motor-unit separately. As will be 

explained in Chapter 6, different fibre types can have different sub-models for the same 

muscle property (e.g. F-V sub-model). This is an advantage for the CEfEff .  model over the 

isofEff .  model, since the CEfEff .  model allows the incorporation of additional features using 

the multiple motor-unit modelling approach. 

 

 

3.4.  Simulation results 

Matlab codes were developed for simulating the responses to open-loop simulation protocols 

of three muscle models: 

 The Herzog model (treating the muscle as a single motor-unit); 

 The isofEff .  multiple motor-unit model; 

 The CEfEff .  multiple motor-unit model. 

 

Additionally, in all three cases, the CE length used for the F-L relationship can be either the 

instantaneous length or the length at initial recruitment. 

 

 

In the following sections; firstly, the two input protocols that have been used are defined. 

Then simulation results are presented to compare the alternative muscle models and, in 

particular, to demonstrate the potential errors introduced by: a) treating the muscle as a single 

motor-unit; and b) using instantaneous CE length instead of CE length at initial recruitment. 
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3.4.1. Input protocols 

In order to demonstrate the need to use a multiple motor-unit modelling approach when R  

and CEl  vary with time, input protocols are required that involve changing both R  and CEl . 

Two suitable protocols that have previously been used by Herzog [18] were chosen as this 

allowed comparison with his simulation results for validation purposes (single motor-unit 

model only). Details of the two protocols are as follows: 

 

 

Protocol-I (Figure 3.5): 

(i) At 0.0t  seconds: Full isometric recruitment at the unique resting state (i.e. at 

mmll restCE 125 , 0 mtl ); 

(ii)  At 0.1t  seconds: Stretch of 10 mm at speed of 10mm/sec for one second; 

(iii) Between 0.2t  and 0.3t : No change in R nor in mtl ; 

(iv)  At 0.3t  seconds: Partial (50%) de-recruitment; 

(v) At 0.4t  seconds: Shortening of 10 mm (to 0 mtl ) at speed of 10mm/sec for one 

second; 

(vi)  At 0.5t  seconds: Re-recruitment to 100% level. 

 

 

 

Figure 3.5: Protocol-I. (From [18]). 
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Protocol-II (Figure 3.6): 

(i) At 0.0t  seconds: Partial (50%) isometric recruitment at the unique resting state (i.e. 

at mmll restCE 125 , 0 mtl ); 

(ii)  At 0.1t  seconds: Stretch of 10 mm at speed of 10mm/sec for one second; 

(iii) Between 0.2t  and 0.3t : No change in R nor in mtl ; 

(iv)  At 0.3t  seconds: Full (100%) recruitment; 

(v) At 0.4t  seconds: Shortening of 10 mm (to 0 mtl ) at speed of 10mm/sec for one 

second. 

 

 

 

Figure 3.6: Protocol-II. (From [18]). 

 

 

Although the two protocols have different recruitment cycles, both have the same 

stretch/shortening cycle and both end at full recruitment and zero elongation. 

 

Typical values were used for the muscle parameters as provided in [18]: Nf iso 45max,  ; 

mmNkS /10 ; mmNkP /1 ; mmlrest 125 ; mmlopt 100 . The constants of the 

Herzog model were: Na 10 ; sec/40 mmb  ; Na 10 ; sec/30 mmb  . An extra 

study on the effect of CE resting length ( restl ) on force response is presented in Appendix 5. 

 

When using these protocols, the author’s Matlab implementation of the standard Herzog 

model produced the same force responses (shown in Figure 3.7) as those published by Herzog 
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[18]. In both protocols, although the muscle was recruited instantaneously, the force rises 

gradually to the full isometric force corresponding to that CE length. This is due to the 

velocity dependence of the Hill model (F-V relationship of the CE in series with the SE). 

 

 

 

Figure 3.7: Force responses of Herzog’s single motor-unit using protocol-I and protocol-II. 

 

 

3.4.2. Comparison of the isofEff .  and the CEfEff .  models 

Two versions of the multiple motor-unit model were implemented. The aim was to verify that, 

for the simple Herzog model, only the F-L relationship needs to be applied in a multiple 

motor-unit manner (as in the isofEff .  implementation).  Therefore, the isofEff .  model was 

compared with the CEfEff .  model. 

 

Figure 3.8 and Figure 3.9 show the force responses for protocol-I and protocol-II, 

respectively. The force responses of the two models are identical. This suggests that, for the 

simple Herzog model, only the F-L relationship needs to be applied in a multiple motor-unit 

manner. 
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Figure 3.8: Force responses of the isofEff .  and the CEfEff .  models, protocol-I. 

 

 

Figure 3.9: Force responses of the isofEff .  and the CEfEff .  models, protocol-II. 
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3.4.3. Single versus multiple motor-unit 

The simulation results using the isofEff .  version of the multiple motor-unit model versus the 

single motor-unit model for protocol-I are plotted in Figure 3.10. When the two models are 

compared, the force response for protocol-I was observed to be virtually identical when using 

the isofEff .  model and the original single CE  model over the first 5 seconds. This can be 

explained by considering the recruitment profile (Figure 3.5). At time zero, full recruitment 

occurs and the corresponding initial recruitment length is 125mm. Then recruitment drops to 

50% at 3 seconds. Hence, for all active motor-units, the initial recruitment length remains the 

same (125mm) throughout the first 5 seconds and, therefore, both models produce the same 

force profile. 

 

 

 

 

Figure 3.10: Force responses of the isofEff .  model and the single motor-unit model, 

protocol-I. 
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At 5 seconds the recruitment rises again to 100%. For the single motor-unit model the initial 

length is still 125mm. But for the multiple motor-unit-model, the CE is already contracted and 

its length is less than 125mm which results in a higher isometric force for the remaining 50% 

of motor-units. The difference is small in this protocol because the CE length is only slightly 

different in the two cases. However, it should be emphasised that the single motor-unit model 

incorrectly uses the length at 0 seconds throughout. 

 

Conversely, with protocol-II, after the rise to full recruitment at 3 seconds, the isofEff .  model 

produced a significantly different force profile (Figure 3.11). This is a direct result of the fact 

that the initial CE recruitment length for the motor-units recruited at 3 seconds is not the same 

as the length at 0 seconds which is used throughout by the single motor-unit model. This 

clearly demonstrates the problem with using a single motor-unit model when both recruitment 

and CE length are changing continuously as discussed earlier. 

 

 

 

Figure 3.11: Force responses of the isofEff .  model and the single motor-unit model,  

protocol-II. 
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3.4.4. Initial CE length versus instantaneous CE length 

This section compares the simulation results using the CE length at initial recruitment ( ol ) as 

the input to the F-L relationship with those using instantaneous CE length ( CEl ) as the input. 

This is done with both the single motor-unit model and the multiple motor-unit model (i.e. the 

isofEff .  model). The aim was to demonstrate the potential errors introduced by using the 

instantaneous length which is common in FES control studies. 

 

 

3.4.4.1. Comparison using single motor-unit model (standard Herzog model) 

In this section, the responses of two models are compared: 

 The single motor-unit model using length at initial recruitment ( ol ) in the F-L 

relationship; 

 The single motor-unit model using instantaneous length ( CEl ) in the F-L relationship. 

 

 

Referring to the two recruitment protocols (Figure 3.5 and Figure 3.6) and muscle parameters 

given earlier in section 3.4.1, in both cases the muscle was at rest when recruitment started. 

Therefore the CE length at initial recruitment was mmlo 125  and this was used throughout 

the two protocols because the single motor-unit model effectively consists of only one large 

motor-unit (single CE) which is recruited immediately. Conversely the instantaneous CE 

length varies continuously throughout the two protocols. 

 

Considering the first second of the force responses for the two protocols (Figure 3.12. and 

Figure 3.13) and referring to the F-L relationship and the three-element Herzog model 

(Figures A3.2 and A3.6 in Appendix 3), after initial recruitment but at constant 

musculotendon length, the CE shortens and the tendon (SE) lengthens until the isometric CE 

force (at 0CEv ) and the tendon force are equal. This shortening occurs quite quickly and 

the force reaches its steady-state value. However, after CE shortening, the instantaneous 

length is different from the initial length; which explains why the force responses for the two 

cases are different during the first second despite the constant length of the musculotendon 

complex (no stretch in the first second, i.e. 0 mtl ). Similar differences in steady-state 

forces can be observed throughout the two protocols. 
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When the muscle is stretching (between 1 and 2 seconds), the stretch increases the force 

response because of the parallel element (PE) stiffness and also because a new equilibrium 

between the CE and the SE is established. This increase is less when using instantaneous 

length (because longer CE lengths produce less isometric CE force on the descending limb of 

the F-L relationship). Similarly, when the muscle shortens (between 4 and 5 seconds), the 

decrease in force is less when using instantaneous length (because shorter CE lengths produce 

more isometric CE force on the descending limb of the F-L relationship). 

 

 

 

 

Figure 3.12: Force responses of Herzog’s single motor-unit model, protocol-I: Using the 

initial and the instantaneous lengths. 
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Figure 3.13: Force responses of Herzog’s single motor-unit model, protocol-II: Using the 

initial and the instantaneous lengths. 

 

 

 

3.4.4.2. Comparison using multiple motor-unit model 

In this section, the responses of two models are compared: 

 The multiple motor-unit model using length at initial recruitment; 

 The multiple motor-unit model using instantaneous length. 

 

Referring to Figure 3.14 and Figure 3.15, the differences between the two multiple motor-unit 

models (using alternative lengths) are similar to those seen between the corresponding single 

motor-unit models (Figure 3.12 and Figure 3.13). These differences largely arise for the 

reasons explained in the previous section. However, there are some additional noteworthy 

observations that are discussed below. 
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Figure 3.14: Force responses of the isofEff .  multiple motor-unit model, protocol-I: Using the 

initial and the instantaneous lengths. 

 

 

Figure 3.15: Force responses of the isofEff .  multiple motor-unit model, protocol-II: Using the 

initial and the instantaneous lengths. 
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When instantaneous length is used, the results are exactly the same as those for the single 

motor-unit model when using instantaneous length (Figure 3.16 and Figure 3.17). This is 

because, in this case, there is no fundamental difference between the single motor-unit model 

and the multiple motor-unit model (they both use the same instantaneous length for the entire 

muscle at all times). 

 

However, when using initial recruitment length, the results differ from those for the single 

motor-unit model because recruitment changes at different lengths (see Figure 3.6) and the 

multiple motor-unit model properly accounts for this (Figure 3.16 and Figure 3.17). In 

particular, the results diverge after recruitment rises from 50% to 100% at 5 seconds 

(Protocol-I) and at 3 seconds (Protocol-II) because the corresponding initial recruitment 

length for the remaining 50% of motor-units is different from that when the first 50% of 

motor-units were recruited at 0 seconds. 

 

 

 

Figure 3.16: Force responses of all models, protocol-I: Single motor-unit model using initial 

length, single motor-unit model using instantaneous length, multiple motor-unit model using 

initial length, and multiple motor-unit model using instantaneous length. 
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In conclusion, when instantaneous length is used, the single motor-unit model and the 

multiple motor-unit model will give the same results for any protocol. But when initial 

recruitment length is used, the multiple motor-unit model produces different results if 

different motor-units are recruited at different lengths. 

 

 

 

Figure 3.17: Force responses of all models, protocol-II: Single motor-unit model using initial 

length, single motor-unit model using instantaneous length, multiple motor-unit model using 

initial length, multiple motor-unit model using instantaneous length. 
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recruitment was 100% for the first three seconds and 50% between 0.3t  and 0.5t  

seconds. At 5 seconds the recruitment rises again to 100%, the force responses of the multiple 

motor-unit models are exactly the same. The number of recruited motor-units at 5 seconds is 

different for different multiple motor-unit models, but the same force is produced since half of 

the motor-units are recruited at the new length. For the single motor-unit model the initial 

length is still 125mm. But for the multiple motor-unit-models (10, 100 and 1000 motor-units), 

the CE is already contracted and its length is less than 125mm which results in a higher 

isometric force for the remaining 50% of motor-units. The difference is small in this protocol 

because the CE length is only slightly different in the two cases. 

 

 

 

Figures 3.18: Force responses of the 1, 10, 100 and 1000 motor-unit models, protocol-I. 
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produced a significantly different force profile from the single motor-unit model. This is a 

direct result of the fact that the initial CE recruitment length for the motor-units recruited at 3 

seconds is not the same as the length at 0 seconds which is used throughout by the single 

motor-unit model. 

 

 

 

Figures 3.19: Force responses of the 1, 10, 100 and 1000 motor-unit models, protocol-II. 
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3.6.  Conclusion 

The accuracy of the standard Herzog model can be enhanced by the multiple motor-unit 

modelling approach using the CE length at initial recruitment. Because the calculation of 

isometric force in the isofEff .  model is based on the length of each motor-unit when it was 

recruited, the multiple motor-unit model properly accounts for continuously varying 

recruitment as would usually be seen in closed loop FES control. 

 

Another version of the multiple motor-unit model, the CEfEff .  model, was developed to 

allow for the incorporation of additional features that are best modelled using a multiple 

motor-unit approach such as fatigue. It also served to validate the isofEff .  model. 

 

Open-loop simulation protocols were used to study three muscle models using both the 

instantaneous CE length and the CE length at initial recruitment for the F-L relationship. The 

three models studied were: The standard Herzog model, the isofEff .  model, and the CEfEff .  

Model. 

 

The comparison between the isofEff .  model and the CEfEff .  model ascertained that the force 

responses of the two models are identical. This suggests that, for the simple Herzog model, 

only the F-L relationship needs to be applied in a multiple motor-unit manner. 

 

When instantaneous length is used as the input to the F-L relationship, the single motor-unit 

model and the multiple motor-unit model will give the same results for any protocol. But 

when the length at initial recruitment is used as the input to the F-L relationship, the multiple 

motor-unit model produces different results if different motor-units are recruited at different 

lengths. These results demonstrate the potential errors introduced by using the instantaneous 

length which is common in FES control studies. 
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Chapter 4: The Multiple Motor-Unit Muscle Model with Fatigue 

 

4.1.  Introduction 

The force response of electrically stimulated muscle decays nonlinearly as the muscle begins 

to fatigue [3]. Eventually, the muscle is not able to produce any force [141]. The main cause 

of fatigue in FES is the use of high stimulation frequency to produce smooth contractions [24, 

142, 166]. Stimulation frequency has a great effect on muscle fatigue, higher frequency will 

produce higher force but also results in a faster fatigue rate, and vice versa [3, 47, 167]. 

Muscle fatigue is one of the major limitations of FES applications [1, 12, 47]. 

 

As discussed in section 3.1, in closed loop FES control applications R  will usually vary with 

time. As almost all muscle models used in FES control studies treat the muscle as a one large 

motor-unit, there can only be one value for the muscle’s fatigue condition despite the fact that 

in reality different motor-units are recruited at different times and hence fatigue and recovery 

cycles of different motor-units will be different. Moreover, different fibre-types have different 

fatigue characteristics. The use of a fatigue sub-model incorporated into a single motor-unit 

(SMU) model in a realistic scenario where R  is changing continuously would result in an 

over- or under-estimation of muscle force. 

 

Therefore, this chapter addresses the problem of muscle modelling for continuously varying 

R , hence different cycles of fatigue and recovery for different motor-units. A model for 

fatigue and recovery is used in the open-loop simulation protocols of single and multiple 

motor-unit (MMU) models. The results are discussed at the end of the chapter. 

 

 

4.2.  Effective CE force model with fatigue 

As discussed in section 2.2, skeletal muscles are composed of one or more of the three fibre-

types. Fatigue resistance depends on the percentage of each fibre-type in the muscle. For 

simplicity and in order to demonstrate the potential errors introduced by ignoring fatigue or 

by incorporating fatigue into a single motor-unit model, the virtual motor-units of the multiple 

motor-unit model are assumed of the same fibre-type (i.e. the same fatigue sub-model is used 

for all motor-units). 
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Muscle fatigue can be experimentally measured and modelled as index of fatigue (IF) which 

is defined as “force of the fatigued muscle normalised to force of the same un-fatigued muscle 

under same conditions”. IF is incorporated in the muscle model by multiplying it with the 

force produced by the muscle. 

 

In the review of published fatigue sub-models (section 2.5.4), many fatigue sub-models are 

available in the literature, one of the most cited fatigue sub-models was developed by Riener 

[72]. This model was chosen because its inputs are stimulation frequency freq  and 

recruitment R . Hence, fatigue of partially recruited muscle can be calculated using this model 

and the results of the single and the multiple motor-unit models can be compared. 

 

Riener-1 fatigue sub-model [72] is a modified and simplified version, of the more complex, 

Giat fatigue sub-model [143, 144, 145, 146], where in Riener fatigue sub-model, only one 

equation is used for fatigue and recovery. This model was developed first in [55] as a general 

approach then effects of recruitment and frequency were modelled and incorporated in [72]. 

Fatigue and/or recovery rate at any time is given by the following first-order equation: 
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R : Recruitment of the whole muscle. 

freqA : Muscle activation due to stimulation frequency only without the effect of other 

parameters (i.e. without yield, sag, effective length and effective frequency). 

 : This term is used to model the effect of stimulation frequency on fatigue rate. 

minIF : The minimum fitness of the muscle at which fatigue rate = 0 of the fully recruited 

muscle (i.e. the minimum value for the index of fatigue). 

fatT : Time constant for fatigue, it can have largely different values for different muscles and 

different fibre types. 

recT : Time constant for recovery, estimated in [72] as ( [sec]30recT ) for all muscles. 
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Riener-1 fatigue sub-model (equation 4.1) can be used for the whole muscle, or for a single 

motor-unit assuming full recruitment ( 1jR ) when recruited and full recovery at zero 

recruitment ( 0jR ) providing that appropriate values for model parameters are used. 

 

minIF  and 
fatT  are estimated experimentally, they can have largely different values for 

different muscles depending of fibre-type. Parameters of Riener-1 fatigue sub-model are 

given in [72] for five muscle groups (Mono-articular hip flexors, Mono-articular hip 

extensors, Rectus femoris, Vasti, and Gastrocnemius) as: 0min IF , [sec]18fatT , and 

[sec]30recT  ( recT  value is for any muscle). These parameters will be used in equation 4.1. 

 

At stimulation frequency ( Hzfreq 30 ), the fatigue curve of equation 4.1 for fully 

recruited muscle ( 1R ) is shown in Figure 4.1. Note that the fatigue curve will reach zero 

only when the stimulation frequency is maximum (i.e. Hzfreq 100 ) and full recruitment 

( 1R ). The recovery curve of equation 4.1 for fatigued muscle at zero recruitment ( 0R ) 

is shown in Figure 4.2. 

 

 

Figure 4.1: Fatigue curve of Riener fatigue sub-model. Model parameter values were taken 

from [72]. 
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Figure 4.2: Recovery curve of Riener fatigue sub-model. Model parameter values were taken 

from [72]. 

 

 

The effective CE force model with fatigue sub-model is presented in Figure 4.3. The effective 

CE force of the entire muscle, including fatigue and recovery of every motor unit, is the sum 

of the individual motor unit forces as follows: 
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fIF
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1

,

,2,21,1 .......

   (4.2) 

 

 

Finally, the effective CE force ( CEfEff . ) with fatigue of all recruited motor-units is used to 

calculate the total muscle force mF  as follows: 
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Figure 4.3: Fatigue sub-model incorporated into the effective CE force model CEfEff . . Fatigue and recovery of every motor-unit is modelled 

separately. 
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4.3.  Simulation results 

Matlab codes were developed for simulating the responses to open-loop simulation protocols 

of two muscle models: 

 The Herzog model (treating the muscle as a single motor-unit); 

 The CEfEff .  multiple motor-unit model. 

 

In both cases, fatigue can be ignored or incorporated into the model. 

 

In the following sections, firstly, the three input protocols that have been used are defined. 

Then simulation results are presented to compare the alternative muscle models and, in 

particular, to demonstrate the potential errors introduced by: a) ignoring fatigue; and b) 

incorporating fatigue sub-model into single motor-unit model instead of the multiple motor-

unit model. 

 

 

4.3.1. Input protocols 

In order to demonstrate the need to use a multiple motor-unit modelling approach to model 

fatigue when R  varies with time, input protocols are required that involve changing R  at 

different times and for different periods of time. Three suitable protocols were chosen, details 

of the three protocols are as follows: 

 

Protocol-III (Figure 4.4): 

(i) At 0.0t  seconds: Full isometric recruitment at the unique resting state (i.e. at 

mmll restCE 125 , 0 mtl ), at IF=1 (fully recovered muscle); 

(ii)  At 1tt  : Partial (50%) de-recruitment; 

(iii)  At 2tt  : Re-recruitment to 100% level. 

1t : The time at which muscle force is minimal because of fatigue (recruited motor-units 

are fully fatigued). 

2t : The time at which fatigued motor-units are fully recovered (after being not recruited 

for some time that is enough for full recovery). 
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Figure 4.4: Protocol-III. 

 

 

Protocol-IV (Figure 4.5): 

(i) At 0.0t  seconds: Partial (50%) isometric recruitment at the unique resting state (i.e. 

at mmll restCE 125 , 0 mtl ), at IF=1 (i.e. fully recovered muscle); 

(ii) At 1tt  : Full (100%) recruitment. 

 

 

Figure 4.5: Protocol-IV. 

 

Protocol-V (Figure 4.6): 

(i) At 0.0t  seconds: Partial (50%) isometric recruitment at the unique resting state (i.e. 

at mmll restCE 125 , 0 mtl ), at IF=1 (fully recovered muscle); 

(ii) At 3tt  : Constant rate of recruitment up to full (100%) recruitment, at recruitment 

rate = 0.1667% per second. 

3t :  The time at which recruited motor-units start to fatigue. In Riener fatigue sub-model it 

is assumed that: 03 t , (in Hawkins fatigue sub-model: 03 t  for all fibre types). 



 

115 

 

 

Figure 4.6: Protocol-V. 

 

 

In protocol-V; R  starts at 50% isometric recruitment. Once fatigue starts R  is increased to 

compensate for the force loss (due to fatigue) by recruiting more motor-units. This can be 

considered as mimicking a closed-loop FES control realistic scenario, where the FES 

controller will increase stimulation input in order to maintain the output muscle force at the 

required level thus compensating for fatigue by recruiting more un-fatigued motor-units. 

