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NOTATION LIST

A: Muscle activation is the relationship between muscle force on one side, and on the
other side: stimulation frequency, rise and fall times (effects of calcium dynamics),
time delay, yield, sag, and effective length. Muscle activation A is mainly affected by
stimulation frequency, A is unit-less (0 < A<1). Only at certain conditions A=1:
tetanic stimulation frequency (the frequency that will produce maximum force, and
prevents yield), isometric conditions (no effective length), enough time has elapsed
since onset of stimulation (to pass the rise time, effect of sag, and natural time delay).

A :  Level of activation of the i" fibre-type, modelled in the same way as muscle

activation A.

a,a’,a,, a,, a,,: Constants.
b, b, b,,.. b, and b,: Constants.

CE: The contractile element. CE is a device that represents the “active” properties of
muscle (F-L and F-V relations). In the inactive state, CE does not hold any force and

its length can be changed at will.

¢, C,, C3, C, Cz, Cy, Cy, Cy: Constants.

Cy . Slope of the frequency modulation line during voluntary contraction initiated by the
CNS (representing the relationship between the natural stimulation input U and
stimulation frequency of the i™ fibre-type after recruitment).

Cyi - Hawkins recruitment constants for different fibre-types, determined experimentally.
Cry =1.1756, Cg, =Cry =0.6779.

Crs:  The transient-state constant for stretch/shortening.

F.: Total muscle force, including all active and passive forces (forces produced by the
musculotendon complex).
FL(I.c): The normalised CE isometric force as a function of its length (normalised with

fiso (ICE)

iso,max

respect to the maximum isometric force), FL(l.;) =

Xi



FPCSA,: The fractional physiological cross-sectional area of the " fibre-type,

PCSA,  PCSA,

= N
PCSA S pesp,

k=1

dimensionless (unit-less), FPCSA,; =

FV (v.e) : The normalised CE force as a function of its velocity (normalised with respect to
the maximum isometric force).

f,:  The steady-state force depression (after the end of the transient state).

f.:  The steady-state force enhancement (after the end of the transient state).

f.: The passive force of the tendon.

foe: Instantaneous force produced by the contractile element CE (the muscle’s active force
excluding passive forces).

fe i : Instantaneous “active” force produced by the i" fibre-type.
fio (Ice) : The “active” isometric muscle force as a function of CE length |.;.
fiom . Maximum CE isometric force at the plateau of the force-length relationship,

f

i50,max = fiso(lopt)-
f : Maximum isometric force for the i" fibre-type at the plateau of the force-length

iso,max,i *
relationship, fi, i = fisoi (opt) -

for : Combined passive forces of foz, and foe,, (foe = foey + foey).

foe,: Force produced by the parallel elastic element, representing the passive force which
resists stretch in the muscle belly.

foe,: The passive resistance to compression of CE at short lengths of muscle belly.

fse:  The passive force of the series elastic element (represents the combined tendon and
aponeurosis).

f,e: Force produced by the parallel viscosity element, representing, the viscous drag

“passive” force created by non-recruited fibres resisting muscle movement, during

both shortening and lengthening.
freq: FES stimulation frequency.

freq,s : The stimulation frequency required to produce 50% of maximal isometric force

feoma at the optimal muscle length Iopt, during voluntary contraction initiated by the

CNS.
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freq; : The instantaneous stimulation frequency of the i" fibre-type. If the stimulation

frequency was not constant during stimulation (natural or FES); the stimulation
frequency will be assumed adjustable, but not a real-time variable (i.e. ignoring
dynamic changes in frequency).

freq™ : The maximum stimulation frequency reached at maximum natural stimulation input
(U =1), during voluntary contraction initiated by the CNS.

freqimm: The initial stimulation frequency of the i"™ fibre-type (minimum stimulation

frequency), during voluntary contraction initiated by the CNS.

i Fibre-type identifier (i =1,2,3), i can be 1 (single motor-unit models), 2 (slow and
fast fibre types) or 3 (type-l, lla, and 1lb fibres).

ID: Index of force depression following shortening of recruited muscle (0 <R <1) as a

function of time (t).
ID,: Index of force depression for the i" fibre-type following shortening when recruited.
ID,;, : The minimum magnitude for the index of depression at the end of shortening.
ID,;, =(minimum muscle force during shortening) / (isometric force corresponding to
the instantaneous length at end of shortening).
IDy;: The steady-state force depression index after 4 seconds.
ID,: The plateau level of the index of enhancement, this represents the index of depression
after very large value of time (t — ).

IE: Index of force enhancement following stretch of recruited muscle (0<R <1) as a

function of time t.

IE;: Index of force enhancement for the i" fibre-type following stretch when recruited.
IEis: The steady-state force enhancement index after (t =4 [sec]).
mex . 1he maximum magnitude for the index of enhancement at the end of stretch.

IE, . =(maximum muscle force during stretch) / (isometric force corresponding to the

instantaneous length at end of stretch).

IE,: The plateau level of the index of enhancement, this represents the index of

enhancement after very large value of time (t — o0).

IF :  Index of fatigue for the whole muscle.

IF,: Index of fatigue for the i™ fibre-type (for a given fibre-type).

IF. .. Index of fatigue for the jth motor-unit of fibre-type i.
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IF. -

ler

ler -

IER,O:

(IER_

m:*

max *

m,opt

opt :

It

opt:

The minimum fitness of the muscle at which fatigue rate = 0 of the fully recruited

muscle (i.e. the minimum value for the index of fatigue).

Motor-unit identifier, j=12,...,m,.
Hill’s parameter.

Stiffness of the linear un-damped purely elastic element in parallel.
Stiffness of the linear un-damped purely elastic element in series.
Instantaneous length of the contractile element CE.

The instantaneous CE length .z normalized with respect to the optimal CE length 1.,

Instantaneous length of the elastic rack, this is the same as the instantaneous CE
length (1; =1cg).
Final length of the elastic rack at end of stretch/shortening (which is the CE length at

end of stretch).

Initial length of the elastic rack just before beginning of stretch/shortening (this equals

the length of CE just before beginning of stretch).

I ): Instantaneous displacement of the elastic rack during stretch/shortening.

Instantaneous length of the muscle belly (without tendon).

The maximal length of the muscle fibres at the maximal anatomical length (maximal
in situ) of the muscle (i.e. the maximal length that the muscle experience at the
anatomical limits of motion of the musculoskeletal system).

Optimal length of muscle belly, measured with line of action of the tendon.
Instantaneous length of the musculotendon complex, this includes the muscle fibres,
aponeurosis, and tendon.

Length of CE at the moment of initial recruitment.

Optimal length of the contractile element CE at which the resulted isometric force in

the force-length relationship is maximal.

Tendon optimal length, measured at the maximum isometric force ( fo. = f

is0,max )

Instantaneous length of the parallel elastic element.
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l...: The resting length of the CE (at the unique resting state), representing the slack length
of the muscle belly.

<. The slack length of the muscle belly (at the unique resting state), the length beyond
which the muscle belly begins to develop force.

Iz . Instantaneous length of the series elastic element (represents the tendon).

I7*:  The slack length of the musculotendon complex (at the unique resting state), the
length beyond which the musculotendon complex begins to develop force.

lg: Tendon slack length (at the unique resting state), the tendon length beyond which the
tendon begins to develop force.

L Instantaneous length of the tendon.

M :  Number of recruited motor-units.

m:  Total number of all motor-units in the muscle model. These motor-units are
hypothetical units (unreal), the value of (m) is chosen by the user to give the required
force resolution and does not correspond to real number of motor-units, (m <1000).

m,:  Number of motor-units in fibre-type i, m, = mx FPCSA,.

n: Number of fibre-types in the muscle model, the fibre-type can be modelled as single-
type (for a single motor-unit model), two types (slow and fast), or three types (fast-
twitch type is modelled as two different types; type-lla and type-11b).

PA: Amplitude of the electrical stimulation pulses.

PCSA , : The physiological cross sectional area of the whole muscle (sum of all fibre-type).

PCSA, : The physiological cross-sectional area of the i™ fibre-type.
PE: The passive elastic element in Hill-type models, ( PE = PE1+ PE2).

PE1: The parallel elastic element-1, representing the passive elastic force of muscle belly
which resists stretch.

PE2: The parallel elastic element-2, representing the resistance to compression of the thick
filaments at short lengths of muscle belly.

PW :  Width of the electrical stimulation pulses.

sat |

pw*': The saturation pulse width for the i™ fibre-type.

thr ,

pw;"": The threshold pulse width for the i" fibre-type (this can be partial or full depending
on sub-model used).

PW,,.: The saturation pulse width, at which all motor-units are recruited.
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PW,, : The threshold pulse width, at which first motor-unit is recruited.

R:

SE:

fat *

rec *

fat .
tend '

fat .
t e

rec .
tend '

rec .
gree:

end *

The normalized portion of recruited motor-units (recruitment level). R has the value
between 0 (no recruitment) and 1 (all motor-units are recruited), 0< R <1. R isused
with both artificially stimulated muscle contraction using FES and voluntary
contraction initiated by the CNS (Central Nervous System).

The normalized recruited proportion of the i fibre-type, calculated as the PCSA of
recruited proportion of the i" fibre-type divided by the PCSA, of the same fibre-type,

0 <R, <1. R, is the analogue output of the recruitment sub-model.

The binary recruitment of the i™ motor-unit of the i®" fibre-type, this can only be

either 0 or 1 (100% recruited or not recruited at all).
The series elastic element, representing the tendon.

Endurance time of the muscle, time from onset of recruitment to the time when fatigue

starts (when force reduction is detected).

: Endurance time of the i" fibre-type.

end,i *

Time constant for fatigue, it can have largely different values for different muscles and
different fibre types.

Time constant for recovery.

Time.

Time at which FES stopped (of the same cycle).
Time at which FES started for any cycle of the intermittent FES.

Time at which recovery stopped (of the same cycle) and FES started (of the next
cycle).

Time at which recovery started (of the same cycle).

The natural stimulation input for a muscle under voluntary contraction initiated by the
CNS. U will modulate both the number of recruited motor-units and the stimulation
frequency (of recruited motor-units). U is dimensionless, The value of U, at any
time, is normalised to the maximum natural stimulation input. U =1.0 at MVC
(maximum voluntary contraction) that will produce maximum force when all motor-

units are recruited at maximum stimulation frequency.
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m,max *

An intermediate natural stimulation input that models the rise and fall times (effects of
calcium dynamics). U, models the transient-state when there is a change in the input

activation U , the steady-state of the effective activation U, will be the new value of
input activation U .

The value of U at which the i" fibre-type becomes fully recruited (all motor-units of
this fibre-type are recruited), U™ =U.,.

The threshold level at which the i™ fibre-type becomes recruited, the recruitment can
be either analogue or binary, depending on the sub-model used.

The value of U at which all motor-units have been recruited (equivalent to PW, in
the case of FES).

The threshold level, at which first motor-unit is recruited (equivalent to PW,,, in the

case of FES).
The viscous passive element, representing the resistance to muscle contraction in

either direction (shortening or lengthening).

Instantaneous CE velocity, assumed the same for all motor-units. v =dl. /dt,
Vee <0 for muscle shortening.

Instantaneous CE velocity normalised with respect to the absolute value of its

: : : _ v
maximum shortening velocity (Veg ), Ve = ——.
‘VCE,max‘

: Maximum shortening velocity of CE, beyond which f.. =0.

CE,max *

Véem . Maximum stretch velocity, beyond which f.. does not increase and stays at its

maximum.

Instantaneous velocity of the muscle belly along the same line of action of the tendon,
assumed the same for all fibre-types in the muscle model, v,, =dl  /dt.

Instantaneous velocity of the muscle belly normalised with respect to the absolute

. : : . _ v
value of its maximum shortening velocity v, .., (V, = ‘—m).
v

m,max‘

: Maximum shortening velocity of muscle belly, beyond which muscle force = 0.
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Vv Instantaneous velocity of the musculotendon complex (including muscle fibres and

mt :
tendon), v, =dl, /dt.
« . Pennation angle (angle between the fibre line of action and the tendon line of action).

Algy =(lgz  —1,): Total displacement of the elastic rack from the length at initial

recruitment after end of stretch/shortening.

Al Displacement of the musculotendon complex from the unique resting state.

mt *
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ABBREVIATIONS

ADP: Adenosine Diphosphate.

ATP: Adenosine Triphosphate.

ATPase: Adenosine Triphosphatase.

CE: Contractile Element.

CNS: Central Nervous System.

CPG: Central Pattern Generator.

dep.: Depression.

ES:  Electrical Stimulation.

enh.: Enhancement.

FES: Functional Electrical Stimulation.

F-L: Force-Length.

F-V: Force-Velocity.

MMU: Multiple Motor-Unit.

MU:  Motor-Unit.

MVC: Maximum Voluntary Contraction.

PA:  Pulse amplitude (amplitude of the electrical stimulation pulses).

PE: Parallel Element.

PEL1l: The parallel elastic element-1, representing the passive elastic force of muscle belly
which resists stretch.

PE2: The parallel elastic element-2, representing the resistance to compression of the thick
filaments at short lengths of muscle belly.

PW:  Pulse width (width of the electrical stimulation pulses).

SCI:  Spinal Cord Injury.

SE:  Serial Element.

SMU: Single Motor-Unit.

sec:  second.

VE:  Viscous Element.

VM: Virtual Muscle modelling package.
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ABSTRACT

Many functional electrical stimulation (FES) controllers have been developed using a
simulation approach, the performance of these controllers depends on the muscle model
accuracy. Realistic models of neuro-musculoskeletal systems can provide a safe and
convenient environment for the design and evaluation of FES controllers. A typical FES

system consists of FES controller, an electrical stimulator, electrodes and sensors.

During FES, the stimulation level can change in a continuous fashion such that different
motor-units are recruited at different muscle lengths and at different times. Furthermore, it is
also not accurate to use the instantaneous length as input to the force-length relationship in
dynamic (non-isometric) situations. Although instantaneous CE length is commonly used in
FES control studies, empirical data from the literature were reviewed and it was concluded

that the CE length at initial recruitment |, is a key parameter influencing total muscle force.

The author presents a new multiple motor-unit Hill-type muscle model that accounts for
different motor units being recruited at different CE lengths and different times. Hence the
model can account for a continuously changing recruitment level whilst using the individual
motor unit lengths at initial recruitment as input to the force-length relationship. Moreover,
the model is capable of modelling fatigue and force enhancement & depression for the
individual motor-units (i.e. the recruitment and time history effects). The model can also take
account of the different force-length and force-velocity relationships for different fibre types
by modelling these properties for the individual motor-units.

The new multiple motor-unit model is described in detail, implemented and tested in Matlab.
Open-loop simulation protocols are made on single/multiple motor-unit models using
different CE lengths for the force-length relationship; on single/multiple motor-unit fatigue

sub-models; and on single/ multiple motor-unit force enhancement & depression sub-models.

A general model that can be used to represent all relevant models from the literature was
developed. This model can also be used to build new models at different levels of complexity.
Such a “General Model” could be used to study the effect of model complexity on FES
controller design so that appropriate trade-offs between model complexity and accuracy could

be determined. Results, limitations and possible future work are discussed.
XX



Chapter 1: Introduction

1.1. Background

Electrical stimulation (ES) is the use of electrical pulses applied to the neuromuscular system
to generate action potentials in nerves and hence innervated muscles [1, 2, 3]. ES uses short
duration electrical pulses (typically several hundred microseconds) of low amplitude
(typically several tens of milliamps) to generate action potentials in intact lower motor
neurons and thereby cause contraction in associated muscle fibres [1, 3, 4, 5]. Providing that
the stimulation intensity (proportional to charge, or pulse width/amplitude) is sufficiently high
(to trigger an action potential) and the rate at which the pulses are delivered is sufficient to
generate a fused (smooth) contraction, stimulation will result in potentially useful contractions

in whole muscles [1, 2].

By controlling the intensity and timing of stimulation, muscle force output and hence resultant
limb motion can be controlled [1, 6] and this application of ES is termed functional electrical
stimulation (FES). Specifically, FES is the controlled use of ES to generate movements which
mimic normal voluntary movements, and thus restore function in people with motor
impairments following central nervous system injury (e.g. stroke, spinal cord injury) [1, 2, 3,
4,5,7,8].

A wide range of FES systems exist for individuals with disabilities, including systems for
hand grasping, drop-foot correction, standing, walking, stationary rowing, and stationary
cycling [2, 9, 10, 11]. A generic FES system consists of FES controller, an electrical
stimulator, stimulation electrodes, and different types of sensors [10, 11]. An overview of

various grasping and walking FES systems can be found in [10].

For control engineers, the musculoskeletal system of a patient is considered as the plant to be
controlled. The position, velocity and acceleration of a body segment are the plant states. The
muscles that power the system are the actuators. The electrical pulses activating the muscles
are the control signals. The FES controller is the device by which the desired controls are
generated. The controller modulates the intensity of the stimulus delivered to the muscle by
either changing the pulse amplitude or the pulse width [1, 3, 4]. Modulation of pulse

amplitude or pulse width modulates the number of motor-units in the target muscle that are
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recruited which in turn modulates muscle force. The time history of the plant states in

response to the control signals is the joint-angle trajectory or torque profile [12].

Realistic models of neuro-musculoskeletal systems can provide a safe and convenient
environment for the design and evaluation of controllers for FES prior to clinical trials.
However, the performance of a controller is highly dependent on the accuracy with which a
given model represents the response of a muscle (or muscles) to stimulation [13].

1.2.  Why further modelling research is needed?

Most FES systems in use today are open-loop controlled (including finite state control
approaches). This is surprising, given the complexities of the human musculoskeletal system,
following neurological injury, and hence the potential advantages of closed-loop control over
alternative approaches. Among the difficulties in widespread implementation of closed loop
FES control approaches are the limitations with current models used to represent muscle

response to stimulation.

As will be explained in Chapter 2, current models of muscle behaviour do not adequately

represent the muscle’s response to continuously varying recruitment levels R(t) and muscle
length (l.z). In closed loop FES control, muscle recruitment levels and muscle length may

vary continuously, and hence inaccuracies in the way models represent the muscle response to
such inputs may lead to degraded controller performance. Specifically, in the thesis it is
shown that current models do not properly represent the effects of the length of the contractile
element CE at initial recruitment on muscle force response, fatigue and force enhancement &

depression.

1.3.  Objectives

The main question of this research is: Can multiple motor-unit models properly account for

continuously varying recruitment levels at different muscle lengths and different times?

The primary goal is to develop a multiple motor-unit model that can account for continuously
varying recruitment levels at different muscle lengths and different times. In order to achieve
this, it is also necessary to develop a new comprehensive muscle model (General model) that
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can be modified to represent all relevant instances from the literature and can be adapted to
allow for multiple motor-units to be represented. Where suitable sub-models are not available,
new models are created and tested against published experimental data.

Therefore the detailed aims required to achieve the primary goal are to:

I. Develop a new multiple motor-unit model using the CE length at initial

recruitment (I,) as the input to the force-length relationship.

Ii.  Compare performance of the multiple motor-unit model and the single motor-
unit model using the basic Hill model. Appropriate input protocols are used to

test the responses of the two models when recruitment level (R) and

instantaneous length of CE (¢ ) vary with time.

iii.  Analyse the results from previous step to identify which approach can better
model the effects of length at initial recruitment, fatigue, and force
enhancement & depression for partially recruited muscles with continuously

varying stimulation levels at different muscle lengths and at different times.

1.4. Overview of the thesis

The organisation of the thesis reflects the sequence of steps taken in the development of the

new multiple motor-unit model and the “General model”.

Chapter 2: This chapter begins with a description of skeletal muscle and its physiological
recruitment under voluntary contraction, followed by introduction to electrical stimulation and
how force is produced in electrically stimulated muscles. FES is then introduced, followed by
discussion on the complexity of FES control challenges using open-loop and closed-loop
control strategies. Different schools of thought within muscle modelling are then introduced,
followed by a discussion on how muscle models can assist in the development of FES
systems. The next section of this chapter is a review of key features of muscle models; a
summary of the behaviour of the various muscle properties which affect muscle response to
FES is included. The last section discusses the need for multiple motor-unit models in FES
application and how the accuracy of a muscle model can be improved using the multiple
motor-unit modelling approach.



Chapter 3: This chapter addresses the problem of muscle modelling for continuously varying
R and hence different values of | for different motor-units. Open-loop simulation protocols

are made on the multiple motor-unit model and the single motor-unit model using both the
instantaneous length and the length at initial recruitment for the force-length relationship,

results are discussed at the end.

Chapter 4: This chapter addresses the problem of muscle modelling for continuously varying
R and hence different time histories of recruitment for different motor-units. Open-loop
simulation protocols are made on the multiple motor-unit model and the single motor-unit
model using both the multiple motor-unit fatigue sub-model and single motor-unit fatigue

sub-model, results are discussed at the end.

Chapter 5: This chapter addresses the same problem as in chapter three but using models of
force enhancement & depression. Open-loop simulation protocols are made on the multiple
motor-unit model and the single motor-unit model using both the multiple motor-unit force
enhancement & depression sub-model and single motor-unit force enhancement & depression

sub-model, results are discussed at the end.

Chapter 6: In this chapter, a general model that can be used to represent all relevant models
from the literature is developed. The model, capable of representing the alternative sub-
models (for each muscle property) and the inter-connection of these sub-models (model
topology), could be used to represent any of the alternative muscle models presented in
Chapter 2 or to build new models at different levels of complexity. Such a “General Model”
could be used to study the effect of muscle model complexity on FES controller design. The
topology of the “General Model” is presented showing the arrangement of sub-models and the
interlinking model variables, i.e. the inputs and outputs of the various sub-models. The
arrangement of the passive elements is also presented. Finally, the proposed general forms for
the sub-models required in muscle modelling for FES controller design are presented.

Chapter 7: In this chapter the conclusions and recommendations for future work are

presented.



Chapter 2: Literature Review

2.1. Introduction

This chapter begins with a description of skeletal muscle and its physiological recruitment
under voluntary contraction, followed by introduction to electrical stimulation (ES) and how
force is produced in electrically stimulated muscles. Functional electrical stimulation (FES) is
then introduced, beginning with the applications of FES to control the neuromuscular system
in people with upper motor neuron lesions, followed by discussion on the complexity and
challenges of FES in open-loop and closed-loop control.

Different schools of thought within muscle modelling are then introduced, followed by an
overview of basic Hill-type model that represents muscle as a contractile element, together
with passive spring(s). The key muscle models used in FES studies are discussed and the
limitations with these models highlighted. The following section reviews the key features of
the sub-models used to represent individual aspects of a muscle’s behaviour. The main
aspects of behaviours modelled are recruitment of motor-units, muscle’s active force-length
relationship, muscle’s active force-velocity relationship, muscle fatigue, force enhancement
following active stretch and force depression following active shortening, and finally the
passive behaviour of the musculotendon complex. A summary is provided of the various
published models, showing their similarities and differences. Based on this review, the last
section discusses the need for a new model for FES application, presented in subsequent
chapters.

2.2.  Skeletal muscle and its physiological recruitment

There are three types of human muscle tissue: skeletal, cardiac and smooth. This study is
concerned with skeletal muscle only, whose principal functions are to produce movement,

maintain body position, and generate heat [14].

2.2.1. Muscle fibres and force generation

Skeletal muscle is made of long cylindrical cells known as muscle fibres. The muscle fibre is
composed of discrete bundles of myofibrils parallel to each other, see Figure 2.1. The

repeated unit in the myofibril is called a sarcomere, which forms the basic contractile unit of a
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skeletal muscle, see Figure 2.2. The sarcomere is composed of long fibrous proteins that slide
past each other during contraction. The thick filament is called myosin and the thin filament is
called actin. Adjacent sarcomeres are bordered with Z-lines.

Outer sheath of connective tissue

Connective tissue

Muscle cell bundles
(Fascicles)

One muscle fibre

One myofibril

Figure 2.1: Skeletal muscle fibres. (From [15]).

There exist alternative theories of muscle force production; the most cited theory in the
literature is the cross-bridge theory [16]. It is assumed in the cross-bridge theory that
contraction occurs through the cross-bridge interaction cycle between the myosin cross-
bridges and the actin filaments (Figure 2.2). During the cross-bridge cycle, the myosin cross-
bridges will combine with specialised sites on the actin, and contraction and hence force
development occurs through the rotation of the cross-bridge heads by pulling the actin across
the myosin in the direction of sarcomere centre. The cyclic interaction of myosin cross-
bridges with the actin filaments in the cross-bridge theory are illustrated in Figure 2.3, and
summarised as follows: (a) Starting from the rest state; the actin is covered by tropomyosin-
troponin complex at the attachment site. (b) Upon activation, calcium concentration increases
and calcium Ca** binds to troponin. (c) The myosin cross-bridge combines with the actin. The
ATP (adenosine triphosphate) splits into ADP (adenosine diphosphate) and P; (inorganic
phosphate) and produces the contraction force. (d) The myosin cross-bridge detaches from the
actin and a new ATP attaches to the myosin cross-bridge making it ready for a new

interaction with the actin.
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Figure 2.2: Schematic illustration of the sarcomere in a myofibril. (Adapted from [14]).

Although some animal muscles have a uniform appearance, most muscles including human
muscles, have a mixed composition, where the fibres in the same muscle have different
contractile properties. These differences are due to the innervation of the fibres and the
different ways in which they are used [17]. It has been shown that muscle fibres may be

classified into three main types [15].

Type-I fibres are characterised by high fatigue resistance because they primarily utilize fatty
acid oxidation (using oxidative enzymes) and have high levels of mitochondria and
myoglobin (and hence they are red in colour). The high level of blood flow provides high
capacity for aerobic (oxidative) metabolism to generate ATP (Adenosine Triphosphate).
These fibres also show a slow twitch response to a contractile impulse, develop relatively low
levels of force, and have the slowest maximum velocity of contraction. Type-I fibres are also

known as tonic, red, slow twitch, S (slow-contracting) and SO (slow-oxidative).
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Figure 2.3: Schematic illustration of the cyclic interaction of myosin cross-bridges with the

actin filaments in the cross-bridge theory. (From [18]).

Type-I1b fibres produce relatively high force because they primarily utilize glucose oxidation
to pyruvate for ATP production (anaerobic metabolism), but they fatigue fast due to the high
activity of ATPase (Adenosine Triphosphatase), the main function of the ATPase enzyme is
to hydrolyse the ATP which provides energy for attachment to another active site on the actin
molecule. Type-IIb fibres contain low level of mitochondria and myoglobin (and hence they
are white in colour). The relatively high force of type-Ilb fibres is due to the large anaerobic
capacity. Type-lIb fibres also show a fast twitch response, and the fastest maximum velocity
of contraction. These fibres are well equipped for brief intense activity but they are the least
efficient because they use high amounts of energy. Type-11b fibres are also known as FF (fast-
contracting, fast-fatigue) or FG (fast-glycolytic).



Type-lla fibres can utilize both anaerobic (as in type-llb) and aerobic (as in type-I)
metabolisms for ATP production, and hence they have intermediate properties. The fibres
show a fast twitch response, develop moderate levels of force, and are fatigue resistant. These
fibres are well equipped for prolonged activity, but in addition, they have the ability to
produce high power output. Type-lla fibres are also known as FR (fast-contracting, fatigue-
resistant) and FOG (fast-oxidative-glycolytic). More details about muscle fibre-type
classification can be found in [19].

The ratio between the three main types of muscle fibres in a muscle depends on the function
of the muscle and this ratio determines the force-velocity relationship of the muscle [20]. As
an example, the functional tasks in the cat triceps surae group are divided to some extent
among the muscles. The soleus is mainly made up of type-I fibres [21] making it suitable for
situation when low force and fatigue resistance are required, while the gastrocnemius consists
of about 25% type-I fibres and 75% type-Il fibres, making it dominant in situations when
large and sudden force demands are needed [22, 23]. The composition of a muscle can
change over time, depending on the type of contractions to which it is subjected [24]. For
example, sprinters develop a higher proportion of type-Il (both types Ila and Ilb) fibres in

their leg muscles than distance runners.

Skeletal muscle fibres are protected by connective tissue coverings. The connective tissues
also provide pathways for the passage of nerves and blood vessels. As shown in Figure 2.4,
there are multiple types of connective tissue, surrounding the muscle (fascia and epimysium),

fascicle (perimysium) and muscle fibre (Endomysium).

A tendon connects muscle to bone and is capable of withstanding tension; the tendon is made
of tough band of fibrous connective tissue. Bones move because of the combined work of
tendons and muscles. Aponeuroses are layers of broad flat tendons, the primary function of an
aponeurosis is to join the muscle with the part of the body the muscle act upon (this can be

another muscle or bone).
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Figure 2.4: Structure of skeletal muscle. (From [14]).

2.2.2. The neuron and the action potential

The neuron is the core unit of the nervous system. A typical neuron consists of four main
parts: the body of the cell (often called the soma), dendrites, axon, and synapse (Figure 2.5).
Dendrites are thin structures and emerge from the soma; their function is to receive the
command information and conduct them towards the soma. The soma is where the command
information are integrated and then transferred through the axon. The axon is the only
extension dedicated to transmitting the information outside the neuron; it travels for a distance
as far as one metre in humans [25]. The information is conveyed outside the neuron through
synapses to other neurons, muscle fibres or glands. The motoneurons carry command
information from the central nervous system (CNS) to muscle fibres [26]. The axons are
wrapped with myelin (the axon with the myelin wrapping is also called nerve fibre). Bundles
of between 100 and 2000 nerve fibres form a nerve [25].
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Myelin sheath Node of Ranvier

Figure 2.5: Schematic representation of the anatomy of a typical neuron. (From [27]).

The action potential

Neurons are electrically excitable cells, the concentration of ions in the inside and the outside
of the cell are different. In the unexcited state (the neuron is not receiving any physiological
or artificial stimulus), the membrane potential from inside to outside is negative and referred
to as the “resting membrane potential”. The resting membrane potential is typically in the
range of (-70 to -90 mV). If the membrane potential changes by a large enough magnitude
(around -55 mV), an electrochemical pulse called “action potential” is generated (Figure 2.6),
and this voltage change propagates rapidly as a nerve impulse along the axon for great
distances without losing its strength [25]. The action potential is an all-or-none signal, lasts
for several milliseconds, and up to 120 [mV] across the membrane [28]. For a given neuron
cell, the voltage and duration of an action potential are not affected by the intensity, or origin
of the stimuli (artificial or natural), and a stimulus just above threshold and much stronger

stimulus will elicit the same action potential.
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Figure 2.6: Schematic illustration of a single action potential. (From [29]).

Action potential generation can be summarised as follows:

When an action potential is triggered by a stimulus above its threshold level, the
voltage-dependent sodium channels are opened, allowing the sodium ions to flow into
the neuron cell causing the depolarisation of the membrane potential and consequently
closing the sodium channels.

In the next phase the potassium channels open and allow potassium to leave the cell
causing rapid repolarisation, the repolarisation continuous to a more negative than the
resting membrane potential. This hyperpolarization prevents another action potential
until the membrane potential is back to its resting level.

The local depolarisation on one point on the axon causes movement of ions between
neighbouring points and consequently depolarisation of neighbouring areas on the
membrane leading to action potential propagation along the axon.

If the action potential is triggered at one of the ends of an axon, it propagates in one
direction only, either to muscle fibres or the CNS. If the action potential is initiated at
another point in between the two ends of an axon (by external source, such as ES), it
propagates away from that point in both directions (to both muscle fibres and the
CNS) [28].
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2.2.3. The motor-unit

The basic functional unit of force production is in fact the sarcomere, but usually the basic
functional unit of movement is considered to be the motor-unit, which consists of a
motoneuron and the muscle fibres that it innervates [15]. Muscle fibres of a particular motor-
unit are of the same type and have the same metabolic properties so that, when they are
recruited, they behave in the same manner. Each muscle fibre is innervated by a single axon;
one motoneuron will supply through its axonal branches many fibres scattered throughout the
muscle, the innervation is almost entirely random and adjacent muscle fibres are most likely

to be supplied by branches from different motoneurons [17], see Figure 2.7.

J‘V\

Motoneurons

Cell body

Neuromuscular
junction Muscle
fibres

Motor-unit

Figure 2.7: Concept of the motor-unit. A motor-unit consists of the motoneuron and all the

scattered muscle fibres that it innervates. (From [17]).

The number of a skeletal muscle’s motor-units depends on the size and function of the
muscle, ranging from a few motor-units for small muscles up to several thousand for the
largest human muscle [30]. Muscles that are involved in gross movements, such as leg
muscles, have few motor-units (each of which includes a large number of muscle fibres).

Muscles that are involved in fine movements (e.g. facial muscles) have many motor-units
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(each of which includes a small number of muscle fibres), see Figure 2.8. Type-Ilb have large
axons that innervate many large fibres, they generate large forces but fatigue rapidly. Type-lla
have moderately sized axons that innervate many fibres, they generate moderate forces and do
not fatigue a great deal. Type-I are composed of small axons that innervate a few small fibres,

they generate low forces but maintain force for a long time.

Force generation in muscles is modulated by the central nervous system. After an action
potential is triggered in a motor-unit; all the muscle fibres of this motor-unit will contract
“synchronously”, this motor-unit then is considered to be recruited. Muscle force modulation

is achieved by recruiting varying numbers of motor-units [1].
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Figure 2.8: Schematic representation of the anatomic, physiologic, and histochemical
properties of the three fibre types and how they are connected in motor-units. Type-11b (top),
type-lla (middle), and type-I (bottom). (From [15]).
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2.2.4. Natural recruitment of motor-units

A fast, transient contraction of a single motor-unit will result from a single impulse in a
motoneuron. Therefore, a train of impulses has to be delivered by the motoneuron to its
associated muscle fibres to maintain a smooth constant contraction (natural stimulation
frequency depends on fibre-type and recruitment level of the whole muscle). The intensity of
the resulting muscle force is determined by frequency of the impulses. During voluntary
muscle contraction, the body achieves smooth contraction by using "asynchronous"
recruitment of motor-units. Adjacent motor-units are activated at low frequency (of about 6-8
Hz) in a sequential manner, coordinated by the CNS [31], see Figure 2.9. The stimulation is
timed by the intact CNS so that each motor-unit contracts before the previously stimulated
motor-unit relaxes completely. The force of the whole muscle is the sum of the forces of the
individual motor-units. This recruitment pattern of motor-units resists fatigue by allowing the

various motor-units to share the task of maintaining smooth contraction.
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Figure 2.9: Summation of force in motor-units. Force production in skeletal muscle is

accomplished by sequentially stimulating adjacent motor-units. (Adapted from [3]).
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“Asynchronous" recruitment of motor-units happens only during sub-maximal contractions,
where only some of the motor-units maintain the required force. During maximal contraction,
when all motor-units of the muscle are recruited, asynchronous recruitment is impossible and

hence fatigue cannot be prevented [32].

McPhedran et al [33] made a detailed study of motor-units in cat soleus muscle and Wuerker
et al [34] made a similar study in cat medial gastrocnemius muscle. From these two studies; it
was found that within the same muscle and also from one muscle to another, there are large
differences in motor-units’ size. Small motor-units are usually made up of type-I fibres and
large motor-units of type-Il fibres (type-lla and type-1Ib) [35]. Motoneurons with thin axons
belong to small motor-units (typically of type-I fibres) and are excited first (during voluntary
contraction), motoneurons with thick axons belong to large motor-units (typically of type-II
fibres) and are the least excitable (during voluntary contraction) [35]. Motor-units are
therefore recruited according to the “size principle” where the smallest motor-units are
recruited first and then progressively larger motor-units (as long as more force is required)
until MVC is achieved [36].

For voluntary contracted muscles, fibres tend to be recruited at an initial frequency (firing
rate) regardless of intensity of muscle contraction [37, 38, 39]. Once recruited, the frequency
of recruited motor-units will be modulated approximately linearly with changes in the EMG
signal. Gross EMG activity is representative of the natural stimulation input of a uni-
functional muscle [40], so either the EMG signal or the CNS descending commands can be
considered as reflecting the input to the muscle [41]. Changes in the natural stimulation input
will simultaneously modulate both the number of recruited fibres and also the stimulation
frequency [37, 39, 40, 42, 43, 44].

2.2.5. Summary

The biophysical mechanisms of skeletal muscle during voluntary contraction can be

summarised as follows:

e The basic functional unit of movement is considered to be the motor-unit which
consists of a motoneuron and the muscle fibres that it innervates [15]. Muscle fibres of
a particular motor-unit are of the same type and have the same metabolic properties so

that, when they are recruited, they behave in the same manner [15, 17, 30, 45].
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e During voluntary “sub-maximal” contraction, the body achieves smooth contraction
by using "asynchronous” recruitment of motor-units at low frequency (low firing rate)
[1]. This recruitment pattern of motor-units resists fatigue by allowing the various
motor-units to share the task of maintaining smooth contraction [1, 46].

e During voluntary maximal contraction, when all motor-units of the muscle are
recruited, asynchronous recruitment at low frequency is impossible and the firing rate
(natural stimulation frequency) will be high, and hence fatigue cannot be prevented
[32].

e Motor-units were most easily classified into three main types: The first is type-1 which
contains few fatigue resistant (Type-1 muscle) fibres and hence develops relatively
small force. The second is type-Ilb which contains relatively more Type-Ilb muscle
fibres and develops high force but also fatigue quickly. The third is type-Ila which has
intermediate properties; it has a fast twitch, develops moderate force, and is fatigue
resistant [15, 17, 45].

2.3.  Electrical stimulation and challenges of functional electrical stimulation

Electrical stimulation (ES) involves artificially inducing a current to excitable tissue to induce
a physiological response. In therapeutic applications, ES may enhance tissue health or
voluntary function, but it is not used to provide the function directly. In functional
applications, ES is applied to paralyzed muscles in precise sequence and magnitude to directly

achieve functional tasks [2].

2.3.1. Electrical stimulation

ES pulses applied to an excitable motoneuron can elicit action potentials. The motoneuron
receives ES pulses that are delivered using electrodes, these electrodes can be placed on the
skin surface (transcutaneous electrodes), placed within a muscle (percutaneous electrodes),
placed on the surface of the muscle (epimysial electrodes), or wrapped around the nerve that
innervates a specific muscle (cuff electrodes) [4].The negative electrode (cathode) creates a
localized electric field that depolarizes the cell membranes of nearby motoneurons. If the
depolarization exceeded the threshold level, an action potential propagates along the axon in
both directions away from the site of stimulation [3, 47]. The threshold charge required to

elicit action potential in muscle fibres is much greater than the threshold charge required to
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elicit action potentials in neurons [24]. Therefore, a fundamental principle is assumed that ES

generally activates nerve rather than muscle fibres.

2.3.1.1.  Recruitment order of electrically stimulated muscle

Unlike the “asynchronous” recruitment of motor-units that happens in the intact CNS, FES
recruits motor-units in a “synchronous” manner. For this reason, a higher stimulation
frequency (usually in the range of 20-40 Hz) is required to achieve smooth contractions when
using FES [1]. The high frequency used in FES is the main cause of the increased rate of

fatigue associated with FES as compared to voluntary contractions initiated by the CNS [24].

Furthermore, it is generally accepted that FES tends to recruit muscle motor-units in a “non-
physiological” order [1, 46, 48]. The difference in recruitment order is believed to be due to
the size of axons of the different motor units (and hence associated muscle fibre types). Type-
I1b fibres are innervated by axons with the largest diameter, type-Ila fibres are innervated by
axons with the second largest diameter, and type-I fibres are innervated by axons with the
smallest diameter. The large diameter axons couple more of the electric field than the small
diameter axons, so type-Ilb fibres respond to FES at lower stimulation levels than type-lla
fibres which respond at lower stimulation levels than type-1 [1, 3]. Since type-llb fibres
fatigue more quickly than other fibre types, the non-physiological order of motor-units’
recruitment contributes to the increased rate of fatigue that occurs with FES, as compared to

voluntary contractions initiated by the CNS.

Although the concept of non-physiological recruitment order of electrically stimulated muscle
is generally accepted in the FES community, a debate exists with respect to the exact order of

recruitment when surface electrodes are used:

e As reported in [3, 46, 48] recruitment order depends on two factors; the distance from
the surface electrodes and the inverse-size order.

e Gregory and Bickel [49] and Singh et al [50] however suggested that motor-units
recruitment order tends to be random and fibre-type has little effect, because threshold
depends mostly on distance of the motor axon from the surface electrode (i.e. the axon
size has little effect compared with the effect of the distance from the surface
electrodes).