 

Isometric contractions are applied in all protocols, there is no stretch nor shortening since this 

has no effect on Riener-1 fatigue sub-model (equation 4.1). For simplicity, constant 

recruitment level at the unique resting state ( resto ll  , 0 mtl ) is assumed in all protocols. 

However, in a realistic scenarios FES is usually intermittent. The muscle is able to recover 

and restore some of its capacity while FES is off. Intermittent FES may delay fatigue but will 

not prevent it. 

 

Rigid tendon is assumed in all protocols (i.e. Sk ), and hence 0 CEmt ll . This 

assumption was made so that the CE and SE lengths do not change when CE force changes 

because of changes in recruitment level R  and hence different ol  for different motor-units in 

the multiple motor-unit model (if the tendon is not rigid then CE length will be shorter after 

recruitment because of tendon compliance). In this way all differences in force responses of 

different models are due to fatigue only. 

 

 



 

116 

 

4.3.2. Comparison of the single and multiple motor-unit models without fatigue 

The simulation results using the multiple motor-unit model versus the single motor-unit 

model for protocol-III, protocol-IV and protocol-V are plotted in Figure 4.7, Figure 4.8 and 

Figure 4.9, respectively. The aim was to confirm that, for the chosen protocols, the force 

responses of the two models (SMU model and MMU model) are identical. The force 

responses of the two models in protocol-III, protocol-IV and protocol V are calculated using 

the length at the same initial length ( ol ). In all protocols, all or part of motor-units is recruited 

first and then the rest is recruited at different time. The isometric forces of all motor-units are 

all calculated at the same initial length in the Herzog F-L sub-model since the tendon is 

assumed rigid and the CE length is the same at all times in all protocols. For this reason the 

two force responses are identical. 

 

 

 

 

Figure 4.7: Identical force responses of the single and multiple motor-unit models without 

fatigue sub-model, protocol-III. 
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SMU model without fatigue.

MMU model without fatigue.
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Figure 4.8: Identical force responses of the single and multiple motor-unit models without 

fatigue sub-model, protocol-IV. 

 

 

Figure 4.9: Identical force responses of the single and multiple motor-unit models without 

fatigue sub-model, protocol-V. 
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SMU model without fatigue.

MMU model without fatigue.
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SMU model without fatigue.

MMU model without fatigue.
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4.3.3. Comparison of models with and without  fatigue 

This section compares the simulation results using the same model with and without fatigue. 

This is done with both the single motor-unit model and the multiple motor-unit model. The 

aim was to demonstrate the potential errors introduced by ignoring fatigue which is quite 

common in FES control studies. 

 

4.3.3.1. Comparison using single motor-unit model (standard Herzog model) 

In this section, the responses of two models are compared: 

 The single motor-unit model without fatigue; 

 The single motor-unit model with fatigue (using Riener fatigue sub-model for whole 

muscle with variable recruitment). 

Indices of fatigue are calculated using equation 4.1. For all next simulations, indices of fatigue 

are plotted for comparison with corresponding force responses. 

Referring to the recruitment protocol-III, the fatigue index, and the force response of the 

single motor-unit model with fatigue (Figure 4.4, Figure 4.10 and Figure 4.11), in the first 100 

seconds the muscle force decreases exponentially until the partial de-recruitment at 100 

seconds. During the partial recruitment (between 100 and 200 seconds) the index of fatigue 

increases causing the force to increase, which is unrealistic (see section 2.2). The recruited 

part of the muscle is already fully fatigued and cannot make any recovery while still recruited, 

and only the non-recruited part can make recovery. The full recruitment on 200 seconds 

increases the force instantly and starts to decay again because of fatigue. 

Referring to the recruitment protocol-IV, the fatigue index, and the force response of the 

single motor-unit model with fatigue (Figure 4.5, Figure 4.12 and Figure 4.13), for the first 

150 seconds the fatigue rate of the 50% recruited muscle is less than the fatigue rate when the 

muscle is fully recruited (in protocol-III). The fatigue rate in Figure 4.13 when the muscle is 

50% recruited is slow when compared with the fully recruited muscle in the first 100 seconds 

of Figure 4.11. Again, this behaviour is also unrealistic. 

Referring to the recruitment protocol-V, the fatigue index, and the force response of the single 

motor-unit model with fatigue (Figure 4.6, Figure 4.14 and Figure 4.15), the force response 

was roughly maintained at constant level. The gradual increase in R  recruits more fresh 

motor-units to compensate for the decrease in the force produced by those recruited motor-

units because of fatigue. 
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Figure 4.10: Index of fatigue for the single motor-unit model, protocol-III. 

 

 

Figure 4.11: Force responses of the single-motor-unit model, protocol-III: ignoring and 

including fatigue sub-model. 
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SMU model with fatigue.

SMU model without fatigue.
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Figure 4.12: Index of fatigue for the single motor-unit model, protocol-IV. 

 

 

Figure 4.13: Force responses of the single-motor-unit model, protocol-IV: ignoring and 

including fatigue sub-model. 
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SMU model with fatigue.

SMU model without fatigue.
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Figure 4.14: Index of fatigue for the single motor-unit model, protocol-V. 

 

 

Figure 4.15: Force responses of the single-motor-unit model, protocol-V: ignoring and 

including fatigue sub-model. 
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4.3.3.2. Comparison using the multiple motor-unit model 

In this section, the responses of two models are compared: 

 The multiple motor-unit model without fatigue; 

 The multiple motor-unit model with fatigue (using separate Riener fatigue sub-model 

with every motor-unit). 

For each motor-unit, the fatigue curve when recruited and the recovery curve when not 

recruited are similar to a fully recruited muscle as described earlier in this chapter (Figure 4.1 

and Figure 4.2). However, for comparison purposes, the average fatigue index of the MMU 

model for all of the 1000 motor units is shown for each protocol (equals IF of SMU model). 

Referring to the recruitment protocol-III, the average index of fatigue, and the force response 

of the MMU model with fatigue (Figure 4.4, Figure 4.16 and Figure 4.17), in the first 100 

seconds the muscle force decreases exponentially until the partial de-recruitment at 100 

seconds. During the partial recruitment (between 100 and 200 seconds) the force response of 

the MMU model with fatigue is virtually constant because the recruited part of the muscle is 

already fatigued at its lowest level; the other non-recruited part of the muscle is already 

making recovery. The full recruitment on 200 seconds increases the force at high level 

because the newly recruited motor-units have been fully recovered, and the fatigue cycle 

starts again for the newly recruited motor-units. Figure 4.17 shows the force responses of the 

SMU and MMU models with and without fatigue for protocol-III. 

Referring to the recruitment protocol-IV, the average index of fatigue, and the force response 

of the MMU model with fatigue (Figure 4.5, Figure 4.18 and Figure 4.19), for the first 150 

seconds the fatigue rate of the 50% recruited muscle is virtually the same as that of the fully 

recruited muscle (in protocol-III). In Figures 4.17 and 4.19, both forces gradually fatigue to a 

value just below 50% of its value at start of protocol, but average indexes of fatigue for the 

MMU model are different as shown in Figures 4.16 and 4.18. Figure 4.19 shows the force 

responses of the SMU and MMU models with and without fatigue for protocol-IV. 

Referring to the recruitment protocol-V, the average index of fatigue, and the force response 

of the MMU model with fatigue (Figure 4.6, Figure 4.20 and Figure 4.21), the force response 

decreases exponentially in the first 50 seconds then starts to increase at about constant rate; 

this is largely different than the force response of the single motor-unit model. Figure 4.21 

shows the force responses of the SMU and MMU models with and without fatigue for 

protocol-V. 
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Figure 4.16: Average index of fatigue for the multiple motor-unit model, protocol-III. 

 

 

Figure 4.17: Force responses of the single and multiple motor-unit models, protocol-III: 

ignoring and including fatigue sub-model. 
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Figure 4.18: Average index of fatigue for the multiple motor-unit model, protocol-IV. 

 

 

Figure 4.19: Force responses of the single and multiple motor-unit models, protocol-IV: 

ignoring and including fatigue sub-model. 
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Figure 4.20: Average index of fatigue for the multiple motor-unit model, protocol-V. 

 

 

Figure 4.21: Force responses of the single and multiple motor-unit models, protocol-V: 

ignoring and including fatigue sub-model. 
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4.4.  Conclusion 

The fatigue sub-model was incorporated into the multiple motor-unit muscle model, further 

improving the way in which the recruitment-history is accounted for. The accuracy of the 

standard Herzog model can be enhanced by incorporation of the fatigue sub-model into the 

multiple motor-unit model. In the MMU model with fatigue, each motor-unit has its own 

fatigue and recovery cycles independent from other motor-units. This also takes account of 

the fact that muscle fatigue is highly affected by fibre-type and time elapsed since onset of 

recruitment. Such property should be modelled for each motor-unit separately, which can be 

achieved by using the multiple motor-unit modelling approach. The multiple motor-unit 

model is able to properly account for continuously varying recruitment as would usually be 

seen in closed loop FES control. 

 

Effect of recruitment on fatigue and recovery in Riener fatigue sub-model (when incorporated 

into the SMU model) contradicts the empirical experiments. Empirical experiments show that 

partial recruitment increases muscle capacity by allowing non-recruited motor-units to 

recover, but recruited motor-units cannot recover when they are still recruited (electrically 

stimulated by FES). 

 

Open-loop simulation protocols were used in this chapter to study two muscle models (SMU 

and MMU models) with and without fatigue. The two models studied were: The standard 

Herzog model and the CEfEff .  Model. 

 

When fatigue is incorporated using Riener fatigue sub-model, the multiple motor-unit model 

produces different results (than those of the single motor-unit model) for different levels of 

recruitment and when different motor-units are recruited at different times because every 

motor-unit is modelled separately in the multiple motor-unit model with fatigue. 

 

These results demonstrate the potential errors introduced by ignoring fatigue or by using 

single motor-unit (even if the fatigue sub-model is incorporated into the model) which are 

quite common in FES control studies. By correctly modelling the effects of continuously 

changing recruitment, by means of the multiple motor-unit model with fatigue sub-model, it is 

hoped that better FES controllers can be designed. 
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Chapter 5: The Multiple Motor-Unit Model with Force Enhancement & Depression 

 

5.1.  Introduction 

Skeletal muscle force production is history dependent, yet this aspect of muscle modelling has 

received little attention in FES control studies [13]. Force depression following shortening 

and force enhancement following stretch can reach values of up to almost 50% of the 

corresponding isometric muscle force [13]. Therefore, if not properly accounted for during the 

design, it is reasonable to assume that this effect may adversely influence the performance of 

FES controllers. To the best of the author’s knowledge, this length-history dependence has yet 

to be incorporated in muscle models in the context of FES control. 

 

As discussed in section 2.5.5, force enhancement/depression is affected by magnitude of 

stretch/shortening, length at initial recruitment, recruitment level, velocity, and stimulation 

frequency during stretch/shortening, but is mainly affected by magnitude of stretch/shortening 

[13, 150, 151, 152, 153, 154, 155, 156, 157]. 

 

As discussed in section 3.1, it is reasonable to assume that the recruitment level ( R ) changes 

continuously. Similarly, in closed loop FES control applications R  will usually vary with 

time. However, as almost all muscle models used in FES control studies treat the muscle as a 

one large motor-unit, there can only be one value for the force enhancement or depression 

despite the fact that in reality different motor-units are recruited at different lengths and hence 

magnitude of stretch/shortening will be different. The use of a force enhancement & 

depression sub-model incorporated into a single motor-unit (SMU) model in a realistic 

scenario where R  and CEl  are changing continuously would result in an over- or under-

estimation of force enhancement and depression. 

 

Therefore, this chapter addresses the problem of muscle modelling for continuously varying 

R  and ol , hence different initial lengths and magnitude of stretch and/or shortening for 

different motor-units. For simplicity, the focus in this chapter will be on the steady-state force 

enhancement and depression after end of stretch and/or shortening (i.e. effects of force 

enhancement/depression during stretch/shortening are ignored here). 
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As discussed in section 2.5.5, only a few models for force enhancement & depression are 

available in the literature, and they do not include all the length-history properties as observed 

experimentally, see experimental data in Appendix 2. A standard and new complex sub-model 

for force enhancement & depression was developed during this research that incorporates 

most of the length-history properties (more complex than Hawkins and Forcinito IE & ID 

sub-models). The empirical data used to develop this sub-model were collected from the 

literature. Details of the standard force enhancement & depression sub-model are given in 

Chapter 6. 

 

A simple model for force enhancement & depression that models the steady-state effects of 

force enhancement/depression following stretch/shortening is used in the open-loop 

simulation protocols of single and multiple motor-units models. The results are discussed at 

the end of the chapter. 

 

 

5.2.  Effective CE force ( CEfEff . ) model with force enhancement & depression 

The effective CE force model (developed in Chapter 3) is extended by incorporating the 

model of force enhancement & depression proposed by Forcinito and colleagues [156, 157] 

for a fully recruited muscle treated as a single motor-unit. Based on their model, an elastic 

rack has been included in parallel with each motor-unit (Figure 5.1). When a motor-unit is 

recruited, its elastic rack is engaged and thus, if there is any change in the CE length after 

recruitment of this motor-unit, then the length of the elastic rack (
jERl ,
) will also change by 

the same magnitude. The passive force produced by that motor-unit will be a function of the 

change in the elastic rack length 
jERl , . Instantaneous length of the elastic rack (

ERl ) is the 

same as the instantaneous CE  length (i.e. CEER ll  ). Force enhancement or depression for a 

single motor-unit of index (j) is given by: 

 














 jER
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jde l
l

AE
ff ,

,,

.
)/(                 (5.1) 

 

E : is the modulus of elasticity of the elastic rack. 

A : is the cross-sectional area of the elastic rack. 
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ojERl ,, : is the elastic rack length at initial recruitment (normalised with respect to 
optl ). 

ERl : is the total displacement of the elastic rack after end of stretch/shortening (normalised 

with respect to 
optl ). 

IE : Index of force enhancement following stretch of recruited muscle. 

ID : Index of force depression following shortening of recruited muscle. 

 

 

 

Figure 5.1: Motor-unit with parallel elastic rack. Force enhancement & depression is 

modelled by an elastic rack in parallel with each motor-unit. 

 

 

Forcinito elastic rack models only the steady-state force enhancement of depression. The 

complete Forcinito IE & ID sub-model includes also the transient response during 

stretch/shortening, Forcinito IE & ID sub-model is summarised in Appendix 8. 

 

Force enhancement following stretch is modelled by the index of enhancement IE. Force 

depression following shortening is modelled by the index of depression ID, for topology of 

different models see appendix 1. The index of enhancement & depression IE & ID is 

represented by: 
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Both of IE and ID have the same equation but (
ERl ) will be positive in case of stretch and 

negative in case of shortening. 

 

The effective CE force model with force enhancement & depression is presented in Figure 

5.2. The effective CE force of the entire muscle, including force enhancement and depression 

for each motor unit recruited, is the sum of the individual motor unit forces as follows: 
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  (5.4) 

 

 

 

Finally, the effective CE force ( CEfEff . ) with force enhancement & depression of all 

recruited motor-units is used to calculate the total muscle force mF  as follows: 
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Figure 5.2: Force enhancement & depression incorporated into the effective CE force model. 
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5.3.  Simulation results 

Matlab codes were developed for simulating the responses to open-loop simulation protocols 

of two muscle models: 

 The Herzog model (treating the muscle as a single motor-unit); 

 The CEfEff .  multiple motor-unit model. 

 

In both cases, the force enhancement & depression can be neglected or incorporated into the 

model. 

 

In the following sections, firstly, the two input protocols that have been used are defined. 

Then simulation results are presented to compare the alternative muscle models and, in 

particular, to demonstrate the potential errors introduced by: a) ignoring the force 

enhancement & depression; and b) incorporating force enhancement & depression sub-model 

into a single motor-unit model instead of multiple motor-unit (MMU) model. 

 

 

5.3.1. Input protocols 

In order to demonstrate the need to use a multiple motor-unit modelling approach to model 

force enhancement & depression when R  and CEl  vary with time, input protocols are 

required that involve changing R , CEl , and magnitude of stretch/shortening. Two suitable 

protocols were chosen, details of which are as follows: 

 

Protocol-VI (Figure 5.3): 

(i)  At 0.0t  seconds: Partial (50%) isometric recruitment at the unique resting state 

(i.e. at mmll resto 125 , 0 mtl ); 

(ii) At 0.1t  seconds: Shortening of 50 mm (to 50 mtl mm) at speed of 25mm/sec 

for two seconds; 

(iii) Between 0.3t  and 0.4t : No change in R nor in mtl . 

(iv)  At 0.4t  seconds: Full (100%) recruitment; 

(v) Between 0.4t  and 0.5t : No change in R nor in mtl . 

(vi)  At 0.5t  seconds: Stretch of 50 mm (to 0 mtl ) at speed of 25mm/sec for two 

seconds. 
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Figure 5.3: Protocol-VI. 

 

 

 

Protocol-VII (Figure 5.4): 

(i) At 0.0t  seconds: Partial (50%) isometric recruitment at 50 mtl mm; 

(ii) At 0.1t  seconds: Stretch of 50 mm (to 0 mtl ) at speed of 25mm/sec for two 

seconds; 

(iii) Between 0.3t  and 0.4t : No change in R nor in mtl . 

(iv)  At 0.4t  seconds: Full (100%) recruitment; 

(v)  Between 0.4t  and 0.5t : No change in R nor in mtl . 

(vi)  At 0.5t  seconds: Shortening of 50 mm (to 50 mtl mm) at speed of 25mm/sec 

for two seconds. 
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Figure 5.4: Protocol-VII. 

 

 

 

 

Although the two protocols have different stretch/shortening cycles, both have the same 

recruitment cycle and both end at full recruitment. Another important point, since the length 

at initial recruitment is used, the corresponding isometric forces of the start and end CE 

lengths of both protocols are the same in the Herzog force-length sub-model (i.e.  

)25.1()75.0( optisooptiso lflf  ), hence there is no effect of the initial length in these two 

protocols (the problem addressed in chapter 3) and no difference (in the steady-state) if the 

instantaneous or the initial length was used, see Figure 5.5 (the transient-state is different in 

this case). This means any difference in the simulation results is only because of the force 

enhancement & depression sub-model. 
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Figure 5.5: The corresponding isometric forces of the start and end CE lengths of protocol-VI 

and protocol-VII are equal in Herzog F-L sub-model. )25.1()75.0( optisooptiso lflf  . 

 

 

The typical values for the muscle parameters used in Chapter 3 are used in this chapter as 

well. The parameters of force enhancement & depression sub-model (equation 5.1) were 

roughly estimated using the experimental data in Appendix 2. However, the aim was not to 

make an exact estimation for the parameters of equation 5.1, the aim was to demonstrate the 

potential errors introduced by ignoring the force enhancement & depression or using the 

single motor-unit model instead of the multiple motor-unit model. 

 

 

Rigid tendon is assumed in both protocols (i.e. Sk ). The rigid tendon is assumed so that 

the CE length does not change when CE force changes because of changes in recruitment 

level R  and hence different ol  for different motor-units in the multiple motor-unit model. 

Based on this assumption: CEmt ll  , i.e. changes in CE length are always the same as the 

changes in the length of the musculotendon complex (the whole muscle lenght). In this way 

all differences in force response are due to force enhancement and/or depression only. It is 

also assumed that PE force (
PEf ) is zero for lengths less than restl  (i.e. 

restCEPE llforf  0 ). 
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5.3.2. Comparison of the single and multiple motor-unit models without force 

enhancement & depression 

Simulation results using the multiple motor-unit model versus the single motor-unit model for 

protocol-VI and protocol-VII are plotted in Figure 5.6 and Figure 5.7. The aim was to confirm 

that, for the chosen protocols, the force responses of the two models are identical. The force 

responses of the two models, in protocol-VI and protocol VII, are calculated using the length 

at initial recruitment ( ol ). In both protocols, half of motor-units is recruited at (
opto ll 75.0 ) 

and the other half is recruited at (
opto ll 25.1 ). The corresponding isometric forces of both 

initial lengths are the same in the Herzog F-L sub-model since )25.1()75.0( optisooptiso lflf   as 

illustrated in Figure 5.5. For this reason the two force responses are identical. 

 

 

 

Figure 5.6: Identical force responses of the single and multiple motor-unit models without 

force enhancement & depression sub-model, protocol-VI. 
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Figure 5.7: Identical force responses of the single and multiple motor-unit models without 

force enhancement & depression sub-model, protocol-VII. 

 

 

5.3.3. Comparison of models with and without  force enhancement & depression 

This section compares the simulation results using the same model with and without force 

enhancement & depression. This is done with both the single motor-unit model and the 

multiple motor-unit model. The aim was to demonstrate the potential errors introduced by 

ignoring force enhancement & depression which is common in FES control studies. 

 

 

5.3.3.1. Comparison using single motor-unit model (standard Herzog model) 

In this section, the responses of two models are compared: 

 The single motor-unit model without force enhancement & depression; 

 The single motor-unit model with force enhancement & depression (using one single 

elastic rack). 
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Referring to the two recruitment protocols; protocol-VI (Figure 5.3) and protocol-VII (Figure 

5.4), the force responses of the SMU models (Figure 5.8 and Figure 5.9) and the force 

enhancement & depression sub-model (equations 5.2 and 5.3), in both cases the isometric 

forces corresponding to the CE length at initial recruitment (at 0 seconds) are equal. Although 

the initial CE lengths, in the two protocols, are on different limbs of the F-L curve when 

recruitment started, the corresponding isometric forces are equal, see Figure 5.5. The CE 

length at initial recruitment is used throughout the two protocols since the single motor-unit 

model effectively consists of only one single CE and can have only one initial length as long 

as it is still recruited at any level of recruitment (details are illustrated in Appendix 3). 

 

In Figure 5.8, when the muscle is shortening (between 1 and 3 seconds) the shortening 

decreases the force response of the model with elastic rack and continues to decrease until the 

end of shortening while the force response of the other model is constant. After end of 

shortening, the elastic rack is still engaged and thus the passive force which was produced 

during shortening will not disappear after end of shortening since the elastic rack is still 

engaged. After the rise to full recruitment at 4 seconds, the force responses of both models 

increase with the same amount since the elastic rack is not affected by recruitment variations 

when CE length in constant. When the muscle is stretching (between 5 and 7 seconds), the 

force response of the model with the elastic rack starts to increase until the force responses of 

both models are equal at the end of stretch. The elastic rack is still engaged but because it 

stretches back to the initial length when it was first engaged, the passive force produced by 

the elastic rack continues to decrease until it disappears at 7 seconds (at the length it was 

initially engaged at). 

 

Conversely, with protocol-VII, the elastic rack increases the force response during stretch 

(between 1 and 3 seconds) and retains it (Figure 5.9). When the muscle is shortening (between 

5 and 7 seconds), the elastic rack starts to lose its force until the force responses of both 

models are equal at the end of shortening. 
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Figure 5.8: Force response of the single-motor-unit model, protocol-VI: ignoring and 

including force enhancement & depression. 

 

Figure 5.9:  Force response of the single-motor-unit model, protocol-VII: ignoring and 

including force enhancement & depression. 
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5.3.3.2. Comparison using the multiple motor-unit model 

In this section, the responses of two models are compared: 

 The multiple motor-unit model without force enhancement & depression; 

 The multiple motor-unit model with force enhancement & depression (using 1000 

elastic racks). 

 

Referring to the force responses of the MMU model with and without force enhancement & 

depression sub-model (Figure 5.10 and Figure 5.11), the differences between the two multiple 

motor-unit models (with and without elastic racks) are similar to those seen between the 

corresponding single motor-unit models (Figure 5.8 and Figure 5.9). These differences largely 

arise for the reasons explained in the previous section. However, there are some additional 

noteworthy observations that are discussed below. 

 

 

 

Figure 5.10: Force responses of all models, protocol-VI: SMU model without force 

enhancement & depression sub-model, SMU model with force enhancement & depression 

sub-model, MMU model without force enhancement & depression sub-model, and MMU 

model with force enhancement & depression sub-model. 
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Figure 5.11: Force responses of all models, protocol-VII: SMU model without force 

enhancement & depression sub-model, SMU model with force enhancement & depression 

sub-model, MMU model without force enhancement & depression sub-model, and MMU 

model with force enhancement & depression sub-model. 

 

When force enhancement & depression sub-model is ignored, the results are similar to those 

for the single motor-unit model when ignoring force enhancement & depression sub-model, 

all models are plotted together in Figures 5.10 and 5.11. This is because, for these particular 

protocols, the isometric forces of all initial CE lengths for both protocols are equal (as 

discussed earlier). The rise to full recruitment at 4 seconds, in both protocols, was on a CE 

length on the other limb of the F-L curve but the corresponding isometric force is the same as 

that corresponding to the CE length at 0 seconds. 

 

However, when including force enhancement & depression, the results differ from those for 

the single motor-unit model because recruitment changes at different lengths and hence the 

elastic racks of the multiple motor-unit model are engaged at different lengths and different 

magnitudes of stretch or shortening (see Figure 5.3 and Figure 5.4) and the multiple motor-

unit model is able to properly account for varying recruitment level at different CE lengths 

(Figure 5.10 and Figure 5.11). 

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

45

Time [s]

F
o
rc

e
 [

N
]

Force Responses of the Single and Multiple Motor-Unit Models

 

 

SMU model without force enh & dep.

SMU model with force enh & dep.

MMU model without force enh & dep.

MMU model with force enh & dep.



 

142 
 

Referring to the multiple motor-unit model with force enhancement & depression sub-model 

(Figure 5.10), when the muscle is shortening (between 1 and 3 seconds) 50% of the elastic 

racks are engaged and the shortening decreases the force response of this model (MMU model 

with elastic racks) and continue to decrease until the end of shortening while the force 

response of the other model (MMU model without elastic racks) is constant. After end of 

shortening, 50% of the elastic racks are still engaged and thus the passive forces produced 

during shortening will not disappear. After the rise to full recruitment at 4 seconds, the force 

responses of both models (MMU models with and without elastic racks) increase by the same 

magnitude since the elastic racks are not affected by the increase in recruitment level. The rise 

of recruitment to 100% at 4 seconds will also engage the remaining 50% of elastic racks at 

different length (for the MMU model with elastic racks). When the muscle is stretching 

(between 5 and 7 seconds), the passive forces of the elastic racks engaged first (at restCE ll  ) 

start to decrease because they stretch back to the initial length where they were first engaged, 

and the passive forces of the lately engaged elastic racks start to increase until the end of 

stretch (at restCE ll  ). At the end of the protocol, the force magnitudes of the two MMU 

models are different because there are 50% of elastic racks still engaged and produce passive 

force in the MMU model with elastic racks. The other 50% of elastic racks are still engaged 

but at the same initial length where they were engaged first, and hence will produce no force. 

 

In Figure 5.11, force enhancement and force depression are modelled in a similar way as 

described above. Note that the amount of force enhancement or depression produced at 

shorter initial length is more than that produced at longer initial length (Figure 5.10 and 

Figure 5.11), this is because force enhancement or depression is divided by the initial length 

 ojERl ,,  in equations 5.2 and 5.3. 

 

The single and the multiple motor-unit models without force enhancement & depression are 

plotted together in the same figure, but their force responses are exactly the same for the two 

protocols (Figure 5.10 and Figure 5.11). 

 

 

5.4.  Conclusion 

The force enhancement & depression sub-model was incorporated into the multiple motor-

unit muscle model, further improving the way in which the recruitment-history and length-

history are accounted for. The accuracy of the standard Herzog model can be enhanced by the 
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force enhancement & depression sub-model incorporated into the multiple motor-unit model. 

Since the force enhancement & depression sub-model is based on the magnitude of stretch 

and/or shortening and the length of each motor-unit when it was initially recruited, the 

multiple motor-unit model is able to properly account for continuously varying recruitment 

levels at different CE lengths as would usually be seen in closed loop FES control. 

 

Open-loop simulation protocols were used to study two muscle models (SMU and MMU 

models) with and without force enhancement & depression sub-model. The two models which 

have been studied in this chapter are the standard Herzog model (with SMU) and the CEfEff .  

Model. 

 

When force enhancement and/or depression are ignored in the muscle model, the single 

motor-unit model and the multiple motor-unit model do not show any force enhancement or 

depression because this is not modelled in the standard Hill model (or any other standard Hill-

based model). When force enhancement & depression are modelled using Forcinito elastic 

rack, the multiple motor-unit model produces different results if different motor-units are 

recruited at different lengths because the elastic racks engage at different lengths and 

stretch/shorten at different magnitudes. 

 

These results demonstrate the potential errors introduced by ignoring the force enhancement 

& depression sub-model or by using the single motor-unit model (even if the force 

enhancement & depression sub-model is incorporated) which are common in muscle models 

used in FES control studies. By correctly modelling the effects of continuously changing 

recruitment levels and CE length (during dynamic contractions), by means of the multiple 

motor-unit model with force enhancement & depression sub-model, it is hoped that better 

FES controllers can be designed. 
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Chapter 6: Towards a General Model 

 

6.1.  Introduction 

A general model, capable of representing the alternative sub-models (for each muscle 

property) presented in section 2.5 and the inter-connection of these sub-models (model 

topology), could be used to represent any of the alternative muscle models presented in 

Chapter 2 or to build new models at different levels of complexity. Such a “General Model” 

could be used to study the effect of muscle model complexity on FES controller design so that 

appropriate trade-offs between model complexity and model accuracy could be determined. 

Therefore a “General Model” that can be used to represent all relevant models from the 

literature was developed. 

 

The topology of the “General Model” is presented in section 6.2 showing the arrangement of 

sub-models and the interlinking model variables, i.e. the inputs and outputs of the various 

sub-models. The arrangement of the passive elements is also presented. Section 6.3 presents 

the proposed general forms for the sub-models required in muscle modelling for FES 

controller design. 

 

 

6.2.  Topology of the “General Model” 

A standard topology for the “General Model” is presented here with a description of how it 

can be adapted to represent the topologies of other models presented in the literature. The 

topologies of some of the important published muscle models are presented in Appendix 1.  

 

The full topology of the “General Model” is too large to be represented in one diagram. 

Therefore it is broken into parts and represented in separate figures, which are discussed 

under the following sub-headings. 

 

 

6.2.1 Recruitment model topology 

Figure 6.1 shows the FES recruitment model, which assumes stimulation frequency is 

constant and pulse width (or pulse amplitude) determines recruitment iR , which can be 
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different for different fibre-types (i indicating the fibre type). A model of calcium dynamics is 

included before the recruitment model.  

 

Referring to Figure 6.2, the natural stimulation sub-model includes a model of the relationship 

between natural stimulation input U  and both recruitment and stimulation frequency for each 

fibre-type. The input is the natural stimulation input U and the outputs are effU  and 
ifreq . 

These two outputs can be used in the same way as used with FES (i.e. the same recruitment 

sub-model can be used with both FES and natural stimulation). effU  was introduced in VM 

4.0 [128] to model the rise and fall effects of calcium dynamics, which represents the 

activation transient-state. 

 

As discussed in sections 2.2.1, 2.3.3 and 2.5.1; at onset and termination of FES (or natural 

voluntary contraction) there is a transient-state of activation, this can be modelled by the rise 

and fall time effU  sub-model as in Brown model (details are provided in [128], summary in 

Appendix 1) or the “calcium dynamics + time delay” sub-model as in Riener-1 model (details 

are provided in [72], summary in Appendix 1). These two alternative sub-models (or any 

other alternative) can be incorporated into the “General Model” as shown in Figures 6.1 and 

6.2. 

 

 

 

 

Figure 6.1: Topology of the “General Model” for FES input. 
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Figure 6.2: Topology of the “General Model” for natural stimulation input. 

 

 

 

6.2.2 Muscle model topology 

Stimulation frequency is assumed constant during FES. In some special cases, during 

intermittent FES, the stimulation frequency can be changed when FES is off in order to 

increase the force produced by the muscle, in this case the frequency will be assumed 

adjustable, but not a real-time variable (i.e. ignoring dynamic changes in frequency). At 

constant stimulation frequency, the frequency dependent activation 
iA  is constant and hence 

it is omitted from the model (
iA =1 for all fibre types). The topology of the “General Model” 

for analogue recruitment input (fibre-type level) assuming constant stimulation frequency 

)1( iA  is shown in Figure 6.3. 
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Figure 6.3: Topology the “General Model” for analogue recruitment input (fibre-type level) for FES, assuming constant stimulation frequency 

)1( iA . Thick arrows denote variables of multiple values (for i  = 1, 2, and 3) and thin arrows denote single variables. 
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The total muscle force for the “General Model” at the fibre-type level (which represents the 

topology of the “General Model”) is given by: 

 

    














n

i

iVEiPEiiiiiisoiiPE

m

ffIDIEIFFVFLfRFPCSAf

F

1

,,2max,1 ])/[(

cos

           (6.1)

 
 

mF : Total muscle force including all active and passive forces of the musculotendon 

complex. 

 

Note that for equation (6.1) the following points have to be considered: 

 The term ]/[ ii IDIE  is used to indicate either (
iIE  or 

iID ) not (
iIE divided by 

iID ). 

 Series element passive force (
SEf ) is not included in this equation, 

SEf  effect on 
CEv

will be calculated separately (SE is assumed as a pure series elastic element), 

mSE Ff  . 

 SE  has no effect on 
mF  under isometric conditions. Indirect effect of SE  on 

mF  under 

non-isometric conditions is because the stiffness of SE  affects the instantaneous 
CEv  

which affects 
CEf  and consequently 

mF . 

 Sub-models of ( max,isof , 
1PEf , 

2PEf , and ]/[ ii IDIE ) produce their outputs  for the 

whole muscle (not for the fibre-type), the contribution of each fibre-type for these sub-

models will be calculated by multiplying with recruitment level 
iR  and 

iFPCSA  for 

each fibre-type. 

 The output of VEf  sub-model is multiplied by the percentage of non-recruited motor-

units (
iR1 ) in Hawkins model topology (see Appendix 1). In the “General Model” 

topology this can be incorporated into 
VEf  sub-model equation, see section 6.3.6.5.  

 

 

The topology of the “General Model” for binary recruitment input (motor-unit level) is shown 

in Figure 6.4.  
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Figure 6.4: Topology of the “General Model” for binary recruitment input (motor-unit level). Thick arrows denote variables of multiple values 

( i  = 1, 2, and 3) and thin arrows denote single variables. 
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The total muscle force for the “General Model” at the motor-unit level (which represents the 

topology of the “General Model”) is given by: 
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           (6.2) 

 

Equation 6.2 is similar to that for the fibre-type level, but here each individual motor-unit will 

be modelled separately. The advantage of converting to binary recruitment is to increase 

model accuracy by calculating fatigue, force enhancement & depression, and effect of initial 

length (
ol ) separately for each motor-unit. 

 

Note that CE represents muscle belly when pennation angle is not modelled (pennation angle 

assumed zero, i.e. 10coscos  o ) as in most models in the literature. When pennation 

angle is modelled, as in except Hawkins model, CE represents muscle fibres in this case. 

 

The standard topologies shown in Figures 6.3 and 6.4 can represent all topologies of the 

published muscle models presented in Appendix 1. Any redundant sub-models can be 

excluded by using values of (1) for those which are multiplied and (0) for those which are 

added. The following sub-sections describe how each of the published models can be 

represented by the standard topology. 

 

Herzog model: 

The “calcium dynamics + time delay” sub-model will not be used (i.e. input = output). 

Recruitment is not modelled in Herzog model; therefore any recruitment sub-model can be 

used. 

Fatigue ( 1iIF ), force enhancement & depression ( 1]&[ ii IDIE ), PE2 ( 02 PEf ), FV 

)0( VEf . ( 1iFPCSA , 10coscos  o ). 

 

Riener-1 model: 

Force enhancement & depression ( 1]&[ ii IDIE ), FV ( 0VEf ). 
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( 1iFPCSA , 10coscos  o ). 

(
SEf , 

1PEf  and 
2PEf ) are not be modelled in Riener muscle model, but they are modelled with 

the joint model; therefore any sub-model can be used for them. Note that frequency is 

assumed constant during FES; therefore the force-frequency sub-model will be cancelled. 

However, since the value of max,isof  provided by Riener in [72] is for high frequency of 

][100 Hzfreq  . Therefore, this value of max,isof  should be adjusted to the used frequency 

during FES. The new value can be calculated by multiplying max,isof  by: 











2

2

)1.0(1

)1.0(

freq

freq
. 

As an example, this will be (80%) for ( ][20 Hzfreq  ) and (90%) for ( ][30 Hzfreq  ). 

 

Hawkins model: 

Natural stimulation input will not be considered as an input, only FES. 

The “calcium dynamics + time delay” sub-model will not be used (i.e. input = output). 

PE2 sub-model can be excluded using ( 02 PEf ). 

 

Brown model: 

Natural stimulation input will not be considered as an input, only FES, and the activation sub-

model is already removed from the “General Model” topology. 

The “calcium dynamics + time delay” sub-model will not be used (i.e. input = output). 

Fatigue ( 1iIF ), Force enhancement & depression  1]&[ ii IDIE , FV ( 0VEf ), 

)1(cos  . 

 

 

6.2.3 Arrangement of passive elements in the “General model” 

The standard form for the muscle model using rheological elements structure is represented in 

Figure 6.5, where the parallel element 1PE  is parallel on CE  only (this form is a modified 

version of Brown Model by adding the pennation angle  ). Another more general standard 

model structure (was developed during this study) is represented in Figure 6.6, models in 

which 1PE  is parallel on both CE  and SE  can be represented by this form. However, the 

parallel element will be assumed always parallel on CE  only. Therefore the form shown in 

Figure 6.5 will be used as the standard form for the proposed “General Model”. 
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The form for rheological elements structure shown in Figure 6.5 can represent all other 

models’ structure as follows: 

 

Herzog model (the new form): 0 , 02 PE  ( 02 PEk ),  0VE , ( 0VEk ), PE1 can be 

made parallel on CE (CE only not CE and SE) by using Fung equations [107], this equation is 

summarised in section 2.5.6.2. 

 

Hawkins model: 02 PE . 

 

Brown model: 1)0cos(cos  o . 

 

The alternative standard form shown in Figure 6.6 can be used to represent the all previous 

models in addition to the original form of Herzog model given in [18], the original form of 

Herzog model can be represented by using the following values: 1SE , 0 , 02 PE , 

and 0VE . 

 

 

 

Figure 6.5: Representation of the standard form muscle model using rheological elements 

structure. PE1 is parallel on CE only, (
21 PEPEPE fff  ), ( 21 PEPECE lll  ). 
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Figure 6.6: Another alternative standard muscle model structure. The original form of Herzog 

model can be represented (with PE parallel on both CE and SE) by making SE1  rigid and 

using SE2  to represent the tendon together with 0 , 02 PE  and 0VE . 

 

 

 

 

6.3.  Standard sub-models for the “General Model” 

In this section, standard sub-models are proposed for the various components of the “General 

Model”. These can be used to produce consistent, interchangeable alternatives for all sub-

models of the “General Model” that can be used to represent all relevant instances from the 

literature. They can also be adapted to allow for multiple motor-units to be represented. The 

different alternatives for each sub-model are described using the same set of variables. 

 

Five standard sub-models representing “active” muscle properties and four standard sub-

models representing “passive” muscle properties are summarised in this section. Each sub-

model represents one of the muscle’s main properties, which are: recruitment of motor-units; 

the contractile element CE active force-length relationship; the CE active force-velocity 

relationship; muscle fatigue; force enhancement following active stretch and force depression 

following active shortening; and finally the muscle’s passive properties. 
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6.3.1 The standard recruitment sub-model 

As discussed in section 2.5.1, the mechanism of motor-unit recruitment is complex and 

difficult to measure. Many recruitment sub-models are available in the literature, see section 

2.5.1.2. However, here a standard recruitment sub-model is proposed which can be used with 

any Hill-type model. This sub-model is able to account for the different properties of different 

fibre-types and can be used with either FES or natural contraction. This standard form can be 

used to represent all alternative recruitment sub-models introduced in Chapter 2. The standard 

form can also be used to build new recruitment sub-model at the required complexity level. 

 

The standard recruitment sub-model developed in this research has three fibre-types and one 

thousand motor-units. Each fibre-type is recruited with an analogue recruitment (can be linear 

or non-linear). The input to the recruitment sub-model can be the natural stimulation input U  

or the pulse width/amplitude ( PAPW / ) of the electrical stimulation. 

 

The standard recruitment sub-model is shown in Figure 6.7. The input U  is used for natural 

contraction, and the input PW  is used for FES. Either input will yield the same output ( iR ).  

effU  models the calcium dynamics for natural stimulation, effU  and the calcium dynamics sub-

models are separate from the recruitment sub-model and can be placed before or after the 

recruitment sub-model (in reality, it is after recruitment). Frequency is assumed constant for 

FES. 

 

Recruitment order can be arranged to be in physiological or non-physiological order. Input to 

the F-L sub-model can be either the length at initial recruitment or the instantaneous length. 

The number of virtual motor-units used in the model was chosen as ( 1000m ) to give high 

force resolution. 
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Figure 6.7: The standard recruitment sub-model. 

 

 

i) The Analogue Recruitment of fibre types: 

The analogue recruitment of the 
thi  fibre-type ( iR ) in the standard recruitment sub-model is 

shown in Figure 6.8 and presented mathematically in the following structure: 
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Below the threshold level thr

ipw  there is no recruitment, above the saturation level sat

ipw  the 

recruitment is maximum. Between these two levels the recruitment can be controlled by 

adjusting PW . The recruitment equation of Riener-1 model [72] is used for the analogue 

recruitment: 
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     (6.4) 

 

The constants (
thrc , and 

satc ) can be adjusted to get a straight line with a very sharp curvature 

at thr

ipw  and sat

ipw . The recruitment of fibre-type is always analogue, it can be linear or non-
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linear. The recruitment sequence of different fibre-types can be moved at will making the 

sequence at any order with or without overlapping. In figure 6.9, adjusting PW  or PA  will 

change the number of recruited motor-units, modulating the stimulation frequency will 

change the muscle force but will not affect the number of recruited motor-units.. 

 

 

 

Figure 6.8: The analogue recruitment can be linear or non-linear. ( thr

thr UU 1 ) and similarly 

( thr

thr pwpw 1 ). ( sat

sat

n UU  ) and similarly ( sat

sat

n pwpw  ). 

 

 

The normalised values for pw  and U  will be used, assuming that when all “real” motor-units 

in the whole muscle are recruited: ( 0.1 satsat Upw ). The pw  is normalised to 
satpw  and U  

is normalised to 
satU . This assumption will make it possible to use the same recruitment sub-

model with both FES and natural contractions (i.e. pw  and U are interchangeable in equation 

6.3) 

 

For ( sat

i

thr

i pwpwpw  ),
iR  is a function of pw  { )( pwRi

}. The values of thr

ipw  and sat

ipw , 

and the recruitment sequence can be different for different recruitment sub-models. 

 

 



157 
 

 

Figure 6.9: Analogue recruitment of different fibre-types for electrically stimulated 

“heterogeneous” muscle. The recruitment curves are non-linear and overlapping. 

 

 

ii) The Extension of Binary Recruitment: 

Recruitment of motor-units is incorporated as an extension to the analogue recruitment. The 

analogue recruitment of fibre type- i  is converted to binary recruitment (Figure 6.10), the 

motor-unit j  of fibre type i  can only be 100% recruited or not recruited at all (either 0 or 1), 

see Figure 6.11. This is represented mathematically as follows: 
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The threshold level of the thj  motor-unit of the thi  fibre-type is: 








 

im

j 1
. Once 

iR  exceeds 

this threshold level, the thj  motor-unit of fibre type- i  becomes recruited (i.e. 1, jiR ). 

The threshold level thr

jipw ,  for the thj  motor-unit of fibre-type i  is the value of pw  that makes 










 


i

i
m

j
R

1
. 

 

 

 

Figure 6.10: The recruitment of different fibre types is analogue. Conversion to binary is 

added as an extension in order to model the recruitment of motor-units, 10, orR ji  . Thin 

arrow indicates single variable input/output, thick arrows indicate multi-variable 

inputs/outputs. 

 

 

 

 

Figure 6.11: Recruitment of the motor-unit j  of fibre-type i . jiR ,  has a binary value (0 or 1). 
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The standard recruitment sub-model can incorporate up to three fibre-types )31(  n , and 

up to one thousand motor-units ( 10001  m , nmmm  .....1 ). Modelling of muscle 

recruitment is done in two steps; analogue recruitment for each fibre-type is done first, 

followed by conversion to binary recruitment for each motor-unit ( 10, orR ji  ), see 

Figure 6.12. 