18



To achieve the physiological recruitment order in a heterogeneous muscle (consisting of
different fibre types), several selective nerve-blocking techniques were developed [51, 52,
53]. Stimulation waveforms of special shape and nerve cuff electrodes are used in these
techniques. The disadvantage of these techniques is that they require nerve cuff electrodes

which must be surgically implanted.

2.3.1.2.  Force production in electrically stimulated muscle

The proportion of motor-units recruited depends on stimulation intensity (pulse width PW and
pulse amplitude PA). An increase in either pulse width or pulse amplitude generates a larger
electric field of a sufficient value to initiate an action potential, and hence recruitment of more
motor-units [54]. Pulse amplitude and pulse width both have an equivalent effect [3, 55], an
increase in either (or both) will lead to an increase in the number of recruited motor-units and
hence force, until all motor-units are recruited, see Figure 2.10. In this particular case (shown
in this figure), at a pulse width of 200 [ #sec], muscle force can be adjusted from threshold to
near maximal by changing the pulse amplitude (which will change the current intensity) from
18 to 40 [mA]. In contrast, at current amplitude of 40 [mA], muscle force can be controlled by

changing the pulse width from 40 to 200 [ xsec] (frequency is fixed at 35 [Hz]).
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Figure 2.10: Variation of pulse amplitude and pulse width. (From [3]).
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The force produced by ES can also be controlled by pulse repetition rate, or frequency. Low
stimulation frequency causes the muscle to respond with a series of twitches. Therefore, the
stimulation frequency has to be high enough to achieve smooth contractions. Higher
stimulation frequencies will increase muscle force up to a maximum, but also increase the rate
of muscle fatigue. Thus, a trade-off between produced muscle force and minimum rate of

muscle fatigue is required (stimulation frequency is typically in the range of 20-40 Hz) [1].

Due to the problems of fatigue at the high end and non-tetanic contractions at the low end
(frequency is not sufficiently high to produce smooth contraction), frequency is not suitable to
modulate force. Therefore, ES systems usually use pulse amplitude or pulse width to
modulate force. The stimulation frequency is set constant and as low as possible, while
achieving a tetanic contraction, to reduce muscle fatigue [47]. A typical stimulation waveform
used for transcutaneous (surface) FES is a biphasic square-wave pulse train with amplitude of
(0-120) [mA], pulse width of (0—-300) [usec], and stimulation frequency in the range of 20—40
Hz [1].

2.3.2. Functional electrical stimulation

When electrically stimulated skeletal muscle contractions are coordinated in a way that
provides function, this technique is referred to as functional electrical stimulation (FES). The
purpose of FES intervention is to enable function by substituting or supporting the voluntary
physical ability of a patient. The clinical application of FES is currently restricted to
neurological disorders involving upper motor neuron lesion such as SCI, stroke, brain

injuries, multiple sclerosis, and cerebral palsy [2].

FES application areas:

e Upper-Limb Applications: FES systems can assist the reach, grasp and release
function for subjects with impaired upper limb function. The control signal for grasp is
typically driven by the patient from preserved voluntary function (open-loop control).
Examples of hand grasp FES systems are provided in [56, 57].

e Lower-Limb Applications: The initial application of FES in stroke patients focused
on the stimulation of the peroneal nerve for foot drop correction. The development of
lower-limb FES systems is much more advanced than upper-limb FES systems, but
there are still several problems that restrict their clinical implementation [2]. The

relatively simple multichannel FES systems, with 2-6 channels, are successful in
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producing stepping and standing for patients with complete SCI [58]. However,
walking with present lower-limb FES systems can only be used for short distances,
and cannot be used as practical alternative to a wheelchair [2] because of the high
metabolic energy required. A varied choice of lower-limb FES systems is available for
patients of SCI, including standing [59, 60], stationary rowing [61], cycling [62, 63]
and systems for supporting gait patterns during walking [64, 65, 66].

Other applications: Other FES applications include bladder and respiratory FES
systems.

2.3.3. State of the art and challenges

Controlling joint angles or torques by FES presents several significant control challenges.

These challenges can be summarised in the following points:

1.

Stimulated muscle force characteristics are nonlinear, dependent on muscle length and
velocity (which vary with joint angle and angular velocity), and time-varying because
of fatigue and changes in muscle composition over time due to regular use of FES.
The presence of spasticity and other hyperactive or inappropriate spinal reflexes in
neurological patients add another layer of complexity to the response of electrically
stimulated muscles. Spasticity and spinal reflexes are often unpredictable.

The neuromuscular system is highly coupled; each joint is actuated by at least two
muscle groups (flexor and extensor muscles). Moreover, some muscles are biarticular
(span two joints).

There is a significant time delay between stimulation and the onset of muscle
contraction, this delay is about (10-50ms) depending on the muscle being stimulated,
stimulation parameters and hardware [36].

There are also some technical difficulties involved with the improvement of the
existing FES systems. Efforts to improve a simple existing FES system by adding
more stimulation channels, multiple sensors, multiple electrodes, and other interfacing
parts have resulted in more difficulties in handling and testing, in addition to the

higher failure rate of such a complex FES system [67].

Open-loop and finite-state control systems are used in most FES systems available outside of

research laboratories. Examples of commercially available open-loop controlled FES systems

include:
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e The H200 (BIONESS, Inc.) and the Free Hand system (Neurocontrol Corporation)
where both can be used for the restoration of hand function.

e The Compex Motion stimulator (Compex SA) which can be used for a wide range of
transcutaneous FES applications.

e The ParaStep system (Sigmedics, Inc.) which can be used in standing and ambulation

for short distances.

Finite-state FES systems perform a predetermined stimulation sequence in an open-loop
manner. Examples of commercially available finite-state controlled FES systems used to

correct foot drop include:

e The WalkAide foot drop stimulator (NeuroMotion, Inc.).
e The Odstock dropped foot stimulator (Salisbury FES).
e The L300 (BIONESS, Inc.).

Finite-state control systems do not correct for model errors or disturbance and therefore they
cannot be considered as closed-loop systems, even if they have feedback to monitor the

condition of interest and hence the need for closed-loop control.

Closed-loop control systems

A few closed-loop FES cycling systems are commercially available, including the RT300
(Restorative Therapies, Inc.) and the Ergys2 (Therapeutic Alliances, Inc.). These devices use
closed-loop control to keep the cycling cadence constant, as the muscle begins to fatigue, by
increasing the stimulation intensity. However, the control challenges presented by other, more
complex FES applications require more sophisticated real-time control of stimulation
intensity (pulse width/amplitude) in addition to closed-loop compensation for external and

internal disturbances.

2.3.4. Summary

The response of electrically stimulated muscle is nonlinear, time varying, coupled, and often
accompanied by unpredictable disturbances. Only relatively, few patients have been assisted
with FES products despite the fact that FES has been in existence for five decades [68]. This
is due in part to many FES control challenges including the non-linear response of the
paralysed muscle, muscle fatigue, muscle spasticity, spinal reflexes, muscle wasting, and FES

system time delays.
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2.4.  Muscle models

In this section, different schools of thought within muscle modelling are introduced, followed
by an overview of basic Hill-type model. An overview of key models used in FES is included,
and the limitations with these models are highlighted. A discussion on how muscle models

can assist in the development of FES systems is provided at the end.

2.4.1. Introduction to muscle modelling

Realistic models of neuro-musculoskeletal systems can provide a safe and convenient
environment for the design and evaluation of controllers for FES prior to clinical trials.
Accurate models would significantly enhance and accelerate the design and evaluation of
closed-loop FES controllers [1, 67, 69, 70, 71]. The performance of an FES controller should
also improve with improvements to muscle model accuracy [3, 6, 72, 73, 74, 75, 76, 77, 78,
79, 80].

Many models have been proposed in the literature to predict muscle force, these models vary
in complexity level, ranging from simple models (e.g. the model proposed by Herzog [18]) to
complex models which incorporate the effects of additional biophysical and mechanical
variables (e.g. the complex set of models proposed by Brown [81, 82, 83, 84]).

Skeletal muscles are made up of two basic elements; electrically excitable contractile muscle
fibres (active element), and passive connective tissue and tendon (passive viscoelastic
element). The tendon attaches the muscle across joints, while the connective tissue coverings
protect muscle fibres and also provide pathways for the passage of nerves and blood vessels.
Force production of skeletal muscles is a result both of the active contraction of the muscle
fibres and forces resulting from the velocity and length of the (passive) connective tissue and
tendon, often modelled as spring/damper systems.

There are three schools of thought within muscle modelling. As described in the previous
section, the first school directly model the biophysical and biochemical processes of cross
bridge activity in muscle contraction. The origin of these models is usually referred to A. F.
Huxley [16]. The processes within a single muscle fibre are modelled with the aim to describe
muscle characteristics at a microscopic level. This requires identification of parameters at the

level of muscle fibres, which are difficult to estimate, and their use in simulation would
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involve solving a large number of partial differential equations. Partial differential equations
are considerably more computationally intensive to solve than ordinary differential equations
and hence are not well suited for use in FES feedback control systems.

The second school uses models from systems theory (black-box models) where force is
related to stimulation pattern by a purely empirically-derived mathematical function. In such
an approach, an appropriate mathematical function that best describes the relationship
between measured input-output data is determined [78, 85, 86, 87, 88]. Other approaches in
this school include the use of fuzzy models [89, 90, 91, 92, 93], and Adaptive Neuro-Fuzzy
Inference System (ANFIS) models [94, 95, 96] to represent the passive and active muscle
properties. This school of modelling makes no contribution to the understanding of the

modelled system.

The third school follows phenomenological models first suggested by A. V. Hill [97]. The
original so-called Hill model proposed that skeletal muscle can be represented as a “two-
component system, consisting of an un-damped, purely elastic element in series with a
contractile element” [97]. Whilst the microscopic mechanisms of muscle contraction are not
modelled, these macroscopic models are able to represent many of the observed properties of
muscle behaviour to a reasonable degree [98]. Further, the mechanical input-output behaviour
of the model can be described using a small number of parameters in simple algebraic and
ordinary differential equations. This makes the model computationally efficient in comparison
with microscopic models and hence potentially suitable for FES control applications. As
discussed below, there are several versions of Hill-type model in the literature. All assume
that during the inactive state, the contractile element CE cannot sustain any force, and its

length can be adjusted at will.

2.4.2. Alternative Hill-type models

Different structures of Hill model are reported in the literature. For example, the original Hill
model consists of a CE in series with an SE. An extensive review of various modelling

approaches can be found in [75, 99].

The most common form of the Hill model is the three-element model with parallel elements
connected in parallel either with CE only [100, 101] or with CE and SE [18, 98, 102], shown

in Figure 2.11. These two forms have been examined by many researchers [103, 104, 105,
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106], and most of them (all except [104]) concluded that both forms are simplified
representations of the complex biological muscle structure, but that form (a) was more
accurate since PE represents the passive force of the muscle belly only (not the whole
musculotendon complex) and hence should be parallel on CE only. The other study [104]

concluded that both forms are similar.
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Figure 2.11: The two most common forms of Hill-type models used in the literature. The

parallel element PE can be parallel on CE only or both CE and the series element SE .

However, the topology of form (b) is easier for parameter identification and more preferable

for the following reasons:

¢ In the shortening range, if the muscle is recruited at the unique resting state (inactive,
force-free), F,. is initially zero and thus the value of PE can be directly obtained for
both forms. To obtain the value of PE in the other case when the muscle is not

recruited (F,, = 0), if the muscle is stretched to a given displacement Al ., F. will

mt
be the same for both forms. But for form (a) SE and PE are in series, therefore as the
muscle is stretched both SE and PE will be stretched, PE extension equals Al rather
than Al , and the measured force due to passive stretch results from extension of both

spring elements. In form (b), CE and PE are in series and the force across SE is also

zero, thus as the muscle is stretched, the measured force is only that due to PE.
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e The parallel element PE in form (b) gives a good representation of the passive force of
the musculotendon complex which results from connective tissue infrastructure
including the musculotendon sheath, the muscle fibre membranes, and the overall
fluid environment within which muscle tissue lives. There are also other passive
elements that cross joints in parallel to the muscle; these passive elements can be
lumped together mathematically. The experimental data that is available for the human
system is usually for lumped passive joint properties, which makes form (b) more
preferable.

For linear passive elements, the two forms (a) and (b) behave in a similar way and can replace
each other using simple mathematical equation developed and proved by Fung [107]. For
non-linear passive elements form (a) is more accurate as discussed earlier. For the reasons

described above, the form (b) was chosen for the rest of thesis.

2.4.3. Overview of key models used in FES control

Various mathematical muscle models have been developed for FES control studies. These
models vary in complexity and accuracy. Models of electrically stimulated muscles have been
developed based on black-box approach [86, 108], Hill model [109, 110, 111, 112], Hill-
based physiological model (Hill model combined with physiological processes underlying
excitation and activation of human muscles) [72, 73, 74, 113], Huxley model [114, 115], or a

combination of Hill-type and Huxley-type models [116, 117, 118].

Hill-based physiological models can be described as Hill-type models modified by
incorporating some of the muscle’s physiological properties into the basic Hill model, and
thus improving the model behaviour, while preserving its simple structure. This type of model
calculates the active muscle force as the product of three independent experimentally
measured relationships, namely the force-length relationship, the force-velocity relationship
and the recruitment (and/or activation) dynamics. These models assume that the muscle
recruitment (and/or activation) and muscle contraction dynamics are uncoupled, see Figure
2.12 (b).

To the author’s knowledge, the model by Riener (referred to from this point forward as the

Riener-1 model) is the most complex of this type of models that have been used in FES
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control studies. Other similar models [74, 113] are less complex and hence they account for

fewer muscle properties. An overview of Riener-1 model is presented below.
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Figure 2.12: Riener-1 model: (a) activation dynamics, (b) contraction dynamics, and (c) body-

segmental dynamics. (From [72]).

The Riener-1 model [72] describes the dynamics of the joint in response to electrically

stimulated muscle contractions. As shown in Figure 2.12, the model comprises three parts;

activation dynamics, contraction dynamics and body segmental dynamics. Activation

dynamics are modelled as function of stimulation pulse width and frequency. Active muscle

force is computed as the product of force- length relationship, force-velocity relationship and

muscle activation (Hill-based). Passive muscle properties (viscous and elastic) are separated
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from all muscles which span the joint and assigned to the joint (the tendon is assumed rigid,
i.e. not modelled). Riener-1 model is based on experimentally obtained data which makes the

identification process required to tune the model for a particular subject time consuming.

The Riener-1 model has been used by many researchers to develop control strategies for
different FES systems [55, 72, 119, 120, 121, 122, 123, 124, 125, 126]. The main practical
limitation of this model is the time-consuming identification process required to tune the

model parameters for each particular subject.

Limitations with the Riener-1 and other models used in FES control
As will be explained in further detail in subsequent chapters, the Riener-1 model, in common

with almost all other muscle models used in FES control, has two major limitations.

In closed loop FES control applications the number of activated motor-units in a given muscle
will usually vary with time, as stimulation intensity increases, or decreases. As discussed in
subsequent sections, the length of the CE associated with a given motor unit when initially
recruited is believed to influence the total muscle force via the muscle’s F-L relationship. As
recruitment and muscle length may both vary continuously, the length of different CE’s at
recruitment, will also vary. The Riener-1 model, in common with most previous work [1, 72,
74, 109, 113], represents the entire muscle’s CE length as a single (instantaneous) CE length
and hence a single length. Further, as discussed above, muscles contain different types of
motor-units, which vary in their properties. This suggests that every single motor-unit should
be modelled separately for the purposes of calculating the effect of the length at initial
recruitment, fatigue, and other physiological properties specific to each fibre-type (i.e.
recruitment order, F-L relationship, F-V relationship and fatigue). This argument is further
developed at the end of this chapter.

Another physiological model was developed by Riener [73] (Riener-2 model) using the
multiple motor-unit modelling approach. However, in this model the muscle length is
assumed constant and the model can only be used under isometric conditions (not for dynamic

conditions), which limits its use to FES isometric contractions only.

28



2.5.  Review of key features of muscle models

Skeletal muscles have various complex properties; these properties are modelled separately in
the literature with different modelling approaches and at different levels of complexity. This
section reviews the models of the various muscle properties which affect muscle response to
FES. These properties are: recruitment of motor-units, muscle’s active force-length
relationship, muscle’s active force-velocity relationship, muscle fatigue, force enhancement
following active stretch and force depression following active shortening, and finally the

passive behaviour of the musculotendon complex.

Alternative sub-models were collected from muscle models available in the literature for
electrically stimulated as well as naturally contracted muscles. When using models of natural
voluntary contraction for FES control, two important points have been considered. Firstly,
stimulation frequency is assumed constant during FES, and secondly, the non-physiological
recruitment order during FES. Models of voluntary contracted muscles have to be modified
accordingly before using them in FES control.

The muscle models produced by Brown and colleagues [41, 82, 84, 127, 128] were developed
for naturally recruited muscles, and despite the high level of complexity some important
properties are not included in the models (e.g. fatigue and force enhancement & depression).
In the following section, the activation sub-model developed by Brown has been greatly
simplified by assuming constant frequency and hence reducing a lot of un-necessary

complexity in muscle models for FES control (for further detail, see Chapter 6).

2.5.1. Recruitment sub-models

The two terms, muscle activation and muscle recruitment are often poorly defined, or
inaccurately used, in the literature, e.g. as in [18, 41, 82, 129, 130]. Sometimes both terms are
used to describe the same characteristic, e.g. [18, 73], and sometimes they are different, e.g.
[72, 81, 82, 83, 84, 113]. Sometimes a paper or a book refers to activation, when the term

recruitment should be used (and vice versa).

In this study, the recruitment level R is defined as the normalized portion of recruited motor-
units. R is the analogue recruitment of the muscle as a whole, R has the value between 0

(no recruitment) and 1 (all motor-units are recruited), 0 <R <1. The binary recruitment R,

represents the recruitment level of the motor-unit (of index j), which can only be either 0 or 1
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(100% recruited or not recruited at all). Muscle activation A (also unit-less, 0 < A<1) is
defined as the relationship between muscle force on one side, and on the other side:
stimulation frequency, rise and fall times (effects of calcium dynamics), time delay, yield,
sag, and effective length. Muscle activation will only be maximum (A=1) in certain
conditions, specifically stimulation at tetanic frequency (the frequency at which muscle force
is maximum, and prevents yield), isometric conditions and when sufficient time has elapsed
since onset of stimulation (to pass the rise time, effect of sag, and natural time delay). Effects

of muscle activation on muscle force are discussed in Appendix 1.

The real mechanism of motor-units recruitment is complex and difficult to measure.
Modelling approaches of this muscle property vary in complexity; hence different alternative
sub-models are reported in the literature. However, most of them use piecewise linear
function, the number of fibre types varies from one to three, and the number of motor-units

varies from one to a thousand.

2.5.1.1.  Summary of empirical data for recruitment behaviour

Comprehensive and accurate experimental data on recruitment are not available. For example,
accurate values for muscle parameters such as the force produced by cross-sectional area of
each fibre-type, size of each fibre-type, and number of fibres attached to each motor-units,
etc., are not available in the literature. Accurate values for such parameters are required to get
an accurate recruitment sub-model (i.e. the relationship between PW and recruitment of
motor-units). Rather, experimental methods used to estimate the recruitment curve measure
the relationship between PW and whole muscle isometric force. The isometric muscle force
is used as indication of the normalised portion (or level) of recruited motor-units. Taking into
account the large number of motor-units in a muscle, especially large muscles, this

approximation is expected to have little effect on the accuracy of the recruitment sub-model.

Pulse amplitude and pulse width have an equivalent effect [3, 55], an increase in either (or
both) will lead to an increase in the number of recruited motor-units and hence force, until all
motor-units are recruited (R=1). The general shape of the recruitment curve observed
experimentally is similar to the curve shown in Figure 2.13. No response is observed (R =0)

until the threshold level is reached (about 15 [.sec]). On the other end of the curve,

increasing PW beyond saturation level does not increase the force response (R =1), maximum
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force was obtained at about PW = 100 [ x.sec]. Muscle force can be adjusted from threshold

to maximal (R =1) by changing the pulse amplitude from 15 to 100 [ z.sec].
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0.2 ;

Mormalized Muscle Force

20 40 60 80 100
Pulse Width (usec)

Figure 2.13: Effect of pulse width PW on recruitment of muscle fibres. The recruitment curve

resulted by PW range of (0—100..sec) at constant pulse amplitude ( PA =2.7mA) and

constant stimulation frequency. (Adapted from [54].

Durfee et al [131] experimentally tested three different methods for estimating isometric
recruitment curves of electrically stimulated muscles. The results of this study was that
estimation of recruitment curves depends on the method used, and also that all tested methods
are sensitive to short-term and long-term variations in muscle properties (e.g. recruitment

history and fatigue).

Crago et al [54] reported the recruitment curves to be dependent on muscle length, but Levy et

al [48] suggested the recruitment curve is independent of muscle length.

The recruitment curves for individual fibre types during FES are believed to be similar to the
curves shown in Figure 2.14, assuming that motor axon adjacent to the surface electrodes are
recruited first, and also that largest diameter and most fatigable motoneurons (type-llb) are
recruited first. This recruitment order was reported in [1, 46, 48, 72, 73] when using surface
electrodes, i.e. type-1lb first, then type-lla, and type-I last. Recruitment sequence is different
with nerve-implanted electrodes.
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The input to the recruitment sub-model is the artificial electrical stimulation level (PW / PA),
and the output is the recruitment level R . Adjusting PW will change the number of recruited

motor-units.

R
1 - Kl
100% typeil
- bt ] . .-pw
R, A . W) pw;
100% + & msnpareSecssnerlee - type-lia

o DWW

% of recruited motor-units

type-lib

o W

Figure 2.14: Typical non-linear and overlapping recruitment curves of different fibre types
during FES. (Adapted from [119]).

2.5.1.2.  Summary of key recruitment sub-models

Recruitment modelling approaches available in the literature can be classified into two main

types; analogue recruitment (can be linear or non-linear), and analogue recruitment with
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binary extension. Using this classification; different alternative recruitment sub-models are

summarised below.

2.5.1.2.1. Analogue recruitment

Analogue recruitment can be linear or non-linear and with single or multi fibre-type.

i)  Schauer recruitment sub-model

The recruitment curve of Schauer recruitment sub-model [113] is described by a piecewise

linear function as follows:

O ' pW < thhr
R={ V=P by < pw< pw, (2.1)
pWsat - thhr
1 v PW> PpW,,

S 4
‘g
=
£
olfk
-
-
c
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£
]
=
o
[1}]
o
0 A » Pulse Width
‘thr PWS&E [‘LESE‘.‘C]

Figure 2.15: Linear recruitment curve. A piecewise linear function describes the recruitment

curve of Schauer sub-model. (From [113]).

i) Riener-1 recruitment sub-model

In Riener-1 recruitment sub-model [72], the muscle is treated as single motor-unit, and single

fibre-type is assumed. The recruitment curve is similar to that shown earlier in Figure 2.14.
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The normalized portion of recruited motor-units R, (0 <R <1) is calculated as a function of
pulse width PW.

R =c, {(pw— pw,,)arctan[c,, (pw— pw,, )] (pw— pw,,,)arctan[c,,,(pw— pw,,)]}+c,
C,s C,, C,,» C,,- are constants. 22)

iii)  Brown recruitment sub-model

This recruitment sub-model was proposed by Brown in his PhD thesis [41]. The muscle is
divided into a number of slow-twitch and fast-twitch units; all units have the same PCSA.
Total number of units is specified by the user (more units will increase model accuracy).
Recruitment of motor-units is illustrated in Figure 2.16. Recruitment R, and stimulation

frequency freq, are modelled as functions of the natural stimulation input U . This sub-

model follows the physiological recruitment order (slow units first).

L { 0.0

- U

U=00 UF UF USL  UF Ua 10
———

TLar B L:-Far
U —U;") = -

Figure 2.16: Brown recruitment sub-model. (Adapted from [41])

iv)  The “natural continuous” recruitment sub-model of (VM 4.0)

This recruitment sub-model is used in the third alternative muscle model of (VM 4.0) [128],

and was called “natural continuous” in [128]. This sub-model is similar to the original Brown
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recruitment sub-model, but with single unit for each fibre-type (i.e. simplified version of

Brown recruitment sub-model). Recruitment R, and stimulation frequency freq, are

modelled as functions of the natural stimulation input U . This sub-model follows the

physiological recruitment order (slow units first).

v)  The “intramuscular FES” recruitment sub-model of (VM 4.0)

This recruitment sub-model is used in the fourth alternative muscle model of (VM 4.0) [128].
This sub-model is similar to the “natural continuous” sub-model (in VM 4.0) with two
differences; stimulation frequency is constant (because of its application to FES) and all
motor-units have the same threshold and saturation levels. This model includes two types of
motor-units (fast and slow response), both of which are recruited in a random sequence, based

on the experimental results obtained by Singh et al [50].

vi)  Hawkins recruitment sub-model

Hawkins model [101, 129, 130] was developed for voluntary contraction initiated by the
CNS, the input is the natural stimulation input U . Hawkins assumed constant stimulation
frequency (near to natural maximum frequency) for all model units and for any input. Three

units are used, one unit for each fibre-type. The threshold level U™ and the normalized
recruited proportion (0<R, <1) of the i unit are illustrated in Figure 2.17 using an example

of possible relationship between recruitment R and natural stimulation input U in a

heterogeneous muscle.

2.5.1.2.2. Analogue recruitment with binary extension

In this approach of modelling, recruitment of motor-units is incorporated as a binary

extension to the analogue recruitment.

i)  Riener-2 recruitment sub-model

In Riener-2 recruitment sub-model [73], the muscle is divided into 100 motor-units of slow-
twitch (type-1) and fast-twitch (Types Ilb and Ila). The inverse size-order recruitment with
overlap is used in this model, as shown in Figure 2.14. The analogue recruitment sub-model
(used to calculate the number of recruited motor-units of each type) is the same as that of
Riener-1 model (equation 2.2) with different threshold and saturation levels for different fibre
types (i =1,2). Each motor-unit (of the one hundred) is either recruited or not (either 0 or 1).
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As soon as R, (of fibre type-i) exceeds the threshold value related to the motor-unit j, this

motor-unit is recruited.

Recruitment level (normalised)

R s

R3

|Cr1

0.0 4 + ' > [/
UP=00 Uy=U® UF=U  Ui"=U,=10

Matural stimulation input U (normalised)

Figure 2.17: Hawkins recruitment sub-model. (U —U ™) = FPCSA , C; - Hawkins
Cri

recruitment constant for different fibre types is determined empirically. (Adapted from [101]).

i = . (2.3)
1 ,Ri>(J—_1j

For fast motor-units:

thr

Ripe = G, {(pw— pwi™ ) arctan|c,,, (pw— pwi™) |- (pw— pws®)arctan|c.., (pw— pws®) [ +c,
m, = mxFPCSA, =100 x FPCSA,, 0<m, <100. (2.4)

Number of recruited fast motor-units = R, xm,

For slow motor-units:

Raow = Cl{( pw— pwf”)arctan[cthr(pw— lemr)]—(pW— lesat)arCtan[Csat(pW_ prat)]}+ C,
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m, =mxFPCSA, =100x FPCSA,, 0<m, <100. (2.5)

Number of recruited slow motor-units = R, xm,

i)  The “natural discrete recruitment algorithm” recruitment sub-model

This recruitment sub-model is used in (VM 3.0) [127] and also in the first and second
alternative muscle models of (VM 4.0) [128]. It was called “natural discrete recruitment
algorithm” in [128]. This sub-model is a modified version of the Brown recruitment sub-
model with the addition of binary recruitment of motor-units (0 or 1), see Figure 2.18.The
number of recruited units depends on the value of the natural stimulation input U ; all units

will be recruited when natural stimulation input reaches U, (value of U_,, can be specified

by the user). The user is allowed to modify the complexity of this sub-model including fibre
types, and number of units. Although the addition of more units will increase model accuracy

it will increase also the computational time [127]. Recruitment R, and stimulation frequency
freq, are modelled as functions of the natural stimulation input U . This sub-model follows

the physiological recruitment order (slow units first).

R,

1’ 1
FPCSA, |

(o C
FPCSA; .41 | -

FPCSA, | r R
[ 0.0 — i L R

0.0 Lr{*ﬂ’ ) -L-'r_‘f"'lr [,,":hr- {,-'r::;r=U 1.0

! sat

- - - y
e o — — —

(FPCSA4,xU ) (FPCSA,xU_,) (FPCS4,xU_))

Figure 2.18: The recruitment sub-model used in the first version of Virtual Muscle (VM 3.%),
also in the first and second alternative muscle models of (VM 4.0). (Adapted from [127, 128])
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2.5.1.3. Implications of the application of recruitment sub-models on the single

motor-unit model

A muscle consists of large number of motor-units and different fibre types which have
different contractile properties. If a single motor-unit model is used, different contractile
properties of the different fibre types cannot be incorporated into the muscle model.

Moreover, in a realistic scenario R and | are changing continuously during FES, the single

motor-unit model cannot account for the effect of continuously varying R (i.e. length history-
dependence and fatigue history-dependence of different motor-units). As described elsewhere
in the thesis, a new comprehensive multiple motor-unit model has been developed to address
these limitations. The multiple motor-unit model properly accounts for this realistic scenario
and different contractile properties of the different fibre types since each motor-unit is
modelled separately. As part of this research work, a new recruitment sub-model was
developed during this research. This sub-model has one thousand motor-units and three
different fibre types. Details are provided in Chapter 6.

2.5.2. F-L sub-models

The F-L relationship is estimated experimentally by using either separate fibres/motor-units or
entire muscles. It is generally accepted that the active F-L curve of a single fibre consists of a

steep ascending limb followed by a plateau and then a less steep descending limb [132].

2.5.2.1.  Summary of empirical data for F-L relationship

Muscle models available in the literature, usually incorporate one generic curve of the force-
length relationship for any muscle, fibre or motor-unit. However, the transformation of fibre
F-L relationship to muscle F-L relationship is determined by muscle geometry [133]. Muscle
architecture and fibre orientations can vary widely in different muscles. Muscle architecture
has large effect on the shape of the F-L curve; Figure 2.19 shows the experimental F-L curves
for nine different muscles of different architecture. These data were collected from nine
different skeletal muscles, the muscles are: Tibialis Anterior (TA), Peroneus Brevis (PB),
Peroneus Longus (PL), Extensor Digitorum Longus (EDL), Soleus (SOL), Tibialis Posterior
(TP), Medial Gastrocnemius (MG), Lateral Gastrocnemius (LG) and Flexor Digitorum
Longus (FDL).
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Both the muscle force and optimal length are dependent on stimulation frequency freq,

recruitment level R, and fibre-type. The force-length relationship is usually estimated
experimentally at constant stimulation frequency and fully recruited muscles (R =1), and then
the empirical data is used to develop a simplified F-L sub-model. F-L relationships at
different stimulation frequencies are shown in Figure 2.20. Force traces are shown to illustrate

the effect of stimulation frequency on isometric force at different lengths (of muscle belly).
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Figure 2.19: The F-L relationships for different skeletal muscles (in the hind-limb of the cat).
(Adapted from [132]).

39



Constant stimulation frequency is assumed during FES. Therefore, the input to the force-
length relationship (FL) is the length of either muscle fibres/motor-units or muscle belly
(depending on the sub-model used), and the output is the normalised force of either the

fibres/motor-units or the whole muscle.

Most models in the literature use the instantaneous CE length I.. as input to the force-length

relationship. However, this does not reflect the way in which the F-L relationship of a muscle
(or muscle fibre) is believed to act as the input should be length at initial recruitment, not
instantaneous length. Using the instantaneous length I.. for dynamic contraction results in
instability on the descending limb of the force-length relationship (see Appendix 2).

Experimental data and comparison between the isometric forces corresponding to |, and |..

after protocols of stretch/shortening are presented in Appendix 2.
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Figure 2.20: F-L relationships at different stimulation frequencies. The F-L curves measured

at different stimulation frequencies are not congruent. (From [82])

2.5.2.2.  Summary of key F-L sub-models

Summary of key F-L sub-models reported in the literature is provided in this section.
Alternative mathematical equations are used in different muscle models to mathematically

represent the empirical data of the force-length relationship at different complexity levels.
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i)  Otten F-L sub-model

Otten F-L sub-model [134] was incorporated into many muscle models reported in the
literature, either modified, or as it is. Otten [134] suggested that the force-length relationship

could be modelled by the following equation:

FL(I,) = exp —[L_l} R 26)
Cuy

Constants: cg, c,, and c, are used as curve shaping parameters; cg controls curve

skewness, c, controls curve roundness, and c,, controls curve width.

Figures 2.21, 2.22 and 2.23 show the effect of c, c., and c, (respectively) on the curve of

Otten F-L sub-model. In each figure, one parameter varies and other parameters are kept

constant at appropriate values in order to show clearly the effect of the varied parameter.

i)  Riener-1 F-L sub-model

In Riener-1 F-L sub-model [72], a simplified form of Otten F-L sub-model is used with

(cs =1) and (c, =2), the value of c,, depends on the stimulated muscle (different muscles

have different values).
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Otten F-L sub-model

Isometric Force (normalised)

12
Length (normalised)

Figure 2.21: Effect of skewness parameter cg on the curve of Otten F-L sub-model. ¢y = (1, -

1,2,-2,0.5,and -0.5), c, =2, ¢, =0.5. The curve is symmetrical only at: ¢, =1.

Otten F-L sub-model

5

Isometric Force (normalised)

0.4 0.6 0.8 1 1.2 1.4 1.6
Length (normalised)

Figure 2.22: Effect of roundness parameter c, on the curve of Otten F-L sub-model. ¢, = (1,

15,2,3,4,and5), ¢, =1, ¢, =0.5.
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Figure 2.23: Effect of width parameter ¢, on the curve of Otten F-L sub-model.

cy =(0.1,0.2,04,0.5,0.75,and 1), ¢y =1,c, =2.

iii)  Brown F-L sub-model

In Brown F-L sub-model [41, 82, 84, 127, 128], the same form as that of Otten F-L sub-model
is used. However, if c, was not selected as an integer, then the output of Otten equation

might be a complex number with imaginary part. Therefore, Brown used the following

equation:

FL(I ) =exp| - abs{Un) " ~1

c, (2.7)

Slow-twitch and fast-twitch fibres have different force-length relationships, hence different

values for equation parameters are used to model each fibre-type (I . is the same for both).

opt

Note that, Brown F-L sub-model is for the active isometric force only, i.e. excluding f..,

which resists muscle fibres compression at short CE lengths (less than 0.71 ), fgc, is
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modelled separately in Brown muscle model, Brown f_., sub-model is summarised in

section 2.5.6.2.

iv)  Hawkins F-L sub-model

In Hawkins F-L sub-model [101, 129, 130], the length of fibres is used as the input to the F-L

sub-model (1, =1, xcos« ). The normalised F-L relationship is given by:

[-6.25(I, —1)* +1] for:0.6<I, <1.1
FL(I,)=4[-1.5625(, ) +2.656] for:1.1<1I, <1.7 (2.8)
0.0 for:06>1, >1.7
Fibres of different types have the same F-L relationship, all fibre in the muscle assumed to

have the same length.

v)  Herzog F-L sub-model

In Herzog F-L sub-model [18], the normalised isometric muscle force is approximated by the

positive values of a parabola; this is given in the following equation:

(2.9)

F o )
FL(ICE):{Cl(ICE D)°+1 for positve values}

0.0 for negative values

(lee =1,,), ¢c,: constant.

vi)  Garies et al F-L sub-model

Garies et al F-L sub-model [132] is an improved version of the original Otten F-L sub-model
[134]. This sub-model was developed to model the complex F-L curves of some muscles
which have complex architecture, for example when the F-L curve has more than one optimal
length (e.g. the F-L curve of T.A.) or when the F-L sub-model cannot predict forces at
extremes of length (F-L curve of MG), see Figure 2.19 shown earlier in this section.

Garies F-L sub-model is a “multi compartment” sub-model. The muscle is assumed to have
more than one compartment and then each compartment is modelled separately. Each
compartment has its own optimal length and scaled to its influence on the overall model. This

sub-model is given by:
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_ Cs i CRii
_Im -1
FL(I )—ic x exp| — abs on
m < i Cy (2.10)
N :  Number of compartments in the F-L sub-model.

Scaling factor representing the effective influence of the i™ compartment on the
overall model.
l,;: Instantaneous length of the i™ compartment normalised with respect to its own

optimal length.

2.5.2.3.  Implications of the application of F-L sub-models on the single motor-unit

model

Different fibre types have different F-L relationships. If a single motor-unit model is used,
only one F-L sub-model can be used. The multiple motor-unit model described in subsequent

chapters is able to properly account for more than one F-L sub-model for different fibre types.

25.3. F-V sub-models

Hill-type muscle models use F-V sub-model similar to the original Hill equation given in
[97], where muscle force decreases with increasing shortening velocity and increases with
increasing stretch velocity. Hill [97] proposed a force velocity relationship for shortening
muscle at optimal length using a part of rectangular hyperbola. A typical F-V curve of skeletal

muscle is shown in Figure 2.24. The original Hill’s force-velocity equation is given by:

(fee +@)x (Vee +b) = (figo e +3@) xb (2.11)

a and b are constants with units of force and velocity respectively.
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Figure 2.24: Relationship between muscle force and shortening velocity. Muscle force

decreases as muscle shortening velocity increases.

2.5.3.1.  Summary of empirical data for F-V relationship

The force-velocity relationship is mainly affected by velocity of muscle fibres, but it is also
affected by fibre-type, muscle architecture (optimal length and pennation angle), recruitment
level, recruitment order (physiological or non-physiological), “instantaneous” fibre length and

stimulation frequency.

Recruitment order and recruitment level affect the F-V relationship in muscles composed of
different fibre types (heterogeneous muscles). During non-physiological sequence, slow
motor-units will be recruited first and hence at partial recruitment all or part of recruited
motor-units is of the slow-type which have a lower maximum shortening velocity. During
non-physiological sequence, fast motor-units will be recruited first and hence at partial
recruitment all or part of recruited motor-units is of the fast-type which have larger maximum

shortening velocity.

Figure 2.25 shows the force-velocity relationship for the medial gastrocnemius (MG) muscle
of the cat at four different recruitment levels and two different recruitment sequences;
physiological sequence (motor-units are recruited from slow to fast) and non-physiological
sequence (motor-units are recruited from fast to slow). The MG muscle is composed of 25%
slow-twitch fibres and 75% fast-twitch fibres [135].
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Figure 2.25: Force-velocity relationship for medial gastrocnemius (MG) at four levels of
recruitment: (A) Physiological sequence (R = 1.0, 0.72, 0.54, 0.36). (B) Non-physiological
sequence (R =1.0,0.72, 0.41, 0.22). (From [135]).

2.5.3.2.  Summary of key F-V sub-models

Different “simplified” mathematical equations are used to represent the force-velocity
relationship. These equations are of different complexity, but in all of them, muscle force
decreases during shortening and increases during stretch.

i) Riener-1 F-V sub-model

In Riener-1 F-V sub-model [72], the F-V relationship is represented as a function of the
velocity of the muscle belly (v, ):

FV (v,) =0.54arctan(5.69v , +0.51) + 0.745 (2.12)

i)  Brown F-V sub-model

In Brown model [41, 82, 84, 127, 128], the force-velocity relationship is a function of v, and

I.., and is modelled by the following equation:
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(1+ vm) /(1_ (CVO + CVll_m )vm) ' vm S 0 (2 13)
(b, —(a,, +a,l_ +a,l *W )(bs+V. ) , V. >0 '

FV(Vme):{

Cyo» Cy» 8,4, &,, a,,,and b, are constants estimated from experimental data.