 

 

 

 

Figure 6.12: The standard recruitment sub-model for the “General Model” with ( 3i ,

321 mmmm  ). The input can be FES ( PAPW / ) or natural stimulation input U . 
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For natural contraction (natural stimulation input not FES), the input to the recruitment sub-

model is the natural stimulation input U . The threshold level is modelled as: 

 

niUU
n

i
U satsat

thr

i ,...,1,1,
)1(




      (6.6) 

 

 

Linear and analogue recruitment is assumed for all motor-units (of any fibre-type): 
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Threshold levels for different motor-unit under natural contraction are described in section 

2.5.1.2. Stimulation frequency of recruited units will be modulated by U  as shown in Figure 

6.13. This represented mathematically as: 

 

)(
min thr

ifiii UUcfreqfreq  , for any input )( thr

iUU  .   (6.8) 
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Figure 6.13: The relationship between stimulation frequency and natural stimulation input U . 

The stimulation frequency of recruited motor-units increases linearly with U .  

 

 

 

All alternative recruitment sub-models can be exactly constructed (or a close match achieved) 

using the standard recruitment sub-model. Each alternative recruitment sub-model can be 

built using the FES recruitment sequence of that sub-model and proper values for: n , m , 

thrpw , 
satpw  , 

1c , 
2c , 

thrc , and 
satc . Some sub-models will have the binary recruitment 

extension. 



162 
 

6.3.2 The standard F-L sub-model 

As discussed in section 2.5.2, different F-L relationships are observed experimentally because 

muscle architecture and fibre orientations can vary widely in different muscles. Various 

modelling approaches at different levels of complexity are used in the literature to model this 

complex property and hence alternative sub-models are reported in the literature. A standard 

form for all alternative F-L sub-models is possible. The standard form proposed here can be 

used to represent all alternative F-L sub-models introduced in Chapter 2. The standard form 

can also be used to build new F-L sub-models at the required complexity level. 

 

The F-L standard form was first developed using Otten F-L sub-model and the multi-

compartment approach used by Garies. Riener and Brown F-L sub-models can be constructed 

directly from Otten F-L sub-model, but Herzog and Hawkins F-L sub-models cannot be 

constructed using Otten or Garies F-L sub-models, the main difference is at extreme lengths 

away from the optimal length. The logic behind the development of the F-L standard form is 

explained step by step as follows: 

 

1. Starting form Garies F-L sub-model (eq. 2.12), this is the most complex F-L sub-

model. The "exact equation for all sub-models that are based on Otten can be achieved (i.e. 

Otten, Kaufman, Riener, Brown, and Garies) by making: (N=1) to get one single optimal 

length ( ) and ( ), then using the same values for ( , , and ) as 

the original of each sub-model. Garies equation was given by: 

 

      (6.10) 

 

N: number of compartments in the F-L sub-model, : scaling factor representing the 

effective influence of the  compartment on the overall model. 

2. The variable  will be used instead of (  and ), this is a general symbol and can 

be used to represent (  or ). Note that:  is used when pennation angle  is modelled 

(as in Hawkins model).  is muscle length and  is fibre length which are only equal if (  

= 0). 
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3. In order to get better fit to experimental data, different constants’ values will be used 

for each of the ascending and descending limbs (still the same equation but different values 

for constants). This is an improvement over Garies F-L sub-model (which is the most 

complex and the most accurate model found in the literature). The empirical data for 

ascending and descending limbs in many muscles are not symmetrical. Changing the value of 

the skewness parameter  is not enough to fit the empirical data, hence two different curves 

for each limb will give better fit. Note that the two curves (of the ascending and descending 

limbs) are continuous at peak since the value of each curve = 1.0 at ( ). 

4. Hawkins (eq. 2.10) and Herzog (eq. 2.11) F-L sub-models are of different structure, 

only the positive values of the F-L curve are considered and this makes discontinuity at 

extreme lengths which is clearly different from the empirical data. A close match (not exact) 

can be achieved at lengths not far from the optimal length by using Otten (eq. 2.8) or Garies 

(eq. 2.12) F-L sub-models. But at extreme lengths the two curves are differen. 

5. A  very close match (almost 100%) can be achieved for Hawkins (eq. 2.10) and 

Herzog (eq. 2.11) F-L sub-models by using the following technique: 

 Using a positive constant ( ) added to unity, the value is multiplied by each 

side of the F-L curve, and then deducting ( ) from the product. 

 This operation produces a new curve whose maximum value is unity and minimum 

value is ( ), a very close match to Hawkins F-L sub-model was achieved by using 

( , , , ,) for the ascending limb and ( ,

, , ) for the descending limb. 

 By taking the positive values of the curve, a very close match to either Hawkins or 

Herzog F-L sub-models can be achieved. 

 Using this technique makes it possible to control the shape of the curve (using the 

least squares method) until the peak of the new curve is very close to the curve to be 

matched, either Hawkins (eq. 2.10) or Herzog (eq. 2.11). 

 The constant  was used in order to get better fit at extreme lengths. 

 Herzog F-L sub-model has symmetrical limbs and hence ( ), while Hawkins 

F-L sub-model has non- symmetrical limbs and hence ( ). 

Sc

optCE ll 

oic )1( oic

oic

oic

8.01 oc 1Sc 4.2Rc 44.0Wc 2.12 oc

2.0Sc 65.1Rc 152.0Wc

oic

21 oo cc 

21 oo cc 
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6. For other sub-models (other than Hawkins and Herzog),  is cancelled by making 

. This brings us back to Garies F-L sub-model but with different curves for each side 

(they can be the same if the constants’ values are the same). 

 

The equation of the standard F-L sub-model is given as the positive values of: 
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For the negative values: 0)( CElFL .  

 

CEl  represents either ml  or fl  depending on the muscle model. 

N : Number of compartments in the F-L sub-model. 

ic : Scaling factor representing the effective influence of the 
thi  compartment on the 

overall model. 

ioptl , : Optimal length of the 
thi  compartment (not real) normalised with respect to the 

optimal length (the real optimal length of muscle belly). 

1oc , 2oc : constants, used to shape the F-L curve at extreme lengths ( i.e. to mimic Herzog and 

Hawkins F-L sub-models). 
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The values of the curve shaping parameters ( Sc ,
Rc , Wc ) can be different in each compartment, 

and also in the two sides of the F-L curve (the ascending and descending limbs). This depends 

on the experimental data need to be fitted, or any F-L sub-model needed. 

 

The standard F-L sub-model can represent all alternative F-L sub-models presented in this 

document. It can easily represent Otten, Riener, and Brown F-L sub-models by using the 

following:  ( 021  oo cc , 1N , 1ic ) and the same shaping parameters for both sides of 

the F-L curve (i.e. same equation for the ascending and descending limbs) as given in those F-

L sub-models. The standard F-L sub-model can represent all other F-L sub-models presented 

in section 2.5.2.2 as follows: 

 

For Garies F-L sub-model: 

021  oo cc , and the same shaping parameters for the ascending and descending limbs of the 

F-L curve (i.e. same equation for all lengths). 

 

For Herzog F-L sub-model: 

1N , 1ic , 21 oo cc  , and the same shaping parameters for the ascending and descending 

limbs of the F-L curve. The standard F-L sub-model can represent Herzog F-L sub-model 

very well. The positive values of the following equation can be used for muscle-1: 

121  SS cc , 4.221  RR cc , 44.021  WW cc , 8.021  oo cc  
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For muscle-2: ( 121  SS cc , 3.221  RR cc , 75.021  WW cc , 2.121  oo cc ).
 

 

For Hawkins F-L sub-model: 

fCE ll  , 1N , and 1ic . The standard F-L sub-model can represent Hawkins F-L sub-

model very well. The positive values of the following equation are used: 

For the ascending limb:   ( 11 Sc , 4.21 Rc , 44.01 Wc , 8.01 oc ). 

For the descending limb: ( 2.02 Sc , 65.12 Rc , 152.02 Wc , 2.12 oc ). 
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By choosing appropriate values for the shaping parameters ( Sc , 
Rc , Wc  ) and other constants 

in the standard F-L sub-model, it is possible to fit any experimental data with high accuracy 

better than all alternative sub-models listed here because of the extra advantage the standard 

F-L sub-model has, where each limb of the F-L curve being modelled by separate curve 

(using the same equation but with different constants’ values). 

 

 

6.3.3 The standard F-V sub-model 

As discussed in section 2.5.3, the F-V relationship is affected by different factors (fibre-type, 

muscle architecture, recruitment level, recruitment order, “instantaneous” fibre length and 

stimulation frequency), and hence different F-V relationships are observed experimentally. 

Various modelling approaches at different levels of complexity are used to model this 

complex property and hence alternative sub-models are reported in the literature. A standard 

form for all alternative F-V sub-models is possible. The standard form proposed here can be 

used to represent all alternative F-V sub-models introduced in Chapter 2 (and almost all 

alternative Hill-based F-V sub-models in the literature). The standard form can also be used to 

build new F-V sub-models at the required complexity level. 

 

To develop the F-V standard form, the start was with Brown F-V sub-model because it is the 

most complex. Then more formulas and constants were added in order to match all other sub-

models. The logic behind the development of the F-V standard form is explained step by step 

as follows: 

1. All sub-models have to be reformulated in order to make all of them in the same form. 

2. Riener F-V sub-model (eq. 2.13) is the only sub-model that was difficult to 

reformulate. Therefore, least squares method was used to find the best fit that will make a 

close matching curve. 
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3. Brown F-V sub-model (eq. 2.14) has only two formulas, one for ( ) and the 

other for ( ). Other two formulas are required for ( ) and ( ) since 

some alternative F-V sub-models have constant values at these velocities. 

4. For ( ): The first formula of Brown (eq. 2.14) is used but will be multiplied by 

a constant ( ) which will have the value ( ) for Brown and ( ) for other models 

which have [ ]. This makes “exactly” the same equation of all F-V 

sub-models (except Riener). 

5. For ( ): The first formula of Brown (eq. 2.14) is used as it is, constants can 

have different values to get other sub-models. This makes “exactly” the same equation of all 

F-V sub-models (except Riener). 

6. For ( ): The second formula of Brown (eq. 2.14) is used but will be 

multiplied by a constant ( ) and added to another constant ( ), these two constants will 

have the values  and  for Brown. (  and ) where added in order to get the 

same form as Hawkins (eq. 2.15) and Herzog (eq. 2.18) F-V sub-models. This makes 

“exactly” the same equation of all F-V sub-models (except Riener). 

7.  For ( ): The second formula of Brown (eq. 2.14) is used but will be 

multiplied by a constant ( ) and added to another constant ( ),  has the same value as 

in the previous formula for all sub-models, and  for Brown. (  and ) where added 

in order to get the same form as Hawkins (eq. 2.15) and Herzog (eq. 2.18) F-V sub-models. 

8. A very close match of Riener F-V sub-model was achieved using the standard form. 

9. The “exact” equations of all other F-V sub-models represented in section 2.5.3.2 were 

achieved using the standard form. Constants’ values for each alternative F-V sub-model are 

given below. 

 

The equation of the standard F-V sub-model is given as: 

 

0CEv

0CEv 1CEv str

CECE vv max,

1CEv

1vb 11 vb 01 vb

1:0  CEvforFV

01  CEv

str

CECE vv max,0 

3vb 2vb

02 vb 13 vb 3vb 2vb

str

CECE vv max,

7vb 2vb 2vb

17 vb 2vb 7vb
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CEv  will be used in the standard F-V sub-model to represent the velocity of either muscle 

belly or muscle fibres depending on the F-V sub-model needed. 

 

All alternative F-V sub-models can be exactly represented using the standard F-V sub-model 

by changing the constants values (except Riener F-V sub-model which was very close but not 

exactly the same). The standard F-V sub-model can represent all F-V sub-models referenced 

in this thesis as follows: 

 

For Brown F-V sub-model: 

The following constants’ values can be used to get “exactly” Brown F-V sub-model. 

0vc , 1vc , 4vb , 5vb , 0va , 1va , 2va : as provided by Brown in [100]. The values of these constants 

are also provided by Brown in other references with slightly different values, as in [41, 82, 

127]. ( 02 vb ), ( 17631  vvvv bbbb ), ( str

CEV max, = any value > 0). 

 

For Hawkins F-V sub-model: 

The following constants’ values can be used to get “exactly” Hawkins F-V sub-model. 

( 0121761  vvvvvv caabbb ), ( 154  vv bb ). 

Other constants as given in the new formulation presented in this document, originally taken 

from Hawkins [101, 129, 130]: 
k

cv

1
0  ,  
















str

f

v
v

a
max,

0

1
, 3.12 vb , 3.03 vb . 

For AnyBody F-V sub-model: 

The following constants’ values can be used to get “exactly” AnyBody F-V sub-model. 

1)( 75431  vvvvv bbbbb , )0( 211062  vvvvvv aaccbb , ( 10 va ),  

( str

CEV max, = any value > 0). 

 

For LifeMOD F-V sub-model: 

The following constants’ values can be used to get “exactly” LifeMOD F-V sub-model. 

)0( 21121  vvvvv aacbb , 1)( 7543  vvvv bbbb , ( str

CEV max, = any value > 0). 

Other constants as given in [137, 138]: 40 vc , 20 va , 5.16 vb . 

 

For Herzog F-V sub-model: 

The following constants’ values can be used to get “exactly” Herzog F-V sub-model. 
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)0( 21171  vvvvv aacbb , )1( 54  vv bb  

Other constants are the same as those in the new form of Herzog F-V sub-model presented in 

this document, the values of these constants are derived from the original Herzog model 

presented in [18]: 









b
c v

1
0 , 5.12 vb , 5.03 vb , 
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1
6
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








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

ba

ab
V str

CE max,
. 

 

 

For Riener F-V sub-model: 

Although the standard model cannot achieve an exact match with the Riener F-V sub-model, a 

very close match was achieved as shown in Figure 6.14. 

 

 

 

Figure 6.14: The standard F-V sub-model is used to represent Riener F-V sub-model using 

constants’ values: ( 0.551 vb , 5.40 vc , 21.054  vv bb , 61.10 va , 

)0( 2121  vvvv aabc , )1( 763  vvv bbb , str

CEV max, = any value > 0). 
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6.3.4 The standard fatigue sub-model 

As discussed in section 2.5.4, the mechanism of fatigue is complex and difficult to measure. 

Various modelling approaches at different levels of complexity are used in the literature to 

represent the fatigue effect on muscle force and hence alternative sub-models are reported in 

the literature. The standard form for fatigue proposed here can be used to represent all 

alternative sub-models introduced in Chapter 2 (and almost any alternative fatigue sub-models 

in the literature). The standard form can also be used to build new fatigue sub-models at the 

required accuracy and complexity level. 

 

The focus is on the index of fatigue which represents force decay during FES and force 

capacity recovery when FES is off, pH level and all other physiological details will be 

ignored. The prediction of fatigue can be improved by using the multiple motor-unit 

modelling approach, where fatigue of every individual motor-unit will be modelled 

separately. The standard fatigue sub-model is given by: 

 

 
      













endrecfat

end

TttIFCtIFIFC

Tt
IF

dt

d

,)(1)(

,0

min

 

  (6.13)

 
Assuming: 01  tatIF .

  

Previous equation can be used with a single motor-unit model, three fibre-types model, or the 

multiple motor-unit model. The standard fatigue sub-model can represent all fatigue sub-

models represented in section 2.5.4.2 as follows: 

 

For Riener-1 fatigue sub-model: 

0endT , 
fat

freq

fat
T

AR
C


 , 

rec

freq

rec
T

AR
C

)(1 
 . 

 

For Hawkins fatigue sub-model: 

For type-I and type-IIa fibres: 6endT , 
)(

00097.0

tIF
C fat  , 0recC , 0min IF . 

For type-IIb fibres: 23endT , 
)(

0333.0

tIF
C fat  , 0recC , 0min IF . 
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For Freund & Takala fatigue sub-model: 

0endT , 0min IF , 
)(tIF

R
C fat





, recC . 

 

For Ma fatigue sub-model: 

0endT , 0min IF , RkC fat  , rCrec  . 

 

For Giat fatigue sub-model: 

The pH level has not be considered. Constants values need to be determined by empirical 

experiments for each muscle. Hence, constants’ values of the standard sub-model can be 

adjusted to fit the fatigue experimental data of any muscle. Using this procedure any fatigue 

sub-model can be constructed exactly, or at least to get a very close match. 

 

 

6.3.5 The standard force enhancement & depression sub-model 

As discussed in section 2.5.5, only few force enhancement & depression sub-models are 

available in the literature. A new and more complex force enhancement & depression sub-

model was developed in this research because those available in the literature are relatively 

simple compared with observed empirical data. The empirical data used to develop this sub-

model were collected from the literature, see Appendix 2. Details of the new and the standard 

force enhancement & depression sub-models are given below. 

 

6.3.5.1. A new force enhancement & depression sub-model 

As discussed in section 2.5.5.1, force enhancement following stretch and force depression 

following shortening are affected by different factors (magnitude of stretch/shortening, 

velocity, recruitment level, and stimulation frequency) during stretch/shortening. The new 

sub-model proposed here can be used with any Hill-type model which uses the instantaneous 

length. Most of the length-history properties are accounted for (more complex than Hawkins 

and Forcinito IE & ID sub-models). In this sub-model, the effect of enhancement and/or 

depression starts immediately after the end of stretch/shortening. The force will decay (after 

stretch) or increase (after shortening) exponentially until the steady-state force is reached after 

4.0 seconds. The experimental data used to develop this sub-model include those presented in 

Appendix 2 in addition to the data presented in [152, 154, 155, 168, 169, 170, 171, 172, 173]. 
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Index of Enhancement (IE): 

The index of enhancement is given by: 

 
















4

4)exp()(
)(

max

tforIE

tfortcIEIEIE
tIE

SS

TS
   (6.14) 

stretch of endat length   the toingcorrespond force isometric

stretch during force muscle maximum
max IE  (6.15) 

 

The plateau level of IE (
IE ) after very large value of time ( t ) is a function of the initial 

length ( oERl , ) just before the start of stretch, stretch magnitude (
ERl ), and velocity of stretch 

)( CEv . 

 

 )()()(1 32,1 CEERoER vclclcIE 
    (6.16) 

 

1c , 
2c  and 3c  are constants which can be adjusted to fit experimental data, a separate constant 

was multiplied with each variable in order to make the model more accurate. The effect of 

ERl  is clear from the experimental data shown in Appendix 2 (e.g. Figure A2.7), longer 

displacements produce more enhancement, and vice versa. Similarly stretches happen at 

longer length oERl ,  result in more enhancements, and vice versa. The effect of velocity is 

included in the model since it has an effect on 
IE  as can be observed from experimental data 

(e.g. Figure 2.33 in Chapter 2).

  

The time (t = 4.0 seconds) was chosen (similar to that of Hawkins) because it was found to be 

a good approximation to the decay time following stretch observed experimentally (see 

experimental data in Appendix 2). 

 

 )4exp()()4( max   TSSS cIEIEIEtIEIE   (6.17)
 

The transient-state constant: 
)(

3.0

max 




IEIE
cTS    (6.18) 

t :  Time from end of stretch. 
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Index of Depression (ID): 

The index of depression is given by: 

 


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












4

4)exp()(
)(
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tfortcIDIDID
tID

SS

TS
   (6.19)

 

shortening of endat length   the toingcorrespond force isometric

shortening during force muscle minimum
min ID  (6.20) 

 

The plateau level of ID (
ID ) after very large value of time ( t ) is a function of the initial 

length oERl ,  just before the start of shortening, shortening magnitude 
ERl , and minimum force 

during shortening (
minID  is used in this sub-model which is a function of the minimum force 

during shortening). 

 

 )()()(1 min32,1 IDclclcID ERoER      (6.21)

 
 

 

1c , 
2c  and 3c  are constants which can be adjusted to fit experimental data, a separate constant 

was multiplied with each variable in order to make the model more accurate. The effect of 

ERl  is clear from the experimental data as shown in Appendix 2 (e.g. Figure A2.8), longer 

displacements produce more depression, and vice versa. Similarly shortenings happen at 

longer oERl ,  result in more depression, and vice versa. The effect of 
minID  is included since it 

has an effect on 
IE  as can be observed from experimental data (e.g. Figure 2.33 in Chapter 

2).

  

The time (t = 4.0 seconds) was chosen (similar to that of Hawkins) because it was found to be 

a good approximation to the rise time following shortening observed experimentally (see 

experimental data in Appendix 2). 

 

 )4exp()()4( min   TSSS cIDIDIDtIDID    (6.22)
 

The transient-state constant: 
)(

1

minIDID
cTS








    (6.23)
 

t :  Time from end of shortening. 
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6.3.5.2. The standard force enhancement & depression sub-model 

The standard IE & ID sub-model proposed here was developed using the alternative IE & ID 

sub-models available in the literature (see section 2.5.5.2) and the new IE & ID sub-model. 

The standard form can also be used to build new IE & ID sub-models at the required accuracy 

and complexity level. 

 

Index of enhancement (IE): 
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  (6.24)

 

 )4exp()()4( max   TSSS cIEIEIEtIEIE    (6.25)

 
 

stretch of endat length   the toingcorrespond force isometric

stretch during force muscle maximum
max IE  (6.26)

 
 

 

Index of depression of (ID): 
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 )4exp()()4( min   TSSS cIDIDIDtIDID    (6.28) 

 

 

shortening of endat length   the toingcorrespond force isometric

shortening during force muscle minimum
min ID  (6.29) 

 

Previous equations can be used with a single motor-unit model, multiple (two/three) fibre-

type model, or multiple motor-unit model. The standard IE & ID sub-model can represent all 

IE and ID sub-models summarised in Chapter 2 of this thesis (and almost all alternative sub-

models in the literature) as follows: 

 

For Hawkins IE sub-model: 








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2.1:0.1

2.1:403.0)(505.0

max

maxmax

IEfor

IEforIE
IE

 

)/(301.0 max  IEIEcTS  

ID is not modelled by Hawkins. 
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For Forcinito IE & ID sub-model: 

Forcinito force enhancement & depression sub-model was modified in order to be used in the 

“General Model”, details are provided in Appendix 9. The initial length is used [

)( oisoCE lff  ], this has to be taken into account when using this sub-model. In the formulated 

Forcinito IE & ID sub-models; time starts after the end of stretch/shortening. 