Different constants are used for different fibre types, including v, ...

i)  Hawkins F-V sub-model

The original Hawkins muscle model [101, 129, 130] was re-formulated in order to be in the
general form typically used by most Hill-type muscle models and also used in the standard
topology (the third formula was formulated). The normalised force-velocity relationship is

given by:
0.0 for:v, <-1
[L+v, ]/[1-@/k)v,] for:-1<v, <0
FV = 2.14
Vi) 1.3+(—0.3)x(1—(%)\7fj for:0<v, <V (214)
Vf,max Y
1.3 for :v, >V,

str

Different constants are used for different fibre types, including v, .. and Vi .

iv)  AnyBody F-V sub-model
The second alternative in AnyBody Software [136] is a simple linear F-V relationship:

FV(v,)=@0+V,) (2.15)

v)  LifeMOD F-V sub-model

In the muscle model used in LifeMOD [137, 138], the normalised force-velocity relation is

modelled by:
0 v, <-1
FV(v,)=9 @+Vv,)/(1-c,v,) ,—1<V,

<0 (2.16)
(1_av0\7m)/(1+bv6\7m)’ vm >0

Constants: c,, =4, a,, =2, b, =1.5.
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vi)  Herzog F-V sub-model

The original Herzog muscle model [18] was re-formulated in order to be in the general form
typically used by most Hill-type muscle models and also used in the standard topology. The

new form of Herzog F-V sub-model is represented by the following formulas:

0 for Ve <-1
H% for —1<V <0
1- (ijCE
FV (VCE’ FL(IO)) = 1 B
1- vstr VCE
1.5+ (~0.5) x CEl’”‘ax for 0< Ve <V
1+ (b’]vCE
1.5 for Vee > VEE o

(2.17)

a,b,a’,b’: Constants, their values depend on the individual muscle. These constants need to

be adjusted for the stimulated muscle to fit its experimental data.

In Herzog F-V sub-model, the maximum shortening and stretch velocities depend on f,., (l,) .

VCE,max CE,max is0,max

=—FL(IO)9, Vop = FL(IO)E, (both normalised to . ).
a a

Using velocity values normalised to the maximum CE velocity v ¢ .. -

b!
T 7 Str FL(IO); b'xa H
(Vegmex =—1), Va2 o = = (both normalised to v ... )-
| R | b |
a

2.5.3.3.  Implications of the application of F-V sub-models on the single motor-unit
model
Different fibre types have different F-V relationships. v.., I.., and R are continuously

changing during FES. Hence, high accuracy muscle model should consider these variables as
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inputs to the F-V sub-model. If a single motor-unit model is used, only one F-V sub-model
can be used. The multiple motor-unit model properly accounts for more than one F-V sub-
model for different fibre types and can also account for the recruitment order of different fibre

types.

2.54. Fatigue sub-models

Muscle fatigue is defined as the “the failure to maintain the required or expected force”. The
fatigue rate depends on the muscle employed, the intensity of the activity, and whether the
contractions are continuous or intermittent [45]. Muscle fatigue is also affected by other
factors such as: age, gender, fitness, etc.

2.5.4.1. Summary of empirical data for muscle fatigue

In healthy subjects and for tasks and activities requiring low force, fatigue will not be
accumulated, and the muscle is able to perform the task without fatigue [30]. When a force is
generated and maintained, motor-units in the involved muscle are recruited gradually. Some
motor units are recruited first. Later on, when they become fatigued, they are de-recruited and
other motor units will be recruited to compensate for the force loss due to fatigue, and
meanwhile, the fatigued units start to recover [30]. Based on this scenario, the motor units of
the muscle involved in a task can be divided into three groups: those which are currently
recruited, those already fatigued and are making recovery, and those in the rest state and have
not been recruited yet. For tasks requiring large force (in healthy subjects), such as
performing a sustained maximal voluntary contraction (MVC), the recovery mechanism
cannot compensate for the force loss (due to fatigue) quickly enough. Therefore, after some
time, all motor units in the muscle will eventually become completely fatigued and can no
longer be recruited [139, 140, 141]. As discussed earlier, different fibre types have different

fatigue resistance, depending on the fibre type composition.

Stimulation frequency has a great effect on muscle fatigue, higher frequency will produce
higher force but also results in a faster fatigue rate, and vice versa. Fibre-type also has a great
effect on fatigue. This is a fixed property of muscle fibres and will be considered as a constant
(although as explained below fibre-type composition within muscles can be changed by

regular exercise or paralysis).
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Muscles that do not receive regular exercise undergo disuse atrophy and convert to a higher

proportion of type-Il fibres than regularly active muscles [24]. Many disabled people have

extensive disuse atrophy in their paralysed muscles depending on how long the muscles have

been paralysed [4]. Consequently, when applying FES, the affected muscles can fatigue

quickly where they have become mostly type-11 fibres. The force response of electrically

stimulated muscle decays nonlinearly as the muscle begins to fatigue [3]. Eventually, the

muscle is not able to produce any force. Figure 2.26 shows four possible fatigue patterns that

are typically seen in SCI disabled subjects during FES sessions. These plots show the force

exerted by the quadriceps muscle group versus time when subjected to FES. These empirical

data were collected from a patient (all data collected from the same patient) who had SCI

resulting in paraplegia [142].
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Figure 2.26: Four different force decay profiles representing some of the wide range of force

profiles that can be seen as the muscle fatigues during FES. (From [1]).
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2.5.4.2.  Summary of key fatigue sub-models

Different mathematical equations have been reported in the literature at different complexity
levels to represent the fatigue effect on muscle force. In all of them, muscle force decreases
when FES is on. When FES is off, some of them have considered recovery and some have
not. The fatigue sub-models considered in this chapter are only those which use “black-box”

modelling approach to model fatigue, modelling of physiological details is not covered here.

Muscle fatigue can be measured and modelled as index of fatigue IF which is defined as
“force of the fatigued muscle normalised to force of the same un-fatigued muscle under same
conditions”, IF is an instantaneous quantity that varies with time. Inputs to the fatigue sub-

model are stimulation frequency freq and recruitment level (when recruited fatigue occurs,

when not recruited recovery occurs), the output of fatigue sub-model is IF .

Depending on the fatigue sub-model; IF can be the same or different for different fibre types
(if a single motor-unit model is used, then there is only one IF . If multi fibre-type model is

used then there can be separate IF, for each fibre-type).

i)  Giat fatigue sub-model

It is assumed in Giat fatigue sub-model [143, 144, 145, 146] that the fatigue related metabolic
parameter pH reflects the force production capability of a muscle. The index of fatigue is
calculated in two steps; pH level is calculated first then the index of fatigue IF is calculated.
One curve for pH decay with respect to time during FES (Figure 2.27) and another curve for
pH recovery with respect to time (Figure 2.28) are obtained empirically for the muscle of
interest (R =1 during FES, and R =0 during recovery), these two curves are then used to

calculate fatigue and recovery of muscle force for continuous or intermittent FES.

The decay of pH with respect to time during FES is presented mathematically as:

PH @ (1) = ¢, — ¢, tanh[c, (t —c,)] (2.18)

The increase of pH with respect to time during recovery is represented mathematically as:

pH..(t) = d, +d, tanh[d, (t —d,)] (2.19)
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Constants values (¢, C,, C;, ¢,, d,, d,, d;, d,) are determined experimentally for each

muscle, and different muscles in the same subject can produce different fatigue and recovery

curves, depending on fibre-type [143, 144].

Muscle force (of fatigued muscle) normalised to maximum isometric force (of un-fatigued

muscle) is calculated by the following equation:

IF(pH) = dy x (1—exp[ds (pH (1) —d;)]) (2.20)

This equation is used for both cases, during FES and during recovery.
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Figure 2.27: Giat Fatigue Sub-Model. Left: Decay curve of the normalised pH level with

respect to time. This curve represents equation (2.18) with (¢, =0.8527, ¢, =0.75, ¢, =0.1,
¢, = 2). Right: Muscle force decay sub-model using the pH curve (left). This curve

represents equation (2.20) with: (d; =113.6 , d, =-0.0097, d, = 0.0885).
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pH recovery with respectto time Force recovery with respectto time
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Figure 2.28: Giat Fatigue Sub-Model. Left: Recovery curve of the normalised pH level with
respect to time. This curve represents equation (2.19) with (d, =0.179021,d, =0.88,

d, =0.069, d, =3). Right: Muscle force recovery sub-model using the pH recovery curve

(left). This curve represents equation (2.20) with: (d, =113.6 ,d; =—-0.0097,d, = 0.0885).

Modelling intermittent FES:

The time t; at which the recovery starts (of any cycle) is calculated by reversing equation

(2.19):

H. xt? —d
tre = 2 arctanh] P e 7| d, (2.21)
d, d,
t/2 : Time at which FES stopped (of the same cycle).

The time t,* at which FES starts again is calculated by reversing equations (2.18):

1 H tl’eC _ C
t* = ~arctan h{ PP rec X tena =G } +C, (2.22)
C, c,

rec

tenq - Time at which last recovery stopped and FES started.
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i)  Riener-1 fatigue sub-model

Riener-1 fatigue sub-model [72] is a simplified version of Giat model, where the index of
fatigue is calculated only in one equation. This model was developed first in [55] as a general
simple model, then effect of recruitment and frequency was added in [72]. Fatigue and

recovery rates at any time are given by the following first-order equation:

(IFmin - IF(t))X[RX Afreq ><ﬂ’] n (1_ ”:(t))>< (]'_[R>< Afreq ><2’])
T T

fat rec

d (IF)=

T (2.23)

2
Ao (freq) = (%] for : freq <100Hz
+ (freq

2
A(freq) :O.4+{O.6x(%j } for : freq <100Hz

R: Recruitment of the whole muscle.

Aq: Muscle activation due to stimulation frequency only without the effect of other
parameters which affect activation (i.e. without yield, sag, effective length and
effective frequency).

A: This term is used to model the effect of stimulation frequency on fatigue rate.

IF_. : The minimum fitness of the muscle at which fatigue rate = 0 of the fully recruited
muscle (i.e. the minimum value for the index of fatigue).

For all muscles: T, =30 [sec].

(IF,,, T, ) are estimated experimentally, they can have largely different values for different

min !

muscles.

Riener-1 fatigue sub-model can be used for the whole muscle, for the fibre-type, or for a

single motor-unit (assuming R;, =1 when recruited and R;; =0 when not recruited)

providing that appropriate values for model parameters are used.

i)  Hawkins fatigue sub-model

In Hawkins fatigue sub-model [101, 129, 130], stimulation frequency is assumed constant

(near to maximum natural frequency). Recovery is not modelled; which means that index of
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fatigue IF will stay the same during the recovery period of intermittent FES (i.e. when FES is
switched off until next cycle of FES), endurance time and fatigue rate for different fibre types

are shown in Figure 2.29.

For times longer than T, , the rate of fatigue for the three fibre types is assumed linear.

1.0 , t<T,q
"= l_|:(%(”:)}x(t_-rend):| J 1:ZTend (224)

For type-l1 and type-lla fibres under continuous FES (assumed near maximum natural
. . d _

stimulation frequency): T, =6 [sec], a(IF):O.OOO97 [s™]

For type-llb fibres under continuous FES (assumed near maximum natural stimulation

frequency): T.,q =23 [sec], %(IF):0.0S% [s™]

IF decay with respect to time
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Figure 2.29: Endurance time and fatigue rate for different fibre types in Hawkins model.
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iv)  Freund and Takala fatigue sub-model

Freund and Takala fatigue sub-model [147] is a relatively simple fatigue sub-model which
was developed for natural voluntary contraction assuming that recruitment R will increase
during contraction (by the CNS) to compensate for the effect of fatigue on those recruited
motor-units. However this can be used for FES with individual motor-units assuming

(R;; =1) for recruited motor-units and (R; ; = 0) for non-recruited motor-units.

Fatigue rate is modelled as:

%(IF)z—[ﬁx R]+[ax(@-1F ()] (2.25)
The first term represents fatigue, and the second term represents recovery. Constants need to
be estimated from experimental data, they are provided in [147] as: @ =0.2 [min~'],

B =113 [min™]. However, these values resulted in very fast fatigue; hence both were

divided by 10 to get realistic curves. Figure 2.30 shows fatigue and recovery curves for fully

recruited muscle (or single recruited motor-unit).

IF decay with respect to time

IF(t)

LRI T B e
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Figure 2.30: IF curve of Freund and Takala Fatigue Sub-model (o =0.02, g =0.113)..
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v)  Ma fatigue sub-model
Model assumptions are similar to Freund and Takala fatigue sub-model. The fatigue part was
developed first in [148], then the recovery part was incorporated into the model in [149].

During recruitment of the muscle, the fatigue rate is given by:

%(IF)=—[kxIF(t)xR]+[r><(1—IF(t))] (2.26)

The first term represents fatigue, and the second term represents recovery, see Figure (2.31).

r=2.4, k is determined experimentally (not provided in related references [148, 149]).

During recovery (R =0), the recovery curve is given by:
IF(t) =1+ (IF ) —1)x exp(—r xt) (2.26A)

end

IF(t) : is the index of fatigue at the time when fatigue stopped and recovery started. At

end

beginning of recovery: (t=0).
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Figure 2.31: IF curve of Ma Fatigue Sub-model with (r =0.2, k =1.13). The red curve
represents fatigue during full recruitment (R =1), the blue curve represents recovery for non-

recruited muscle (R =0).
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2.5.4.3. Implications of the application of fatigue sub-models on the single motor-

unit model

The real muscle consists of large number of motor-units and different fibre types which have
different rates of fatigue. If a single motor-unit model is used, the different fatigue sub-models
of different fibre types cannot be incorporated into the model. Moreover, in a realistic
scenario R is changing continuously during FES. The single motor-unit model cannot
account for the effect of continuously varying R (i.e. fatigue of different motor-units) since
each motor-unit fatigues and recovers, independent of other motor-units. The multiple motor-
unit model properly accounts for more than one fatigue sub-model for different fibre types

and also models each motor-unit separately.

2.5.5. Force enhancement & depression sub-models

The force enhancement & depression ( f, & f;) is mainly affected by magnitude of stretch

and shortening. It is also affected by velocity, recruitment level, and stimulation frequency

during stretch/shortening [13]. The increase or decrease of muscle force (f, or f,) is

determined relative to the purely isometric reference force corresponding to the CE length at

the end of stretch or shortening (Figure 2.32).

O Stretch

O Shortening

- - - Reference

» Time [sec]

Time [sec]

4 6 8
Figure 2.32: Force enhancement f, following stretch, and force depression f, following

shortening of a recruited muscle. (From [13]).
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2.5.5.1.  Summary of empirical data for force enhancement & depression

Force enhancement and depression experimental data available in the literature show some
complexity and some uncertainty. An example of empirical data is shown in Figure 2.33,

which show the effect of stretch/shortening velocity v.. and initial length 1, on force
enhancement f, following stretch and force depression f, following shortening at different
initial lengths 1_. The force enhancements and force depressions were less at shorter muscle

lengths and higher speeds.

Force enhancement f, is increased with increasing magnitudes of stretch, see left graph of

Figure 2.34. The velocity of stretch was reported by some scientists to have no effect on force
enhancement [150, 151] and to have a small effect on force enhancement by other scientists
[152, 153]. The experimental data shown in Figure 2.33 show that the velocity of stretch has a
small effect on force enhancement; this effect is greater at shorter lengths.

Force enhancement following stretch has been associated with the descending limb of the
force—length relationship exclusively. However, there has been some controversy as to
whether force enhancement could be obtained on the ascending limb of the force—length
relationship. Some researchers’ experimental results support the assumption that force
enhancement also occurs on the ascending limb of the force—length relationship [13], but less
than that on the descending limb; experimental data shown in Figure 2.33 support this

assumption.

Force depression increases with increased magnitudes of shortening (Figure 2.34), for
increased forces during shortening (when the minimum magnitude of force during shortening
is higher, then force depression is higher), and for decreased speeds of shortening. These
properties are well accepted although there remains slight controversy over the effects of
speed of shortening on force depression [13, 152]. It has not been easy to identify whether
force depression is independently related to the speed of shortening, or if the speed of
shortening is indirectly associated with the magnitude of force during shortening (because
during shortening the force magnitude decreases with increasing speed of shortening). For
simplicity, the second option will be assumed; another reason is because the difference
between the two assumptions seems to be small. Hence, only the first and the second
properties will be considered (i.e. force depression is increased only for increased magnitudes

of shortening and for increased forces during shortening).
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Figure 2.33: Three shortening and three stretch contractions, at speeds ranging from 2.5 to 30

[mm/s]. The steady-state isometric force of the muscle at the final length is indicated by

horizontal line. The final length was 0, - 4, and - 8 mm in (a), (b), and (c) respectively. Length

represents displacement from optimal length (l.5 —

Lopt). (From [152]).
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Figure 2.34: Effect of magnitude of stretch on force enhancement (left) and shortening on
force depression (right). (Left graphs from [154], right graphs from [155]).

2.5.5.2.  Summary of key force enhancement & depression sub-models

The CE length at initial recruitment | is thought to be a key parameter influencing total
muscle force F,,. More details and comparison between CE instantaneous length I.. and CE

length at initial recruitment |, are provided in Appendix 2.

Indices of enhancement & depression (IE & ID) are used to model the transient-state and the
steady-state of the force enhancement/depression following stretch/shortening. IE is
calculated as the instantaneous active muscle force after end of stretch divided by the
isometric CE force corresponding to the length at end of stretch. D is calculated as the
instantaneous active muscle force after end of shortening divided by the isometric CE force
corresponding to the length at end of shortening. (IE & ID) represent the new isometric CE

force after end of stretch/shortening (f.. corresponding to the length at end of

stretch/shortening + transient-state and steady-state effects of stretch/shortening on recruited

muscle force) normalised to the isometric CE force f_. corresponding to the length at end of

stretch/shortening. IE & ID is assumed the same for all fibre types in all sub-models. Only

few force enhancement & depression sub-models are available in the literature.
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i)  Hawkins force enhancement sub-model

Force enhancement following stretch is modelled by the index of enhancement IE. Force

depression following shortening is not modelled in Hawkins muscle model [101]. The index

of enhancement IE, (for fibre type-i) is the same for all fibre types. The index of

enhancement is given by:

IE(t):{IEw+[(IEmaX—IEw)xexp(cTsxt)] for t<4

IEg

IE, = IE(t=4) = IE, +[(IE,,

e - 0.505(IE, . ) +0.403
= 1.0

Cs =-0.301/(IE,, —IE,)

for t>4}

—IE,)) xexp(Cys x4)]
for:IE , =12
for:IE , <12

(2.27)

(2.27A)

(2.27B)

(2.27C)

Two examples are illustrated in Figure (2.35), both stretches were initiated on the descending

limb of F-L curve, the lower curve corresponds to low stretch velocity, maximum eccentric

force was not achieved the higher curve corresponds to higher stretch velocity where

maximum eccentric force was achieved and hence the force enhancement is larger (Hawkins

assumes that IE and eccentric force increase with increasing stretch velocity).

16 ¢

.
=

-
L=

High stretch velocity

. : Low stretch velocity

index of enhancement (IE)
™

I . 1 I 1 L - 'l 1

0

1.0 20 3.0 4.0 50

time from cessation of active stretch (seconds)

Figure 2.35: Two examples of Hawkins force enhancement sub-model for two muscles at

MVC (R =1) after cessation of stretch as function of time. (From [101]).
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i) Forcinito force enhancement & depression sub-model
In Forcinito model [156, 157], the initial length is used to calculate the isometric force
[ fee = fii(I,) ], where in the majority of Hill-type models the instantaneous length is used
[ fee = fio(Ice) 1. For fully recruited muscle (R =1), the steady-state force enhancement &

depression is modelled by an extra parallel elastic rack (parallel to CE), where a relay will
engage the elastic rack at the moment when the muscle is initially recruited. This relay will

continue to be active as long as the muscle is still recruited (R > 0). The stiffness of the rack

is given by: (E-A“ER,O), where A is the cross-sectional area of the elastic rack, and E is the

modulus of elasticity. The stiffness of the rack decreases linearly with increasing initial length

I o - The instantaneous active muscle force f including force enhancement & depression is

given by:

E.A
Fn = fiso(|0)+(l_x(|ER _IER,o)j
ER,0

(2.28)

+£1+ =A —E}(IER—IER,o)xexp(—<k/c)xt>

k ><IER,o IER,o

2.5.5.3. Implications of the application of IE & ID sub-models on the single motor-

unit model

The real muscle consists of large number of motor-units. In a realistic scenario; R and |

are changing continuously during FES. The single motor-unit model cannot account for the
effect of continuously varying R at different CE lengths (i.e. length history-dependence). The
multiple motor-unit model properly accounts for this realistic scenario since each motor-unit

is modelled separately, with its own initial length.

2.5.6. Passive elements sub-models

Skeletal muscles have complex passive viscoelastic structure; they are made of soft tissues
with different material properties. A skeletal muscle consists of tendon, aponeurosis,
connective tissues, and muscle fibres; each part of them has viscoelastic passive forces. The

length and velocity of the whole muscle will affect the length and velocity of all muscle parts.
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2.5.6.1. Summary of empirical data for passive behaviour

Passive elastic force of the whole muscle is a function of the length of the musculotendon

complex |1, . Passive elastic force of muscle belly resists stretch beyond its slack length; it

also resists the compression of CE at short lengths. Passive elastic force of the tendon resists
stretch beyond its slack length (the aponeurosis has similar properties to tendon). Passive
elastic force can increase total muscle force when stretched beyond its slack length, and can
decrease total muscle force when contracted to very short lengths. Passive viscous force is a

function of the velocity of the musculotendon complex v, . The passive viscous force (of all

muscle parts) resists movement during both shortening and lengthening.

The passive F-L curves determined experimentally for muscle belly can have different shapes
for different muscles and can start at different lengths relative to the optimal length. Different
muscles have different passive forces because of the effects of cross sectional area, length and
muscle structure. However, the difference in the passive F-L relationship can be greatly
reduced when normalised. In some cases, passive F-L curves for different specimens of the
same muscle (from different animals) can vary a lot and do not tend to normalize well with
respect to each other [158], an example is shown in Figure 2.36. Strap-like muscles are
parallel-fibered muscles (i.e. pennation angle = 0) which have minimal aponeurosis (muscles
used are five strap-like muscles of the cat hind limb: caudofemoralis, semitendinosus,
sartorius anterior, tenuissimus, and biceps femoris anterior). The experimental data in this
figure were collected using this type of muscles because the muscle belly length of this type

of muscles provides an accurate indication of the active CE length [158] used in the model.

Different types of fibres were reported in the literature to have similar passive forces per unit
area. Tendons of different muscles were also reported to have similar passive forces per unit
area. Experimental passive elastic F-L curve of tendon is similar to that of muscle belly but

with higher resisting force, see Figure 2.37.

Figure 2.38 shows the effect of the viscous drag “passive” force created by non-recruited
fibres in the whole muscle. The soleus muscle is composed of 100% slow-twitch fibres, hence

Y is less at lower recruitment levels because of the viscous drag “passive” force. The

viscous passive force created by non-recruited fibres (in a partially recruited muscle) reduces
muscle force during shortening and stretch. It also reduces the maximum shortening velocity

V., mx dUring shortening. Recruited fibres also have viscous passive force, but it is already
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included in the F-V relationship (as a hidden parameter). A viscous element is added in some

muscle models for stability purposes during simulation (e.g. Brown muscle model).
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Figure 2.36: Passive elastic F-L curves for 43 muscles taken from different animals. Forces

are normalized to PCSA and fascicle lengths to I, of muscle fibres. (From [158]).
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Figure 2.38: Force-velocity relationship for the soleus (SOL) at four levels of recruitment: (A)

Physiological sequence, (B) Non-physiological sequence. (From [135]).

2.5.6.2. Summary of key passive elements sub-models

Alternative mathematical equations are used in different muscle models to mathematically

represent the empirical data of the passive F-L and F-V relationships.

i)  Herzog sub-model for muscle passive elements

The passive elastic forces of muscle belly f_., and tendon fg. are modelled as linear

functions (of linear springs) in Herzog model [18], the passive elements are arranged as in
form (b) of Figure 2.11 in section 2.4.1.

Ko x (I —15F) for:l >ISE
fo(le)=4 2 “%F °® ETS b ISE =1 2.29
sele) {o.oo for:le <ISF|" S ° (2.29)
foes (Iper) ka X(IPEl_ISPEl)’ ISPEl :Iém (230)

Note that ( .., >0) for (1., > 1) and ( f.c, <0) for (1., <15¥*). Since PEland SE of

Herzog model are linear, the arrangement of passive elements can be changed to form (a) of

Figure 2.11 using Fung equations given in [107] as follows:
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k., xk
(Ksy =Ks, +Kp,) and (ko, :ﬁ)'

ks, and k,, are the series and parallel elements of form (a), kg, and k., are the series and

parallel elements of form (b). Form (a) will be used as the standard form because of the
following: it is more common in the literature, it was suggested by many researchers to be
more accurate [103, 105, 106] and also this makes all models represented in this chapter to

have the same arrangement of model elements.

i)  Brown sub-model for muscle passive elements

Brown muscle model is presented in different references [41, 82, 84, 100, 127]. All sub-
models and constants’ values were taken from the last update of Brown model given in [100].
Passive elements of Brown model are illustrated in Figure (2.39). The linear parallel viscous

element VE was added in [127] for stability purposes during simulation.

A Tendon &
Aponeurosis

_fpfz .f PE1

—==CE Length
FIES!
PE2

fee = foer + forz

Figure 2.39: A) Representation of Brown muscle model using rheological elements structure.

Force

B) The two parts of the passive elastic element PE. C) The passive F-L curves of PE1 and
PE2. (Adapted from [82, 160]).

Series element passive F-L sub-model ( fg;):

The passive force of the series elastic element (represents the combined tendon and

aponeurosis) is given as a non-linear function of its length 1. :

68



a I — I
fo. (I.) = 0.13066 x |n{exp[m}rl} (2.31)

11 =0.964 1

opt”

Parallel element passive F-L sub-model ( f, ):

The passive elastic force f,., as a function of I:

PE1

. (e /1) —1.17
for (I.e) =1.058 x| e 1 2.32
pex (Ice) x n{eXp{ 0046 + ( )

I was used in the “Virtual Muscle” because PEL scales more appropriately with |

max

[127].

Passive PE2 F-L sub-model ( f.,):

The passive elastic resistance to compression at short CE lengths (|CE <0.7x |0pt) is modelled

by a non-linear function:

foe, (Ice) = —0.02x{exp[-21x (Iee —0.7)] -1 , foe, <O (2.33)

Passive VE F-V sub-model ( f; ):

A small viscosity was added for stability purposes during simulation:

Voe max (lopt)
fie =0.01x Vg, X{MJ (2.34)

opt

For slow-twitch fibres (type-1):

f. =0.01xV,.. x {—‘VCEW (I"”‘)‘J =0.01x [—‘_ 788 xlep
VE — Y CE - M

opt

Jx Ve =0.0788x V.

opt

For fast-twitch fibres (types lla and 11b):

vV, | -9.15x|
fe =0.01xV g x {‘CET‘XM] —0.01x {‘—"pt

opt

]XVCE =0.0915x ¥V,

opt

i)  Hawkins sub-model for muscle passive elements

Hawkins muscle model is presented in different references [101, 129, 130]. Passive elements

of Hawkins model are illustrated in Figure (2.40).
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Figure 2.40: Representation of Hawkins muscle model [101, 129, 130] using rheological

elements structure.

Series element passive F-L sub-model ( fg;):
The aponeurosis is assumed as a rigid structure, the tendon passive force is modelled as:
foe (Ise) = 0.00504 x exp (147 x (I —11)) (2.35)

Tendon length is normalised to the tendon optimal length 1] .

Note that the curve of Hawkins SE sub-model is very similar to that of Hatze SE sub-model

[161]: f(l,)=c, ><e><p(c2 x (I, —|;)—1). The curve of Hatze SE sub-model is almost exactly
the same when using the following constants: (c, =0.314, c, =60) when simulated in

Matlab.

Parallel element passive F-L sub-model ( ., ):

foes (Iee) = C, x P 10.3x (e —1.6) } (2.36)

The rest length was assumed to be: (I ., =1.6)

rest

c, = 34257.78

Passive VE F-V sub-model ( f; ):
For the i'" fibre-type: .. =c, xvee x(L—R;) (2.37)

i : Fibre-type identifier; (1) for type-1, (2) for type-lla, and (3) for type-Ilb.
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c,, C,, Cy:areconstants. ¢, =0.51585, c, =C, =0.44195.

The viscous drag “passive” force created by all non-recruited fibres in the whole muscle:

fVE :Z fVE,i = fVE,l + fVE,z + fVE,3
i-1

iso,max *

Units used for CE velocity: v . = [ﬂ} f,e 1s normalised with respect to f
sec

Iv)  LifeMOD sub-model for muscle passive elements

In the muscle model used in LifeMOD [137, 138], a two-element Hill-type model (CE and
PE1) is used, see Figure (2.41).

; CE
—— AMA——

PE1

Figure 2.41: Representation of LifeMOD muscle model using rheological elements structure,
SE is assumed rigid in LifeMOD muscle model [137, 138].

Parallel element passive F-L sub-model ( ., ):

For lengths beyond (1., =0.75), .z, normalised with respectto f,_, is given by:

rest

. lce —0.75
fees(lce) :{ :T.I.55—|_CE JXCL (2.38)
2.338x PCSA,
L= , PCSA_ =[m?]
c = % PCSA,, =[m?], the specific tension: ST = [ﬂz}
m
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2.5.6.3. Implications of the application of passive elements sub-models on the

single motor-unit model

The passive elements of PE1, PE2, and SE are not affected by level of recruitment R. The
viscous drag “passive” force created by non-recruited motor-units can be properly
incorporated into the multiple motor-unit model. However, experimental data available in the
literature does not show any difference between different fibre types in the viscous drag
“passive” force created by non-recruited motor-units. Until detailed experimental data for
different fibre types becomes available, both of the single motor-unit model and the multiple

motor-unit model are equal regarding modelling passive elements.

25.7. Standard sub-models of the “General Model”

A standard form representing all alternative sub-models of any muscle property is possible.
These standard forms can be used to represent any of the simplified alternative sub-models
presented in this section or to build a new alternative sub-model at the required level of

complexity for any muscle property.

The standard forms were developed in this study to represent each muscle property;
description and details are provided in Chapter 6. A “General Model” that can be used to
represent all relevant instances from the literature was developed; the topology of the standard
forms of the general muscle model and how different sub-models are connected in the

“General Model” are described in Chapter 6.

2.6.  The need for a multiple motor-unit model for FES applications

As discussed in section 2.4.3, improvements to muscle model accuracy can help improve the
performance of FES controllers. Because of the different characteristics of different types of
motor-units; recruitment order will affect the calculated muscle force. Also, the properties of
different fibre types cannot be incorporated into a single motor-unit model. FES simulations
are usually based on single motor-unit models which cannot account for continuously varying
recruitment as would usually be seen in closed loop FES control. Such simulations would
result in an over- or under-estimation of muscle force and hence inaccurate assessment of the

FES system’s performance in the real world.
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The multiple motor-unit modelling approach may improve model accuracy; since it properly
accounts for the physiological properties specific to each fibre-type (i.e. recruitment order, F-
L relationship, F-V relationship, and fatigue), and also can account for the continuously
varying recruitment levels by modelling each motor-unit separately regarding its length at

initial recruitment and time history of recruitment.

2.6.1. How can the multiple motor-unit modelling approach improve model

accuracy?

Using this approach of modelling will make the muscle model more complex and will require
more parameters to be estimated experimentally, but will increase model accuracy. During
FES, the recruitment level can change in a continuous fashion such that different motor-units
are recruited at different muscle lengths and at different times. Some muscle properties are
highly affected by these changes such as fatigue and force enhancement & depression.
Fatigue is highly affected by fibre-type and time history of recruitment, force
enhancement/depression is highly affected by the change in CE length (displacement) during
stretch/shortening, and isometric force is highly affected by the length at initial recruitment.
Such properties should be modelled for each motor-unit separately, which can only be

achieved by modelling at the motor-unit level.

Specifically, the multiple motor-unit modelling approach is able to properly account for the

following properties:

i.  Motor-units in the muscle model are of different fibre types that have different
contractile properties.
ii.  Appropriate non-physiological recruitment order depending on electrodes used.
ii.  Different F-L sub-models used with motor-units of different fibre-type.
iv.  Different F-V sub-models used with motor-units of different fibre-type.
v.  The length at which each motor-unit is initially recruited.

vi.  Time history of recruitment for each motor-unit.

These properties cannot be modelled nor be incorporated into a single motor-unit model. The
multiple motor-unit model has many advantages over the single CE modelling approach.

These advantages can be summarised as follows:

1. During FES, stimulation levels could be rapidly and continuously varying which
results in different motor-units being recruited and de-recruited at different lengths and
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different times. Obviously, this can only be modelled with multiple motor-units
modelling approach.

During FES, non-physiological recruitment order happens when (the commonly used)
surface electrodes are used, and this is the primary cause of fatigue when using FES.
For electrically stimulated muscle, physiological recruitment order can only be
achieved using special electrodes and special strategies. This case can only be
modelled with the multiple motor-unit modelling approach.

The F-L relationship of different fibre types is different. Single motor-unit model
cannot use more than one F-L relationship, but the multiple motor-unit model can use
separate F-L sub-model for each individual motor-unit.

The F-V relationship of different fibre types has different curves, including different
maximum shortening velocities. Single motor-unit model cannot use more than one
relationship, but the multiple motor-unit model can use different F-V sub-model for
each motor-unit.

Muscle fatigue depends on fibre-type and duration of activity (time history). When
different motor-units are recruited and de-recruited at different times the single motor-
unit model cannot account for these changes accurately. Only the multiple motor-units
model can model each motor-unit separately and take into account the fatigue and
recovery cycle for each motor-unit individually.

Force enhancement f, and force depression f, are length history-dependent. When

different motor-units are recruited at different lengths, the only way to accurately
model this situation is by the multiple motor-unit modelling approach. In the single
CE model it is not possible to accurately model this situation.

Muscles of complex structure can be modelled with higher accuracy where different
motor-units, even from the same type, can have different lengths and different
pennation angles which change in different values during isometric and dynamic

situations.

2.6.2. Multiple motor-unit models in the literature (by different authors)

Most muscle models in the literature use single motor-unit modelling approach where the CE

is modelled as a single unit. Only a few multiple motor-unit models have been reported in the
literature [30, 73, 101, 127, 162, 165] (different authors use different names, for example:

multi motor-unit model, multi-fibre model, cellular-based model, etc.), none of these have
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used initial length in the F-L relationship. Number of motor-units in the multiple motor-unit

model does not correspond to real motor-units; it represents the force resolution, more motor-

units will increase force resolution and vice versa. Muscle models found in the literature

which use this approach include the following:

1.

Brown model [81, 82, 83, 84] is a complex multiple motor-unit model. Despite its
complex sub-models, some important properties like fatigue, and force enhancement
& depression are not included. This model is used in the “Virtual Muscle” software
package [127, 128]. Different sub-models of Brown model are summarised in section
2.5.1,

Hawkins model [101, 129, 130] is claimed to be a multiple fibre model. However,
fibres are modelled in a superficial way, where the portion of each fibre-type is
modelled separately not the fibre. The model is divided into three units only, one unit
for each fibre-type and linear analogue recruitment is applied on each unit. Different
sub-models of Hawkins model are summarised in section 2.5.1.

Riener-2 model [73] is a physiologically based model; the multiple motor-unit
modelling approach was used to model the recruitment and activation under isometric
conditions, two inputs stimulation intensity and stimulation frequency are allowed to
vary in this model (frequency not constant). CE length is constant and hence this
model is not for dynamic conditions. It can be used for FES control under isometric
conditions but not dynamic protocols.

Liu et al [30] used multiple motor-unit approach only for the purpose of estimating
fatigue under isometric conditions and MVC. Unrealistic motor-units are used in this
model, where they are considered either fully recruited (100% recruitment), at rest
state waiting to be recruited, or fully fatigued. Physiologically this is not true, where
motor-units will fatigue and recover gradually as discussed earlier in section 2.5.4.
Essential muscle properties (e.g. F-L and F-V relationships) are not considered in this
model.

Xia and Frey Law [162] model is an improved version of Liu model, where the
original Liu model was modified to include submaximal voluntary contraction and
dynamic (non-isometric) conditions, but still uses the same principle of unrealistic
motor-units.

Stojanovic et al. [163, 164, 165] model is a “multi units” model based on Hill’s three-
element model, the model includes different properties of different fibre types. The CE

is divided into multi units; each of these units is modelled using finite element
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method. However, this model is not considered since it was developed using finite

element method which is beyond the scope of this study.

The only model that can be considered here as a good multiple motor-unit model is Brown
model [81, 82, 83, 84] where this model was developed using large collection of experimental
data for physiological properties of different fibre types. This model is used in the “Virtual
Muscle” software package [127, 128]. Brown model was developed for voluntary contraction
(not FES). The recent version of Virtual Muscle, VM4.0 [128], has one option for FES in
which the stimulation frequency is kept constant and non-physiological recruitment order is
applied where recruitment is weighted equally among all fibre types, the recruitment sub-
model is summarised in section 2.5.1.2.1.

Brown model uses multiple motor-units approach with complex sub-models for recruitment,
activation, F-L and F-V. Yet, important properties such as fatigue and force enhancement &
depression are not included in the model. The complex activation sub-model is not needed in
the case of FES since frequency is typically constant during FES and the effect of the

activation sub-model in this case is negligible. Two fibre types (not three) are modelled.

Riener-2 model [73] accounts for different motor-units being recruited at different times for
the fatigue sub-model; it can be used for FES control under isometric conditions only, but not

dynamic protocols.

The author proposes a generic complex multiple motor-unit model that has 1000 motor-units
and three fibre types, the physiological properties specific to each fibre-type can be modelled
separately, the length at initial recruitment 1, and time of recruitment can also be included
with each motor-unit to further increase the model accuracy. The modelling of |, and time of

recruitment/non-recruitment with each motor-unit separately has not been used in the

literature. Development and details of the “General Model” are provided in Chapter 6.

2.7. Conclusions and overview of rest of the thesis

Skeletal muscle is a highly complex and nonlinear system. The response of electrically
stimulated muscle is nonlinear, time varying, coupled, and often accompanied by
unpredictable disturbance in SCI subjects. Computer simulations based on accurate

mathematical models of the musculoskeletal system would help in the design and evaluation
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of FES controllers. The multiple motor-unit modelling approach can improve the model
accuracy; since it properly accounts for the physiological properties specific to each fibre-type
(i.e. recruitment order, F-L relationship, F-V relationship, and fatigue), and can also account
for the continuously varying recruitment levels by modelling each motor-unit separately

regarding its length at initial recruitment and time history of recruitment.

In the rest of the thesis, the multiple motor-unit model is compared to the single motor-unit
model for the realistic scenario when recruitment levels are rapidly and continuously varying
which results in different motor-units being recruited and de-recruited at different lengths and

different times.

Chapter 3 addresses the problem of muscle modelling for continuously varying R and hence

different values of | for different motor-units. Open-loop simulation protocols are used with

the multiple motor-unit model and the single motor-unit model using both the CE
instantaneous length and the CE length at initial recruitment for the F-L relationship. Results

are discussed at the end.

Chapter 4 addresses the problem of muscle modelling for muscle fatigue with continuously
varying R at different times and hence different fatigue and recovery cycles for different
motor-units. Open-loop simulation protocols are used with the multiple motor-unit model and
the single motor-unit model using both the multiple motor-unit fatigue sub-model and single
motor-unit fatigue sub-model. Results are discussed at the end.

Chapter 5 addresses the problem of muscle modelling for force enhancement/depression
following active stretch/shortening with continuously varying R. Open-loop simulation
protocols are used with the multiple motor-unit model and the single motor-unit model using
both the multiple motor-unit force enhancement & depression sub-model and single motor-

unit force enhancement & depression sub-model. Results are discussed at the end.

Chapter 6 addresses the development of a new “General model” using standard forms for
different sub-models representing all muscle properties and the inter-connection of these sub-
models (model topology). The “General Model” is capable of representing the alternative sub-
models (for each muscle property), and hence all relevant models from the literature. Such a
“General Model” could be used to study the effect of muscle model complexity on FES

controller design.
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Chapter 3: The Multiple Motor-Unit Muscle Model

3.1. Introduction

In normal human movement, it is reasonable to assume that the recruitment level R changes
continuously. Similarly, in closed loop FES control applications R will usually vary with

time. As discussed in sections 2.5.2 and 2.5.5 and Appendix 2, because the length of the

contractile element CE at initial recruitment (1) is thought to be a key parameter influencing
total muscle force F, via the muscle’s F-L relationship, the use of a single value for | in a
realistic scenario where R and |.. are changing continuously would result in an over- or

under-estimation of F . However, as almost all muscle models used in FES control studies
treat the muscle as a single contractile element (i.e. one large motor-unit), there can only be
one value for |, despite the fact that in reality different motor-units are recruited at different

lengths. In most previous work on FES control [1, 72, 74, 109, 113], a compromise is adopted
whereby the instantaneous CE length is used rather than the initial length. However, this does
not reflect the way in which the F-L relationship of a muscle (or muscle fibre) is believed to

act as the input should be length at initial recruitment, not instantaneous length.

Therefore, this chapter addresses the problem of muscle modelling for continuously varying
R and hence different values of I, for different motor-units. A new multiple motor-unit

model is developed which considers the muscle to comprise a large number (1000) of
individual Hill-type virtual motor-units. These virtual motor-units are connected in parallel
and can be either on or off, mimicking the structure and behaviour of physiological motor
units. Details on the structure of skeletal muscles, together with the recruitment process are

provided in section 2.2.

The Herzog model, a relatively simple Hill-type model, was chosen for its simplicity and also

because it uses the CE length at initial recruitment (l,). An overview of Hill-type models is

provided in section 2.4.2 and the Herzog model is summarised in Appendix 3.

As the recruitment level R(t) may vary during stimulation, these virtual motor-units are
recruited at different times and each with its own initial length (IO’J— for j=1 to 1000); thus
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overcoming the problem described above. It should be noted that the virtual motor-units in the
model do not correspond to real motor-units. Rather, the number of virtual motor-units used
in the model is chosen to give the required force resolution. For example, if a resolution of 1%

is required, then a model based on 100 motor-units would be used (this is calculated by

dividing one by the required resolution, i.e. L = !

= -100).
1% 1/100

The multiple motor-unit model has been implemented in two ways. Firstly, by only using the
1000 virtual motor-units to model recruitment and calculate the isometric force (i.e. to apply

the F-L relationship) and then treating the muscle as a single motor-unit (single CE) when
applying the F-V relationship using one single value for the isometric force f, (l,).
Secondly, by also applying the F-V relationship separately for each virtual motor-unit
individually (different motor-units can have different values for f. (I,)). The relative merits

of these two approaches are discussed at the end of the chapter.

3.2.  Effective isometric force model

In the original Herzog model, which incorporated a single CE, it was assumed that the muscle
remembers the CE length |, at which it was initially recruited for as long as the recruitment
remains (i.e. R>0). This is acceptable if the recruitment remains constant, but it is not

accurate if R changes during stimulation, as different motor-units are recruited or de-
recruited at different lengths each time there is a change in R. To take account of the

recruitment of motor-units at different lengths, the isometric force f, (I,) (using one initial

length) was replaced by an effective isometric force ( Eff .f, ). The effective isometric force

1SO
model is presented in Figure 3.1 and Figure 3.2 and is a “novel contribution” to the field. It is

based on the multiple motor-unit principle, where every motor-unit (of index j) remembers the

length (Io,j ) at which it was initially recruited.

As discussed in section 2.5.1, the instantaneous value of the analogue recruitment R(t),

shown in Figure 3.1, is used as a representation of the proportion of recruited motor-units.

R(t) has a value between 0 (no recruitment) and 1 (all motor-units are recruited),
0 <R(t) <1. An extension to the work presented here, to include modelling of recruitment of

three different fibre-types is introduced in Chapter 6.
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Figure 3.1: Effective isometric force model.

The binary recruitment sub-model calculates the number of recruited motor-units. The input

to the binary recruitment sub-model is R(t), where R(t) is the output of the analogue

recruitment sub-model (see section 2.5.1). In this example, the total number of virtual motor-

units (m) is m=21000, number of recruited motor-units (M ) is M =mxR(t) =1000x R(t) .

Every recruited motor-unit is treated as a separate fully recruited CE for the purposes of
calculating the isometric force.
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Figure 3.2: Isometric force of a single motor-unit.

In Figure 3.2, every recruited motor-unit remembers the length at which it was initially

recruited. The isometric force of the whole muscle f,_ (1, ;) is divided by the number of

virtual motor-units used in the multiple motor-unit model (1000).

Input to the analogue recruitment sub-model is typically the pulse width (i.e. R=PW/PWnax,
where PWpax IS the pulse width that corresponds to maximum recruitment). Total “isometric”
muscle force is controlled by the number of recruited motor-units M and the force produced
by each recruited motor-unit. m is the total number of all motor-units in the model. The total
number of motor-units in the model, m, is chosen by the user to give the required force

resolution and does not correspond to the real number of motor-units.

In order to get a high resolution, the number of virtual motor-units m was chosen to be 1000,

so the number of recruited motor-units is: M =1000x R(t) , where R(t) varies between 0 and

1 (0<M <1000). The value of M will be rounded to the nearest integer and, hence, the

smallest detectable change in R is 0.001 (AM =1). A positive change in R(t) means more
motor-units are recruited and a negative change in R(t) means some, or even all, motor-units
will be de-recruited. If R(t) is decreased (i.e. AR(t)<O0 ) then a new M value will be

calculated and the motor-units that were recruited last will be de-recruited first. This means

that all motor-units of index ( j) higher than the new M will be fully de-recruited.
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Referring to Figure 3.2, every recruited motor-unit remembers the length at which it was
initially recruited for as long as it is still recruited. Once the motor-unit is de-recruited that
length will be erased from memory. The inputs to each motor-unit model are the binary

recruitment R, of the j™ motor-unit and the instantaneous CE length |, where R, can only

be 0 or 1 (either 0% or 100% recruitment). Each motor-unit model only re-calculates its

associated isometric force f . when R, changes from 0 to 1 and from 1 to 0. When R,

i

changes from 0 to 1, the j™ motor-unit is recruited, a new value of f_ . is calculated from

iso, j

the F-L relationship for the CE length at that particular time, and this is stored in the j"
motor-unit’s memory. When R, changes from 1 to 0, the j™ motor-unit is de-recruited and its

memory erased ( f._ . =0). Finally, the effective isometric force of the whole muscle is the

iso, j

sum of the individual forces f; i produced by all recruited motor-units.

In Herzog’s single motor-unit muscle model [18], the normalised isometric muscle force is

approximated by the positive values of a parabola as follows:

FL(1) =) 5 2770 11

f )2 +5.554(1_/1

)-1.777] (3.1)

opt opt

is0, max

This parabola has positive values for “normalised” CE length values of: 0.4<I__<1.6.

Where f. (I,) is the isometric muscle force in Newton [N] as a function of CE length (1)

at the moment of initial recruitment. I.. is the instantaneous CE length normalized with

. - |
respect to the optimal CE length, I .. = IC—E

opt

Herzog’s F-L sub-model [18] is relatively simple and, for this reason, it has been used in this
first implementation of the multiple motor-unit model. With the muscle now represented by

1000 virtual motor-units, the force produced by a single motor-unit f_ . will be one

iso, j

thousandth of the corresponding whole muscle isometric force if it was fully recruited at the

same length as follows:
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fiso(lo j) fisomax
fioos = 12 = B 12 777(l,,; /1
‘ 1000 1000 ’

)2 +5.554(, , /1,,,) ~1.777] (3.2)

opt opt

Where 1, is the CE length at the time of initial recruitment for the j" motor-unit. fieolloj)

is the isometric force of the whole muscle at the length when the j™ motor-unit was initially

recruited.

In equation 3.2, f_,(l, ;) is divided by (1000) because the multiple motor-unit model uses

1000 virtual motor-units. If a different number of virtual motor-units mis used then that
number should be used in the equation. The effective isometric muscle force is the summation
of the forces produced by all motor-units. Given that only the recruited motor-units produce
force, it is also equal to the summation of the forces produced by just the recruited motor-

units as follows:

1000 M

Eff .f, = fiso,l xR, + fiso,z xR, 4. + fiso,looo>< Riooo = Z fiso,j X Rj = Z fiso,j (3.3)
= j

j=1

The remainder of the original Herzog model (F-V relationship and passive elements) is not
dependent on the CE length at initial recruitment. For this reason, this was implemented for
the muscle as a whole rather than for the individual motor-units. Hence, this part of the model

implementation is similar to that of Herzog [18] but with the isometric force f(l,) of

Herzog’s single motor-unit model replaced by the effective isometric force Eff.f , the

calculation of which has been explained above.

As explained in Appendix 3, the author adapted Herzog’s single motor-unit model to simplify

its use in simulation. Replacing [Rx fiso (IO)] by Eff.f, in the derivation described below.

3.2.1. Derivation of F, for Herzog’s single motor-unit model

Using equations A3.3, A3.6 and A3.8 (see Appendix 3) and by substitution for v in the

formulas (of equation A3.3) and their conditions:
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i) First Equation:
F.—k,xAl, =Rx0=0

Fn =k, <Al

Fm _ b'fiso (IO)

L s K
+
P a{1+ kpj

i) Second Equation:

Fn=k,xv, for v

(3.4A)

F F
f . ()b+al[1+—> —om P _Ra.m
.so() [( kJ - kJ Rb.f(I,)+Ral1l kJ v, Rak
k

S S

) k F
b—{(1+kp] th—ksj b—(l kJ th+ki

E
W (Ra+(Fy —k, xAly)) =

S

F. —kp xAl =

K K
bR fi, (I,) —b(F, —k, xAl )+ (F, -k, XAImt).[l-i- k—p]xvmt + R-a-(1+k—ijth

S

Kk
b(R. f (I,) = F +K, xAImt)+{1+kp].(R.a+ Fo =k, x Al ) xV,,
F, = : :

(RatF,—k, xAl,,)

S

(3.4B)
for Fo _ DTilly) <v,, < P
(k, +k) a{1+tp] (k, +k)

iii) Third Equation:

) .
f ()b’ —a{(ﬂ kaxvmt —';“J
Fn—k, xAl =15R.f (l,)-05R ° :

1SO k .
1+ |xv, —i+b’
K, k
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S

2b’[R'fiso (Io)_(Fm - kp XAImt)]+ [R'(sfiso (Io) + a’)_z(Fm - kp XAlmt)](l-f-tijth
E o :
SR (1,) +2) - 2(F, —k, xAl,)]

S

F F b.f..(,)
m <th < m _ iso
(kp+ks) (kp+ks) ar.[l_i_ kpj

for

S

(3.4C)
iv) Fourth Equation:
F, —k, <Al =15R.f,(I,)
F. =k, <Al +15R.f (,)
F =k, xv, for o D" fi(lo) <V (3.4D)
(k, +k;) ( kpj
a'll+—

The replacement of [Rx f.,(I,)] by Eff.f., leads to equation 3.5 below for the rate of change

of total force F_ produced by the musculotendon complex.
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KoV for v, < K ka . bEﬁ'fE"
+
P Ra£1+pJ
kS
b(Eff.f. —F_ +k Al ) 1k"(R F —k.Al)
g, —F, + +|1+-*~ |(Ra+F, — v , ,
iso m p=tmt ks m p=tmt /Vmt Fm bEﬂ:.fiso Fm
1 for TR . <V, < T
F(R'a+Fm_kpXAlmt) ( P+ S) Ra[l_'_pJ ( p+ s)
20'[Eff T, — (F, —k Al )]+ [BEff .f, +Ra)—2(F, —k Al_)] 125 V., . .
Iso m P mi IS0 m P mi kS m F F b'Eﬁ . f
1 for <V, < m II<SO
F[(sEﬂ: 'fiso + Ra’) _Z(Fm - kpAImt)] (kp " kS) (kp " kS) Ra'(l+ kpj
Fm b'Eff . f,
KoVt for (K +k )— " <V,
P Ra'(1+ k"j (3.5)
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Then total musculotendon force is obtained by integration of F_ with respect to time.

dt (3.6)

In summary, Herzog’s F-L sub-model has been replaced by the effective isometric force

Eff .f,. Because the calculation of Eff.f,

IS0

is based on the length of each motor-unit when
that motor-unit was recruited (1, ), the multiple motor-unit model properly accounts for

continuously varying recruitment R(t) as would usually be seen in closed loop FES control.
Conversely, Herzog’s single motor-unit model does not take into account the time history of

muscle recruitment R(t) because the isometric force f,,(l,) is calculated using the length |,

1SO
at the moment of initial recruitment for the whole muscle (regardless of the dynamic

variations in recruitment during simulation).

3.3.  Effective CE force model

In the effective CE force (Eff.f..) model, each one of the muscle’s 1000 motor-units is

modelled using a separate Herzog single motor-unit model, including both the F-L and F-V
sub-models. This served two purposes, firstly it allowed the incorporation of additional
features that are best modelled using a multiple motor-unit approach (see chapters 4, 5 and 6)

and, secondly, it served to validate the Eff.f, model.

The effective CE force model is presented in Figure 3.3; the binary recruitment sub-model is

the same as that of the effective isometric force model. The isometric force f._ . of each

iso, j
recruited motor-unit is calculated separately using equation 3.2 in the same way as the
effective isometric force model and as shown in Figure 3.2. Herzog’s F-V sub-model is then
used for each motor-unit separately, Herzog’s muscle model is summarised in Appendix 3.

The force of a single motor-unit is calculated as follows:
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R, | Motor f;m:: Herzog's fcz::
| Unit-2 | F-V sub-model +
- X Eff fer
- -.. + E) !
F
- 0
- |
R_H .| Motor Jﬁ.—a:_u_ Herzog's f CEM
"| Unit-M F-V sub-model

Figure 3.3: Effective CE force model. Every recruited motor-unit is treated as a separate fully recruited CE for the purposes of calculating the

isometric and non-isometric forces for each motor-unit separately.
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fiso (Io,j )b + aVCE

b
for —f_(,.)=—<v.. <0
_VCE+b |so(0,])a CE
fees = Toe (Vee lo) = o (1o, )b’ +@'Vee b’
1'5fiso(|0j)_0-5 : fOI’ 0<VCE S fiso(IOj)_,
' 1 a

[
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156, (,,) for vee > fus(ly)2
' a

(3.7)

The total CE force is the sum of all forces ( f.. ;) produced by all recruited motor-units:

Bff foe = foga + foeo oot focw = fee, (3.8)

Non-recruited motor-units (of index higher than M) do not produce force. The simulation
protocols used in this Chapter and in the subsequent chapters include cycles of

stretch/shortening for the musculotendon complex. The equation for F_ (equation 3.5) cannot

be used with the Eff.f.. model because in this equation the passive elements are assumed to
apply to the muscle as a whole and cannot be split into multiple units, whereas the F-V sub-
model need to be applied separately for each motor-unit in the Eff.f.. model using the same
passive elements as in the single motor-unit model. In order to determine the present CE

length, CE velocity, and CE force at any instant during the simulation, an iterative approach is

used, this approach is summarised below.

Starting at (t =t,), the algorithm steps through the inputs | . (t) and R(t). At any given

time, t as the instantaneous forces of CE and SE (f.. and fy) have to be equal (see

Appendix 3), an iterative approach can be utilized to solve for the instantaneous lengths and
velocities of both CE and SE. This approach can be used to approximate the lengths of CE
and SE when simulating the responses to simulation protocols of a muscle model. When the
muscle becomes recruited, previous CE length information (of previous time-increment

(t—h), where h is a small time-increment) can be used in an iterative approach to determine
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the present CE length, CE velocity, and CE force at that instant. At each iteration CE force is
compared to the corresponding SE force for the CE and SE lengths specified. If the CE and SE
forces are not equal, then a new CE length is assigned and the iterative process is repeated.
These steps will be repeated until CE force and SE force are equal (within a small pre-

specified tolerance band). At this point, the next time step in the simulation is initiated by

reading in new values for | , and R.

The iterative approach is illustrated in the flow-chart shown in Figure 3.4, this flow-chart
represents the algorithm implemented in the Eff.f.. Matlab code. A detailed description of
the iterative approach for a recruited muscle with a single motor-unit (single CE) model is as
follows:

i) Attime (t=t,), first guess (i =1) for CE length: Assume: I, (t) =l (t—h).

i) Calculate the first guess for SE length using CE length of previous step:

lseq = T (1) =l (1) -
iii) Calculate f.. = foe(Vee,leg) of Herzog F-V sub-model (equation A3.3 in

ICE,i (t) - ICE (t - h)
n .

Appendix 3), using I.,(t) of previous step and: v ¢, (t) =

CE,i

iv) Since CE and SE are connected in series, then: f.. = .., solve for the second

guess for SE length 1, ,: foe = foe =kg xAlgz =kg x(Igz, —1g), |5 : tendon slack

SE,2 *

. f
length. The second guess for SE length is: I, = % +1g.
S

v) Compare | and | are they equal within pre-specified tolerance band

SE,L SE,27
(ISE,l ~ ISE,Z) ?

vi) If step (v) is not satisfied then repeat steps (ii) (iii) (iv) and (v) using the following
- ISE 1 + ISE 2
equation as the next guess for CE length: .. (t) =1, (t) - T .

vii) If step (v) is satisfied then use the last guess of CE length and CE velocity to
calculate CE force: foe=fz(Vee lee), and then total muscle force:
Fo =, <Al )+ fee.

viii)  Go to step (i) and do the first guess of CE length for next time increment. The

algorithm will stop at (t =T ).
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Assume: [ () =1 (t—h)

>

Calculate the first guess for SE length
lsgr =18} —lcp (2

v
Calculate fop = for (Veplog)
Ec,t:_.-' (- ‘FCE (t—h)

log =1cg(F). Veg = Vg 2} =

h

Next guess for CE length: Solve for the second guess for SE length
(Tsgi+sz ) _J=  p

log: (8) =1 (£) — ' f} lsga = &, +1s

v

No

(gSE__l X ISE,E) ")

Calculate total muscle force for current time-increment

F @ =, x Al ) + fo

Repeat the iterative approach ND

for next time-increment

Figure 3.4: Flow-chart of the iterative approach for a recruited muscle with single motor-unit
(single CE) model.
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Finally, the effective CE force (Eff.f..) of all recruited motor-units is used to calculate the

total muscle force F, in a similar way as in the single motor-unit model (equation A3.8 in

Appendix 3).

M
Fo=(k, xAL)+ Y foe = (K, x Al ) +Eff . fo (3.9)

j=1

In summary, this is another version of the multiple motor-unit model and has been called the
effective CE force model (Eff.f..). It is similar to the Eff.f,, model; the main difference is

that the F-V sub-model is applied on each recruited motor-unit separately. As will be

explained in Chapter 6, different fibre types can have different sub-models for the same

muscle property (e.g. F-V sub-model). This is an advantage for the Eff.f.. model over the

Eff . f,,, model, since the Eff.f.. model allows the incorporation of additional features using

the multiple motor-unit modelling approach.

3.4. Simulation results

Matlab codes were developed for simulating the responses to open-loop simulation protocols

of three muscle models:

e The Herzog model (treating the muscle as a single motor-unit);

e The Eff.f,, multiple motor-unit model;

o The Eff.f.. multiple motor-unit model.

Additionally, in all three cases, the CE length used for the F-L relationship can be either the

instantaneous length or the length at initial recruitment.

In the following sections; firstly, the two input protocols that have been used are defined.
Then simulation results are presented to compare the alternative muscle models and, in
particular, to demonstrate the potential errors introduced by: a) treating the muscle as a single
motor-unit; and b) using instantaneous CE length instead of CE length at initial recruitment.

92



3.4.1. Input protocols
In order to demonstrate the need to use a multiple motor-unit modelling approach when R
and .. vary with time, input protocols are required that involve changing both R and ..

Two suitable protocols that have previously been used by Herzog [18] were chosen as this
allowed comparison with his simulation results for validation purposes (single motor-unit

model only). Details of the two protocols are as follows:

Protocol-I (Figure 3.5):

(i) At t=0.0 seconds: Full isometric recruitment at the unique resting state (i.e. at
lee =1 =125 mm, Al _, =0);

(if) At t =1.0 seconds: Stretch of 10 mm at speed of 10mm/sec for one second;

(iii) Between t =2.0 and t=3.0: No change in Rnorin | ;

(iv) At t =3.0 seconds: Partial (50%) de-recruitment;

(v) At t =4.0 seconds: Shortening of 10 mm (to Al_, =0) at speed of 10mm/sec for one

second;

(vi) At t =5.0 seconds: Re-recruitment to 100% level.

Recruitment (R)

l.D J

0.5 4

0.0 —_——————— Time [sec]
10 20 30 40 50 60 7.0

Elongation [mm]

10 -
0.0 2 e Time [sec]

10 20 30 40 50 6D 70

Figure 3.5: Protocol-1. (From [18]).
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Protocol-Il (Figure 3.6):

(i) At t=0.0 seconds: Partial (50%) isometric recruitment at the unique resting state (i.e.
at I =1 =125 mm, Al_, =0);

(if) At t =1.0 seconds: Stretch of 10 mm at speed of 10mm/sec for one second,

(iii) Between t =2.0 and t =3.0: No change in R norin |, ;

(iv) At t =3.0 seconds: Full (100%) recruitment;

(v) At t =4.0 seconds: Shortening of 10 mm (to Al_, =0) at speed of 10mm/sec for one

second.

Recruitment (R)

1.0 -

0.5 ’
0.0 . > . . . . . Time [sec]
10 20 30 40 50 60 7.0

Elongation [mm)]

10 -
0.0 ,-"' o Time [sec]

10 20 30 40 50 80D 7.0

Figure 3.6: Protocol-11. (From [18]).

Although the two protocols have different recruitment cycles, both have the same

stretch/shortening cycle and both end at full recruitment and zero elongation.

Typical values were used for the muscle parameters as provided in [18]: f =45 N,

iso,max

ke =10 N/mm; k, =1 N/mm; I, =125 mm; |

rest

o =100 mm. The constants of the

(o]

Herzog model were: a=10 N; b=40 mm/sec; a'=10 N; b'=30 mm/sec. Anextra

study on the effect of CE resting length (,.,;) on force response is presented in Appendix 5.

When using these protocols, the author’s Matlab implementation of the standard Herzog

model produced the same force responses (shown in Figure 3.7) as those published by Herzog
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[18]. In both protocols, although the muscle was recruited instantaneously, the force rises
gradually to the full isometric force corresponding to that CE length. This is due to the
velocity dependence of the Hill model (F-V relationship of the CE in series with the SE).

Force Response

60 ¢ r r r r r r
- Protocol |

Protocol Il

50 A~k

40 i

Force [N]

w

o
1
!
!
1

—

20

10

0 1 2 3 4 5 6 7
Time [s]

Figure 3.7: Force responses of Herzog’s single motor-unit using protocol-I and protocol-I1.

3.4.2. Comparison of the Eff.f_, and the Eff.f.. models

Two versions of the multiple motor-unit model were implemented. The aim was to verify that,
for the simple Herzog model, only the F-L relationship needs to be applied in a multiple

motor-unit manner (as in the Eff.f_ implementation). Therefore, the Eff.f,, model was

compared with the Eff . f.. model.

Figure 3.8 and Figure 3.9 show the force responses for protocol-I and protocol-Il,
respectively. The force responses of the two models are identical. This suggests that, for the
simple Herzog model, only the F-L relationship needs to be applied in a multiple motor-unit

manner.
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Figure 3.8: Force responses of the Eff .f,, and the Eff.f.. models, protocol-I.
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Figure 3.9: Force responses of the Eff .f,, and the Eff.f.. models, protocol-IlI.
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3.4.3. Single versus multiple motor-unit

The simulation results using the Eff.f, version of the multiple motor-unit model versus the
single motor-unit model for protocol-I are plotted in Figure 3.10. When the two models are
compared, the force response for protocol-1 was observed to be virtually identical when using
the Eff.f,, model and the original single CE model over the first 5 seconds. This can be
explained by considering the recruitment profile (Figure 3.5). At time zero, full recruitment
occurs and the corresponding initial recruitment length is 125mm. Then recruitment drops to
50% at 3 seconds. Hence, for all active motor-units, the initial recruitment length remains the
same (125mm) throughout the first 5 seconds and, therefore, both models produce the same

force profile.

Force Response

60 ¢ r r r r r
Eff.fiso model (multiple motor-unit)
/{ e Single motor-unit model
50 \
40

20 \
\

Force [N]

10

0 1 2 3 4 5 6 7
Time [s]

Figure 3.10: Force responses of the Eff.f,., model and the single motor-unit model,

protocol-1.
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At 5 seconds the recruitment rises again to 100%. For the single motor-unit model the initial
length is still 1225mm. But for the multiple motor-unit-model, the CE is already contracted and
its length is less than 125mm which results in a higher isometric force for the remaining 50%
of motor-units. The difference is small in this protocol because the CE length is only slightly
different in the two cases. However, it should be emphasised that the single motor-unit model

incorrectly uses the length at 0 seconds throughout.

Conversely, with protocol-Il, after the rise to full recruitment at 3 seconds, the Eff.f., model

iso
produced a significantly different force profile (Figure 3.11). This is a direct result of the fact
that the initial CE recruitment length for the motor-units recruited at 3 seconds is not the same
as the length at 0 seconds which is used throughout by the single motor-unit model. This
clearly demonstrates the problem with using a single motor-unit model when both recruitment

and CE length are changing continuously as discussed earlier.

Force Response
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Figure 3.11: Force responses of the Eff.f,., model and the single motor-unit model,

protocol-I1.
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3.4.4. Initial CE length versus instantaneous CE length

This section compares the simulation results using the CE length at initial recruitment (l,) as

the input to the F-L relationship with those using instantaneous CE length (1) as the input.
This is done with both the single motor-unit model and the multiple motor-unit model (i.e. the
Eff .f,, model). The aim was to demonstrate the potential errors introduced by using the

instantaneous length which is common in FES control studies.

3.4.4.1. Comparison using single motor-unit model (standard Herzog model)

In this section, the responses of two models are compared:

e The single motor-unit model using length at initial recruitment (l,) in the F-L
relationship;

e The single motor-unit model using instantaneous length (l.; ) in the F-L relationship.

Referring to the two recruitment protocols (Figure 3.5 and Figure 3.6) and muscle parameters

given earlier in section 3.4.1, in both cases the muscle was at rest when recruitment started.
Therefore the CE length at initial recruitment was |, =125 mm and this was used throughout
the two protocols because the single motor-unit model effectively consists of only one large

motor-unit (single CE) which is recruited immediately. Conversely the instantaneous CE

length varies continuously throughout the two protocols.

Considering the first second of the force responses for the two protocols (Figure 3.12. and
Figure 3.13) and referring to the F-L relationship and the three-element Herzog model
(Figures A3.2 and A3.6 in Appendix 3), after initial recruitment but at constant
musculotendon length, the CE shortens and the tendon (SE) lengthens until the isometric CE

force (at vz =0) and the tendon force are equal. This shortening occurs quite quickly and
the force reaches its steady-state value. However, after CE shortening, the instantaneous

length is different from the initial length; which explains why the force responses for the two
cases are different during the first second despite the constant length of the musculotendon

complex (no stretch in the first second, i.e. Al =0). Similar differences in steady-state

forces can be observed throughout the two protocols.
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When the muscle is stretching (between 1 and 2 seconds), the stretch increases the force
response because of the parallel element (PE) stiffness and also because a new equilibrium
between the CE and the SE is established. This increase is less when using instantaneous
length (because longer CE lengths produce less isometric CE force on the descending limb of
the F-L relationship). Similarly, when the muscle shortens (between 4 and 5 seconds), the
decrease in force is less when using instantaneous length (because shorter CE lengths produce
more isometric CE force on the descending limb of the F-L relationship).

Force Response
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0 1 2 3 4 5 6 7
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Figure 3.12: Force responses of Herzog’s single motor-unit model, protocol-I: Using the

initial and the instantaneous lengths.
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Figure 3.13: Force responses of Herzog’s single motor-unit model, protocol-I1: Using the
initial and the instantaneous lengths.

3.4.4.2.  Comparison using multiple motor-unit model

In this section, the responses of two models are compared:

e The multiple motor-unit model using length at initial recruitment;

e The multiple motor-unit model using instantaneous length.

Referring to Figure 3.14 and Figure 3.15, the differences between the two multiple motor-unit
models (using alternative lengths) are similar to those seen between the corresponding single
motor-unit models (Figure 3.12 and Figure 3.13). These differences largely arise for the
reasons explained in the previous section. However, there are some additional noteworthy

observations that are discussed below.
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Figure 3.14: Force responses of the Eff . f., multiple motor-unit model, protocol-I: Using the

initial and the instantaneous lengths.
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Figure 3.15: Force responses of the Eff .f,., multiple motor-unit model, protocol-11: Using the

initial and the instantaneous lengths.
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When instantaneous length is used, the results are exactly the same as those for the single
motor-unit model when using instantaneous length (Figure 3.16 and Figure 3.17). This is
because, in this case, there is no fundamental difference between the single motor-unit model

and the multiple motor-unit model (they both use the same instantaneous length for the entire

muscle at all times).

However, when using initial recruitment length, the results differ from those for the single
motor-unit model because recruitment changes at different lengths (see Figure 3.6) and the
multiple motor-unit model properly accounts for this (Figure 3.16 and Figure 3.17). In
particular, the results diverge after recruitment rises from 50% to 100% at 5 seconds
(Protocol-1) and at 3 seconds (Protocol-Il) because the corresponding initial recruitment
length for the remaining 50% of motor-units is different from that when the first 50% of

motor-units were recruited at 0 seconds.
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Figure 3.16: Force responses of all models, protocol-I: Single motor-unit model using initial
length, single motor-unit model using instantaneous length, multiple motor-unit model using
initial length, and multiple motor-unit model using instantaneous length.
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In conclusion, when instantaneous length is used, the single motor-unit model and the
multiple motor-unit model will give the same results for any protocol. But when initial
recruitment length is used, the multiple motor-unit model produces different results if

different motor-units are recruited at different lengths.
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Figure 3.17: Force responses of all models, protocol-11: Single motor-unit model using initial
length, single motor-unit model using instantaneous length, multiple motor-unit model using

initial length, multiple motor-unit model using instantaneous length.

3.5.  Comparison of different resolution models

In order to demonstrate the effects of different resolution models on force response,

simulation results for 1, 10, 100 and 1000 motor-unit models are plotted and discussed here.

The simulation results for 1, 10, 100 and 1000 motor-unit models for protocol-1 are plotted in
Figure 3.18. When these models of different resolution are compared, the force responses for
protocol-1 were observed to be virtually identical over the first 5 seconds, during which time
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recruitment was 100% for the first three seconds and 50% between t=3.0 and t=5.0
seconds. At 5 seconds the recruitment rises again to 100%, the force responses of the multiple
motor-unit models are exactly the same. The number of recruited motor-units at 5 seconds is
different for different multiple motor-unit models, but the same force is produced since half of
the motor-units are recruited at the new length. For the single motor-unit model the initial
length is still 125mm. But for the multiple motor-unit-models (10, 100 and 1000 motor-units),
the CE is already contracted and its length is less than 125mm which results in a higher
isometric force for the remaining 50% of motor-units. The difference is small in this protocol

because the CE length is only slightly different in the two cases.
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Figures 3.18: Force responses of the 1, 10, 100 and 1000 motor-unit models, protocol-1.

Similarly, with protocol-I1l, after the rise to full recruitment at 3 seconds, the force responses
of the multiple motor-unit models are exactly the same (Figure 3.19). The number of recruited
motor-units at 3 seconds is different for different multiple motor-unit models, but the same
force is produced since half of the motor-units are recruited at the new length. After the rise to

full recruitment at 3 seconds, the multiple motor-unit models (10, 100 and 1000 motor-units)
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produced a significantly different force profile from the single motor-unit model. This is a
direct result of the fact that the initial CE recruitment length for the motor-units recruited at 3
seconds is not the same as the length at 0 seconds which is used throughout by the single

motor-unit model.
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Figures 3.19: Force responses of the 1, 10, 100 and 1000 motor-unit models, protocol-II.

These results suggest that, since each motor-unit is modelled separately in the multiple motor-
unit model; a higher resolution results in more accuracy. For protocol-I and protocol-Il, the
change in recruitment was 50% which can be detected by the three multiple motor-units used
here (10, 100 and 1000 motor-units). But for a small change in the recruitment level, for
example 0.1%, this will only be detected by the 1000 motor-unit model. If recruitment was
changed by 1%, this will be detected by the 1000 motor-unit model and also the 100 motor-
unit model, but not the 10 motor-unit model. The 10 motor-unit model will only detect
changes in recruitment level of 10% or more. However, a resolution of 0.1% seems to be

reasonably high and hence the number of virtual motor-units (m) was chosen as 1000 in the

effective isometric force (Eff .f,,) model and the effective CE force model ( Eff .f.;).
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3.6. Conclusion

The accuracy of the standard Herzog model can be enhanced by the multiple motor-unit
modelling approach using the CE length at initial recruitment. Because the calculation of

isometric force in the Eff.f., model is based on the length of each motor-unit when it was

iso

recruited, the multiple motor-unit model properly accounts for continuously varying

recruitment as would usually be seen in closed loop FES control.

Another version of the multiple motor-unit model, the Eff.f.. model, was developed to
allow for the incorporation of additional features that are best modelled using a multiple

motor-unit approach such as fatigue. It also served to validate the Eff.f.., model.

1SO

Open-loop simulation protocols were used to study three muscle models using both the

instantaneous CE length and the CE length at initial recruitment for the F-L relationship. The

three models studied were: The standard Herzog model, the Eff.f_, model, and the Eff.f.

IS0

Model.

The comparison between the Eff .f,,, model and the Eff.f.. model ascertained that the force

responses of the two models are identical. This suggests that, for the simple Herzog model,

only the F-L relationship needs to be applied in a multiple motor-unit manner.

When instantaneous length is used as the input to the F-L relationship, the single motor-unit
model and the multiple motor-unit model will give the same results for any protocol. But
when the length at initial recruitment is used as the input to the F-L relationship, the multiple
motor-unit model produces different results if different motor-units are recruited at different
lengths. These results demonstrate the potential errors introduced by using the instantaneous

length which is common in FES control studies.
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Chapter 4: The Multiple Motor-Unit Muscle Model with Fatigue

4.1. Introduction

The force response of electrically stimulated muscle decays nonlinearly as the muscle begins
to fatigue [3]. Eventually, the muscle is not able to produce any force [141]. The main cause
of fatigue in FES is the use of high stimulation frequency to produce smooth contractions [24,
142, 166]. Stimulation frequency has a great effect on muscle fatigue, higher frequency will
produce higher force but also results in a faster fatigue rate, and vice versa [3, 47, 167].
Muscle fatigue is one of the major limitations of FES applications [1, 12, 47].

As discussed in section 3.1, in closed loop FES control applications R will usually vary with
time. As almost all muscle models used in FES control studies treat the muscle as a one large
motor-unit, there can only be one value for the muscle’s fatigue condition despite the fact that
in reality different motor-units are recruited at different times and hence fatigue and recovery
cycles of different motor-units will be different. Moreover, different fibre-types have different
fatigue characteristics. The use of a fatigue sub-model incorporated into a single motor-unit
(SMU) model in a realistic scenario where R is changing continuously would result in an

over- or under-estimation of muscle force.

Therefore, this chapter addresses the problem of muscle modelling for continuously varying
R, hence different cycles of fatigue and recovery for different motor-units. A model for
fatigue and recovery is used in the open-loop simulation protocols of single and multiple

motor-unit (MMU) models. The results are discussed at the end of the chapter.

4.2.  Effective CE force model with fatigue

As discussed in section 2.2, skeletal muscles are composed of one or more of the three fibre-
types. Fatigue resistance depends on the percentage of each fibre-type in the muscle. For
simplicity and in order to demonstrate the potential errors introduced by ignoring fatigue or
by incorporating fatigue into a single motor-unit model, the virtual motor-units of the multiple
motor-unit model are assumed of the same fibre-type (i.e. the same fatigue sub-model is used

for all motor-units).
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Muscle fatigue can be experimentally measured and modelled as index of fatigue (IF) which
is defined as “force of the fatigued muscle normalised to force of the same un-fatigued muscle
under same conditions”. IF is incorporated in the muscle model by multiplying it with the

force produced by the muscle.

In the review of published fatigue sub-models (section 2.5.4), many fatigue sub-models are
available in the literature, one of the most cited fatigue sub-models was developed by Riener

[72]. This model was chosen because its inputs are stimulation frequency freq and

recruitment R . Hence, fatigue of partially recruited muscle can be calculated using this model

and the results of the single and the multiple motor-unit models can be compared.

Riener-1 fatigue sub-model [72] is a modified and simplified version, of the more complex,
Giat fatigue sub-model [143, 144, 145, 146], where in Riener fatigue sub-model, only one
equation is used for fatigue and recovery. This model was developed first in [55] as a general
approach then effects of recruitment and frequency were modelled and incorporated in [72].

Fatigue and/or recovery rate at any time is given by the following first-order equation:

freq X /1]) (41)

9 (1) (P ~IFOXIRx A <A1 {1 IF®)x A-[Rx A
dt T T

fat rec

2
A (freq) = &)2 for : freq <100Hz
100 + (freq)

2
A(freq) =O.4+{O.6x(%} } for : freq <100Hz

Recruitment of the whole muscle.

weq- Muscle activation due to stimulation frequency only without the effect of other

parameters (i.e. without yield, sag, effective length and effective frequency).

A: This term is used to model the effect of stimulation frequency on fatigue rate.

IF . : The minimum fitness of the muscle at which fatigue rate = 0 of the fully recruited
muscle (i.e. the minimum value for the index of fatigue).

T..: Time constant for fatigue, it can have largely different values for different muscles and

different fibre types.

T..: Time constant for recovery, estimated in [72] as (T,,, =30 [sec]) for all muscles.

rec
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Riener-1 fatigue sub-model (equation 4.1) can be used for the whole muscle, or for a single

motor-unit assuming full recruitment (R; =1) when recruited and full recovery at zero

recruitment (R; = 0) providing that appropriate values for model parameters are used.

IF.,, and T, are estimated experimentally, they can have largely different values for
different muscles depending of fibre-type. Parameters of Riener-1 fatigue sub-model are
given in [72] for five muscle groups (Mono-articular hip flexors, Mono-articular hip

extensors, Rectus femoris, Vasti, and Gastrocnemius) as: IF;, =0, T, =18 [sec], and

T,... =30 [sec] (T, value is for any muscle). These parameters will be used in equation 4.1.

At stimulation frequency ( freq=30 Hz), the fatigue curve of equation 4.1 for fully
recruited muscle (R =1) is shown in Figure 4.1. Note that the fatigue curve will reach zero
only when the stimulation frequency is maximum (i.e. freq =100 Hz) and full recruitment

(R=1). The recovery curve of equation 4.1 for fatigued muscle at zero recruitment (R =0)
is shown in Figure 4.2,

Fatigue Index IF(t) of the Single Motor-Unit Model

0.8

0.6 \

0.4

Fatigue Index (IF)

0.2

0 50 100 150 200 250 300
Time [sec]
Figure 4.1: Fatigue curve of Riener fatigue sub-model. Model parameter values were taken
from [72].
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Figure 4.2: Recovery curve of Riener fatigue sub-model. Model parameter values were taken
from [72].

The effective CE force model with fatigue sub-model is presented in Figure 4.3. The effective
CE force of the entire muscle, including fatigue and recovery of every motor unit, is the sum
of the individual motor unit forces as follows:

IF x Eff . foe = [IF, x fegy [+]IF, % feg, [+t |IFy % fee |

:i[le X fCE,j] 4.2

Finally, the effective CE force (Eff.f..) with fatigue of all recruited motor-units is used to

calculate the total muscle force F,, as follows:

F., :(kp xAImt)+i[le X fCE,j] (4.2A)

=1
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Figure 4.3: Fatigue sub-model incorporated into the effective CE force model Eff.f... Fatigue and recovery of every motor-unit is modelled

separately.
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4.3. Simulation results

Matlab codes were developed for simulating the responses to open-loop simulation protocols

of two muscle models:

e The Herzog model (treating the muscle as a single motor-unit);

e The Eff.f.. multiple motor-unit model.

In both cases, fatigue can be ignored or incorporated into the model.

In the following sections, firstly, the three input protocols that have been used are defined.
Then simulation results are presented to compare the alternative muscle models and, in
particular, to demonstrate the potential errors introduced by: a) ignoring fatigue; and b)
incorporating fatigue sub-model into single motor-unit model instead of the multiple motor-

unit model.