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925.0
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For the new IE & ID sub-model: 

 )*2exp(1 , CEERoERe vllcIE  , 
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3.0
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, (for stretch). 

 min,1 IDllcID ERoERd   
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


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6.3.6 The standard sub-models for muscle passive elements 

As discussed in section 2.5.6.1, skeletal muscles have complex passive viscoelastic structure 

which can vary among different muscles. Various modelling approaches at different levels of 

complexity are used in the literature and hence alternative sub-models are reported at different 

complexity levels. Standard forms for all alternative sub-models of the passive elements are 

possible. The standard forms proposed here can be used to represent all alternative passive 

elements sub-models introduced in Chapter 2 (and almost all alternative passive elements sub-

models in the literature). The standard forms can also be used to build new passive element 

sub-models at the required complexity level. 

The standard sub-models for passive elements are given in the following sub-sections. The 

standard arrangement of the model elements is shown earlier in this chapter (Figure 6.7), this 
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form consists of an elastic element (SE) representing the tendon along with a combination of 

CE, parallel elastic element PE and viscous element VE representing the muscle belly. All 

passive elements in this model can be linear or nonlinear elements.   represents pennation 

angle of muscle fibres, ( 21 PEPEPE  ). 

 

 

6.3.6.1. Arrangement of passive elements 

All Hill-type models introduced in Chapter 2 of this thesis can be constructed using the 

standard form shown in Figure 6.5 as follows: 

 

For Herzog model: 0 , PE2=0 ( 02 PEf ), VE=0  ( 0VEf ). 

The form of Herzog model can be changed to the standard form using Fung equations given 

in [107]. 

 

For Hawkins model:  PE2=0 ( 02 PEf ). 

 

For Brown model: 0 . 

 

For LifeMOD model: 0 , VE=0 ( 0VEf ), PE2=0 ( 02 PEf ), SE  (rigid tendon). 

 

 

6.3.6.2. The standard sub-model for ( SEf ) 

Brown SE sub-model was modified by adding an extra constant 3c  which allows for the slack 

length t

Sl  to be shifted along the X-axis (this will shift the whole curve). 
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1c , 
2c , 3c : constants. 

 

The following constants’ values can be used to represent each SE sub-model introduced in 

Chapter 2: 
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For Herzog model: The following constants’ values can be used to get “almost exactly” the 

linear curve of Herzog SE sub-model: ( 00167.01 c , 00006.02 c , 03 c ). 

For Brown model: The following constants’ values can be used to get “exactly” Brown SE 

sub-model: ( 13066.01 c , 0047.02 c , 03 c ). 

 

For Hawkins model: A very similar curve was obtained by using the following constants’ 

values: ( 518.01 c , 0045.02 c , 028.03 c ). 

 

 

6.3.6.3. The standard sub-model for (
1PEf ) 

Brown PE1 sub-model was chosen exactly as it is to be the standard form: 
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1c , 
2c : constants. 

 

The following constants’ values can be used to represent each SE sub-model introduced in 

Chapter 2: 

 

For Herzog model: The following constants’ values can be used to get “almost exactly” the 

linear curve of Herzog SE sub-model: ( 003.01 c , 00108.02 c , 1max l , 25.1restl ). 

 

For Brown model: The following constants’ values can be used to get “exactly” Brown PE1 

sub-model: ( 058.11 c , 046.02 c , 3.1max l , 17.1restl ). 

 

For Hawkins model: A very similar curve was obtained by using the following constants’ 

values: 

( 121 c , 08.02 c , 2.1max l , 6.1restl ).). 

 

For LifeMOD model: A similar curve was obtained by using the following constants’ 

values: 

( 121 c , 08.02 c , 2.1max l , 6.1restl ). 
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6.3.6.4. The standard sub-model for (
2PEf ) 

2PEf  was only modelled in Brown muscle model. Therefore, Brown PE2 sub-model will be 

used as the standard sub-model. Note that if 
2PEf  model is used then the F-L sub-model has to 

be modified accordingly. Only Brown F-L sub-model is ready to be used with 
2PEf  sub-

model. Vice versa, if Brown F-L sub-model was to be used without the 
2PEf  sub-model, then 

it has to be modified by removing 
2PEf  from the F-L sub-model. 

  0,}1)](21{exp[02.0)( 2212  PErCECEPE fllclf    (6.32) 

7.02 rl   

 

For Brown model: ( 11 c ). 

 

For other sub-models: ( 01 c ). 

 

 

6.3.6.5. The standard sub-model for ( VEf ) 

Linear viscous element is used, only Brown and Hawkins have used the passive viscous 

element VEf  sub-model. 

 

CEVE vbf       (6.33) 

 

For Brown model: 0788.0b  (slow-twitch fibres), 0915.0b  (fast-twitch fibres). 

Note that each fibre-type (slow and fast) has different values for: (
max,CEv ). 

 

For Hawkins model: )1( ii Rcb   

Each fibre-type has different values for ic : 51585.01 c , 44195.032  cc . 

 

For other models: ( 0b ). 
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Chapter 7: Discussion and Conclusions 

 

7.1.  Discussion 

Skeletal muscle is a highly complex and nonlinear system. The response of electrically 

stimulated muscle is nonlinear, time varying, coupled, and often accompanied by 

unpredictable disturbance. Computer simulations based on accurate mathematical models of 

the musculoskeletal system can help in the design and evaluation of complex closed-loop 

control algorithms for FES systems. The commonly used single motor-unit muscle model (in 

FES control studies) with the instantaneous CE length as input to the force-length relationship 

cannot properly model the continuously varying partially recruited muscles, nor it can account 

for physiological properties specific to each fibre-type. 

 

Multiple motor-unit models can properly account for continuously varying recruitment as 

would usually be seen in closed-loop FES control. Every virtual motor-unit in the multiple 

motor-unit model is modelled separately; in this way the effects of length at initial 

recruitment, fatigue and recovery, force enhancement & depression are calculated 

individually for each motor-unit. Moreover, the physiological properties specific to each 

fibre-type (i.e. recruitment order, F-L relationship, F-V relationship, and fatigue) can be 

incorporated into the multiple motor-unit model to further increase its accuracy. 

 

The main goal of this study was to develop a multiple motor-unit model that can account for 

continuously varying recruitment levels at different muscle lengths and different times. 

Different aspects of muscle modelling have been investigated in this study using single and 

multiple motor-unit models. The results demonstrate the potential errors introduced by using 

the single motor-unit model and the instantaneous length which are common in FES control 

studies. 

 

 

7.2.  Conclusions 

A new multiple motor-unit model has been developed which considers the muscle to 

comprise a large number (1000) individual Hill-type virtual motor-units. As the recruitment 
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level )(tR  varies over time and at different CE lengths, these virtual motor-units are recruited 

at different times and each with its own initial length; thus overcoming the problem described 

above. 

 

The simulation results obtained in chapters 3, 4 and 5 demonstrate the differences and 

potential errors introduced by using single motor-unit models in FES control studies. By 

correctly modelling the effects of continuously changing recruitment and length, as seen 

during FES control, it is hoped that better FES controllers can be designed. 

 

In addition to the improvements to the model accuracy, multiple motor-unit models can also 

provide clear and deep understanding of the highly complex and non-linear response of the 

paralysed muscle including the internal muscle dynamics. A better understanding of the 

muscle’s physiological properties can help in the design of FES controllers that optimize the 

produced muscle force and hence the generated movement. 

 

For the multiple motor-unit models presented in chapters 3, 4 and 5; higher accuracy can be 

achieved using the same number of model parameters, which is an advantage over the single 

motor-unit model. However, if high level of complexity is required when using the “General 

Model” presented in Chapter 6, the main limitation is the large number of model parameters. 

Hence more parameters need to be estimated experimentally. 

 

 

7.3.  Future work 

Although this study has covered many modelling issues regarding multiple motor-unit 

models, there are many other issues that can be studied and investigated. Suggestions for 

future work that can be done to further improve the performance of multiple motor-unit 

models are given below: 

 In this study, one fibre-type was assumed when simulating the responses of open-loop 

simulation protocols in chapters 3, 4 and 5. The new recruitment sub-model (presented 

in section 6.3.1.1) with three different fibre-types can be used in open-loop simulation 

protocols. 
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 In this study, the simulation was made for the responses of open-loop simulation 

protocols in chapters 3, 4 and 5. It is suggested to do more simulations and simulate 

the responses of closed-loop simulation protocols. 

 The following complexities can be incorporated to further improve the accuracy of the 

multiple motor-unit model and also the “General model”: 

 Pennation angle of muscle fibres. 

 Different F-L sub-models for different fibre-types. 

 Different F-V sub-models for different fibre-types. 

 Different fatigue sub-models for different fibre-types. 

 The same IE & ID and passive F-V sub-models (of non-recruited fibres) can be 

used with all fibre-types unless opposing experimental evidence was found. 

 

For simplicity and to demonstrate the potential errors introduced by using 

instantaneous CE length instead of CE length at initial recruitment, the CE length 

before recruitment was used in chapters 3 and 5. The CE length, before and after 

recruitment, is different due to the tendon compliance [196]. The use of length at 

initial recruitment can be further improved by using the CE length after onset of 

recruitment. Experimental force-length relationship (before and after recruitment) and 

some ankle joint parameters are given in appendix 6. 

 

 The performance of the “General model” can be compared using different sets of sub-

models at different levels of complexity. Then the results from this comparison can be 

analysed to identify the key effects (e.g. recruitment and fatigue sub-models) that 

require modelling and should be included in a muscle model, and at which level of 

complexity, to provide a simulation environment for developing FES controllers. 

 

 

In this study, theoretical background and published experimental data from the literature were 

used to build new muscle models using the multiple motor-unit modelling approach. Open-

loop simulation protocols were made on the single and multiple motor-unit models to 

demonstrate the differences and potential errors introduced by using the instantaneous length, 

ignoring certain sub-models or by using the single motor-unit modelling approach. 
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In order to build confidence in the multiple motor-unit modelling approach, appropriate 

experimental data are required. However, almost all experimental data available in the 

literature are for fully recruited muscles. Published data for partially recruited muscle are very 

little and do not include the main requirement of having different recruitment levels at 

different CE lengths. The experimental data required to validate the multiple motor-unit 

modelling approach and the CE length at initial recruitment have to be for dynamic 

contractions using different levels of recruitment at different values of CE lengths and using 

different muscles that comprise different fibre-types. The data should also include protocols 

of stretch and shortening on both limbs (the ascending and descending limbs) of the force-

length relationship. 

 

Closed-loop simulation protocols can also be tested on the single and multiple motor-unit 

models to demonstrate the differences and potential errors introduced by ignoring certain sub-

models or by using the single motor-unit model during the design, development and 

evaluation of FES controllers. 
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Appendix 1: Topology of Published Muscle Models 

 

This appendix describes the topologies of published models. Topologies of different models 

from the literature are presented first; a common standard topology for the “General Model” 

is presented in Chapter 6 with a description on how it can be adapted to represent topologies 

of other models described here (and almost all other alternative sub-models in the literature). 

Details of the various components (sub-models) of the “General Model” are provided in 

Chapter 6. 

 

The original topology and arrangement of passive elements of Herzog model are formulated 

in order to make it similar to other models and then it can be reconstructed for the common 

standard topology. The activation sub-model of Brown model and Riener model are not 

included since the stimulation frequency is constant during FES, this step reduced a lot of un-

necessary complexity for models of electrically stimulated muscles (for naturally contracted 

muscles, cancellation of the activation sub-model can affect the model accuracy since the 

stimulation frequency changes with the natural stimulation input). 

 

Various components in the standard topology of the “General Model” are explained in 

Chapter 2 and Chapter 6 of this thesis. Alternative sub-models of different complexity levels 

can be used; it is also possible to represent different fibre-types and the multiple motor-units. 

 

The topologies of Riener-1 and Riener-2 models are the only topologies which are provided in 

their related references. All other topologies were developed in this research using the 

models’ equations and text provided in related references. 

 

 

A1.1. Herzog Model 

Topology of Herzog model [18] is shown in Figure A1.1. A three-element model is used with 

the form shown in Figure A1.2. Herzog model is the only model found in the literature that 

uses the length at initial recruitment ( ol ). Topology of the original Herzog model given in 

[18] was formulated in order to make it possible to be represented in the standard topology 

form (given at the end of this chapter). 
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The position of PE  can be changed and made parallel on CE  only, the new equivalent values 

for the linear stiffness ( pk  and sk ) can be calculated using Fung equations given in [107]. The 

topology shown in Figure A1.1 will not be affected by this change; the only change is in 1PEf   

which will be calculated as a function of CEl  not mtl . 

 

 
Figure A1.1: The “formulated” topology of Herzog model. 

 

 
Figure A1.2: Representation of Herzog muscle model using rheological elements structure. 
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A1.2. Riener-1  Model 

In Riener-1 model [72], only the active part of the muscle ( CE ) is modelled, muscle passive 

elements are not modelled in the muscle model but rather in the passive torque model of the 

joint, Riener-1 model is illustrated in Figure A1.3. Passive torque caused by passive forces of 

all muscles which span the same joint are modelled together as functions of joint angle and 

joint angular velocity, details are provided in [72, 174]. 

 

Muscle length ( CEl ) and muscle velocity ( CEv ) are estimated directly from joint angle and joint 

angular velocity. 

 

 

 
Figure A1.3: Topology of Riener-1 model. 
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Riener calcium dynamics sub-model: 

The calcium )( 2+Ca dynamics describe the phenomenon of calcium ion released from 
sarcoplasmic reticulum. It is modelled by two first order transfer functions in series (time 
constant CaT ), the model is represented as: 

)(
12

1)(
1

1.
1

1)( 22 Sa
STST

Sa
STST

Sa p
CaCa

p
CaCa ++

=







+








+

=        

 

 

A1.3. Riener-2 Model 

In Riener-2 model [73], the muscle is divided into 100 motor-units of slow-twitch (type-I) and 

fast-twitch (Types IIb and IIa together). Riener-2 model is a physiologically based model, 

where the output is the normalised isometric muscle force (under isometric conditions), 

passive elements are not modelled. 

 

The recruitment sub-model is shown in Figure A1.4, the fatigue and calcium dynamics are 

similar to those in Riener-1 model. The biophysical processes underlying excitation and 

activation are also modelled for the isometric contraction only. The focus of this research is 

on the effect of different muscle properties on muscle force not the details of the biochemical 

and biophysical processes which happen during muscle contraction. Therefore, sub-models 

for the biophysical processes are not considered. The focus here is on the binary recruitment 

of motor-units. 

 

 
Figure A1.4: Topology of Riener-2 model. 
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A1.4. Brown Model 

Topology of Brown model [41, 82, 84, 127] (including alternative variants of Brown models 

in the Virtual Muscle modelling package [128]) is shown in Figures A1.5 and A1.6. Although 

fatigue and force enhancement & depression are not included, Brown model is one of the 

most complex models reported in the literature. The arrangement of passive elements is 

represented in Figure A1.7. The linear parallel viscous element was added in virtual muscle 

modelling package [77] for stability purposes during simulation (incorporated into 1PEf  sub-

model) 

 

 

 
Figure A1.5: Topology of Brown model and other alternative models in Virtual Muscle 

software package. 
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Figure A1.6: Topology of Brown model and other alternative models in Virtual Muscle software package. 
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Figure A1.7: A) Representation of Brown muscle model using rheological elements structure, 

( 21 PEPECE lll == ). B) The two parts of the passive elastic element PE . C) The passive F-L 

curves of 1PE  and 2PE . (Adapted from [82, 160]). 

 

 

The rise and fall time ( effU ) sub-model: 

The rise and fall time sub- model  (presented in[128]) is an intermediate natural 

stimulation input that models the rise and fall effect of calcium dynamics when there is a 

change in the level of . Note that:  is different from the “total muscle effective 

activation” mentioned in [127], which is used in this thesis. 

 

 

 

The effective natural stimulation input  models the transient-state when there is a change 

in the natural stimulation input , the steady-state of the effective natural stimulation input 

 will be the new value of natural stimulation input  (i.e. models rise and fall times 

only). Note that the rise and fall times due to change in stimulation frequency are modelled 

separately in Brown activation sub-model. 
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A1.5. Hawkins Model 

In Hawkins model [101, 129, 130], the pennation angle is modelled, and hence the fibres 

length is used in the F-L sub-model ( fCE ll = ). Isometric force produced by muscle fibres is 

multiplied by ( αcos ) in order to get the force of the muscle fibres in the direction of tendon 

line of action (which represents muscle belly). The passive forces due to muscle fibres ( VEf ,

1BEf , and 2BEf ) will also be multiplied by αcos . 

 

Topology of Hawkins model is represented in Figure A1.8, the thick arrows denote variables 

of multiple values (for i  = 1, 2, and 3) and thin arrow denote single variables. The 

arrangement of passive elements is shown in Figure A1.9. 

 



192 
 

 

 

 
Figure A1.8: Topology of Hawkins model. 
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Figure A1.9: Representation of Hawkins muscle model using rheological elements structure. 
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A1.6. Incorporation of activation sub-model into the “General Model” 

In order to model muscle activation more accurately; an activation sub-model can be 

incorporated into the “General Model” proposed in Chapter 6. To the author’s knowledge, 

Brown activation sub-model (Figure A1.5) which represents the steady-state activation, is the 

most complex activation sub-model reported in the literature. 

 

The effective length sub-model effL  models the time lag between changes in length and the 

effect of length on the activation sub-model (not F-L sub-model). 

 

The effective frequency efffreq  sub-model models the rise and fall times (effect of calcium 

dynamics) which happens after any change in stimulation frequency during FES (i.e. the time 

lag between changes in stimulation frequency and muscle activation). 

 

Topology of the “General Model” for analogue recruitment input (fibre-type level), including 

activation ( iA ) is shown in Figure A1.10, note that the hick arrows denote variables of 

multiple values (for i  = 1, 2, and 3) and thin arrow denote single variables. 

 

Sag is unique to fast-twitch fibres and becomes less at higher frequency and also at longer 

lengths. Sag happens during isometric and constant frequency, where the muscle force 

typically reaches a peak shortly after onset, after which there is a slow decline in force during 

the next few hundred milli-seconds [ms], this is not to be confused with fatigue. 

 

Yield (Y ) is the effect of stimulus frequency on sub-tetanic (at frequency lower than the 

maximum natural frequency) FV  properties. Yielding behaviour is unique to slow-twitch 

fibres (fast-twitch fibres do not yield). Y  is defined to be equal to 1 during the isometric 

condition and to be less than 1 during length changes. 

 

Modelling the transient-state of activation 

As discussed in Chapter 2; at onset and termination of FES (or natural voluntary contraction) 

there is a transient-state of activation, this can be modelled by the rise and fall time ( effU ) 

sub-model (proposed in Brown model, details are provided in [128] and summary in section 

A1.4) or the “calcium dynamics + time delay” sub-model proposed in Riener-1 model (details 

are provided in [72], summary in section A1.2). These two alternative sub-models (or any 

other alternative) can be incorporated into the “General Model”. 
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More details about the activation sub-model and its components (effective length, effective 

frequency, Sag and yield) are provided in [81, 82, 84, 100, 127, 175, 176]. However, since 

frequency is typically constant during FES; the activation sub-model is not included and the 

activation has been assumed as constant at the value ( 1=iA ). 
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Figure A1.10: Topology of the “General Model” for analogue recruitment input (fibre-type level), including activation ( iA ) as an extra input. 

Thick arrows denote variables of multiple values (for i  = 1, 2, and 3) and thin arrows denote single variables.
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Discussion on why the activation iA  is assumed constant for in the “General Model”: 

Stimulation frequency is assumed constant during FES. In some special cases, during 

intermittent FES, the stimulation frequency can be changed when FES is off in order to 

increase the force produced by the muscle, in this case the frequency will be assumed 

adjustable, but not a real-time variable (i.e. ignoring dynamic changes in frequency). 

 

At constant stimulation frequency: Yield and efffreq  sub-models have no effect if the used 

sub-models of (F-L, F-V, and 2PEf ) are adjusted for the used stimulation frequency (i.e. 

frequency can be assumed as hidden constant parameter). There is a very little effect from effl  

sub-model (reported in [128] to be less than 1%). Finally, since the effect of sag sub-model 

lasts for very short time at onset of stimulation, and its value is decreased at higher 

frequencies about or over 30 Hz (which is commonly used in FES), hence the effect of sag is 

negligible. 

 

Therefore, for simplicity the activation sub-model will not be included in FES control because 

its effect on the output force is very little. Brown sub-models for (F-L, F-V, and 2PEf ) should 

be modified to fit the used frequency in order to preserve the accuracy of these sub-models. 

The removal of the activation sub-model form the “General Model” is considered reasonable 

approximation; detailed reasons are given in the following points: 

• In Brown model, all sub-models are developed for tetanic frequency (maximum 

natural frequency) and they need to be multiplied by iA  in order to model the effect of 

frequency on them. Brown defined tetanic frequency as the frequency at which muscle 

force is maximum (experimentally, he found it to be around 120 Hz). Force does not 

increase at frequencies higher than the tetanic frequency, but decreases at lower 

frequencies (Brown calls them sub-tetanic frequencies). Tetanic frequency is 

considered as “saturation frequency”, not to be confused with the frequency required 

to get tetanic (smooth) contraction (i.e. fused contraction). 

• Since frequency is constant, hence no need for the efffreq  sub-model to model the 

calcium dynamics when there is a change in the stimulation frequency. Note that, the 

efffreq  sub-model will model the change of frequency during FES, not at onset of 

stimulation. The calcium dynamics sub-model will model the change of both 

frequency and stimulation level ( PAPW / ) at onset of stimulation (since both start 
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from zero to the value wanted). Any further change in the stimulation level ( PAPW / ) 

will be modelled again by the calcium dynamics sub-model. 

• The efffreq  sub-model has another function which is to correct the curve of the F-L 

sub-model (modify it to fit the frequency used), but this effect can also be ignored if 

the F-L sub-model was developed for the used frequency not for tetanic frequency. 

• Yield effect is not zero at constant frequency, but it only makes the F-V curve (at sub-

tetanic frequency) different from that at tetanic frequency. So, yield sub-model can be 

ignored when frequency is constant and if the used F-V sub-model is for the frequency 

in use not for tetanic frequency. Yield affects only slow-twitch fibres. 