4.3.1. Input protocols

In order to demonstrate the need to use a multiple motor-unit modelling approach to model
fatigue when R varies with time, input protocols are required that involve changing R at
different times and for different periods of time. Three suitable protocols were chosen, details

of the three protocols are as follows:

Protocol-I11 (Figure 4.4):
(i) At t=0.0 seconds: Full isometric recruitment at the unique resting state (i.e. at
lee =l =125 mm, Al , =0), at IF=1 (fully recovered muscle);
(i) At t=t;: Partial (50%) de-recruitment;
(iii) At t =t,: Re-recruitment to 100% level.
t: The time at which muscle force is minimal because of fatigue (recruited motor-units
are fully fatigued).

t,: The time at which fatigued motor-units are fully recovered (after being not recruited

for some time that is enough for full recovery).
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Figure 4.4: Protocol-11I.

Protocol-1V (Figure 4.5):

(i) At t=0.0 seconds: Partial (50%) isometric recruitment at the unique resting state (i.e.

at lg =1, =125 mm, Al , =0), at IF=1 (i.e. fully recovered muscle);

(it) At t =t : Full (100%) recruitment.

Recruitment (R)

1.0 I

0.5
0.0 . Time

4

Figure 4.5: Protocol-1V.

Protocol-V (Figure 4.6):

(i) At t=0.0 seconds: Partial (50%) isometric recruitment at the unique resting state (i.e.

at le =1, =125 mm, Al , =0), at IF=1 (fully recovered muscle);

rest

(if) At t =t,: Constant rate of recruitment up to full (100%) recruitment, at recruitment
rate = 0.1667% per second.
ty: The time at which recruited motor-units start to fatigue. In Riener fatigue sub-model it
is assumed that: t; =0, (in Hawkins fatigue sub-model: t, > 0 for all fibre types).
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Figure 4.6: Protocol-V.

In protocol-V; R starts at 50% isometric recruitment. Once fatigue starts R is increased to
compensate for the force loss (due to fatigue) by recruiting more motor-units. This can be
considered as mimicking a closed-loop FES control realistic scenario, where the FES
controller will increase stimulation input in order to maintain the output muscle force at the

required level thus compensating for fatigue by recruiting more un-fatigued motor-units.

Isometric contractions are applied in all protocols, there is no stretch nor shortening since this
has no effect on Riener-1 fatigue sub-model (equation 4.1). For simplicity, constant

recruitment level at the unique resting state (I, =1 Al =0) is assumed in all protocols.

rest
However, in a realistic scenarios FES is usually intermittent. The muscle is able to recover
and restore some of its capacity while FES is off. Intermittent FES may delay fatigue but will

not prevent it.

Rigid tendon is assumed in all protocols (i.e. kg =), and hence Al _, =Al.. =0. This

assumption was made so that the CE and SE lengths do not change when CE force changes
because of changes in recruitment level R and hence different |, for different motor-units in
the multiple motor-unit model (if the tendon is not rigid then CE length will be shorter after

recruitment because of tendon compliance). In this way all differences in force responses of

different models are due to fatigue only.
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4.3.2. Comparison of the single and multiple motor-unit models without fatigue

The simulation results using the multiple motor-unit model versus the single motor-unit
model for protocol-I11, protocol-1V and protocol-V are plotted in Figure 4.7, Figure 4.8 and
Figure 4.9, respectively. The aim was to confirm that, for the chosen protocols, the force
responses of the two models (SMU model and MMU model) are identical. The force
responses of the two models in protocol-111, protocol-1V and protocol V are calculated using
the length at the same initial length (1,). In all protocols, all or part of motor-units is recruited
first and then the rest is recruited at different time. The isometric forces of all motor-units are
all calculated at the same initial length in the Herzog F-L sub-model since the tendon is
assumed rigid and the CE length is the same at all times in all protocols. For this reason the

two force responses are identical.

Force Responses of the Single and Multiple Motor-Unit Models
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Figure 4.7: Identical force responses of the single and multiple motor-unit models without

fatigue sub-model, protocol-IiI.
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Figure 4.8: Identical force responses of the single and multiple motor-unit models without

fatigue sub-model, protocol-1V.
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Figure 4.9: Identical force responses of the single and multiple motor-unit models without
fatigue sub-model, protocol-V.
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4.3.3. Comparison of models with and without fatigue

This section compares the simulation results using the same model with and without fatigue.
This is done with both the single motor-unit model and the multiple motor-unit model. The
aim was to demonstrate the potential errors introduced by ignoring fatigue which is quite

common in FES control studies.

4.3.3.1. Comparison using single motor-unit model (standard Herzog model)
In this section, the responses of two models are compared:

e The single motor-unit model without fatigue;
e The single motor-unit model with fatigue (using Riener fatigue sub-model for whole

muscle with variable recruitment).

Indices of fatigue are calculated using equation 4.1. For all next simulations, indices of fatigue

are plotted for comparison with corresponding force responses.

Referring to the recruitment protocol-111, the fatigue index, and the force response of the
single motor-unit model with fatigue (Figure 4.4, Figure 4.10 and Figure 4.11), in the first 100
seconds the muscle force decreases exponentially until the partial de-recruitment at 100
seconds. During the partial recruitment (between 100 and 200 seconds) the index of fatigue
increases causing the force to increase, which is unrealistic (see section 2.2). The recruited
part of the muscle is already fully fatigued and cannot make any recovery while still recruited,
and only the non-recruited part can make recovery. The full recruitment on 200 seconds

increases the force instantly and starts to decay again because of fatigue.

Referring to the recruitment protocol-1V, the fatigue index, and the force response of the
single motor-unit model with fatigue (Figure 4.5, Figure 4.12 and Figure 4.13), for the first
150 seconds the fatigue rate of the 50% recruited muscle is less than the fatigue rate when the
muscle is fully recruited (in protocol-I11). The fatigue rate in Figure 4.13 when the muscle is
50% recruited is slow when compared with the fully recruited muscle in the first 100 seconds
of Figure 4.11. Again, this behaviour is also unrealistic.

Referring to the recruitment protocol-V, the fatigue index, and the force response of the single
motor-unit model with fatigue (Figure 4.6, Figure 4.14 and Figure 4.15), the force response
was roughly maintained at constant level. The gradual increase in R recruits more fresh
motor-units to compensate for the decrease in the force produced by those recruited motor-

units because of fatigue.
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Figure 4.10: Index of fatigue for the single motor-unit model, protocol-IIl.
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Figure 4.11: Force responses of the single-motor-unit model, protocol-I11: ignoring and
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Figure 4.12: Index of fatigue for the single motor-unit model, protocol-IV.
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Figure 4.13: Force responses of the single-motor-unit model, protocol-IV: ignoring and

including fatigue sub-model.

120



Fatigue Index IF(t) of the Single Motor-Unit Model

1
0.8 \
E-_L\ \
C
= 'H
q'é_) R
£ 04
0.2
0 ! ! ! ! ! I
0 50 100 150 200 250 300
Time [sec]

Figure 4.14: Index of fatigue for the single motor-unit model, protocol-V.
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Figure 4.15: Force responses of the single-motor-unit model, protocol-V: ignoring and

including fatigue sub-model.
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4.3.3.2.  Comparison using the multiple motor-unit model
In this section, the responses of two models are compared:

e The multiple motor-unit model without fatigue;
e The multiple motor-unit model with fatigue (using separate Riener fatigue sub-model

with every motor-unit).

For each motor-unit, the fatigue curve when recruited and the recovery curve when not
recruited are similar to a fully recruited muscle as described earlier in this chapter (Figure 4.1
and Figure 4.2). However, for comparison purposes, the average fatigue index of the MMU

model for all of the 1000 motor units is shown for each protocol (equals IF of SMU model).

Referring to the recruitment protocol-Ill, the average index of fatigue, and the force response
of the MMU model with fatigue (Figure 4.4, Figure 4.16 and Figure 4.17), in the first 100
seconds the muscle force decreases exponentially until the partial de-recruitment at 100
seconds. During the partial recruitment (between 100 and 200 seconds) the force response of
the MMU model with fatigue is virtually constant because the recruited part of the muscle is
already fatigued at its lowest level; the other non-recruited part of the muscle is already
making recovery. The full recruitment on 200 seconds increases the force at high level
because the newly recruited motor-units have been fully recovered, and the fatigue cycle
starts again for the newly recruited motor-units. Figure 4.17 shows the force responses of the

SMU and MMU models with and without fatigue for protocol-I1I.

Referring to the recruitment protocol-1V, the average index of fatigue, and the force response
of the MMU model with fatigue (Figure 4.5, Figure 4.18 and Figure 4.19), for the first 150
seconds the fatigue rate of the 50% recruited muscle is virtually the same as that of the fully
recruited muscle (in protocol-I1l). In Figures 4.17 and 4.19, both forces gradually fatigue to a
value just below 50% of its value at start of protocol, but average indexes of fatigue for the
MMU model are different as shown in Figures 4.16 and 4.18. Figure 4.19 shows the force
responses of the SMU and MMU models with and without fatigue for protocol-1V.

Referring to the recruitment protocol-V, the average index of fatigue, and the force response
of the MMU model with fatigue (Figure 4.6, Figure 4.20 and Figure 4.21), the force response
decreases exponentially in the first 50 seconds then starts to increase at about constant rate;
this is largely different than the force response of the single motor-unit model. Figure 4.21
shows the force responses of the SMU and MMU models with and without fatigue for

protocol-V.
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Figure 4.16: Average index of fatigue for the multiple motor-unit model, protocol-I1I.
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Figure 4.17: Force responses of the single and multiple motor-unit models, protocol-I1I:

ignoring and including fatigue sub-model.
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Figure 4.18: Average index of fatigue for the multiple motor-unit model, protocol-I1V.
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Figure 4.19: Force responses of the single and multiple motor-unit models, protocol-1V:
ignoring and including fatigue sub-model.
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Figure 4.20: Average index of fatigue for the multiple motor-unit model, protocol-V.
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Figure 4.21: Force responses of the single and multiple motor-unit models, protocol-V:

ignoring and including fatigue sub-model.

125



4.4, Conclusion

The fatigue sub-model was incorporated into the multiple motor-unit muscle model, further
improving the way in which the recruitment-history is accounted for. The accuracy of the
standard Herzog model can be enhanced by incorporation of the fatigue sub-model into the
multiple motor-unit model. In the MMU model with fatigue, each motor-unit has its own
fatigue and recovery cycles independent from other motor-units. This also takes account of
the fact that muscle fatigue is highly affected by fibre-type and time elapsed since onset of
recruitment. Such property should be modelled for each motor-unit separately, which can be
achieved by using the multiple motor-unit modelling approach. The multiple motor-unit
model is able to properly account for continuously varying recruitment as would usually be
seen in closed loop FES control.

Effect of recruitment on fatigue and recovery in Riener fatigue sub-model (when incorporated
into the SMU model) contradicts the empirical experiments. Empirical experiments show that
partial recruitment increases muscle capacity by allowing non-recruited motor-units to
recover, but recruited motor-units cannot recover when they are still recruited (electrically
stimulated by FES).

Open-loop simulation protocols were used in this chapter to study two muscle models (SMU

and MMU models) with and without fatigue. The two models studied were: The standard

Herzog model and the Eff.f.. Model.

When fatigue is incorporated using Riener fatigue sub-model, the multiple motor-unit model
produces different results (than those of the single motor-unit model) for different levels of
recruitment and when different motor-units are recruited at different times because every

motor-unit is modelled separately in the multiple motor-unit model with fatigue.

These results demonstrate the potential errors introduced by ignoring fatigue or by using
single motor-unit (even if the fatigue sub-model is incorporated into the model) which are
quite common in FES control studies. By correctly modelling the effects of continuously
changing recruitment, by means of the multiple motor-unit model with fatigue sub-model, it is

hoped that better FES controllers can be designed.
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Chapter 5: The Multiple Motor-Unit Model with Force Enhancement & Depression

5.1. Introduction

Skeletal muscle force production is history dependent, yet this aspect of muscle modelling has
received little attention in FES control studies [13]. Force depression following shortening
and force enhancement following stretch can reach values of up to almost 50% of the
corresponding isometric muscle force [13]. Therefore, if not properly accounted for during the
design, it is reasonable to assume that this effect may adversely influence the performance of
FES controllers. To the best of the author’s knowledge, this length-history dependence has yet

to be incorporated in muscle models in the context of FES control.

As discussed in section 2.5.5, force enhancement/depression is affected by magnitude of
stretch/shortening, length at initial recruitment, recruitment level, velocity, and stimulation
frequency during stretch/shortening, but is mainly affected by magnitude of stretch/shortening
[13, 150, 151, 152, 153, 154, 155, 156, 157].

As discussed in section 3.1, it is reasonable to assume that the recruitment level (R) changes
continuously. Similarly, in closed loop FES control applications R will usually vary with
time. However, as almost all muscle models used in FES control studies treat the muscle as a
one large motor-unit, there can only be one value for the force enhancement or depression
despite the fact that in reality different motor-units are recruited at different lengths and hence
magnitude of stretch/shortening will be different. The use of a force enhancement &
depression sub-model incorporated into a single motor-unit (SMU) model in a realistic

scenario where R and |, are changing continuously would result in an over- or under-

estimation of force enhancement and depression.

Therefore, this chapter addresses the problem of muscle modelling for continuously varying

R and | , hence different initial lengths and magnitude of stretch and/or shortening for

different motor-units. For simplicity, the focus in this chapter will be on the steady-state force
enhancement and depression after end of stretch and/or shortening (i.e. effects of force
enhancement/depression during stretch/shortening are ignored here).
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As discussed in section 2.5.5, only a few models for force enhancement & depression are
available in the literature, and they do not include all the length-history properties as observed
experimentally, see experimental data in Appendix 2. A standard and new complex sub-model
for force enhancement & depression was developed during this research that incorporates
most of the length-history properties (more complex than Hawkins and Forcinito IE & ID
sub-models). The empirical data used to develop this sub-model were collected from the
literature. Details of the standard force enhancement & depression sub-model are given in
Chapter 6.

A simple model for force enhancement & depression that models the steady-state effects of
force enhancement/depression following stretch/shortening is used in the open-loop
simulation protocols of single and multiple motor-units models. The results are discussed at

the end of the chapter.

5.2.  Effective CE force (Eff . f..) model with force enhancement & depression

The effective CE force model (developed in Chapter 3) is extended by incorporating the
model of force enhancement & depression proposed by Forcinito and colleagues [156, 157]
for a fully recruited muscle treated as a single motor-unit. Based on their model, an elastic
rack has been included in parallel with each motor-unit (Figure 5.1). When a motor-unit is
recruited, its elastic rack is engaged and thus, if there is any change in the CE length after

recruitment of this motor-unit, then the length of the elastic rack (I, ;) will also change by

the same magnitude. The passive force produced by that motor-unit will be a function of the

change in the elastic rack length Al Instantaneous length of the elastic rack (I_,) is the

ER,j "
same as the instantaneous CE length (i.e.l; =1.z). Force enhancement or depression for a

single motor-unit of index (j) is given by:

(F.11,), =| =2 x Al (5.1)
IER,j,o

E: is the modulus of elasticity of the elastic rack.

A: is the cross-sectional area of the elastic rack.
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er.j.o - IS the elastic rack length at initial recruitment (normalised with respectto 1,,).
Al : is the total displacement of the elastic rack after end of stretch/shortening (normalised
with respect to I,,).

IE: Index of force enhancement following stretch of recruited muscle.

ID: Index of force depression following shortening of recruited muscle.

'il.ER

A
k

Motor
Unit

Figure 5.1: Motor-unit with parallel elastic rack. Force enhancement & depression is

modelled by an elastic rack in parallel with each motor-unit.

Forcinito elastic rack models only the steady-state force enhancement of depression. The
complete Forcinito IE & ID sub-model includes also the transient response during

stretch/shortening, Forcinito IE & ID sub-model is summarised in Appendix 8.

Force enhancement following stretch is modelled by the index of enhancement IE. Force
depression following shortening is modelled by the index of depression ID, for topology of
different models see appendix 1. The index of enhancement & depression IE & ID is
represented by:

IE=1+| A xAlgg ;| Al >0 (5.2)
ER,j,0

ID:1+(I_E'A XAI_ER'J} , Al <0 (5.3)
ER,j,0
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Both of IE and ID have the same equation but (Al, ) will be positive in case of stretch and

negative in case of shortening.

The effective CE force model with force enhancement & depression is presented in Figure
5.2. The effective CE force of the entire muscle, including force enhancement and depression

for each motor unit recruited, is the sum of the individual motor unit forces as follows:

Eff e +(fo/ Ta) = fees + (Fou/ Ta )|+ [ fego + (Fan/ Ta ) [+t [ Teom + (Font 7 To)]
M
:Z[fCE,j +(fe,j / fd,j)]
j=1

(5.4)

Finally, the effective CE force (Eff.f..) with force enhancement & depression of all

recruited motor-units is used to calculate the total muscle force F,, as follows:

M

Fm :(kp XAImt)+Z[fCE,j +(fe,j / fd,j)] (5.4A)

=
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Figure 5.2: Force enhancement & depression incorporated into the effective CE force model.
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5.3.  Simulation results

Matlab codes were developed for simulating the responses to open-loop simulation protocols

of two muscle models:

e The Herzog model (treating the muscle as a single motor-unit);

e The Eff.f.. multiple motor-unit model.

In both cases, the force enhancement & depression can be neglected or incorporated into the

model.

In the following sections, firstly, the two input protocols that have been used are defined.
Then simulation results are presented to compare the alternative muscle models and, in
particular, to demonstrate the potential errors introduced by: a) ignoring the force
enhancement & depression; and b) incorporating force enhancement & depression sub-model
into a single motor-unit model instead of multiple motor-unit (MMU) model.

5.3.1. Input protocols

In order to demonstrate the need to use a multiple motor-unit modelling approach to model
force enhancement & depression when R and I.. vary with time, input protocols are
required that involve changing R, I.., and magnitude of stretch/shortening. Two suitable

protocols were chosen, details of which are as follows:

Protocol-VI (Figure 5.3):

(i) At t=0.0 seconds: Partial (50%) isometric recruitment at the unique resting state

(e.at |, =1, =125 mm, Al_, =0);

(if) At t=1.0 seconds: Shortening of 50 mm (to Al , =-50mm) at speed of 25mm/sec
for two seconds;

(iii) Between t =3.0 and t =4.0: No changeinR norin |, .

(iv) At t = 4.0 seconds: Full (100%) recruitment;

(v) Between t =4.0 and t =5.0: No changeinRnorin I, .
(vi) At t=5.0 seconds: Stretch of 50 mm (to Al , =0) at speed of 25mm/sec for two

seconds.
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Figure 5.3: Protocol-VI.

Protocol-VII (Figure 5.4):

(i) At t=0.0 seconds: Partial (50%) isometric recruitment at Al _, =-50mm;

(if) At t=1.0 seconds: Stretch of 50 mm (to Al , =0) at speed of 25mm/sec for two

seconds;

(iii) Between t =3.0 and t =4.0: No changeinRnorin |, .

(iv) At t = 4.0 seconds: Full (100%) recruitment;

(v) Between t =4.0 and t =5.0: No changeinRnorin |, .
(vi) At t =5.0 seconds: Shortening of 50 mm (to Al,, =-50mm) at speed of 25mm/sec

for two seconds.
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Figure 5.4: Protocol-VII.

Although the two protocols have different stretch/shortening cycles, both have the same
recruitment cycle and both end at full recruitment. Another important point, since the length
at initial recruitment is used, the corresponding isometric forces of the start and end CE
lengths of both protocols are the same in the Herzog force-length sub-model (i.e.

fieo (0.751,,) = T, (1.251,,)), hence there is no effect of the initial length in these two

protocols (the problem addressed in chapter 3) and no difference (in the steady-state) if the
instantaneous or the initial length was used, see Figure 5.5 (the transient-state is different in
this case). This means any difference in the simulation results is only because of the force

enhancement & depression sub-model.
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Figure 5.5: The corresponding isometric forces of the start and end CE lengths of protocol-VI

and protocol-VII are equal in Herzog F-L sub-model. f (0.75l,,) = f,,(1.25l,,,) -

Iso IS0

The typical values for the muscle parameters used in Chapter 3 are used in this chapter as
well. The parameters of force enhancement & depression sub-model (equation 5.1) were
roughly estimated using the experimental data in Appendix 2. However, the aim was not to
make an exact estimation for the parameters of equation 5.1, the aim was to demonstrate the
potential errors introduced by ignoring the force enhancement & depression or using the

single motor-unit model instead of the multiple motor-unit model.

Rigid tendon is assumed in both protocols (i.e. kg =o0). The rigid tendon is assumed so that
the CE length does not change when CE force changes because of changes in recruitment
level R and hence different | for different motor-units in the multiple motor-unit model.
Based on this assumption: Al , = Al.., i.e. changes in CE length are always the same as the

changes in the length of the musculotendon complex (the whole muscle lenght). In this way

all differences in force response are due to force enhancement and/or depression only. It is

also assumed that PE force (f.,.) is zero for lengths less than |, (i.e.

fPE :0 for ICE SIrest)'
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5.3.2. Comparison of the single and multiple motor-unit models without force

enhancement & depression

Simulation results using the multiple motor-unit model versus the single motor-unit model for
protocol-V1 and protocol-VII are plotted in Figure 5.6 and Figure 5.7. The aim was to confirm
that, for the chosen protocols, the force responses of the two models are identical. The force
responses of the two models, in protocol-VI and protocol VII, are calculated using the length

at initial recruitment (1, ). In both protocols, half of motor-units is recruited at (1, =0.75l,,,)
and the other half is recruited at (I, =1.25l,,). The corresponding isometric forces of both

initial lengths are the same in the Herzog F-L sub-model since f,,(0.75l,,) = f,,(1.25I

Iso IS0

opt) as

illustrated in Figure 5.5. For this reason the two force responses are identical.

Force Responses of the Single and Multiple Motor-Unit Models
i S A A S A A S

45 I
40 1o
35

. [

25

Force [N]

SMU model without force enh & dep.
MMU model without force enh & dep. ||

0 1 2 3 4 5 6 7 8 9
Time [s]

Figure 5.6: Identical force responses of the single and multiple motor-unit models without

force enhancement & depression sub-model, protocol-VI.
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Figure 5.7: Identical force responses of the single and multiple motor-unit models without

force enhancement & depression sub-model, protocol-VI1.

5.3.3. Comparison of models with and without force enhancement & depression

This section compares the simulation results using the same model with and without force
enhancement & depression. This is done with both the single motor-unit model and the
multiple motor-unit model. The aim was to demonstrate the potential errors introduced by

ignoring force enhancement & depression which is common in FES control studies.

5.3.3.1.  Comparison using single motor-unit model (standard Herzog model)
In this section, the responses of two models are compared:

e The single motor-unit model without force enhancement & depression;
e The single motor-unit model with force enhancement & depression (using one single

elastic rack).
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Referring to the two recruitment protocols; protocol-VI (Figure 5.3) and protocol-VII (Figure
5.4), the force responses of the SMU models (Figure 5.8 and Figure 5.9) and the force
enhancement & depression sub-model (equations 5.2 and 5.3), in both cases the isometric
forces corresponding to the CE length at initial recruitment (at O seconds) are equal. Although
the initial CE lengths, in the two protocols, are on different limbs of the F-L curve when
recruitment started, the corresponding isometric forces are equal, see Figure 5.5. The CE
length at initial recruitment is used throughout the two protocols since the single motor-unit
model effectively consists of only one single CE and can have only one initial length as long

as it is still recruited at any level of recruitment (details are illustrated in Appendix 3).

In Figure 5.8, when the muscle is shortening (between 1 and 3 seconds) the shortening
decreases the force response of the model with elastic rack and continues to decrease until the
end of shortening while the force response of the other model is constant. After end of
shortening, the elastic rack is still engaged and thus the passive force which was produced
during shortening will not disappear after end of shortening since the elastic rack is still
engaged. After the rise to full recruitment at 4 seconds, the force responses of both models
increase with the same amount since the elastic rack is not affected by recruitment variations
when CE length in constant. When the muscle is stretching (between 5 and 7 seconds), the
force response of the model with the elastic rack starts to increase until the force responses of
both models are equal at the end of stretch. The elastic rack is still engaged but because it
stretches back to the initial length when it was first engaged, the passive force produced by
the elastic rack continues to decrease until it disappears at 7 seconds (at the length it was

initially engaged at).

Conversely, with protocol-VII, the elastic rack increases the force response during stretch
(between 1 and 3 seconds) and retains it (Figure 5.9). When the muscle is shortening (between
5 and 7 seconds), the elastic rack starts to lose its force until the force responses of both

models are equal at the end of shortening.
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Figure 5.9: Force response of the single-motor-unit model, protocol-VII: ignoring and
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5.3.3.2.  Comparison using the multiple motor-unit model
In this section, the responses of two models are compared:

e The multiple motor-unit model without force enhancement & depression;
e The multiple motor-unit model with force enhancement & depression (using 1000

elastic racks).

Referring to the force responses of the MMU model with and without force enhancement &
depression sub-model (Figure 5.10 and Figure 5.11), the differences between the two multiple
motor-unit models (with and without elastic racks) are similar to those seen between the
corresponding single motor-unit models (Figure 5.8 and Figure 5.9). These differences largely
arise for the reasons explained in the previous section. However, there are some additional

noteworthy observations that are discussed below.

Force Responses of the Single and Multiple Motor-Unit Models
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Figure 5.10: Force responses of all models, protocol-VI: SMU model without force
enhancement & depression sub-model, SMU model with force enhancement & depression
sub-model, MMU model without force enhancement & depression sub-model, and MMU

model with force enhancement & depression sub-model.
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Figure 5.11: Force responses of all models, protocol-VII: SMU model without force
enhancement & depression sub-model, SMU model with force enhancement & depression
sub-model, MMU model without force enhancement & depression sub-model, and MMU

model with force enhancement & depression sub-model.

When force enhancement & depression sub-model is ignored, the results are similar to those
for the single motor-unit model when ignoring force enhancement & depression sub-model,
all models are plotted together in Figures 5.10 and 5.11. This is because, for these particular
protocols, the isometric forces of all initial CE lengths for both protocols are equal (as
discussed earlier). The rise to full recruitment at 4 seconds, in both protocols, was on a CE
length on the other limb of the F-L curve but the corresponding isometric force is the same as

that corresponding to the CE length at 0 seconds.

However, when including force enhancement & depression, the results differ from those for
the single motor-unit model because recruitment changes at different lengths and hence the
elastic racks of the multiple motor-unit model are engaged at different lengths and different
magnitudes of stretch or shortening (see Figure 5.3 and Figure 5.4) and the multiple motor-
unit model is able to properly account for varying recruitment level at different CE lengths
(Figure 5.10 and Figure 5.11).
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Referring to the multiple motor-unit model with force enhancement & depression sub-model
(Figure 5.10), when the muscle is shortening (between 1 and 3 seconds) 50% of the elastic
racks are engaged and the shortening decreases the force response of this model (MMU model
with elastic racks) and continue to decrease until the end of shortening while the force
response of the other model (MMU model without elastic racks) is constant. After end of
shortening, 50% of the elastic racks are still engaged and thus the passive forces produced
during shortening will not disappear. After the rise to full recruitment at 4 seconds, the force
responses of both models (MMU models with and without elastic racks) increase by the same
magnitude since the elastic racks are not affected by the increase in recruitment level. The rise
of recruitment to 100% at 4 seconds will also engage the remaining 50% of elastic racks at
different length (for the MMU model with elastic racks). When the muscle is stretching

(between 5 and 7 seconds), the passive forces of the elastic racks engaged first (at Iz =1,)

start to decrease because they stretch back to the initial length where they were first engaged,

and the passive forces of the lately engaged elastic racks start to increase until the end of

stretch (at 1. =1,.,). At the end of the protocol, the force magnitudes of the two MMU

models are different because there are 50% of elastic racks still engaged and produce passive
force in the MMU model with elastic racks. The other 50% of elastic racks are still engaged

but at the same initial length where they were engaged first, and hence will produce no force.

In Figure 5.11, force enhancement and force depression are modelled in a similar way as
described above. Note that the amount of force enhancement or depression produced at
shorter initial length is more than that produced at longer initial length (Figure 5.10 and
Figure 5.11), this is because force enhancement or depression is divided by the initial length

(I .0 ) in equations 5.2 and 5.3,

The single and the multiple motor-unit models without force enhancement & depression are
plotted together in the same figure, but their force responses are exactly the same for the two

protocols (Figure 5.10 and Figure 5.11).

5.4. Conclusion

The force enhancement & depression sub-model was incorporated into the multiple motor-
unit muscle model, further improving the way in which the recruitment-history and length-

history are accounted for. The accuracy of the standard Herzog model can be enhanced by the
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force enhancement & depression sub-model incorporated into the multiple motor-unit model.
Since the force enhancement & depression sub-model is based on the magnitude of stretch
and/or shortening and the length of each motor-unit when it was initially recruited, the
multiple motor-unit model is able to properly account for continuously varying recruitment

levels at different CE lengths as would usually be seen in closed loop FES control.

Open-loop simulation protocols were used to study two muscle models (SMU and MMU
models) with and without force enhancement & depression sub-model. The two models which

have been studied in this chapter are the standard Herzog model (with SMU) and the Eff.f..
Model.

When force enhancement and/or depression are ignored in the muscle model, the single
motor-unit model and the multiple motor-unit model do not show any force enhancement or
depression because this is not modelled in the standard Hill model (or any other standard Hill-
based model). When force enhancement & depression are modelled using Forcinito elastic
rack, the multiple motor-unit model produces different results if different motor-units are
recruited at different lengths because the elastic racks engage at different lengths and
stretch/shorten at different magnitudes.

These results demonstrate the potential errors introduced by ignoring the force enhancement
& depression sub-model or by using the single motor-unit model (even if the force
enhancement & depression sub-model is incorporated) which are common in muscle models
used in FES control studies. By correctly modelling the effects of continuously changing
recruitment levels and CE length (during dynamic contractions), by means of the multiple
motor-unit model with force enhancement & depression sub-model, it is hoped that better
FES controllers can be designed.
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Chapter 6: Towards a General Model

6.1. Introduction

A general model, capable of representing the alternative sub-models (for each muscle
property) presented in section 2.5 and the inter-connection of these sub-models (model
topology), could be used to represent any of the alternative muscle models presented in
Chapter 2 or to build new models at different levels of complexity. Such a “General Model”
could be used to study the effect of muscle model complexity on FES controller design so that
appropriate trade-offs between model complexity and model accuracy could be determined.
Therefore a “General Model” that can be used to represent all relevant models from the

literature was developed.

The topology of the “General Model” is presented in section 6.2 showing the arrangement of
sub-models and the interlinking model variables, i.e. the inputs and outputs of the various
sub-models. The arrangement of the passive elements is also presented. Section 6.3 presents
the proposed general forms for the sub-models required in muscle modelling for FES
controller design.

6.2.  Topology of the “General Model”

A standard topology for the “General Model” is presented here with a description of how it
can be adapted to represent the topologies of other models presented in the literature. The

topologies of some of the important published muscle models are presented in Appendix 1.

The full topology of the “General Model” is too large to be represented in one diagram.
Therefore it is broken into parts and represented in separate figures, which are discussed

under the following sub-headings.

6.2.1 Recruitment model topology

Figure 6.1 shows the FES recruitment model, which assumes stimulation frequency is

constant and pulse width (or pulse amplitude) determines recruitment R,, which can be
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different for different fibre-types (i indicating the fibre type). A model of calcium dynamics is

included before the recruitment model.

Referring to Figure 6.2, the natural stimulation sub-model includes a model of the relationship
between natural stimulation input U and both recruitment and stimulation frequency for each

fibre-type. The input is the natural stimulation input U and the outputs are U, and freq, .

These two outputs can be used in the same way as used with FES (i.e. the same recruitment

sub-model can be used with both FES and natural stimulation). U, was introduced in VM

4.0 [128] to model the rise and fall effects of calcium dynamics, which represents the

activation transient-state.

As discussed in sections 2.2.1, 2.3.3 and 2.5.1; at onset and termination of FES (or natural
voluntary contraction) there is a transient-state of activation, this can be modelled by the rise

and fall time U, sub-model as in Brown model (details are provided in [128], summary in

Appendix 1) or the “calcium dynamics + time delay” sub-model as in Riener-1 model (details
are provided in [72], summary in Appendix 1). These two alternative sub-models (or any
other alternative) can be incorporated into the “General Model” as shown in Figures 6.1 and
6.2.

[Calcium-dynamics + .| Recruitment
PW/PAe—s Time-delay] Sub-model [ ™| syb-model _’ Ri

FES

freq o

Figure 6.1: Topology of the “General Model” for FES input.
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Figure 6.2: Topology of the “General Model” for natural stimulation input.

6.2.2 Muscle model topology

Stimulation frequency is assumed constant during FES. In some special cases, during
intermittent FES, the stimulation frequency can be changed when FES is off in order to
increase the force produced by the muscle, in this case the frequency will be assumed
adjustable, but not a real-time variable (i.e. ignoring dynamic changes in frequency). At

constant stimulation frequency, the frequency dependent activation A is constant and hence
it is omitted from the model ( A =1 for all fibre types). The topology of the “General Model”

for analogue recruitment input (fibre-type level) assuming constant stimulation frequency

(A =1) is shown in Figure 6.3.
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Figure 6.3: Topology the “General Model” for analogue recruitment input (fibre-type level) for FES, assuming constant stimulation frequency

(A =1). Thick arrows denote variables of multiple values (for i =1, 2, and 3) and thin arrows denote single variables.
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The total muscle force for the “General Model” at the fibre-type level (which represents the

topology of the “General Model”) is given by:

F., =cosa x

{fm #3°{ FPCSA, x| Ry x[(fu e x FL, x FV, xIF, x[IE, /ID]) ~ fouy,; ]~ e, ] | }

F_ .

m

i=1

(6.1)

Total muscle force including all active and passive forces of the musculotendon

complex.

Note that for equation (6.1) the following points have to be considered:

The term [IE, /1D,] is used to indicate either (1E, or ID,) not (IE,divided by ID,).
Series element passive force ( f..) is not included in this equation, f.. effect on v,
will be calculated separately (SE is assumed as a pure series elastic element),
foe = F, -

SE has no effect on F_ under isometric conditions. Indirect effect of SE on F_ under
non-isometric conditions is because the stiffness of SE affects the instantaneous v,
which affects f.. and consequently F, .

Sub-models of ( fi, o feers fren @nd [IE; /1D;]) produce their outputs for the

whole muscle (not for the fibre-type), the contribution of each fibre-type for these sub-

models will be calculated by multiplying with recruitment level R, and FPCSA, for

each fibre-type.

The output of f,. sub-model is multiplied by the percentage of non-recruited motor-
units (1—R,) in Hawkins model topology (see Appendix 1). In the “General Model”

topology this can be incorporated into f,. sub-model equation, see section 6.3.6.5.

The topology of the “General Model” for binary recruitment input (motor-unit level) is shown

in Figure 6.4.
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Figure 6.4: Topology of the “General Model” for binary recruitment input (motor-unit level). Thick arrows denote variables of multiple values

(i =1, 2, and 3) and thin arrows denote single variables.
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The total muscle force for the “General Model” at the motor-unit level (which represents the

topology of the “General Model”) is given by:

=COS o X

m

F
[fpmzﬂ‘,{ i‘:KFPCSAiJX[ Ry % [(Foma X FLy X BV, x IF, X 1E;) = foey, |- fVE,i,j]} } }

i1 | = m;

(6.2)

Equation 6.2 is similar to that for the fibre-type level, but here each individual motor-unit will
be modelled separately. The advantage of converting to binary recruitment is to increase
model accuracy by calculating fatigue, force enhancement & depression, and effect of initial

length (1) separately for each motor-unit.

Note that CE represents muscle belly when pennation angle is not modelled (pennation angle

assumed zero, i.e. cosa =cos0° =1) as in most models in the literature. When pennation

angle is modelled, as in except Hawkins model, CE represents muscle fibres in this case.

The standard topologies shown in Figures 6.3 and 6.4 can represent all topologies of the
published muscle models presented in Appendix 1. Any redundant sub-models can be
excluded by using values of (1) for those which are multiplied and (0) for those which are
added. The following sub-sections describe how each of the published models can be

represented by the standard topology.

Herzog model:

The “calcium dynamics + time delay” sub-model will not be used (i.e. input = output).
Recruitment is not modelled in Herzog model; therefore any recruitment sub-model can be

used.

Fatigue (IF, =1), force enhancement & depression ([IE; & ID,]=1), PE2 ( f.., =0), FV

(f,e =0). (FPCSA, =1, cosa =cos0° =1).

Riener-1 model:

Force enhancement & depression ([IE; & ID,]=1), FV ( f. =0).
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(FPCSA, =1,cosa = cos0° =1).
(fee, fog, and fo,) are not be modelled in Riener muscle model, but they are modelled with

the joint model; therefore any sub-model can be used for them. Note that frequency is
assumed constant during FES; therefore the force-frequency sub-model will be cancelled.

However, since the value of f, . provided by Riener in [72] is for high frequency of

freq =100[Hz]. Therefore, this value of f should be adjusted to the used frequency

(0.1x freq)®
1+ (0.1x freq)? |’

is0,max

during FES. The new value can be calculated by multiplying f, ... by: {

As an example, this will be (80%) for ( freq = 20[Hz]) and (90%) for ( freq = 30[Hz]).

Hawkins model:

Natural stimulation input will not be considered as an input, only FES.
The “calcium dynamics + time delay” sub-model will not be used (i.e. input = output).

PE2 sub-model can be excluded using ( f,z, =0).

Brown model:

Natural stimulation input will not be considered as an input, only FES, and the activation sub-
model is already removed from the “General Model” topology.
The “calcium dynamics + time delay” sub-model will not be used (i.e. input = output).

Fatigue (IF =1), Force enhancement & depression ([IE, &ID,J=1), FV (f, =0),

(cosa =1).

6.2.3 Arrangement of passive elements in the “General model”

The standard form for the muscle model using rheological elements structure is represented in
Figure 6.5, where the parallel element PEL is parallel on CE only (this form is a modified
version of Brown Model by adding the pennation angle « ). Another more general standard
model structure (was developed during this study) is represented in Figure 6.6, models in
which PE1 is parallel on both CE and SE can be represented by this form. However, the
parallel element will be assumed always parallel on CE only. Therefore the form shown in

Figure 6.5 will be used as the standard form for the proposed “General Model”.
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The form for rheological elements structure shown in Figure 6.5 can represent all other

models’ structure as follows:

Herzog model (the new form): @ =0, PE2=0 (k., =0), VE=0, (k, =0), PE1 can be

made parallel on CE (CE only not CE and SE) by using Fung equations [107], this equation is
summarised in section 2.5.6.2.

Hawkins model: PE2 =0.

Brown model: cosa =cos(0°) =1.

The alternative standard form shown in Figure 6.6 can be used to represent the all previous
models in addition to the original form of Herzog model given in [18], the original form of
Herzog model can be represented by using the following values: SE1=o, o =0, PE2=0,

and VE =0.

Tendon

Figure 6.5: Representation of the standard form muscle model using rheological elements

structure. PE1 is parallel on CE only, ( foc = foe, + foes )y (lee =lpes = loes)-
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EANNNANY

Figure 6.6: Another alternative standard muscle model structure. The original form of Herzog
model can be represented (with PE parallel on both CE and SE) by making SE1 rigid and
using SE2 to represent the tendon together with &« =0, PE2 =0 and VE =0.

6.3. Standard sub-models for the “General Model”

In this section, standard sub-models are proposed for the various components of the “General
Model”. These can be used to produce consistent, interchangeable alternatives for all sub-
models of the “General Model” that can be used to represent all relevant instances from the
literature. They can also be adapted to allow for multiple motor-units to be represented. The

different alternatives for each sub-model are described using the same set of variables.

Five standard sub-models representing “active” muscle properties and four standard sub-
models representing “passive” muscle properties are summarised in this section. Each sub-
model represents one of the muscle’s main properties, which are: recruitment of motor-units;
the contractile element CE active force-length relationship; the CE active force-velocity
relationship; muscle fatigue; force enhancement following active stretch and force depression

following active shortening; and finally the muscle’s passive properties.
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6.3.1 The standard recruitment sub-model

As discussed in section 2.5.1, the mechanism of motor-unit recruitment is complex and
difficult to measure. Many recruitment sub-models are available in the literature, see section
2.5.1.2. However, here a standard recruitment sub-model is proposed which can be used with
any Hill-type model. This sub-model is able to account for the different properties of different
fibre-types and can be used with either FES or natural contraction. This standard form can be
used to represent all alternative recruitment sub-models introduced in Chapter 2. The standard

form can also be used to build new recruitment sub-model at the required complexity level.

The standard recruitment sub-model developed in this research has three fibre-types and one
thousand motor-units. Each fibre-type is recruited with an analogue recruitment (can be linear
or non-linear). The input to the recruitment sub-model can be the natural stimulation input U

or the pulse width/amplitude ( PW / PA) of the electrical stimulation.

The standard recruitment sub-model is shown in Figure 6.7. The input U is used for natural

contraction, and the input PW is used for FES. Either input will yield the same output (R,).
U, models the calcium dynamics for natural stimulation, U and the calcium dynamics sub-

models are separate from the recruitment sub-model and can be placed before or after the
recruitment sub-model (in reality, it is after recruitment). Frequency is assumed constant for
FES.

Recruitment order can be arranged to be in physiological or non-physiological order. Input to
the F-L sub-model can be either the length at initial recruitment or the instantaneous length.
The number of virtual motor-units used in the model was chosen as (m =1000) to give high

force resolution.
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Figure 6.7: The standard recruitment sub-model.

i)  The Analogue Recruitment of fibre types:

The analogue recruitment of the i" fibre-type (R.) in the standard recruitment sub-model is

shown in Figure 6.8 and presented mathematically in the following structure:

thr

0 , pw < pw,
Ri=1Ri(pw) , pw" < pw< pw;™ (6.3)
1 , pw > pw:?

Below the threshold level pw™ there is no recruitment, above the saturation level pw™' the

recruitment is maximum. Between these two levels the recruitment can be controlled by
adjusting PW . The recruitment equation of Riener-1 model [72] is used for the analogue

recruitment;

R (pw) =c, +

thr

¢, {(pw— pw™)arctan[c,,, (pw— pw!™

)]—(pw— pwfat)arctan[csat(pw— pwisat)]} (6.4)

The constants (¢, , and c_,) can be adjusted to get a straight line with a very sharp curvature

thr ? sat

at pw™ and pw™

. The recruitment of fibre-type is always analogue, it can be linear or non-
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linear. The recruitment sequence of different fibre-types can be moved at will making the
sequence at any order with or without overlapping. In figure 6.9, adjusting PW or PA will
change the number of recruited motor-units, modulating the stimulation frequency will
change the muscle force but will not affect the number of recruited motor-units..

—em-—- Linear recruitment
Mon-linear recruitment

10—

0.0 - . — PV

0.0;}11}:M}"U:M p‘”.;:mj."',[ff:m 1.0

Figure 6.8: The analogue recruitment can be linear or non-linear. (Ulthr =U,,,) and similarly

thr sat __

( le = thhr)' (Ur?at =Usat) and Similarly ( an - pWsat)'

The normalised values for pw and U will be used, assuming that when all “real” motor-units

in the whole muscle are recruited: ( pw,,, =U,,, =1.0). The pw is normalised to pw,, and U

at sat

is normalised to U_,,. This assumption will make it possible to use the same recruitment sub-

model with both FES and natural contractions (i.e. pw and U are interchangeable in equation
6.3)

For ( pw" < pw< pw™), R, is a function of pw {R,(pw)}. The values of pw™ and pw™,

and the recruitment sequence can be different for different recruitment sub-models.
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Figure 6.9: Analogue recruitment of different fibre-types for electrically stimulated

“heterogencous” muscle. The recruitment curves are non-linear and overlapping.

i)  The Extension of Binary Recruitment:

Recruitment of motor-units is incorporated as an extension to the analogue recruitment. The
analogue recruitment of fibre type-i is converted to binary recruitment (Figure 6.10), the

motor-unit j of fibre type i can only be 100% recruited or not recruited at all (either 0 or 1),

see Figure 6.11. This is represented mathematically as follows:

0 R < (ij
R, = m (6.5)
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The threshold level of the j* motor-unit of the i" fibre-type is: (%) Once R; exceeds

this threshold level, the j™ motor-unit of fibre type-i becomes recruited (i.e. R, ; =1).

thr
ij

The threshold level pw.

(1)

for the j™ motor-unit of fibre-type i is the value of pw that makes

Analogue R Binary

(PW/ PA)/U e—» Recruitment —I> Recruitment-—> Ri,j

Sub-model |; _ Sub-model

Figure 6.10: The recruitment of different fibre types is analogue. Conversion to binary is

added as an extension in order to model the recruitment of motor-units, R;; =0 or 1. Thin

arrow indicates single variable input/output, thick arrows indicate multi-variable

inputs/outputs.

0.0 — R,

D.D "-'j_l ]..[.:I
my;

e

Figure 6.11: Recruitment of the motor-unit j of fibre-type i. R, ; has a binary value (0 or 1).
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The standard recruitment sub-model can incorporate up to three fibre-types (1<n<3), and

up to one thousand motor-units (1<m<1000, m=m, +....+m,). Modelling of muscle

recruitment is done in two steps; analogue recruitment for each fibre-type is done first,

followed by conversion to binary recruitment for each motor-unit (R;; =0 or 1), see

Figure 6.12.
R3,1 N
—> 0/1
Analogue R Bin_ary - Input to:
Recruitment 3 | Recruitment \ Motor-Units
| sub-model > Sub-model | — Type-11b
i = Type-I1b (i = 3)
(i=3) (Type-11b) R, .
—>0/1)
R2,1
—>0/1
Analogue R Binary T Input to:
Recruitment 2 | Recruitment Motor-Units
(PWPA)IU o-g» Sub-model ”| Sub-model | — s Type-lla
i= Type-lla i=2)
(i=2) (Type-lla) R, .,
—> 0/1
Rl,l
—>0/1
Analogue | p Binary | Input to:
Recruitment 1 | Recruitment| >Motor-Units
™ Sub-model "| Sub-model Type-I
(i=1) (Type-1) R (i=1)
—> 0/1

Figure 6.12: The standard recruitment sub-model for the “General Model” with (i =3,

m=m, +m, +m;). The input can be FES ( Pw / PA) or natural stimulation input U .

159




For natural contraction (natural stimulation input not FES), the input to the recruitment sub-

model is the natural stimulation input U . The threshold level is modelled as:

Uithr — (I _1) ><U
n

U, <1 ,i=1..n (6.6)

sat ! sat

Linear and analogue recruitment is assumed for all motor-units (of any fibre-type):

O , U<Uith|’
u-ur . ; .
R e R T ©7)
i+1 i
1 . U>unM
r r Usa
Uit21 _Uith =—=
n
UAthr:UASat

i+l

Threshold levels for different motor-unit under natural contraction are described in section
2.5.1.2. Stimulation frequency of recruited units will be modulated by U as shown in Figure
6.13. This represented mathematically as:

freq, = freq,™ +c, x (U —U™), for any input (U >U™). (6.8)

freq,™ — freq,™"

Slope =cy; = 1_u®

(6.9)
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Figure 6.13: The relationship between stimulation frequency and natural stimulation input U .

The stimulation frequency of recruited motor-units increases linearly with U

All alternative recruitment sub-models can be exactly constructed (or a close match achieved)
using the standard recruitment sub-model. Each alternative recruitment sub-model can be
built using the FES recruitment sequence of that sub-model and proper values for: n, m,

PW,,, PW.. » C. C,, C, , and c,. Some sub-models will have the binary recruitment

extension.
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6.3.2 The standard F-L sub-model

As discussed in section 2.5.2, different F-L relationships are observed experimentally because
muscle architecture and fibre orientations can vary widely in different muscles. Various
modelling approaches at different levels of complexity are used in the literature to model this
complex property and hence alternative sub-models are reported in the literature. A standard
form for all alternative F-L sub-models is possible. The standard form proposed here can be
used to represent all alternative F-L sub-models introduced in Chapter 2. The standard form

can also be used to build new F-L sub-models at the required complexity level.

The F-L standard form was first developed using Otten F-L sub-model and the multi-
compartment approach used by Garies. Riener and Brown F-L sub-models can be constructed
directly from Otten F-L sub-model, but Herzog and Hawkins F-L sub-models cannot be
constructed using Otten or Garies F-L sub-models, the main difference is at extreme lengths
away from the optimal length. The logic behind the development of the F-L standard form is
explained step by step as follows:

1. Starting form Garies F-L sub-model (eq. 2.12), this is the most complex F-L sub-
model. The "exact equation for all sub-models that are based on Otten can be achieved (i.e.

Otten, Kaufman, Riener, Brown, and Garies) by making: (N=1) to get one single optimal
length (I, =1_ I,,) and (C; =¢; =1), then using the same values for (Cs, c,, and Cy ) as

the original of each sub-model. Garies equation was given by:

Cr,i

n L) -1
FL(Im):Zci X exp —absL (6.10)

i=1 i

N: number of compartments in the F-L sub-model, C;: scaling factor representing the

effective influence of the i"™ compartment on the overall model.
2. The variable Iz will be used instead of (I, and I, ), this is a general symbol and can
be used to represent (I, or I;). Note that: |, is used when pennation angle & is modelled

(as in Hawkins model). I, is muscle length and 1, is fibre length which are only equal if (&

=0).
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3. In order to get better fit to experimental data, different constants’ values will be used
for each of the ascending and descending limbs (still the same equation but different values
for constants). This is an improvement over Garies F-L sub-model (which is the most
complex and the most accurate model found in the literature). The empirical data for

ascending and descending limbs in many muscles are not symmetrical. Changing the value of
the skewness parameter Cg is not enough to fit the empirical data, hence two different curves
for each limb will give better fit. Note that the two curves (of the ascending and descending

limbs) are continuous at peak since the value of each curve = 1.0 at (I =1,,,).

4. Hawkins (eq. 2.10) and Herzog (eq. 2.11) F-L sub-models are of different structure,
only the positive values of the F-L curve are considered and this makes discontinuity at
extreme lengths which is clearly different from the empirical data. A close match (not exact)
can be achieved at lengths not far from the optimal length by using Otten (eq. 2.8) or Garies
(eg. 2.12) F-L sub-models. But at extreme lengths the two curves are differen.

5. A very close match (almost 100%) can be achieved for Hawkins (eg. 2.10) and
Herzog (eq. 2.11) F-L sub-models by using the following technique:

> Using a positive constant (C,;) added to unity, the value (1+cC;)is multiplied by each
side of the F-L curve, and then deducting (C,; ) from the product.

» This operation produces a new curve whose maximum value is unity and minimum
value is (—C,;), a very close match to Hawkins F-L sub-model was achieved by using
(¢, =08, ¢cg =1, ¢, =2.4, ¢, =0.44)) for the ascending limb and (C,, =1.2,
¢s =02, ¢, =1.65, ¢, =0.152) for the descending limb.

» By taking the positive values of the curve, a very close match to either Hawkins or
Herzog F-L sub-models can be achieved.

» Using this technique makes it possible to control the shape of the curve (using the
least squares method) until the peak of the new curve is very close to the curve to be
matched, either Hawkins (eq. 2.10) or Herzog (eq. 2.11).

» The constant C,; was used in order to get better fit at extreme lengths.
» Herzog F-L sub-model has symmetrical limbs and hence (C, =C,, ), while Hawkins

F-L sub-model has non- symmetrical limbs and hence (C,, # C,,).
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6. For other sub-models (other than Hawkins and Herzog), C, is cancelled by making

C,; = 0. This brings us back to Garies F-L sub-model but with different curves for each side

(they can be the same if the constants’ values are the same).

The equation of the standard F-L sub-model is given as the positive values of:

i - Cs1,i CRLi |
lee | 4
N Iopti
(1+c,)x Zcixexp —abs Cw —Cy  Tor e <l
i=1 1i
FL(ICE): i Ceon: Croii T
e [
N Iopti
(L+cy,) x| D ¢ xexp| —abs Cw —Cpp  fOr g >ly,
i=1 2,
(6.11)

For the negative values: FL(I.;)=0.

l; represents either |, or I, depending on the muscle model.

N : Number of compartments in the F-L sub-model.

c.:  Scaling factor representing the effective influence of the i" compartment on the
overall model.

I_Opt’i: Optimal length of the i" compartment (not real) normalised with respect to the
optimal length (the real optimal length of muscle belly).

C., C,,: CoOnstants, used to shape the F-L curve at extreme lengths ( i.e. to mimic Herzog and

Hawkins F-L sub-models).
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The values of the curve shaping parameters (C;,c,,C, ) can be different in each compartment,

and also in the two sides of the F-L curve (the ascending and descending limbs). This depends
on the experimental data need to be fitted, or any F-L sub-model needed.

The standard F-L sub-model can represent all alternative F-L sub-models presented in this
document. It can easily represent Otten, Riener, and Brown F-L sub-models by using the

following: (c, =¢,, =0, N =1, ¢; =1) and the same shaping parameters for both sides of

the F-L curve (i.e. same equation for the ascending and descending limbs) as given in those F-
L sub-models. The standard F-L sub-model can represent all other F-L sub-models presented

in section 2.5.2.2 as follows:

For Garies F-L sub-model:

C, =C,, =0, and the same shaping parameters for the ascending and descending limbs of the

F-L curve (i.e. same equation for all lengths).

For Herzog F-L sub-model:

N =1, ¢, =1, c, =cC,,, and the same shaping parameters for the ascending and descending

limbs of the F-L curve. The standard F-L sub-model can represent Herzog F-L sub-model
very well. The positive values of the following equation can be used for muscle-1:

Cs; =Cg, =1, cyy =Cx, =24, ¢y, =€y, =044, ¢, =c,, =08

24

(Iee)' -1

FL(I.c) =(1+0.8) x| exp| —abs —0.8, for positive values

For muscle-2: (Cg; =Cg, =1, ¢y =g, =2.3, Gy =Cy, =0.75, ¢, =C,, =1.2).

For Hawkins F-L sub-model:

lce =1;, N=1, and ¢; =1. The standard F-L sub-model can represent Hawkins F-L sub-
model very well. The positive values of the following equation are used:
For the ascending limb: (¢, =1, ¢, =24, ¢,, =0.44, c, =0.8).

For the descending limb: (¢s, =0.2, ¢, =1.65, ¢,, =0.152, ¢, =1.2).
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= 1 24
@+ 0.8)><[exp(— abs% } -0.8 for Iy <l
FL(Iee) = i )'0.2 11-65_ , for positive values
(1+1.2)><[exp[ absCST ]1.2 for e > 1,

FL(l.c) =0, for negative values.

By choosing appropriate values for the shaping parameters (¢, ¢, C, ) and other constants

in the standard F-L sub-model, it is possible to fit any experimental data with high accuracy
better than all alternative sub-models listed here because of the extra advantage the standard
F-L sub-model has, where each limb of the F-L curve being modelled by separate curve

(using the same equation but with different constants’ values).

6.3.3 The standard F-V sub-model

As discussed in section 2.5.3, the F-V relationship is affected by different factors (fibre-type,
muscle architecture, recruitment level, recruitment order, “instantaneous” fibre length and
stimulation frequency), and hence different F-V relationships are observed experimentally.
Various modelling approaches at different levels of complexity are used to model this
complex property and hence alternative sub-models are reported in the literature. A standard
form for all alternative F-V sub-models is possible. The standard form proposed here can be
used to represent all alternative F-V sub-models introduced in Chapter 2 (and almost all
alternative Hill-based F-V sub-models in the literature). The standard form can also be used to

build new F-V sub-models at the required complexity level.

To develop the F-V standard form, the start was with Brown F-V sub-model because it is the
most complex. Then more formulas and constants were added in order to match all other sub-
models. The logic behind the development of the F-V standard form is explained step by step

as follows:

1. All sub-models have to be reformulated in order to make all of them in the same form.

2. Riener F-V sub-model (eq. 2.13) is the only sub-model that was difficult to
reformulate. Therefore, least squares method was used to find the best fit that will make a

close matching curve.
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3. Brown F-V sub-model (eq. 2.14) has only two formulas, one for (Vo <0) and the

other for (Ve > 0). Other two formulas are required for (Vee <-1) and (Vg >\7C‘°‘I,£‘rnax ) since

some alternative F-V sub-models have constant values at these velocities.

4. For (Vee <-1): The first formula of Brown (eq. 2.14) is used but will be multiplied by
a constant (b,;) which will have the value (b,, =1) for Brown and (b,; =0) for other models
which have [FV =0  for: V.. <-1]. This makes “exactly” the same equation of all F-V

sub-models (except Riener).

5. For (—=1<V. <0): The first formula of Brown (eq. 2.14) is used as it is, constants can

have different values to get other sub-models. This makes “exactly” the same equation of all

F-V sub-models (except Riener).

6. For (0<Vee <Vt ) The second formula of Brown (eq. 2.14) is used but will be
multiplied by a constant (b,;) and added to another constant (b,,), these two constants will

have the values b,, =0 and b,; =1 for Brown. (b,; and b,,) where added in order to get the

same form as Hawkins (eq. 2.15) and Herzog (eq. 2.18) F-V sub-models. This makes

“exactly” the same equation of all F-V sub-models (except Riener).

7 Str

7. For (Vee > Ve m ): The second formula of Brown (eq. 2.14) is used but will be
multiplied by a constant (b,;) and added to another constant (b,,), b,, has the same value as

in the previous formula for all sub-models, and b,; =1 for Brown. (b,, and b,;) where added

in order to get the same form as Hawkins (eg. 2.15) and Herzog (eq. 2.18) F-V sub-models.
8. A very close match of Riener F-V sub-model was achieved using the standard form.

9. The “exact” equations of all other F-V sub-models represented in section 2.5.3.2 were
achieved using the standard form. Constants’ values for each alternative F-V sub-model are

given below.

The equation of the standard F-V sub-model is given as:
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[ by [ V) (L (€0 + Clee Vo) for Ve <-1

PV (Vo )= (A+Voe) /(1= (Cpp +Cyleg Vo) for -1<V,<0
CE''CE/ —

bv2 + bv3 X (bv4 o (avo + a‘le_CE + aVZI_CEz)vCE) /(bv5 + bVGVCE)] for O < VCE < vétErmax (6.12)

o Str

L b,, +b,; x|(b,, —(a,, + avll_CE + aVZI_CEZ)vCE)/(bVS +b,Vee)| for Vee > VCE, max
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Ve Will be used in the standard F-V sub-model to represent the velocity of either muscle

belly or muscle fibres depending on the F-V sub-model needed.

All alternative F-V sub-models can be exactly represented using the standard F-V sub-model

by changing the constants values (except Riener F-V sub-model which was very close but not

exactly the same). The standard F-V sub-model can represent all F-V sub-models referenced

in this thesis as follows:

For Brown F-V sub-model:

The following constants’ values can be used to get “exactly” Brown F-V sub-model.

Cyor Cuis Dy, Dys, @, @, &,: as provided by Brown in [100]. The values of these constants

are also provided by Brown in other references with slightly different values, as in [41, 82,

127]. (b,, =0), (b, =b,; =b,s =b,; =1), (Vit ..x = @ny value > 0).

CE,max

For Hawkins F-V sub-model:

The following constants’ values can be used to get “exactly” Hawkins F-V sub-model.

(bvl =b,s=b,=a,=a,=¢, :O)’ (bv4 =byg :1)'

Other constants as given in the new formulation presented in this document, originally taken

7 Str
Vf,max

from Hawkins [101, 129, 130]: ¢, = =, &, :( 1 ] b, =1.3, b, =-0.3.

x|

For AnyBody F-V sub-model:

The following constants’ values can be used to get “exactly” AnyBody F-V sub-model.

(bvl = bv3 = bv4 = bvs = bv? :1)1 (bv2 = bv6 =Cp=C,=a,=a,= O), (avo = _1)'

(V str

CE,max

= any value > 0).

For LifeMOD F-V sub-model:

The following constants’ values can be used to get “exactly” LifeMOD F-V sub-model.

(bvl = bv2 = Cvl = avl = av2 = O) ' (bvs = bv4 = bv5 = bv7 = 1) ’ (V e = any Value > O)

CE,max

Other constants as given in [137,138]: ¢, =4, a,, =—2, b, =15.

For Herzog F-V sub-model:

The following constants’ values can be used to get “exactly” Herzog F-V sub-model.
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(b, =hb,;=c,=a,=a,=0), (bv4 = bv5 =1
Other constants are the same as those in the new form of Herzog F-V sub-model presented in

this document, the values of these constants are derived from the original Herzog model

1
presented in [18]: c, = (—j b,=15 Db,;=-05, a, ={LJ b, :[lj

7 str
VCE,max

b\, s b'xa

For Riener F-V sub-model:

Although the standard model cannot achieve an exact match with the Riener F-V sub-model, a

very close match was achieved as shown in Figure 6.14.

F-V Sub-model
e [ [ [
14 Riener F-V Sub-model o
' —— The One Standard Form /
1.2
1

Force [Normalised)]

. /
/
/

/

-2 -1.5 -1 -0.5 0 0.5 1 15 2
Velocity [Normalised]

Figure 6.14: The standard F-V sub-model is used to represent Riener F-V sub-model using

constants’ values: (b, =0.55, ¢, =4.5, b, =b,=0.21, a,, =-1.61,

(c,=b,=a,=a,=0), (b;=b,=b, =1, VE, . =any value > 0).
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6.3.4 The standard fatigue sub-model

As discussed in section 2.5.4, the mechanism of fatigue is complex and difficult to measure.
Various modelling approaches at different levels of complexity are used in the literature to
represent the fatigue effect on muscle force and hence alternative sub-models are reported in
the literature. The standard form for fatigue proposed here can be used to represent all
alternative sub-models introduced in Chapter 2 (and almost any alternative fatigue sub-models
in the literature). The standard form can also be used to build new fatigue sub-models at the

required accuracy and complexity level.

The focus is on the index of fatigue which represents force decay during FES and force
capacity recovery when FES is off, pH level and all other physiological details will be
ignored. The prediction of fatigue can be improved by using the multiple motor-unit
modelling approach, where fatigue of every individual motor-unit will be modelled

separately. The standard fatigue sub-model is given by:

d IE)= 0 end
a( )_ {[Cfat ><(“:min - IF(t))]+ [Crec X (1_ IF(t))] , t 2T } (613)

end

Assuming: IF=1 at t=0.

Previous equation can be used with a single motor-unit model, three fibre-types model, or the
multiple motor-unit model. The standard fatigue sub-model can represent all fatigue sub-

models represented in section 2.5.4.2 as follows:

For Riener-1 fatigue sub-model:

Rx Aq e XA 1-(Rx Ag e X A)
Tend :0' Cfat =+’ Crec = T : :

fat rec

For Hawkins fatigue sub-model:

For type-I and type-lla fibres: T, =6, C,, :%(0:;7, C. =0, IF,, =0.
For type-lIb fibres: T, , =23, C, :%13)3, Ce =0, IF,;, =0.
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For Freund & Takala fatigue sub-model:

BxR
IF@t) " ™

Tend :0' II:min :O’ Cfat=

For Ma fatigue sub-model:

Teo =0, IF,, =0, C,, =kxR, C, . =T.

For Giat fatigue sub-model:

The pH level has not be considered. Constants values need to be determined by empirical
experiments for each muscle. Hence, constants’ values of the standard sub-model can be
adjusted to fit the fatigue experimental data of any muscle. Using this procedure any fatigue

sub-model can be constructed exactly, or at least to get a very close match.

6.3.5 The standard force enhancement & depression sub-model

As discussed in section 2.5.5, only few force enhancement & depression sub-models are
available in the literature. A new and more complex force enhancement & depression sub-
model was developed in this research because those available in the literature are relatively
simple compared with observed empirical data. The empirical data used to develop this sub-
model were collected from the literature, see Appendix 2. Details of the new and the standard

force enhancement & depression sub-models are given below.

6.3.5.1. A new force enhancement & depression sub-model

As discussed in section 2.5.5.1, force enhancement following stretch and force depression
following shortening are affected by different factors (magnitude of stretch/shortening,
velocity, recruitment level, and stimulation frequency) during stretch/shortening. The new
sub-model proposed here can be used with any Hill-type model which uses the instantaneous
length. Most of the length-history properties are accounted for (more complex than Hawkins
and Forcinito IE & ID sub-models). In this sub-model, the effect of enhancement and/or
depression starts immediately after the end of stretch/shortening. The force will decay (after
stretch) or increase (after shortening) exponentially until the steady-state force is reached after
4.0 seconds. The experimental data used to develop this sub-model include those presented in
Appendix 2 in addition to the data presented in [152, 154, 155, 168, 169, 170, 171, 172, 173].
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Index of Enhancement (IE):

The index of enhancement is given by:

IE_+|(IE ., —IE, )xexp(c, xt)] for t<4

IE(t): 0 [( max oo)>< Xp( TS>< )] (6.14)
IEg for t>4

IE maximum muscle force during stretch (6.15)

™~ jsometric force corresponding to thelength at end of stretch

The plateau level of IE (IE, ) after very large value of time (t — o) is a function of the initial

length (I ,) just before the start of stretch, stretch magnitude (Al ), and velocity of stretch

(Vee).
IE, =1+|(c, %I )+ (Cp x Alg) + (Cs x Ve )| (6.16)

c,, ¢, and ¢, are constants which can be adjusted to fit experimental data, a separate constant
was multiplied with each variable in order to make the model more accurate. The effect of
AfER is clear from the experimental data shown in Appendix 2 (e.g. Figure A2.7), longer
displacements produce more enhancement, and vice versa. Similarly stretches happen at
longer length I_ER,o result in more enhancements, and vice versa. The effect of velocity is
included in the model since it has an effect on IE_ as can be observed from experimental data

(e.g. Figure 2.33 in Chapter 2).

The time (t = 4.0 seconds) was chosen (similar to that of Hawkins) because it was found to be
a good approximation to the decay time following stretch observed experimentally (see

experimental data in Appendix 2).

|E = IE(t=4)=IE_ +[(IE,, —IE,)xexp(C x4)] (6.17)
, _ -0.3
The transient-state constant: ¢, = ——— (6.18)
(I —1E.)
t: Time from end of stretch.
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Index of Depression (ID):

The index of depression is given by:

ID, +|(ID,;, —ID,)xexp(c,s xt)| for t<4

(1) = { P+ (1D =10, xexp(crs 1) (6.19)
IDgg for t>4

D minimum muscle force during shortening (6.20)

~ isometric force corresponding to the length at end of shortening

The plateau level of ID (ID,) after very large value of time (t — o) is a function of the initial

length I, , just before the start of shortening, shortening magnitude Al , and minimum force

ER?
during shortening (1D, ;. is used in this sub-model which is a function of the minimum force

during shortening).
D, =1- [(Cl x I_ER,o) +(c, x AI—ER) +(C; x IDy;, )] (6.21)

c,, ¢, and ¢, are constants which can be adjusted to fit experimental data, a separate constant
was multiplied with each variable in order to make the model more accurate. The effect of
AfER is clear from the experimental data as shown in Appendix 2 (e.g. Figure A2.8), longer
displacements produce more depression, and vice versa. Similarly shortenings happen at

longer I, result in more depression, and vice versa. The effect of ID,,, is included since it

has an effect on IE_ as can be observed from experimental data (e.g. Figure 2.33 in Chapter

2).

The time (t = 4.0 seconds) was chosen (similar to that of Hawkins) because it was found to be
a good approximation to the rise time following shortening observed experimentally (see
experimental data in Appendix 2).

IDg = ID(t=4) = ID, +[(ID,,, — 1D, ) xexp(C;s x4)] (6.22)

The transient-state constant: ¢,q = 1 (6.23)
(ID, - 1D;,)

t: Time from end of shortening.
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6.3.5.2.  The standard force enhancement & depression sub-model

The standard IE & ID sub-model proposed here was developed using the alternative IE & ID

sub-models available in the literature (see section 2.5.5.2) and the new IE & ID sub-model.

The standard form can also be used to build new IE & ID sub-models at the required accuracy

and complexity level.

Index of enhancement (1E):

£y - JIEx +(1Em — 1B, ) xep(cy xp)] - for t<4
- |Ess for t>4
|Egs = IE(t=4) = IE, +[(IE,, — IE, ) xexp(Crs x4)]

IE maximum muscle force during stretch

™" isometric force corresponding to the length at end of stretch

Index of depression of (ID):

ID(t)Z{IDOO+[(IDmm—IDw)xexp(cTSxt)] for t£4}

IDgg for t>4
IDgs = ID(t=4) = ID, +[(ID,, — 1D, ) xexp(C;s x4)]

D minimum muscle force during shortening

min

~ isometric force corresponding to the length at end of shortening

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

Previous equations can be used with a single motor-unit model, multiple (two/three) fibre-

type model, or multiple motor-unit model. The standard IE & ID sub-model can represent all

IE and ID sub-models summarised in Chapter 2 of this thesis (and almost all alternative sub-

models in the literature) as follows:

For Hawkins IE sub-model:

max —

& |O5O05(IE,,)+0403 for:IE,, >12
* 1.0 for: IE,, <1.2

Cs =—0.301/(IE, — IE,)

ID is not modelled by Hawkins.
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For Forcinito IE & 1D sub-model:
Forcinito force enhancement & depression sub-model was modified in order to be used in the
“General Model”, details are provided in Appendix 9. The initial length is used [

fee = fii(I,) 1, this has to be taken into account when using this sub-model. In the formulated

Forcinito IE & ID sub-models; time starts after the end of stretch/shortening.

IE, =1+ (_E—A x Al g J (E.A=1.575, for stretch).
R,0

ER,

ID, =1+ (I_E—A x Alg ] , (E.A=0.675, for shortening).

ER,0

For the new IE & ID sub-model:

IE, =1+[c, xIg o % Al x&Xp(—2*Ve) ,

__ 03 , (for stretch).

(IE,. —IE,)

max o

Crs =

ID, =1—[c, g , ¥ Algs x 1D, |

-1

=—————— (for shortening
(ID,-1D,;,)

Crs

6.3.6 The standard sub-models for muscle passive elements

As discussed in section 2.5.6.1, skeletal muscles have complex passive viscoelastic structure
which can vary among different muscles. Various modelling approaches at different levels of
complexity are used in the literature and hence alternative sub-models are reported at different
complexity levels. Standard forms for all alternative sub-models of the passive elements are
possible. The standard forms proposed here can be used to represent all alternative passive
elements sub-models introduced in Chapter 2 (and almost all alternative passive elements sub-
models in the literature). The standard forms can also be used to build new passive element
sub-models at the required complexity level.

The standard sub-models for passive elements are given in the following sub-sections. The

standard arrangement of the model elements is shown earlier in this chapter (Figure 6.7), this
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form consists of an elastic element (SE) representing the tendon along with a combination of
CE, parallel elastic element PE and viscous element VE representing the muscle belly. All
passive elements in this model can be linear or nonlinear elements. « represents pennation
angle of muscle fibres, (PE = PE1+ PE2).

6.3.6.1.  Arrangement of passive elements

All Hill-type models introduced in Chapter 2 of this thesis can be constructed using the

standard form shown in Figure 6.5 as follows:

For Herzog model: « =0, PE2=0( f.., =0), VE=0 ( fz =0).

The form of Herzog model can be changed to the standard form using Fung equations given
in [107].

For Hawkins model: PE2=0 ( f.., =0).

For Brown model: « =0.

For LifeMOD model: « =0, VE=0 ( fx =0), PE2=0 ( f.., =0), SE =« (rigid tendon).

6.3.6.2.  The standard sub-model for ( )

Brown SE sub-model was modified by adding an extra constant ¢, which allows for the slack

length 1. to be shifted along the X-axis (this will shift the whole curve).

fo(l)=c, x In{em{w} +1} (6.30)

C,

¢, C,, C;: constants.

The following constants’ values can be used to represent each SE sub-model introduced in
Chapter 2:
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For Herzog model: The following constants’ values can be used to get “almost exactly” the
linear curve of Herzog SE sub-model: (¢, =0.00167, ¢, =0.00006, ¢, =0).
For Brown model: The following constants’ values can be used to get “exactly” Brown SE

sub-model: (¢, =0.13066, c, =0.0047, ¢; =0).
For Hawkins model: A very similar curve was obtained by using the following constants’

values: (¢, =0.518, c, =0.0045, ¢, =0.028).

6.3.6.3.  The standard sub-model for ( f..,)

Brown PE1 sub-model was chosen exactly as it is to be the standard form:

foe,(Iee) = €, x In{exp{(l_CE Mo ) =l } +1} (6.31)

C,

c,, C,: constants.

The following constants’ values can be used to represent each SE sub-model introduced in
Chapter 2:

For Herzog model: The following constants’ values can be used to get “almost exactly” the

linear curve of Herzog SE sub-model: (¢, = 0.003, c, =0.00108, I, =1, |, =1.25).

For Brown model: The following constants’ values can be used to get “exactly” Brown PE1

sub-model: (¢, =1.058, ¢, =0.046, |, =13, |, =1.17).

For Hawkins model: A very similar curve was obtained by using the following constants’

values:

(c,=12, ¢, =008, I, =12, I, =16).).

For LifeMOD model: A similar curve was obtained by using the following constants’
values:

(¢, =12,¢c,=008, 1, =121 1.6).

rest —
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6.3.6.4.  The standard sub-model for ( f..,)

f.e, was only modelled in Brown muscle model. Therefore, Brown PE2 sub-model will be
used as the standard sub-model. Note that if f,., model is used then the F-L sub-model has to
be modified accordingly. Only Brown F-L sub-model is ready to be used with f.., sub-
model. Vice versa, if Brown F-L sub-model was to be used without the f.., sub-model, then

it has to be modified by removing f_., from the F-L sub-model.

fPEZ(I_CE) =G % [_ 0.02x{exp[-21x (I_CE —1:,)] _1}] , Fee, <0 (6.32)
|, =07

For Brown model: (c, =1).

For other sub-models: (¢, =0).

6.3.6.5.  The standard sub-model for ( ;)

Linear viscous element is used, only Brown and Hawkins have used the passive viscous

element f,. sub-model.
fo =bxV, (6.33)

For Brown model: b =0.0788 (slow-twitch fibres), b = 0.0915 (fast-twitch fibres).

Note that each fibre-type (slow and fast) has different values for: (|VCE,max|)-

For Hawkins model: b=c, x(1-R;)

Each fibre-type has different values for ¢;: c, =0.51585, C, =, =0.44195.

For other models: (b =0).
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Chapter 7: Discussion and Conclusions

7.1. Discussion

Skeletal muscle is a highly complex and nonlinear system. The response of electrically
stimulated muscle is nonlinear, time varying, coupled, and often accompanied by
unpredictable disturbance. Computer simulations based on accurate mathematical models of
the musculoskeletal system can help in the design and evaluation of complex closed-loop
control algorithms for FES systems. The commonly used single motor-unit muscle model (in
FES control studies) with the instantaneous CE length as input to the force-length relationship
cannot properly model the continuously varying partially recruited muscles, nor it can account

for physiological properties specific to each fibre-type.

Multiple motor-unit models can properly account for continuously varying recruitment as
would usually be seen in closed-loop FES control. Every virtual motor-unit in the multiple
motor-unit model is modelled separately; in this way the effects of length at initial
recruitment, fatigue and recovery, force enhancement & depression are calculated
individually for each motor-unit. Moreover, the physiological properties specific to each
fibre-type (i.e. recruitment order, F-L relationship, F-V relationship, and fatigue) can be

incorporated into the multiple motor-unit model to further increase its accuracy.

The main goal of this study was to develop a multiple motor-unit model that can account for
continuously varying recruitment levels at different muscle lengths and different times.
Different aspects of muscle modelling have been investigated in this study using single and
multiple motor-unit models. The results demonstrate the potential errors introduced by using
the single motor-unit model and the instantaneous length which are common in FES control

studies.

7.2.  Conclusions

A new multiple motor-unit model has been developed which considers the muscle to

comprise a large number (1000) individual Hill-type virtual motor-units. As the recruitment
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level R(t) varies over time and at different CE lengths, these virtual motor-units are recruited

at different times and each with its own initial length; thus overcoming the problem described

above.

The simulation results obtained in chapters 3, 4 and 5 demonstrate the differences and
potential errors introduced by using single motor-unit models in FES control studies. By
correctly modelling the effects of continuously changing recruitment and length, as seen

during FES control, it is hoped that better FES controllers can be designed.

In addition to the improvements to the model accuracy, multiple motor-unit models can also
provide clear and deep understanding of the highly complex and non-linear response of the
paralysed muscle including the internal muscle dynamics. A better understanding of the
muscle’s physiological properties can help in the design of FES controllers that optimize the

produced muscle force and hence the generated movement.

For the multiple motor-unit models presented in chapters 3, 4 and 5; higher accuracy can be
achieved using the same number of model parameters, which is an advantage over the single
motor-unit model. However, if high level of complexity is required when using the “General
Model” presented in Chapter 6, the main limitation is the large number of model parameters.

Hence more parameters need to be estimated experimentally.

7.3. Future work

Although this study has covered many modelling issues regarding multiple motor-unit
models, there are many other issues that can be studied and investigated. Suggestions for
future work that can be done to further improve the performance of multiple motor-unit

models are given below:

> In this study, one fibre-type was assumed when simulating the responses of open-loop
simulation protocols in chapters 3, 4 and 5. The new recruitment sub-model (presented
in section 6.3.1.1) with three different fibre-types can be used in open-loop simulation

protocols.
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» In this study, the simulation was made for the responses of open-loop simulation
protocols in chapters 3, 4 and 5. It is suggested to do more simulations and simulate

the responses of closed-loop simulation protocols.

» The following complexities can be incorporated to further improve the accuracy of the

multiple motor-unit model and also the “General model”:

e Pennation angle of muscle fibres.

e Different F-L sub-models for different fibre-types.

e Different F-V sub-models for different fibre-types.

e Different fatigue sub-models for different fibre-types.

e The same IE & ID and passive F-V sub-models (of non-recruited fibres) can be

used with all fibre-types unless opposing experimental evidence was found.

For simplicity and to demonstrate the potential errors introduced by using
instantaneous CE length instead of CE length at initial recruitment, the CE length
before recruitment was used in chapters 3 and 5. The CE length, before and after
recruitment, is different due to the tendon compliance [196]. The use of length at
initial recruitment can be further improved by using the CE length after onset of
recruitment. Experimental force-length relationship (before and after recruitment) and

some ankle joint parameters are given in appendix 6.

» The performance of the “General model” can be compared using different sets of sub-
models at different levels of complexity. Then the results from this comparison can be
analysed to identify the key effects (e.g. recruitment and fatigue sub-models) that
require modelling and should be included in a muscle model, and at which level of

complexity, to provide a simulation environment for developing FES controllers.

In this study, theoretical background and published experimental data from the literature were
used to build new muscle models using the multiple motor-unit modelling approach. Open-
loop simulation protocols were made on the single and multiple motor-unit models to
demonstrate the differences and potential errors introduced by using the instantaneous length,
ignoring certain sub-models or by using the single motor-unit modelling approach.
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In order to build confidence in the multiple motor-unit modelling approach, appropriate
experimental data are required. However, almost all experimental data available in the
literature are for fully recruited muscles. Published data for partially recruited muscle are very
little and do not include the main requirement of having different recruitment levels at
different CE lengths. The experimental data required to validate the multiple motor-unit
modelling approach and the CE length at initial recruitment have to be for dynamic
contractions using different levels of recruitment at different values of CE lengths and using
different muscles that comprise different fibre-types. The data should also include protocols
of stretch and shortening on both limbs (the ascending and descending limbs) of the force-

length relationship.

Closed-loop simulation protocols can also be tested on the single and multiple motor-unit
models to demonstrate the differences and potential errors introduced by ignoring certain sub-
models or by using the single motor-unit model during the design, development and

evaluation of FES controllers.

183



Appendix 1: Topology of Published Muscle Models

This appendix describes the topologies of published models. Topologies of different models
from the literature are presented first; a common standard topology for the “General Model”
is presented in Chapter 6 with a description on how it can be adapted to represent topologies
of other models described here (and almost all other alternative sub-models in the literature).
Details of the various components (sub-models) of the “General Model” are provided in
Chapter 6.

The original topology and arrangement of passive elements of Herzog model are formulated
in order to make it similar to other models and then it can be reconstructed for the common
standard topology. The activation sub-model of Brown model and Riener model are not
included since the stimulation frequency is constant during FES, this step reduced a lot of un-
necessary complexity for models of electrically stimulated muscles (for naturally contracted
muscles, cancellation of the activation sub-model can affect the model accuracy since the

stimulation frequency changes with the natural stimulation input).