• The F-V and F-L sub-models are usually developed and fitted using experimental data 

at constant frequency. Therefore, the effect of the activation sub-model on The F-V 

and F-L sub-models is similar to the effect of constant properties (such as muscle 

structure and percentage of fibre types) which are constant and do not change in real-

time (different frequencies will alter the shape of the F-L and F-V curves but if 

constant frequency is used then there will be no change during FES). Therefore, the 

frequency can be assumed as a hidden parameter. 

• The previous points also mean that, in Brown model, the F-L, F-V and 2PEf  sub-

models have to be modified to fit the used frequency. A simple way to do this is to use 

a Matlab code to modify brown sub-model for F-L, F-V and 2PEf  to the frequency 

used during FES simulations (since they are already adjusted for the tetanic 

frequency). 

• The effective length ( effl ) sub-model has negligible effect, less than 1%, see [128] for 

more details. 

• Sag has a dynamic effect even at constant frequency. The effect of Sag lasts for a short 

period (few hundred milli-seconds) after onset of stimulation, so it has a little and very 

short effect. Sag affects only fast-twitch fibres. 
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Appendix 2: Instantaneous Length versus Initial Length 

 

A2.1 Introduction 

Skeletal muscle models are used for FES control applications. Many FES controllers have 

been developed using a simulation approach. The performance of these controllers depends on 

the muscle model accuracy [6, 55, 72, 73, 74, 76, 77]. In these models the instantaneous CE 

length ( CEl ) is commonly used in the literature to calculate the corresponding muscle force 

following stretch and/or shortening. However, in addition to the instability problem on the 

descending limb (discussed in section A2.4) the isometric force-length curve is a poor 

estimator of the force-length curve during “non-isometric” dynamic contractions of skeletal 

muscle [177, 178]. Force enhancement following stretch ef  following stretch and force 

depression following shortening df   can reach values of almost 50% of the isometric force 

corresponding to the instantaneous CE length after stretch/shortening [13]. 

 

During and after dynamic contractions, the force-length curve was found to be very different 

from the traditional isometric force-length curve [177, 178]. The maximum velocity of 

shortening ( maxv ) was reported to be dependent on the initial CE length [179, 180, 181, 182, 

183]. The isometric steady-state muscle force after stretch/shortening depends on some 

factors including the initial CE length [13, 177, 178]. Herzog [18] used the initial length ( ol ) 

as input to the muscle model as long as the recruitment remains on, where both the F-L and F-

V relationships are dependent on the initial CE length. 

For protocols of skeletal muscle contraction including shortening and/or stretch, either CE 

length can be used for the calculation of force-length relationship, but which one is more 

accurate? Is it accurate to use the instantaneous CE length? Or should the initial CE length be 

used instead? These questions will be discussed and answered using experimental data taken 

from the literature to examine systematically which CE length is more appropriate to be used 

in predicting the steady-state muscle force following stretch/shortening. 

In this study, the focus will be on the isometric steady-state muscle force after end of 

stretch/shortening. Related experimental data taken from the literature are shown (including 

recruitment plots and protocols of stretch/shortening). The collected data cover many possible 

protocols of stretch/shortening on the ascending and descending limbs of the force-length 

curve. The “active” force before stretch/shortening and the isometric steady-state “active” 
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force after stretch/shortening are calculated (estimated manually) from graphs and then 

compared with the purely isometric “active” muscle force (the traditional isometric force-

length curve) at the corresponding muscle length after stretch/shortening (i.e. using the 

instantaneous CE length). 

 

A2.2 Definitions 

In this study; the term “instantaneous length” ( CEl ) is defined as the muscle belly (CE) length 

or the muscle fibres length after stretch/shortening ends (generally, it is the CE length at any 

time), the term “initial length” or “length at initial recruitment” ( ol ) is defined as the muscle 

belly (CE) length or the muscle fibres length just before stretch/shortening commences. These 

two lengths are used to calculate the corresponding isometric “active” muscle force from the 

traditional force-length curve. These two lengths will be compared against the experimental 

isometric steady-state force following stretch/shortening. The term “traditional isometric 

force-length curve” is used for the isometric force-length curve estimated experimentally 

without preceding stretch/shortening. The focus of this study will be on the changes of the 

“active” isometric steady-state force produced by the contractile element of the muscle. 

Passive force enhancement following “active” stretch and the transient-state force during 

stretch/shortening are not included in this study. 

 

Stretch induced force enhancement ef  is defined as the increase of the isometric steady-state 

force (when compared with the corresponding isometric force of the instantaneous length), at 

a given level of recruitment, caused by stretching of a recruited muscle. Force enhancement 

ef  is also called “residual force enhancement”, as in [154]. Shortening induced force 

depressions df  is defined as the decrease of the isometric steady-state force (when compared 

with the corresponding isometric force of the instantaneous length), at a given level of 

recruitment, caused by shortening of a recruited muscle. Force depression df  is also called 

“residual force depression”, as in [184]. 

 

The increase/decrease in the isometric steady-state force after end of stretch/shortening is 

typically calculated relative to the force produced by a purely isometric contraction [13, 152, 

154, 155, 168, 169, 170, 171, 172, 173] at the corresponding instantaneous length at the same 

condition. The reference force-length curve of a purely isometric contraction must be taken at 
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the same conditions of recruitment and activation, for FES applications this means same 

levels of stimulation voltage ( PW  and PA ) and frequency. 

 

 

A2.3 Experimental data from the literature 

Vast majority of the experimental data available in the literature are for fully-recruited 

muscles (where all motor-units are recruited), a single fibre, or a single myofibril. Most of the 

experimental data used here are for fully-recruited muscles. Experimental data for partially 

recruited muscles available in the literature are only during stretch/shortening. For the best of 

my knowledge, protocols of stretch/shortening at different levels of recruitment are not 

available in the literature. Therefore, the behaviour of a recruited single motor-unit in a 

partially recruited muscle will be assumed similar to a fully recruited muscle. 

The force-length curve consists of three parts; ascending limb, plateau region and descending 

limb. On the plateau region the corresponding isometric force is almost the same, so changes 

in length makes only little difference between forces corresponding to the two lengths ( CEl  

and ol ). On the ascending and descending limbs, the isometric force after stretch/shortening 

on each limb is of different characteristics; therefore each limb of the force-length curve will 

be studied separately. Dynamic contractions on the descending limb will be studied first. 

 

A2.3.1. Dynamic contractions on the descending limb of the F-L curve 

Dynamic movements on the descending limb can be pure shortening (concentric contraction), 

pure stretch (eccentric contraction), shortening followed by stretch, or stretch followed by 

shortening. 

 

A2.3.1.1. Pure shortening 

Figure A2.1 shows a protocol of shortening on the descending limb of the force-length curve. 

Isometric reference contraction was performed at the final length of the dynamic contraction 

after shortening. Force depression ( df ) was determined 4.5 seconds following the end of the 

shortening contraction. 
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Figure A2.1: Force-time history for active shortening of 6 mm amplitude (about 18% of the 

muscle fibre optimal length) from 6 to 0 mm at a constant speed of 3 mm/s (about 9% fibre 

length per second). (From [152]). 

 

 

The purely isometric force produced by contraction of muscle fibres )(lfiso  at any length ( l ) 

can be calculated as follows: 

ptotaliso fflf −=)(  

totalf : Total isometric force including “active” and “passive” forces. 

pf : Pure “passive” isometric force of muscle belly. 
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The isometric force at initial length )( oiso lf , the purely isometric force corresponding to 

instantaneous length after shortening )( CEiso lf , and the “experimental” isometric steady-state 

force after stretch (exp)isof  were estimated manually from Figure A2.1 (see Table A2.1). 

 

Table A2.1: Isometric “active” muscle forces estimated manually from Figure A2.1. 

)( oiso lf  )( CEiso lf  (exp)isof  

 

36.5-10=26.5 [N] 

 

31.5-3=28.5 [N] 

 

29-3=26 [N] 

 

Observation: The isometric force at initial length )( oiso lf  is more accurate than the isometric 

force at the instantaneous length )( CEiso lf , the initial length ( ol ) is much more accurate. 

 

A2.3.1.2. Pure stretch 

Figure A2.2 shows a protocol of stretch on the descending limb of the force-length curve. The 

isometric reference contractions were performed at the initial and final lengths of the dynamic 

contraction, before and after the experimental stretch test. Passive force enhancement Pf∆  

following stretch of recruited muscle was greater than the corresponding passive force 

following isometric contraction (the muscle was stretched when not recruited). 

 

The isometric force at initial length )( oiso lf , the purely isometric force corresponding to 

instantaneous length after shortening )( CEiso lf , and the “experimental” isometric steady-state 

force after stretch (exp)isof  were estimated manually from Figure A2.2 (see Table A2.2). 

 

 

Table A2.2: Isometric “active” muscle forces estimated manually from Figure A2.2. 

)( oiso lf  )( CEiso lf  (exp)isof  

 

33-4=29 [N] 

 

38-12=26 [N] 

 

41-12=29 [N] 
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Observation: The isometric force of initial length )( oiso lf  is more accurate than the isometric 

force of the instantaneous length )( CEiso lf , the initial length ( ol ) is much more accurate. 

 

 

 
Figure A2.2: Force–time history for active stretch of 6 mm amplitude (about 18% of the 

muscle fibre optimal length) from 0 to 6 mm at a constant speed of 3 mm/s (about 9% fibre 

length per second). (From [168]). 

 

 

A2.3.1.3. Shortening followed by stretch 

Figure A2.3 shows a protocol of shortening followed by stretch on the descending limb of the 

force-length curve. The isometric reference contraction “ i ” was performed at the final length 

of the dynamic contraction (at +9mm).  Note that increasing the amount of shortening makes 

the total and the passive force enhancement to decrease to a similar magnitude. 
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Figure A2.3: Force-time histories of four experimental active shortening of 0, 3, 6, and 9 mm 

(at speed of 3 mm/s) followed by active stretch contractions (0 to +9 mm at 3 mm/s). (From 

[169]). 

 

 

The isometric force at initial length )( oiso lf , the purely isometric force corresponding to 

instantaneous length after shortening )( CEiso lf , and the “experimental” isometric steady-state 

force after stretch were estimated manually from Figure A2.3 for both the 0 and the 9 force 

traces (see Table A2.3). 
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Table A2.3: Isometric “active” muscle forces estimated manually from Figure A2.3. 

Force Trace )( oiso lf  )( CEiso lf  (exp)isof  

(0) 22.5-1=21.5 [N] 29-10=19 [N] 33-10=23 [N] 

(9) 29-10=19 [N] 29-10=19 [N] 31.5-10=21.5 [N] 

 

 

Observation: For a protocol of active shortening followed by active stretch of the same 

magnitude (force trace 9), this means that the isometric force at initial length and the 

isometric force at the instantaneous length after stretch are the same: )()( oisoCEiso lflf = . 

However, the isometric steady-state force was the same as that of length 0 (i.e. the length at 

end of shortening and before stretch). Decreasing the magnitude of shortening (making it 

shorter than stretch) further increases the isometric steady-state force making it maximum at 

zero shortening (i.e. pure stretch). 

 

 

A2.3.1.4. Stretch followed by shortening 

Figure A2.4 shows a protocol of active stretch followed by shortening on the descending limb 

of the force-length curve. This data is for intact, single fibres dissected from the lumbrical 

muscles of the frog, as presented in [171]. 

 

Observation: For a protocol of active stretch followed by shortening of the same magnitude, 

means that the isometric force at initial length and the isometric force at the instantaneous 

length after stretch are the same: )()( oisoCEiso lflf = . However, the isometric steady-state 

force was just slightly larger. 
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Figure A2.4: Force against time (A) and length against time (B) for one set of three 

contractions with a shortening of the same distance as stretch; isometric-shortening 

contraction (The thick, solid, light-grey), purely isometric contraction (The thick, broken, 

dark-grey line), and stretch followed by shortening contraction (The thin, solid, black line).  

Inset shows the force enhancement ( 2ef ) for the protocol of interest (stretch followed by 

shortening contraction). (From [171]). 

 

 

A2.3.2. Dynamic contractions on the ascending limb of the F-L curve 

Dynamic movements on the ascending limb can be pure shortening (concentric contraction), 

pure stretch (eccentric contraction), shortening followed by stretch, or stretch followed by 

shortening. 
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A2.3.2.1. Pure stretch and pure shortening 

Figure A2.5 shows separate protocols of pure stretch and pure shortening on the ascending 

limb of the force-length curve (except for the top left plot which shows pure shortening on the 

descending limb and pure stretch on the ascending limb). The zero-reference cat soleus 

muscle length corresponds to o80  ankle angle [152]. In this figure, the force enhancements 

following stretch and force depressions following shortening were less at shorter muscle 

lengths. Also, force enhancements and force depressions were less at higher speeds. 

 

Observation: It is clear from the force traces that using the instantaneous length CEl  is more 

accurate than the initial length ol , this is more obvious at shorter lengths and also at faster 

speeds of stretch/shortening. Speed of stretch/shortening has an effect on ef  and df  as can be 

seen clearly in Figure A2.5, however this will not be considered here. 

 

 

A2.3.2.2. Shortening followed by stretch and stretch followed by shortening 

Figure A2.6 shows three protocols on the ascending limb of the force-length curve: an 

isometric reference contraction, a stretch followed by shortening of equal magnitude, and a 

shortening followed by stretch of equal magnitude. The zero-reference cat soleus muscle 

length corresponds to o80  ankle angle on the upper part of the ascending limb [172]. 

 

i) Shortening followed by stretch: 

Another experimental study in [185] found that a protocol of shortening followed by stretch 

of equal magnitude will cause slight enhancement, the measured force enhancement was 1.2 

%, 1.4 % and 1.6 % for 4, 16 and 64 mm/s stretch speeds, respectively, it was also found in 

the same study (in [185]) that protocols of shortening followed by stretch at varying speeds 

produced very similar results as in Figure A2.6 but the speed of shortening has some little 

effect. 

 

Protocols of shortening followed by stretch with varying magnitudes resulted in slightly 

different isometric steady-state forces (exp)isof , shortening less that stretch causes larger force 

enhancement [172, 185]. Repeated cycles of shortening-stretch did not affect the isometric 

steady-state force [172, 185]. 
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Figure A2.5: Force-time histories of three shortening and three stretch contractions, at speeds 

ranging from 2.5 to 30 [mm/s]. The isometric steady-state force of the muscle at the final 

length is indicated by horizontal broken line. Length represents displacement from optimal 

length (𝑙𝐶𝐸 − 𝑙𝑜𝑝𝑡). The final length was 0, - 4, and - 8 mm in (a), (b), and (c) respectively. 

(From [152]). 

 

 

ii) Stretch followed by shortening: 

Force-time histories for an isometric reference contraction and a stretch followed by 

shortening of equal magnitude and a shortening followed by stretch of equal magnitude are 

shown in Figure A2.6. The isometric steady-state forces after the shortening followed by 
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stretch (exp)isof  were always (n=8) very similar as those obtained for purely isometric 

contractions [i.e. )( CEiso lf ]. The isometric steady-state forces after stretch followed by 

shortening (exp)isof  were always (n=8) below the corresponding purely isometric forces 

)( CEiso lf . 

 

 

 
Figure A2.6: Force-time histories for an isometric reference contraction (0 mm) and a stretch 

followed by shortening of equal magnitude (± 4 mm) and a shortening followed by stretch of 

equal magnitude (± 4mm). (From [172]). 
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Protocols of stretch followed by shortening at varying speeds, and protocols of stretch 

followed by shortening with varying magnitudes (and equal speeds) resulted in little force 

depression (similar result as that in Figure A2.6). These results indicate that ef  and df  are not 

affected by speed of stretch followed by shortening or the magnitude of stretch/shortening, 

details are provided in [172, 185]. Repeated cycles of stretch-shortening results in cumulative 

effect (i.e. more cycles results in a slightly smaller steady-state force) [172, 185].  

 

Observation: For a protocol of shortening followed by stretch of equal magnitude, the 

isometric force at initial length and the isometric force at the instantaneous length after stretch 

are of similar values: )()( oisoCEiso lflf ≈ . This means that using either length (initial or 

instantaneous) will produce similar results. However, both lengths are not accurate in the 

other case (stretch followed by shortening). 

 

 

A2.3.3. Dynamic contractions on both limbs of the F-L curve 

Dynamic movements on both of the ascending and descending limbs of the F-L curve can be 

either a pure stretch starts on the ascending limb and ends on the descending limb, or a pure 

shortening starts on the descending limb and ends on the ascending limb. 

 

 

A2.3.3.1. Stretch starts on the ascending limb 

Figure A2.7 shows protocols of stretch, a reference contraction at the final length +9mm 

length (9mm longer than optimal length) and a series of stretch contractions of various 

magnitudes. The protocol of interest is the protocol which starts on the ascending limb (at -

12mm) and ends on the descending limb of the force-length curve (at +9mm). The zero-length 

corresponds to optimal length. Speed of stretch is 12mm/s, final isometric contractions lasting 

at least 5 s.  
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Figure A2.7: Force–time history for a muscle performing stretch protocols for magnitudes of 

3, 6, 9, and 21 mm. The total force enhancement shown is between the 3 mm stretch trial and 

the isometric reference. (From [154]). 

 

 

 

Observation: For the protocol of interest which starts on the ascending limb (at -12mm) and 

ends on the descending limb of the force-length curve (at +9mm) in Figure A2.7, the steady-

state force (exp)isof  is even larger than that which started at the optimal length (i.e. greater 

than maximum isometric force max,isof ). This indicates that instantaneous length ( ol ) is more 

appropriate in this case. 
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A2.3.3.2. Shortening starts on the descending limb 

Figure A2.8 shows protocols of shortening, a reference contraction at the final length (at -

4mm), and a series of stretch contractions of various magnitudes. The protocol of interest is 

the protocol which starts on the descending limb (at +6mm) and ends on the ascending limb 

of the force-length curve (at -4mm). The zero-reference cat soleus muscle length corresponds 

to o80  ankle angle [185]. Speed of stretch is 4mm/s. 

The isometric force at initial length )( oiso lf , the purely isometric force corresponding to 

instantaneous length )( CEiso lf  after shortening and the “experimental” isometric steady-state 

force after stretch were estimated manually from Figure A2.8 for all force traces (a, b, c, d, 

and e), as given in Table A2.4. From this Table, it is clear that, at least, traces (a) and (b) are 

on the descending limb. The purely isometric force reference (f) has a value of 22 [N] at 

length (-4 mm). 

 

Table A2.4: Isometric “active” muscle forces estimated manually from Figure A2.8. 

Force Trace )( oiso lf  )( CEiso lf  (exp)isof  

a (+6 mm) 26.5-5=21.5 [N] 22 [N] 19.5 [N] 

b (+4 mm) 25-3=22 [N] 22 [N] 20 [N] 

c (+2 mm) 24-1.5=22.5 [N] 22 [N] 20.5 [N] 

d (0 mm) 23.5-1=22.5 [N] 22 [N] 21 [N] 

e (-2 mm) 22-0=22 [N] 22 [N] 21.5 [N] 

 

 

Observations: Both lengths ( ol  and CEl ) have a noticeable percentage of error when 

compared with experimental results reported in the literature; initial length is slightly better 

estimator for force trace (a), both lengths are similar for force traces (b) and (e), instantaneous 

length is better estimator for force trace (c) and (d). All forces were depressed. Traces (a), (b) 

and (c) were depressed by the same amount of about 2 [N] when compared with )( oiso lf , even 

they were shortened by different magnitudes of shortening. Traces (d) and (e) were depressed 

by 1.5 [N] and 0.5 [N]. 
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Figure A2.8: Force–time history for a muscle performing shortening protocols for magnitudes 

of 2, 4, 6, 8, and 10 mm. The isometric reference contraction at muscle length -4 mm. 

Shortening speed of 4 mm/s and maximal recruitment were kept constant. (From [155]). 
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A2.3.4. Effect of varying recruitment level during and after stretch/shortening 

Modelling of skeletal muscle force production can be very complicated. The isometric steady-

state force following stretch and/or shortening is affected by many factors; one of these 

factors is the level of recruitment during stretch/shortening which can change the shortening 

forces as shown in Figure A2.9, A2.10 and A2.11. Altering stimulation frequency has similar 

results as varying recruitment level, see Figure A2.12. If muscle recruitment was interrupted 

(decreased suddenly to zero level) during shortening, the isometric steady-state force will be 

affected depending on the time period of de-recruitment, see Figures A2.13, (A2.14) and 

(A2.15). 

 

 

In Figure A2.9, no stretch/shortening was performed during this process. There was no force 

depression (associated with the change in recruitment levels) upon full re-recruitment. 

 

 

 
Figure A2.9: Force-time histories of isometric contractions, in which recruitment was 

decreased for a 2 second period (at different levels) following full force development. (From 

[155]). 
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Figure A2.10: Force depression increases with increasing force during shortening. Results 

shown are from cat soleus at 37 oC . The different force levels were achieved by changing the 

stimulation voltage. (From [13]). 

 

 

In figure A2.11, the shortening was done from the ascending limb to the ascending limb; at 

six levels of recruitment during the shortening phase, ranging from full recruitment (3T) to 

zero recruitment (0). Isometric reference contraction (i) at -4 mm was performed at the final 

length of the dynamic contraction after shortening. Force depressions are directly related to 

the force during the shortening phase. 
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Figure A2.11: Force-time history for shortening of 8 mm from +4 to -4 mm at six levels of 

recruitment during the shortening phase.(From [170]). 

 

 

 

In figure A2.12, the activation of the muscle was varied by frequency modulation between (0) 

and (100) Hz to produce different force levels during shortening, similar results were obtained 

when varying the recruitment level between 100% and 0.0%. Force depression decreased with 

decreasing activation/recruitment during the shortening phase. 
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Figure A2.12: Force-time, length-time and recruitment -time histories of shortening 

contractions. (From [152]). 

 

 

 

 

In figure A2.13, the force-time histories shown are for shortening of 8 mm amplitude at 

constant speed of 4 mm/s, and force-time history of an isometric reference contraction at the 

final muscle length of -4 mm. The recruitment during shortening was varied by de-recruiting 

the muscle for the first 0.5, 1, 1.5, and 2 seconds and then re-recruiting it maximally. 
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Figure A2.13: Force-time histories of shortening at constant speed , the recruitment during 

shortening was varied by de-recruiting the muscle for different times. (From [185]). 

 

 

In figure A2.14, (A) Force depression as a function of recruitment during the shortening 

phase. The higher the force during shortening, the more the force depression. (B) Force 

depression as a function of the time period of de-recruitment during the isometric contraction 

following shortening. The smaller the interruption, the more the force depression. 
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Figure A2.14: (A) Force depression as a function of recruitment during the shortening phase. 