Various components in the standard topology of the “General Model” are explained in
Chapter 2 and Chapter 6 of this thesis. Alternative sub-models of different complexity levels

can be used; it is also possible to represent different fibre-types and the multiple motor-units.

The topologies of Riener-1 and Riener-2 models are the only topologies which are provided in
their related references. All other topologies were developed in this research using the

models’ equations and text provided in related references.

Al.l. Herzog Model

Topology of Herzog model [18] is shown in Figure Al.1. A three-element model is used with
the form shown in Figure A1.2. Herzog model is the only model found in the literature that

uses the length at initial recruitment (1, ). Topology of the original Herzog model given in

[18] was formulated in order to make it possible to be represented in the standard topology

form (given at the end of this chapter).
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The position of PE can be changed and made parallel on CE only, the new equivalent values

for the linear stiffness (k, and k) can be calculated using Fung equations given in [107]. The

topology shown in Figure Al.1 will not be affected by this change; the only change isin f,.,

which will be calculated as a function of I_. not |_,.

fCE +
R » X Fm
X
fiso,max | FV
F-Vv .
Sub-model |
FL
F-L
Sub-model Vee
* Vee = (v, F,) |19
ICE A
fPEl ICE = fn(lmt’ fCE) <
fPEl = fn(lmt) 4
A th
Lo Body

Segmental dynamics |

Figure A1.1: The “formulated” topology of Herzog model.

lex lsg
- > | -
SE
4 CE HH—WA—
- -
—AWWA
PE
lpr =1y
- -

Figure Al.2: Representation of Herzog muscle model using rheological elements structure.
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Al.2. Riener-1 Model

In Riener-1 model [72], only the active part of the muscle (CE) is modelled, muscle passive
elements are not modelled in the muscle model but rather in the passive torque model of the
joint, Riener-1 model is illustrated in Figure Al.3. Passive torque caused by passive forces of
all muscles which span the same joint are modelled together as functions of joint angle and

joint angular velocity, details are provided in [72, 174].

Muscle length (1. ) and muscle velocity (v, ) are estimated directly from joint angle and joint

angular velocity.

W e .| Recruitment | R
P Sub-model
X » Calcium-Dynamics
Sub-model
Force-frequency Time
freq ‘ Sub-model Delay
| Fatigue IF
Sub-model
fiso,max X ¢ > Fm
F-L F-V
Sub-model Sub-model
A A
VCE
lee Body :
Segmental dynamics

Figure A1.3: Topology of Riener-1 model.
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Riener calcium dynamics sub-model:

The calcium (Ca®") dynamics describe the phenomenon of calcium ion released from
sarcoplasmic reticulum. It is modelled by two first order transfer functions in series (time
constantT., ), the model is represented as:

1 1 1
a(S) = 1 a (S)= a (S
) (TCaS +1J(Tcas +1J (8) T.’S? + 2T, S +1 (8)

Al.3. Riener-2 Model

In Riener-2 model [73], the muscle is divided into 100 motor-units of slow-twitch (type-1) and
fast-twitch (Types Ilb and lla together). Riener-2 model is a physiologically based model,
where the output is the normalised isometric muscle force (under isometric conditions),

passive elements are not modelled.

The recruitment sub-model is shown in Figure Al.4, the fatigue and calcium dynamics are
similar to those in Riener-1 model. The biophysical processes underlying excitation and
activation are also modelled for the isometric contraction only. The focus of this research is
on the effect of different muscle properties on muscle force not the details of the biochemical
and biophysical processes which happen during muscle contraction. Therefore, sub-models
for the biophysical processes are not considered. The focus here is on the binary recruitment

of motor-units.

freq e I ®----- —_—

»  Unit (1)

2o
v
VN
SN

Unit (2)

PW/PA. ' Recruitment | —
Sub-model

\ 4
RZ,mZ

f
Unit (n) 22

A 4

Figure Al.4: Topology of Riener-2 model.
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Al.4. Brown Model

Topology of Brown model [41, 82, 84, 127] (including alternative variants of Brown models
in the Virtual Muscle modelling package [128]) is shown in Figures A1.5 and A1.6. Although
fatigue and force enhancement & depression are not included, Brown model is one of the
most complex models reported in the literature. The arrangement of passive elements is
represented in Figure ALl.7. The linear parallel viscous element was added in virtual muscle

modelling package [77] for stability purposes during simulation (incorporated into f,_, sub-

model)
U
eff | Recruitment
Natural Stimulation "l Sub-model — Ri
U . ' Sub-model
— freq,
Yield Y
Vop &—> »  Activation
Sub-model > sub-model | T A
A
Effective ||
CE Length
Sub-model
A
\ 4 f S
o » Effective Frequency FeQes Sag
freg, Sub-model Sub-model

Figure A1.5: Topology of Brown model and other alternative models in Virtual Muscle

software package.
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Figure A1.6: Topology of Brown model and other alternative models in Virtual Muscle software package.
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Figure A1.7: A) Representation of Brown muscle model using rheological elements structure,
). B) The two parts of the passive elastic element PE . C) The passive F-L

(ICE = IPEl = IPE2

curves of PE1 and PE2. (Adapted from [82, 160]).

The rise and fall time (U, ) sub-model:

The rise and fall time sub- model U, (presented in[128]) is an intermediate natural

stimulation input that models the rise and fall effect of calcium dynamics when there is a

change in the level of U . Note that: U, is different from the “total muscle effective

activation” mentioned in [127], which is used in this thesis.

U U-Ug, 0.03(sec) U =U
ef Y ]0.15(sec) U <U,,

The effective natural stimulation input U, models the transient-state when there is a change

in the natural stimulation input U , the steady-state of the effective natural stimulation input

U, will be the new value of natural stimulation input U (i.e. models rise and fall times

only). Note that the rise and fall times due to change in stimulation frequency are modelled

separately in Brown activation sub-model.
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Al.5. Hawkins Model

In Hawkins model [101, 129, 130], the pennation angle is modelled, and hence the fibres

length is used in the F-L sub-model (I =1, ). Isometric force produced by muscle fibres is

multiplied by (cos« ) in order to get the force of the muscle fibres in the direction of tendon

line of action (which represents muscle belly). The passive forces due to muscle fibres ( f,,

foer s and foo,) will also be multiplied by cose .
Topology of Hawkins model is represented in Figure A1.8, the thick arrows denote variables

of multiple values (for i = 1, 2, and 3) and thin arrow denote single variables. The

arrangement of passive elements is shown in Figure AL.9.
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Figure A1.9: Representation of Hawkins muscle model using rheological elements structure.

Note that:

The viscous drag “passive” force created by all non-recruited fibres in the whole muscle:

foe = Z fVE,i = fVE,l + fVE,z + fVE,3 fVE,i =C; x FPCSA x (1-R;) x Ve

i=1 !

In the standard topology (topology of the “General Model”), all forces (except f..,) are
multiplied by PCSA,, and hence PCSA, was removed from the standard equation provided

in section 6.3.6.5.

fe :Z fuei =C x Ve x(L=R) +C, xVe x(1-R,) +C; x Ve x(1-R,)
i1

Vg =—, fe isnormalised to f

iso,max *
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Al1.6. Incorporation of activation sub-model into the “General Model”

In order to model muscle activation more accurately; an activation sub-model can be
incorporated into the “General Model” proposed in Chapter 6. To the author’s knowledge,
Brown activation sub-model (Figure A1.5) which represents the steady-state activation, is the

most complex activation sub-model reported in the literature.

The effective length sub-model L. models the time lag between changes in length and the

effect of length on the activation sub-model (not F-L sub-model).

The effective frequency freq,, sub-model models the rise and fall times (effect of calcium

dynamics) which happens after any change in stimulation frequency during FES (i.e. the time

lag between changes in stimulation frequency and muscle activation).

Topology of the “General Model” for analogue recruitment input (fibre-type level), including

activation ( A) is shown in Figure A1.10, note that the hick arrows denote variables of

multiple values (for i =1, 2, and 3) and thin arrow denote single variables.

Sag is unique to fast-twitch fibres and becomes less at higher frequency and also at longer
lengths. Sag happens during isometric and constant frequency, where the muscle force
typically reaches a peak shortly after onset, after which there is a slow decline in force during

the next few hundred milli-seconds [ms], this is not to be confused with fatigue.

Yield (Y ) is the effect of stimulus frequency on sub-tetanic (at frequency lower than the
maximum natural frequency) FV properties. Yielding behaviour is unique to slow-twitch
fibres (fast-twitch fibres do not yield). Y is defined to be equal to 1 during the isometric

condition and to be less than 1 during length changes.

Modelling the transient-state of activation
As discussed in Chapter 2; at onset and termination of FES (or natural voluntary contraction)

there is a transient-state of activation, this can be modelled by the rise and fall time (U )

sub-model (proposed in Brown model, details are provided in [128] and summary in section
Al.4) or the “calcium dynamics + time delay” sub-model proposed in Riener-1 model (details
are provided in [72], summary in section Al.2). These two alternative sub-models (or any

other alternative) can be incorporated into the “General Model”.
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More details about the activation sub-model and its components (effective length, effective
frequency, Sag and yield) are provided in [81, 82, 84, 100, 127, 175, 176]. However, since
frequency is typically constant during FES; the activation sub-model is not included and the

activation has been assumed as constant at the value (A =1).
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Discussion on why the activation A, is assumed constant for in the “General Model”:

Stimulation frequency is assumed constant during FES. In some special cases, during
intermittent FES, the stimulation frequency can be changed when FES is off in order to
increase the force produced by the muscle, in this case the frequency will be assumed

adjustable, but not a real-time variable (i.e. ignoring dynamic changes in frequency).

At constant stimulation frequency: Yield and freq,, sub-models have no effect if the used

sub-models of (F-L, F-V, and f__,) are adjusted for the used stimulation frequency (i.e.
frequency can be assumed as hidden constant parameter). There is a very little effect from 1,

sub-model (reported in [128] to be less than 1%). Finally, since the effect of sag sub-model
lasts for very short time at onset of stimulation, and its value is decreased at higher
frequencies about or over 30 Hz (which is commonly used in FES), hence the effect of sag is

negligible.

Therefore, for simplicity the activation sub-model will not be included in FES control because
its effect on the output force is very little. Brown sub-models for (F-L, F-V, and f,.,) should
be modified to fit the used frequency in order to preserve the accuracy of these sub-models.
The removal of the activation sub-model form the “General Model” is considered reasonable

approximation; detailed reasons are given in the following points:

e In Brown model, all sub-models are developed for tetanic frequency (maximum

natural frequency) and they need to be multiplied by A in order to model the effect of

frequency on them. Brown defined tetanic frequency as the frequency at which muscle
force is maximum (experimentally, he found it to be around 120 Hz). Force does not
increase at frequencies higher than the tetanic frequency, but decreases at lower
frequencies (Brown calls them sub-tetanic frequencies). Tetanic frequency is
considered as “saturation frequency”, not to be confused with the frequency required
to get tetanic (smooth) contraction (i.e. fused contraction).

e Since frequency is constant, hence no need for the freq,, sub-model to model the

calcium dynamics when there is a change in the stimulation frequency. Note that, the

freq,; sub-model will model the change of frequency during FES, not at onset of

stimulation. The calcium dynamics sub-model will model the change of both

frequency and stimulation level (PW /PA) at onset of stimulation (since both start
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from zero to the value wanted). Any further change in the stimulation level (PW / PA)
will be modelled again by the calcium dynamics sub-model.

The freq,, sub-model has another function which is to correct the curve of the F-L

sub-model (modify it to fit the frequency used), but this effect can also be ignored if
the F-L sub-model was developed for the used frequency not for tetanic frequency.
Yield effect is not zero at constant frequency, but it only makes the F-V curve (at sub-
tetanic frequency) different from that at tetanic frequency. So, yield sub-model can be
ignored when frequency is constant and if the used F-V sub-model is for the frequency
in use not for tetanic frequency. Yield affects only slow-twitch fibres.

The F-V and F-L sub-models are usually developed and fitted using experimental data
at constant frequency. Therefore, the effect of the activation sub-model on The F-V
and F-L sub-models is similar to the effect of constant properties (such as muscle
structure and percentage of fibre types) which are constant and do not change in real-
time (different frequencies will alter the shape of the F-L and F-V curves but if
constant frequency is used then there will be no change during FES). Therefore, the
frequency can be assumed as a hidden parameter.

The previous points also mean that, in Brown model, the F-L, F-V and f.., sub-

models have to be modified to fit the used frequency. A simple way to do this is to use
a Matlab code to modify brown sub-model for F-L, F-V and f_., to the frequency
used during FES simulations (since they are already adjusted for the tetanic
frequency).

The effective length (1, ) sub-model has negligible effect, less than 1%, see [128] for
more details.

Sag has a dynamic effect even at constant frequency. The effect of Sag lasts for a short

period (few hundred milli-seconds) after onset of stimulation, so it has a little and very

short effect. Sag affects only fast-twitch fibres.
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Appendix 2: Instantaneous Length versus Initial Length

A2.1 Introduction

Skeletal muscle models are used for FES control applications. Many FES controllers have
been developed using a simulation approach. The performance of these controllers depends on
the muscle model accuracy [6, 55, 72, 73, 74, 76, 77]. In these models the instantaneous CE

length (1.c) is commonly used in the literature to calculate the corresponding muscle force

following stretch and/or shortening. However, in addition to the instability problem on the
descending limb (discussed in section A2.4) the isometric force-length curve is a poor
estimator of the force-length curve during “non-isometric” dynamic contractions of skeletal

muscle [177, 178]. Force enhancement following stretch f, following stretch and force

depression following shortening f, can reach values of almost 50% of the isometric force

corresponding to the instantaneous CE length after stretch/shortening [13].

During and after dynamic contractions, the force-length curve was found to be very different
from the traditional isometric force-length curve [177, 178]. The maximum velocity of

shortening (v, ) was reported to be dependent on the initial CE length [179, 180, 181, 182,

183]. The isometric steady-state muscle force after stretch/shortening depends on some

factors including the initial CE length [13, 177, 178]. Herzog [18] used the initial length (I,)

as input to the muscle model as long as the recruitment remains on, where both the F-L and F-
V relationships are dependent on the initial CE length.

For protocols of skeletal muscle contraction including shortening and/or stretch, either CE
length can be used for the calculation of force-length relationship, but which one is more
accurate? Is it accurate to use the instantaneous CE length? Or should the initial CE length be
used instead? These questions will be discussed and answered using experimental data taken
from the literature to examine systematically which CE length is more appropriate to be used
in predicting the steady-state muscle force following stretch/shortening.

In this study, the focus will be on the isometric steady-state muscle force after end of
stretch/shortening. Related experimental data taken from the literature are shown (including
recruitment plots and protocols of stretch/shortening). The collected data cover many possible
protocols of stretch/shortening on the ascending and descending limbs of the force-length

curve. The “active” force before stretch/shortening and the isometric steady-state “active”
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force after stretch/shortening are calculated (estimated manually) from graphs and then
compared with the purely isometric “active” muscle force (the traditional isometric force-
length curve) at the corresponding muscle length after stretch/shortening (i.e. using the

instantaneous CE length).

A2.2 Definitions

In this study; the term “instantaneous length” (l.;) is defined as the muscle belly (CE) length

or the muscle fibres length after stretch/shortening ends (generally, it is the CE length at any

time), the term “initial length” or “length at initial recruitment” (1,) is defined as the muscle

belly (CE) length or the muscle fibres length just before stretch/shortening commences. These
two lengths are used to calculate the corresponding isometric “active” muscle force from the
traditional force-length curve. These two lengths will be compared against the experimental
isometric steady-state force following stretch/shortening. The term “traditional isometric
force-length curve” is used for the isometric force-length curve estimated experimentally
without preceding stretch/shortening. The focus of this study will be on the changes of the
“active” isometric steady-state force produced by the contractile element of the muscle.
Passive force enhancement following “active” stretch and the transient-state force during

stretch/shortening are not included in this study.

Stretch induced force enhancement f, is defined as the increase of the isometric steady-state
force (when compared with the corresponding isometric force of the instantaneous length), at
a given level of recruitment, caused by stretching of a recruited muscle. Force enhancement

f, is also called “residual force enhancement”, as in [154]. Shortening induced force

e

depressions f, is defined as the decrease of the isometric steady-state force (when compared

with the corresponding isometric force of the instantaneous length), at a given level of

recruitment, caused by shortening of a recruited muscle. Force depression f, is also called

“residual force depression”, as in [184].

The increase/decrease in the isometric steady-state force after end of stretch/shortening is
typically calculated relative to the force produced by a purely isometric contraction [13, 152,
154, 155, 168, 169, 170, 171, 172, 173] at the corresponding instantaneous length at the same

condition. The reference force-length curve of a purely isometric contraction must be taken at
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the same conditions of recruitment and activation, for FES applications this means same

levels of stimulation voltage (PW and PA) and frequency.

A2.3 Experimental data from the literature

Vast majority of the experimental data available in the literature are for fully-recruited
muscles (where all motor-units are recruited), a single fibre, or a single myofibril. Most of the
experimental data used here are for fully-recruited muscles. Experimental data for partially
recruited muscles available in the literature are only during stretch/shortening. For the best of
my knowledge, protocols of stretch/shortening at different levels of recruitment are not
available in the literature. Therefore, the behaviour of a recruited single motor-unit in a
partially recruited muscle will be assumed similar to a fully recruited muscle.

The force-length curve consists of three parts; ascending limb, plateau region and descending

limb. On the plateau region the corresponding isometric force is almost the same, so changes

in length makes only little difference between forces corresponding to the two lengths (I
and 1,). On the ascending and descending limbs, the isometric force after stretch/shortening

on each limb is of different characteristics; therefore each limb of the force-length curve will

be studied separately. Dynamic contractions on the descending limb will be studied first.

A2.3.1.  Dynamic contractions on the descending limb of the F-L curve
Dynamic movements on the descending limb can be pure shortening (concentric contraction),
pure stretch (eccentric contraction), shortening followed by stretch, or stretch followed by

shortening.

A2.3.1.1. Pure shortening
Figure A2.1 shows a protocol of shortening on the descending limb of the force-length curve.

Isometric reference contraction was performed at the final length of the dynamic contraction

after shortening. Force depression ( f,) was determined 4.5 seconds following the end of the

shortening contraction.
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Figure A2.1: Force-time history for active shortening of 6 mm amplitude (about 18% of the
muscle fibre optimal length) from 6 to 0 mm at a constant speed of 3 mm/s (about 9% fibre

length per second). (From [152]).

() at any length (I)

IS0

The purely isometric force produced by contraction of muscle fibres f

can be calculated as follows:

fiso (I) = 1:total - 1:p
fow - TOtal isometric force including “active” and “passive” forces.

f,: Pure “passive” isometric force of muscle belly.
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The isometric force at initial length f, (I,), the purely isometric force corresponding to

IS0

instantaneous length after shortening f, (I.c), and the “experimental” isometric steady-state

force after stretch f.

1S0

(exp) were estimated manually from Figure A2.1 (see Table A2.1).

Table A2.1: Isometric “active” muscle forces estimated manually from Figure A2.1.

fiso (Io) fiso (ICE) fiso (exp)

36.5-10=26.5 [N] 31.5-3=28.5 [N] 29-3=26 [N]

Observation: The isometric force at initial length f, (1 ) is more accurate than the isometric

1S0

force at the instantaneous length f, (l.c), the initial length (1,) is much more accurate.

A2.3.1.2. Pure stretch
Figure A2.2 shows a protocol of stretch on the descending limb of the force-length curve. The
isometric reference contractions were performed at the initial and final lengths of the dynamic

contraction, before and after the experimental stretch test. Passive force enhancement Af,

following stretch of recruited muscle was greater than the corresponding passive force

following isometric contraction (the muscle was stretched when not recruited).

The isometric force at initial length f_ (l,), the purely isometric force corresponding to

1SO

instantaneous length after shortening f,  (I.c), and the “experimental” isometric steady-state

force after stretch f.

1S0

(exp) were estimated manually from Figure A2.2 (see Table A2.2).

Table A2.2: Isometric “active” muscle forces estimated manually from Figure A2.2.

fiso (Io) fiso (ICE) fiso (exp)

33-4=29 [N] 38-12=26 [N] 41-12=29 [N]
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Observation: The isometric force of initial length . (l,) is more accurate than the isometric

IS0

force of the instantaneous length f (I ), the initial length (1) is much more accurate.
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Figure A2.2: Force—time history for active stretch of 6 mm amplitude (about 18% of the
muscle fibre optimal length) from 0 to 6 mm at a constant speed of 3 mm/s (about 9% fibre
length per second). (From [168]).

A2.3.1.3. Shortening followed by stretch
Figure A2.3 shows a protocol of shortening followed by stretch on the descending limb of the
force-length curve. The isometric reference contraction “ i ” was performed at the final length
of the dynamic contraction (at +9mm). Note that increasing the amount of shortening makes
the total and the passive force enhancement to decrease to a similar magnitude.
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Figure A2.3: Force-time histories of four experimental active shortening of 0, 3, 6, and 9 mm
(at speed of 3 mm/s) followed by active stretch contractions (0 to +9 mm at 3 mm/s). (From
[169]).

The isometric force at initial length f_ (I,), the purely isometric force corresponding to

instantaneous length after shortening f, (I.c), and the “experimental” isometric steady-state

force after stretch were estimated manually from Figure A2.3 for both the 0 and the 9 force
traces (see Table A2.3).
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Table A2.3: Isometric “active” muscle forces estimated manually from Figure A2.3.

Force Trace fiso (Io) fiso (ICE ) fiso (exp)
(0) 22.5-1=21.5 [N] 29-10=19 [N] 33-10=23 [N]
(9) 29-10=19 [N] 29-10=19 [N] 31.5-10=21.5 [N]

Observation: For a protocol of active shortening followed by active stretch of the same
magnitude (force trace 9), this means that the isometric force at initial length and the
isometric force at the instantaneous length after stretch are the same: f (lc)= f,(,).
However, the isometric steady-state force was the same as that of length O (i.e. the length at
end of shortening and before stretch). Decreasing the magnitude of shortening (making it
shorter than stretch) further increases the isometric steady-state force making it maximum at
zero shortening (i.e. pure stretch).

A2.3.1.4. Stretch followed by shortening
Figure A2.4 shows a protocol of active stretch followed by shortening on the descending limb
of the force-length curve. This data is for intact, single fibres dissected from the lumbrical

muscles of the frog, as presented in [171].

Observation: For a protocol of active stretch followed by shortening of the same magnitude,
means that the isometric force at initial length and the isometric force at the instantaneous

length after stretch are the same: f, (I.¢) = f, (I,). However, the isometric steady-state

force was just slightly larger.
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Figure A2.4: Force against time (A) and length against time (B) for one set of three
contractions with a shortening of the same distance as stretch; isometric-shortening
contraction (The thick, solid, light-grey), purely isometric contraction (The thick, broken,
dark-grey line), and stretch followed by shortening contraction (The thin, solid, black line).

Inset shows the force enhancement ( f,2) for the protocol of interest (stretch followed by

shortening contraction). (From [171]).

A2.3.2.

Dynamic movements on the ascending limb can be pure shortening (concentric contraction),

Dynamic contractions on the ascending limb of the F-L curve

pure stretch (eccentric contraction), shortening followed by stretch, or stretch followed by
shortening.
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A2.3.2.1. Pure stretch and pure shortening
Figure A2.5 shows separate protocols of pure stretch and pure shortening on the ascending
limb of the force-length curve (except for the top left plot which shows pure shortening on the
descending limb and pure stretch on the ascending limb). The zero-reference cat soleus
muscle length corresponds to 80° ankle angle [152]. In this figure, the force enhancements
following stretch and force depressions following shortening were less at shorter muscle

lengths. Also, force enhancements and force depressions were less at higher speeds.

Observation: It is clear from the force traces that using the instantaneous length 1. is more
accurate than the initial length | , this is more obvious at shorter lengths and also at faster

speeds of stretch/shortening. Speed of stretch/shortening has an effect on f, and f, as can be

seen clearly in Figure A2.5, however this will not be considered here.

A2.3.2.2. Shortening followed by stretch and stretch followed by shortening

Figure A2.6 shows three protocols on the ascending limb of the force-length curve: an
isometric reference contraction, a stretch followed by shortening of equal magnitude, and a
shortening followed by stretch of equal magnitude. The zero-reference cat soleus muscle

length corresponds to 80° ankle angle on the upper part of the ascending limb [172].

i) Shortening followed by stretch:
Another experimental study in [185] found that a protocol of shortening followed by stretch
of equal magnitude will cause slight enhancement, the measured force enhancement was 1.2
%, 1.4 % and 1.6 % for 4, 16 and 64 mm/s stretch speeds, respectively, it was also found in
the same study (in [185]) that protocols of shortening followed by stretch at varying speeds
produced very similar results as in Figure A2.6 but the speed of shortening has some little

effect.

Protocols of shortening followed by stretch with varying magnitudes resulted in slightly

different isometric steady-state forces f., (exp), shortening less that stretch causes larger force

enhancement [172, 185]. Repeated cycles of shortening-stretch did not affect the isometric
steady-state force [172, 185].
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Figure A2.5: Force-time histories of three shortening and three stretch contractions, at speeds
ranging from 2.5 to 30 [mm/s]. The isometric steady-state force of the muscle at the final
length is indicated by horizontal broken line. Length represents displacement from optimal
length (Icg — o). The final length was 0, - 4, and - 8 mm in (a), (b), and (c) respectively.
(From [152]).

ii) Stretch followed by shortening:
Force-time histories for an isometric reference contraction and a stretch followed by
shortening of equal magnitude and a shortening followed by stretch of equal magnitude are

shown in Figure A2.6. The isometric steady-state forces after the shortening followed by
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stretch f.

1SO

(exp) were always (n=8) very similar as those obtained for purely isometric
contractions [i.e. f (Icz)]. The isometric steady-state forces after stretch followed by

shortening f._ (exp) were always (n=8) below the corresponding purely isometric forces

fiso (ICE) '

Soleus Force

[N]
35
30 I!z i
LR ]
IR S
154 -~ Stretch - shortening
== Purely isometric

TS —— Shortening - stretch

A ]
. o S—— | L—

0 1 2 3 a 5 § 7 8 ’ =
Length
[mm]

1

1 2 3 4 5 8 7 8 ) 10

Time [&]
Figure A2.6: Force-time histories for an isometric reference contraction (0 mm) and a stretch
followed by shortening of equal magnitude (+ 4 mm) and a shortening followed by stretch of

equal magnitude (+4mm). (From [172]).
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Protocols of stretch followed by shortening at varying speeds, and protocols of stretch
followed by shortening with varying magnitudes (and equal speeds) resulted in little force

depression (similar result as that in Figure A2.6). These results indicate that f, and f, are not

affected by speed of stretch followed by shortening or the magnitude of stretch/shortening,
details are provided in [172, 185]. Repeated cycles of stretch-shortening results in cumulative

effect (i.e. more cycles results in a slightly smaller steady-state force) [172, 185].

Observation: For a protocol of shortening followed by stretch of equal magnitude, the
isometric force at initial length and the isometric force at the instantaneous length after stretch

are of similar values: f, (I.c)~ f(I,). This means that using either length (initial or

instantaneous) will produce similar results. However, both lengths are not accurate in the

other case (stretch followed by shortening).

A2.3.3. Dynamic contractions on both limbs of the F-L curve
Dynamic movements on both of the ascending and descending limbs of the F-L curve can be
either a pure stretch starts on the ascending limb and ends on the descending limb, or a pure

shortening starts on the descending limb and ends on the ascending limb.

A2.3.3.1. Stretch starts on the ascending limb
Figure A2.7 shows protocols of stretch, a reference contraction at the final length +9mm
length (9mm longer than optimal length) and a series of stretch contractions of various
magnitudes. The protocol of interest is the protocol which starts on the ascending limb (at -
12mm) and ends on the descending limb of the force-length curve (at +9mm). The zero-length
corresponds to optimal length. Speed of stretch is 12mm/s, final isometric contractions lasting

at least 5 s.
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Figure A2.7: Force-time history for a muscle performing stretch protocols for magnitudes of
3, 6,9, and 21 mm. The total force enhancement shown is between the 3 mm stretch trial and

the isometric reference. (From [154]).

Observation: For the protocol of interest which starts on the ascending limb (at -12mm) and
ends on the descending limb of the force-length curve (at +9mm) in Figure A2.7, the steady-

state force f,, (exp) is even larger than that which started at the optimal length (i.e. greater

than maximum isometric force f. ). This indicates that instantaneous length (1 ) is more

1S0, max

appropriate in this case.
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A2.3.3.2. Shortening starts on the descending limb
Figure A2.8 shows protocols of shortening, a reference contraction at the final length (at -
4mm), and a series of stretch contractions of various magnitudes. The protocol of interest is
the protocol which starts on the descending limb (at +6mm) and ends on the ascending limb

of the force-length curve (at -4mm). The zero-reference cat soleus muscle length corresponds
to 80° ankle angle [185]. Speed of stretch is 4mm/s.

The isometric force at initial length f_ (I,), the purely isometric force corresponding to

1S0
instantaneous length f, (lz) after shortening and the “experimental” isometric steady-state
force after stretch were estimated manually from Figure A2.8 for all force traces (a, b, c, d,
and e), as given in Table A2.4. From this Table, it is clear that, at least, traces (a) and (b) are

on the descending limb. The purely isometric force reference (f) has a value of 22 [N] at
length (-4 mm).

Table A2.4: Isometric “active” muscle forces estimated manually from Figure A2.8.

Force Trace fiso (Io) fiso (ICE ) fiso (exp)
a (+6 mm) 26.5-5=21.5 [N] 22 [N] 195 [N]
b (+4 mm) 25-3=22 [N] 22 [N] 20 [N]
¢ (+2 mm) 24-15=225 [N] 22 [N] 20.5 [N]
d (0 mm) 23.5-1=22.5 [N] 22 [N] 21 [N]
e (-2 mm) 22-0=22 [N] 22 [N] 215 [N]

Observations: Both lengths (I, and I..) have a noticeable percentage of error when

compared with experimental results reported in the literature; initial length is slightly better
estimator for force trace (a), both lengths are similar for force traces (b) and (e), instantaneous
length is better estimator for force trace (c) and (d). All forces were depressed. Traces (a), (b)

and (c) were depressed by the same amount of about 2 [N] when compared with f (l,), even

they were shortened by different magnitudes of shortening. Traces (d) and (e) were depressed
by 1.5 [N] and 0.5 [N].
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Figure A2.8: Force—time history for a muscle performing shortening protocols for magnitudes
of 2, 4, 6, 8, and 10 mm. The isometric reference contraction at muscle length -4 mm.

Shortening speed of 4 mm/s and maximal recruitment were kept constant. (From [155]).
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A2.3.4. Effect of varying recruitment level during and after stretch/shortening

Modelling of skeletal muscle force production can be very complicated. The isometric steady-
state force following stretch and/or shortening is affected by many factors; one of these
factors is the level of recruitment during stretch/shortening which can change the shortening
forces as shown in Figure A2.9, A2.10 and A2.11. Altering stimulation frequency has similar
results as varying recruitment level, see Figure A2.12. If muscle recruitment was interrupted
(decreased suddenly to zero level) during shortening, the isometric steady-state force will be
affected depending on the time period of de-recruitment, see Figures A2.13, (A2.14) and
(A2.15).

In Figure A2.9, no stretch/shortening was performed during this process. There was no force

depression (associated with the change in recruitment levels) upon full re-recruitment.

Force [N]
30 1
F |
20
104
0 5 a
Time [s]

Figure A2.9: Force-time histories of isometric contractions, in which recruitment was
decreased for a 2 second period (at different levels) following full force development. (From
[155]).
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Figure A2.10: Force depression increases with increasing force during shortening. Results

shown are from cat soleus at 37 C°. The different force levels were achieved by changing the

stimulation voltage. (From [13]).

In figure A2.11, the shortening was done from the ascending limb to the ascending limb; at

six levels of recruitment during the shortening phase, ranging from full recruitment (3T) to

zero recruitment (0). Isometric reference contraction (i) at -4 mm was performed at the final

length of the dynamic contraction after shortening. Force depressions are directly related to

the force during the shortening phase.
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Figure A2.11: Force-time history for shortening of 8 mm from +4 to -4 mm at six levels of

recruitment during the shortening phase.(From [170]).

In figure A2.12, the activation of the muscle was varied by frequency modulation between (0)
and (100) Hz to produce different force levels during shortening, similar results were obtained
when varying the recruitment level between 100% and 0.0%. Force depression decreased with

decreasing activation/recruitment during the shortening phase.
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Figure A2.12: Force-time, length-time and recruitment -time histories of shortening

contractions. (From [152]).

In figure A2.13, the force-time histories shown are for shortening of 8 mm amplitude at
constant speed of 4 mm/s, and force-time history of an isometric reference contraction at the
final muscle length of -4 mm. The recruitment during shortening was varied by de-recruiting

the muscle for the first 0.5, 1, 1.5, and 2 seconds and then re-recruiting it maximally.
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Figure A2.13: Force-time histories of shortening at constant speed , the recruitment during
shortening was varied by de-recruiting the muscle for different times. (From [185]).

In figure A2.14, (A) Force depression as a function of recruitment during the shortening
phase. The higher the force during shortening, the more the force depression. (B) Force
depression as a function of the time period of de-recruitment during the isometric contraction

following shortening. The smaller the interruption, the more the force depression.
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Figure A2.14: (A) Force depression as a function of recruitment during the shortening phase.
(B) Force depression as a function of the time period of de-recruitment during the isometric

contraction following shortening. (From [173]).

In figure A2.15, during the second isometric phase (i.e. after the shortening had occurred), the
recruitment was interrupted for variable time periods to allow the muscle force to decrease to
different levels. The force depressions following de-recruitment were smaller for longer
periods of de-recruitment (i.e. longer interruption). When the de-recruitment periods were so
long that the muscle force dropped to zero, or even stayed at zero for a period of time, the
forces following re-recruitment came close to or exceeded the isometric reference force
(dashed line).
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Figure A2.15: Force-time, length-time and recruitment-time histories of isometric-shortening-

isometric contractions for one representative muscle. (From [152]).

A2.4 Instability on the descending limb of the force-length relationship

Almost six decades ago, A. V. Hill proposed that sarcomere behaviour was unstable on the
descending limb of the force-length relationship [186], since then this has been a topic of
great debate [18, 182], see Figure A2.16. A system is considered stable if, following a

perturbation, the system will return to its original state.
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Figure A2.16: The sarcomere force-length relationship of frog skeletal muscle. (From [18])

The negative slope of the descending limb has the characteristics of a softening material (i.e.
force becomes less as the material is stretched), and any material with such properties would
be highly unstable if this was a dynamic property. But, the softening behaviour of skeletal

muscle has not been observed experimentally.

The isometric force-length relationships represent a series of isolated and independent static
experimental observations because they are obtained for isometric contractions at discrete
lengths, the sarcomere force-length relationship of frog skeletal muscle is shown in Figure
A2.16.

If an active sarcomere was stretched or shortened to a new length, the force would not follow
the continuous isometric force-length relationship. The steady-state force after stretch would
be larger, and after shortening, would be lower than the isometric force corresponding to the
new length (Figure A2.17). This result indicates that sarcomere stiffness is always positive,
including the descending limb, and sarcomere stability is guaranteed [18].

222



Force

Fibre Length

Figure A2.17: Schematic representation of the sarcomere force-length relationship. If the
sarcomere was stretched or shortened to a new length, the force would not follow the
isometric force-length relationship; the force would be larger after stretch and would be lower
after shortening. Sarcomere stiffness observed experimentally is always positive and stable.
(From [18]).

In all muscle models reported in the literature (except Herzog model [18]), the muscle force is
dependent on the instantaneous length (I..) directly, using the isometric force-length
relationship for non-isometric conditions. This leads to instability in the descending limb of
the force-length relationship. To avoid this major problem, Herzog [18] assumed that the
muscle remembers the length at initial recruitment | as long as it is still recruited (at any
level). Once fully de-recruited, that length is forgotten and a new initial length will be used
upon the next recruitment (at any level), details of Herzog model are provided in Appendix 6.
Furthermore, the experimentally observed force enhancement (following active stretch) and
force depression (following active shortening) on the ascending and descending limbs of the
force-length relationship is not constant; it depends on the length at initial recruitment [18,
187, 188]. This feature can be incorporated into the muscle model either directly by making
the stiffness of the parallel element depend on R and/or | , or indirectly by an elastic rack
that is engaged upon recruitment (e.g. Forcinito elastic rack [156, 157] presented in previous

section).
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Why to use |, instead of I ?

The length at initial recruitment serves two purposes: first to avoid instability on the
descending limb, and second it is more accurate on the descending limb (as can be seen in the
experimental data provided in this appendix).

The force enhancement/depression need to be modelled separately, it depends mainly on the
initial length. Other factors affecting the force enhancement/depression are discussed and
modelled in section 2.5.5 and Appendix 2.

The CE length at initial recruitment (1) can be used with muscle models in different ways:

) The simplest way is to use it directly as input to the F-L sub-model (e.g. the
original Herzog model), see Chapter 3.
i) A more complex way is the multiple motor-unit modelling approach. Two

different ways are illustrated in Chapter 3; the Eff.f_, and the Eff.f.. multiple

motor-unit models.

iii) To use |, with I and v, (during stretch/shortening) and magnitude of

0

displacement (Al..) to calculate force depression & enhancement using the new

complex IE & ID sub-model illustrated in Chapter 6.
Iv) Any other level of complexity between (i) and (iii). For example, Forcinito IE &
ID sub-model [156, 157] which uses an elastic rack to calculate the force

enhancement and depression.

Does the sliding filament theory help to justify the initial length?

Several possible mechanisms are presented in [13, 173, 189] and other references (see those
provided in [13]). However, Herzog [13] questioned all these proposed mechanisms based on
experimental evidence; only one mechanism was found to conceptually agree with
experimental data. However, none of those proposed mechanisms nor the sliding filament
(cross bridges) theory was helpful to justify the length at initial recruitment. Herzog [18]
clearly concluded: “Specifically, the dependence of force production on the history of

contraction is not part of the cross-bridge model”.

Herzog et al [190] experimentally examined the steady-state force enhancement in view of the

cross-bridge (sliding filament) theory. They concluded that the steady-state force
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enhancement following active stretch has a passive and an active component: “The active
component is associated with the cross-bridge kinetics, and the passive component is
associated with a calcium-dependent increase in titin stiffness” quoted from [190]. More
discussion about history effects and possible mechanisms are provided in [182, 187, 188, 190,
191, 192, 193, 194].

A2.5 Discussion

The use of instantaneous length in dynamic contractions leads to instability on the descending
limb of the force-length relationship. In order to avoid this problem, the length at initial
recruitment can be used. This will make the system stable on the descending limb of the
force-length relationship and also makes the corresponding isometric force more accurate than

that of the instantaneous length.

As can be observed from the experimental data taken from literature, after dynamic
contractions, the force-length curve was found to be different from the traditional isometric
force-length curve. For the case of dynamic contractions on the ascending limb of the force-
length relationship, both lengths are not good estimators. However, the instantaneous length

(I.e) was closer to the experimental results.

For the case of dynamic contractions on the descending limb of the force-length relationship,
the initial length (1,) was much better and very close to the experimental results.

For the case of dynamic contractions involving length changes through the whole force-length
curve (on both ascending and descending limbs), the instantaneous length (I.. ) was close to
the experimental results for the case of stretch starts on the ascending limb. For the other case
of shortening starts on the descending limb, both lengths are not good estimators but the

instantaneous length (.. ) was closer to the experimental results.

Initial length is a good estimator in the case when the range of muscle length change lies on
the descending limb, for example if the physiological range of the muscle excursions naturally
lies on the descending limb. In this case, the initial length can be used with a relatively simple

muscle model but in the same time keeping high level of accuracy.
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Other protocols involving other cycles of stretch and shortening at different magnitudes and
different speeds and happening on any part of the force-length curve are complex and difficult
to predict. The experimental data available in the literature are not enough to describe
confirmed characteristics, therefore any other possible protocols will be considered beyond

the scope of this study.

When used for FES control; assumptions are made regarding the nominal length to use as an
input to the force-velocity sub-model. Various authors use different approaches to account for
lengths that vary with time, but the instantaneous CE length is commonly used. If the output
of the model is joint torque, then the instantaneous joint angle and joint angular velocity are
used as inputs (rather than CE length and velocity) and joint torque as output (rather than
muscle force) [86].