(B) Force depression as a function of the time period of de-recruitment during the isometric 

contraction following shortening. (From [173]). 

 

 

In figure A2.15, during the second isometric phase (i.e. after the shortening had occurred), the 

recruitment was interrupted for variable time periods to allow the muscle force to decrease to 

different levels. The force depressions following de-recruitment were smaller for longer 

periods of de-recruitment (i.e. longer interruption). When the de-recruitment periods were so 

long that the muscle force dropped to zero, or even stayed at zero for a period of time, the 

forces following re-recruitment came close to or exceeded the isometric reference force 

(dashed line). 
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Figure A2.15: Force-time, length-time and recruitment-time histories of isometric-shortening-

isometric contractions for one representative muscle. (From [152]). 

 

 

 

A2.4 Instability on the descending limb of the force-length relationship 

Almost six decades ago, A. V. Hill proposed that sarcomere behaviour was unstable on the 

descending limb of the force-length relationship [186], since then this has been a topic of 

great debate [18, 182], see Figure A2.16. A system is considered stable if, following a 

perturbation, the system will return to its original state. 
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Figure A2.16: The sarcomere force-length relationship of frog skeletal muscle. (From [18]) 

 

 

The negative slope of the descending limb has the characteristics of a softening material (i.e. 

force becomes less as the material is stretched), and any material with such properties would 

be highly unstable if this was a dynamic property. But, the softening behaviour of skeletal 

muscle has not been observed experimentally. 

 

The isometric force-length relationships represent a series of isolated and independent static 

experimental observations because they are obtained for isometric contractions at discrete 

lengths, the sarcomere force-length relationship of frog skeletal muscle is shown in Figure 

A2.16. 

 

If an active sarcomere was stretched or shortened to a new length, the force would not follow 

the continuous isometric force-length relationship. The steady-state force after stretch would 

be larger, and after shortening, would be lower than the isometric force corresponding to the 

new length (Figure A2.17). This result indicates that sarcomere stiffness is always positive, 

including the descending limb, and sarcomere stability is guaranteed [18]. 
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Figure A2.17: Schematic representation of the sarcomere force-length relationship. If the 

sarcomere was stretched or shortened to a new length, the force would not follow the 

isometric force-length relationship; the force would be larger after stretch and would be lower 

after shortening. Sarcomere stiffness observed experimentally is always positive and stable. 

(From [18]). 

 

 

In all muscle models reported in the literature (except Herzog model [18]), the muscle force is 

dependent on the instantaneous length ( CEl ) directly, using the isometric force-length 

relationship for non-isometric conditions. This leads to instability in the descending limb of 

the force-length relationship. To avoid this major problem, Herzog [18] assumed that the 

muscle remembers the length at initial recruitment ol  as long as it is still recruited (at any 

level). Once fully de-recruited, that length is forgotten and a new initial length will be used 

upon the next recruitment (at any level), details of Herzog model are provided in Appendix 6. 

Furthermore, the experimentally observed force enhancement (following active stretch) and 

force depression (following active shortening) on the ascending and descending limbs of the 

force-length relationship is not constant; it depends on the length at initial recruitment [18, 

187, 188]. This feature can be incorporated into the muscle model either directly by making 

the stiffness of the parallel element depend on R  and/or ol , or indirectly by an elastic rack 

that is engaged upon recruitment (e.g. Forcinito elastic rack [156, 157] presented in previous 

section). 
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Why to use ol  instead of CEl ? 

The length at initial recruitment serves two purposes: first to avoid instability on the 

descending limb, and second it is more accurate on the descending limb (as can be seen in the 

experimental data provided in this appendix). 

 

The force enhancement/depression need to be modelled separately, it depends mainly on the 

initial length. Other factors affecting the force enhancement/depression are discussed and 

modelled in section 2.5.5 and Appendix 2. 

 

The CE length at initial recruitment ( ol ) can be used with muscle models in different ways: 

i) The simplest way is to use it directly as input to the F-L sub-model (e.g. the 

original Herzog model), see Chapter 3. 

ii) A more complex way is the multiple motor-unit modelling approach. Two 

different ways are illustrated in Chapter 3; the isofEff .  and the CEfEff .  multiple 

motor-unit models. 

iii) To use ol  with CEl  and CEv  (during stretch/shortening) and magnitude of 

displacement ( CEl∆ ) to calculate force depression & enhancement using the new 

complex IE & ID sub-model illustrated in Chapter 6. 

iv) Any other level of complexity between (i) and (iii). For example, Forcinito IE & 

ID sub-model [156, 157] which uses an elastic rack to calculate the force 

enhancement and depression. 

 

 

Does the sliding filament theory help to justify the initial length? 

Several possible mechanisms are presented in [13, 173, 189] and other references (see those 

provided in [13]). However, Herzog [13] questioned all these proposed mechanisms based on 

experimental evidence; only one mechanism was found to conceptually agree with 

experimental data. However, none of those proposed mechanisms nor the sliding filament 

(cross bridges) theory was helpful to justify the length at initial recruitment. Herzog [18] 

clearly concluded: “Specifically, the dependence of force production on the history of 

contraction is not part of the cross-bridge model”. 

 

Herzog et al [190] experimentally examined the steady-state force enhancement in view of the 

cross-bridge (sliding filament) theory. They concluded that the steady-state force 
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enhancement following active stretch has a passive and an active component: “The active 

component is associated with the cross-bridge kinetics, and the passive component is 

associated with a calcium-dependent increase in titin stiffness” quoted from [190]. More 

discussion about history effects and possible mechanisms are provided in [182, 187, 188, 190, 

191, 192, 193, 194]. 

 

 

A2.5 Discussion 

The use of instantaneous length in dynamic contractions leads to instability on the descending 

limb of the force-length relationship. In order to avoid this problem, the length at initial 

recruitment can be used. This will make the system stable on the descending limb of the 

force-length relationship and also makes the corresponding isometric force more accurate than 

that of the instantaneous length. 

 

As can be observed from the experimental data taken from literature, after dynamic 

contractions, the force-length curve was found to be different from the traditional isometric 

force-length curve. For the case of dynamic contractions on the ascending limb of the force-

length relationship, both lengths are not good estimators. However, the instantaneous length 

)( CEl  was closer to the experimental results. 

 

For the case of dynamic contractions on the descending limb of the force-length relationship, 

the initial length ( ol ) was much better and very close to the experimental results. 

For the case of dynamic contractions involving length changes through the whole force-length 

curve (on both ascending and descending limbs), the instantaneous length ( CEl ) was close to 

the experimental results for the case of stretch starts on the ascending limb. For the other case 

of shortening starts on the descending limb, both lengths are not good estimators but the 

instantaneous length ( CEl ) was closer to the experimental results. 

 

Initial length is a good estimator in the case when the range of muscle length change lies on 

the descending limb, for example if the physiological range of the muscle excursions naturally 

lies on the descending limb. In this case, the initial length can be used with a relatively simple 

muscle model but in the same time keeping high level of accuracy. 
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Other protocols involving other cycles of stretch and shortening at different magnitudes and 

different speeds and happening on any part of the force-length curve are complex and difficult 

to predict. The experimental data available in the literature are not enough to describe 

confirmed characteristics, therefore any other possible protocols will be considered beyond 

the scope of this study. 

 

When used for FES control; assumptions are made regarding the nominal length to use as an 

input to the force-velocity sub-model. Various authors use different approaches to account for 

lengths that vary with time, but the instantaneous CE  length is commonly used. If the output 

of the model is joint torque, then the instantaneous joint angle and joint angular velocity are 

used as inputs (rather than CE  length and velocity) and joint torque as output (rather than 

muscle force) [86]. 

 

In an attempt to address the issue of modelling partial recruitment, Herzog [18] used the 

initial length as an input to a relatively simple muscle model to determine the force response 

of the muscle, for as long as the recruitment remains on. Clearly, this is not accurate if the 

recruitment level does not remain constant as the muscle contracts, or lengthens. It is also not 

accurate to use the instantaneous length as input, if the isometric force-length relationship is 

used for “non-isometric” dynamic situations. 

 

The experimental evidence provided in this appendix shows that the instantaneous length is 

not accurate for dynamic (non-isometric) contraction following active stretch, the observed 

muscle force is larger than the isometric force corresponding to instantaneous length after 

stretch (the difference is called force enhancement). Similarly, muscle force is less than the 

isometric force corresponding to instantaneous length after active shortening (force 

depression). Most experimental evidence suggests that the initial length ( ol ) is a key 

parameter that determines total muscle force. 

 

Force enhancement/ depression ( ef / df ) are dependent on initial length; if motor-units are 

recruited at different lengths then each recruited motor-unit needs to be treated separately. 

The multiple motor-unit model proposed in Chapter 3 can be used to increase the accuracy of 

the muscle model to account for continuously changing recruitment levels. To make the 

model more accurate, more complexities have to be incorporated into the model. In the case 

when recruitment level is continuously changing during FES, where different motor-units are 
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recruited at different muscle lengths, multiple motor-unit modelling approach can be used to 

account for recruitment history where every recruited motor-unit is treated as a separate 

muscle. 

 

Stretch induced force enhancement ef  and shortening induced force depression df  are both 

dependent on the magnitude of stretch/shortening; this dependence was looked at in this 

study. However, force depression is also affected by forces during shortening and speed of 

shortening [13], some researchers also reported that speed of stretch affects force 

enhancement [152], these effects are not covered in this study. 

 

However, the greater the complexity of a model, the more difficult it is to implement such a 

model in real-time and hence an understanding of the trade-off between model complexity 

and controller performance is required [74, 76, 77]. 

 

Each property of skeletal muscle can be modelled separately making the model more generic 

and more accurate this will make the model scalable in complexity and accuracy. The model 

complexity can be adjusted depending on application, the user of the model need to make 

decision on the balance between accuracy and the level of complexity. More complex models 

require more computational time and more parameters that need to be experimentally 

estimated. Figure A2.18 shows one possible relationship between the quality of FES 

controller and model complexity (assuming that extra complexity will improve model 

accuracy). 

 

The hypothesis of is this research work is that the quality of FES controller is expected to 

increase with model accuracy, but model accuracy may not necessarily increase with model 

complexity (using the appropriate length ol  or CEl  is an example). Muscle models, used for 

FES control, use a variety of different levels of complexity. For most models, the 

“instantaneous” CE  length is used as an input to the isometric force-length relationship to 

calculate force. In most cases, muscle contractions will not be occurring under isometric 

conditions and hence there are clear limitations with these approaches. Herzog [18] used the 

initial length as the input, which is also not accurate if the recruitment parameter varies at 

different CE  lengths. Even if the model was complex but uses the wrong length, a simpler 

model can be more accurate if the right length was used. 
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Figure A2.18: One possible relationship between the quality of FES controller and model 

complexity, roughly estimated relative to real skeletal muscle (assuming that extra complexity 

will improve model accuracy). 

  

 

Figure A2.19 shows the three-dimensional relationship between CE length, CE velocity and 

active muscle force ( CEf ) using the “instantaneous” CE  length in Hill-type models. If the 

initial length was used instead, the isometric force-length relationship would stay constant at 

all lengths with the value that corresponds to the initial length.  
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Figure A2.19: Three-dimensional relationship between “instantaneous” CE length ( CEl ),CE 

velocity ( CEv ) and CE force ( CEf ). (Adapted from [18]) 

 

 

A2.6 Conclusions 

Modelling of skeletal muscle force production can be very complicated as can be observed 

from the experimental data used in this study, note that this study only covers some of the 

effects of stretch/shortening on the steady-state force enhancement/depression. However, for 

applications where simplicity of the model is required, the initial length ol   can be used with 

good accuracy for dynamic contractions on the descending limb ( ol  is more accurate than the 

instantaneous length CEl ). On the ascending limb, both lengths were not good estimators but 

the instantaneous length was closer to the experimental results. 

 

The initial length ( ol ) is a key parameter that determines total muscle force as can be 

observed from the experimental data. The isometric steady-state muscle force is highly 

affected by the length of the muscle fibres. Muscle fibres length is the most important factor 

in the force-length relationship. 
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In dynamic movements, when recruitment levels are changing continuously, different motor-

units will be recruited at different initial lengths and at different times. This will make 

significant differences in the forces produced by recruited motor-units. Isometric steady-state 

force, df / ef , fatigue, and other muscle properties depend on initial length and time since 

initially recruited. 

 

The multiple motor-unit modelling approach can be used to account for the recruitment 

history during FES control whilst allowing the recruitment to change continuously at different 

lengths. This approach of modelling can also account for different types of motor-units of 

different properties, within one muscle. 

In order to model muscle force properly, all important muscle properties have to be taken into 

account and incorporated into the model in order to increase the accuracy of the model, but 

this will make the model and parameters’ estimation much more complex. A compromise 

between model complexity and accuracy has to be decided. 

 

A2.7 Summary 

The isometric steady-state force of skeletal muscle after stretch or shortening is history-

dependent [13, 152, 154, 155, 168, 169, 170, 171, 172, 184, 185]. In this appendix, the initial 

length and the instantaneous length were compared for the purpose of estimating the steady-

state skeletal muscle force following stretch and/or shortening from the traditional force-

length curve. A review was made to the existing evidence, in the literature, on the isometric 

steady-state muscle force and the relationship with the history of CE length. The experimental 

isometric steady-state force following stretch/shortening is compared at the final CE length 

(after stretch/shortening) with the corresponding force of purely isometric contraction and 

also compared with the force at the initial CE length (before stretch/shortening). Results of the 

comparison are discussed. It was concluded that the initial length is much more accurate for 

dynamic contractions on the descending limb. On the ascending limb, both lengths are not 

good estimators, but the error was less when using instantaneous length. Improvement of 

model accuracy by incorporating more complexities into the basic Hill model is also 

discussed. 

 

In chapter 3 of this thesis, Matlab simulations for different protocols of stretch and shortening 

using the initial and instantaneous lengths are tested for the single and multiple motor-unit 

models. 
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Appendix 3: Herzog Model 

 

Herzog muscle model [18] is a basic Hill-type model (not complex); the main difference from 

other models in the literature is that Herzog uses the CE length at initial recruitment ( ol ) 

instead of the instantaneous CE length ( CEl ) which is typically used with Hill-type muscle 

models. Another feature of Herzog model is in the modelling of the maximum shortening and 

stretch velocities ( max,CEv  and str
CEv max, ), where both of max,CEv  and str

CEv max,  depend on )( 0lfiso , 

see summary of Herzog F-V sub-model in section 2.5.3.2. Summary of the “original” Herzog 

model (as introduced in [18]) is given here: 

 

A3.1 The standard Herzog model 

Herzog used the three-element Hill-type model, the model consists of a parallel elastic 

element )( pk  in parallel with a series elastic element )( sk  and a contractile element ( CE ), see 

Figure A3.1. 

 

 
Figure A3.1: Topology of Herzog model [18]. 

 

For a skeletal muscle at full recruitment ( 1=R ), the isometric muscle force is approximated 

by the following equation:  

 

])/()/(.[)( 32
2

1max, cllcllcflf optooptoisooiso −+−=                                (A3.1) 

 

Where, ol  is Length of the contractile element (CE) at the moment of initial recruitment, optl  

is the optimal CE length, )( oiso lf  is the isometric muscle force corresponding the CE length at 

initial recruitment and max,isof  is the maximum isometric muscle force. 1c , 2c  and 3c  are 
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constants, their values depend on the force-length experimental curve of the muscle. For a 

typical mammalian skeletal muscle the normalized isometric muscle force can be 

approximated by the parabola given in equation A3.2 and illustrated in Figure A3.2. 

 

]777.1)/(554.5)/(777.2[)( 2
max, −+−×= optooptoisooiso llllflf     (A3.2) 

 

This equation can be simplified to reduce the number of constant coefficients to one 

coefficient only. 
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l = , 777.21 −=c . 

 

Note that this parabola achieves positive values within the range: 6.14.0 << ol , else for 

negative values the isometric force is zero ( )( oiso lf  = 0). 

 

Equations A3.1, A3.2 and A3.3 give the CE active muscle force only; the passive muscle 

force of the parallel element PE will be considered in the equation of total muscle force ( mF ). 

 

 
Figure A3.2: The normalised force-length relationship of a skeletal muscle obeying equation 

A3.2. (From [18]). 
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The contractile element CE of Hill model, originally conceived to operate at the plateau of the 

force-length relationship, can be generalized to include the full force-length response. Such a 

generalized CE is governed by an all-or-nothing recruitment ( 1=R  if the muscle is recruited, 

otherwise 0=R ). 

 

In the inactive state, the CE cannot sustain any force, and its length can be adjusted at will. In 

the active state (providing the force as a function of CE velocity ( CEv ), and CE initial length 

)( 0l , the behaviour of the CE is related to empirical data as follows: 
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a ,b , a′  and b′ : are constants. CEf :  is the instantaneous force produced by the contractile 

element CE. 

 

In the shortening range equation A3.3 is a direct rewriting of Hill’s law [97], with CE velocity 

( CEv ) considered positive in elongation. The overall appearance of equation A3.3 is plotted in 

Figure A3.3. 
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Figure A3.3: The normalised force-velocity relationship of Herzog model. (From [18]). 

 

 
Figure A3.4: Total force in Herzog model is the sum of the two parallel forces. 

 

 

The forces of elements in series are always the same in both elements while the elongations 

sum to the total elongation of the combined element. In parallel elements the elongations are 

the same and the forces are added as shown in Figure A3.4. The response of the three-element 

model is governed by equations A3.4 and A3.5, derived as follows: 
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With 0l  given by ( 000 ullull rest
t
SPE +=−+= ) and CEl∆  denotes the elongation of the CE  

with respect to its length at the unique resting state of the system. It is possible to eliminate 

the internal degree of freedom CEv  by rearranging equation A3.4 and introducing the result 

into equation A3.5 to obtain the first order nonlinear differential equation: 

 

From equation A3.4:   )(
)(

CEmt
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By taking the time derivative, the instantaneous CE velocity is:  
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By introducing the last result (equation A3.6) into equation A3.5, the total muscle force for a 

fully recruited muscle can be expressed as: 

( )0,)( lvflkF CECEmtpm +∆×=  
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The muscle is considered to be at full recruitment ( 1=R ) in equation A3.7. The variations in 

R  have to be considered when modelling muscle force, any complete muscle model should 

allow for such variations, but definitive experimental data are not available yet [18]. Until the 

proper experimental data becomes available, provisional solutions which at least do not 

violate the basic laws of physics can be used. Herzog [18] assumed that the muscle 

remembers the CE length 0l  at which it was initially recruited for as long as any level of 

recruitment remains. If, and only if, the recruitment completely disappears, then that length is 

forgotten and a new initial length will be determined upon a new recruitment. For partial 

recruitment; equation A3.7 can be modified to: 
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In order to solve the differential equation in A3.8, Herzog used the forward finite-difference 

scheme. The time derivative of total muscle force is approximated using the known value at 

time (i) and the unknown value at time (i+1) as follows: 

 

h
iFiF

F mm
m

)()1( 
 −+

≅  

h : small time increment. 

 

The forward finite- difference scheme used by Herzog to solve the differential equation in 

A3.8 is not explained in [18], details are not provided in that reference. 

 

 

A3.2 The formulated Herzog model 

The original Herzog muscle model is summarised in the previous section of this appendix. 

The purpose of the work described in this section is to re-analyse the equations presented by 

Herzog [18] in order to produce an expression for the rate of change of total muscle force mF  

as a function of relevant parameters. 

 

The elongation of the whole muscle (the musculotendon complex) mtl∆  will be measured 

from the unique resting state (inactive, force-free) corresponding to the un-stretched length 
S
PEl  of the parallel element PE and the un-stretched length t

Sl  of the series elastic element SE 

as shown in Figure A3.5. In the inactive state ( 0=R ), the CE cannot produce any force, and 

its length can be adjusted at will according to the following equation: 

 
t
SPECE lll −=          (A3.10) 

 

Where: t
S

S
PErest lll −=  

restl  is the resting length of the inactive contractile element CE  (at the unique resting state). 

t
Sl : SE slack length (at the unique resting state), SE length beyond which SE begins to 

develop force. 
S
PEl : The slack length of PE (at the unique resting state), the length beyond which PE 

begins to develop force. 
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The unique resting state is considered “unique” because for any stretch beyond this length, the 

musculotendon complex will develop passive force. 

 

 
Figure A3.5: Herzog model at the unique resting state. 

 

The elongation value for the entire muscle mtl∆  at the instant at which the recruitment is 

applied is 0u . At this moment, the elongation of the contractile element CEl∆  will also be 0u , 

since the force in the serial element SE (and its elongation) will vanish up to the moment just 

before the initial recruitment, see Figure A3.6. The length of the contractile element CE at the 

moment of recruitment ( 0l ) can be represented as: 

000 ullull rest
t
SPE +=−+=        (A3.11) 

 
 

 
Figure A3.6: Herzog model at the moment of initial recruitment. 
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In the original form of Herzog model, the CE velocity ( CEv ) is expressed as a first order 

differential equation: 
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The total muscle force for partial recruitment is given as follows: 
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mF : Total muscle force, including all active and passive forces (all forces produced by the 

musculotendon complex). pk : Stiffness of the linear un-damped purely elastic element in 

parallel (PE). sk : Stiffness of the linear un-damped purely elastic element in series (SE). mtl∆

: Elongation of the musculotendon complex from the unique resting state. dtdlv mtmt /= : 

Instantaneous velocity of the musculotendon complex (including muscle fibres and tendon). 

CEv : Instantaneous CE  velocity, assumed the same for all motor-units. dtdlv CECE /= , 

0<CEv  for muscle shortening. 

 

The author’s implementation of Herzog’s F-V sub-model depends on the instantaneous CE 

velocity and is calculated as follows: 

 

To solve the differential equation in A3.13, the time derivative of the total muscle force mF  as 

a function of ( moisomtmt FlfvlR ),(,,,∆ ) is calculated from equations A3.3 A3.12 and A3.13, the 

derivation is provided in Chapter 3. 

 

Finally, mF  of the formulated Herzog’s single motor-unit model is represented as: 
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Then total muscle force ( mF ) is obtained by integration of mF  with respect to time: 

 

dtFF mm
∫=  

 

 

 

A3.3 Matlab simulation results 

Matlab codes were developed for simulating the responses to open-loop stimulation protocols 

of different versions of Herzog muscle model. In order to solve the differential equation in 

A3.8, Herzog used the forward finite-difference scheme. However, the author used two other 

different methods; one method with the formulated Herzog model (equations A3.9) and 

another method with the standard (original) Herzog model (equations A3.8) using an iterative 

approach (details are provided in Chapter 3). Both of these two methods can be used with 

single or multiple motor-unit models. 

 

Matlab simulation results were found to be exactly the same for the steady-state force 

response. However, for the transient-state force response, there can be very small differences. 

These very small differences are expected because in every method, a different approach is 

used to estimate the lengths of CE and SE (e.g. in equation A3.9, the previous value of mF  is 

used to solve the current value of mF , while the iterative approach used different method as 

explained in Chapter 3). 

 

Another important point about the initial length ( ol ) is worthy of notice; the CE length before 

and just after recruitment is not the same, this is due to the tendon compliance (modelled as 

sk ). The initial length at rest (before recruitment) is not accurate since the experimental F-L 

relationship is measured after recruitment not before. Therefore, it would be more accurate to 

use the instantaneous )(tlCE  at onset of recruitment at rest until CE length settles, and then 

use that CE length for those recruited motor-units throughout the protocol as long as they are 

still recruited. Modelling of other motor-units which are recruited later in the protocol will 

have the same problem. However, the initial length used is the length before recruitment. In 

the same time, experimental data are taken for the length just after recruitment not the length 

before recruitment, the difference can be large if the tendon compliance is small, experimental 
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F-L data for the tibialis anterior muscle (before and after full recruitment) are shown in 

Appendix 6. 

 

The multiple motor-unit model is incorporated into Herzog’s single motor-unit model by 

replacing [ )( oiso lfR× ] by [ isofEff . ] in the formulated Herzog’s single motor-unit model (see 

details in Chapter 3. 
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Appendix 4: Empirical Data for the Anatomical Operating Range of 

Different Muscles 

 

The anatomical operating range: is defined as the muscle belly length between 𝑙𝑚𝑖𝑛 and 

𝑙𝑚𝑎𝑥. 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 are defined as the position of the minimum and maximum lengths of the 

anatomical operating range of the muscle belly length (𝑙𝑚). 

 

The anatomical operating range varies among different muscles and different species. 

Moreover, different values have been reported for the anatomical operating range of the same 

muscle in the literature (like all other muscle parameters). This appendix some examples 

reported in the literature. Figures A4.1, A4.2, and A4.3 show some examples of the 

anatomical operating range obtained experimentally for different muscles. 

 

 

 
Figure A4.1: Operating lengths of five wrist muscles from 50o flexion to 45o extension. Model 

results within the operating ranges (between 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥) are the dark curves; the thin line 

represents the whole F-L curve. (From [159]). 
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Figure A4.2: The thick lines represent the operating ranges for three major elbow flexors 

(BIC: Biceps Brachii; BRA: Brachialis; BRD: Brachioradialis) throughout the range of 

motion from 15° of elbow flexion (E at 𝑙𝑚𝑎𝑥) to 120° of elbow flexion (F at 𝑙𝑚𝑖𝑛). The thin 

lines represent F-L curves for the whole range. (From [195]). 

  

 

 

 

In figure A4.3, the operating ranges are ordered from 𝑙𝑚𝑖𝑛 to 𝑙𝑚𝑎𝑥 within a study and are 

colour-coded according to the species from which the experimental data were obtained. 

Numbers shown on the right of each operating range indicate the reference which this 

particular data were taken from (the full list of references used to make this figure are 

provided in [196]). 
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Figure A4.3: Sarcomere length operating ranges reported in the literature, graphically 

superimposed upon a normalized sarcomere F-L curve. (From [196]). 
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Appendix 5: Effects of CE Length on Force Response to Open-Loop 

Simulation Protocols 

 

The dynamic variations in )(tR  during FES and the effects of different CE lengths are 

examined here. Protocol-I and protocol-II were used to investigate the effects of different CE 

lengths on force response when protocol-I and protocol-II are applied on the “ isofEff . ” 

model (all other muscle parameters and constants values in the model equations are the same 

for all CE lengths with 
opt

rest

l
l

=1.25). Note that the ratio of the magnitude of stretch or 

shortening to CE lengths is different when same protocols are applied on different CE lengths 

and hence the normalised isometric force values at the end of stretch are different. 

 

The muscle parameters used here are the same as those provided in chapter 3 (section 3.4.1), 

more CE  lengths are be tested, in addition to that CE length used in chapter 3, which is used 

as a reference for comparison. The force responses for the range of CE lengths is compared 

with that of the single motor-unit model, where )( oiso lf  at initial recruitment is used through 

the protocols regardless of the dynamic variations in )(tR . 

 

 

Protocol-I: The CE lengths examined with protocol-I are shown in Table A5.1. The 

simulation results are shown in Figure A5.1. As can be observed from this figure, force 

response looks similar for all CE lengths until 5seconds when the 50% recruitment was 

increased to 100%. The force response is shown magnified in Figure A5.2. 

 

 

Table A5.1: CE  lengths used with protocol-I. 

 1CE  2CE  3CE  4CE  5CE  6CE  

optl  200mm 80mm 50mm 30mm 20mm 15mm 

restl  250mm 100mm 62.5mm 37.5mm 25mm 18.75mm 
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Figure A5.1: Force response of the isofEff .  model, the input is protocol-I with different CE 

lengths. 

 
Figure A5.2: CE lengths used to examine the force response of protocol-II. 

 

Protocol-I started with 100% recruitment (all motor-units are recruited) then reduced to 50% 

(this means 50% of the motor-units have been de-recruited) and later increased again to 100% 
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(all motor-units are recruited again) at the same CE length as that at the beginning of the 

protocol at unique resting state ( 0=∆ mtl ). All motor-units now are recruited and were 

initially recruited at the same CE length at unique resting state ( 0=∆ mtl ), but the CE length 

was not the same at initial recruitment for all motor-units. When the recruitment increased 

again to 100%, the CE is already contracted with 50% of the motor-units already recruited 

and produce force causing SE  to stretch. CE length is slightly shorter than its previous length 

at the beginning of the protocol when it was at the unique resting state. Therefore, the CE 

length at which the first 50% of motor-units where initially recruited is slightly longer than 

that for the other 50% of motor-units recruited later. The force response is slightly different as 

shown in Figure A5.1 and Figure A5.2. Note that this difference is increasing with shorter CE 

lengths; this is because the small difference in CE lengths in both cases (before stretch and 

after stretch) is relatively larger on isometric force-length relationship for those shorter 

muscles. .  

 

 

Protocol-II: The CE lengths examined with protocol-II are shown in Table A5.2. The 

simulation results are shown in Figure A5.3. As can be observed from this figure, force 

response looks similar for all CE lengths until 3 seconds when the 50% recruitment was 

increased to 100%. The force responses for the range of CE lengths were largely different 

with the shortest muscle with very little increase in force after the full recruitment. 

 

 

Table A5.2: CE lengths used with protocol-II. 

 1CE  2CE  3CE  4CE  5CE  6CE  7CE  

optl  600mm 200mm 100mm 70mm 40mm 32mm 24mm 

restl  750mm 250mm 125mm 87.5mm 50mm 40mm 30mm 

 

 

Lengths shorter than ( optl =24mm) are not suitable for this protocol because a stretch of 10mm 

is more than the maximum stretch allowed for Herzog F-L sub-model, which is )4.1( optl . 
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Figure A5.3: Force response for the isofEff .  model, the input is protocol-II at range of CE  

lengths. 

 

In protocol-II, the recruitment level ( R ) was increased (at 3 seconds) at a range of CE 

lengths. The force response was found to be dependent on the CE length, see Figure A5.3. 

This is also true for any other protocol if R  was increased at different CE  length other than 

the initial length providing that the corresponding isometric forces for these two lengths are 

not the same (when the isometric force of one length lies on the descending limb and the other 

one lies on the ascending limb and having the same value). This can be compared with 

Protocol-I force response (in Chapter 3). For both protocols, shorter CE lengths produce 

larger difference in the force response. 

 

 

The initial length for protocol-II at 0 seconds was restl  and the ratio: 25.10 ==
opt

rest

opt l
l

l
l

 for the 

first 50% recruited motor-units. Then at 3 seconds; for the other 50% of motor-units the ratio 

is: 
opt

CErest

l
ll ∆+

, this is larger than the previous ratio. 
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Lengths longer than ( optl =600mm) were also examined, the difference in force response was 

very small, just between the reference force response and the response of the CE  length ( optl

=600). For the longest CE length ( optl =600mm), a stretch of the value mmu 10=  is relatively 

small and the corresponding isometric force for the CE  length ( CErest ll ∆+ ) becomes very 

near to the isometric force for CE length ( restl ), and this is why the difference from the 

reference results was very small. For the shortest CE length ( optl =24mm), mmlmt 10=∆  

becomes relatively large and the corresponding isometric force for the CE length ( CErest ll ∆+ ) 

becomes very small (almost zero) because it lies nearly at the bottom of the descending limb 

of the force-length relationship. So, when recruitment increased from 50% to 100%, the force 

produced by the recently recruited 50% of motor-units is very small and added very little 

extra on the total muscle force. 
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Appendix 6: Ankle-Joint and Tibialis Anterior Parameters 

 

Some parameters of the ankle-joint and Tibialis Anterior (TA) muscle (Figure A6.1) are 

shown here in this appendix. Figure A6.2 shows experimental data for the F-L relationship of 

TA muscle belly and for the TA musculotendon complex. More detailed data, for the same 

muscle, are shown in Table A6.1. 

 

 

 

 
Figure A6.1: The Tibialis Anterior muscle. (from [15]). 
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Figure A6.2: F-L relationship on muscle fibre (MF) and the musculotendon complex (MTC). 

(From [197]). 

 

 

Table A6.1: Ankle-joint angle, pennation angle and the corresponding elongation of tendon 

structures, muscle fibre (MF) length and force, and musculotendon complex (MTC) length 

and force. (From [197]). 

Joint Angle [deg] -20 -10 0 +10 +20 +30 

Pennation Angle [deg] 

(during contraction) 

22.8 20.5 19.2 15.7 15.6 16 

Elongation of tendon 

structures [mm] 

12.3 15.4 15 16.4 16.6 18.6 

MF length (at rest) 

[mm] 

51 55 62.5 66.5 71 74 

MF length [mm] 

(during contraction) 

38.8 40.2 47.8 49.5 54.5 58.3 

MF force [N] 174.2 253 364 400 408.8 388 

MTC length [mm] 365.1 383.3 399.4 414.1 427.6 440.1 

MTC force [N] 160.5 235 342 382.5 393 369 

 

 

The length change of MTC was determined by multiplying the moment arm at the middle 

value in the range of joint angle change by the amplitude of joint angle change (converted to 

radians), e.g. if joint angle changed from 0o to 20o, the moment arm at 10o was multiplied by 

)
180
20( π  rad [197]. 
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Experimental F-L data are usually taken for lengths after recruitment (at fixed musculotendon 

length) not the length before recruitment; the difference can be large if the tendon compliance 

is small. F-L experimental data of the tibialis anterior are shown in Figure A6.3. The muscle 

fibre operates in the plateau region and ascending limb by elongating tendon structures, 

although the length-force relationship predicted from the muscle fibre length in a resting state 

is on the descending limb and plateau region). 

 

 

 
Figure A6.3: Length change of muscle fibre at rest and during contraction. The initial length 

at rest is the measured data in the pre-set study. (From [197]). 

 

 

If a constant value of 5.0 cm length is used for the moment arm model of both the Achilles 

tendon and TA for the full range of ankle joint angle, this length (5.0 cm) is only accurate at 

about 100o ankle joint angle. At 150o the difference between the constant value (5.0 cm) 

moment arm and the real moment arm is about 20% for the Achilles tendon and 30% for the 

TA. Some experimental data are shown in Figure A6.4, Figure A6.5, and Table A6.2. 

 

Muscle moment arms are estimated empirically, accuracy of moment arms values are critical 

in the field of musculoskeletal modelling [198, 199]. The sensitivity of muscle force 

calculations to changes in muscle input variables was investigated by Herzog [200], an error 

in moment arm values of 20% produced errors of up to 50% in the calculated muscle force. 
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Therefore, accurate estimates and angle-specific values for the moment arm may significantly 

reduce errors in muscle force estimates [198] 

 

 

 
Figure A6.4: Ankle angle and moment arm lengths: (a) Achilles tendon moment arm. (b) 

Tibialis Anterior moment arm, and (c) ankle angle. (From [198]). 
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Figure A6.5: Average moment arm values for the Achilles tendon and Tibialis Anterior 

measured using a fixed centre of rotation (FCR) and a moving centre of rotation (MCR). DF= 

dorsi-flexion and PF= plantar flexion. Anatomical position was recorded at an ankle angle of 

approximately 1.94 radians (about 111o) using both an FCR and MCR. (From [198]). 

 

 

Table A6.2: Mean (2S.D.) moment arm values (N = 10) for the Achilles tendon and tibialis 

anterior measured using a fixed centre of rotation (FCR) and a moving centre of rotation 

(MCR). * Differences in moment arm values measured using fixed CR versus moving CR 

were statistically significant at the O.05 level. (From [198]). 
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Appendix 7: Basic Laws of Geometry Related to Pennation Angle 

 

Basic laws of geometry which can be used to calculate the effect of pennation angle on the F-

V and F-L relationships are given here, this include the effect on length change (displacement 

due to stretch/shortening) of muscle belly ( ml∆ ) and muscle fibre ( fl∆ ), and also the rate of 

length change (velocity) for muscle belly ( mv ) and muscle fibre ( fv ). Note that for pennated 

muscle (pennation angle > 0): fl∆  and  ml∆   are different, and consequently fv  and mv  are 

also different. The main basic laws of geometry related to this issue are shown in Figure A7.1 

and Figure A7.2. 

 

Figure A7.1:  

 

 

 

Figure A7.2: , . 
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Appendix 8: Forcinito Force Enhancement & Depression Sub-Model 

 

Forcinito force enhancement & depression sub-models [156, 157] were modified in order to 

be used in the General Model, details are provided in this appendix. 

 

In this sub-model, the initial length is used to calculate the isometric force [ ])( oisoCE lff = , 

where in the majority of Hill-type models the instantaneous length is used [ ])( CEisoCE lff = . 

For fully recruited muscle ( 1=R ), the steady-state force depression/enhancement is modelled 

by an extra parallel elastic rack (parallel to CE), where a relay will engage the elastic rack at 

the moment when the muscle is initially recruited, this relay will continue to be active as long 

as the muscle is still recruited ( 0>R ). The stiffness of the rack is given by: )/.( 0,ERlAE , 

where A  is the cross-sectional area of the elastic rack, and E  is the modulus of elasticity. 

The stiffness of the rack decreases linearly with increasing initial length ( 0,ERl ). The 

instantaneous active muscle force ( mf ) including force enhancement and force depression is 

given by: 

 

))/(exp()(..1
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   (A8.1) 

 

 

In order to use Forcinito IE & ID sub-models in the “General Model” (it can only be used 

with Herzog since Herzog also used the initial length); it has to be in the standard form as 

presented in section 6.2. Therefore it needs to be re-formulated by normalising it to [ ])( oiso lf  

and optimal length ( optl ), also making the time t  starts after end of stretch/shortening (in the 

original Forcinito model, time starts at onset of stretch/shortening).  

 

The normalised IE & ID sub-models are represented by: 
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Note that the first term represents ( ∞IE ) and the second term represents the exponentially 

decaying transient-state. The re-formulation of Forcinito IE & ID sub-models is complicated 

because of the following: it was developed using a simple linear F-V relationship and also 

assumed that the time t  starts at onset of stretch/shortening. Another problem is that the 

equations provided in [157] do not agree with the arrangement of rheological elements 

presented in the given figure, (see [157] for details). 

 

Therefore the exponentially decaying term: 
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Which represents the maximum force reached during stretch or the minimum force reached 

during shortening, will be formulated in a form similar to Hawkins IE sub-model. Hence, ∞IE  

is the plateau level of IE & ID after very large value of time ( ∞→t ), in its original form as 

provided in [156, 157] is given by: 
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Both of ∞IE  and ∞ID  have the same equation but ERl∆  will be positive in case of stretch and 

negative in case of shortening. 
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The maximum/minimum IE or ID at end of stretch/shortening will be taken as the normalised 

maximum/minimum force at end of stretch/shortening of Hill-type models (as defined in the 

notation list): 

 

stretch of endat length   the toingcorrespond force isometric
stretch during force muscle maximum

max =IE
 

shortening of endat length   the toingcorrespond force isometric
shortening during force muscle minimum

min =ID  

 

 

 

The steady-state SSIE  or SSID  at 4=t : 

 

[ ])4exp()( max ××−+= ∞∞ TSSS cIEIEIEIE , for stretch.   (A8.5) 

 

[ ])4exp()( min ××−+= ∞∞ TSSS cIDIDIDID , for shortening.    (A8.6) 
 

 Finally: )(
c
kcTS −=         (A8.7) 
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Appendix 9: Published Papers 

 

 

Two paper abstracts were published during this study: 

 

[1] A. Hamouda, D. Howard, L. Kenney, and G. Cooper, “A new multiple motor-unit 

muscle model for FES applications,” In Proceedings 1st Annual Conference IFESS 

(UK and Ireland Chapter), Salford, UK, 47, April 2010. 

[2] A. Hamouda, D. Howard, L. Kenney, and G. Cooper, “Modelling the Length-History 

Dependence of Muscle for FES Applications Using a Multiple Motor-Unit Approach,” 

In Proceedings 2nd Annual Conference IFESS (UK and Ireland Chapter), University 

College Dublin, March 2011. 

 

Copies of the two paper abstracts are shown in the next two pages. 

 



1st Annual Conference of the International Functional Electrical Stimulation Society (UK and Ireland Chapter) 
April 2010 - University of Salford, UK 


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1.  Introduction 
Many FES controllers have been developed 
using a simulation approach and the performance 
of these controllers depends on the muscle 
model accuracy. During FES, the activation level 
can change in a continuous fashion such that 
different motor units are recruited at different 
muscle lengths. Furthermore, it is the length at 
initial activation that should be the input to the 
muscle force-length relationship [1]. Therefore, it 
seems reasonable to account for these facts in 
muscle models that are to be used in the 
development of FES controllers. However, in 
most previous work on FES control [2,3], the 
instantaneous muscle length is used rather than 
the length at initial activation. 
 
Whilst not commonly used in FES control studies, 
the Hill-type model described by Epstein & 
Herzog [1] does use the length at initial activation 
of the muscle (i.e. when the first motor unit is 
recruited). However, this does not properly model 
the situation where the activation varies with time 
and muscle length (i.e. different motor units are 
recruited at different lengths). 
 
We present a Hill-type muscle model which 
accounts for different motor units being recruited 
at different lengths. Hence the model can 
account for a continuously changing activation 
level whilst using the individual motor unit lengths 
at initial activation as input to the force-length 
relationship (i.e. modelling the history effect). 
 
2.  The Model  
Referring to Figure 1, a Hill-type model is used in 
which each recruited motor unit is treated as a 
separate fully activated muscle for the purposes 
of calculating the isometric force. The number of 
recruited motor units depends on the activation 

level, β(t). The isometric force ( iisof , ) produced 

by each motor unit depends on the length at 
which it was initially recruited. The effective 

isometric force for the entire muscle ( isofEff . ) is 

the sum of the individual motor units’ isometric 
forces. 

 





n

i

iisoiso ffEff
1

,.             (1) 

 

This effective isometric force is used as input to 
the force-velocity relationship of a Hill-type 
muscle model. Thus the total muscle force is 
determined by the number of recruited motor 
units, the length of each motor unit when initially 
recruited, and the instantaneous muscle velocity. 
 
It should be noted that the virtual motor units in 
the model don’t correspond to real motor units. 
Rather, the number of virtual motor units used in 
the model is chosen to give the required force 
resolution. For example if we want a resolution of 
1%, then we would use a model based on 100 
motor units. 
 

 
Figure 1 Calculating effective isometric force 
  
3. Discussion 
The new muscle model accounts for the 
activation history during FES control whilst 
allowing the activation to change continuously. 
As such, the model is suitable for the design, 
development and simulation of feedback control 
systems prior to clinical trials; with the proviso 
that other important features, such as a fatigue 
model, are included.  
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1. Introduction 

Skeletal muscle force production is history 

dependent, yet this aspect of muscle modelling 

has received little attention in FES control 

studies. Force depression following shortening 

and force enhancement following stretch can 

reach values of up to almost 50% of the 

corresponding isometric muscle force. Therefore, 

if not properly accounted for during the design, it 

is reasonable to assume that this effect may 

adversely influence the performance of FES 

controllers [2]. To the best of the authors’ 

knowledge, this length-history dependence has 

yet to be incorporated in muscle models in the 

context of FES control. We have developed a 

multiple motor-unit model for force depression 

and enhancement which accounts for time-

varying activation levels (i.e. different motor-

units being recruited at different lengths). 

 

2. The Model 

In our previous study [1], we developed a Hill-

type multiple motor-unit muscle model that 

accounts for the activation history during FES 

control.  We have extended this by incorporating 

the model of force depression and enhancement 

proposed by Forcinito, M., et al. [3] for a fully 

activated muscle treated as a single motor-unit. 

Based on their model, we have included an 

elastic rack in parallel with each motor-unit 

(Figure 1). When a motor-unit is recruited, its 

elastic rack is engaged and thus the passive force 

produced by that motor-unit will be a function of 

its change in length, ix , since initial activation. 














 )(

.
)(
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/ i

i

ied x
l

AE
f            (1) 

Where A  is the cross-sectional area of the elastic 

rack, E  is the modulus of elasticity, and il ,0  is 

the length at initial activation. 

 
Figure (1) Motor unit with parallel elastic rack. 

 

The effective isometric force of the entire 

muscle, including force depression or 

enhancement for each motor unit recruited, is the 

sum of the individual motor unit forces as 

follows:  




 
n

i

iediisoediso fffEff
1

// )()(.         (2) 

 

3. Discussion 

We have incorporated force depression and 

enhancement in our multiple motor-unit muscle 

model, further improving the way in which the 

activation-history and length-history are 

accounted for. By correctly modelling the effects 

of continuously changing recruitment and length, 

as seen during FES control, we hope that better 

FES controllers can be designed. 
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