In an attempt to address the issue of modelling partial recruitment, Herzog [18] used the
initial length as an input to a relatively simple muscle model to determine the force response
of the muscle, for as long as the recruitment remains on. Clearly, this is not accurate if the
recruitment level does not remain constant as the muscle contracts, or lengthens. It is also not
accurate to use the instantaneous length as input, if the isometric force-length relationship is

used for “non-isometric” dynamic situations.

The experimental evidence provided in this appendix shows that the instantaneous length is
not accurate for dynamic (non-isometric) contraction following active stretch, the observed
muscle force is larger than the isometric force corresponding to instantaneous length after
stretch (the difference is called force enhancement). Similarly, muscle force is less than the
isometric force corresponding to instantaneous length after active shortening (force

depression). Most experimental evidence suggests that the initial length (1)) is a key

parameter that determines total muscle force.

Force enhancement/ depression ( f,/ f,) are dependent on initial length; if motor-units are

recruited at different lengths then each recruited motor-unit needs to be treated separately.
The multiple motor-unit model proposed in Chapter 3 can be used to increase the accuracy of
the muscle model to account for continuously changing recruitment levels. To make the
model more accurate, more complexities have to be incorporated into the model. In the case

when recruitment level is continuously changing during FES, where different motor-units are
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recruited at different muscle lengths, multiple motor-unit modelling approach can be used to
account for recruitment history where every recruited motor-unit is treated as a separate

muscle.

Stretch induced force enhancement f, and shortening induced force depression f, are both

dependent on the magnitude of stretch/shortening; this dependence was looked at in this
study. However, force depression is also affected by forces during shortening and speed of
shortening [13], some researchers also reported that speed of stretch affects force
enhancement [152], these effects are not covered in this study.

However, the greater the complexity of a model, the more difficult it is to implement such a
model in real-time and hence an understanding of the trade-off between model complexity
and controller performance is required [74, 76, 77].

Each property of skeletal muscle can be modelled separately making the model more generic
and more accurate this will make the model scalable in complexity and accuracy. The model
complexity can be adjusted depending on application, the user of the model need to make
decision on the balance between accuracy and the level of complexity. More complex models
require more computational time and more parameters that need to be experimentally
estimated. Figure A2.18 shows one possible relationship between the quality of FES
controller and model complexity (assuming that extra complexity will improve model

accuracy).

The hypothesis of is this research work is that the quality of FES controller is expected to

increase with model accuracy, but model accuracy may not necessarily increase with model

complexity (using the appropriate length 1, _or I.. _is an example). Muscle models, used for

FES control, use a variety of different levels of complexity. For most models, the
“instantaneous” CE length is used as an input to the isometric force-length relationship to
calculate force. In most cases, muscle contractions will not be occurring under isometric
conditions and hence there are clear limitations with these approaches. Herzog [18] used the
initial length as the input, which is also not accurate if the recruitment parameter varies at
different CE lengths. Even if the model was complex but uses the wrong length, a simpler

model can be more accurate if the right length was used.
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Model complexity versus quality of FES controller

100k —
R
_—'-—"'-'_-
_F.:-'—"
_'_‘_.o-'—"
—_ .
X ol - -
(- e
E =
= -
= -
s B -~ B
g e
W /
[N}
- -
= = , =
=] 40 s
Z e
= .
s e
g A - R
_H-"f
a"fj
-
|:| i 1 L 1 i 1 L L 1 L
0 10 20 30 40 50 il T0 20 a0 100

Model complexity compared with real muscle [%]

Figure A2.18: One possible relationship between the quality of FES controller and model
complexity, roughly estimated relative to real skeletal muscle (assuming that extra complexity

will improve model accuracy).

Figure A2.19 shows the three-dimensional relationship between CE length, CE velocity and

active muscle force ( f..) using the “instantaneous” CE length in Hill-type models. If the

initial length was used instead, the isometric force-length relationship would stay constant at

all lengths with the value that corresponds to the initial length.
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Figure A2.19: Three-dimensional relationship between “instantaneous” CE length (1. ),CE

velocity (v ) and CE force ( f..). (Adapted from [18])

A2.6 Conclusions

Modelling of skeletal muscle force production can be very complicated as can be observed
from the experimental data used in this study, note that this study only covers some of the

effects of stretch/shortening on the steady-state force enhancement/depression. However, for

applications where simplicity of the model is required, the initial length I, can be used with
good accuracy for dynamic contractions on the descending limb (1, is more accurate than the

instantaneous length ;). On the ascending limb, both lengths were not good estimators but

the instantaneous length was closer to the experimental results.

The initial length (1) is a key parameter that determines total muscle force as can be

observed from the experimental data. The isometric steady-state muscle force is highly
affected by the length of the muscle fibres. Muscle fibres length is the most important factor
in the force-length relationship.

229



In dynamic movements, when recruitment levels are changing continuously, different motor-
units will be recruited at different initial lengths and at different times. This will make
significant differences in the forces produced by recruited motor-units. Isometric steady-state

force, f,/f,, fatigue, and other muscle properties depend on initial length and time since

initially recruited.

The multiple motor-unit modelling approach can be used to account for the recruitment
history during FES control whilst allowing the recruitment to change continuously at different
lengths. This approach of modelling can also account for different types of motor-units of
different properties, within one muscle.

In order to model muscle force properly, all important muscle properties have to be taken into
account and incorporated into the model in order to increase the accuracy of the model, but
this will make the model and parameters’ estimation much more complex. A compromise

between model complexity and accuracy has to be decided.

A2.7 Summary

The isometric steady-state force of skeletal muscle after stretch or shortening is history-
dependent [13, 152, 154, 155, 168, 169, 170, 171, 172, 184, 185]. In this appendix, the initial
length and the instantaneous length were compared for the purpose of estimating the steady-
state skeletal muscle force following stretch and/or shortening from the traditional force-
length curve. A review was made to the existing evidence, in the literature, on the isometric
steady-state muscle force and the relationship with the history of CE length. The experimental
isometric steady-state force following stretch/shortening is compared at the final CE length
(after stretch/shortening) with the corresponding force of purely isometric contraction and
also compared with the force at the initial CE length (before stretch/shortening). Results of the
comparison are discussed. It was concluded that the initial length is much more accurate for
dynamic contractions on the descending limb. On the ascending limb, both lengths are not
good estimators, but the error was less when using instantaneous length. Improvement of
model accuracy by incorporating more complexities into the basic Hill model is also

discussed.

In chapter 3 of this thesis, Matlab simulations for different protocols of stretch and shortening
using the initial and instantaneous lengths are tested for the single and multiple motor-unit

models.
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Appendix 3: Herzog Model

Herzog muscle model [18] is a basic Hill-type model (not complex); the main difference from

other models in the literature is that Herzog uses the CE length at initial recruitment (I,)
instead of the instantaneous CE length (l..) which is typically used with Hill-type muscle

models. Another feature of Herzog model is in the modelling of the maximum shortening and

str

and V¢e . ), Where both of v

str

stretch velocities (v, and V¢e ., depend on fi (l,),

CE,max CE,max

see summary of Herzog F-V sub-model in section 2.5.3.2. Summary of the “original” Herzog

model (as introduced in [18]) is given here:

A3.1 The standard Herzog model

Herzog used the three-element Hill-type model, the model consists of a parallel elastic

element (k) in parallel with a series elastic element (k;) and a contractile element (CE ), see

Figure A3.1.
ks
o CE p——"\\\—— F
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Figure A3.1: Topology of Herzog model [18].

For a skeletal muscle at full recruitment (R =1), the isometric muscle force is approximated

by the following equation:

fiso (Io) = fiso,max'[_cl(lo /Iopt)2 +C, (Io /Iopt) _Ca] (A31)

Where, |, is Length of the contractile element (CE) at the moment of initial recruitment, 1,

is the optimal CE length, f, (l,) is the isometric muscle force corresponding the CE length at

1SO

initial recruitment and f, is the maximum isometric muscle force. c, c, and c, are

1S0,max

231



constants, their values depend on the force-length experimental curve of the muscle. For a
typical mammalian skeletal muscle the normalized isometric muscle force can be

approximated by the parabola given in equation A3.2 and illustrated in Figure A3.2.
fieo (I0) = figomax X[=2.777(1, /Iopt)2 +5.554(1, /1, ) -1.777] (A3.2)

This equation can be simplified to reduce the number of constant coefficients to one

coefficient only.

FL(,) =

S )
fiso(lo):{cl(lo 1)2+1 for positive values} (A3.2A)

f 0.0 for negative values

iso,max

|

|, =—2 ¢ =-2.777.
|
opt

Note that this parabola achieves positive values within the range: 0.4 <I, <1.6, else for

negative values the isometric force is zero ( f, (l,) =0).

Equations A3.1, A3.2 and A3.3 give the CE active muscle force only; the passive muscle

force of the parallel element PE will be considered in the equation of total muscle force (F,,).

CE Force [normalized]
10 === = = =

|
|
0.5 I
|
|
|

0.0 i
0.4 1.0 1.6
CE Length [normalized]

Figure A3.2: The normalised force-length relationship of a skeletal muscle obeying equation
A3.2. (From [18]).
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The contractile element CE of Hill model, originally conceived to operate at the plateau of the
force-length relationship, can be generalized to include the full force-length response. Such a
generalized CE is governed by an all-or-nothing recruitment (R =1 if the muscle is recruited,

otherwise R =0).

In the inactive state, the CE cannot sustain any force, and its length can be adjusted at will. In

the active state (providing the force as a function of CE velocity (v ), and CE initial length

(I,), the behaviour of the CE is related to empirical data as follows:

0 for vg S—fiso(h))E
a
fiso (IO)b+aVCE for - fiSO (|0)2< Ve < 0
f ot )= —Vee +D a (A3.3)
CE ce\Vce+ o 15f_(,)-05 fiso (Ig)D +<’:1VcE for O<vg < fiso(IO)b_y
Vee +D a
b
15f,(,) for v > fiso(lo);

a,b, a’ and b': are constants. f..: is the instantaneous force produced by the contractile

element CE.

In the shortening range equation A3.3 is a direct rewriting of Hill’s law [97], with CE velocity
(vee ) considered positive in elongation. The overall appearance of equation A3.3 is plotted in

Figure A3.3.
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Figure A3.3: The normalised force-velocity relationship of Herzog model. (From [18]).
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% ? A —— Fm =f1_-};
—AMAN- > f

Figure A3.4: Total force in Herzog model is the sum of the two parallel forces.

The forces of elements in series are always the same in both elements while the elongations
sum to the total elongation of the combined element. In parallel elements the elongations are
the same and the forces are added as shown in Figure A3.4. The response of the three-element

model is governed by equations A3.4 and A3.5, derived as follows:

fl = ks(AImt _AICE) = fCE (VCE7IO)

f, =k, <Al
F,=f+T1,
F, = (k, xAlL) + K, (AL, —Alg) (A3.4)

Fm - fz = f1 = fCE (VCE'IO)
Fn _(kp x Al ) = fee (Ve o) (A3.5)
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With |, given by (I, =1, +u, —1{ =1, +u,) and Al denotes the elongation of the CE
with respect to its length at the unique resting state of the system. It is possible to eliminate
the internal degree of freedom v.. by rearranging equation A3.4 and introducing the result

into equation A3.5 to obtain the first order nonlinear differential equation:

Fo —(k, <Al )

From equation A3.4: = (Al —Alee)

S

k F
Al :(1+k—")><AImt e

S S

By taking the time derivative, the instantaneous CE velocity is:

y :
Ve = (1+ k—pJ XV . — (%) (A3.6)

By introducing the last result (equation A3.6) into equation A3.5, the total muscle force for a

fully recruited muscle can be expressed as:

Fo = (kp x Al )+ fCE(VCE’IO)

F,—(k, xAl ) =f 1kp F'ml A3.7
m_( p>< mt)_ CE ( +k_SJXth_E 110 ( . )

The muscle is considered to be at full recruitment (R =1) in equation A3.7. The variations in
R have to be considered when modelling muscle force, any complete muscle model should
allow for such variations, but definitive experimental data are not available yet [18]. Until the
proper experimental data becomes available, provisional solutions which at least do not
violate the basic laws of physics can be used. Herzog [18] assumed that the muscle

remembers the CE length |, at which it was initially recruited for as long as any level of

recruitment remains. If, and only if, the recruitment completely disappears, then that length is
forgotten and a new initial length will be determined upon a new recruitment. For partial

recruitment; equation A3.7 can be modified to:

K z
F, = (k, xAl) +Rx fCE(([Hk—prvmt —(k—mD,IOJ (A3.8)
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In order to solve the differential equation in A3.8, Herzog used the forward finite-difference
scheme. The time derivative of total muscle force is approximated using the known value at

time (i) and the unknown value at time (i+1) as follows:

_F(i+D)-F,(3)
m= h

h: small time increment.

E

The forward finite- difference scheme used by Herzog to solve the differential equation in

A3.8 is not explained in [18], details are not provided in that reference.

A3.2 The formulated Herzog model

The original Herzog muscle model is summarised in the previous section of this appendix.
The purpose of the work described in this section is to re-analyse the equations presented by

Herzog [18] in order to produce an expression for the rate of change of total muscle force F_

as a function of relevant parameters.

The elongation of the whole muscle (the musculotendon complex) Al , will be measured
from the unique resting state (inactive, force-free) corresponding to the un-stretched length
I5. of the parallel element PE and the un-stretched length I of the series elastic element SE

as shown in Figure A3.5. In the inactive state (R =0), the CE cannot produce any force, and

its length can be adjusted at will according to the following equation:

(A3.10)

_ t
ICE - IPE _Is

Where: |, =15 — 1}

| ... is the resting length of the inactive contractile element CE (at the unique resting state).

rest
I : SE slack length (at the unique resting state), SE length beyond which SE begins to
develop force.

IS.

rc.  The slack length of PE (at the unique resting state), the length beyond which PE

begins to develop force.
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The unique resting state is considered “unique” because for any stretch beyond this length, the

musculotendon complex will develop passive force.

EIJ’EL"J' ET-'-'
- |- — g
ks
p CE p—+—WA——
2'— AN =0 }—F, =0
L AMW
P
- FPE -

Figure A3.5: Herzog model at the unique resting state.

The elongation value for the entire muscle Al , at the instant at which the recruitment is

applied is u,. At this moment, the elongation of the contractile element Al.. will also be u,,

since the force in the serial element SE (and its elongation) will vanish up to the moment just
before the initial recruitment, see Figure A3.6. The length of the contractile element CE at the

moment of recruitment (1,) can be represented as:

Iy =log +Uy — 1§ =1, +U, (A3.11)
=1 +u, -
- - > | —>
e ks
% — CE J—+—wWA
2,_ A= U, > Eﬁ.
PPN premmmmmm 14 —
kp — i'l.fm = U,
‘EPE+ME
=i -

Figure A3.6: Herzog model at the moment of initial recruitment.
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In the original form of Herzog model, the CE velocity (v.) is expressed as a first order

differential equation:

y :
Ve = [1+ k_pjvmt -~ [%j (A3.12)

S

The total muscle force for partial recruitment is given as follows:
kP m
Fr :(kpXAImt)+fCE(VCE'IO):(kpXAImt)+RX fCE 1+k_ Vit — k_ vlo (A3.13)

F.: Total muscle force, including all active and passive forces (all forces produced by the
musculotendon complex). k: Stiffness of the linear un-damped purely elastic element in
parallel (PE). k,: Stiffness of the linear un-damped purely elastic element in series (SE). Al ,
: Elongation of the musculotendon complex from the unique resting state. v, =dl_, /dt:
Instantaneous velocity of the musculotendon complex (including muscle fibres and tendon).
Ve o Instantaneous CE velocity, assumed the same for all motor-units. v.. =dl. /dt,

Ve <0 for muscle shortening.

The author’s implementation of Herzog’s F-V sub-model depends on the instantaneous CE

velocity and is calculated as follows:

To solve the differential equation in A3.13, the time derivative of the total muscle force F, as
a function of (R, Al ,,v,,, fi, (I,),F,,) is calculated from equations A3.3 A3.12 and A3.13, the

derivation is provided in Chapter 3.

Finally, F_ of the formulated Herzog’s single motor-unit model is represented as:
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K Vi for Vo 5| ka - b'fiso(llo)
p ko) a{1+pJ
K,
bR ()—F +k Al )+[142 [Ra+F. —k.al)
TioUp ) —Fpy + mt)H| L+ — a+ k- mt MV . .
’ t kS i t t I:m b fiso (Io) I:m
T for k) " <vmts—k .
k—(R.a+Fm—kprlmt) ( p Tt s) a-[1+ka ( pt 5)
k
2[R fo (1) = (F =K, AL [+ [R.BF (1) +2) = 2(F, — K, AL O J 142 v, . .
kS I:m I:m b"fiso(lo)
1 or k) S vk K
LRG0+ @) -2(F, K al,)] A a0 a'.(1+kp]
kpvmt for I:m _ b'fiso(lo) <th
(k. +k,) k)
; a1+ " (A3.9)

239



Then total muscle force (F,,) is obtained by integration of F_ with respect to time:

F,=/F, dt

m m

A3.3 Matlab simulation results

Matlab codes were developed for simulating the responses to open-loop stimulation protocols
of different versions of Herzog muscle model. In order to solve the differential equation in
A3.8, Herzog used the forward finite-difference scheme. However, the author used two other
different methods; one method with the formulated Herzog model (equations A3.9) and
another method with the standard (original) Herzog model (equations A3.8) using an iterative
approach (details are provided in Chapter 3). Both of these two methods can be used with

single or multiple motor-unit models.

Matlab simulation results were found to be exactly the same for the steady-state force
response. However, for the transient-state force response, there can be very small differences.
These very small differences are expected because in every method, a different approach is

used to estimate the lengths of CE and SE (e.g. in equation A3.9, the previous value of F_ is
used to solve the current value of F_, while the iterative approach used different method as

explained in Chapter 3).

Another important point about the initial length (1) is worthy of notice; the CE length before
and just after recruitment is not the same, this is due to the tendon compliance (modelled as
k,). The initial length at rest (before recruitment) is not accurate since the experimental F-L
relationship is measured after recruitment not before. Therefore, it would be more accurate to
use the instantaneous I (t) at onset of recruitment at rest until CE length settles, and then
use that CE length for those recruited motor-units throughout the protocol as long as they are
still recruited. Modelling of other motor-units which are recruited later in the protocol will
have the same problem. However, the initial length used is the length before recruitment. In

the same time, experimental data are taken for the length just after recruitment not the length
before recruitment, the difference can be large if the tendon compliance is small, experimental
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F-L data for the tibialis anterior muscle (before and after full recruitment) are shown in

Appendix 6.

The multiple motor-unit model is incorporated into Herzog’s single motor-unit model by

replacing [Rx f, (1,)] by [ Eff.f, ] in the formulated Herzog’s single motor-unit model (see

1SO

details in Chapter 3.
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Appendix 4: Empirical Data for the Anatomical Operating Range of
Different Muscles

The anatomical operating range: is defined as the muscle belly length between [,,,;, and
Lmax- Lmin @Nd L4, are defined as the position of the minimum and maximum lengths of the

anatomical operating range of the muscle belly length (L,,).

The anatomical operating range varies among different muscles and different species.
Moreover, different values have been reported for the anatomical operating range of the same
muscle in the literature (like all other muscle parameters). This appendix some examples
reported in the literature. Figures A4.1, A4.2, and A4.3 show some examples of the

anatomical operating range obtained experimentally for different muscles.

Normalized Force

0.4 a jE l:l.IB lr 1 :2 1 .‘4
Normalized Muscle Fiber Length

Figure A4.1: Operating lengths of five wrist muscles from 50° flexion to 45° extension. Model
results within the operating ranges (between L,,,;,, and [,,,,,) are the dark curves; the thin line

represents the whole F-L curve. (From [159]).
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Figure A4.2: The thick lines represent the operating ranges for three major elbow flexors
(BIC: Biceps Brachii; BRA: Brachialis; BRD: Brachioradialis) throughout the range of
motion from 15° of elbow flexion (E at [,,,,,) to 120° of elbow flexion (F at L,,,;,). The thin

lines represent F-L curves for the whole range. (From [195]).

In figure A4.3, the operating ranges are ordered from [,,;, t0 l,,4, Within a study and are
colour-coded according to the species from which the experimental data were obtained.
Numbers shown on the right of each operating range indicate the reference which this
particular data were taken from (the full list of references used to make this figure are

provided in [196]).
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Figure A4.3: Sarcomere length operating ranges reported in the literature, graphically
superimposed upon a normalized sarcomere F-L curve. (From [196]).
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Appendix 5: Effects of CE Length on Force Response to Open-Loop

Simulation Protocols

The dynamic variations in R(t) during FES and the effects of different CE lengths are
examined here. Protocol-1 and protocol-11 were used to investigate the effects of different CE

lengths on force response when protocol-1 and protocol-Il are applied on the “Eff.f "

model (all other muscle parameters and constants values in the model equations are the same

I
for all CE lengths with —*=1.25). Note that the ratio of the magnitude of stretch or

opt
shortening to CE lengths is different when same protocols are applied on different CE lengths

and hence the normalised isometric force values at the end of stretch are different.

The muscle parameters used here are the same as those provided in chapter 3 (section 3.4.1),
more CE lengths are be tested, in addition to that CE length used in chapter 3, which is used
as a reference for comparison. The force responses for the range of CE lengths is compared

with that of the single motor-unit model, where f_ (I,) at initial recruitment is used through

IS0

the protocols regardless of the dynamic variations in R(t).

Protocol-1: The CE lengths examined with protocol-1 are shown in Table A5.1. The
simulation results are shown in Figure A5.1. As can be observed from this figure, force
response looks similar for all CE lengths until 5seconds when the 50% recruitment was

increased to 100%. The force response is shown magnified in Figure A5.2.

Table A5.1: CE lengths used with protocol-I.

CEl CE2 CE3 CE4 CE5 CE6
Lot 200mm 80mm S0mm 30mm 20mm 15mm
| e 250mm 100mm 62.5mm 37.5mm 25mm 18.75mm
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Figure A5.1: Force response of the Eff.f_, model, the input is protocol-1 with different CE

lengths.
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Figure A5.2: CE lengths used to examine the force response of protocol-II.

Protocol-I started with 100% recruitment (all motor-units are recruited) then reduced to 50%

(this means 50% of the motor-units have been de-recruited) and later increased again to 100%
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(all motor-units are recruited again) at the same CE length as that at the beginning of the

protocol at unique resting state (Al , =0). All motor-units now are recruited and were

initially recruited at the same CE length at unique resting state (Al_, =0), but the CE length

was not the same at initial recruitment for all motor-units. When the recruitment increased
again to 100%, the CE is already contracted with 50% of the motor-units already recruited
and produce force causing SE to stretch. CE length is slightly shorter than its previous length
at the beginning of the protocol when it was at the unique resting state. Therefore, the CE
length at which the first 50% of motor-units where initially recruited is slightly longer than
that for the other 50% of motor-units recruited later. The force response is slightly different as
shown in Figure A5.1 and Figure A5.2. Note that this difference is increasing with shorter CE
lengths; this is because the small difference in CE lengths in both cases (before stretch and
after stretch) is relatively larger on isometric force-length relationship for those shorter

muscles. .

Protocol-11: The CE lengths examined with protocol-1l are shown in Table A5.2. The
simulation results are shown in Figure A5.3. As can be observed from this figure, force
response looks similar for all CE lengths until 3 seconds when the 50% recruitment was
increased to 100%. The force responses for the range of CE lengths were largely different

with the shortest muscle with very little increase in force after the full recruitment.

Table A5.2: CE lengths used with protocol-I1.

CEl CE2 CE3 CE4 CE5 CE®6 CE7
Lot 600mm 200mm 100mm 70mm 40mm 32mm 24mm
- 750mm 250mm 125mm 87.5mm 50mm 40mm 30mm

Lengths shorter than (1, =24mm) are not suitable for this protocol because a stretch of 10mm

opt

is more than the maximum stretch allowed for Herzog F-L sub-model, which is (1.4 ).
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Figure A5.3: Force response for the Eff.f,., model, the input is protocol-11 at range of CE

lengths.

In protocol-Il, the recruitment level (R) was increased (at 3 seconds) at a range of CE
lengths. The force response was found to be dependent on the CE length, see Figure A5.3.
This is also true for any other protocol if R was increased at different CE length other than
the initial length providing that the corresponding isometric forces for these two lengths are
not the same (when the isometric force of one length lies on the descending limb and the other
one lies on the ascending limb and having the same value). This can be compared with
Protocol-I force response (in Chapter 3). For both protocols, shorter CE lengths produce

larger difference in the force response.

o |
and the ratio; —% =-"*=1.25 for the
opt opt

The initial length for protocol-11 at 0 seconds was |

rest

first 50% recruited motor-units. Then at 3 seconds; for the other 50% of motor-units the ratio
ol +A
is:

opt

rest

I
£ this is larger than the previous ratio.

248



Lengths longer than (I _, =600mm) were also examined, the difference in force response was

opt

very small, just between the reference force response and the response of the CE length (I,

=600). For the longest CE length (1., =600mm), a stretch of the value u =10mm is relatively
small and the corresponding isometric force for the CE length (I, + Al.z) becomes very
near to the isometric force for CE length (l.), and this is why the difference from the
reference results was very small. For the shortest CE length (I, =24mm), Al =10mm

becomes relatively large and the corresponding isometric force for the CE length (I, + Al )

becomes very small (almost zero) because it lies nearly at the bottom of the descending limb
of the force-length relationship. So, when recruitment increased from 50% to 100%, the force
produced by the recently recruited 50% of motor-units is very small and added very little

extra on the total muscle force.
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Appendix 6: Ankle-Joint and Tibialis Anterior Parameters

Some parameters of the ankle-joint and Tibialis Anterior (TA) muscle (Figure A6.1) are
shown here in this appendix. Figure A6.2 shows experimental data for the F-L relationship of
TA muscle belly and for the TA musculotendon complex. More detailed data, for the same

muscle, are shown in Table A6.1.

Figure A6.1: The Tibialis Anterior muscle. (from [15]).
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Figure A6.2: F-L relationship on muscle fibre (MF) and the musculotendon complex (MTC).

(From [197]).

Table A6.1: Ankle-joint angle, pennation angle and the corresponding elongation of tendon

structures, muscle fibre (MF) length and force, and musculotendon complex (MTC) length

and force. (From [197]).

Joint Angle [deg] -20 -10 0 +10 +20 +30
Pennation Angle [deg] 22.8 20.5 19.2 15.7 15.6 16
(during contraction)
Elongation of tendon 12.3 15.4 15 16.4 16.6 18.6
structures [mm]
MF length (at rest) 51 55 62.5 66.5 71 74
[mm]
MF length [mm] 38.8 40.2 47.8 49.5 54.5 58.3
(during contraction)
MF force [N] 174.2 253 364 400 408.8 388
MTC length [mm] 365.1 383.3 399.4 | 4141 | 4276 440.1
MTC force [N] 160.5 235 342 382.5 393 369

The length change of MTC was determined by multiplying the moment arm at the middle

value in the range of joint angle change by the amplitude of joint angle change (converted to

radians), e.g. if joint angle changed from 0° to 20° the moment arm at 10° was multiplied by

(%72’) rad [197].
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Experimental F-L data are usually taken for lengths after recruitment (at fixed musculotendon
length) not the length before recruitment; the difference can be large if the tendon compliance
is small. F-L experimental data of the tibialis anterior are shown in Figure A6.3. The muscle
fibre operates in the plateau region and ascending limb by elongating tendon structures,
although the length-force relationship predicted from the muscle fibre length in a resting state

is on the descending limb and plateau region).

450
400 r
350 r
300 r
250 r
200 r
150 r
100 -

50

fiber force (N)

20 30

muscle fiber length {(mm)

Figure A6.3: Length change of muscle fibre at rest and during contraction. The initial length
at rest is the measured data in the pre-set study. (From [197]).

If a constant value of 5.0 cm length is used for the moment arm model of both the Achilles
tendon and TA for the full range of ankle joint angle, this length (5.0 cm) is only accurate at
about 100° ankle joint angle. At 150° the difference between the constant value (5.0 cm)
moment arm and the real moment arm is about 20% for the Achilles tendon and 30% for the

TA. Some experimental data are shown in Figure A6.4, Figure A6.5, and Table A6.2.

Muscle moment arms are estimated empirically, accuracy of moment arms values are critical
in the field of musculoskeletal modelling [198, 199]. The sensitivity of muscle force
calculations to changes in muscle input variables was investigated by Herzog [200], an error
in moment arm values of 20% produced errors of up to 50% in the calculated muscle force.
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Therefore, accurate estimates and angle-specific values for the moment arm may significantly

reduce errors in muscle force estimates [198]

Figure A6.4: Ankle angle and moment arm lengths: (a) Achilles tendon moment arm. (b)

Tibialis Anterior moment arm, and (c) ankle angle. (From [198]).
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Figure A6.5: Average moment arm values for the Achilles tendon and Tibialis Anterior
measured using a fixed centre of rotation (FCR) and a moving centre of rotation (MCR). DF=
dorsi-flexion and PF= plantar flexion. Anatomical position was recorded at an ankle angle of

approximately 1.94 radians (about 111°) using both an FCR and MCR. (From [198]).

Table A6.2: Mean (2S.D.) moment arm values (N = 10) for the Achilles tendon and tibialis
anterior measured using a fixed centre of rotation (FCR) and a moving centre of rotation
(MCR). * Differences in moment arm values measured using fixed CR versus moving CR

were statistically significant at the O.05 level. (From [198]).

Achilles tendon Tibialis anterior
Ankle angle moment arms (cm)  moment arms {cm)
(radians) FCR MCR FCR MCR
1.75 5140 49+04 51403 48x03
1.92 54403 §2+04 46404 44+0)
2.09 56403 55404 42403 42+03
Py S84+04* 56+04 39403 39+03
244 59+04* 57404 37102 17 +0.3
262 60+03 $94+04 35402 34+013
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Appendix 7: Basic Laws of Geometry Related to Pennation Angle

Basic laws of geometry which can be used to calculate the effect of pennation angle on the F-
V and F-L relationships are given here, this include the effect on length change (displacement

due to stretch/shortening) of muscle belly (Al ) and muscle fibre (Al, ), and also the rate of
length change (velocity) for muscle belly (v, ) and muscle fibre (v, ). Note that for pennated

muscle (pennation angle > 0): Al, and Al are different, and consequently v, and v, are

also different. The main basic laws of geometry related to this issue are shown in Figure A7.1
and Figure A7.2.

(&

C
Figure A7.1: sin(A) _ sin(B) _ sin(C)
a b c
)
X
C

Figure A7.2: b2 =a® +c2 —2xaxcxcos(x), b =+/a? +c% —2xaxcxcos(x) .
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Appendix 8: Forcinito Force Enhancement & Depression Sub-Model

Forcinito force enhancement & depression sub-models [156, 157] were modified in order to

be used in the General Model, details are provided in this appendix.

In this sub-model, the initial length is used to calculate the isometric force [f.. = f.(l,)].
where in the majority of Hill-type models the instantaneous length is used [fe = f,, (Ice)]-

For fully recruited muscle (R =1), the steady-state force depression/enhancement is modelled
by an extra parallel elastic rack (parallel to CE), where a relay will engage the elastic rack at

the moment when the muscle is initially recruited, this relay will continue to be active as long
as the muscle is still recruited (R > 0). The stiffness of the rack is given by: (E.A/lg,),

where A is the cross-sectional area of the elastic rack, and E is the modulus of elasticity.

The stiffness of the rack decreases linearly with increasing initial length (I ,). The

instantaneous active muscle force ( f,,) including force enhancement and force depression is

given by:

Fo = fmmw{ﬁﬁxmw4maJ

ER,0

(A8.1)

-{u—EA —Eﬁ}am—@nxwm4w®xo

k x IER,O IER,o

In order to use Forcinito IE & ID sub-models in the “General Model” (it can only be used

with Herzog since Herzog also used the initial length); it has to be in the standard form as

presented in section 6.2. Therefore it needs to be re-formulated by normalising it to [fiso(lo)]
and optimal length (1,,, ), also making the time t starts after end of stretch/shortening (in the

original Forcinito model, time starts at onset of stretch/shortening).

The normalised IE & ID sub-models are represented by:
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IE or ID:{:L_'_(I—ElAX(I_ER_I_ER,o))}

f H[(u k XEI'_A ) (I, — I'ER,O)]—{([E S o I'ER,O)]}X exp[— (%xt)ﬂ (A8.2)

Note that the first term represents (I1E_) and the second term represents the exponentially

decaying transient-state. The re-formulation of Forcinito IE & ID sub-models is complicated
because of the following: it was developed using a simple linear F-V relationship and also
assumed that the time t starts at onset of stretch/shortening. Another problem is that the
equations provided in [157] do not agree with the arrangement of rheological elements

presented in the given figure, (see [157] for details).

Therefore the exponentially decaying term:

{m ) (0 —I'ER,O)]—(Q_E'A)X (e - I)J}

Which represents the maximum force reached during stretch or the minimum force reached

during shortening, will be formulated in a form similar to Hawkins IE sub-model. Hence, IE_

is the plateau level of IE & ID after very large value of time (t — o), in its original form as

provided in [156, 157] is given by:

IE, =1+ EA xAlgg |, Algg; >0 (A8.3)
IER,j,o

ID, =1+[I_E'A xAI_ER) , Al <0 (A8.4)
ER,j,0

Both of IE, and 1D, have the same equation but Al_, will be positive in case of stretch and

negative in case of shortening.
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The maximum/minimum IE or ID at end of stretch/shortening will be taken as the normalised
maximum/minimum force at end of stretch/shortening of Hill-type models (as defined in the
notation list):

3 maximum muscle force during stretch
isometric force corresponding to the length at end of stretch

3 minimum muscle force during shortening
isometric force corresponding to the length at end of shortening

The steady-state I1E or IDg at t=4:

IEg = IE, +[(IE,, — IE. ) xexp(c,s x4)], for stretch. (A8.5)

IDg = ID, +[(1D,,;, — 1D, ) x exp(cys x 4)], for shortening. (A8.6)
: k

Finally: ¢ = _(E) (A8.7)
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Appendix 9: Published Papers

Two paper abstracts were published during this study:

[1] A. Hamouda, D. Howard, L. Kenney, and G. Cooper, “A new multiple motor-unit
muscle model for FES applications,” In Proceedings 1* Annual Conference IFESS
(UK and Ireland Chapter), Salford, UK, 47, April 2010.

[2] A. Hamouda, D. Howard, L. Kenney, and G. Cooper, “Modelling the Length-History
Dependence of Muscle for FES Applications Using a Multiple Motor-Unit Approach,”
In Proceedings 2™ Annual Conference IFESS (UK and Ireland Chapter), University
College Dublin, March 2011.

Copies of the two paper abstracts are shown in the next two pages.
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1%t Annual Conference of the International Functional Electrical Stimulation Society (UK and Ireland Chapter)
April 2010 - University of Salford, UK

A New Multiple Motor-Unit Muscle Model for FES Applications

Hamouda A', Howard D, Kenney L?, Cooper GZ.

" School of Computing, Science & Engineering
% School of Health, Sports and Rehabilitation Sciences
University of Salford, UK.
Email d.howard@salford.ac.uk

1. Introduction

Many FES controllers have been developed
using a simulation approach and the performance
of these controllers depends on the muscle
model accuracy. During FES, the activation level
can change in a continuous fashion such that
different motor units are recruited at different
muscle lengths. Furthermore, it is the length at
initial activation that should be the input to the
muscle force-length relationship [1]. Therefore, it
seems reasonable to account for these facts in
muscle models that are to be used in the
development of FES controllers. However, in
most previous work on FES control [2,3], the
instantaneous muscle length is used rather than
the length at initial activation.

Whilst not commonly used in FES control studies,
the Hill-type model described by Epstein &
Herzog [1] does use the length at initial activation
of the muscle (i.e. when the first motor unit is
recruited). However, this does not properly model
the situation where the activation varies with time
and muscle length (i.e. different motor units are
recruited at different lengths).

We present a Hill-type muscle model which
accounts for different motor units being recruited
at different lengths. Hence the model can
account for a continuously changing activation
level whilst using the individual motor unit lengths
at initial activation as input to the force-length
relationship (i.e. modelling the history effect).

2. The Model

Referring to Figure 1, a Hill-type model is used in
which each recruited motor unit is treated as a
separate fully activated muscle for the purposes
of calculating the isometric force. The number of
recruited motor units depends on the activation

level, B(t). The isometric force ( fiso]i) produced
by each motor unit depends on the length at
which it was initially recruited. The effective

isometric force for the entire muscle (Eff .f,) is

the sum of the individual motor units’ isometric
forces.

Eff . fiso = i fiso,i (1)
i=1

This effective isometric force is used as input to
the force-velocity relationship of a Hill-type
muscle model. Thus the total muscle force is
determined by the number of recruited motor
units, the length of each motor unit when initially
recruited, and the instantaneous muscle velocity.

It should be noted that the virtual motor units in
the model don’t correspond to real motor units.
Rather, the number of virtual motor units used in
the model is chosen to give the required force
resolution. For example if we want a resolution of
1%, then we would use a model based on 100
motor units.

o ————71 1 ]
01
imformation
A | motor
unit 1
Recruitment
Model 5y motor
unit 2 ’ \:— oo
n=10008() . BAO A
oI . . -
. Vian
.
n: number of | _ ‘e
recruited °
motor units | A, motor
unitn

Figure 1 Calculating effective isometric force

3. Discussion

The new muscle model accounts for the
activation history during FES control whilst
allowing the activation to change continuously.
As such, the model is suitable for the design,
development and simulation of feedback control
systems prior to clinical trials; with the proviso
that other important features, such as a fatigue
model, are included.
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2" Annual Conference of the International Functional Electrical Stimulation Society (UK and Ireland Chapter)

March 2011 - University College Dublin.

Modelling the Length-History Dependence of Muscle for FES Applications Using a
Multiple Motor-Unit Approach

Hamouda A', Howard D", Kenney L?, Cooper G%

! School of Computing, Science & Engineering.
2School of Health, Sports and Rehabilitation Sciences.
University of Salford, Salford, Greater Manchester, UK.
Email: d.howard@salford.ac.uk

1. Introduction

Skeletal muscle force production is history
dependent, yet this aspect of muscle modelling
has received little attention in FES control
studies. Force depression following shortening
and force enhancement following stretch can
reach values of up to almost 50% of the
corresponding isometric muscle force. Therefore,
if not properly accounted for during the design, it
is reasonable to assume that this effect may
adversely influence the performance of FES
controllers [2]. To the best of the authors’
knowledge, this length-history dependence has
yet to be incorporated in muscle models in the
context of FES control. We have developed a
multiple motor-unit model for force depression
and enhancement which accounts for time-
varying activation levels (i.e. different motor-
units being recruited at different lengths).

2. The Model
In our previous study [1], we developed a Hill-
type multiple motor-unit muscle model that
accounts for the activation history during FES
control. We have extended this by incorporating
the model of force depression and enhancement
proposed by Forcinito, M., et al. [3] for a fully
activated muscle treated as a single motor-unit.
Based on their model, we have included an
elastic rack in parallel with each motor-unit
(Figure 1). When a motor-unit is recruited, its
elastic rack is engaged and thus the passive force
produced by that motor-unit will be a function of

its change in length, X;, since initial activation.

(fase); :(g(x.)] 1)

Where A is the cross-sectional area of the elastic
rack, E is the modulus of elasticity, and oni is

the length at initial activation.

Figure (1) Motor unit with parallel elastic rack.

The effective isometric force of the entire
muscle, including force  depression or
enhancement for each motor unit recruited, is the
sum of the individual motor unit forces as
follows:

Eﬁ: 'fiso+d/e :Z(fiso)i +(fd/e)i (2)

i=1

3. Discussion

We have incorporated force depression and
enhancement in our multiple motor-unit muscle
model, further improving the way in which the
activation-history  and  length-history  are
accounted for. By correctly modelling the effects
of continuously changing recruitment and length,
as seen during FES control, we hope that better
FES controllers can be designed.

References

1. Hamouda, A., Howard, D., Kenney, L. and
Cooper G., A new multiple motor-unit
muscle model for FES applications. In
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2. Herzog, W., History dependence of skeletal
muscle force production: implications for
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